Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13#include <linux/fs.h>
14#include <linux/mm.h>
15#include <linux/err.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/cpu.h>
19#include <linux/cpumask.h>
20#include <linux/vmstat.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/debugfs.h>
24#include <linux/sched.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include <linux/compaction.h>
28#include <linux/mm_inline.h>
29#include <linux/page_ext.h>
30#include <linux/page_owner.h>
31
32#include "internal.h"
33
34#ifdef CONFIG_NUMA
35int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
36
37/* zero numa counters within a zone */
38static void zero_zone_numa_counters(struct zone *zone)
39{
40 int item, cpu;
41
42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 atomic_long_set(&zone->vm_numa_event[item], 0);
44 for_each_online_cpu(cpu) {
45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
46 = 0;
47 }
48 }
49}
50
51/* zero numa counters of all the populated zones */
52static void zero_zones_numa_counters(void)
53{
54 struct zone *zone;
55
56 for_each_populated_zone(zone)
57 zero_zone_numa_counters(zone);
58}
59
60/* zero global numa counters */
61static void zero_global_numa_counters(void)
62{
63 int item;
64
65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 atomic_long_set(&vm_numa_event[item], 0);
67}
68
69static void invalid_numa_statistics(void)
70{
71 zero_zones_numa_counters();
72 zero_global_numa_counters();
73}
74
75static DEFINE_MUTEX(vm_numa_stat_lock);
76
77int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 void *buffer, size_t *length, loff_t *ppos)
79{
80 int ret, oldval;
81
82 mutex_lock(&vm_numa_stat_lock);
83 if (write)
84 oldval = sysctl_vm_numa_stat;
85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
86 if (ret || !write)
87 goto out;
88
89 if (oldval == sysctl_vm_numa_stat)
90 goto out;
91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 static_branch_enable(&vm_numa_stat_key);
93 pr_info("enable numa statistics\n");
94 } else {
95 static_branch_disable(&vm_numa_stat_key);
96 invalid_numa_statistics();
97 pr_info("disable numa statistics, and clear numa counters\n");
98 }
99
100out:
101 mutex_unlock(&vm_numa_stat_lock);
102 return ret;
103}
104#endif
105
106#ifdef CONFIG_VM_EVENT_COUNTERS
107DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108EXPORT_PER_CPU_SYMBOL(vm_event_states);
109
110static void sum_vm_events(unsigned long *ret)
111{
112 int cpu;
113 int i;
114
115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
116
117 for_each_online_cpu(cpu) {
118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
119
120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 ret[i] += this->event[i];
122 }
123}
124
125/*
126 * Accumulate the vm event counters across all CPUs.
127 * The result is unavoidably approximate - it can change
128 * during and after execution of this function.
129*/
130void all_vm_events(unsigned long *ret)
131{
132 cpus_read_lock();
133 sum_vm_events(ret);
134 cpus_read_unlock();
135}
136EXPORT_SYMBOL_GPL(all_vm_events);
137
138/*
139 * Fold the foreign cpu events into our own.
140 *
141 * This is adding to the events on one processor
142 * but keeps the global counts constant.
143 */
144void vm_events_fold_cpu(int cpu)
145{
146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
147 int i;
148
149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 count_vm_events(i, fold_state->event[i]);
151 fold_state->event[i] = 0;
152 }
153}
154
155#endif /* CONFIG_VM_EVENT_COUNTERS */
156
157/*
158 * Manage combined zone based / global counters
159 *
160 * vm_stat contains the global counters
161 */
162atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165EXPORT_SYMBOL(vm_zone_stat);
166EXPORT_SYMBOL(vm_node_stat);
167
168#ifdef CONFIG_NUMA
169static void fold_vm_zone_numa_events(struct zone *zone)
170{
171 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
172 int cpu;
173 enum numa_stat_item item;
174
175 for_each_online_cpu(cpu) {
176 struct per_cpu_zonestat *pzstats;
177
178 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
181 }
182
183 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184 zone_numa_event_add(zone_numa_events[item], zone, item);
185}
186
187void fold_vm_numa_events(void)
188{
189 struct zone *zone;
190
191 for_each_populated_zone(zone)
192 fold_vm_zone_numa_events(zone);
193}
194#endif
195
196#ifdef CONFIG_SMP
197
198int calculate_pressure_threshold(struct zone *zone)
199{
200 int threshold;
201 int watermark_distance;
202
203 /*
204 * As vmstats are not up to date, there is drift between the estimated
205 * and real values. For high thresholds and a high number of CPUs, it
206 * is possible for the min watermark to be breached while the estimated
207 * value looks fine. The pressure threshold is a reduced value such
208 * that even the maximum amount of drift will not accidentally breach
209 * the min watermark
210 */
211 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
213
214 /*
215 * Maximum threshold is 125
216 */
217 threshold = min(125, threshold);
218
219 return threshold;
220}
221
222int calculate_normal_threshold(struct zone *zone)
223{
224 int threshold;
225 int mem; /* memory in 128 MB units */
226
227 /*
228 * The threshold scales with the number of processors and the amount
229 * of memory per zone. More memory means that we can defer updates for
230 * longer, more processors could lead to more contention.
231 * fls() is used to have a cheap way of logarithmic scaling.
232 *
233 * Some sample thresholds:
234 *
235 * Threshold Processors (fls) Zonesize fls(mem)+1
236 * ------------------------------------------------------------------
237 * 8 1 1 0.9-1 GB 4
238 * 16 2 2 0.9-1 GB 4
239 * 20 2 2 1-2 GB 5
240 * 24 2 2 2-4 GB 6
241 * 28 2 2 4-8 GB 7
242 * 32 2 2 8-16 GB 8
243 * 4 2 2 <128M 1
244 * 30 4 3 2-4 GB 5
245 * 48 4 3 8-16 GB 8
246 * 32 8 4 1-2 GB 4
247 * 32 8 4 0.9-1GB 4
248 * 10 16 5 <128M 1
249 * 40 16 5 900M 4
250 * 70 64 7 2-4 GB 5
251 * 84 64 7 4-8 GB 6
252 * 108 512 9 4-8 GB 6
253 * 125 1024 10 8-16 GB 8
254 * 125 1024 10 16-32 GB 9
255 */
256
257 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
258
259 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
260
261 /*
262 * Maximum threshold is 125
263 */
264 threshold = min(125, threshold);
265
266 return threshold;
267}
268
269/*
270 * Refresh the thresholds for each zone.
271 */
272void refresh_zone_stat_thresholds(void)
273{
274 struct pglist_data *pgdat;
275 struct zone *zone;
276 int cpu;
277 int threshold;
278
279 /* Zero current pgdat thresholds */
280 for_each_online_pgdat(pgdat) {
281 for_each_online_cpu(cpu) {
282 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
283 }
284 }
285
286 for_each_populated_zone(zone) {
287 struct pglist_data *pgdat = zone->zone_pgdat;
288 unsigned long max_drift, tolerate_drift;
289
290 threshold = calculate_normal_threshold(zone);
291
292 for_each_online_cpu(cpu) {
293 int pgdat_threshold;
294
295 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
296 = threshold;
297
298 /* Base nodestat threshold on the largest populated zone. */
299 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301 = max(threshold, pgdat_threshold);
302 }
303
304 /*
305 * Only set percpu_drift_mark if there is a danger that
306 * NR_FREE_PAGES reports the low watermark is ok when in fact
307 * the min watermark could be breached by an allocation
308 */
309 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310 max_drift = num_online_cpus() * threshold;
311 if (max_drift > tolerate_drift)
312 zone->percpu_drift_mark = high_wmark_pages(zone) +
313 max_drift;
314 }
315}
316
317void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318 int (*calculate_pressure)(struct zone *))
319{
320 struct zone *zone;
321 int cpu;
322 int threshold;
323 int i;
324
325 for (i = 0; i < pgdat->nr_zones; i++) {
326 zone = &pgdat->node_zones[i];
327 if (!zone->percpu_drift_mark)
328 continue;
329
330 threshold = (*calculate_pressure)(zone);
331 for_each_online_cpu(cpu)
332 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
333 = threshold;
334 }
335}
336
337/*
338 * For use when we know that interrupts are disabled,
339 * or when we know that preemption is disabled and that
340 * particular counter cannot be updated from interrupt context.
