at v6.4-rc2 911 lines 26 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * tools/testing/selftests/kvm/include/kvm_util_base.h 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7#ifndef SELFTEST_KVM_UTIL_BASE_H 8#define SELFTEST_KVM_UTIL_BASE_H 9 10#include "test_util.h" 11 12#include <linux/compiler.h> 13#include "linux/hashtable.h" 14#include "linux/list.h" 15#include <linux/kernel.h> 16#include <linux/kvm.h> 17#include "linux/rbtree.h" 18 19#include <asm/atomic.h> 20 21#include <sys/ioctl.h> 22 23#include "sparsebit.h" 24 25/* 26 * Provide a version of static_assert() that is guaranteed to have an optional 27 * message param. If _ISOC11_SOURCE is defined, glibc (/usr/include/assert.h) 28 * #undefs and #defines static_assert() as a direct alias to _Static_assert(), 29 * i.e. effectively makes the message mandatory. Many KVM selftests #define 30 * _GNU_SOURCE for various reasons, and _GNU_SOURCE implies _ISOC11_SOURCE. As 31 * a result, static_assert() behavior is non-deterministic and may or may not 32 * require a message depending on #include order. 33 */ 34#define __kvm_static_assert(expr, msg, ...) _Static_assert(expr, msg) 35#define kvm_static_assert(expr, ...) __kvm_static_assert(expr, ##__VA_ARGS__, #expr) 36 37#define KVM_DEV_PATH "/dev/kvm" 38#define KVM_MAX_VCPUS 512 39 40#define NSEC_PER_SEC 1000000000L 41 42typedef uint64_t vm_paddr_t; /* Virtual Machine (Guest) physical address */ 43typedef uint64_t vm_vaddr_t; /* Virtual Machine (Guest) virtual address */ 44 45struct userspace_mem_region { 46 struct kvm_userspace_memory_region region; 47 struct sparsebit *unused_phy_pages; 48 int fd; 49 off_t offset; 50 enum vm_mem_backing_src_type backing_src_type; 51 void *host_mem; 52 void *host_alias; 53 void *mmap_start; 54 void *mmap_alias; 55 size_t mmap_size; 56 struct rb_node gpa_node; 57 struct rb_node hva_node; 58 struct hlist_node slot_node; 59}; 60 61struct kvm_vcpu { 62 struct list_head list; 63 uint32_t id; 64 int fd; 65 struct kvm_vm *vm; 66 struct kvm_run *run; 67#ifdef __x86_64__ 68 struct kvm_cpuid2 *cpuid; 69#endif 70 struct kvm_dirty_gfn *dirty_gfns; 71 uint32_t fetch_index; 72 uint32_t dirty_gfns_count; 73}; 74 75struct userspace_mem_regions { 76 struct rb_root gpa_tree; 77 struct rb_root hva_tree; 78 DECLARE_HASHTABLE(slot_hash, 9); 79}; 80 81enum kvm_mem_region_type { 82 MEM_REGION_CODE, 83 MEM_REGION_DATA, 84 MEM_REGION_PT, 85 MEM_REGION_TEST_DATA, 86 NR_MEM_REGIONS, 87}; 88 89struct kvm_vm { 90 int mode; 91 unsigned long type; 92 int kvm_fd; 93 int fd; 94 unsigned int pgtable_levels; 95 unsigned int page_size; 96 unsigned int page_shift; 97 unsigned int pa_bits; 98 unsigned int va_bits; 99 uint64_t max_gfn; 100 struct list_head vcpus; 101 struct userspace_mem_regions regions; 102 struct sparsebit *vpages_valid; 103 struct sparsebit *vpages_mapped; 104 bool has_irqchip; 105 bool pgd_created; 106 vm_paddr_t ucall_mmio_addr; 107 vm_paddr_t pgd; 108 vm_vaddr_t gdt; 109 vm_vaddr_t tss; 110 vm_vaddr_t idt; 111 vm_vaddr_t handlers; 112 uint32_t dirty_ring_size; 113 114 /* Cache of information for binary stats interface */ 115 int stats_fd; 116 struct kvm_stats_header stats_header; 117 struct kvm_stats_desc *stats_desc; 118 119 /* 120 * KVM region slots. These are the default memslots used by page 121 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE] 122 * memslot. 123 */ 124 uint32_t memslots[NR_MEM_REGIONS]; 125}; 126 127 128#define kvm_for_each_vcpu(vm, i, vcpu) \ 129 for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \ 130 if (!((vcpu) = vm->vcpus[i])) \ 131 continue; \ 132 else 133 134struct userspace_mem_region * 135memslot2region(struct kvm_vm *vm, uint32_t memslot); 136 137static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm, 138 enum kvm_mem_region_type type) 139{ 140 assert(type < NR_MEM_REGIONS); 141 return memslot2region(vm, vm->memslots[type]); 142} 143 144/* Minimum allocated guest virtual and physical addresses */ 145#define KVM_UTIL_MIN_VADDR 0x2000 146#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 147 148#define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000 149#define DEFAULT_STACK_PGS 5 150 151enum vm_guest_mode { 152 VM_MODE_P52V48_4K, 153 VM_MODE_P52V48_64K, 154 VM_MODE_P48V48_4K, 155 VM_MODE_P48V48_16K, 156 VM_MODE_P48V48_64K, 157 VM_MODE_P40V48_4K, 158 VM_MODE_P40V48_16K, 159 VM_MODE_P40V48_64K, 160 VM_MODE_PXXV48_4K, /* For 48bits VA but ANY bits PA */ 161 VM_MODE_P47V64_4K, 162 VM_MODE_P44V64_4K, 163 VM_MODE_P36V48_4K, 164 VM_MODE_P36V48_16K, 165 VM_MODE_P36V48_64K, 166 VM_MODE_P36V47_16K, 167 NUM_VM_MODES, 