Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
44#include <linux/mm_inline.h>
45#include <linux/sched/mm.h>
46#include <linux/sched/coredump.h>
47#include <linux/sched/numa_balancing.h>
48#include <linux/sched/task.h>
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
54#include <linux/memremap.h>
55#include <linux/kmsan.h>
56#include <linux/ksm.h>
57#include <linux/rmap.h>
58#include <linux/export.h>
59#include <linux/delayacct.h>
60#include <linux/init.h>
61#include <linux/pfn_t.h>
62#include <linux/writeback.h>
63#include <linux/memcontrol.h>
64#include <linux/mmu_notifier.h>
65#include <linux/swapops.h>
66#include <linux/elf.h>
67#include <linux/gfp.h>
68#include <linux/migrate.h>
69#include <linux/string.h>
70#include <linux/memory-tiers.h>
71#include <linux/debugfs.h>
72#include <linux/userfaultfd_k.h>
73#include <linux/dax.h>
74#include <linux/oom.h>
75#include <linux/numa.h>
76#include <linux/perf_event.h>
77#include <linux/ptrace.h>
78#include <linux/vmalloc.h>
79#include <linux/sched/sysctl.h>
80
81#include <trace/events/kmem.h>
82
83#include <asm/io.h>
84#include <asm/mmu_context.h>
85#include <asm/pgalloc.h>
86#include <linux/uaccess.h>
87#include <asm/tlb.h>
88#include <asm/tlbflush.h>
89
90#include "pgalloc-track.h"
91#include "internal.h"
92#include "swap.h"
93
94#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96#endif
97
98#ifndef CONFIG_NUMA
99unsigned long max_mapnr;
100EXPORT_SYMBOL(max_mapnr);
101
102struct page *mem_map;
103EXPORT_SYMBOL(mem_map);
104#endif
105
106static vm_fault_t do_fault(struct vm_fault *vmf);
107static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108static bool vmf_pte_changed(struct vm_fault *vmf);
109
110/*
111 * Return true if the original pte was a uffd-wp pte marker (so the pte was
112 * wr-protected).
113 */
114static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115{
116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
117 return false;
118
119 return pte_marker_uffd_wp(vmf->orig_pte);
120}
121
122/*
123 * A number of key systems in x86 including ioremap() rely on the assumption
124 * that high_memory defines the upper bound on direct map memory, then end
125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
127 * and ZONE_HIGHMEM.
128 */
129void *high_memory;
130EXPORT_SYMBOL(high_memory);
131
132/*
133 * Randomize the address space (stacks, mmaps, brk, etc.).
134 *
135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136 * as ancient (libc5 based) binaries can segfault. )
137 */
138int randomize_va_space __read_mostly =
139#ifdef CONFIG_COMPAT_BRK
140 1;
141#else
142 2;
143#endif
144
145#ifndef arch_wants_old_prefaulted_pte
146static inline bool arch_wants_old_prefaulted_pte(void)
147{
148 /*
149 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 * some architectures, even if it's performed in hardware. By
151 * default, "false" means prefaulted entries will be 'young'.
152 */
153 return false;
154}
155#endif
156
157static int __init disable_randmaps(char *s)
158{
159 randomize_va_space = 0;
160 return 1;
161}
162__setup("norandmaps", disable_randmaps);
163
164unsigned long zero_pfn __read_mostly;
165EXPORT_SYMBOL(zero_pfn);
166
167unsigned long highest_memmap_pfn __read_mostly;
168
169/*
170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171 */
172static int __init init_zero_pfn(void)
173{
174 zero_pfn = page_to_pfn(ZERO_PAGE(0));
175 return 0;
176}
177early_initcall(init_zero_pfn);
178
179void mm_trace_rss_stat(struct mm_struct *mm, int member)
180{
181 trace_rss_stat(mm, member);
182}
183
184/*
185 * Note: this doesn't free the actual pages themselves. That
186 * has been handled earlier when unmapping all the memory regions.