341 */
342void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
343 long delta)
344{
345 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346 s8 __percpu *p = pcp->vm_stat_diff + item;
347 long x;
348 long t;
349
350 /*
351 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352 * atomicity is provided by IRQs being disabled -- either explicitly
353 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354 * CPU migrations and preemption potentially corrupts a counter so
355 * disable preemption.
356 */
357 preempt_disable_nested();
358
359 x = delta + __this_cpu_read(*p);
360
361 t = __this_cpu_read(pcp->stat_threshold);
362
363 if (unlikely(abs(x) > t)) {
364 zone_page_state_add(x, zone, item);
365 x = 0;
366 }
367 __this_cpu_write(*p, x);
368
369 preempt_enable_nested();
370}
371EXPORT_SYMBOL(__mod_zone_page_state);
372
373void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
374 long delta)
375{
376 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
377 s8 __percpu *p = pcp->vm_node_stat_diff + item;
378 long x;
379 long t;
380
381 if (vmstat_item_in_bytes(item)) {
382 /*
383 * Only cgroups use subpage accounting right now; at
384 * the global level, these items still change in
385 * multiples of whole pages. Store them as pages
386 * internally to keep the per-cpu counters compact.
387 */
388 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
389 delta >>= PAGE_SHIFT;
390 }
391
392 /* See __mod_node_page_state */
393 preempt_disable_nested();
394
395 x = delta + __this_cpu_read(*p);
396
397 t = __this_cpu_read(pcp->stat_threshold);
398
399 if (unlikely(abs(x) > t)) {
400 node_page_state_add(x, pgdat, item);
401 x = 0;
402 }
403 __this_cpu_write(*p, x);
404
405 preempt_enable_nested();
406}
407EXPORT_SYMBOL(__mod_node_page_state);
408
409/*
410 * Optimized increment and decrement functions.
411 *
412 * These are only for a single page and therefore can take a struct page *
413 * argument instead of struct zone *. This allows the inclusion of the code
414 * generated for page_zone(page) into the optimized functions.
415 *
416 * No overflow check is necessary and therefore the differential can be
417 * incremented or decremented in place which may allow the compilers to
418 * generate better code.
419 * The increment or decrement is known and therefore one boundary check can
420 * be omitted.
421 *
422 * NOTE: These functions are very performance sensitive. Change only
423 * with care.
424 *
425 * Some processors have inc/dec instructions that are atomic vs an interrupt.
426 * However, the code must first determine the differential location in a zone
427 * based on the processor number and then inc/dec the counter. There is no
428 * guarantee without disabling preemption that the processor will not change
429 * in between and therefore the atomicity vs. interrupt cannot be exploited
430 * in a useful way here.
431 */
432void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
433{
434 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
435 s8 __percpu *p = pcp->vm_stat_diff + item;
436 s8 v, t;
437
438 /* See __mod_node_page_state */
439 preempt_disable_nested();
440
441 v = __this_cpu_inc_return(*p);
442 t = __this_cpu_read(pcp->stat_threshold);
443 if (unlikely(v > t)) {
444 s8 overstep = t >> 1;
445
446 zone_page_state_add(v + overstep, zone, item);
447 __this_cpu_write(*p, -overstep);
448 }
449
450 preempt_enable_nested();
451}
452
453void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
454{
455 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
456 s8 __percpu *p = pcp->vm_node_stat_diff + item;
457 s8 v, t;
458
459 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
460
461 /* See __mod_node_page_state */
462 preempt_disable_nested();
463
464 v = __this_cpu_inc_return(*p);
465 t = __this_cpu_read(pcp->stat_threshold);
466 if (unlikely(v > t)) {
467 s8 overstep = t >> 1;
468
469 node_page_state_add(v + overstep, pgdat, item);
470 __this_cpu_write(*p, -overstep);
471 }
472
473 preempt_enable_nested();
474}
475
476void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
477{
478 __inc_zone_state(page_zone(page), item);
479}
480EXPORT_SYMBOL(__inc_zone_page_state);
481
482void __inc_node_page_state(struct page *page, enum node_stat_item item)
483{
484 __inc_node_state(page_pgdat(page), item);
485}
486EXPORT_SYMBOL(__inc_node_page_state);
487
488void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
489{
490 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
491 s8 __percpu *p = pcp->vm_stat_diff + item;
492 s8 v, t;
493
494 /* See __mod_node_page_state */
495 preempt_disable_nested();
496
497 v = __this_cpu_dec_return(*p);
498 t = __this_cpu_read(pcp->stat_threshold);
499 if (unlikely(v < - t)) {
500 s8 overstep = t >> 1;
501
502 zone_page_state_add(v - overstep, zone, item);
503 __this_cpu_write(*p, overstep);
504 }
505
506 preempt_enable_nested();
507}
508
509void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
510{
511 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
512 s8 __percpu *p = pcp->vm_node_stat_diff + item;
513 s8 v, t;
514
515 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
516
517 /* See __mod_node_page_state */
518 preempt_disable_nested();
519
520 v = __this_cpu_dec_return(*p);
521 t = __this_cpu_read(pcp->stat_threshold);
522 if (unlikely(v < - t)) {
523 s8 overstep = t >> 1;
524
525 node_page_state_add(v - overstep, pgdat, item);
526 __this_cpu_write(*p, overstep);
527 }
528
529 preempt_enable_nested();
530}
531
532void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
533{
534 __dec_zone_state(page_zone(page), item);
535}
536EXPORT_SYMBOL(__dec_zone_page_state);
537
538void __dec_node_page_state(struct page *page, enum node_stat_item item)
539{
540 __dec_node_state(page_pgdat(page), item);
541}
542EXPORT_SYMBOL(__dec_node_page_state);
543
544#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
545/*
546 * If we have cmpxchg_local support then we do not need to incur the overhead
547 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
548 *
549 * mod_state() modifies the zone counter state through atomic per cpu
550 * operations.
551 *
552 * Overstep mode specifies how overstep should handled:
553 * 0 No overstepping
554 * 1 Overstepping half of threshold
555 * -1 Overstepping minus half of threshold
556*/
557static inline void mod_zone_state(struct zone *zone,
558 enum zone_stat_item item, long delta, int overstep_mode)
559{
560 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
561 s8 __percpu *p = pcp->vm_stat_diff + item;
562 long o, n, t, z;
563
564 do {
565 z = 0; /* overflow to zone counters */
566
567 /*
568 * The fetching of the stat_threshold is racy. We may apply
569 * a counter threshold to the wrong the cpu if we get
570 * rescheduled while executing here. However, the next
571 * counter update will apply the threshold again and
572 * therefore bring the counter under the threshold again.
573 *
574 * Most of the time the thresholds are the same anyways
575 * for all cpus in a zone.
576 */
577 t = this_cpu_read(pcp->stat_threshold);
578
579 o = this_cpu_read(*p);
580 n = delta + o;
581
582 if (abs(n) > t) {
583 int os = overstep_mode * (t >> 1) ;
584
585 /* Overflow must be added to zone counters */
586 z = n + os;
587 n = -os;
588 }
589 } while (this_cpu_cmpxchg(*p, o, n) != o);
590
591 if (z)
592 zone_page_state_add(z, zone, item);
593}
594
595void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
596 long delta)
597{
598 mod_zone_state(zone, item, delta, 0);
599}
600EXPORT_SYMBOL(mod_zone_page_state);
601
602void inc_zone_page_state(struct page *page, enum zone_stat_item item)
603{
604 mod_zone_state(page_zone(page), item, 1, 1);
605}
606EXPORT_SYMBOL(inc_zone_page_state);
607
608void dec_zone_page_state(struct page *page, enum zone_stat_item item)
609{
610 mod_zone_state(page_zone(page), item, -1, -1);
611}
612EXPORT_SYMBOL(dec_zone_page_state);
613
614static inline void mod_node_state(struct pglist_data *pgdat,
615 enum node_stat_item item, int delta, int overstep_mode)
616{
617 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
618 s8 __percpu *p = pcp->vm_node_stat_diff + item;
619 long o, n, t, z;
620
621 if (vmstat_item_in_bytes(item)) {
622 /*
623 * Only cgroups use subpage accounting right now; at
624 * the global level, these items still change in
625 * multiples of whole pages. Store them as pages
626 * internally to keep the per-cpu counters compact.
