Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * DSA topology and switch handling
4 *
5 * Copyright (c) 2008-2009 Marvell Semiconductor
6 * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
7 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
8 */
9
10#include <linux/device.h>
11#include <linux/err.h>
12#include <linux/list.h>
13#include <linux/module.h>
14#include <linux/netdevice.h>
15#include <linux/slab.h>
16#include <linux/rtnetlink.h>
17#include <linux/of.h>
18#include <linux/of_mdio.h>
19#include <linux/of_net.h>
20#include <net/dsa_stubs.h>
21#include <net/sch_generic.h>
22
23#include "devlink.h"
24#include "dsa.h"
25#include "master.h"
26#include "netlink.h"
27#include "port.h"
28#include "slave.h"
29#include "switch.h"
30#include "tag.h"
31
32#define DSA_MAX_NUM_OFFLOADING_BRIDGES BITS_PER_LONG
33
34static DEFINE_MUTEX(dsa2_mutex);
35LIST_HEAD(dsa_tree_list);
36
37static struct workqueue_struct *dsa_owq;
38
39/* Track the bridges with forwarding offload enabled */
40static unsigned long dsa_fwd_offloading_bridges;
41
42bool dsa_schedule_work(struct work_struct *work)
43{
44 return queue_work(dsa_owq, work);
45}
46
47void dsa_flush_workqueue(void)
48{
49 flush_workqueue(dsa_owq);
50}
51EXPORT_SYMBOL_GPL(dsa_flush_workqueue);
52
53/**
54 * dsa_lag_map() - Map LAG structure to a linear LAG array
55 * @dst: Tree in which to record the mapping.
56 * @lag: LAG structure that is to be mapped to the tree's array.
57 *
58 * dsa_lag_id/dsa_lag_by_id can then be used to translate between the
59 * two spaces. The size of the mapping space is determined by the
60 * driver by setting ds->num_lag_ids. It is perfectly legal to leave
61 * it unset if it is not needed, in which case these functions become
62 * no-ops.
63 */
64void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
65{
66 unsigned int id;
67
68 for (id = 1; id <= dst->lags_len; id++) {
69 if (!dsa_lag_by_id(dst, id)) {
70 dst->lags[id - 1] = lag;
71 lag->id = id;
72 return;
73 }
74 }
75
76 /* No IDs left, which is OK. Some drivers do not need it. The
77 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
78 * returns an error for this device when joining the LAG. The
79 * driver can then return -EOPNOTSUPP back to DSA, which will
80 * fall back to a software LAG.
81 */
82}
83
84/**
85 * dsa_lag_unmap() - Remove a LAG ID mapping
86 * @dst: Tree in which the mapping is recorded.
87 * @lag: LAG structure that was mapped.
88 *
89 * As there may be multiple users of the mapping, it is only removed
90 * if there are no other references to it.
91 */
92void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
93{
94 unsigned int id;
95
96 dsa_lags_foreach_id(id, dst) {
97 if (dsa_lag_by_id(dst, id) == lag) {
98 dst->lags[id - 1] = NULL;
99 lag->id = 0;
100 break;
101 }
102 }
103}
104
105struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
106 const struct net_device *lag_dev)
107{
108 struct dsa_port *dp;
109
110 list_for_each_entry(dp, &dst->ports, list)
111 if (dsa_port_lag_dev_get(dp) == lag_dev)
112 return dp->lag;
113
114 return NULL;
115}
116
117struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
118 const struct net_device *br)
119{
120 struct dsa_port *dp;
121
122 list_for_each_entry(dp, &dst->ports, list)
123 if (dsa_port_bridge_dev_get(dp) == br)
124 return dp->bridge;
125
126 return NULL;
127}
128
129static int dsa_bridge_num_find(const struct net_device *bridge_dev)
130{
131 struct dsa_switch_tree *dst;
132
133 list_for_each_entry(dst, &dsa_tree_list, list) {
134 struct dsa_bridge *bridge;
135
136 bridge = dsa_tree_bridge_find(dst, bridge_dev);
137 if (bridge)
138 return bridge->num;
139 }
140
141 return 0;
142}
143
144unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
145{
146 unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
147
148 /* Switches without FDB isolation support don't get unique
149 * bridge numbering
150 */
151 if (!max)
152 return 0;
153
154 if (!bridge_num) {
155 /* First port that requests FDB isolation or TX forwarding
156 * offload for this bridge
157 */
158 bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges,
159 DSA_MAX_NUM_OFFLOADING_BRIDGES,
160 1);
161 if (bridge_num >= max)
162 return 0;
163
164 set_bit(bridge_num, &dsa_fwd_offloading_bridges);
165 }
166
167 return bridge_num;
168}
169
170void dsa_bridge_num_put(const struct net_device *bridge_dev,
171 unsigned int bridge_num)
172{
173 /* Since we refcount bridges, we know that when we call this function
174 * it is no longer in use, so we can just go ahead and remove it from
175 * the bit mask.