187 */
188static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189 unsigned long addr)
190{
191 pgtable_t token = pmd_pgtable(*pmd);
192 pmd_clear(pmd);
193 pte_free_tlb(tlb, token, addr);
194 mm_dec_nr_ptes(tlb->mm);
195}
196
197static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 unsigned long addr, unsigned long end,
199 unsigned long floor, unsigned long ceiling)
200{
201 pmd_t *pmd;
202 unsigned long next;
203 unsigned long start;
204
205 start = addr;
206 pmd = pmd_offset(pud, addr);
207 do {
208 next = pmd_addr_end(addr, end);
209 if (pmd_none_or_clear_bad(pmd))
210 continue;
211 free_pte_range(tlb, pmd, addr);
212 } while (pmd++, addr = next, addr != end);
213
214 start &= PUD_MASK;
215 if (start < floor)
216 return;
217 if (ceiling) {
218 ceiling &= PUD_MASK;
219 if (!ceiling)
220 return;
221 }
222 if (end - 1 > ceiling - 1)
223 return;
224
225 pmd = pmd_offset(pud, start);
226 pud_clear(pud);
227 pmd_free_tlb(tlb, pmd, start);
228 mm_dec_nr_pmds(tlb->mm);
229}
230
231static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
234{
235 pud_t *pud;
236 unsigned long next;
237 unsigned long start;
238
239 start = addr;
240 pud = pud_offset(p4d, addr);
241 do {
242 next = pud_addr_end(addr, end);
243 if (pud_none_or_clear_bad(pud))
244 continue;
245 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246 } while (pud++, addr = next, addr != end);
247
248 start &= P4D_MASK;
249 if (start < floor)
250 return;
251 if (ceiling) {
252 ceiling &= P4D_MASK;
253 if (!ceiling)
254 return;
255 }
256 if (end - 1 > ceiling - 1)
257 return;
258
259 pud = pud_offset(p4d, start);
260 p4d_clear(p4d);
261 pud_free_tlb(tlb, pud, start);
262 mm_dec_nr_puds(tlb->mm);
263}
264
265static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
268{
269 p4d_t *p4d;
270 unsigned long next;
271 unsigned long start;
272
273 start = addr;
274 p4d = p4d_offset(pgd, addr);
275 do {
276 next = p4d_addr_end(addr, end);
277 if (p4d_none_or_clear_bad(p4d))
278 continue;
279 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 } while (p4d++, addr = next, addr != end);
281
282 start &= PGDIR_MASK;
283 if (start < floor)
284 return;
285 if (ceiling) {
286 ceiling &= PGDIR_MASK;
287 if (!ceiling)
288 return;
289 }
290 if (end - 1 > ceiling - 1)
291 return;
292
293 p4d = p4d_offset(pgd, start);
294 pgd_clear(pgd);
295 p4d_free_tlb(tlb, p4d, start);
296}
297
298/*
299 * This function frees user-level page tables of a process.
300 */
301void free_pgd_range(struct mmu_gather *tlb,
302 unsigned long addr, unsigned long end,
303 unsigned long floor, unsigned long ceiling)
304{
305 pgd_t *pgd;
306 unsigned long next;
307
308 /*
309 * The next few lines have given us lots of grief...
310 *
311 * Why are we testing PMD* at this top level? Because often
312 * there will be no work to do at all, and we'd prefer not to
313 * go all the way down to the bottom just to discover that.
314 *
315 * Why all these "- 1"s? Because 0 represents both the bottom
316 * of the address space and the top of it (using -1 for the
317 * top wouldn't help much: the masks would do the wrong thing).
318 * The rule is that addr 0 and floor 0 refer to the bottom of
319 * the address space, but end 0 and ceiling 0 refer to the top
320 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 * that end 0 case should be mythical).
322 *
323 * Wherever addr is brought up or ceiling brought down, we must
324 * be careful to reject "the opposite 0" before it confuses the
325 * subsequent tests. But what about where end is brought down
326 * by PMD_SIZE below? no, end can't go down to 0 there.
327 *
328 * Whereas we round start (addr) and ceiling down, by different
329 * masks at different levels, in order to test whether a table
330 * now has no other vmas using it, so can be freed, we don't
331 * bother to round floor or end up - the tests don't need that.