627 */
628 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
629 delta >>= PAGE_SHIFT;
630 }
631
632 do {
633 z = 0; /* overflow to node counters */
634
635 /*
636 * The fetching of the stat_threshold is racy. We may apply
637 * a counter threshold to the wrong the cpu if we get
638 * rescheduled while executing here. However, the next
639 * counter update will apply the threshold again and
640 * therefore bring the counter under the threshold again.
641 *
642 * Most of the time the thresholds are the same anyways
643 * for all cpus in a node.
644 */
645 t = this_cpu_read(pcp->stat_threshold);
646
647 o = this_cpu_read(*p);
648 n = delta + o;
649
650 if (abs(n) > t) {
651 int os = overstep_mode * (t >> 1) ;
652
653 /* Overflow must be added to node counters */
654 z = n + os;
655 n = -os;
656 }
657 } while (this_cpu_cmpxchg(*p, o, n) != o);
658
659 if (z)
660 node_page_state_add(z, pgdat, item);
661}
662
663void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
664 long delta)
665{
666 mod_node_state(pgdat, item, delta, 0);
667}
668EXPORT_SYMBOL(mod_node_page_state);
669
670void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
671{
672 mod_node_state(pgdat, item, 1, 1);
673}
674
675void inc_node_page_state(struct page *page, enum node_stat_item item)
676{
677 mod_node_state(page_pgdat(page), item, 1, 1);
678}
679EXPORT_SYMBOL(inc_node_page_state);
680
681void dec_node_page_state(struct page *page, enum node_stat_item item)
682{
683 mod_node_state(page_pgdat(page), item, -1, -1);
684}
685EXPORT_SYMBOL(dec_node_page_state);
686#else
687/*
688 * Use interrupt disable to serialize counter updates
689 */
690void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
691 long delta)
692{
693 unsigned long flags;
694
695 local_irq_save(flags);
696 __mod_zone_page_state(zone, item, delta);
697 local_irq_restore(flags);
698}
699EXPORT_SYMBOL(mod_zone_page_state);
700
701void inc_zone_page_state(struct page *page, enum zone_stat_item item)
702{
703 unsigned long flags;
704 struct zone *zone;
705
706 zone = page_zone(page);
707 local_irq_save(flags);
708 __inc_zone_state(zone, item);
709 local_irq_restore(flags);
710}
711EXPORT_SYMBOL(inc_zone_page_state);
712
713void dec_zone_page_state(struct page *page, enum zone_stat_item item)
714{
715 unsigned long flags;
716
717 local_irq_save(flags);
718 __dec_zone_page_state(page, item);
719 local_irq_restore(flags);
720}
721EXPORT_SYMBOL(dec_zone_page_state);
722
723void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
724{
725 unsigned long flags;
726
727 local_irq_save(flags);
728 __inc_node_state(pgdat, item);
729 local_irq_restore(flags);
730}
731EXPORT_SYMBOL(inc_node_state);
732
733void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
734 long delta)
735{
736 unsigned long flags;
737
738 local_irq_save(flags);
739 __mod_node_page_state(pgdat, item, delta);
740 local_irq_restore(flags);
741}
742EXPORT_SYMBOL(mod_node_page_state);
743
744void inc_node_page_state(struct page *page, enum node_stat_item item)
745{
746 unsigned long flags;
747 struct pglist_data *pgdat;
748
749 pgdat = page_pgdat(page);
750 local_irq_save(flags);
751 __inc_node_state(pgdat, item);
752 local_irq_restore(flags);
753}
754EXPORT_SYMBOL(inc_node_page_state);
755
756void dec_node_page_state(struct page *page, enum node_stat_item item)
757{
758 unsigned long flags;
759
760 local_irq_save(flags);
761 __dec_node_page_state(page, item);
762 local_irq_restore(flags);
763}
764EXPORT_SYMBOL(dec_node_page_state);
765#endif
766
767/*
768 * Fold a differential into the global counters.
769 * Returns the number of counters updated.
770 */
771static int fold_diff(int *zone_diff, int *node_diff)
772{
773 int i;
774 int changes = 0;
775
776 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
777 if (zone_diff[i]) {
778 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
779 changes++;
780 }
781
782 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
783 if (node_diff[i]) {
784 atomic_long_add(node_diff[i], &vm_node_stat[i]);
785 changes++;
786 }
787 return changes;
788}
789
790/*
791 * Update the zone counters for the current cpu.
792 *
793 * Note that refresh_cpu_vm_stats strives to only access
794 * node local memory. The per cpu pagesets on remote zones are placed
795 * in the memory local to the processor using that pageset. So the
796 * loop over all zones will access a series of cachelines local to
797 * the processor.
798 *
799 * The call to zone_page_state_add updates the cachelines with the
800 * statistics in the remote zone struct as well as the global cachelines
801 * with the global counters. These could cause remote node cache line
802 * bouncing and will have to be only done when necessary.
803 *
804 * The function returns the number of global counters updated.
805 */
806static int refresh_cpu_vm_stats(bool do_pagesets)
807{
808 struct pglist_data *pgdat;
809 struct zone *zone;
810 int i;
811 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
812 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
813 int changes = 0;
814
815 for_each_populated_zone(zone) {
816 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
817#ifdef CONFIG_NUMA
818 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
819#endif
820
821 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
822 int v;
823
824 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
825 if (v) {
826
827 atomic_long_add(v, &zone->vm_stat[i]);
828 global_zone_diff[i] += v;
829#ifdef CONFIG_NUMA
830 /* 3 seconds idle till flush */
831 __this_cpu_write(pcp->expire, 3);
832#endif
833 }
834 }
835#ifdef CONFIG_NUMA
836
837 if (do_pagesets) {
838 cond_resched();
839 /*
840 * Deal with draining the remote pageset of this
841 * processor
842 *
843 * Check if there are pages remaining in this pageset
844 * if not then there is nothing to expire.
845 */
846 if (!__this_cpu_read(pcp->expire) ||
847 !__this_cpu_read(pcp->count))
848 continue;
849
850 /*
851 * We never drain zones local to this processor.
852 */
853 if (zone_to_nid(zone) == numa_node_id()) {
854 __this_cpu_write(pcp->expire, 0);
855 continue;
856 }
857
858 if (__this_cpu_dec_return(pcp->expire))
859 continue;
860
861 if (__this_cpu_read(pcp->count)) {
862 drain_zone_pages(zone, this_cpu_ptr(pcp));
863 changes++;
864 }
865 }
866#endif
867 }
868
869 for_each_online_pgdat(pgdat) {
870 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
871
872 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
873 int v;
874
875 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
876 if (v) {
877 atomic_long_add(v, &pgdat->vm_stat[i]);
878 global_node_diff[i] += v;
879 }
880 }
881 }
882
883 changes += fold_diff(global_zone_diff, global_node_diff);
884 return changes;
885}
886
887/*
888 * Fold the data for an offline cpu into the global array.
889 * There cannot be any access by the offline cpu and therefore
890 * synchronization is simplified.