176 */
177 clear_bit(bridge_num, &dsa_fwd_offloading_bridges);
178}
179
180struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
181{
182 struct dsa_switch_tree *dst;
183 struct dsa_port *dp;
184
185 list_for_each_entry(dst, &dsa_tree_list, list) {
186 if (dst->index != tree_index)
187 continue;
188
189 list_for_each_entry(dp, &dst->ports, list) {
190 if (dp->ds->index != sw_index)
191 continue;
192
193 return dp->ds;
194 }
195 }
196
197 return NULL;
198}
199EXPORT_SYMBOL_GPL(dsa_switch_find);
200
201static struct dsa_switch_tree *dsa_tree_find(int index)
202{
203 struct dsa_switch_tree *dst;
204
205 list_for_each_entry(dst, &dsa_tree_list, list)
206 if (dst->index == index)
207 return dst;
208
209 return NULL;
210}
211
212static struct dsa_switch_tree *dsa_tree_alloc(int index)
213{
214 struct dsa_switch_tree *dst;
215
216 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
217 if (!dst)
218 return NULL;
219
220 dst->index = index;
221
222 INIT_LIST_HEAD(&dst->rtable);
223
224 INIT_LIST_HEAD(&dst->ports);
225
226 INIT_LIST_HEAD(&dst->list);
227 list_add_tail(&dst->list, &dsa_tree_list);
228
229 kref_init(&dst->refcount);
230
231 return dst;
232}
233
234static void dsa_tree_free(struct dsa_switch_tree *dst)
235{
236 if (dst->tag_ops)
237 dsa_tag_driver_put(dst->tag_ops);
238 list_del(&dst->list);
239 kfree(dst);
240}
241
242static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
243{
244 if (dst)
245 kref_get(&dst->refcount);
246
247 return dst;
248}
249
250static struct dsa_switch_tree *dsa_tree_touch(int index)
251{
252 struct dsa_switch_tree *dst;
253
254 dst = dsa_tree_find(index);
255 if (dst)
256 return dsa_tree_get(dst);
257 else
258 return dsa_tree_alloc(index);
259}
260
261static void dsa_tree_release(struct kref *ref)
262{
263 struct dsa_switch_tree *dst;
264
265 dst = container_of(ref, struct dsa_switch_tree, refcount);
266
267 dsa_tree_free(dst);
268}
269
270static void dsa_tree_put(struct dsa_switch_tree *dst)
271{
272 if (dst)
273 kref_put(&dst->refcount, dsa_tree_release);
274}
275
276static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
277 struct device_node *dn)
278{
279 struct dsa_port *dp;
280
281 list_for_each_entry(dp, &dst->ports, list)
282 if (dp->dn == dn)
283 return dp;
284
285 return NULL;
286}
287
288static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
289 struct dsa_port *link_dp)
290{
291 struct dsa_switch *ds = dp->ds;
292 struct dsa_switch_tree *dst;
293 struct dsa_link *dl;
294
295 dst = ds->dst;
296
297 list_for_each_entry(dl, &dst->rtable, list)
298 if (dl->dp == dp && dl->link_dp == link_dp)
299 return dl;
300
301 dl = kzalloc(sizeof(*dl), GFP_KERNEL);
302 if (!dl)
303 return NULL;
304
305 dl->dp = dp;
306 dl->link_dp = link_dp;
307
308 INIT_LIST_HEAD(&dl->list);
309 list_add_tail(&dl->list, &dst->rtable);
310
311 return dl;
312}
313
314static bool dsa_port_setup_routing_table(struct dsa_port *dp)
315{
316 struct dsa_switch *ds = dp->ds;
317 struct dsa_switch_tree *dst = ds->dst;
318 struct device_node *dn = dp->dn;
319 struct of_phandle_iterator it;
320 struct dsa_port *link_dp;
321 struct dsa_link *dl;
322 int err;
323
324 of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
325 link_dp = dsa_tree_find_port_by_node(dst, it.node);
326 if (!link_dp) {
327 of_node_put(it.node);
328 return false;
329 }
330
331 dl = dsa_link_touch(dp, link_dp);
332 if (!dl) {
333 of_node_put(it.node);
334 return false;
335 }
336 }
337
338 return true;
339}
340
341static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
342{
343 bool complete = true;
344 struct dsa_port *dp;
345
346 list_for_each_entry(dp, &dst->ports, list) {
347 if (dsa_port_is_dsa(dp)) {
348 complete = dsa_port_setup_routing_table(dp);
349 if (!complete)
350 break;
351 }
352 }
353
354 return complete;
355}
356
357static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
358{
359 struct dsa_port *dp;
360
361 list_for_each_entry(dp, &dst->ports, list)
362 if (dsa_port_is_cpu(dp))
363 return dp;
364
365 return NULL;
366}
367
368struct net_device *dsa_tree_find_first_master(struct dsa_switch_tree *dst)
369{
370 struct device_node *ethernet;
371 struct net_device *master;
372 struct dsa_port *cpu_dp;
373
374 cpu_dp = dsa_tree_find_first_cpu(dst);
375 ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0);
376 master = of_find_net_device_by_node(ethernet);
377 of_node_put(ethernet);
378
379 return master;
380}
381
382/* Assign the default CPU port (the first one in the tree) to all ports of the
383 * fabric which don't already have one as part of their own switch.
384 */
385static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
386{
387 struct dsa_port *cpu_dp, *dp;
388
389 cpu_dp = dsa_tree_find_first_cpu(dst);
390 if (!cpu_dp) {
391 pr_err("DSA: tree %d has no CPU port\n", dst->index);
392 return -EINVAL;
393 }
394
395 list_for_each_entry(dp, &dst->ports, list) {
396 if (dp->cpu_dp)
397 continue;
398
399 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
400 dp->cpu_dp = cpu_dp;
401 }
402
403 return 0;
404}
405
406/* Perform initial assignment of CPU ports to user ports and DSA links in the
407 * fabric, giving preference to CPU ports local to each switch. Default to
408 * using the first CPU port in the switch tree if the port does not have a CPU
409 * port local to this switch.
