Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "path.h"
20#include "srcline.h"
21#include "symbol.h"
22#include "sort.h"
23#include "strlist.h"
24#include "target.h"
25#include "thread.h"
26#include "util.h"
27#include "vdso.h"
28#include <stdbool.h>
29#include <sys/types.h>
30#include <sys/stat.h>
31#include <unistd.h>
32#include "unwind.h"
33#include "linux/hash.h"
34#include "asm/bug.h"
35#include "bpf-event.h"
36#include <internal/lib.h> // page_size
37#include "cgroup.h"
38#include "arm64-frame-pointer-unwind-support.h"
39
40#include <linux/ctype.h>
41#include <symbol/kallsyms.h>
42#include <linux/mman.h>
43#include <linux/string.h>
44#include <linux/zalloc.h>
45
46static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
47static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip);
48
49static struct dso *machine__kernel_dso(struct machine *machine)
50{
51 return map__dso(machine->vmlinux_map);
52}
53
54static void dsos__init(struct dsos *dsos)
55{
56 INIT_LIST_HEAD(&dsos->head);
57 dsos->root = RB_ROOT;
58 init_rwsem(&dsos->lock);
59}
60
61static void machine__threads_init(struct machine *machine)
62{
63 int i;
64
65 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
66 struct threads *threads = &machine->threads[i];
67 threads->entries = RB_ROOT_CACHED;
68 init_rwsem(&threads->lock);
69 threads->nr = 0;
70 INIT_LIST_HEAD(&threads->dead);
71 threads->last_match = NULL;
72 }
73}
74
75static int machine__set_mmap_name(struct machine *machine)
76{
77 if (machine__is_host(machine))
78 machine->mmap_name = strdup("[kernel.kallsyms]");
79 else if (machine__is_default_guest(machine))
80 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
81 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
82 machine->pid) < 0)
83 machine->mmap_name = NULL;
84
85 return machine->mmap_name ? 0 : -ENOMEM;
86}
87
88static void thread__set_guest_comm(struct thread *thread, pid_t pid)
89{
90 char comm[64];
91
92 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
93 thread__set_comm(thread, comm, 0);
94}
95
96int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
97{
98 int err = -ENOMEM;
99
100 memset(machine, 0, sizeof(*machine));
101 machine->kmaps = maps__new(machine);
102 if (machine->kmaps == NULL)
103 return -ENOMEM;
104
105 RB_CLEAR_NODE(&machine->rb_node);
106 dsos__init(&machine->dsos);
107
108 machine__threads_init(machine);
109
110 machine->vdso_info = NULL;
111 machine->env = NULL;
112
113 machine->pid = pid;
114
115 machine->id_hdr_size = 0;
116 machine->kptr_restrict_warned = false;
117 machine->comm_exec = false;
118 machine->kernel_start = 0;
119 machine->vmlinux_map = NULL;
120
121 machine->root_dir = strdup(root_dir);
122 if (machine->root_dir == NULL)
123 goto out;
124
125 if (machine__set_mmap_name(machine))
126 goto out;
127
128 if (pid != HOST_KERNEL_ID) {
129 struct thread *thread = machine__findnew_thread(machine, -1,
130 pid);
131
132 if (thread == NULL)
133 goto out;
134
135 thread__set_guest_comm(thread, pid);
136 thread__put(thread);
137 }
138
139 machine->current_tid = NULL;
140 err = 0;
141
142out:
143 if (err) {
144 zfree(&machine->kmaps);
145 zfree(&machine->root_dir);
146 zfree(&machine->mmap_name);
147 }
148 return 0;
149}
150
151struct machine *machine__new_host(void)
152{
153 struct machine *machine = malloc(sizeof(*machine));
154
155 if (machine != NULL) {
156 machine__init(machine, "", HOST_KERNEL_ID);
157
158 if (machine__create_kernel_maps(machine) < 0)
159 goto out_delete;
160 }
161
162 return machine;
163out_delete:
164 free(machine);
165 return NULL;
166}
167
168struct machine *machine__new_kallsyms(void)
169{
170 struct machine *machine = machine__new_host();
171 /*
172 * FIXME:
173 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
174 * ask for not using the kcore parsing code, once this one is fixed
175 * to create a map per module.
176 */
177 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
178 machine__delete(machine);
179 machine = NULL;
180 }
181
182 return machine;
183}
184
185static void dsos__purge(struct dsos *dsos)
186{
187 struct dso *pos, *n;
188
189 down_write(&dsos->lock);
190
191 list_for_each_entry_safe(pos, n, &dsos->head, node) {
192 RB_CLEAR_NODE(&pos->rb_node);
193 pos->root = NULL;
194 list_del_init(&pos->node);
195 dso__put(pos);
196 }
197
198 up_write(&dsos->lock);
199}
200
201static void dsos__exit(struct dsos *dsos)
202{
203 dsos__purge(dsos);
204 exit_rwsem(&dsos->lock);
205}
206
207void machine__delete_threads(struct machine *machine)
208{
209 struct rb_node *nd;
210 int i;
211
212 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
213 struct threads *threads = &machine->threads[i];
214 down_write(&threads->lock);
215 nd = rb_first_cached(&threads->entries);
216 while (nd) {
217 struct thread *t = rb_entry(nd, struct thread, rb_node);
218
219 nd = rb_next(nd);
220 __machine__remove_thread(machine, t, false);
221 }
222 up_write(&threads->lock);
223 }
224}
225
226void machine__exit(struct machine *machine)
227{
228 int i;
229
230 if (machine == NULL)
231 return;
232
233 machine__destroy_kernel_maps(machine);
234 maps__delete(machine->kmaps);
235 dsos__exit(&machine->dsos);
236 machine__exit_vdso(machine);
237 zfree(&machine->root_dir);
238 zfree(&machine->mmap_name);
239 zfree(&machine->current_tid);
240 zfree(&machine->kallsyms_filename);
241
242 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
243 struct threads *threads = &machine->threads[i];
244 struct thread *thread, *n;
245 /*
246 * Forget about the dead, at this point whatever threads were
247 * left in the dead lists better have a reference count taken
248 * by who is using them, and then, when they drop those references
249 * and it finally hits zero, thread__put() will check and see that
250 * its not in the dead threads list and will not try to remove it
251 * from there, just calling thread__delete() straight away.
252 */
253 list_for_each_entry_safe(thread, n, &threads->dead, node)
254 list_del_init(&thread->node);
255
256 exit_rwsem(&threads->lock);
257 }
258}
259
260void machine__delete(struct machine *machine)
261{
262 if (machine) {
263 machine__exit(machine);
264 free(machine);
265 }
266}
267
268void machines__init(struct machines *machines)
269{
270 machine__init(&machines->host, "", HOST_KERNEL_ID);
271 machines->guests = RB_ROOT_CACHED;
272}
273
274void machines__exit(struct machines *machines)
275{
276 machine__exit(&machines->host);
277 /* XXX exit guest */
278}
279
280struct machine *machines__add(struct machines *machines, pid_t pid,
281 const char *root_dir)
282{
283 struct rb_node **p = &machines->guests.rb_root.rb_node;
284 struct rb_node *parent = NULL;
285 struct machine *pos, *machine = malloc(sizeof(*machine));
286 bool leftmost = true;
287
288 if (machine == NULL)
289 return NULL;
290
291 if (machine__init(machine, root_dir, pid) != 0) {
292 free(machine);
293 return NULL;
294 }
295
296 while (*p != NULL) {
297 parent = *p;
298 pos = rb_entry(parent, struct machine, rb_node);
299 if (pid < pos->pid)
300 p = &(*p)->rb_left;
301 else {
302 p = &(*p)->rb_right;
303 leftmost = false;
304 }
305 }
306
307 rb_link_node(&machine->rb_node, parent, p);
308 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
309
310 machine->machines = machines;
311
312 return machine;
313}
314
315void machines__set_comm_exec(struct machines *machines, bool comm_exec)
316{
317 struct rb_node *nd;
318
319 machines->host.comm_exec = comm_exec;
320
321 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
322 struct machine *machine = rb_entry(nd, struct machine, rb_node);
323
324 machine->comm_exec = comm_exec;
325 }
326}
327
328struct machine *machines__find(struct machines *machines, pid_t pid)
329{
330 struct rb_node **p = &machines->guests.rb_root.rb_node;
331 struct rb_node *parent = NULL;
332 struct machine *machine;
333 struct machine *default_machine = NULL;
334
335 if (pid == HOST_KERNEL_ID)
336 return &machines->host;
337
338 while (*p != NULL) {
339 parent = *p;
340 machine = rb_entry(parent, struct machine, rb_node);
341 if (pid < machine->pid)
342 p = &(*p)->rb_left;
343 else if (pid > machine->pid)
344 p = &(*p)->rb_right;
345 else
346 return machine;
347 if (!machine->pid)
348 default_machine = machine;
349 }
350
351 return default_machine;
352}
353
354struct machine *machines__findnew(struct machines *machines, pid_t pid)
355{
356 char path[PATH_MAX];
357 const char *root_dir = "";
358 struct machine *machine = machines__find(machines, pid);
359
360 if (machine && (machine->pid == pid))
361 goto out;
362
363 if ((pid != HOST_KERNEL_ID) &&
364 (pid != DEFAULT_GUEST_KERNEL_ID) &&
365 (symbol_conf.guestmount)) {
366 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
367 if (access(path, R_OK)) {
368 static struct strlist *seen;
369
370 if (!seen)
371 seen = strlist__new(NULL, NULL);
372
373 if (!strlist__has_entry(seen, path)) {
374 pr_err("Can't access file %s\n", path);
375 strlist__add(seen, path);
376 }
377 machine = NULL;
378 goto out;
379 }
380 root_dir = path;
381 }
382
383 machine = machines__add(machines, pid, root_dir);
384out:
385 return machine;
386}
387
388struct machine *machines__find_guest(struct machines *machines, pid_t pid)
389{
390 struct machine *machine = machines__find(machines, pid);
391
392 if (!machine)
393 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
394 return machine;
395}
396
397/*
398 * A common case for KVM test programs is that the test program acts as the
399 * hypervisor, creating, running and destroying the virtual machine, and
400 * providing the guest object code from its own object code. In this case,
401 * the VM is not running an OS, but only the functions loaded into it by the
402 * hypervisor test program, and conveniently, loaded at the same virtual
403 * addresses.
404 *
405 * Normally to resolve addresses, MMAP events are needed to map addresses
406 * back to the object code and debug symbols for that object code.
407 *
408 * Currently, there is no way to get such mapping information from guests
409 * but, in the scenario described above, the guest has the same mappings
410 * as the hypervisor, so support for that scenario can be achieved.
411 *
412 * To support that, copy the host thread's maps to the guest thread's maps.
413 * Note, we do not discover the guest until we encounter a guest event,
414 * which works well because it is not until then that we know that the host
415 * thread's maps have been set up.
416 *
417 * This function returns the guest thread. Apart from keeping the data
418 * structures sane, using a thread belonging to the guest machine, instead
419 * of the host thread, allows it to have its own comm (refer
420 * thread__set_guest_comm()).
421 */
422static struct thread *findnew_guest_code(struct machine *machine,
423 struct machine *host_machine,
424 pid_t pid)
425{
426 struct thread *host_thread;
427 struct thread *thread;
428 int err;
429
430 if (!machine)
431 return NULL;
432
433 thread = machine__findnew_thread(machine, -1, pid);
434 if (!thread)
435 return NULL;
436
437 /* Assume maps are set up if there are any */
438 if (maps__nr_maps(thread->maps))
439 return thread;
440
441 host_thread = machine__find_thread(host_machine, -1, pid);
442 if (!host_thread)
443 goto out_err;
444
445 thread__set_guest_comm(thread, pid);
446
447 /*
448 * Guest code can be found in hypervisor process at the same address
449 * so copy host maps.