891 */
892void cpu_vm_stats_fold(int cpu)
893{
894 struct pglist_data *pgdat;
895 struct zone *zone;
896 int i;
897 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
898 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
899
900 for_each_populated_zone(zone) {
901 struct per_cpu_zonestat *pzstats;
902
903 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
904
905 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
906 if (pzstats->vm_stat_diff[i]) {
907 int v;
908
909 v = pzstats->vm_stat_diff[i];
910 pzstats->vm_stat_diff[i] = 0;
911 atomic_long_add(v, &zone->vm_stat[i]);
912 global_zone_diff[i] += v;
913 }
914 }
915#ifdef CONFIG_NUMA
916 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
917 if (pzstats->vm_numa_event[i]) {
918 unsigned long v;
919
920 v = pzstats->vm_numa_event[i];
921 pzstats->vm_numa_event[i] = 0;
922 zone_numa_event_add(v, zone, i);
923 }
924 }
925#endif
926 }
927
928 for_each_online_pgdat(pgdat) {
929 struct per_cpu_nodestat *p;
930
931 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
932
933 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
934 if (p->vm_node_stat_diff[i]) {
935 int v;
936
937 v = p->vm_node_stat_diff[i];
938 p->vm_node_stat_diff[i] = 0;
939 atomic_long_add(v, &pgdat->vm_stat[i]);
940 global_node_diff[i] += v;
941 }
942 }
943
944 fold_diff(global_zone_diff, global_node_diff);
945}
946
947/*
948 * this is only called if !populated_zone(zone), which implies no other users of
949 * pset->vm_stat_diff[] exist.
950 */
951void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
952{
953 unsigned long v;
954 int i;
955
956 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
957 if (pzstats->vm_stat_diff[i]) {
958 v = pzstats->vm_stat_diff[i];
959 pzstats->vm_stat_diff[i] = 0;
960 zone_page_state_add(v, zone, i);
961 }
962 }
963
964#ifdef CONFIG_NUMA
965 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
966 if (pzstats->vm_numa_event[i]) {
967 v = pzstats->vm_numa_event[i];
968 pzstats->vm_numa_event[i] = 0;
969 zone_numa_event_add(v, zone, i);
970 }
971 }
972#endif
973}
974#endif
975
976#ifdef CONFIG_NUMA
977/*
978 * Determine the per node value of a stat item. This function
979 * is called frequently in a NUMA machine, so try to be as
980 * frugal as possible.
981 */
982unsigned long sum_zone_node_page_state(int node,
983 enum zone_stat_item item)
984{
985 struct zone *zones = NODE_DATA(node)->node_zones;
986 int i;
987 unsigned long count = 0;
988
989 for (i = 0; i < MAX_NR_ZONES; i++)
990 count += zone_page_state(zones + i, item);
991
992 return count;
993}
994
995/* Determine the per node value of a numa stat item. */
996unsigned long sum_zone_numa_event_state(int node,
997 enum numa_stat_item item)
998{
999 struct zone *zones = NODE_DATA(node)->node_zones;
1000 unsigned long count = 0;
1001 int i;
1002
1003 for (i = 0; i < MAX_NR_ZONES; i++)
1004 count += zone_numa_event_state(zones + i, item);
1005
1006 return count;
1007}
1008
1009/*
1010 * Determine the per node value of a stat item.
1011 */
1012unsigned long node_page_state_pages(struct pglist_data *pgdat,
1013 enum node_stat_item item)
1014{
1015 long x = atomic_long_read(&pgdat->vm_stat[item]);
1016#ifdef CONFIG_SMP
1017 if (x < 0)
1018 x = 0;
1019#endif
1020 return x;
1021}
1022
1023unsigned long node_page_state(struct pglist_data *pgdat,
1024 enum node_stat_item item)
1025{
1026 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1027
1028 return node_page_state_pages(pgdat, item);
1029}
1030#endif
1031
1032#ifdef CONFIG_COMPACTION
1033
1034struct contig_page_info {
1035 unsigned long free_pages;
1036 unsigned long free_blocks_total;
1037 unsigned long free_blocks_suitable;
1038};
1039
1040/*
1041 * Calculate the number of free pages in a zone, how many contiguous
1042 * pages are free and how many are large enough to satisfy an allocation of
1043 * the target size. Note that this function makes no attempt to estimate
1044 * how many suitable free blocks there *might* be if MOVABLE pages were
1045 * migrated. Calculating that is possible, but expensive and can be
1046 * figured out from userspace
1047 */
1048static void fill_contig_page_info(struct zone *zone,
1049 unsigned int suitable_order,
1050 struct contig_page_info *info)
1051{
1052 unsigned int order;
1053
1054 info->free_pages = 0;
1055 info->free_blocks_total = 0;
1056 info->free_blocks_suitable = 0;
1057
1058 for (order = 0; order <= MAX_ORDER; order++) {
1059 unsigned long blocks;
1060
1061 /*
1062 * Count number of free blocks.
1063 *
1064 * Access to nr_free is lockless as nr_free is used only for
1065 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1066 */
1067 blocks = data_race(zone->free_area[order].nr_free);
1068 info->free_blocks_total += blocks;
1069
1070 /* Count free base pages */
1071 info->free_pages += blocks << order;
1072
1073 /* Count the suitable free blocks */
1074 if (order >= suitable_order)
1075 info->free_blocks_suitable += blocks <<
1076 (order - suitable_order);
1077 }
1078}
1079
1080/*
1081 * A fragmentation index only makes sense if an allocation of a requested
1082 * size would fail. If that is true, the fragmentation index indicates
1083 * whether external fragmentation or a lack of memory was the problem.
1084 * The value can be used to determine if page reclaim or compaction
1085 * should be used
1086 */
1087static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1088{
1089 unsigned long requested = 1UL << order;
1090
1091 if (WARN_ON_ONCE(order > MAX_ORDER))
1092 return 0;
1093
1094 if (!info->free_blocks_total)
1095 return 0;
1096
1097 /* Fragmentation index only makes sense when a request would fail */
1098 if (info->free_blocks_suitable)
1099 return -1000;
1100
1101 /*
1102 * Index is between 0 and 1 so return within 3 decimal places
1103 *
1104 * 0 => allocation would fail due to lack of memory
1105 * 1 => allocation would fail due to fragmentation
1106 */
1107 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1108}
1109
1110/*
1111 * Calculates external fragmentation within a zone wrt the given order.
1112 * It is defined as the percentage of pages found in blocks of size
1113 * less than 1 << order. It returns values in range [0, 100].