410 */
411static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
412{
413 struct dsa_port *cpu_dp, *dp;
414
415 list_for_each_entry(cpu_dp, &dst->ports, list) {
416 if (!dsa_port_is_cpu(cpu_dp))
417 continue;
418
419 /* Prefer a local CPU port */
420 dsa_switch_for_each_port(dp, cpu_dp->ds) {
421 /* Prefer the first local CPU port found */
422 if (dp->cpu_dp)
423 continue;
424
425 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
426 dp->cpu_dp = cpu_dp;
427 }
428 }
429
430 return dsa_tree_setup_default_cpu(dst);
431}
432
433static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
434{
435 struct dsa_port *dp;
436
437 list_for_each_entry(dp, &dst->ports, list)
438 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
439 dp->cpu_dp = NULL;
440}
441
442static int dsa_port_setup(struct dsa_port *dp)
443{
444 bool dsa_port_link_registered = false;
445 struct dsa_switch *ds = dp->ds;
446 bool dsa_port_enabled = false;
447 int err = 0;
448
449 if (dp->setup)
450 return 0;
451
452 err = dsa_port_devlink_setup(dp);
453 if (err)
454 return err;
455
456 switch (dp->type) {
457 case DSA_PORT_TYPE_UNUSED:
458 dsa_port_disable(dp);
459 break;
460 case DSA_PORT_TYPE_CPU:
461 if (dp->dn) {
462 err = dsa_shared_port_link_register_of(dp);
463 if (err)
464 break;
465 dsa_port_link_registered = true;
466 } else {
467 dev_warn(ds->dev,
468 "skipping link registration for CPU port %d\n",
469 dp->index);
470 }
471
472 err = dsa_port_enable(dp, NULL);
473 if (err)
474 break;
475 dsa_port_enabled = true;
476
477 break;
478 case DSA_PORT_TYPE_DSA:
479 if (dp->dn) {
480 err = dsa_shared_port_link_register_of(dp);
481 if (err)
482 break;
483 dsa_port_link_registered = true;
484 } else {
485 dev_warn(ds->dev,
486 "skipping link registration for DSA port %d\n",
487 dp->index);
488 }
489
490 err = dsa_port_enable(dp, NULL);
491 if (err)
492 break;
493 dsa_port_enabled = true;
494
495 break;
496 case DSA_PORT_TYPE_USER:
497 of_get_mac_address(dp->dn, dp->mac);
498 err = dsa_slave_create(dp);
499 break;
500 }
501
502 if (err && dsa_port_enabled)
503 dsa_port_disable(dp);
504 if (err && dsa_port_link_registered)
505 dsa_shared_port_link_unregister_of(dp);
506 if (err) {
507 dsa_port_devlink_teardown(dp);
508 return err;
509 }
510
511 dp->setup = true;
512
513 return 0;
514}
515
516static void dsa_port_teardown(struct dsa_port *dp)
517{
518 if (!dp->setup)
519 return;
520
521 switch (dp->type) {
522 case DSA_PORT_TYPE_UNUSED:
523 break;
524 case DSA_PORT_TYPE_CPU:
525 dsa_port_disable(dp);
526 if (dp->dn)
527 dsa_shared_port_link_unregister_of(dp);
528 break;
529 case DSA_PORT_TYPE_DSA:
530 dsa_port_disable(dp);
531 if (dp->dn)
532 dsa_shared_port_link_unregister_of(dp);
533 break;
534 case DSA_PORT_TYPE_USER:
535 if (dp->slave) {
536 dsa_slave_destroy(dp->slave);
537 dp->slave = NULL;
538 }
539 break;
540 }
541
542 dsa_port_devlink_teardown(dp);
543
544 dp->setup = false;
545}
546
547static int dsa_port_setup_as_unused(struct dsa_port *dp)
548{
549 dp->type = DSA_PORT_TYPE_UNUSED;
550 return dsa_port_setup(dp);
551}
552
553static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
554{
555 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
556 struct dsa_switch_tree *dst = ds->dst;
557 int err;
558
559 if (tag_ops->proto == dst->default_proto)
560 goto connect;
561
562 rtnl_lock();
563 err = ds->ops->change_tag_protocol(ds, tag_ops->proto);
564 rtnl_unlock();
565 if (err) {
566 dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
567 tag_ops->name, ERR_PTR(err));
568 return err;
569 }
570
571connect:
572 if (tag_ops->connect) {
573 err = tag_ops->connect(ds);
574 if (err)
575 return err;
576 }
577
578 if (ds->ops->connect_tag_protocol) {
579 err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
580 if (err) {
581 dev_err(ds->dev,
582 "Unable to connect to tag protocol \"%s\": %pe\n",
583 tag_ops->name, ERR_PTR(err));
584 goto disconnect;
585 }
586 }
587
588 return 0;
589
590disconnect:
591 if (tag_ops->disconnect)
592 tag_ops->disconnect(ds);
593
594 return err;
595}
596
597static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds)
598{
599 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
600
601 if (tag_ops->disconnect)
602 tag_ops->disconnect(ds);
603}
604
605static int dsa_switch_setup(struct dsa_switch *ds)
606{
607 struct device_node *dn;
608 int err;
609
610 if (ds->setup)
611 return 0;
612
613 /* Initialize ds->phys_mii_mask before registering the slave MDIO bus
614 * driver and before ops->setup() has run, since the switch drivers and
615 * the slave MDIO bus driver rely on these values for probing PHY
616 * devices or not
617 */
618 ds->phys_mii_mask |= dsa_user_ports(ds);
619
620 err = dsa_switch_devlink_alloc(ds);
621 if (err)
622 return err;
623
624 err = dsa_switch_register_notifier(ds);
625 if (err)
626 goto devlink_free;
627
628 ds->configure_vlan_while_not_filtering = true;
629
630 err = ds->ops->setup(ds);
631 if (err < 0)
632 goto unregister_notifier;
633
634 err = dsa_switch_setup_tag_protocol(ds);
635 if (err)
636 goto teardown;
637
638 if (!ds->slave_mii_bus && ds->ops->phy_read) {
639 ds->slave_mii_bus = mdiobus_alloc();
640 if (!ds->slave_mii_bus) {
641 err = -ENOMEM;
642 goto teardown;
643 }
644
645 dsa_slave_mii_bus_init(ds);
646
647 dn = of_get_child_by_name(ds->dev->of_node, "mdio");
648
649 err = of_mdiobus_register(ds->slave_mii_bus, dn);
650 of_node_put(dn);
651 if (err < 0)
652 goto free_slave_mii_bus;
653 }
654
655 dsa_switch_devlink_register(ds);
656
657 ds->setup = true;
658 return 0;
659
660free_slave_mii_bus:
661 if (ds->slave_mii_bus && ds->ops->phy_read)
662 mdiobus_free(ds->slave_mii_bus);
663teardown:
664 if (ds->ops->teardown)
665 ds->ops->teardown(ds);
666unregister_notifier:
667 dsa_switch_unregister_notifier(ds);
668devlink_free:
669 dsa_switch_devlink_free(ds);
670 return err;
671}
672
673static void dsa_switch_teardown(struct dsa_switch *ds)
674{
675 if (!ds->setup)
676 return;
677
678 dsa_switch_devlink_unregister(ds);
679
680 if (ds->slave_mii_bus && ds->ops->phy_read) {
681 mdiobus_unregister(ds->slave_mii_bus);
682 mdiobus_free(ds->slave_mii_bus);
683 ds->slave_mii_bus = NULL;
684 }
685
686 dsa_switch_teardown_tag_protocol(ds);
687
688 if (ds->ops->teardown)
689 ds->ops->teardown(ds);
690
691 dsa_switch_unregister_notifier(ds);
692
693 dsa_switch_devlink_free(ds);
694
695 ds->setup = false;
696}
697
698/* First tear down the non-shared, then the shared ports. This ensures that
699 * all work items scheduled by our switchdev handlers for user ports have
700 * completed before we destroy the refcounting kept on the shared ports.