168}; 169 170#if defined(__aarch64__) 171 172extern enum vm_guest_mode vm_mode_default; 173 174#define VM_MODE_DEFAULT vm_mode_default 175#define MIN_PAGE_SHIFT 12U 176#define ptes_per_page(page_size) ((page_size) / 8) 177 178#elif defined(__x86_64__) 179 180#define VM_MODE_DEFAULT VM_MODE_PXXV48_4K 181#define MIN_PAGE_SHIFT 12U 182#define ptes_per_page(page_size) ((page_size) / 8) 183 184#elif defined(__s390x__) 185 186#define VM_MODE_DEFAULT VM_MODE_P44V64_4K 187#define MIN_PAGE_SHIFT 12U 188#define ptes_per_page(page_size) ((page_size) / 16) 189 190#elif defined(__riscv) 191 192#if __riscv_xlen == 32 193#error "RISC-V 32-bit kvm selftests not supported" 194#endif 195 196#define VM_MODE_DEFAULT VM_MODE_P40V48_4K 197#define MIN_PAGE_SHIFT 12U 198#define ptes_per_page(page_size) ((page_size) / 8) 199 200#endif 201 202#define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT) 203#define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE) 204 205struct vm_guest_mode_params { 206 unsigned int pa_bits; 207 unsigned int va_bits; 208 unsigned int page_size; 209 unsigned int page_shift; 210}; 211extern const struct vm_guest_mode_params vm_guest_mode_params[]; 212 213int open_path_or_exit(const char *path, int flags); 214int open_kvm_dev_path_or_exit(void); 215 216bool get_kvm_param_bool(const char *param); 217bool get_kvm_intel_param_bool(const char *param); 218bool get_kvm_amd_param_bool(const char *param); 219 220unsigned int kvm_check_cap(long cap); 221 222static inline bool kvm_has_cap(long cap) 223{ 224 return kvm_check_cap(cap); 225} 226 227#define __KVM_SYSCALL_ERROR(_name, _ret) \ 228 "%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno) 229 230#define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret) 231#define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret) 232 233#define kvm_do_ioctl(fd, cmd, arg) \ 234({ \ 235 kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \ 236 ioctl(fd, cmd, arg); \ 237}) 238 239#define __kvm_ioctl(kvm_fd, cmd, arg) \ 240 kvm_do_ioctl(kvm_fd, cmd, arg) 241 242 243#define _kvm_ioctl(kvm_fd, cmd, name, arg) \ 244({ \ 245 int ret = __kvm_ioctl(kvm_fd, cmd, arg); \ 246 \ 247 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(name, ret)); \ 248}) 249 250#define kvm_ioctl(kvm_fd, cmd, arg) \ 251 _kvm_ioctl(kvm_fd, cmd, #cmd, arg) 252 253static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { } 254 255#define __vm_ioctl(vm, cmd, arg) \ 256({ \ 257 static_assert_is_vm(vm); \ 258 kvm_do_ioctl((vm)->fd, cmd, arg); \ 259}) 260 261#define _vm_ioctl(vm, cmd, name, arg) \ 262({ \ 263 int ret = __vm_ioctl(vm, cmd, arg); \ 264 \ 265 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(name, ret)); \ 266}) 267 268#define vm_ioctl(vm, cmd, arg) \ 269 _vm_ioctl(vm, cmd, #cmd, arg) 270 271 272static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { } 273 274#define __vcpu_ioctl(vcpu, cmd, arg) \ 275({ \ 276 static_assert_is_vcpu(vcpu); \ 277 kvm_do_ioctl((vcpu)->fd, cmd, arg); \ 278}) 279 280#define _vcpu_ioctl(vcpu, cmd, name, arg) \ 281({ \ 282 int ret = __vcpu_ioctl(vcpu, cmd, arg); \ 283 \ 284 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(name, ret)); \ 285}) 286 287#define vcpu_ioctl(vcpu, cmd, arg) \ 288 _vcpu_ioctl(vcpu, cmd, #cmd, arg) 289 290/* 291 * Looks up and returns the value corresponding to the capability 292 * (KVM_CAP_*) given by cap. 293 */ 294static inline int vm_check_cap(struct kvm_vm *vm, long cap) 295{ 296 int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap); 297 298 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret)); 299 return ret; 300} 301 302static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0) 303{ 304 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 305 306 return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap); 307} 308static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0) 309{ 310 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 311 312 vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap); 313} 314 315void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size); 316const char *vm_guest_mode_string(uint32_t i); 317 318void kvm_vm_free(struct kvm_vm *vmp); 319void kvm_vm_restart(struct kvm_vm *vmp); 320void kvm_vm_release(struct kvm_vm *vmp); 321int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, const vm_vaddr_t gva, 322 size_t len); 323void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename); 324int kvm_memfd_alloc(size_t size, bool hugepages); 325 326void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent); 327 