450 */
451 err = maps__clone(thread, host_thread->maps);
452 thread__put(host_thread);
453 if (err)
454 goto out_err;
455
456 return thread;
457
458out_err:
459 thread__zput(thread);
460 return NULL;
461}
462
463struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
464{
465 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
466 struct machine *machine = machines__findnew(machines, pid);
467
468 return findnew_guest_code(machine, host_machine, pid);
469}
470
471struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
472{
473 struct machines *machines = machine->machines;
474 struct machine *host_machine;
475
476 if (!machines)
477 return NULL;
478
479 host_machine = machines__find(machines, HOST_KERNEL_ID);
480
481 return findnew_guest_code(machine, host_machine, pid);
482}
483
484void machines__process_guests(struct machines *machines,
485 machine__process_t process, void *data)
486{
487 struct rb_node *nd;
488
489 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
490 struct machine *pos = rb_entry(nd, struct machine, rb_node);
491 process(pos, data);
492 }
493}
494
495void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
496{
497 struct rb_node *node;
498 struct machine *machine;
499
500 machines->host.id_hdr_size = id_hdr_size;
501
502 for (node = rb_first_cached(&machines->guests); node;
503 node = rb_next(node)) {
504 machine = rb_entry(node, struct machine, rb_node);
505 machine->id_hdr_size = id_hdr_size;
506 }
507
508 return;
509}
510
511static void machine__update_thread_pid(struct machine *machine,
512 struct thread *th, pid_t pid)
513{
514 struct thread *leader;
515
516 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
517 return;
518
519 th->pid_ = pid;
520
521 if (th->pid_ == th->tid)
522 return;
523
524 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
525 if (!leader)
526 goto out_err;
527
528 if (!leader->maps)
529 leader->maps = maps__new(machine);
530
531 if (!leader->maps)
532 goto out_err;
533
534 if (th->maps == leader->maps)
535 return;
536
537 if (th->maps) {
538 /*
539 * Maps are created from MMAP events which provide the pid and
540 * tid. Consequently there never should be any maps on a thread
541 * with an unknown pid. Just print an error if there are.
542 */
543 if (!maps__empty(th->maps))
544 pr_err("Discarding thread maps for %d:%d\n",
545 th->pid_, th->tid);
546 maps__put(th->maps);
547 }
548
549 th->maps = maps__get(leader->maps);
550out_put:
551 thread__put(leader);
552 return;
553out_err:
554 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
555 goto out_put;
556}
557
558/*
559 * Front-end cache - TID lookups come in blocks,
560 * so most of the time we dont have to look up
561 * the full rbtree:
562 */
563static struct thread*
564__threads__get_last_match(struct threads *threads, struct machine *machine,
565 int pid, int tid)
566{
567 struct thread *th;
568
569 th = threads->last_match;
570 if (th != NULL) {
571 if (th->tid == tid) {
572 machine__update_thread_pid(machine, th, pid);
573 return thread__get(th);
574 }
575
576 threads->last_match = NULL;
577 }
578
579 return NULL;
580}
581
582static struct thread*
583threads__get_last_match(struct threads *threads, struct machine *machine,
584 int pid, int tid)
585{
586 struct thread *th = NULL;
587
588 if (perf_singlethreaded)
589 th = __threads__get_last_match(threads, machine, pid, tid);
590
591 return th;
592}
593
594static void
595__threads__set_last_match(struct threads *threads, struct thread *th)
596{
597 threads->last_match = th;
598}
599
600static void
601threads__set_last_match(struct threads *threads, struct thread *th)
602{
603 if (perf_singlethreaded)
604 __threads__set_last_match(threads, th);
605}
606
607/*
608 * Caller must eventually drop thread->refcnt returned with a successful
609 * lookup/new thread inserted.
610 */
611static struct thread *____machine__findnew_thread(struct machine *machine,
612 struct threads *threads,
613 pid_t pid, pid_t tid,
614 bool create)
615{
616 struct rb_node **p = &threads->entries.rb_root.rb_node;
617 struct rb_node *parent = NULL;
618 struct thread *th;
619 bool leftmost = true;
620
621 th = threads__get_last_match(threads, machine, pid, tid);
622 if (th)
623 return th;
624
625 while (*p != NULL) {
626 parent = *p;
627 th = rb_entry(parent, struct thread, rb_node);
628
629 if (th->tid == tid) {
630 threads__set_last_match(threads, th);
631 machine__update_thread_pid(machine, th, pid);
632 return thread__get(th);
633 }
634
635 if (tid < th->tid)
636 p = &(*p)->rb_left;
637 else {
638 p = &(*p)->rb_right;
639 leftmost = false;
640 }
641 }
642
643 if (!create)
644 return NULL;
645
646 th = thread__new(pid, tid);
647 if (th != NULL) {
648 rb_link_node(&th->rb_node, parent, p);
649 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
650
651 /*
652 * We have to initialize maps separately after rb tree is updated.
653 *
654 * The reason is that we call machine__findnew_thread
655 * within thread__init_maps to find the thread
656 * leader and that would screwed the rb tree.
657 */
658 if (thread__init_maps(th, machine)) {
659 rb_erase_cached(&th->rb_node, &threads->entries);
660 RB_CLEAR_NODE(&th->rb_node);
661 thread__put(th);
662 return NULL;
663 }
664 /*
665 * It is now in the rbtree, get a ref
666 */
667 thread__get(th);
668 threads__set_last_match(threads, th);
669 ++threads->nr;
670 }
671
672 return th;
673}
674
675struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
676{
677 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
678}
679
680struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
681 pid_t tid)
682{
683 struct threads *threads = machine__threads(machine, tid);
684 struct thread *th;
685
686 down_write(&threads->lock);
687 th = __machine__findnew_thread(machine, pid, tid);
688 up_write(&threads->lock);
689 return th;
690}
691
692struct thread *machine__find_thread(struct machine *machine, pid_t pid,
693 pid_t tid)
694{
695 struct threads *threads = machine__threads(machine, tid);
696 struct thread *th;
697
698 down_read(&threads->lock);
699 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
700 up_read(&threads->lock);
701 return th;
702}
703
704/*
705 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
706 * So here a single thread is created for that, but actually there is a separate
707 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
708 * is only 1. That causes problems for some tools, requiring workarounds. For
709 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
710 */
711struct thread *machine__idle_thread(struct machine *machine)
712{
713 struct thread *thread = machine__findnew_thread(machine, 0, 0);
714
715 if (!thread || thread__set_comm(thread, "swapper", 0) ||
716 thread__set_namespaces(thread, 0, NULL))
717 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
718
719 return thread;
720}
721
722struct comm *machine__thread_exec_comm(struct machine *machine,
723 struct thread *thread)
724{
725 if (machine->comm_exec)
726 return thread__exec_comm(thread);
727 else
728 return thread__comm(thread);
729}
730
731int machine__process_comm_event(struct machine *machine, union perf_event *event,
732 struct perf_sample *sample)
733{
734 struct thread *thread = machine__findnew_thread(machine,
735 event->comm.pid,
736 event->comm.tid);
737 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
738 int err = 0;
739
740 if (exec)
741 machine->comm_exec = true;
742
743 if (dump_trace)
744 perf_event__fprintf_comm(event, stdout);
745
746 if (thread == NULL ||
747 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
748 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
749 err = -1;
750 }
751
752 thread__put(thread);
753
754 return err;
755}
756
757int machine__process_namespaces_event(struct machine *machine __maybe_unused,
758 union perf_event *event,
759 struct perf_sample *sample __maybe_unused)
760{
761 struct thread *thread = machine__findnew_thread(machine,
762 event->namespaces.pid,
763 event->namespaces.tid);
764 int err = 0;
765
766 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
767 "\nWARNING: kernel seems to support more namespaces than perf"
768 " tool.\nTry updating the perf tool..\n\n");
769
770 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
771 "\nWARNING: perf tool seems to support more namespaces than"
772 " the kernel.\nTry updating the kernel..\n\n");
773
774 if (dump_trace)
775 perf_event__fprintf_namespaces(event, stdout);
776
777 if (thread == NULL ||
778 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
779 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
780 err = -1;
781 }
782
783 thread__put(thread);
784
785 return err;
786}
787
788int machine__process_cgroup_event(struct machine *machine,
789 union perf_event *event,
790 struct perf_sample *sample __maybe_unused)
791{
792 struct cgroup *cgrp;
793
794 if (dump_trace)
795 perf_event__fprintf_cgroup(event, stdout);
796
797 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
798 if (cgrp == NULL)
799 return -ENOMEM;
800
801 return 0;
802}
803
804int machine__process_lost_event(struct machine *machine __maybe_unused,
805 union perf_event *event, struct perf_sample *sample __maybe_unused)
806{
807 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
808 event->lost.id, event->lost.lost);
809 return 0;
810}
811
812int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
813 union perf_event *event, struct perf_sample *sample)
814{
815 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
816 sample->id, event->lost_samples.lost);
817 return 0;
818}
819
820static struct dso *machine__findnew_module_dso(struct machine *machine,
821 struct kmod_path *m,
822 const char *filename)
823{
824 struct dso *dso;
825
826 down_write(&machine->dsos.lock);
827
828 dso = __dsos__find(&machine->dsos, m->name, true);
829 if (!dso) {
830 dso = __dsos__addnew(&machine->dsos, m->name);
831 if (dso == NULL)
832 goto out_unlock;
833
834 dso__set_module_info(dso, m, machine);
835 dso__set_long_name(dso, strdup(filename), true);
836 dso->kernel = DSO_SPACE__KERNEL;
837 }
838
839 dso__get(dso);
840out_unlock:
841 up_write(&machine->dsos.lock);
842 return dso;
843}
844
845int machine__process_aux_event(struct machine *machine __maybe_unused,
846 union perf_event *event)
847{
848 if (dump_trace)
849 perf_event__fprintf_aux(event, stdout);
850 return 0;
851}
852
853int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
854 union perf_event *event)
855{
856 if (dump_trace)
857 perf_event__fprintf_itrace_start(event, stdout);
858 return 0;
859}
860
861int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
862 union perf_event *event)
863{
864 if (dump_trace)
865 perf_event__fprintf_aux_output_hw_id(event, stdout);
866 return 0;
867}
868
869int machine__process_switch_event(struct machine *machine __maybe_unused,
870 union perf_event *event)
871{
872 if (dump_trace)
873 perf_event__fprintf_switch(event, stdout);
874 return 0;
875}
876
877static int machine__process_ksymbol_register(struct machine *machine,
878 union perf_event *event,
879 struct perf_sample *sample __maybe_unused)
880{
881 struct symbol *sym;
882 struct dso *dso;
883 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
884 bool put_map = false;
885 int err = 0;
886
887 if (!map) {
888 dso = dso__new(event->ksymbol.name);
889
890 if (!dso) {
891 err = -ENOMEM;
892 goto out;
893 }
894 dso->kernel = DSO_SPACE__KERNEL;
895 map = map__new2(0, dso);
896 dso__put(dso);
897 if (!map) {
898 err = -ENOMEM;
899 goto out;
900 }
901 /*
902 * The inserted map has a get on it, we need to put to release
903 * the reference count here, but do it after all accesses are
904 * done.