701 */
702static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
703{
704 struct dsa_port *dp;
705
706 list_for_each_entry(dp, &dst->ports, list)
707 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
708 dsa_port_teardown(dp);
709
710 dsa_flush_workqueue();
711
712 list_for_each_entry(dp, &dst->ports, list)
713 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp))
714 dsa_port_teardown(dp);
715}
716
717static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
718{
719 struct dsa_port *dp;
720
721 list_for_each_entry(dp, &dst->ports, list)
722 dsa_switch_teardown(dp->ds);
723}
724
725/* Bring shared ports up first, then non-shared ports */
726static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
727{
728 struct dsa_port *dp;
729 int err = 0;
730
731 list_for_each_entry(dp, &dst->ports, list) {
732 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) {
733 err = dsa_port_setup(dp);
734 if (err)
735 goto teardown;
736 }
737 }
738
739 list_for_each_entry(dp, &dst->ports, list) {
740 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
741 err = dsa_port_setup(dp);
742 if (err) {
743 err = dsa_port_setup_as_unused(dp);
744 if (err)
745 goto teardown;
746 }
747 }
748 }
749
750 return 0;
751
752teardown:
753 dsa_tree_teardown_ports(dst);
754
755 return err;
756}
757
758static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
759{
760 struct dsa_port *dp;
761 int err = 0;
762
763 list_for_each_entry(dp, &dst->ports, list) {
764 err = dsa_switch_setup(dp->ds);
765 if (err) {
766 dsa_tree_teardown_switches(dst);
767 break;
768 }
769 }
770
771 return err;
772}
773
774static int dsa_tree_setup_master(struct dsa_switch_tree *dst)
775{
776 struct dsa_port *cpu_dp;
777 int err = 0;
778
779 rtnl_lock();
780
781 dsa_tree_for_each_cpu_port(cpu_dp, dst) {
782 struct net_device *master = cpu_dp->master;
783 bool admin_up = (master->flags & IFF_UP) &&
784 !qdisc_tx_is_noop(master);
785
786 err = dsa_master_setup(master, cpu_dp);
787 if (err)
788 break;
789
790 /* Replay master state event */
791 dsa_tree_master_admin_state_change(dst, master, admin_up);
792 dsa_tree_master_oper_state_change(dst, master,
793 netif_oper_up(master));
794 }
795
796 rtnl_unlock();
797
798 return err;
799}
800
801static void dsa_tree_teardown_master(struct dsa_switch_tree *dst)
802{
803 struct dsa_port *cpu_dp;
804
805 rtnl_lock();
806
807 dsa_tree_for_each_cpu_port(cpu_dp, dst) {
808 struct net_device *master = cpu_dp->master;
809
810 /* Synthesizing an "admin down" state is sufficient for
811 * the switches to get a notification if the master is
812 * currently up and running.
813 */
814 dsa_tree_master_admin_state_change(dst, master, false);
815
816 dsa_master_teardown(master);
817 }
818
819 rtnl_unlock();
820}
821
822static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
823{
824 unsigned int len = 0;
825 struct dsa_port *dp;
826
827 list_for_each_entry(dp, &dst->ports, list) {
828 if (dp->ds->num_lag_ids > len)
829 len = dp->ds->num_lag_ids;
830 }
831
832 if (!len)
833 return 0;
834
835 dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
836 if (!dst->lags)
837 return -ENOMEM;
838
839 dst->lags_len = len;
840 return 0;
841}
842
843static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
844{
845 kfree(dst->lags);
846}
847
848static int dsa_tree_setup(struct dsa_switch_tree *dst)
849{
850 bool complete;
851 int err;
852
853 if (dst->setup) {
854 pr_err("DSA: tree %d already setup! Disjoint trees?\n",
855 dst->index);
856 return -EEXIST;
857 }
858
859 complete = dsa_tree_setup_routing_table(dst);
860 if (!complete)
861 return 0;
862
863 err = dsa_tree_setup_cpu_ports(dst);
864 if (err)
865 return err;
866
867 err = dsa_tree_setup_switches(dst);
868 if (err)
869 goto teardown_cpu_ports;
870
871 err = dsa_tree_setup_ports(dst);
872 if (err)
873 goto teardown_switches;
874
875 err = dsa_tree_setup_master(dst);
876 if (err)
877 goto teardown_ports;
878
879 err = dsa_tree_setup_lags(dst);
880 if (err)
881 goto teardown_master;
882
883 dst->setup = true;
884
885 pr_info("DSA: tree %d setup\n", dst->index);
886
887 return 0;
888
889teardown_master:
890 dsa_tree_teardown_master(dst);
891teardown_ports:
892 dsa_tree_teardown_ports(dst);
893teardown_switches:
894 dsa_tree_teardown_switches(dst);
895teardown_cpu_ports:
896 dsa_tree_teardown_cpu_ports(dst);
897
898 return err;
899}
900
901static void dsa_tree_teardown(struct dsa_switch_tree *dst)
902{
903 struct dsa_link *dl, *next;
904
905 if (!dst->setup)
906 return;
907
908 dsa_tree_teardown_lags(dst);
909
910 dsa_tree_teardown_master(dst);
911
912 dsa_tree_teardown_ports(dst);
913
914 dsa_tree_teardown_switches(dst);
915
916 dsa_tree_teardown_cpu_ports(dst);
917
918 list_for_each_entry_safe(dl, next, &dst->rtable, list) {
919 list_del(&dl->list);
920 kfree(dl);
921 }
922
923 pr_info("DSA: tree %d torn down\n", dst->index);
924
925 dst->setup = false;
926}
927
928static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
929 const struct dsa_device_ops *tag_ops)
930{
931 const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
932 struct dsa_notifier_tag_proto_info info;
933 int err;
934
935 dst->tag_ops = tag_ops;
936
937 /* Notify the switches from this tree about the connection
938 * to the new tagger
939 */
940 info.tag_ops = tag_ops;
941 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info);
942 if (err && err != -EOPNOTSUPP)
943 goto out_disconnect;
944
945 /* Notify the old tagger about the disconnection from this tree */
946 info.tag_ops = old_tag_ops;
947 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
948
949 return 0;
950
951out_disconnect:
952 info.tag_ops = tag_ops;
953 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
954 dst->tag_ops = old_tag_ops;
955
956 return err;
957}
958
959/* Since the dsa/tagging sysfs device attribute is per master, the assumption
960 * is that all DSA switches within a tree share the same tagger, otherwise
961 * they would have formed disjoint trees (different "dsa,member" values).