328static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log) 329{ 330 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot }; 331 332 vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args); 333} 334 335static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log, 336 uint64_t first_page, uint32_t num_pages) 337{ 338 struct kvm_clear_dirty_log args = { 339 .dirty_bitmap = log, 340 .slot = slot, 341 .first_page = first_page, 342 .num_pages = num_pages 343 }; 344 345 vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args); 346} 347 348static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm) 349{ 350 return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL); 351} 352 353static inline int vm_get_stats_fd(struct kvm_vm *vm) 354{ 355 int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL); 356 357 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_GET_STATS_FD, fd)); 358 return fd; 359} 360 361static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header) 362{ 363 ssize_t ret; 364 365 ret = read(stats_fd, header, sizeof(*header)); 366 TEST_ASSERT(ret == sizeof(*header), "Read stats header"); 367} 368 369struct kvm_stats_desc *read_stats_descriptors(int stats_fd, 370 struct kvm_stats_header *header); 371 372static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header) 373{ 374 /* 375 * The base size of the descriptor is defined by KVM's ABI, but the 376 * size of the name field is variable, as far as KVM's ABI is 377 * concerned. For a given instance of KVM, the name field is the same 378 * size for all stats and is provided in the overall stats header. 379 */ 380 return sizeof(struct kvm_stats_desc) + header->name_size; 381} 382 383static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats, 384 int index, 385 struct kvm_stats_header *header) 386{ 387 /* 388 * Note, size_desc includes the size of the name field, which is 389 * variable. i.e. this is NOT equivalent to &stats_desc[i]. 390 */ 391 return (void *)stats + index * get_stats_descriptor_size(header); 392} 393 394void read_stat_data(int stats_fd, struct kvm_stats_header *header, 395 struct kvm_stats_desc *desc, uint64_t *data, 396 size_t max_elements); 397 398void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data, 399 size_t max_elements); 400 401static inline uint64_t vm_get_stat(struct kvm_vm *vm, const char *stat_name) 402{ 403 uint64_t data; 404 405 __vm_get_stat(vm, stat_name, &data, 1); 406 return data; 407} 408 409void vm_create_irqchip(struct kvm_vm *vm); 410 411void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 412 uint64_t gpa, uint64_t size, void *hva); 413int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 414 uint64_t gpa, uint64_t size, void *hva); 415void vm_userspace_mem_region_add(struct kvm_vm *vm, 416 enum vm_mem_backing_src_type src_type, 417 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 418 uint32_t flags); 419 420void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags); 421void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa); 422void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot); 423struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id); 424void vm_populate_vaddr_bitmap(struct kvm_vm *vm); 425vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); 426vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); 427vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 428 enum kvm_mem_region_type type); 429vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages); 430vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, 431 enum kvm_mem_region_type type); 432vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm); 433 434void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 435 unsigned int npages); 436void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa); 437void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva); 438vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva); 439void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa); 440 441void vcpu_run(struct kvm_vcpu *vcpu); 442int _vcpu_run(struct kvm_vcpu *vcpu); 443 444static inline int __vcpu_run(struct kvm_vcpu *vcpu) 445{ 446 return __vcpu_ioctl(vcpu, KVM_RUN, NULL); 447} 448 449void vcpu_run_complete_io(struct kvm_vcpu *vcpu); 450struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu); 451 452static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap, 453 uint64_t arg0) 454{ 455 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 456 457 vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap); 458} 459 