905 */
906 put_map = true;
907 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
908 dso->binary_type = DSO_BINARY_TYPE__OOL;
909 dso->data.file_size = event->ksymbol.len;
910 dso__set_loaded(dso);
911 }
912
913 map__set_start(map, event->ksymbol.addr);
914 map__set_end(map, map__start(map) + event->ksymbol.len);
915 err = maps__insert(machine__kernel_maps(machine), map);
916 if (err) {
917 err = -ENOMEM;
918 goto out;
919 }
920
921 dso__set_loaded(dso);
922
923 if (is_bpf_image(event->ksymbol.name)) {
924 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
925 dso__set_long_name(dso, "", false);
926 }
927 } else {
928 dso = map__dso(map);
929 }
930
931 sym = symbol__new(map__map_ip(map, map__start(map)),
932 event->ksymbol.len,
933 0, 0, event->ksymbol.name);
934 if (!sym) {
935 err = -ENOMEM;
936 goto out;
937 }
938 dso__insert_symbol(dso, sym);
939out:
940 if (put_map)
941 map__put(map);
942 return err;
943}
944
945static int machine__process_ksymbol_unregister(struct machine *machine,
946 union perf_event *event,
947 struct perf_sample *sample __maybe_unused)
948{
949 struct symbol *sym;
950 struct map *map;
951
952 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
953 if (!map)
954 return 0;
955
956 if (RC_CHK_ACCESS(map) != RC_CHK_ACCESS(machine->vmlinux_map))
957 maps__remove(machine__kernel_maps(machine), map);
958 else {
959 struct dso *dso = map__dso(map);
960
961 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
962 if (sym)
963 dso__delete_symbol(dso, sym);
964 }
965
966 return 0;
967}
968
969int machine__process_ksymbol(struct machine *machine __maybe_unused,
970 union perf_event *event,
971 struct perf_sample *sample)
972{
973 if (dump_trace)
974 perf_event__fprintf_ksymbol(event, stdout);
975
976 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
977 return machine__process_ksymbol_unregister(machine, event,
978 sample);
979 return machine__process_ksymbol_register(machine, event, sample);
980}
981
982int machine__process_text_poke(struct machine *machine, union perf_event *event,
983 struct perf_sample *sample __maybe_unused)
984{
985 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
986 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
987 struct dso *dso = map ? map__dso(map) : NULL;
988
989 if (dump_trace)
990 perf_event__fprintf_text_poke(event, machine, stdout);
991
992 if (!event->text_poke.new_len)
993 return 0;
994
995 if (cpumode != PERF_RECORD_MISC_KERNEL) {
996 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
997 return 0;
998 }
999
1000 if (dso) {
1001 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
1002 int ret;
1003
1004 /*
1005 * Kernel maps might be changed when loading symbols so loading
1006 * must be done prior to using kernel maps.
1007 */
1008 map__load(map);
1009 ret = dso__data_write_cache_addr(dso, map, machine,
1010 event->text_poke.addr,
1011 new_bytes,
1012 event->text_poke.new_len);
1013 if (ret != event->text_poke.new_len)
1014 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
1015 event->text_poke.addr);
1016 } else {
1017 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
1018 event->text_poke.addr);
1019 }
1020
1021 return 0;
1022}
1023
1024static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1025 const char *filename)
1026{
1027 struct map *map = NULL;
1028 struct kmod_path m;
1029 struct dso *dso;
1030 int err;
1031
1032 if (kmod_path__parse_name(&m, filename))
1033 return NULL;
1034
1035 dso = machine__findnew_module_dso(machine, &m, filename);
1036 if (dso == NULL)
1037 goto out;
1038
1039 map = map__new2(start, dso);
1040 if (map == NULL)
1041 goto out;
1042
1043 err = maps__insert(machine__kernel_maps(machine), map);
1044 /* If maps__insert failed, return NULL. */
1045 if (err) {
1046 map__put(map);
1047 map = NULL;
1048 }
1049out:
1050 /* put the dso here, corresponding to machine__findnew_module_dso */
1051 dso__put(dso);
1052 zfree(&m.name);
1053 return map;
1054}
1055
1056size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1057{
1058 struct rb_node *nd;
1059 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1060
1061 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1062 struct machine *pos = rb_entry(nd, struct machine, rb_node);
1063 ret += __dsos__fprintf(&pos->dsos.head, fp);
1064 }
1065
1066 return ret;
1067}
1068
1069size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1070 bool (skip)(struct dso *dso, int parm), int parm)
1071{
1072 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1073}
1074
1075size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1076 bool (skip)(struct dso *dso, int parm), int parm)
1077{
1078 struct rb_node *nd;
1079 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1080
1081 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1082 struct machine *pos = rb_entry(nd, struct machine, rb_node);
1083 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1084 }
1085 return ret;
1086}
1087
1088size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1089{
1090 int i;
1091 size_t printed = 0;
1092 struct dso *kdso = machine__kernel_dso(machine);
1093
1094 if (kdso->has_build_id) {
1095 char filename[PATH_MAX];
1096 if (dso__build_id_filename(kdso, filename, sizeof(filename),
1097 false))
1098 printed += fprintf(fp, "[0] %s\n", filename);
1099 }
1100
1101 for (i = 0; i < vmlinux_path__nr_entries; ++i)
1102 printed += fprintf(fp, "[%d] %s\n",
1103 i + kdso->has_build_id, vmlinux_path[i]);
1104
1105 return printed;
1106}
1107
1108size_t machine__fprintf(struct machine *machine, FILE *fp)
1109{
1110 struct rb_node *nd;
1111 size_t ret;
1112 int i;
1113
1114 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1115 struct threads *threads = &machine->threads[i];
1116
1117 down_read(&threads->lock);
1118
1119 ret = fprintf(fp, "Threads: %u\n", threads->nr);
1120
1121 for (nd = rb_first_cached(&threads->entries); nd;
1122 nd = rb_next(nd)) {
1123 struct thread *pos = rb_entry(nd, struct thread, rb_node);
1124
1125 ret += thread__fprintf(pos, fp);
1126 }
1127
1128 up_read(&threads->lock);
1129 }
1130 return ret;
1131}
1132
1133static struct dso *machine__get_kernel(struct machine *machine)
1134{
1135 const char *vmlinux_name = machine->mmap_name;
1136 struct dso *kernel;
1137
1138 if (machine__is_host(machine)) {
1139 if (symbol_conf.vmlinux_name)
1140 vmlinux_name = symbol_conf.vmlinux_name;
1141
1142 kernel = machine__findnew_kernel(machine, vmlinux_name,
1143 "[kernel]", DSO_SPACE__KERNEL);
1144 } else {
1145 if (symbol_conf.default_guest_vmlinux_name)
1146 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1147
1148 kernel = machine__findnew_kernel(machine, vmlinux_name,
1149 "[guest.kernel]",
1150 DSO_SPACE__KERNEL_GUEST);
1151 }
1152
1153 if (kernel != NULL && (!kernel->has_build_id))
1154 dso__read_running_kernel_build_id(kernel, machine);
1155
1156 return kernel;
1157}
1158
1159void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1160 size_t bufsz)
1161{
1162 if (machine__is_default_guest(machine))
1163 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1164 else
1165 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1166}
1167
1168const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1169
1170/* Figure out the start address of kernel map from /proc/kallsyms.
1171 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1172 * symbol_name if it's not that important.
1173 */
1174static int machine__get_running_kernel_start(struct machine *machine,
1175 const char **symbol_name,
1176 u64 *start, u64 *end)
1177{
1178 char filename[PATH_MAX];
1179 int i, err = -1;
1180 const char *name;
1181 u64 addr = 0;
1182
1183 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1184
1185 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1186 return 0;
1187
1188 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1189 err = kallsyms__get_function_start(filename, name, &addr);
1190 if (!err)
1191 break;
1192 }
1193
1194 if (err)
1195 return -1;
1196
1197 if (symbol_name)
1198 *symbol_name = name;
1199
1200 *start = addr;
1201
1202 err = kallsyms__get_function_start(filename, "_etext", &addr);
1203 if (!err)
1204 *end = addr;
1205
1206 return 0;
1207}
1208
1209int machine__create_extra_kernel_map(struct machine *machine,
1210 struct dso *kernel,
1211 struct extra_kernel_map *xm)
1212{
1213 struct kmap *kmap;
1214 struct map *map;
1215 int err;
1216
1217 map = map__new2(xm->start, kernel);
1218 if (!map)
1219 return -ENOMEM;
1220
1221 map__set_end(map, xm->end);
1222 map__set_pgoff(map, xm->pgoff);
1223
1224 kmap = map__kmap(map);
1225
1226 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1227
1228 err = maps__insert(machine__kernel_maps(machine), map);
1229
1230 if (!err) {
1231 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1232 kmap->name, map__start(map), map__end(map));
1233 }
1234
1235 map__put(map);
1236
1237 return err;
1238}
1239
1240static u64 find_entry_trampoline(struct dso *dso)
1241{
1242 /* Duplicates are removed so lookup all aliases */
1243 const char *syms[] = {
1244 "_entry_trampoline",
1245 "__entry_trampoline_start",
1246 "entry_SYSCALL_64_trampoline",
1247 };
1248 struct symbol *sym = dso__first_symbol(dso);
1249 unsigned int i;
1250
1251 for (; sym; sym = dso__next_symbol(sym)) {
1252 if (sym->binding != STB_GLOBAL)
1253 continue;
1254 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1255 if (!strcmp(sym->name, syms[i]))
1256 return sym->start;
1257 }
1258 }
1259
1260 return 0;
1261}
1262
1263/*
1264 * These values can be used for kernels that do not have symbols for the entry
1265 * trampolines in kallsyms.
1266 */
1267#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1268#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1269#define X86_64_ENTRY_TRAMPOLINE 0x6000
1270
1271/* Map x86_64 PTI entry trampolines */
1272int machine__map_x86_64_entry_trampolines(struct machine *machine,
1273 struct dso *kernel)
1274{
1275 struct maps *kmaps = machine__kernel_maps(machine);
1276 int nr_cpus_avail, cpu;
1277 bool found = false;
1278 struct map_rb_node *rb_node;
1279 u64 pgoff;
1280
1281 /*
1282 * In the vmlinux case, pgoff is a virtual address which must now be
1283 * mapped to a vmlinux offset.
1284 */
1285 maps__for_each_entry(kmaps, rb_node) {
1286 struct map *dest_map, *map = rb_node->map;
1287 struct kmap *kmap = __map__kmap(map);
1288
1289 if (!kmap || !is_entry_trampoline(kmap->name))
1290 continue;
1291
1292 dest_map = maps__find(kmaps, map__pgoff(map));
1293 if (dest_map != map)
1294 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1295 found = true;
1296 }
1297 if (found || machine->trampolines_mapped)
1298 return 0;
1299
1300 pgoff = find_entry_trampoline(kernel);
1301 if (!pgoff)
1302 return 0;
1303
1304 nr_cpus_avail = machine__nr_cpus_avail(machine);
1305
1306 /* Add a 1 page map for each CPU's entry trampoline */
1307 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1308 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1309 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1310 X86_64_ENTRY_TRAMPOLINE;
1311 struct extra_kernel_map xm = {
1312 .start = va,
1313 .end = va + page_size,
1314 .pgoff = pgoff,
1315 };
1316
1317 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1318
1319 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1320 return -1;
1321 }
1322
1323 machine->trampolines_mapped = nr_cpus_avail;
1324
1325 return 0;
1326}
1327
1328int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1329 struct dso *kernel __maybe_unused)
1330{
1331 return 0;
1332}
1333
1334static int
1335__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1336{
1337 /* In case of renewal the kernel map, destroy previous one */
1338 machine__destroy_kernel_maps(machine);
1339
1340 map__put(machine->vmlinux_map);
1341 machine->vmlinux_map = map__new2(0, kernel);
1342 if (machine->vmlinux_map == NULL)
1343 return -ENOMEM;
1344
1345 map__set_map_ip(machine->vmlinux_map, identity__map_ip);
1346 map__set_unmap_ip(machine->vmlinux_map, identity__map_ip);
1347 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1348}
1349
1350void machine__destroy_kernel_maps(struct machine *machine)
1351{
1352 struct kmap *kmap;
1353 struct map *map = machine__kernel_map(machine);
1354
1355 if (map == NULL)
1356 return;
1357
1358 kmap = map__kmap(map);
1359 maps__remove(machine__kernel_maps(machine), map);
1360 if (kmap && kmap->ref_reloc_sym) {
1361 zfree((char **)&kmap->ref_reloc_sym->name);
1362 zfree(&kmap->ref_reloc_sym);
1363 }
1364
1365 map__zput(machine->vmlinux_map);
1366}
1367
1368int machines__create_guest_kernel_maps(struct machines *machines)
1369{
1370 int ret = 0;
1371 struct dirent **namelist = NULL;
1372 int i, items = 0;
1373 char path[PATH_MAX];
1374 pid_t pid;
1375 char *endp;
1376
1377 if (symbol_conf.default_guest_vmlinux_name ||
1378 symbol_conf.default_guest_modules ||
1379 symbol_conf.default_guest_kallsyms) {
1380 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1381 }
1382
1383 if (symbol_conf.guestmount) {
1384 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1385 if (items <= 0)
1386 return -ENOENT;
1387 for (i = 0; i < items; i++) {
1388 if (!isdigit(namelist[i]->d_name[0])) {
1389 /* Filter out . and .. */
1390 continue;
1391 }
1392 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1393 if ((*endp != '\0') ||
1394 (endp == namelist[i]->d_name) ||
1395 (errno == ERANGE)) {
1396 pr_debug("invalid directory (%s). Skipping.\n",
1397 namelist[i]->d_name);
1398 continue;
1399 }
1400 sprintf(path, "%s/%s/proc/kallsyms",
1401 symbol_conf.guestmount,
1402 namelist[i]->d_name);
1403 ret = access(path, R_OK);
1404 if (ret) {
1405 pr_debug("Can't access file %s\n", path);
1406 goto failure;
1407 }
1408 machines__create_kernel_maps(machines, pid);
1409 }
1410failure:
1411 free(namelist);
1412 }
1413
1414 return ret;
1415}
1416
1417void machines__destroy_kernel_maps(struct machines *machines)
1418{
1419 struct rb_node *next = rb_first_cached(&machines->guests);
1420
1421 machine__destroy_kernel_maps(&machines->host);
1422
1423 while (next) {
1424 struct machine *pos = rb_entry(next, struct machine, rb_node);
1425
1426 next = rb_next(&pos->rb_node);
1427 rb_erase_cached(&pos->rb_node, &machines->guests);
1428 machine__delete(pos);
1429 }
1430}
1431
1432int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1433{
1434 struct machine *machine = machines__findnew(machines, pid);
1435
1436 if (machine == NULL)
1437 return -1;
1438
1439 return machine__create_kernel_maps(machine);
1440}
1441
1442int machine__load_kallsyms(struct machine *machine, const char *filename)
1443{
1444 struct map *map = machine__kernel_map(machine);
1445 struct dso *dso = map__dso(map);
1446 int ret = __dso__load_kallsyms(dso, filename, map, true);
1447
1448 if (ret > 0) {
1449 dso__set_loaded(dso);
1450 /*
1451 * Since /proc/kallsyms will have multiple sessions for the
1452 * kernel, with modules between them, fixup the end of all
1453 * sections.