1114 */
1115unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1116{
1117 struct contig_page_info info;
1118
1119 fill_contig_page_info(zone, order, &info);
1120 if (info.free_pages == 0)
1121 return 0;
1122
1123 return div_u64((info.free_pages -
1124 (info.free_blocks_suitable << order)) * 100,
1125 info.free_pages);
1126}
1127
1128/* Same as __fragmentation index but allocs contig_page_info on stack */
1129int fragmentation_index(struct zone *zone, unsigned int order)
1130{
1131 struct contig_page_info info;
1132
1133 fill_contig_page_info(zone, order, &info);
1134 return __fragmentation_index(order, &info);
1135}
1136#endif
1137
1138#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1139 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1140#ifdef CONFIG_ZONE_DMA
1141#define TEXT_FOR_DMA(xx) xx "_dma",
1142#else
1143#define TEXT_FOR_DMA(xx)
1144#endif
1145
1146#ifdef CONFIG_ZONE_DMA32
1147#define TEXT_FOR_DMA32(xx) xx "_dma32",
1148#else
1149#define TEXT_FOR_DMA32(xx)
1150#endif
1151
1152#ifdef CONFIG_HIGHMEM
1153#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1154#else
1155#define TEXT_FOR_HIGHMEM(xx)
1156#endif
1157
1158#ifdef CONFIG_ZONE_DEVICE
1159#define TEXT_FOR_DEVICE(xx) xx "_device",
1160#else
1161#define TEXT_FOR_DEVICE(xx)
1162#endif
1163
1164#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1165 TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1166 TEXT_FOR_DEVICE(xx)
1167
1168const char * const vmstat_text[] = {
1169 /* enum zone_stat_item counters */
1170 "nr_free_pages",
1171 "nr_zone_inactive_anon",
1172 "nr_zone_active_anon",
1173 "nr_zone_inactive_file",
1174 "nr_zone_active_file",
1175 "nr_zone_unevictable",
1176 "nr_zone_write_pending",
1177 "nr_mlock",
1178 "nr_bounce",
1179#if IS_ENABLED(CONFIG_ZSMALLOC)
1180 "nr_zspages",
1181#endif
1182 "nr_free_cma",
1183
1184 /* enum numa_stat_item counters */
1185#ifdef CONFIG_NUMA
1186 "numa_hit",
1187 "numa_miss",
1188 "numa_foreign",
1189 "numa_interleave",
1190 "numa_local",
1191 "numa_other",
1192#endif
1193
1194 /* enum node_stat_item counters */
1195 "nr_inactive_anon",
1196 "nr_active_anon",
1197 "nr_inactive_file",
1198 "nr_active_file",
1199 "nr_unevictable",
1200 "nr_slab_reclaimable",
1201 "nr_slab_unreclaimable",
1202 "nr_isolated_anon",
1203 "nr_isolated_file",
1204 "workingset_nodes",
1205 "workingset_refault_anon",
1206 "workingset_refault_file",
1207 "workingset_activate_anon",
1208 "workingset_activate_file",
1209 "workingset_restore_anon",
1210 "workingset_restore_file",
1211 "workingset_nodereclaim",
1212 "nr_anon_pages",
1213 "nr_mapped",
1214 "nr_file_pages",
1215 "nr_dirty",
1216 "nr_writeback",
1217 "nr_writeback_temp",
1218 "nr_shmem",
1219 "nr_shmem_hugepages",
1220 "nr_shmem_pmdmapped",
1221 "nr_file_hugepages",
1222 "nr_file_pmdmapped",
1223 "nr_anon_transparent_hugepages",
1224 "nr_vmscan_write",
1225 "nr_vmscan_immediate_reclaim",
1226 "nr_dirtied",
1227 "nr_written",
1228 "nr_throttled_written",
1229 "nr_kernel_misc_reclaimable",
1230 "nr_foll_pin_acquired",
1231 "nr_foll_pin_released",
1232 "nr_kernel_stack",
1233#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1234 "nr_shadow_call_stack",
1235#endif
1236 "nr_page_table_pages",
1237 "nr_sec_page_table_pages",
1238#ifdef CONFIG_SWAP
1239 "nr_swapcached",
1240#endif
1241#ifdef CONFIG_NUMA_BALANCING
1242 "pgpromote_success",
1243 "pgpromote_candidate",
1244#endif
1245
1246 /* enum writeback_stat_item counters */
1247 "nr_dirty_threshold",
1248 "nr_dirty_background_threshold",
1249
1250#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1251 /* enum vm_event_item counters */
1252 "pgpgin",
1253 "pgpgout",
1254 "pswpin",
1255 "pswpout",
1256
1257 TEXTS_FOR_ZONES("pgalloc")
1258 TEXTS_FOR_ZONES("allocstall")
1259 TEXTS_FOR_ZONES("pgskip")
1260
1261 "pgfree",
1262 "pgactivate",
1263 "pgdeactivate",
1264 "pglazyfree",
1265
1266 "pgfault",
1267 "pgmajfault",
1268 "pglazyfreed",
1269
1270 "pgrefill",
1271 "pgreuse",
1272 "pgsteal_kswapd",
1273 "pgsteal_direct",
1274 "pgsteal_khugepaged",
1275 "pgdemote_kswapd",
1276 "pgdemote_direct",
1277 "pgdemote_khugepaged",
1278 "pgscan_kswapd",
1279 "pgscan_direct",
1280 "pgscan_khugepaged",
1281 "pgscan_direct_throttle",
1282 "pgscan_anon",
1283 "pgscan_file",
1284 "pgsteal_anon",
1285 "pgsteal_file",
1286
1287#ifdef CONFIG_NUMA
1288 "zone_reclaim_failed",
1289#endif
1290 "pginodesteal",
1291 "slabs_scanned",
1292 "kswapd_inodesteal",
1293 "kswapd_low_wmark_hit_quickly",
1294 "kswapd_high_wmark_hit_quickly",
1295 "pageoutrun",
1296
1297 "pgrotated",
1298
1299 "drop_pagecache",
1300 "drop_slab",
1301 "oom_kill",
1302
1303#ifdef CONFIG_NUMA_BALANCING
1304 "numa_pte_updates",
1305 "numa_huge_pte_updates",
1306 "numa_hint_faults",
1307 "numa_hint_faults_local",
1308 "numa_pages_migrated",
1309#endif
1310#ifdef CONFIG_MIGRATION
1311 "pgmigrate_success",
1312 "pgmigrate_fail",
1313 "thp_migration_success",
1314 "thp_migration_fail",
1315 "thp_migration_split",
1316#endif
1317#ifdef CONFIG_COMPACTION
1318 "compact_migrate_scanned",
1319 "compact_free_scanned",
1320 "compact_isolated",
1321 "compact_stall",
1322 "compact_fail",
1323 "compact_success",
1324 "compact_daemon_wake",
1325 "compact_daemon_migrate_scanned",
1326 "compact_daemon_free_scanned",
1327#endif
1328
1329#ifdef CONFIG_HUGETLB_PAGE
1330 "htlb_buddy_alloc_success",
1331 "htlb_buddy_alloc_fail",
1332#endif
1333#ifdef CONFIG_CMA
1334 "cma_alloc_success",
1335 "cma_alloc_fail",
1336#endif
1337 "unevictable_pgs_culled",
1338 "unevictable_pgs_scanned",
1339 "unevictable_pgs_rescued",
1340 "unevictable_pgs_mlocked",
1341 "unevictable_pgs_munlocked",
1342 "unevictable_pgs_cleared",
1343 "unevictable_pgs_stranded",
1344
1345#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1346 "thp_fault_alloc",
1347 "thp_fault_fallback",
1348 "thp_fault_fallback_charge",
1349 "thp_collapse_alloc",
1350 "thp_collapse_alloc_failed",
1351 "thp_file_alloc",
1352 "thp_file_fallback",
1353 "thp_file_fallback_charge",
1354 "thp_file_mapped",
1355 "thp_split_page",
1356 "thp_split_page_failed",
1357 "thp_deferred_split_page",
1358 "thp_split_pmd",
1359 "thp_scan_exceed_none_pte",
1360 "thp_scan_exceed_swap_pte",
1361 "thp_scan_exceed_share_pte",
1362#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1363 "thp_split_pud",
1364#endif
1365 "thp_zero_page_alloc",
1366 "thp_zero_page_alloc_failed",
1367 "thp_swpout",
1368 "thp_swpout_fallback",
1369#endif
1370#ifdef CONFIG_MEMORY_BALLOON
1371 "balloon_inflate",
1372 "balloon_deflate",
1373#ifdef CONFIG_BALLOON_COMPACTION
1374 "balloon_migrate",
1375#endif
1376#endif /* CONFIG_MEMORY_BALLOON */
1377#ifdef CONFIG_DEBUG_TLBFLUSH
1378 "nr_tlb_remote_flush",
1379 "nr_tlb_remote_flush_received",
1380 "nr_tlb_local_flush_all",
1381 "nr_tlb_local_flush_one",
1382#endif /* CONFIG_DEBUG_TLBFLUSH */
1383
1384#ifdef CONFIG_SWAP
1385 "swap_ra",
1386 "swap_ra_hit",
1387#ifdef CONFIG_KSM
1388 "ksm_swpin_copy",
1389#endif
1390#endif
1391#ifdef CONFIG_KSM
1392 "cow_ksm",
1393#endif
1394#ifdef CONFIG_ZSWAP
1395 "zswpin",
1396 "zswpout",
1397#endif
1398#ifdef CONFIG_X86
1399 "direct_map_level2_splits",
1400 "direct_map_level3_splits",
1401#endif
1402#ifdef CONFIG_PER_VMA_LOCK_STATS
1403 "vma_lock_success",
1404 "vma_lock_abort",
1405 "vma_lock_retry",
1406 "vma_lock_miss",
1407#endif
1408#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1409};
1410#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1411
1412#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1413 defined(CONFIG_PROC_FS)
1414static void *frag_start(struct seq_file *m, loff_t *pos)
1415{
1416 pg_data_t *pgdat;
1417 loff_t node = *pos;
1418
1419 for (pgdat = first_online_pgdat();
1420 pgdat && node;
1421 pgdat = next_online_pgdat(pgdat))
1422 --node;
1423
1424 return pgdat;
1425}
1426
1427static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1428{
1429 pg_data_t *pgdat = (pg_data_t *)arg;
1430
1431 (*pos)++;
1432 return next_online_pgdat(pgdat);
1433}
1434
1435static void frag_stop(struct seq_file *m, void *arg)
1436{
1437}
1438
1439/*
1440 * Walk zones in a node and print using a callback.