460static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu, 461 struct kvm_guest_debug *debug) 462{ 463 vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug); 464} 465 466static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu, 467 struct kvm_mp_state *mp_state) 468{ 469 vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state); 470} 471static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu, 472 struct kvm_mp_state *mp_state) 473{ 474 vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state); 475} 476 477static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 478{ 479 vcpu_ioctl(vcpu, KVM_GET_REGS, regs); 480} 481 482static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 483{ 484 vcpu_ioctl(vcpu, KVM_SET_REGS, regs); 485} 486static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 487{ 488 vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs); 489 490} 491static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 492{ 493 vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs); 494} 495static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 496{ 497 return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs); 498} 499static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 500{ 501 vcpu_ioctl(vcpu, KVM_GET_FPU, fpu); 502} 503static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 504{ 505 vcpu_ioctl(vcpu, KVM_SET_FPU, fpu); 506} 507 508static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr) 509{ 510 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr }; 511 512 return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg); 513} 514static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val) 515{ 516 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; 517 518 return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg); 519} 520static inline void vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr) 521{ 522 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr }; 523 524 vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg); 525} 526static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val) 527{ 528 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; 529 530 vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg); 531} 532 533#ifdef __KVM_HAVE_VCPU_EVENTS 534static inline void vcpu_events_get(struct kvm_vcpu *vcpu, 535 struct kvm_vcpu_events *events) 536{ 537 vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events); 538} 539static inline void vcpu_events_set(struct kvm_vcpu *vcpu, 540 struct kvm_vcpu_events *events) 541{ 542 vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events); 543} 544#endif 545#ifdef __x86_64__ 546static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu, 547 struct kvm_nested_state *state) 548{ 549 vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state); 550} 551static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu, 552 struct kvm_nested_state *state) 553{ 554 return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state); 555} 556 557static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu, 558 struct kvm_nested_state *state) 559{ 560 vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state); 561} 562#endif 563static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu) 564{ 565 int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL); 566 567 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_GET_STATS_FD, fd)); 568 return fd; 569} 570 571int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr); 572 573static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) 574{ 575 int ret = __kvm_has_device_attr(dev_fd, group, attr); 576 577 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno); 578} 579 580int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val); 581 582static inline void kvm_device_attr_get(int dev_fd, uint32_t group, 583 uint64_t attr, void *val) 584{ 585 int ret = __kvm_device_attr_get(dev_fd, group, attr, val); 586 587 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret)); 588} 589 590int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val); 591 592static inline void kvm_device_attr_set(int dev_fd, uint32_t group, 593 uint64_t attr, void *val) 594{ 595 int ret = __kvm_device_attr_set(dev_fd, group, attr, val); 596 597 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret)); 598} 599 600static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group, 601 uint64_t attr) 602{ 603 return __kvm_has_device_attr(vcpu->fd, group, attr); 604} 605 606static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group, 607 uint64_t attr) 