1454 */
1455 maps__fixup_end(machine__kernel_maps(machine));
1456 }
1457
1458 return ret;
1459}
1460
1461int machine__load_vmlinux_path(struct machine *machine)
1462{
1463 struct map *map = machine__kernel_map(machine);
1464 struct dso *dso = map__dso(map);
1465 int ret = dso__load_vmlinux_path(dso, map);
1466
1467 if (ret > 0)
1468 dso__set_loaded(dso);
1469
1470 return ret;
1471}
1472
1473static char *get_kernel_version(const char *root_dir)
1474{
1475 char version[PATH_MAX];
1476 FILE *file;
1477 char *name, *tmp;
1478 const char *prefix = "Linux version ";
1479
1480 sprintf(version, "%s/proc/version", root_dir);
1481 file = fopen(version, "r");
1482 if (!file)
1483 return NULL;
1484
1485 tmp = fgets(version, sizeof(version), file);
1486 fclose(file);
1487 if (!tmp)
1488 return NULL;
1489
1490 name = strstr(version, prefix);
1491 if (!name)
1492 return NULL;
1493 name += strlen(prefix);
1494 tmp = strchr(name, ' ');
1495 if (tmp)
1496 *tmp = '\0';
1497
1498 return strdup(name);
1499}
1500
1501static bool is_kmod_dso(struct dso *dso)
1502{
1503 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1504 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1505}
1506
1507static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1508{
1509 char *long_name;
1510 struct dso *dso;
1511 struct map *map = maps__find_by_name(maps, m->name);
1512
1513 if (map == NULL)
1514 return 0;
1515
1516 long_name = strdup(path);
1517 if (long_name == NULL)
1518 return -ENOMEM;
1519
1520 dso = map__dso(map);
1521 dso__set_long_name(dso, long_name, true);
1522 dso__kernel_module_get_build_id(dso, "");
1523
1524 /*
1525 * Full name could reveal us kmod compression, so
1526 * we need to update the symtab_type if needed.
1527 */
1528 if (m->comp && is_kmod_dso(dso)) {
1529 dso->symtab_type++;
1530 dso->comp = m->comp;
1531 }
1532
1533 return 0;
1534}
1535
1536static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1537{
1538 struct dirent *dent;
1539 DIR *dir = opendir(dir_name);
1540 int ret = 0;
1541
1542 if (!dir) {
1543 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1544 return -1;
1545 }
1546
1547 while ((dent = readdir(dir)) != NULL) {
1548 char path[PATH_MAX];
1549 struct stat st;
1550
1551 /*sshfs might return bad dent->d_type, so we have to stat*/
1552 path__join(path, sizeof(path), dir_name, dent->d_name);
1553 if (stat(path, &st))
1554 continue;
1555
1556 if (S_ISDIR(st.st_mode)) {
1557 if (!strcmp(dent->d_name, ".") ||
1558 !strcmp(dent->d_name, ".."))
1559 continue;
1560
1561 /* Do not follow top-level source and build symlinks */
1562 if (depth == 0) {
1563 if (!strcmp(dent->d_name, "source") ||
1564 !strcmp(dent->d_name, "build"))
1565 continue;
1566 }
1567
1568 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1569 if (ret < 0)
1570 goto out;
1571 } else {
1572 struct kmod_path m;
1573
1574 ret = kmod_path__parse_name(&m, dent->d_name);
1575 if (ret)
1576 goto out;
1577
1578 if (m.kmod)
1579 ret = maps__set_module_path(maps, path, &m);
1580
1581 zfree(&m.name);
1582
1583 if (ret)
1584 goto out;
1585 }
1586 }
1587
1588out:
1589 closedir(dir);
1590 return ret;
1591}
1592
1593static int machine__set_modules_path(struct machine *machine)
1594{
1595 char *version;
1596 char modules_path[PATH_MAX];
1597
1598 version = get_kernel_version(machine->root_dir);
1599 if (!version)
1600 return -1;
1601
1602 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1603 machine->root_dir, version);
1604 free(version);
1605
1606 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1607}
1608int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1609 u64 *size __maybe_unused,
1610 const char *name __maybe_unused)
1611{
1612 return 0;
1613}
1614
1615static int machine__create_module(void *arg, const char *name, u64 start,
1616 u64 size)
1617{
1618 struct machine *machine = arg;
1619 struct map *map;
1620
1621 if (arch__fix_module_text_start(&start, &size, name) < 0)
1622 return -1;
1623
1624 map = machine__addnew_module_map(machine, start, name);
1625 if (map == NULL)
1626 return -1;
1627 map__set_end(map, start + size);
1628
1629 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1630 map__put(map);
1631 return 0;
1632}
1633
1634static int machine__create_modules(struct machine *machine)
1635{
1636 const char *modules;
1637 char path[PATH_MAX];
1638
1639 if (machine__is_default_guest(machine)) {
1640 modules = symbol_conf.default_guest_modules;
1641 } else {
1642 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1643 modules = path;
1644 }
1645
1646 if (symbol__restricted_filename(modules, "/proc/modules"))
1647 return -1;
1648
1649 if (modules__parse(modules, machine, machine__create_module))
1650 return -1;
1651
1652 if (!machine__set_modules_path(machine))
1653 return 0;
1654
1655 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1656
1657 return 0;
1658}
1659
1660static void machine__set_kernel_mmap(struct machine *machine,
1661 u64 start, u64 end)
1662{
1663 map__set_start(machine->vmlinux_map, start);
1664 map__set_end(machine->vmlinux_map, end);
1665 /*
1666 * Be a bit paranoid here, some perf.data file came with
1667 * a zero sized synthesized MMAP event for the kernel.
1668 */
1669 if (start == 0 && end == 0)
1670 map__set_end(machine->vmlinux_map, ~0ULL);
1671}
1672
1673static int machine__update_kernel_mmap(struct machine *machine,
1674 u64 start, u64 end)
1675{
1676 struct map *orig, *updated;
1677 int err;
1678
1679 orig = machine->vmlinux_map;
1680 updated = map__get(orig);
1681
1682 machine->vmlinux_map = updated;
1683 machine__set_kernel_mmap(machine, start, end);
1684 maps__remove(machine__kernel_maps(machine), orig);
1685 err = maps__insert(machine__kernel_maps(machine), updated);
1686 map__put(orig);
1687
1688 return err;
1689}
1690
1691int machine__create_kernel_maps(struct machine *machine)
1692{
1693 struct dso *kernel = machine__get_kernel(machine);
1694 const char *name = NULL;
1695 u64 start = 0, end = ~0ULL;
1696 int ret;
1697
1698 if (kernel == NULL)
1699 return -1;
1700
1701 ret = __machine__create_kernel_maps(machine, kernel);
1702 if (ret < 0)
1703 goto out_put;
1704
1705 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1706 if (machine__is_host(machine))
1707 pr_debug("Problems creating module maps, "
1708 "continuing anyway...\n");
1709 else
1710 pr_debug("Problems creating module maps for guest %d, "
1711 "continuing anyway...\n", machine->pid);
1712 }
1713
1714 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1715 if (name &&
1716 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1717 machine__destroy_kernel_maps(machine);
1718 ret = -1;
1719 goto out_put;
1720 }
1721
1722 /*
1723 * we have a real start address now, so re-order the kmaps
1724 * assume it's the last in the kmaps
1725 */
1726 ret = machine__update_kernel_mmap(machine, start, end);
1727 if (ret < 0)
1728 goto out_put;
1729 }
1730
1731 if (machine__create_extra_kernel_maps(machine, kernel))
1732 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1733
1734 if (end == ~0ULL) {
1735 /* update end address of the kernel map using adjacent module address */
1736 struct map_rb_node *rb_node = maps__find_node(machine__kernel_maps(machine),
1737 machine__kernel_map(machine));
1738 struct map_rb_node *next = map_rb_node__next(rb_node);
1739
1740 if (next)
1741 machine__set_kernel_mmap(machine, start, map__start(next->map));
1742 }
1743
1744out_put:
1745 dso__put(kernel);
1746 return ret;
1747}
1748
1749static bool machine__uses_kcore(struct machine *machine)
1750{
1751 struct dso *dso;
1752
1753 list_for_each_entry(dso, &machine->dsos.head, node) {
1754 if (dso__is_kcore(dso))
1755 return true;
1756 }
1757
1758 return false;
1759}
1760
1761static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1762 struct extra_kernel_map *xm)
1763{
1764 return machine__is(machine, "x86_64") &&
1765 is_entry_trampoline(xm->name);
1766}
1767
1768static int machine__process_extra_kernel_map(struct machine *machine,
1769 struct extra_kernel_map *xm)
1770{
1771 struct dso *kernel = machine__kernel_dso(machine);
1772
1773 if (kernel == NULL)
1774 return -1;
1775
1776 return machine__create_extra_kernel_map(machine, kernel, xm);
1777}
1778
1779static int machine__process_kernel_mmap_event(struct machine *machine,
1780 struct extra_kernel_map *xm,
1781 struct build_id *bid)
1782{
1783 struct map *map;
1784 enum dso_space_type dso_space;
1785 bool is_kernel_mmap;
1786 const char *mmap_name = machine->mmap_name;
1787
1788 /* If we have maps from kcore then we do not need or want any others */
1789 if (machine__uses_kcore(machine))
1790 return 0;
1791
1792 if (machine__is_host(machine))
1793 dso_space = DSO_SPACE__KERNEL;
1794 else
1795 dso_space = DSO_SPACE__KERNEL_GUEST;
1796
1797 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1798 if (!is_kernel_mmap && !machine__is_host(machine)) {
1799 /*
1800 * If the event was recorded inside the guest and injected into
1801 * the host perf.data file, then it will match a host mmap_name,
1802 * so try that - see machine__set_mmap_name().