962 */
963int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
964 const struct dsa_device_ops *tag_ops,
965 const struct dsa_device_ops *old_tag_ops)
966{
967 struct dsa_notifier_tag_proto_info info;
968 struct dsa_port *dp;
969 int err = -EBUSY;
970
971 if (!rtnl_trylock())
972 return restart_syscall();
973
974 /* At the moment we don't allow changing the tag protocol under
975 * traffic. The rtnl_mutex also happens to serialize concurrent
976 * attempts to change the tagging protocol. If we ever lift the IFF_UP
977 * restriction, there needs to be another mutex which serializes this.
978 */
979 dsa_tree_for_each_user_port(dp, dst) {
980 if (dsa_port_to_master(dp)->flags & IFF_UP)
981 goto out_unlock;
982
983 if (dp->slave->flags & IFF_UP)
984 goto out_unlock;
985 }
986
987 /* Notify the tag protocol change */
988 info.tag_ops = tag_ops;
989 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
990 if (err)
991 goto out_unwind_tagger;
992
993 err = dsa_tree_bind_tag_proto(dst, tag_ops);
994 if (err)
995 goto out_unwind_tagger;
996
997 rtnl_unlock();
998
999 return 0;
1000
1001out_unwind_tagger:
1002 info.tag_ops = old_tag_ops;
1003 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1004out_unlock:
1005 rtnl_unlock();
1006 return err;
1007}
1008
1009static void dsa_tree_master_state_change(struct dsa_switch_tree *dst,
1010 struct net_device *master)
1011{
1012 struct dsa_notifier_master_state_info info;
1013 struct dsa_port *cpu_dp = master->dsa_ptr;
1014
1015 info.master = master;
1016 info.operational = dsa_port_master_is_operational(cpu_dp);
1017
1018 dsa_tree_notify(dst, DSA_NOTIFIER_MASTER_STATE_CHANGE, &info);
1019}
1020
1021void dsa_tree_master_admin_state_change(struct dsa_switch_tree *dst,
1022 struct net_device *master,
1023 bool up)
1024{
1025 struct dsa_port *cpu_dp = master->dsa_ptr;
1026 bool notify = false;
1027
1028 /* Don't keep track of admin state on LAG DSA masters,
1029 * but rather just of physical DSA masters
1030 */
1031 if (netif_is_lag_master(master))
1032 return;
1033
1034 if ((dsa_port_master_is_operational(cpu_dp)) !=
1035 (up && cpu_dp->master_oper_up))
1036 notify = true;
1037
1038 cpu_dp->master_admin_up = up;
1039
1040 if (notify)
1041 dsa_tree_master_state_change(dst, master);
1042}
1043
1044void dsa_tree_master_oper_state_change(struct dsa_switch_tree *dst,
1045 struct net_device *master,
1046 bool up)
1047{
1048 struct dsa_port *cpu_dp = master->dsa_ptr;
1049 bool notify = false;
1050
1051 /* Don't keep track of oper state on LAG DSA masters,
1052 * but rather just of physical DSA masters
1053 */
1054 if (netif_is_lag_master(master))
1055 return;
1056
1057 if ((dsa_port_master_is_operational(cpu_dp)) !=
1058 (cpu_dp->master_admin_up && up))
1059 notify = true;
1060
1061 cpu_dp->master_oper_up = up;
1062
1063 if (notify)
1064 dsa_tree_master_state_change(dst, master);
1065}
1066
1067static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1068{
1069 struct dsa_switch_tree *dst = ds->dst;
1070 struct dsa_port *dp;
1071
1072 dsa_switch_for_each_port(dp, ds)
1073 if (dp->index == index)
1074 return dp;
1075
1076 dp = kzalloc(sizeof(*dp), GFP_KERNEL);
1077 if (!dp)
1078 return NULL;
1079
1080 dp->ds = ds;
1081 dp->index = index;
1082
1083 mutex_init(&dp->addr_lists_lock);
1084 mutex_init(&dp->vlans_lock);
1085 INIT_LIST_HEAD(&dp->fdbs);
1086 INIT_LIST_HEAD(&dp->mdbs);
1087 INIT_LIST_HEAD(&dp->vlans);
1088 INIT_LIST_HEAD(&dp->list);
1089 list_add_tail(&dp->list, &dst->ports);
1090
1091 return dp;
1092}
1093
1094static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1095{
1096 dp->type = DSA_PORT_TYPE_USER;
1097 dp->name = name;
1098
1099 return 0;
1100}
1101
1102static int dsa_port_parse_dsa(struct dsa_port *dp)
1103{
1104 dp->type = DSA_PORT_TYPE_DSA;
1105
1106 return 0;
1107}
1108
1109static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1110 struct net_device *master)
1111{
1112 enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1113 struct dsa_switch *mds, *ds = dp->ds;
1114 unsigned int mdp_upstream;
1115 struct dsa_port *mdp;
1116
1117 /* It is possible to stack DSA switches onto one another when that
1118 * happens the switch driver may want to know if its tagging protocol
1119 * is going to work in such a configuration.
1120 */
1121 if (dsa_slave_dev_check(master)) {
1122 mdp = dsa_slave_to_port(master);
1123 mds = mdp->ds;
1124 mdp_upstream = dsa_upstream_port(mds, mdp->index);
1125 tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1126 DSA_TAG_PROTO_NONE);
1127 }
1128
1129 /* If the master device is not itself a DSA slave in a disjoint DSA
1130 * tree, then return immediately.