608{ 609 kvm_has_device_attr(vcpu->fd, group, attr); 610} 611 612static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group, 613 uint64_t attr, void *val) 614{ 615 return __kvm_device_attr_get(vcpu->fd, group, attr, val); 616} 617 618static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group, 619 uint64_t attr, void *val) 620{ 621 kvm_device_attr_get(vcpu->fd, group, attr, val); 622} 623 624static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group, 625 uint64_t attr, void *val) 626{ 627 return __kvm_device_attr_set(vcpu->fd, group, attr, val); 628} 629 630static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group, 631 uint64_t attr, void *val) 632{ 633 kvm_device_attr_set(vcpu->fd, group, attr, val); 634} 635 636int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type); 637int __kvm_create_device(struct kvm_vm *vm, uint64_t type); 638 639static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type) 640{ 641 int fd = __kvm_create_device(vm, type); 642 643 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd)); 644 return fd; 645} 646 647void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu); 648 649/* 650 * VM VCPU Args Set 651 * 652 * Input Args: 653 * vm - Virtual Machine 654 * num - number of arguments 655 * ... - arguments, each of type uint64_t 656 * 657 * Output Args: None 658 * 659 * Return: None 660 * 661 * Sets the first @num input parameters for the function at @vcpu's entry point, 662 * per the C calling convention of the architecture, to the values given as 663 * variable args. Each of the variable args is expected to be of type uint64_t. 664 * The maximum @num can be is specific to the architecture. 665 */ 666void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...); 667 668void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level); 669int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level); 670 671#define KVM_MAX_IRQ_ROUTES 4096 672 673struct kvm_irq_routing *kvm_gsi_routing_create(void); 674void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 675 uint32_t gsi, uint32_t pin); 676int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing); 677void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing); 678 679const char *exit_reason_str(unsigned int exit_reason); 680 681vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 682 uint32_t memslot); 683vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 684 vm_paddr_t paddr_min, uint32_t memslot); 685vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm); 686 687/* 688 * ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also 689 * loads the test binary into guest memory and creates an IRQ chip (x86 only). 690 * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to 691 * calculate the amount of memory needed for per-vCPU data, e.g. stacks. 692 */ 693struct kvm_vm *____vm_create(enum vm_guest_mode mode); 694struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus, 695 uint64_t nr_extra_pages); 696 697static inline struct kvm_vm *vm_create_barebones(void) 698{ 699 return ____vm_create(VM_MODE_DEFAULT); 700} 701 702static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus) 703{ 704 return __vm_create(VM_MODE_DEFAULT, nr_runnable_vcpus, 0); 705} 706 707struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus, 708 uint64_t extra_mem_pages, 709 void *guest_code, struct kvm_vcpu *vcpus[]); 710 711static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus, 712 void *guest_code, 713 struct kvm_vcpu *vcpus[]) 714{ 715 return __vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, 0, 716 guest_code, vcpus); 717} 718 719/* 720 * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages 721 * additional pages of guest memory. Returns the VM and vCPU (via out param). 722 */ 723struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu, 724 uint64_t extra_mem_pages, 725 void *guest_code); 726 727static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu, 728 void *guest_code) 729{ 730 return __vm_create_with_one_vcpu(vcpu, 0, guest_code); 731} 732 733struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm); 734 735void kvm_pin_this_task_to_pcpu(uint32_t pcpu); 736void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], 737 int nr_vcpus); 738 739unsigned long vm_compute_max_gfn(struct kvm_vm *vm); 740unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size); 741unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages); 742unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages); 743static inline unsigned int 744vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 