1803 */
1804 mmap_name = "[kernel.kallsyms]";
1805 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1806 }
1807 if (xm->name[0] == '/' ||
1808 (!is_kernel_mmap && xm->name[0] == '[')) {
1809 map = machine__addnew_module_map(machine, xm->start,
1810 xm->name);
1811 if (map == NULL)
1812 goto out_problem;
1813
1814 map__set_end(map, map__start(map) + xm->end - xm->start);
1815
1816 if (build_id__is_defined(bid))
1817 dso__set_build_id(map__dso(map), bid);
1818
1819 } else if (is_kernel_mmap) {
1820 const char *symbol_name = xm->name + strlen(mmap_name);
1821 /*
1822 * Should be there already, from the build-id table in
1823 * the header.
1824 */
1825 struct dso *kernel = NULL;
1826 struct dso *dso;
1827
1828 down_read(&machine->dsos.lock);
1829
1830 list_for_each_entry(dso, &machine->dsos.head, node) {
1831
1832 /*
1833 * The cpumode passed to is_kernel_module is not the
1834 * cpumode of *this* event. If we insist on passing
1835 * correct cpumode to is_kernel_module, we should
1836 * record the cpumode when we adding this dso to the
1837 * linked list.
1838 *
1839 * However we don't really need passing correct
1840 * cpumode. We know the correct cpumode must be kernel
1841 * mode (if not, we should not link it onto kernel_dsos
1842 * list).
1843 *
1844 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1845 * is_kernel_module() treats it as a kernel cpumode.
1846 */
1847
1848 if (!dso->kernel ||
1849 is_kernel_module(dso->long_name,
1850 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1851 continue;
1852
1853
1854 kernel = dso;
1855 break;
1856 }
1857
1858 up_read(&machine->dsos.lock);
1859
1860 if (kernel == NULL)
1861 kernel = machine__findnew_dso(machine, machine->mmap_name);
1862 if (kernel == NULL)
1863 goto out_problem;
1864
1865 kernel->kernel = dso_space;
1866 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1867 dso__put(kernel);
1868 goto out_problem;
1869 }
1870
1871 if (strstr(kernel->long_name, "vmlinux"))
1872 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1873
1874 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1875 dso__put(kernel);
1876 goto out_problem;
1877 }
1878
1879 if (build_id__is_defined(bid))
1880 dso__set_build_id(kernel, bid);
1881
1882 /*
1883 * Avoid using a zero address (kptr_restrict) for the ref reloc
1884 * symbol. Effectively having zero here means that at record
1885 * time /proc/sys/kernel/kptr_restrict was non zero.
1886 */
1887 if (xm->pgoff != 0) {
1888 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1889 symbol_name,
1890 xm->pgoff);
1891 }
1892
1893 if (machine__is_default_guest(machine)) {
1894 /*
1895 * preload dso of guest kernel and modules
1896 */
1897 dso__load(kernel, machine__kernel_map(machine));
1898 }
1899 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1900 return machine__process_extra_kernel_map(machine, xm);
1901 }
1902 return 0;
1903out_problem:
1904 return -1;
1905}
1906
1907int machine__process_mmap2_event(struct machine *machine,
1908 union perf_event *event,
1909 struct perf_sample *sample)
1910{
1911 struct thread *thread;
1912 struct map *map;
1913 struct dso_id dso_id = {
1914 .maj = event->mmap2.maj,
1915 .min = event->mmap2.min,
1916 .ino = event->mmap2.ino,
1917 .ino_generation = event->mmap2.ino_generation,
1918 };
1919 struct build_id __bid, *bid = NULL;
1920 int ret = 0;
1921
1922 if (dump_trace)
1923 perf_event__fprintf_mmap2(event, stdout);
1924
1925 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1926 bid = &__bid;
1927 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1928 }
1929
1930 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1931 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1932 struct extra_kernel_map xm = {
1933 .start = event->mmap2.start,
1934 .end = event->mmap2.start + event->mmap2.len,
1935 .pgoff = event->mmap2.pgoff,
1936 };
1937
1938 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1939 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1940 if (ret < 0)
1941 goto out_problem;
1942 return 0;
1943 }
1944
1945 thread = machine__findnew_thread(machine, event->mmap2.pid,
1946 event->mmap2.tid);
1947 if (thread == NULL)
1948 goto out_problem;
1949
1950 map = map__new(machine, event->mmap2.start,
1951 event->mmap2.len, event->mmap2.pgoff,
1952 &dso_id, event->mmap2.prot,
1953 event->mmap2.flags, bid,
1954 event->mmap2.filename, thread);
1955
1956 if (map == NULL)
1957 goto out_problem_map;
1958
1959 ret = thread__insert_map(thread, map);
1960 if (ret)
1961 goto out_problem_insert;
1962
1963 thread__put(thread);
1964 map__put(map);
1965 return 0;
1966
1967out_problem_insert:
1968 map__put(map);
1969out_problem_map:
1970 thread__put(thread);
1971out_problem:
1972 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1973 return 0;
1974}
1975
1976int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1977 struct perf_sample *sample)
1978{
1979 struct thread *thread;
1980 struct map *map;
1981 u32 prot = 0;
1982 int ret = 0;
1983
1984 if (dump_trace)
1985 perf_event__fprintf_mmap(event, stdout);
1986
1987 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1988 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1989 struct extra_kernel_map xm = {
1990 .start = event->mmap.start,
1991 .end = event->mmap.start + event->mmap.len,
1992 .pgoff = event->mmap.pgoff,
1993 };
1994
1995 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1996 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1997 if (ret < 0)
1998 goto out_problem;
1999 return 0;
2000 }
2001
2002 thread = machine__findnew_thread(machine, event->mmap.pid,
2003 event->mmap.tid);
2004 if (thread == NULL)
2005 goto out_problem;
2006
2007 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
2008 prot = PROT_EXEC;
2009
2010 map = map__new(machine, event->mmap.start,
2011 event->mmap.len, event->mmap.pgoff,
2012 NULL, prot, 0, NULL, event->mmap.filename, thread);
2013
2014 if (map == NULL)
2015 goto out_problem_map;
2016
2017 ret = thread__insert_map(thread, map);
2018 if (ret)
2019 goto out_problem_insert;
2020
2021 thread__put(thread);
2022 map__put(map);
2023 return 0;
2024
2025out_problem_insert:
2026 map__put(map);
2027out_problem_map:
2028 thread__put(thread);
2029out_problem:
2030 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
2031 return 0;
2032}
2033
2034static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
2035{
2036 struct threads *threads = machine__threads(machine, th->tid);
2037
2038 if (threads->last_match == th)
2039 threads__set_last_match(threads, NULL);
2040
2041 if (lock)
2042 down_write(&threads->lock);
2043
2044 BUG_ON(refcount_read(&th->refcnt) == 0);
2045
2046 rb_erase_cached(&th->rb_node, &threads->entries);
2047 RB_CLEAR_NODE(&th->rb_node);
2048 --threads->nr;
2049 /*
2050 * Move it first to the dead_threads list, then drop the reference,
2051 * if this is the last reference, then the thread__delete destructor
2052 * will be called and we will remove it from the dead_threads list.
2053 */
2054 list_add_tail(&th->node, &threads->dead);
2055
2056 /*
2057 * We need to do the put here because if this is the last refcount,
2058 * then we will be touching the threads->dead head when removing the
2059 * thread.
2060 */
2061 thread__put(th);
2062
2063 if (lock)
2064 up_write(&threads->lock);
2065}
2066
2067void machine__remove_thread(struct machine *machine, struct thread *th)
2068{
2069 return __machine__remove_thread(machine, th, true);
2070}
2071
2072int machine__process_fork_event(struct machine *machine, union perf_event *event,
2073 struct perf_sample *sample)
2074{
2075 struct thread *thread = machine__find_thread(machine,
2076 event->fork.pid,
2077 event->fork.tid);
2078 struct thread *parent = machine__findnew_thread(machine,
2079 event->fork.ppid,
2080 event->fork.ptid);
2081 bool do_maps_clone = true;
2082 int err = 0;
2083
2084 if (dump_trace)
2085 perf_event__fprintf_task(event, stdout);
2086
2087 /*
2088 * There may be an existing thread that is not actually the parent,
2089 * either because we are processing events out of order, or because the
2090 * (fork) event that would have removed the thread was lost. Assume the
2091 * latter case and continue on as best we can.
2092 */
2093 if (parent->pid_ != (pid_t)event->fork.ppid) {
2094 dump_printf("removing erroneous parent thread %d/%d\n",
2095 parent->pid_, parent->tid);
2096 machine__remove_thread(machine, parent);
2097 thread__put(parent);
2098 parent = machine__findnew_thread(machine, event->fork.ppid,
2099 event->fork.ptid);
2100 }
2101
2102 /* if a thread currently exists for the thread id remove it */
2103 if (thread != NULL) {
2104 machine__remove_thread(machine, thread);
2105 thread__put(thread);
2106 }
2107
2108 thread = machine__findnew_thread(machine, event->fork.pid,
2109 event->fork.tid);
2110 /*
2111 * When synthesizing FORK events, we are trying to create thread
2112 * objects for the already running tasks on the machine.
2113 *
2114 * Normally, for a kernel FORK event, we want to clone the parent's
2115 * maps because that is what the kernel just did.
2116 *
2117 * But when synthesizing, this should not be done. If we do, we end up
2118 * with overlapping maps as we process the synthesized MMAP2 events that
2119 * get delivered shortly thereafter.
2120 *
2121 * Use the FORK event misc flags in an internal way to signal this
2122 * situation, so we can elide the map clone when appropriate.
2123 */
2124 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2125 do_maps_clone = false;
2126
2127 if (thread == NULL || parent == NULL ||
2128 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2129 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2130 err = -1;
2131 }
2132 thread__put(thread);
2133 thread__put(parent);
2134
2135 return err;
2136}
2137
2138int machine__process_exit_event(struct machine *machine, union perf_event *event,
2139 struct perf_sample *sample __maybe_unused)
2140{
2141 struct thread *thread = machine__find_thread(machine,
2142 event->fork.pid,
2143 event->fork.tid);
2144
2145 if (dump_trace)
2146 perf_event__fprintf_task(event, stdout);
2147
2148 if (thread != NULL) {
2149 thread__exited(thread);
2150 thread__put(thread);
2151 }
2152
2153 return 0;
2154}
2155
2156int machine__process_event(struct machine *machine, union perf_event *event,
2157 struct perf_sample *sample)
2158{
2159 int ret;
2160
2161 switch (event->header.type) {
2162 case PERF_RECORD_COMM:
2163 ret = machine__process_comm_event(machine, event, sample); break;
2164 case PERF_RECORD_MMAP:
2165 ret = machine__process_mmap_event(machine, event, sample); break;
2166 case PERF_RECORD_NAMESPACES:
2167 ret = machine__process_namespaces_event(machine, event, sample); break;
2168 case PERF_RECORD_CGROUP:
2169 ret = machine__process_cgroup_event(machine, event, sample); break;
2170 case PERF_RECORD_MMAP2:
2171 ret = machine__process_mmap2_event(machine, event, sample); break;
2172 case PERF_RECORD_FORK:
2173 ret = machine__process_fork_event(machine, event, sample); break;
2174 case PERF_RECORD_EXIT:
2175 ret = machine__process_exit_event(machine, event, sample); break;
2176 case PERF_RECORD_LOST:
2177 ret = machine__process_lost_event(machine, event, sample); break;
2178 case PERF_RECORD_AUX:
2179 ret = machine__process_aux_event(machine, event); break;
2180 case PERF_RECORD_ITRACE_START:
2181 ret = machine__process_itrace_start_event(machine, event); break;
2182 case PERF_RECORD_LOST_SAMPLES:
2183 ret = machine__process_lost_samples_event(machine, event, sample); break;
2184 case PERF_RECORD_SWITCH:
2185 case PERF_RECORD_SWITCH_CPU_WIDE:
2186 ret = machine__process_switch_event(machine, event); break;
2187 case PERF_RECORD_KSYMBOL:
2188 ret = machine__process_ksymbol(machine, event, sample); break;
2189 case PERF_RECORD_BPF_EVENT:
2190 ret = machine__process_bpf(machine, event, sample); break;
2191 case PERF_RECORD_TEXT_POKE:
2192 ret = machine__process_text_poke(machine, event, sample); break;
2193 case PERF_RECORD_AUX_OUTPUT_HW_ID:
2194 ret = machine__process_aux_output_hw_id_event(machine, event); break;
2195 default:
2196 ret = -1;
2197 break;
2198 }
2199
2200 return ret;
2201}
2202
2203static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2204{
2205 if (!regexec(regex, sym->name, 0, NULL, 0))
2206 return true;
2207 return false;
2208}
2209
2210static void ip__resolve_ams(struct thread *thread,
2211 struct addr_map_symbol *ams,
2212 u64 ip)
2213{
2214 struct addr_location al;
2215
2216 memset(&al, 0, sizeof(al));
2217 /*
2218 * We cannot use the header.misc hint to determine whether a
2219 * branch stack address is user, kernel, guest, hypervisor.