1441 * If @assert_populated is true, only use callback for zones that are populated.
1442 */
1443static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1444 bool assert_populated, bool nolock,
1445 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1446{
1447 struct zone *zone;
1448 struct zone *node_zones = pgdat->node_zones;
1449 unsigned long flags;
1450
1451 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1452 if (assert_populated && !populated_zone(zone))
1453 continue;
1454
1455 if (!nolock)
1456 spin_lock_irqsave(&zone->lock, flags);
1457 print(m, pgdat, zone);
1458 if (!nolock)
1459 spin_unlock_irqrestore(&zone->lock, flags);
1460 }
1461}
1462#endif
1463
1464#ifdef CONFIG_PROC_FS
1465static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1466 struct zone *zone)
1467{
1468 int order;
1469
1470 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1471 for (order = 0; order <= MAX_ORDER; ++order)
1472 /*
1473 * Access to nr_free is lockless as nr_free is used only for
1474 * printing purposes. Use data_race to avoid KCSAN warning.
1475 */
1476 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1477 seq_putc(m, '\n');
1478}
1479
1480/*
1481 * This walks the free areas for each zone.
1482 */
1483static int frag_show(struct seq_file *m, void *arg)
1484{
1485 pg_data_t *pgdat = (pg_data_t *)arg;
1486 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1487 return 0;
1488}
1489
1490static void pagetypeinfo_showfree_print(struct seq_file *m,
1491 pg_data_t *pgdat, struct zone *zone)
1492{
1493 int order, mtype;
1494
1495 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1496 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1497 pgdat->node_id,
1498 zone->name,
1499 migratetype_names[mtype]);
1500 for (order = 0; order <= MAX_ORDER; ++order) {
1501 unsigned long freecount = 0;
1502 struct free_area *area;
1503 struct list_head *curr;
1504 bool overflow = false;
1505
1506 area = &(zone->free_area[order]);
1507
1508 list_for_each(curr, &area->free_list[mtype]) {
1509 /*
1510 * Cap the free_list iteration because it might
1511 * be really large and we are under a spinlock
1512 * so a long time spent here could trigger a
1513 * hard lockup detector. Anyway this is a
1514 * debugging tool so knowing there is a handful
1515 * of pages of this order should be more than
1516 * sufficient.
1517 */
1518 if (++freecount >= 100000) {
1519 overflow = true;
1520 break;
1521 }
1522 }
1523 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1524 spin_unlock_irq(&zone->lock);
1525 cond_resched();
1526 spin_lock_irq(&zone->lock);
1527 }
1528 seq_putc(m, '\n');
1529 }
1530}
1531
1532/* Print out the free pages at each order for each migatetype */
1533static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1534{
1535 int order;
1536 pg_data_t *pgdat = (pg_data_t *)arg;
1537
1538 /* Print header */
1539 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1540 for (order = 0; order <= MAX_ORDER; ++order)
1541 seq_printf(m, "%6d ", order);
1542 seq_putc(m, '\n');
1543
1544 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1545}
1546
1547static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1548 pg_data_t *pgdat, struct zone *zone)
1549{
1550 int mtype;
1551 unsigned long pfn;
1552 unsigned long start_pfn = zone->zone_start_pfn;
1553 unsigned long end_pfn = zone_end_pfn(zone);
1554 unsigned long count[MIGRATE_TYPES] = { 0, };
1555
1556 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1557 struct page *page;
1558
1559 page = pfn_to_online_page(pfn);
1560 if (!page)
1561 continue;
1562
1563 if (page_zone(page) != zone)
1564 continue;
1565
1566 mtype = get_pageblock_migratetype(page);
1567
1568 if (mtype < MIGRATE_TYPES)
1569 count[mtype]++;
1570 }
1571
1572 /* Print counts */
1573 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1574 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1575 seq_printf(m, "%12lu ", count[mtype]);
1576 seq_putc(m, '\n');
1577}
1578
1579/* Print out the number of pageblocks for each migratetype */
1580static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1581{
1582 int mtype;
1583 pg_data_t *pgdat = (pg_data_t *)arg;
1584
1585 seq_printf(m, "\n%-23s", "Number of blocks type ");
1586 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1587 seq_printf(m, "%12s ", migratetype_names[mtype]);
1588 seq_putc(m, '\n');
1589 walk_zones_in_node(m, pgdat, true, false,
1590 pagetypeinfo_showblockcount_print);
1591}
1592
1593/*
1594 * Print out the number of pageblocks for each migratetype that contain pages
1595 * of other types. This gives an indication of how well fallbacks are being
1596 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1597 * to determine what is going on
1598 */
1599static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1600{
1601#ifdef CONFIG_PAGE_OWNER
1602 int mtype;
1603
1604 if (!static_branch_unlikely(&page_owner_inited))
1605 return;
1606
1607 drain_all_pages(NULL);
1608
1609 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1610 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1611 seq_printf(m, "%12s ", migratetype_names[mtype]);
1612 seq_putc(m, '\n');
1613
1614 walk_zones_in_node(m, pgdat, true, true,
1615 pagetypeinfo_showmixedcount_print);
1616#endif /* CONFIG_PAGE_OWNER */
1617}
1618
1619/*
1620 * This prints out statistics in relation to grouping pages by mobility.
1621 * It is expensive to collect so do not constantly read the file.