1131 */
1132 return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1133}
1134
1135static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master,
1136 const char *user_protocol)
1137{
1138 const struct dsa_device_ops *tag_ops = NULL;
1139 struct dsa_switch *ds = dp->ds;
1140 struct dsa_switch_tree *dst = ds->dst;
1141 enum dsa_tag_protocol default_proto;
1142
1143 /* Find out which protocol the switch would prefer. */
1144 default_proto = dsa_get_tag_protocol(dp, master);
1145 if (dst->default_proto) {
1146 if (dst->default_proto != default_proto) {
1147 dev_err(ds->dev,
1148 "A DSA switch tree can have only one tagging protocol\n");
1149 return -EINVAL;
1150 }
1151 } else {
1152 dst->default_proto = default_proto;
1153 }
1154
1155 /* See if the user wants to override that preference. */
1156 if (user_protocol) {
1157 if (!ds->ops->change_tag_protocol) {
1158 dev_err(ds->dev, "Tag protocol cannot be modified\n");
1159 return -EINVAL;
1160 }
1161
1162 tag_ops = dsa_tag_driver_get_by_name(user_protocol);
1163 if (IS_ERR(tag_ops)) {
1164 dev_warn(ds->dev,
1165 "Failed to find a tagging driver for protocol %s, using default\n",
1166 user_protocol);
1167 tag_ops = NULL;
1168 }
1169 }
1170
1171 if (!tag_ops)
1172 tag_ops = dsa_tag_driver_get_by_id(default_proto);
1173
1174 if (IS_ERR(tag_ops)) {
1175 if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
1176 return -EPROBE_DEFER;
1177
1178 dev_warn(ds->dev, "No tagger for this switch\n");
1179 return PTR_ERR(tag_ops);
1180 }
1181
1182 if (dst->tag_ops) {
1183 if (dst->tag_ops != tag_ops) {
1184 dev_err(ds->dev,
1185 "A DSA switch tree can have only one tagging protocol\n");
1186
1187 dsa_tag_driver_put(tag_ops);
1188 return -EINVAL;
1189 }
1190
1191 /* In the case of multiple CPU ports per switch, the tagging
1192 * protocol is still reference-counted only per switch tree.
1193 */
1194 dsa_tag_driver_put(tag_ops);
1195 } else {
1196 dst->tag_ops = tag_ops;
1197 }
1198
1199 dp->master = master;
1200 dp->type = DSA_PORT_TYPE_CPU;
1201 dsa_port_set_tag_protocol(dp, dst->tag_ops);
1202 dp->dst = dst;
1203
1204 /* At this point, the tree may be configured to use a different
1205 * tagger than the one chosen by the switch driver during
1206 * .setup, in the case when a user selects a custom protocol
1207 * through the DT.
1208 *
1209 * This is resolved by syncing the driver with the tree in
1210 * dsa_switch_setup_tag_protocol once .setup has run and the
1211 * driver is ready to accept calls to .change_tag_protocol. If
1212 * the driver does not support the custom protocol at that
1213 * point, the tree is wholly rejected, thereby ensuring that the
1214 * tree and driver are always in agreement on the protocol to
1215 * use.
1216 */
1217 return 0;
1218}
1219
1220static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1221{
1222 struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
1223 const char *name = of_get_property(dn, "label", NULL);
1224 bool link = of_property_read_bool(dn, "link");
1225
1226 dp->dn = dn;
1227
1228 if (ethernet) {
1229 struct net_device *master;
1230 const char *user_protocol;
1231
1232 master = of_find_net_device_by_node(ethernet);
1233 of_node_put(ethernet);
1234 if (!master)
1235 return -EPROBE_DEFER;
1236
1237 user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
1238 return dsa_port_parse_cpu(dp, master, user_protocol);
1239 }
1240
1241 if (link)
1242 return dsa_port_parse_dsa(dp);
1243
1244 return dsa_port_parse_user(dp, name);
1245}
1246
1247static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1248 struct device_node *dn)
1249{
1250 struct device_node *ports, *port;
1251 struct dsa_port *dp;
1252 int err = 0;
1253 u32 reg;
1254
1255 ports = of_get_child_by_name(dn, "ports");
1256 if (!ports) {
1257 /* The second possibility is "ethernet-ports" */
1258 ports = of_get_child_by_name(dn, "ethernet-ports");
1259 if (!ports) {
1260 dev_err(ds->dev, "no ports child node found\n");
1261 return -EINVAL;
1262 }
1263 }
1264
1265 for_each_available_child_of_node(ports, port) {
1266 err = of_property_read_u32(port, "reg", ®);
1267 if (err) {
1268 of_node_put(port);
1269 goto out_put_node;
1270 }
1271
1272 if (reg >= ds->num_ports) {
1273 dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
1274 port, reg, ds->num_ports);
1275 of_node_put(port);
1276 err = -EINVAL;
1277 goto out_put_node;
1278 }
1279
1280 dp = dsa_to_port(ds, reg);
1281
1282 err = dsa_port_parse_of(dp, port);
1283 if (err) {
1284 of_node_put(port);
1285 goto out_put_node;
1286 }
1287 }
1288
1289out_put_node:
1290 of_node_put(ports);
1291 return err;
1292}
1293
1294static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1295 struct device_node *dn)
1296{
1297 u32 m[2] = { 0, 0 };
1298 int sz;
1299
1300 /* Don't error out if this optional property isn't found */
1301 sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
1302 if (sz < 0 && sz != -EINVAL)
1303 return sz;
1304
1305 ds->index = m[1];
1306
1307 ds->dst = dsa_tree_touch(m[0]);
1308 if (!ds->dst)
1309 return -ENOMEM;
1310
1311 if (dsa_switch_find(ds->dst->index, ds->index)) {
1312 dev_err(ds->dev,
1313 "A DSA switch with index %d already exists in tree %d\n",
1314 ds->index, ds->dst->index);
1315 return -EEXIST;
1316 }
1317