332 */
333
334 addr &= PMD_MASK;
335 if (addr < floor) {
336 addr += PMD_SIZE;
337 if (!addr)
338 return;
339 }
340 if (ceiling) {
341 ceiling &= PMD_MASK;
342 if (!ceiling)
343 return;
344 }
345 if (end - 1 > ceiling - 1)
346 end -= PMD_SIZE;
347 if (addr > end - 1)
348 return;
349 /*
350 * We add page table cache pages with PAGE_SIZE,
351 * (see pte_free_tlb()), flush the tlb if we need
352 */
353 tlb_change_page_size(tlb, PAGE_SIZE);
354 pgd = pgd_offset(tlb->mm, addr);
355 do {
356 next = pgd_addr_end(addr, end);
357 if (pgd_none_or_clear_bad(pgd))
358 continue;
359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360 } while (pgd++, addr = next, addr != end);
361}
362
363void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
364 struct vm_area_struct *vma, unsigned long floor,
365 unsigned long ceiling, bool mm_wr_locked)
366{
367 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
368
369 do {
370 unsigned long addr = vma->vm_start;
371 struct vm_area_struct *next;
372
373 /*
374 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
375 * be 0. This will underflow and is okay.
376 */
377 next = mas_find(&mas, ceiling - 1);
378
379 /*
380 * Hide vma from rmap and truncate_pagecache before freeing
381 * pgtables
382 */
383 if (mm_wr_locked)
384 vma_start_write(vma);
385 unlink_anon_vmas(vma);
386 unlink_file_vma(vma);
387
388 if (is_vm_hugetlb_page(vma)) {
389 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
390 floor, next ? next->vm_start : ceiling);
391 } else {
392 /*
393 * Optimization: gather nearby vmas into one call down
394 */
395 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
396 && !is_vm_hugetlb_page(next)) {
397 vma = next;
398 next = mas_find(&mas, ceiling - 1);
399 if (mm_wr_locked)
400 vma_start_write(vma);
401 unlink_anon_vmas(vma);
402 unlink_file_vma(vma);
403 }
404 free_pgd_range(tlb, addr, vma->vm_end,
405 floor, next ? next->vm_start : ceiling);
406 }
407 vma = next;
408 } while (vma);
409}
410
411void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
412{
413 spinlock_t *ptl = pmd_lock(mm, pmd);
414
415 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
416 mm_inc_nr_ptes(mm);
417 /*
418 * Ensure all pte setup (eg. pte page lock and page clearing) are
419 * visible before the pte is made visible to other CPUs by being
420 * put into page tables.
421 *
422 * The other side of the story is the pointer chasing in the page
423 * table walking code (when walking the page table without locking;
424 * ie. most of the time). Fortunately, these data accesses consist
425 * of a chain of data-dependent loads, meaning most CPUs (alpha
426 * being the notable exception) will already guarantee loads are
427 * seen in-order. See the alpha page table accessors for the
428 * smp_rmb() barriers in page table walking code.
429 */
430 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
431 pmd_populate(mm, pmd, *pte);
432 *pte = NULL;
433 }
434 spin_unlock(ptl);
435}
436
437int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438{
439 pgtable_t new = pte_alloc_one(mm);
440 if (!new)
441 return -ENOMEM;
442
443 pmd_install(mm, pmd, &new);
444 if (new)
445 pte_free(mm, new);
446 return 0;
447}
448
449int __pte_alloc_kernel(pmd_t *pmd)
450{
451 pte_t *new = pte_alloc_one_kernel(&init_mm);
452 if (!new)
453 return -ENOMEM;
454
455 spin_lock(&init_mm.page_table_lock);
456 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
457 smp_wmb(); /* See comment in pmd_install() */
458 pmd_populate_kernel(&init_mm, pmd, new);
459 new = NULL;
460 }
461 spin_unlock(&init_mm.page_table_lock);
462 if (new)
463 pte_free_kernel(&init_mm, new);
464 return 0;
465}
466
467static inline void init_rss_vec(int *rss)
468{
469 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
470}
471
472static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
473{
474 int i;
475
476 if (current->mm == mm)
477 sync_mm_rss(mm);
478 for (i = 0; i < NR_MM_COUNTERS; i++)
479 if (rss[i])
480 add_mm_counter(mm, i, rss[i]);
481}
482
483/*
484 * This function is called to print an error when a bad pte
485 * is found. For example, we might have a PFN-mapped pte in
486 * a region that doesn't allow it.
487 *
488 * The calling function must still handle the error.