745{ 746 unsigned int n; 747 n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages)); 748#ifdef __s390x__ 749 /* s390 requires 1M aligned guest sizes */ 750 n = (n + 255) & ~255; 751#endif 752 return n; 753} 754 755struct kvm_userspace_memory_region * 756kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start, 757 uint64_t end); 758 759#define sync_global_to_guest(vm, g) ({ \ 760 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 761 memcpy(_p, &(g), sizeof(g)); \ 762}) 763 764#define sync_global_from_guest(vm, g) ({ \ 765 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 766 memcpy(&(g), _p, sizeof(g)); \ 767}) 768 769/* 770 * Write a global value, but only in the VM's (guest's) domain. Primarily used 771 * for "globals" that hold per-VM values (VMs always duplicate code and global 772 * data into their own region of physical memory), but can be used anytime it's 773 * undesirable to change the host's copy of the global. 774 */ 775#define write_guest_global(vm, g, val) ({ \ 776 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 777 typeof(g) _val = val; \ 778 \ 779 memcpy(_p, &(_val), sizeof(g)); \ 780}) 781 782void assert_on_unhandled_exception(struct kvm_vcpu *vcpu); 783 784void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, 785 uint8_t indent); 786 787static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu, 788 uint8_t indent) 789{ 790 vcpu_arch_dump(stream, vcpu, indent); 791} 792 793/* 794 * Adds a vCPU with reasonable defaults (e.g. a stack) 795 * 796 * Input Args: 797 * vm - Virtual Machine 798 * vcpu_id - The id of the VCPU to add to the VM. 799 * guest_code - The vCPU's entry point 800 */ 801struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, 802 void *guest_code); 803 804static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, 805 void *guest_code) 806{ 807 return vm_arch_vcpu_add(vm, vcpu_id, guest_code); 808} 809 810/* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */ 811struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id); 812 813static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm, 814 uint32_t vcpu_id) 815{ 816 return vm_arch_vcpu_recreate(vm, vcpu_id); 817} 818 819void vcpu_arch_free(struct kvm_vcpu *vcpu); 820 821void virt_arch_pgd_alloc(struct kvm_vm *vm); 822 823static inline void virt_pgd_alloc(struct kvm_vm *vm) 824{ 825 virt_arch_pgd_alloc(vm); 826} 827 828/* 829 * VM Virtual Page Map 830 * 831 * Input Args: 832 * vm - Virtual Machine 833 * vaddr - VM Virtual Address 834 * paddr - VM Physical Address 835 * memslot - Memory region slot for new virtual translation tables 836 * 837 * Output Args: None 838 * 839 * Return: None 840 * 841 * Within @vm, creates a virtual translation for the page starting 842 * at @vaddr to the page starting at @paddr. 843 */ 844void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr); 845 846static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) 847{ 848 virt_arch_pg_map(vm, vaddr, paddr); 849} 850 851 852/* 853 * Address Guest Virtual to Guest Physical 854 * 855 * Input Args: 856 * vm - Virtual Machine 857 * gva - VM virtual address 858 * 859 * Output Args: None 860 * 861 * Return: 862 * Equivalent VM physical address 863 * 864 * Returns the VM physical address of the translated VM virtual 865 * address given by @gva. 866 */ 867vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva); 868 869static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 870{ 871 return addr_arch_gva2gpa(vm, gva); 872} 873 874/* 875 * Virtual Translation Tables Dump 876 * 877 * Input Args: 878 * stream - Output FILE stream 879 * vm - Virtual Machine 880 * indent - Left margin indent amount 881 * 882 * Output Args: None 883 * 884 * Return: None 885 * 886 * Dumps to the FILE stream given by @stream, the contents of all the 887 * virtual translation tables for the VM given by @vm. 888 */ 889void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent); 890 891static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 892{ 893 virt_arch_dump(stream, vm, indent); 894} 895 896 897static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm) 898{ 899 return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0); 900} 901 902/* 903 * Arch hook that is invoked via a constructor, i.e. before exeucting main(), 904 * to allow for arch-specific setup that is common to all tests, e.g. computing 905 * the default guest "mode". 906 */ 907void kvm_selftest_arch_init(void); 908 909void kvm_arch_vm_post_create(struct kvm_vm *vm); 910 911#endif /* SELFTEST_KVM_UTIL_BASE_H */