1622 */
1623static int pagetypeinfo_show(struct seq_file *m, void *arg)
1624{
1625 pg_data_t *pgdat = (pg_data_t *)arg;
1626
1627 /* check memoryless node */
1628 if (!node_state(pgdat->node_id, N_MEMORY))
1629 return 0;
1630
1631 seq_printf(m, "Page block order: %d\n", pageblock_order);
1632 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1633 seq_putc(m, '\n');
1634 pagetypeinfo_showfree(m, pgdat);
1635 pagetypeinfo_showblockcount(m, pgdat);
1636 pagetypeinfo_showmixedcount(m, pgdat);
1637
1638 return 0;
1639}
1640
1641static const struct seq_operations fragmentation_op = {
1642 .start = frag_start,
1643 .next = frag_next,
1644 .stop = frag_stop,
1645 .show = frag_show,
1646};
1647
1648static const struct seq_operations pagetypeinfo_op = {
1649 .start = frag_start,
1650 .next = frag_next,
1651 .stop = frag_stop,
1652 .show = pagetypeinfo_show,
1653};
1654
1655static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1656{
1657 int zid;
1658
1659 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1660 struct zone *compare = &pgdat->node_zones[zid];
1661
1662 if (populated_zone(compare))
1663 return zone == compare;
1664 }
1665
1666 return false;
1667}
1668
1669static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1670 struct zone *zone)
1671{
1672 int i;
1673 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1674 if (is_zone_first_populated(pgdat, zone)) {
1675 seq_printf(m, "\n per-node stats");
1676 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1677 unsigned long pages = node_page_state_pages(pgdat, i);
1678
1679 if (vmstat_item_print_in_thp(i))
1680 pages /= HPAGE_PMD_NR;
1681 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1682 pages);
1683 }
1684 }
1685 seq_printf(m,
1686 "\n pages free %lu"
1687 "\n boost %lu"
1688 "\n min %lu"
1689 "\n low %lu"
1690 "\n high %lu"
1691 "\n spanned %lu"
1692 "\n present %lu"
1693 "\n managed %lu"
1694 "\n cma %lu",
1695 zone_page_state(zone, NR_FREE_PAGES),
1696 zone->watermark_boost,
1697 min_wmark_pages(zone),
1698 low_wmark_pages(zone),
1699 high_wmark_pages(zone),
1700 zone->spanned_pages,
1701 zone->present_pages,
1702 zone_managed_pages(zone),
1703 zone_cma_pages(zone));
1704
1705 seq_printf(m,
1706 "\n protection: (%ld",
1707 zone->lowmem_reserve[0]);
1708 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1709 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1710 seq_putc(m, ')');
1711
1712 /* If unpopulated, no other information is useful */
1713 if (!populated_zone(zone)) {
1714 seq_putc(m, '\n');
1715 return;
1716 }
1717
1718 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1719 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1720 zone_page_state(zone, i));
1721
1722#ifdef CONFIG_NUMA
1723 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1724 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1725 zone_numa_event_state(zone, i));
1726#endif
1727
1728 seq_printf(m, "\n pagesets");
1729 for_each_online_cpu(i) {
1730 struct per_cpu_pages *pcp;
1731 struct per_cpu_zonestat __maybe_unused *pzstats;
1732
1733 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1734 seq_printf(m,
1735 "\n cpu: %i"
1736 "\n count: %i"
1737 "\n high: %i"
1738 "\n batch: %i",
1739 i,
1740 pcp->count,
1741 pcp->high,
1742 pcp->batch);
1743#ifdef CONFIG_SMP
1744 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1745 seq_printf(m, "\n vm stats threshold: %d",
1746 pzstats->stat_threshold);
1747#endif
1748 }
1749 seq_printf(m,
1750 "\n node_unreclaimable: %u"
1751 "\n start_pfn: %lu",
1752 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1753 zone->zone_start_pfn);
1754 seq_putc(m, '\n');
1755}
1756
1757/*
1758 * Output information about zones in @pgdat. All zones are printed regardless
1759 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1760 * set of all zones and userspace would not be aware of such zones if they are
1761 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1762 */
1763static int zoneinfo_show(struct seq_file *m, void *arg)
1764{
1765 pg_data_t *pgdat = (pg_data_t *)arg;
1766 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1767 return 0;
1768}
1769
1770static const struct seq_operations zoneinfo_op = {
1771 .start = frag_start, /* iterate over all zones. The same as in
1772 * fragmentation. */
1773 .next = frag_next,
1774 .stop = frag_stop,
1775 .show = zoneinfo_show,
1776};
1777
1778#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1779 NR_VM_NUMA_EVENT_ITEMS + \
1780 NR_VM_NODE_STAT_ITEMS + \
1781 NR_VM_WRITEBACK_STAT_ITEMS + \
1782 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1783 NR_VM_EVENT_ITEMS : 0))
1784
1785static void *vmstat_start(struct seq_file *m, loff_t *pos)
1786{
1787 unsigned long *v;
1788 int i;
1789
1790 if (*pos >= NR_VMSTAT_ITEMS)
1791 return NULL;
1792
1793 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1794 fold_vm_numa_events();
1795 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1796 m->private = v;
1797 if (!v)
1798 return ERR_PTR(-ENOMEM);
1799 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1800 v[i] = global_zone_page_state(i);
1801 v += NR_VM_ZONE_STAT_ITEMS;
1802
1803#ifdef CONFIG_NUMA
1804 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1805 v[i] = global_numa_event_state(i);
1806 v += NR_VM_NUMA_EVENT_ITEMS;
1807#endif
1808
1809 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1810 v[i] = global_node_page_state_pages(i);
1811 if (vmstat_item_print_in_thp(i))
1812 v[i] /= HPAGE_PMD_NR;
1813 }
1814 v += NR_VM_NODE_STAT_ITEMS;
1815
1816 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1817 v + NR_DIRTY_THRESHOLD);
1818 v += NR_VM_WRITEBACK_STAT_ITEMS;
1819
1820#ifdef CONFIG_VM_EVENT_COUNTERS
1821 all_vm_events(v);
1822 v[PGPGIN] /= 2; /* sectors -> kbytes */
1823 v[PGPGOUT] /= 2;
1824#endif
1825 return (unsigned long *)m->private + *pos;
1826}
1827
1828static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1829{
1830 (*pos)++;
1831 if (*pos >= NR_VMSTAT_ITEMS)
1832 return NULL;
1833 return (unsigned long *)m->private + *pos;
1834}
1835
1836static int vmstat_show(struct seq_file *m, void *arg)
1837{
1838 unsigned long *l = arg;
1839 unsigned long off = l - (unsigned long *)m->private;
1840
1841 seq_puts(m, vmstat_text[off]);
1842 seq_put_decimal_ull(m, " ", *l);
1843 seq_putc(m, '\n');
1844
1845 if (off == NR_VMSTAT_ITEMS - 1) {
1846 /*
1847 * We've come to the end - add any deprecated counters to avoid
1848 * breaking userspace which might depend on them being present.
1849 */
1850 seq_puts(m, "nr_unstable 0\n");
1851 }
1852 return 0;
1853}
1854
1855static void vmstat_stop(struct seq_file *m, void *arg)
1856{
1857 kfree(m->private);
1858 m->private = NULL;
1859}
1860
1861static const struct seq_operations vmstat_op = {
1862 .start = vmstat_start,
1863 .next = vmstat_next,
1864 .stop = vmstat_stop,
1865 .show = vmstat_show,
1866};
1867#endif /* CONFIG_PROC_FS */
1868
1869#ifdef CONFIG_SMP
1870static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1871int sysctl_stat_interval __read_mostly = HZ;
1872
1873#ifdef CONFIG_PROC_FS
1874static void refresh_vm_stats(struct work_struct *work)
1875{
1876 refresh_cpu_vm_stats(true);
1877}
1878
1879int vmstat_refresh(struct ctl_table *table, int write,
1880 void *buffer, size_t *lenp, loff_t *ppos)
1881{
1882 long val;
1883 int err;
1884 int i;
1885
1886 /*
1887 * The regular update, every sysctl_stat_interval, may come later
1888 * than expected: leaving a significant amount in per_cpu buckets.
1889 * This is particularly misleading when checking a quantity of HUGE
1890 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1891 * which can equally be echo'ed to or cat'ted from (by root),
1892 * can be used to update the stats just before reading them.
1893 *
1894 * Oh, and since global_zone_page_state() etc. are so careful to hide
1895 * transiently negative values, report an error here if any of
1896 * the stats is negative, so we know to go looking for imbalance.
1897 */
1898 err = schedule_on_each_cpu(refresh_vm_stats);
1899 if (err)
1900 return err;
1901 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1902 /*
1903 * Skip checking stats known to go negative occasionally.
1904 */
1905 switch (i) {
1906 case NR_ZONE_WRITE_PENDING:
1907 case NR_FREE_CMA_PAGES:
1908 continue;
1909 }
1910 val = atomic_long_read(&vm_zone_stat[i]);
1911 if (val < 0) {
1912 pr_warn("%s: %s %ld\n",
1913 __func__, zone_stat_name(i), val);
1914 }
1915 }
1916 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1917 /*
1918 * Skip checking stats known to go negative occasionally.
1919 */
1920 switch (i) {
1921 case NR_WRITEBACK:
1922 continue;
1923 }
1924 val = atomic_long_read(&vm_node_stat[i]);
1925 if (val < 0) {
1926 pr_warn("%s: %s %ld\n",
1927 __func__, node_stat_name(i), val);
1928 }
1929 }
1930 if (write)
1931 *ppos += *lenp;
1932 else
1933 *lenp = 0;
1934 return 0;
1935}
1936#endif /* CONFIG_PROC_FS */
1937
1938static void vmstat_update(struct work_struct *w)
1939{
1940 if (refresh_cpu_vm_stats(true)) {
1941 /*
1942 * Counters were updated so we expect more updates
1943 * to occur in the future. Keep on running the
1944 * update worker thread.
1945 */
1946 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1947 this_cpu_ptr(&vmstat_work),
1948 round_jiffies_relative(sysctl_stat_interval));
1949 }
1950}
1951
1952/*
1953 * Check if the diffs for a certain cpu indicate that
1954 * an update is needed.
1955 */
1956static bool need_update(int cpu)
1957{
1958 pg_data_t *last_pgdat = NULL;
1959 struct zone *zone;
1960
1961 for_each_populated_zone(zone) {
1962 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1963 struct per_cpu_nodestat *n;
1964
1965 /*
1966 * The fast way of checking if there are any vmstat diffs.