489 */
490static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
491 pte_t pte, struct page *page)
492{
493 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
494 p4d_t *p4d = p4d_offset(pgd, addr);
495 pud_t *pud = pud_offset(p4d, addr);
496 pmd_t *pmd = pmd_offset(pud, addr);
497 struct address_space *mapping;
498 pgoff_t index;
499 static unsigned long resume;
500 static unsigned long nr_shown;
501 static unsigned long nr_unshown;
502
503 /*
504 * Allow a burst of 60 reports, then keep quiet for that minute;
505 * or allow a steady drip of one report per second.
506 */
507 if (nr_shown == 60) {
508 if (time_before(jiffies, resume)) {
509 nr_unshown++;
510 return;
511 }
512 if (nr_unshown) {
513 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
514 nr_unshown);
515 nr_unshown = 0;
516 }
517 nr_shown = 0;
518 }
519 if (nr_shown++ == 0)
520 resume = jiffies + 60 * HZ;
521
522 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
523 index = linear_page_index(vma, addr);
524
525 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
526 current->comm,
527 (long long)pte_val(pte), (long long)pmd_val(*pmd));
528 if (page)
529 dump_page(page, "bad pte");
530 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
531 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
532 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
533 vma->vm_file,
534 vma->vm_ops ? vma->vm_ops->fault : NULL,
535 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
536 mapping ? mapping->a_ops->read_folio : NULL);
537 dump_stack();
538 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
539}
540
541/*
542 * vm_normal_page -- This function gets the "struct page" associated with a pte.
543 *
544 * "Special" mappings do not wish to be associated with a "struct page" (either
545 * it doesn't exist, or it exists but they don't want to touch it). In this
546 * case, NULL is returned here. "Normal" mappings do have a struct page.
547 *
548 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
549 * pte bit, in which case this function is trivial. Secondly, an architecture
550 * may not have a spare pte bit, which requires a more complicated scheme,
551 * described below.
552 *
553 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
554 * special mapping (even if there are underlying and valid "struct pages").
555 * COWed pages of a VM_PFNMAP are always normal.
556 *
557 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
558 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
559 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
560 * mapping will always honor the rule
561 *
562 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
563 *
564 * And for normal mappings this is false.
565 *
566 * This restricts such mappings to be a linear translation from virtual address
567 * to pfn. To get around this restriction, we allow arbitrary mappings so long
568 * as the vma is not a COW mapping; in that case, we know that all ptes are
569 * special (because none can have been COWed).
570 *
571 *
572 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
573 *
574 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
575 * page" backing, however the difference is that _all_ pages with a struct
576 * page (that is, those where pfn_valid is true) are refcounted and considered
577 * normal pages by the VM. The disadvantage is that pages are refcounted
578 * (which can be slower and simply not an option for some PFNMAP users). The
579 * advantage is that we don't have to follow the strict linearity rule of
580 * PFNMAP mappings in order to support COWable mappings.
581 *
582 */
583struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
584 pte_t pte)
585{
586 unsigned long pfn = pte_pfn(pte);
587
588 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
589 if (likely(!pte_special(pte)))
590 goto check_pfn;
591 if (vma->vm_ops && vma->vm_ops->find_special_page)
592 return vma->vm_ops->find_special_page(vma, addr);
593 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
594 return NULL;
595 if (is_zero_pfn(pfn))
596 return NULL;
597 if (pte_devmap(pte))
598 /*
599 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
600 * and will have refcounts incremented on their struct pages
601 * when they are inserted into PTEs, thus they are safe to
602 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
603 * do not have refcounts. Example of legacy ZONE_DEVICE is
604 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
605 */
606 return NULL;
607
608 print_bad_pte(vma, addr, pte, NULL);
609 return NULL;
610 }
611
612 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
613
614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 if (vma->vm_flags & VM_MIXEDMAP) {
616 if (!pfn_valid(pfn))
617 return NULL;
618 goto out;
619 } else {
620 unsigned long off;
621 off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 if (pfn == vma->vm_pgoff + off)
623 return NULL;
624 if (!is_cow_mapping(vma->vm_flags))
625 return NULL;
626 }
627 }
628
629 if (is_zero_pfn(pfn))
630 return NULL;
631
632check_pfn:
633 if (unlikely(pfn > highest_memmap_pfn)) {
634 print_bad_pte(vma, addr, pte, NULL);
635 return NULL;
636 }
637
638 /*
639 * NOTE! We still have PageReserved() pages in the page tables.