1318 if (ds->dst->last_switch < ds->index)
1319 ds->dst->last_switch = ds->index;
1320
1321 return 0;
1322}
1323
1324static int dsa_switch_touch_ports(struct dsa_switch *ds)
1325{
1326 struct dsa_port *dp;
1327 int port;
1328
1329 for (port = 0; port < ds->num_ports; port++) {
1330 dp = dsa_port_touch(ds, port);
1331 if (!dp)
1332 return -ENOMEM;
1333 }
1334
1335 return 0;
1336}
1337
1338static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1339{
1340 int err;
1341
1342 err = dsa_switch_parse_member_of(ds, dn);
1343 if (err)
1344 return err;
1345
1346 err = dsa_switch_touch_ports(ds);
1347 if (err)
1348 return err;
1349
1350 return dsa_switch_parse_ports_of(ds, dn);
1351}
1352
1353static int dev_is_class(struct device *dev, void *class)
1354{
1355 if (dev->class != NULL && !strcmp(dev->class->name, class))
1356 return 1;
1357
1358 return 0;
1359}
1360
1361static struct device *dev_find_class(struct device *parent, char *class)
1362{
1363 if (dev_is_class(parent, class)) {
1364 get_device(parent);
1365 return parent;
1366 }
1367
1368 return device_find_child(parent, class, dev_is_class);
1369}
1370
1371static struct net_device *dsa_dev_to_net_device(struct device *dev)
1372{
1373 struct device *d;
1374
1375 d = dev_find_class(dev, "net");
1376 if (d != NULL) {
1377 struct net_device *nd;
1378
1379 nd = to_net_dev(d);
1380 dev_hold(nd);
1381 put_device(d);
1382
1383 return nd;
1384 }
1385
1386 return NULL;
1387}
1388
1389static int dsa_port_parse(struct dsa_port *dp, const char *name,
1390 struct device *dev)
1391{
1392 if (!strcmp(name, "cpu")) {
1393 struct net_device *master;
1394
1395 master = dsa_dev_to_net_device(dev);
1396 if (!master)
1397 return -EPROBE_DEFER;
1398
1399 dev_put(master);
1400
1401 return dsa_port_parse_cpu(dp, master, NULL);
1402 }
1403
1404 if (!strcmp(name, "dsa"))
1405 return dsa_port_parse_dsa(dp);
1406
1407 return dsa_port_parse_user(dp, name);
1408}
1409
1410static int dsa_switch_parse_ports(struct dsa_switch *ds,
1411 struct dsa_chip_data *cd)
1412{
1413 bool valid_name_found = false;
1414 struct dsa_port *dp;
1415 struct device *dev;
1416 const char *name;
1417 unsigned int i;
1418 int err;
1419
1420 for (i = 0; i < DSA_MAX_PORTS; i++) {
1421 name = cd->port_names[i];
1422 dev = cd->netdev[i];
1423 dp = dsa_to_port(ds, i);
1424
1425 if (!name)
1426 continue;
1427
1428 err = dsa_port_parse(dp, name, dev);
1429 if (err)
1430 return err;
1431
1432 valid_name_found = true;
1433 }
1434
1435 if (!valid_name_found && i == DSA_MAX_PORTS)
1436 return -EINVAL;
1437
1438 return 0;
1439}
1440
1441static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1442{
1443 int err;
1444
1445 ds->cd = cd;
1446
1447 /* We don't support interconnected switches nor multiple trees via
1448 * platform data, so this is the unique switch of the tree.
1449 */
1450 ds->index = 0;
1451 ds->dst = dsa_tree_touch(0);
1452 if (!ds->dst)
1453 return -ENOMEM;
1454
1455 err = dsa_switch_touch_ports(ds);
1456 if (err)
1457 return err;
1458
1459 return dsa_switch_parse_ports(ds, cd);
1460}
1461
1462static void dsa_switch_release_ports(struct dsa_switch *ds)
1463{
1464 struct dsa_port *dp, *next;
1465
1466 dsa_switch_for_each_port_safe(dp, next, ds) {
1467 WARN_ON(!list_empty(&dp->fdbs));
1468 WARN_ON(!list_empty(&dp->mdbs));
1469 WARN_ON(!list_empty(&dp->vlans));
1470 list_del(&dp->list);
1471 kfree(dp);
1472 }
1473}
1474
1475static int dsa_switch_probe(struct dsa_switch *ds)
1476{
1477 struct dsa_switch_tree *dst;
1478 struct dsa_chip_data *pdata;
1479 struct device_node *np;
1480 int err;
1481
1482 if (!ds->dev)
1483 return -ENODEV;
1484
1485 pdata = ds->dev->platform_data;
1486 np = ds->dev->of_node;
1487
1488 if (!ds->num_ports)
1489 return -EINVAL;
1490
1491 if (np) {
1492 err = dsa_switch_parse_of(ds, np);
1493 if (err)
1494 dsa_switch_release_ports(ds);
1495 } else if (pdata) {
1496 err = dsa_switch_parse(ds, pdata);
1497 if (err)
1498 dsa_switch_release_ports(ds);
1499 } else {
1500 err = -ENODEV;
1501 }
1502
1503 if (err)
1504 return err;
1505
1506 dst = ds->dst;
1507 dsa_tree_get(dst);
1508 err = dsa_tree_setup(dst);
1509 if (err) {
1510 dsa_switch_release_ports(ds);
1511 dsa_tree_put(dst);
1512 }
1513
1514 return err;
1515}
1516
1517int dsa_register_switch(struct dsa_switch *ds)
1518{
1519 int err;
1520
1521 mutex_lock(&dsa2_mutex);
1522 err = dsa_switch_probe(ds);
1523 dsa_tree_put(ds->dst);
1524 mutex_unlock(&dsa2_mutex);
1525
1526 return err;
1527}
1528EXPORT_SYMBOL_GPL(dsa_register_switch);
1529
1530static void dsa_switch_remove(struct dsa_switch *ds)
1531{
1532 struct dsa_switch_tree *dst = ds->dst;
1533
1534 dsa_tree_teardown(dst);
1535 dsa_switch_release_ports(ds);
1536 dsa_tree_put(dst);
1537}
1538
1539void dsa_unregister_switch(struct dsa_switch *ds)
1540{
1541 mutex_lock(&dsa2_mutex);
1542 dsa_switch_remove(ds);
1543 mutex_unlock(&dsa2_mutex);
1544}
1545EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1546
1547/* If the DSA master chooses to unregister its net_device on .shutdown, DSA is
1548 * blocking that operation from completion, due to the dev_hold taken inside
1549 * netdev_upper_dev_link. Unlink the DSA slave interfaces from being uppers of
1550 * the DSA master, so that the system can reboot successfully.