2220 * Branches may straddle the kernel/user/hypervisor boundaries.
2221 * Thus, we have to try consecutively until we find a match
2222 * or else, the symbol is unknown
2223 */
2224 thread__find_cpumode_addr_location(thread, ip, &al);
2225
2226 ams->addr = ip;
2227 ams->al_addr = al.addr;
2228 ams->al_level = al.level;
2229 ams->ms.maps = al.maps;
2230 ams->ms.sym = al.sym;
2231 ams->ms.map = al.map;
2232 ams->phys_addr = 0;
2233 ams->data_page_size = 0;
2234}
2235
2236static void ip__resolve_data(struct thread *thread,
2237 u8 m, struct addr_map_symbol *ams,
2238 u64 addr, u64 phys_addr, u64 daddr_page_size)
2239{
2240 struct addr_location al;
2241
2242 memset(&al, 0, sizeof(al));
2243
2244 thread__find_symbol(thread, m, addr, &al);
2245
2246 ams->addr = addr;
2247 ams->al_addr = al.addr;
2248 ams->al_level = al.level;
2249 ams->ms.maps = al.maps;
2250 ams->ms.sym = al.sym;
2251 ams->ms.map = al.map;
2252 ams->phys_addr = phys_addr;
2253 ams->data_page_size = daddr_page_size;
2254}
2255
2256struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2257 struct addr_location *al)
2258{
2259 struct mem_info *mi = mem_info__new();
2260
2261 if (!mi)
2262 return NULL;
2263
2264 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2265 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2266 sample->addr, sample->phys_addr,
2267 sample->data_page_size);
2268 mi->data_src.val = sample->data_src;
2269
2270 return mi;
2271}
2272
2273static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2274{
2275 struct map *map = ms->map;
2276 char *srcline = NULL;
2277 struct dso *dso;
2278
2279 if (!map || callchain_param.key == CCKEY_FUNCTION)
2280 return srcline;
2281
2282 dso = map__dso(map);
2283 srcline = srcline__tree_find(&dso->srclines, ip);
2284 if (!srcline) {
2285 bool show_sym = false;
2286 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2287
2288 srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2289 ms->sym, show_sym, show_addr, ip);
2290 srcline__tree_insert(&dso->srclines, ip, srcline);
2291 }
2292
2293 return srcline;
2294}
2295
2296struct iterations {
2297 int nr_loop_iter;
2298 u64 cycles;
2299};
2300
2301static int add_callchain_ip(struct thread *thread,
2302 struct callchain_cursor *cursor,
2303 struct symbol **parent,
2304 struct addr_location *root_al,
2305 u8 *cpumode,
2306 u64 ip,
2307 bool branch,
2308 struct branch_flags *flags,
2309 struct iterations *iter,
2310 u64 branch_from)
2311{
2312 struct map_symbol ms;
2313 struct addr_location al;
2314 int nr_loop_iter = 0, err;
2315 u64 iter_cycles = 0;
2316 const char *srcline = NULL;
2317
2318 al.filtered = 0;
2319 al.sym = NULL;
2320 al.srcline = NULL;
2321 if (!cpumode) {
2322 thread__find_cpumode_addr_location(thread, ip, &al);
2323 } else {
2324 if (ip >= PERF_CONTEXT_MAX) {
2325 switch (ip) {
2326 case PERF_CONTEXT_HV:
2327 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2328 break;
2329 case PERF_CONTEXT_KERNEL:
2330 *cpumode = PERF_RECORD_MISC_KERNEL;
2331 break;
2332 case PERF_CONTEXT_USER:
2333 *cpumode = PERF_RECORD_MISC_USER;
2334 break;
2335 default:
2336 pr_debug("invalid callchain context: "
2337 "%"PRId64"\n", (s64) ip);
2338 /*
2339 * It seems the callchain is corrupted.
2340 * Discard all.
2341 */
2342 callchain_cursor_reset(cursor);
2343 return 1;
2344 }
2345 return 0;
2346 }
2347 thread__find_symbol(thread, *cpumode, ip, &al);
2348 }
2349
2350 if (al.sym != NULL) {
2351 if (perf_hpp_list.parent && !*parent &&
2352 symbol__match_regex(al.sym, &parent_regex))
2353 *parent = al.sym;
2354 else if (have_ignore_callees && root_al &&
2355 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2356 /* Treat this symbol as the root,
2357 forgetting its callees. */
2358 *root_al = al;
2359 callchain_cursor_reset(cursor);
2360 }
2361 }
2362
2363 if (symbol_conf.hide_unresolved && al.sym == NULL)
2364 return 0;
2365
2366 if (iter) {
2367 nr_loop_iter = iter->nr_loop_iter;
2368 iter_cycles = iter->cycles;
2369 }
2370
2371 ms.maps = al.maps;
2372 ms.map = al.map;
2373 ms.sym = al.sym;
2374
2375 if (!branch && append_inlines(cursor, &ms, ip) == 0)
2376 return 0;
2377
2378 srcline = callchain_srcline(&ms, al.addr);
2379 err = callchain_cursor_append(cursor, ip, &ms,
2380 branch, flags, nr_loop_iter,
2381 iter_cycles, branch_from, srcline);
2382 map__put(al.map);
2383 return err;
2384}
2385
2386struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2387 struct addr_location *al)
2388{
2389 unsigned int i;
2390 const struct branch_stack *bs = sample->branch_stack;
2391 struct branch_entry *entries = perf_sample__branch_entries(sample);
2392 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2393
2394 if (!bi)
2395 return NULL;
2396
2397 for (i = 0; i < bs->nr; i++) {
2398 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2399 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2400 bi[i].flags = entries[i].flags;
2401 }
2402 return bi;
2403}
2404
2405static void save_iterations(struct iterations *iter,
2406 struct branch_entry *be, int nr)
2407{
2408 int i;
2409
2410 iter->nr_loop_iter++;
2411 iter->cycles = 0;
2412
2413 for (i = 0; i < nr; i++)
2414 iter->cycles += be[i].flags.cycles;
2415}
2416
2417#define CHASHSZ 127
2418#define CHASHBITS 7
2419#define NO_ENTRY 0xff
2420
2421#define PERF_MAX_BRANCH_DEPTH 127
2422
2423/* Remove loops. */
2424static int remove_loops(struct branch_entry *l, int nr,
2425 struct iterations *iter)
2426{
2427 int i, j, off;
2428 unsigned char chash[CHASHSZ];
2429
2430 memset(chash, NO_ENTRY, sizeof(chash));
2431
2432 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2433
2434 for (i = 0; i < nr; i++) {
2435 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2436
2437 /* no collision handling for now */
2438 if (chash[h] == NO_ENTRY) {
2439 chash[h] = i;
2440 } else if (l[chash[h]].from == l[i].from) {
2441 bool is_loop = true;
2442 /* check if it is a real loop */
2443 off = 0;
2444 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2445 if (l[j].from != l[i + off].from) {
2446 is_loop = false;
2447 break;
2448 }
2449 if (is_loop) {
2450 j = nr - (i + off);
2451 if (j > 0) {
2452 save_iterations(iter + i + off,
2453 l + i, off);
2454
2455 memmove(iter + i, iter + i + off,
2456 j * sizeof(*iter));
2457
2458 memmove(l + i, l + i + off,
2459 j * sizeof(*l));
2460 }
2461
2462 nr -= off;
2463 }
2464 }
2465 }
2466 return nr;
2467}
2468
2469static int lbr_callchain_add_kernel_ip(struct thread *thread,
2470 struct callchain_cursor *cursor,
2471 struct perf_sample *sample,
2472 struct symbol **parent,
2473 struct addr_location *root_al,
2474 u64 branch_from,
2475 bool callee, int end)
2476{
2477 struct ip_callchain *chain = sample->callchain;
2478 u8 cpumode = PERF_RECORD_MISC_USER;
2479 int err, i;
2480
2481 if (callee) {
2482 for (i = 0; i < end + 1; i++) {
2483 err = add_callchain_ip(thread, cursor, parent,
2484 root_al, &cpumode, chain->ips[i],
2485 false, NULL, NULL, branch_from);
2486 if (err)
2487 return err;
2488 }
2489 return 0;
2490 }
2491
2492 for (i = end; i >= 0; i--) {
2493 err = add_callchain_ip(thread, cursor, parent,
2494 root_al, &cpumode, chain->ips[i],
2495 false, NULL, NULL, branch_from);
2496 if (err)
2497 return err;
2498 }
2499
2500 return 0;
2501}
2502
2503static void save_lbr_cursor_node(struct thread *thread,
2504 struct callchain_cursor *cursor,
2505 int idx)
2506{
2507 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2508
2509 if (!lbr_stitch)
2510 return;
2511
2512 if (cursor->pos == cursor->nr) {
2513 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2514 return;
2515 }
2516
2517 if (!cursor->curr)
2518 cursor->curr = cursor->first;
2519 else
2520 cursor->curr = cursor->curr->next;
2521 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2522 sizeof(struct callchain_cursor_node));
2523
2524 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2525 cursor->pos++;
2526}
2527
2528static int lbr_callchain_add_lbr_ip(struct thread *thread,
2529 struct callchain_cursor *cursor,
2530 struct perf_sample *sample,
2531 struct symbol **parent,
2532 struct addr_location *root_al,
2533 u64 *branch_from,
2534 bool callee)
2535{
2536 struct branch_stack *lbr_stack = sample->branch_stack;
2537 struct branch_entry *entries = perf_sample__branch_entries(sample);
2538 u8 cpumode = PERF_RECORD_MISC_USER;
2539 int lbr_nr = lbr_stack->nr;
2540 struct branch_flags *flags;
2541 int err, i;
2542 u64 ip;
2543
2544 /*
2545 * The curr and pos are not used in writing session. They are cleared
2546 * in callchain_cursor_commit() when the writing session is closed.
2547 * Using curr and pos to track the current cursor node.
2548 */
2549 if (thread->lbr_stitch) {
2550 cursor->curr = NULL;
2551 cursor->pos = cursor->nr;
2552 if (cursor->nr) {
2553 cursor->curr = cursor->first;
2554 for (i = 0; i < (int)(cursor->nr - 1); i++)
2555 cursor->curr = cursor->curr->next;
2556 }
2557 }
2558
2559 if (callee) {
2560 /* Add LBR ip from first entries.to */
2561 ip = entries[0].to;
2562 flags = &entries[0].flags;
2563 *branch_from = entries[0].from;
2564 err = add_callchain_ip(thread, cursor, parent,
2565 root_al, &cpumode, ip,
2566 true, flags, NULL,
2567 *branch_from);
2568 if (err)
2569 return err;
2570
2571 /*
2572 * The number of cursor node increases.
2573 * Move the current cursor node.
2574 * But does not need to save current cursor node for entry 0.