640 * eg. VDSO mappings can cause them to exist.
641 */
642out:
643 return pfn_to_page(pfn);
644}
645
646struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
647 pte_t pte)
648{
649 struct page *page = vm_normal_page(vma, addr, pte);
650
651 if (page)
652 return page_folio(page);
653 return NULL;
654}
655
656#ifdef CONFIG_TRANSPARENT_HUGEPAGE
657struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
658 pmd_t pmd)
659{
660 unsigned long pfn = pmd_pfn(pmd);
661
662 /*
663 * There is no pmd_special() but there may be special pmds, e.g.
664 * in a direct-access (dax) mapping, so let's just replicate the
665 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
666 */
667 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
668 if (vma->vm_flags & VM_MIXEDMAP) {
669 if (!pfn_valid(pfn))
670 return NULL;
671 goto out;
672 } else {
673 unsigned long off;
674 off = (addr - vma->vm_start) >> PAGE_SHIFT;
675 if (pfn == vma->vm_pgoff + off)
676 return NULL;
677 if (!is_cow_mapping(vma->vm_flags))
678 return NULL;
679 }
680 }
681
682 if (pmd_devmap(pmd))
683 return NULL;
684 if (is_huge_zero_pmd(pmd))
685 return NULL;
686 if (unlikely(pfn > highest_memmap_pfn))
687 return NULL;
688
689 /*
690 * NOTE! We still have PageReserved() pages in the page tables.
691 * eg. VDSO mappings can cause them to exist.
692 */
693out:
694 return pfn_to_page(pfn);
695}
696#endif
697
698static void restore_exclusive_pte(struct vm_area_struct *vma,
699 struct page *page, unsigned long address,
700 pte_t *ptep)
701{
702 pte_t pte;
703 swp_entry_t entry;
704
705 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
706 if (pte_swp_soft_dirty(*ptep))
707 pte = pte_mksoft_dirty(pte);
708
709 entry = pte_to_swp_entry(*ptep);
710 if (pte_swp_uffd_wp(*ptep))
711 pte = pte_mkuffd_wp(pte);
712 else if (is_writable_device_exclusive_entry(entry))
713 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
714
715 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
716
717 /*
718 * No need to take a page reference as one was already
719 * created when the swap entry was made.
720 */
721 if (PageAnon(page))
722 page_add_anon_rmap(page, vma, address, RMAP_NONE);
723 else
724 /*
725 * Currently device exclusive access only supports anonymous
726 * memory so the entry shouldn't point to a filebacked page.
727 */
728 WARN_ON_ONCE(1);
729
730 set_pte_at(vma->vm_mm, address, ptep, pte);
731
732 /*
733 * No need to invalidate - it was non-present before. However
734 * secondary CPUs may have mappings that need invalidating.
735 */
736 update_mmu_cache(vma, address, ptep);
737}
738
739/*
740 * Tries to restore an exclusive pte if the page lock can be acquired without
741 * sleeping.
742 */
743static int
744try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
745 unsigned long addr)
746{
747 swp_entry_t entry = pte_to_swp_entry(*src_pte);
748 struct page *page = pfn_swap_entry_to_page(entry);
749
750 if (trylock_page(page)) {
751 restore_exclusive_pte(vma, page, addr, src_pte);
752 unlock_page(page);
753 return 0;
754 }
755
756 return -EBUSY;
757}
758
759/*
760 * copy one vm_area from one task to the other. Assumes the page tables
761 * already present in the new task to be cleared in the whole range
762 * covered by this vma.
763 */
764
765static unsigned long
766copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
767 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
769{
770 unsigned long vm_flags = dst_vma->vm_flags;
771 pte_t pte = *src_pte;
772 struct page *page;
773 swp_entry_t entry = pte_to_swp_entry(pte);
774
775 if (likely(!non_swap_entry(entry))) {
776 if (swap_duplicate(entry) < 0)
777 return -EIO;
778
779 /* make sure dst_mm is on swapoff's mmlist. */
780 if (unlikely(list_empty(&dst_mm->mmlist))) {
781 spin_lock(&mmlist_lock);
782 if (list_empty(&dst_mm->mmlist))
783 list_add(&dst_mm->mmlist,
784 &src_mm->mmlist);
785 spin_unlock(&mmlist_lock);
786 }
787 /* Mark the swap entry as shared. */
788 if (pte_swp_exclusive(*src_pte)) {
789 pte = pte_swp_clear_exclusive(*src_pte);
790 set_pte_at(src_mm, addr, src_pte, pte);
791 }
792 rss[MM_SWAPENTS]++;
793 } else if (is_migration_entry(entry)) {
794 page = pfn_swap_entry_to_page(entry);
795
796 rss[mm_counter(page)]++;
797
798 if (!is_readable_migration_entry(entry) &&
799 is_cow_mapping(vm_flags)) {
800 /*
801 * COW mappings require pages in both parent and child
802 * to be set to read. A previously exclusive entry is
803 * now shared.