1551 */
1552void dsa_switch_shutdown(struct dsa_switch *ds)
1553{
1554 struct net_device *master, *slave_dev;
1555 struct dsa_port *dp;
1556
1557 mutex_lock(&dsa2_mutex);
1558
1559 if (!ds->setup)
1560 goto out;
1561
1562 rtnl_lock();
1563
1564 dsa_switch_for_each_user_port(dp, ds) {
1565 master = dsa_port_to_master(dp);
1566 slave_dev = dp->slave;
1567
1568 netdev_upper_dev_unlink(master, slave_dev);
1569 }
1570
1571 /* Disconnect from further netdevice notifiers on the master,
1572 * since netdev_uses_dsa() will now return false.
1573 */
1574 dsa_switch_for_each_cpu_port(dp, ds)
1575 dp->master->dsa_ptr = NULL;
1576
1577 rtnl_unlock();
1578out:
1579 mutex_unlock(&dsa2_mutex);
1580}
1581EXPORT_SYMBOL_GPL(dsa_switch_shutdown);
1582
1583#ifdef CONFIG_PM_SLEEP
1584static bool dsa_port_is_initialized(const struct dsa_port *dp)
1585{
1586 return dp->type == DSA_PORT_TYPE_USER && dp->slave;
1587}
1588
1589int dsa_switch_suspend(struct dsa_switch *ds)
1590{
1591 struct dsa_port *dp;
1592 int ret = 0;
1593
1594 /* Suspend slave network devices */
1595 dsa_switch_for_each_port(dp, ds) {
1596 if (!dsa_port_is_initialized(dp))
1597 continue;
1598
1599 ret = dsa_slave_suspend(dp->slave);
1600 if (ret)
1601 return ret;
1602 }
1603
1604 if (ds->ops->suspend)
1605 ret = ds->ops->suspend(ds);
1606
1607 return ret;
1608}
1609EXPORT_SYMBOL_GPL(dsa_switch_suspend);
1610
1611int dsa_switch_resume(struct dsa_switch *ds)
1612{
1613 struct dsa_port *dp;
1614 int ret = 0;
1615
1616 if (ds->ops->resume)
1617 ret = ds->ops->resume(ds);
1618
1619 if (ret)
1620 return ret;
1621
1622 /* Resume slave network devices */
1623 dsa_switch_for_each_port(dp, ds) {
1624 if (!dsa_port_is_initialized(dp))
1625 continue;
1626
1627 ret = dsa_slave_resume(dp->slave);
1628 if (ret)
1629 return ret;
1630 }
1631
1632 return 0;
1633}
1634EXPORT_SYMBOL_GPL(dsa_switch_resume);
1635#endif
1636
1637struct dsa_port *dsa_port_from_netdev(struct net_device *netdev)
1638{
1639 if (!netdev || !dsa_slave_dev_check(netdev))
1640 return ERR_PTR(-ENODEV);
1641
1642 return dsa_slave_to_port(netdev);
1643}
1644EXPORT_SYMBOL_GPL(dsa_port_from_netdev);
1645
1646bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b)
1647{
1648 if (a->type != b->type)
1649 return false;
1650
1651 switch (a->type) {
1652 case DSA_DB_PORT:
1653 return a->dp == b->dp;
1654 case DSA_DB_LAG:
1655 return a->lag.dev == b->lag.dev;
1656 case DSA_DB_BRIDGE:
1657 return a->bridge.num == b->bridge.num;
1658 default:
1659 WARN_ON(1);
1660 return false;
1661 }
1662}
1663
1664bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port,
1665 const unsigned char *addr, u16 vid,
1666 struct dsa_db db)
1667{
1668 struct dsa_port *dp = dsa_to_port(ds, port);
1669 struct dsa_mac_addr *a;
1670
1671 lockdep_assert_held(&dp->addr_lists_lock);
1672
1673 list_for_each_entry(a, &dp->fdbs, list) {
1674 if (!ether_addr_equal(a->addr, addr) || a->vid != vid)
1675 continue;
1676
1677 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1678 return true;
1679 }
1680
1681 return false;
1682}
1683EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db);
1684
1685bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port,
1686 const struct switchdev_obj_port_mdb *mdb,
1687 struct dsa_db db)
1688{
1689 struct dsa_port *dp = dsa_to_port(ds, port);
1690 struct dsa_mac_addr *a;
1691
1692 lockdep_assert_held(&dp->addr_lists_lock);
1693
1694 list_for_each_entry(a, &dp->mdbs, list) {
1695 if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid)
1696 continue;
1697
1698 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1699 return true;
1700 }
1701
1702 return false;
1703}
1704EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db);
1705
1706static const struct dsa_stubs __dsa_stubs = {
1707 .master_hwtstamp_validate = __dsa_master_hwtstamp_validate,
1708};
1709
1710static void dsa_register_stubs(void)
1711{
1712 dsa_stubs = &__dsa_stubs;
1713}
1714
1715static void dsa_unregister_stubs(void)
1716{
1717 dsa_stubs = NULL;
1718}
1719
1720static int __init dsa_init_module(void)
1721{
1722 int rc;
1723
1724 dsa_owq = alloc_ordered_workqueue("dsa_ordered",
1725 WQ_MEM_RECLAIM);
1726 if (!dsa_owq)
1727 return -ENOMEM;
1728
1729 rc = dsa_slave_register_notifier();
1730 if (rc)
1731 goto register_notifier_fail;
1732
1733 dev_add_pack(&dsa_pack_type);
1734
1735 rc = rtnl_link_register(&dsa_link_ops);
1736 if (rc)
1737 goto netlink_register_fail;
1738
1739 dsa_register_stubs();
1740
1741 return 0;
1742
1743netlink_register_fail:
1744 dsa_slave_unregister_notifier();
1745 dev_remove_pack(&dsa_pack_type);
1746register_notifier_fail:
1747 destroy_workqueue(dsa_owq);
1748
1749 return rc;
1750}
1751module_init(dsa_init_module);
1752
1753static void __exit dsa_cleanup_module(void)
1754{
1755 dsa_unregister_stubs();
1756
1757 rtnl_link_unregister(&dsa_link_ops);
1758
1759 dsa_slave_unregister_notifier();
1760 dev_remove_pack(&dsa_pack_type);
1761 destroy_workqueue(dsa_owq);
1762}
1763module_exit(dsa_cleanup_module);
1764
1765MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
1766MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
1767MODULE_LICENSE("GPL");
1768MODULE_ALIAS("platform:dsa");