2575 * It's impossible to stitch the whole LBRs of previous sample.
2576 */
2577 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2578 if (!cursor->curr)
2579 cursor->curr = cursor->first;
2580 else
2581 cursor->curr = cursor->curr->next;
2582 cursor->pos++;
2583 }
2584
2585 /* Add LBR ip from entries.from one by one. */
2586 for (i = 0; i < lbr_nr; i++) {
2587 ip = entries[i].from;
2588 flags = &entries[i].flags;
2589 err = add_callchain_ip(thread, cursor, parent,
2590 root_al, &cpumode, ip,
2591 true, flags, NULL,
2592 *branch_from);
2593 if (err)
2594 return err;
2595 save_lbr_cursor_node(thread, cursor, i);
2596 }
2597 return 0;
2598 }
2599
2600 /* Add LBR ip from entries.from one by one. */
2601 for (i = lbr_nr - 1; i >= 0; i--) {
2602 ip = entries[i].from;
2603 flags = &entries[i].flags;
2604 err = add_callchain_ip(thread, cursor, parent,
2605 root_al, &cpumode, ip,
2606 true, flags, NULL,
2607 *branch_from);
2608 if (err)
2609 return err;
2610 save_lbr_cursor_node(thread, cursor, i);
2611 }
2612
2613 /* Add LBR ip from first entries.to */
2614 ip = entries[0].to;
2615 flags = &entries[0].flags;
2616 *branch_from = entries[0].from;
2617 err = add_callchain_ip(thread, cursor, parent,
2618 root_al, &cpumode, ip,
2619 true, flags, NULL,
2620 *branch_from);
2621 if (err)
2622 return err;
2623
2624 return 0;
2625}
2626
2627static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2628 struct callchain_cursor *cursor)
2629{
2630 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2631 struct callchain_cursor_node *cnode;
2632 struct stitch_list *stitch_node;
2633 int err;
2634
2635 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2636 cnode = &stitch_node->cursor;
2637
2638 err = callchain_cursor_append(cursor, cnode->ip,
2639 &cnode->ms,
2640 cnode->branch,
2641 &cnode->branch_flags,
2642 cnode->nr_loop_iter,
2643 cnode->iter_cycles,
2644 cnode->branch_from,
2645 cnode->srcline);
2646 if (err)
2647 return err;
2648 }
2649 return 0;
2650}
2651
2652static struct stitch_list *get_stitch_node(struct thread *thread)
2653{
2654 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2655 struct stitch_list *stitch_node;
2656
2657 if (!list_empty(&lbr_stitch->free_lists)) {
2658 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2659 struct stitch_list, node);
2660 list_del(&stitch_node->node);
2661
2662 return stitch_node;
2663 }
2664
2665 return malloc(sizeof(struct stitch_list));
2666}
2667
2668static bool has_stitched_lbr(struct thread *thread,
2669 struct perf_sample *cur,
2670 struct perf_sample *prev,
2671 unsigned int max_lbr,
2672 bool callee)
2673{
2674 struct branch_stack *cur_stack = cur->branch_stack;
2675 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2676 struct branch_stack *prev_stack = prev->branch_stack;
2677 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2678 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2679 int i, j, nr_identical_branches = 0;
2680 struct stitch_list *stitch_node;
2681 u64 cur_base, distance;
2682
2683 if (!cur_stack || !prev_stack)
2684 return false;
2685
2686 /* Find the physical index of the base-of-stack for current sample. */
2687 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2688
2689 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2690 (max_lbr + prev_stack->hw_idx - cur_base);
2691 /* Previous sample has shorter stack. Nothing can be stitched. */
2692 if (distance + 1 > prev_stack->nr)
2693 return false;
2694
2695 /*
2696 * Check if there are identical LBRs between two samples.
2697 * Identical LBRs must have same from, to and flags values. Also,
2698 * they have to be saved in the same LBR registers (same physical
2699 * index).
2700 *
2701 * Starts from the base-of-stack of current sample.
2702 */
2703 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2704 if ((prev_entries[i].from != cur_entries[j].from) ||
2705 (prev_entries[i].to != cur_entries[j].to) ||
2706 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2707 break;
2708 nr_identical_branches++;
2709 }
2710
2711 if (!nr_identical_branches)
2712 return false;
2713
2714 /*
2715 * Save the LBRs between the base-of-stack of previous sample
2716 * and the base-of-stack of current sample into lbr_stitch->lists.
2717 * These LBRs will be stitched later.
2718 */
2719 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2720
2721 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2722 continue;
2723
2724 stitch_node = get_stitch_node(thread);
2725 if (!stitch_node)
2726 return false;
2727
2728 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2729 sizeof(struct callchain_cursor_node));
2730
2731 if (callee)
2732 list_add(&stitch_node->node, &lbr_stitch->lists);
2733 else
2734 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2735 }
2736
2737 return true;
2738}
2739
2740static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2741{
2742 if (thread->lbr_stitch)
2743 return true;
2744
2745 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2746 if (!thread->lbr_stitch)
2747 goto err;
2748
2749 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2750 if (!thread->lbr_stitch->prev_lbr_cursor)
2751 goto free_lbr_stitch;
2752
2753 INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2754 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2755
2756 return true;
2757
2758free_lbr_stitch:
2759 zfree(&thread->lbr_stitch);
2760err:
2761 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2762 thread->lbr_stitch_enable = false;
2763 return false;
2764}
2765
2766/*
2767 * Resolve LBR callstack chain sample
2768 * Return:
2769 * 1 on success get LBR callchain information
2770 * 0 no available LBR callchain information, should try fp
2771 * negative error code on other errors.
2772 */
2773static int resolve_lbr_callchain_sample(struct thread *thread,
2774 struct callchain_cursor *cursor,
2775 struct perf_sample *sample,
2776 struct symbol **parent,
2777 struct addr_location *root_al,
2778 int max_stack,
2779 unsigned int max_lbr)
2780{
2781 bool callee = (callchain_param.order == ORDER_CALLEE);
2782 struct ip_callchain *chain = sample->callchain;
2783 int chain_nr = min(max_stack, (int)chain->nr), i;
2784 struct lbr_stitch *lbr_stitch;
2785 bool stitched_lbr = false;
2786 u64 branch_from = 0;
2787 int err;
2788
2789 for (i = 0; i < chain_nr; i++) {
2790 if (chain->ips[i] == PERF_CONTEXT_USER)
2791 break;
2792 }
2793
2794 /* LBR only affects the user callchain */
2795 if (i == chain_nr)
2796 return 0;
2797
2798 if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2799 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2800 lbr_stitch = thread->lbr_stitch;
2801
2802 stitched_lbr = has_stitched_lbr(thread, sample,
2803 &lbr_stitch->prev_sample,
2804 max_lbr, callee);
2805
2806 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2807 list_replace_init(&lbr_stitch->lists,
2808 &lbr_stitch->free_lists);
2809 }
2810 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2811 }
2812
2813 if (callee) {
2814 /* Add kernel ip */
2815 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2816 parent, root_al, branch_from,
2817 true, i);
2818 if (err)
2819 goto error;
2820
2821 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2822 root_al, &branch_from, true);
2823 if (err)
2824 goto error;
2825
2826 if (stitched_lbr) {
2827 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2828 if (err)
2829 goto error;
2830 }
2831
2832 } else {
2833 if (stitched_lbr) {
2834 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2835 if (err)
2836 goto error;
2837 }
2838 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2839 root_al, &branch_from, false);
2840 if (err)
2841 goto error;
2842
2843 /* Add kernel ip */
2844 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2845 parent, root_al, branch_from,
2846 false, i);
2847 if (err)
2848 goto error;
2849 }
2850 return 1;
2851
2852error:
2853 return (err < 0) ? err : 0;
2854}
2855
2856static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2857 struct callchain_cursor *cursor,
2858 struct symbol **parent,
2859 struct addr_location *root_al,
2860 u8 *cpumode, int ent)
2861{
2862 int err = 0;
2863
2864 while (--ent >= 0) {
2865 u64 ip = chain->ips[ent];
2866
2867 if (ip >= PERF_CONTEXT_MAX) {
2868 err = add_callchain_ip(thread, cursor, parent,
2869 root_al, cpumode, ip,
2870 false, NULL, NULL, 0);
2871 break;
2872 }
2873 }
2874 return err;
2875}
2876
2877static u64 get_leaf_frame_caller(struct perf_sample *sample,
2878 struct thread *thread, int usr_idx)
2879{
2880 if (machine__normalized_is(maps__machine(thread->maps), "arm64"))
2881 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2882 else
2883 return 0;
2884}
2885
2886static int thread__resolve_callchain_sample(struct thread *thread,
2887 struct callchain_cursor *cursor,
2888 struct evsel *evsel,
2889 struct perf_sample *sample,
2890 struct symbol **parent,
2891 struct addr_location *root_al,
2892 int max_stack)
2893{
2894 struct branch_stack *branch = sample->branch_stack;
2895 struct branch_entry *entries = perf_sample__branch_entries(sample);
2896 struct ip_callchain *chain = sample->callchain;
2897 int chain_nr = 0;
2898 u8 cpumode = PERF_RECORD_MISC_USER;
2899 int i, j, err, nr_entries, usr_idx;
2900 int skip_idx = -1;
2901 int first_call = 0;
2902 u64 leaf_frame_caller;
2903
2904 if (chain)
2905 chain_nr = chain->nr;
2906
2907 if (evsel__has_branch_callstack(evsel)) {
2908 struct perf_env *env = evsel__env(evsel);
2909
2910 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2911 root_al, max_stack,
2912 !env ? 0 : env->max_branches);
2913 if (err)
2914 return (err < 0) ? err : 0;
2915 }
2916
2917 /*
2918 * Based on DWARF debug information, some architectures skip
2919 * a callchain entry saved by the kernel.
2920 */
2921 skip_idx = arch_skip_callchain_idx(thread, chain);
2922
2923 /*
2924 * Add branches to call stack for easier browsing. This gives
2925 * more context for a sample than just the callers.
2926 *
2927 * This uses individual histograms of paths compared to the
2928 * aggregated histograms the normal LBR mode uses.
2929 *
2930 * Limitations for now:
2931 * - No extra filters
2932 * - No annotations (should annotate somehow)
2933 */
2934
2935 if (branch && callchain_param.branch_callstack) {
2936 int nr = min(max_stack, (int)branch->nr);
2937 struct branch_entry be[nr];
2938 struct iterations iter[nr];
2939
2940 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2941 pr_warning("corrupted branch chain. skipping...\n");
2942 goto check_calls;
2943 }
2944
2945 for (i = 0; i < nr; i++) {
2946 if (callchain_param.order == ORDER_CALLEE) {
2947 be[i] = entries[i];
2948
2949 if (chain == NULL)
2950 continue;
2951
2952 /*
2953 * Check for overlap into the callchain.
2954 * The return address is one off compared to
2955 * the branch entry. To adjust for this
2956 * assume the calling instruction is not longer
2957 * than 8 bytes.