1967 */
1968 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1969 return true;
1970
1971 if (last_pgdat == zone->zone_pgdat)
1972 continue;
1973 last_pgdat = zone->zone_pgdat;
1974 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1975 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1976 return true;
1977 }
1978 return false;
1979}
1980
1981/*
1982 * Switch off vmstat processing and then fold all the remaining differentials
1983 * until the diffs stay at zero. The function is used by NOHZ and can only be
1984 * invoked when tick processing is not active.
1985 */
1986void quiet_vmstat(void)
1987{
1988 if (system_state != SYSTEM_RUNNING)
1989 return;
1990
1991 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1992 return;
1993
1994 if (!need_update(smp_processor_id()))
1995 return;
1996
1997 /*
1998 * Just refresh counters and do not care about the pending delayed
1999 * vmstat_update. It doesn't fire that often to matter and canceling
2000 * it would be too expensive from this path.
2001 * vmstat_shepherd will take care about that for us.
2002 */
2003 refresh_cpu_vm_stats(false);
2004}
2005
2006/*
2007 * Shepherd worker thread that checks the
2008 * differentials of processors that have their worker
2009 * threads for vm statistics updates disabled because of
2010 * inactivity.
2011 */
2012static void vmstat_shepherd(struct work_struct *w);
2013
2014static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2015
2016static void vmstat_shepherd(struct work_struct *w)
2017{
2018 int cpu;
2019
2020 cpus_read_lock();
2021 /* Check processors whose vmstat worker threads have been disabled */
2022 for_each_online_cpu(cpu) {
2023 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2024
2025 if (!delayed_work_pending(dw) && need_update(cpu))
2026 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2027
2028 cond_resched();
2029 }
2030 cpus_read_unlock();
2031
2032 schedule_delayed_work(&shepherd,
2033 round_jiffies_relative(sysctl_stat_interval));
2034}
2035
2036static void __init start_shepherd_timer(void)
2037{
2038 int cpu;
2039
2040 for_each_possible_cpu(cpu)
2041 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2042 vmstat_update);
2043
2044 schedule_delayed_work(&shepherd,
2045 round_jiffies_relative(sysctl_stat_interval));
2046}
2047
2048static void __init init_cpu_node_state(void)
2049{
2050 int node;
2051
2052 for_each_online_node(node) {
2053 if (!cpumask_empty(cpumask_of_node(node)))
2054 node_set_state(node, N_CPU);
2055 }
2056}
2057
2058static int vmstat_cpu_online(unsigned int cpu)
2059{
2060 refresh_zone_stat_thresholds();
2061
2062 if (!node_state(cpu_to_node(cpu), N_CPU)) {
2063 node_set_state(cpu_to_node(cpu), N_CPU);
2064 }
2065
2066 return 0;
2067}
2068
2069static int vmstat_cpu_down_prep(unsigned int cpu)
2070{
2071 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2072 return 0;
2073}
2074
2075static int vmstat_cpu_dead(unsigned int cpu)
2076{
2077 const struct cpumask *node_cpus;
2078 int node;
2079
2080 node = cpu_to_node(cpu);
2081
2082 refresh_zone_stat_thresholds();
2083 node_cpus = cpumask_of_node(node);
2084 if (!cpumask_empty(node_cpus))
2085 return 0;
2086
2087 node_clear_state(node, N_CPU);
2088
2089 return 0;
2090}
2091
2092#endif
2093
2094struct workqueue_struct *mm_percpu_wq;
2095
2096void __init init_mm_internals(void)
2097{
2098 int ret __maybe_unused;
2099
2100 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2101
2102#ifdef CONFIG_SMP
2103 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2104 NULL, vmstat_cpu_dead);
2105 if (ret < 0)
2106 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2107
2108 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2109 vmstat_cpu_online,
2110 vmstat_cpu_down_prep);
2111 if (ret < 0)
2112 pr_err("vmstat: failed to register 'online' hotplug state\n");
2113
2114 cpus_read_lock();
2115 init_cpu_node_state();
2116 cpus_read_unlock();
2117
2118 start_shepherd_timer();
2119#endif
2120#ifdef CONFIG_PROC_FS
2121 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2122 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2123 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2124 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2125#endif
2126}
2127
2128#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2129
2130/*
2131 * Return an index indicating how much of the available free memory is
2132 * unusable for an allocation of the requested size.
2133 */
2134static int unusable_free_index(unsigned int order,
2135 struct contig_page_info *info)
2136{
2137 /* No free memory is interpreted as all free memory is unusable */
2138 if (info->free_pages == 0)
2139 return 1000;
2140
2141 /*
2142 * Index should be a value between 0 and 1. Return a value to 3
2143 * decimal places.
2144 *
2145 * 0 => no fragmentation
2146 * 1 => high fragmentation
2147 */
2148 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2149
2150}
2151
2152static void unusable_show_print(struct seq_file *m,
2153 pg_data_t *pgdat, struct zone *zone)
2154{
2155 unsigned int order;
2156 int index;
2157 struct contig_page_info info;
2158
2159 seq_printf(m, "Node %d, zone %8s ",
2160 pgdat->node_id,
2161 zone->name);
2162 for (order = 0; order <= MAX_ORDER; ++order) {
2163 fill_contig_page_info(zone, order, &info);
2164 index = unusable_free_index(order, &info);
2165 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2166 }
2167
2168 seq_putc(m, '\n');
2169}
2170
2171/*
2172 * Display unusable free space index
2173 *
2174 * The unusable free space index measures how much of the available free
2175 * memory cannot be used to satisfy an allocation of a given size and is a
2176 * value between 0 and 1. The higher the value, the more of free memory is
2177 * unusable and by implication, the worse the external fragmentation is. This
2178 * can be expressed as a percentage by multiplying by 100.
2179 */
2180static int unusable_show(struct seq_file *m, void *arg)
2181{
2182 pg_data_t *pgdat = (pg_data_t *)arg;
2183
2184 /* check memoryless node */
2185 if (!node_state(pgdat->node_id, N_MEMORY))
2186 return 0;
2187
2188 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2189
2190 return 0;
2191}
2192
2193static const struct seq_operations unusable_sops = {
2194 .start = frag_start,
2195 .next = frag_next,
2196 .stop = frag_stop,
2197 .show = unusable_show,
2198};
2199
2200DEFINE_SEQ_ATTRIBUTE(unusable);
2201
2202static void extfrag_show_print(struct seq_file *m,
2203 pg_data_t *pgdat, struct zone *zone)
2204{
2205 unsigned int order;
2206 int index;
2207
2208 /* Alloc on stack as interrupts are disabled for zone walk */
2209 struct contig_page_info info;
2210
2211 seq_printf(m, "Node %d, zone %8s ",
2212 pgdat->node_id,
2213 zone->name);
2214 for (order = 0; order <= MAX_ORDER; ++order) {
2215 fill_contig_page_info(zone, order, &info);
2216 index = __fragmentation_index(order, &info);
2217 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2218 }
2219
2220 seq_putc(m, '\n');
2221}
2222
2223/*
2224 * Display fragmentation index for orders that allocations would fail for
2225 */
2226static int extfrag_show(struct seq_file *m, void *arg)
2227{
2228 pg_data_t *pgdat = (pg_data_t *)arg;
2229
2230 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2231
2232 return 0;
2233}
2234
2235static const struct seq_operations extfrag_sops = {
2236 .start = frag_start,
2237 .next = frag_next,
2238 .stop = frag_stop,
2239 .show = extfrag_show,
2240};
2241
2242DEFINE_SEQ_ATTRIBUTE(extfrag);
2243
2244static int __init extfrag_debug_init(void)
2245{
2246 struct dentry *extfrag_debug_root;
2247
2248 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2249
2250 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2251 &unusable_fops);
2252
2253 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2254 &extfrag_fops);
2255
2256 return 0;
2257}
2258
2259module_init(extfrag_debug_init);
2260#endif