2958 */
2959 if (i == skip_idx ||
2960 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2961 first_call++;
2962 else if (be[i].from < chain->ips[first_call] &&
2963 be[i].from >= chain->ips[first_call] - 8)
2964 first_call++;
2965 } else
2966 be[i] = entries[branch->nr - i - 1];
2967 }
2968
2969 memset(iter, 0, sizeof(struct iterations) * nr);
2970 nr = remove_loops(be, nr, iter);
2971
2972 for (i = 0; i < nr; i++) {
2973 err = add_callchain_ip(thread, cursor, parent,
2974 root_al,
2975 NULL, be[i].to,
2976 true, &be[i].flags,
2977 NULL, be[i].from);
2978
2979 if (!err)
2980 err = add_callchain_ip(thread, cursor, parent, root_al,
2981 NULL, be[i].from,
2982 true, &be[i].flags,
2983 &iter[i], 0);
2984 if (err == -EINVAL)
2985 break;
2986 if (err)
2987 return err;
2988 }
2989
2990 if (chain_nr == 0)
2991 return 0;
2992
2993 chain_nr -= nr;
2994 }
2995
2996check_calls:
2997 if (chain && callchain_param.order != ORDER_CALLEE) {
2998 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2999 &cpumode, chain->nr - first_call);
3000 if (err)
3001 return (err < 0) ? err : 0;
3002 }
3003 for (i = first_call, nr_entries = 0;
3004 i < chain_nr && nr_entries < max_stack; i++) {
3005 u64 ip;
3006
3007 if (callchain_param.order == ORDER_CALLEE)
3008 j = i;
3009 else
3010 j = chain->nr - i - 1;
3011
3012#ifdef HAVE_SKIP_CALLCHAIN_IDX
3013 if (j == skip_idx)
3014 continue;
3015#endif
3016 ip = chain->ips[j];
3017 if (ip < PERF_CONTEXT_MAX)
3018 ++nr_entries;
3019 else if (callchain_param.order != ORDER_CALLEE) {
3020 err = find_prev_cpumode(chain, thread, cursor, parent,
3021 root_al, &cpumode, j);
3022 if (err)
3023 return (err < 0) ? err : 0;
3024 continue;
3025 }
3026
3027 /*
3028 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
3029 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
3030 * the index will be different in order to add the missing frame
3031 * at the right place.
3032 */
3033
3034 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
3035
3036 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
3037
3038 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
3039
3040 /*
3041 * check if leaf_frame_Caller != ip to not add the same
3042 * value twice.
3043 */
3044
3045 if (leaf_frame_caller && leaf_frame_caller != ip) {
3046
3047 err = add_callchain_ip(thread, cursor, parent,
3048 root_al, &cpumode, leaf_frame_caller,
3049 false, NULL, NULL, 0);
3050 if (err)
3051 return (err < 0) ? err : 0;
3052 }
3053 }
3054
3055 err = add_callchain_ip(thread, cursor, parent,
3056 root_al, &cpumode, ip,
3057 false, NULL, NULL, 0);
3058
3059 if (err)
3060 return (err < 0) ? err : 0;
3061 }
3062
3063 return 0;
3064}
3065
3066static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3067{
3068 struct symbol *sym = ms->sym;
3069 struct map *map = ms->map;
3070 struct inline_node *inline_node;
3071 struct inline_list *ilist;
3072 struct dso *dso;
3073 u64 addr;
3074 int ret = 1;
3075
3076 if (!symbol_conf.inline_name || !map || !sym)
3077 return ret;
3078
3079 addr = map__dso_map_ip(map, ip);
3080 addr = map__rip_2objdump(map, addr);
3081 dso = map__dso(map);
3082
3083 inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
3084 if (!inline_node) {
3085 inline_node = dso__parse_addr_inlines(dso, addr, sym);
3086 if (!inline_node)
3087 return ret;
3088 inlines__tree_insert(&dso->inlined_nodes, inline_node);
3089 }
3090
3091 list_for_each_entry(ilist, &inline_node->val, list) {
3092 struct map_symbol ilist_ms = {
3093 .maps = ms->maps,
3094 .map = map,
3095 .sym = ilist->symbol,
3096 };
3097 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3098 NULL, 0, 0, 0, ilist->srcline);
3099
3100 if (ret != 0)
3101 return ret;
3102 }
3103
3104 return ret;
3105}
3106
3107static int unwind_entry(struct unwind_entry *entry, void *arg)
3108{
3109 struct callchain_cursor *cursor = arg;
3110 const char *srcline = NULL;
3111 u64 addr = entry->ip;
3112
3113 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3114 return 0;
3115
3116 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3117 return 0;
3118
3119 /*
3120 * Convert entry->ip from a virtual address to an offset in
3121 * its corresponding binary.
3122 */
3123 if (entry->ms.map)
3124 addr = map__dso_map_ip(entry->ms.map, entry->ip);
3125
3126 srcline = callchain_srcline(&entry->ms, addr);
3127 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3128 false, NULL, 0, 0, 0, srcline);
3129}
3130
3131static int thread__resolve_callchain_unwind(struct thread *thread,
3132 struct callchain_cursor *cursor,
3133 struct evsel *evsel,
3134 struct perf_sample *sample,
3135 int max_stack)
3136{
3137 /* Can we do dwarf post unwind? */
3138 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3139 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3140 return 0;
3141
3142 /* Bail out if nothing was captured. */
3143 if ((!sample->user_regs.regs) ||
3144 (!sample->user_stack.size))
3145 return 0;
3146
3147 return unwind__get_entries(unwind_entry, cursor,
3148 thread, sample, max_stack, false);
3149}
3150
3151int thread__resolve_callchain(struct thread *thread,
3152 struct callchain_cursor *cursor,
3153 struct evsel *evsel,
3154 struct perf_sample *sample,
3155 struct symbol **parent,
3156 struct addr_location *root_al,
3157 int max_stack)
3158{
3159 int ret = 0;
3160
3161 callchain_cursor_reset(cursor);
3162
3163 if (callchain_param.order == ORDER_CALLEE) {
3164 ret = thread__resolve_callchain_sample(thread, cursor,
3165 evsel, sample,
3166 parent, root_al,
3167 max_stack);
3168 if (ret)
3169 return ret;
3170 ret = thread__resolve_callchain_unwind(thread, cursor,
3171 evsel, sample,
3172 max_stack);
3173 } else {
3174 ret = thread__resolve_callchain_unwind(thread, cursor,
3175 evsel, sample,
3176 max_stack);
3177 if (ret)
3178 return ret;
3179 ret = thread__resolve_callchain_sample(thread, cursor,
3180 evsel, sample,
3181 parent, root_al,
3182 max_stack);
3183 }
3184
3185 return ret;
3186}
3187
3188int machine__for_each_thread(struct machine *machine,
3189 int (*fn)(struct thread *thread, void *p),
3190 void *priv)
3191{
3192 struct threads *threads;
3193 struct rb_node *nd;
3194 struct thread *thread;
3195 int rc = 0;
3196 int i;
3197
3198 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3199 threads = &machine->threads[i];
3200 for (nd = rb_first_cached(&threads->entries); nd;
3201 nd = rb_next(nd)) {
3202 thread = rb_entry(nd, struct thread, rb_node);
3203 rc = fn(thread, priv);
3204 if (rc != 0)
3205 return rc;
3206 }
3207
3208 list_for_each_entry(thread, &threads->dead, node) {
3209 rc = fn(thread, priv);
3210 if (rc != 0)
3211 return rc;
3212 }
3213 }
3214 return rc;
3215}
3216
3217int machines__for_each_thread(struct machines *machines,
3218 int (*fn)(struct thread *thread, void *p),
3219 void *priv)
3220{
3221 struct rb_node *nd;
3222 int rc = 0;
3223
3224 rc = machine__for_each_thread(&machines->host, fn, priv);
3225 if (rc != 0)
3226 return rc;
3227
3228 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3229 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3230
3231 rc = machine__for_each_thread(machine, fn, priv);
3232 if (rc != 0)
3233 return rc;
3234 }
3235 return rc;
3236}
3237
3238pid_t machine__get_current_tid(struct machine *machine, int cpu)
3239{
3240 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3241 return -1;
3242
3243 return machine->current_tid[cpu];
3244}
3245
3246int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3247 pid_t tid)
3248{
3249 struct thread *thread;
3250 const pid_t init_val = -1;
3251
3252 if (cpu < 0)
3253 return -EINVAL;
3254
3255 if (realloc_array_as_needed(machine->current_tid,
3256 machine->current_tid_sz,
3257 (unsigned int)cpu,
3258 &init_val))
3259 return -ENOMEM;
3260
3261 machine->current_tid[cpu] = tid;
3262
3263 thread = machine__findnew_thread(machine, pid, tid);
3264 if (!thread)
3265 return -ENOMEM;
3266
3267 thread->cpu = cpu;
3268 thread__put(thread);
3269
3270 return 0;
3271}
3272
3273/*
3274 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3275 * machine__normalized_is() if a normalized arch is needed.
3276 */
3277bool machine__is(struct machine *machine, const char *arch)
3278{
3279 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3280}
3281
3282bool machine__normalized_is(struct machine *machine, const char *arch)
3283{
3284 return machine && !strcmp(perf_env__arch(machine->env), arch);
3285}
3286
3287int machine__nr_cpus_avail(struct machine *machine)
3288{
3289 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3290}
3291
3292int machine__get_kernel_start(struct machine *machine)
3293{
3294 struct map *map = machine__kernel_map(machine);
3295 int err = 0;
3296
3297 /*
3298 * The only addresses above 2^63 are kernel addresses of a 64-bit
3299 * kernel. Note that addresses are unsigned so that on a 32-bit system
3300 * all addresses including kernel addresses are less than 2^32. In
3301 * that case (32-bit system), if the kernel mapping is unknown, all
3302 * addresses will be assumed to be in user space - see
3303 * machine__kernel_ip().
3304 */
3305 machine->kernel_start = 1ULL << 63;
3306 if (map) {
3307 err = map__load(map);
3308 /*
3309 * On x86_64, PTI entry trampolines are less than the
3310 * start of kernel text, but still above 2^63. So leave
3311 * kernel_start = 1ULL << 63 for x86_64.
3312 */
3313 if (!err && !machine__is(machine, "x86_64"))
3314 machine->kernel_start = map__start(map);
3315 }
3316 return err;
3317}
3318
3319u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3320{
3321 u8 addr_cpumode = cpumode;
3322 bool kernel_ip;
3323
3324 if (!machine->single_address_space)
3325 goto out;
3326
3327 kernel_ip = machine__kernel_ip(machine, addr);
3328 switch (cpumode) {
3329 case PERF_RECORD_MISC_KERNEL:
3330 case PERF_RECORD_MISC_USER:
3331 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3332 PERF_RECORD_MISC_USER;
3333 break;
3334 case PERF_RECORD_MISC_GUEST_KERNEL:
3335 case PERF_RECORD_MISC_GUEST_USER:
3336 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3337 PERF_RECORD_MISC_GUEST_USER;
3338 break;
3339 default:
3340 break;
3341 }
3342out:
3343 return addr_cpumode;
3344}
3345
3346struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3347{
3348 return dsos__findnew_id(&machine->dsos, filename, id);
3349}
3350
3351struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3352{
3353 return machine__findnew_dso_id(machine, filename, NULL);
3354}
3355
3356char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3357{
3358 struct machine *machine = vmachine;
3359 struct map *map;
3360 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3361
3362 if (sym == NULL)
3363 return NULL;
3364
3365 *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3366 *addrp = map__unmap_ip(map, sym->start);
3367 return sym->name;
3368}
3369
3370int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3371{
3372 struct dso *pos;
3373 int err = 0;
3374
3375 list_for_each_entry(pos, &machine->dsos.head, node) {
3376 if (fn(pos, machine, priv))
3377 err = -1;
3378 }
3379 return err;
3380}
3381
3382int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3383{
3384 struct maps *maps = machine__kernel_maps(machine);
3385 struct map_rb_node *pos;
3386 int err = 0;
3387
3388 maps__for_each_entry(maps, pos) {
3389 err = fn(pos->map, priv);
3390 if (err != 0) {
3391 break;
3392 }
3393 }
3394 return err;
3395}
3396
3397bool machine__is_lock_function(struct machine *machine, u64 addr)
3398{
3399 if (!machine->sched.text_start) {
3400 struct map *kmap;
3401 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3402
3403 if (!sym) {
3404 /* to avoid retry */
3405 machine->sched.text_start = 1;
3406 return false;
3407 }
3408
3409 machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3410
3411 /* should not fail from here */
3412 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3413 machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3414
3415 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3416 machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3417
3418 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3419 machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3420 }
3421
3422 /* failed to get kernel symbols */
3423 if (machine->sched.text_start == 1)
3424 return false;
3425
3426 /* mutex and rwsem functions are in sched text section */
3427 if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3428 return true;
3429
3430 /* spinlock functions are in lock text section */
3431 if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3432 return true;
3433
3434 return false;
3435}