804 */
805 entry = make_readable_migration_entry(
806 swp_offset(entry));
807 pte = swp_entry_to_pte(entry);
808 if (pte_swp_soft_dirty(*src_pte))
809 pte = pte_swp_mksoft_dirty(pte);
810 if (pte_swp_uffd_wp(*src_pte))
811 pte = pte_swp_mkuffd_wp(pte);
812 set_pte_at(src_mm, addr, src_pte, pte);
813 }
814 } else if (is_device_private_entry(entry)) {
815 page = pfn_swap_entry_to_page(entry);
816
817 /*
818 * Update rss count even for unaddressable pages, as
819 * they should treated just like normal pages in this
820 * respect.
821 *
822 * We will likely want to have some new rss counters
823 * for unaddressable pages, at some point. But for now
824 * keep things as they are.
825 */
826 get_page(page);
827 rss[mm_counter(page)]++;
828 /* Cannot fail as these pages cannot get pinned. */
829 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
830
831 /*
832 * We do not preserve soft-dirty information, because so
833 * far, checkpoint/restore is the only feature that
834 * requires that. And checkpoint/restore does not work
835 * when a device driver is involved (you cannot easily
836 * save and restore device driver state).
837 */
838 if (is_writable_device_private_entry(entry) &&
839 is_cow_mapping(vm_flags)) {
840 entry = make_readable_device_private_entry(
841 swp_offset(entry));
842 pte = swp_entry_to_pte(entry);
843 if (pte_swp_uffd_wp(*src_pte))
844 pte = pte_swp_mkuffd_wp(pte);
845 set_pte_at(src_mm, addr, src_pte, pte);
846 }
847 } else if (is_device_exclusive_entry(entry)) {
848 /*
849 * Make device exclusive entries present by restoring the
850 * original entry then copying as for a present pte. Device
851 * exclusive entries currently only support private writable
852 * (ie. COW) mappings.
853 */
854 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
855 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
856 return -EBUSY;
857 return -ENOENT;
858 } else if (is_pte_marker_entry(entry)) {
859 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
860 set_pte_at(dst_mm, addr, dst_pte, pte);
861 return 0;
862 }
863 if (!userfaultfd_wp(dst_vma))
864 pte = pte_swp_clear_uffd_wp(pte);
865 set_pte_at(dst_mm, addr, dst_pte, pte);
866 return 0;
867}
868
869/*
870 * Copy a present and normal page.
871 *
872 * NOTE! The usual case is that this isn't required;
873 * instead, the caller can just increase the page refcount
874 * and re-use the pte the traditional way.
875 *
876 * And if we need a pre-allocated page but don't yet have
877 * one, return a negative error to let the preallocation
878 * code know so that it can do so outside the page table
879 * lock.
880 */
881static inline int
882copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
883 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
884 struct folio **prealloc, struct page *page)
885{
886 struct folio *new_folio;
887 pte_t pte;
888
889 new_folio = *prealloc;
890 if (!new_folio)
891 return -EAGAIN;
892
893 /*
894 * We have a prealloc page, all good! Take it
895 * over and copy the page & arm it.
896 */
897 *prealloc = NULL;
898 copy_user_highpage(&new_folio->page, page, addr, src_vma);
899 __folio_mark_uptodate(new_folio);
900 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
901 folio_add_lru_vma(new_folio, dst_vma);
902 rss[MM_ANONPAGES]++;
903
904 /* All done, just insert the new page copy in the child */
905 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
906 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
907 if (userfaultfd_pte_wp(dst_vma, *src_pte))
908 /* Uffd-wp needs to be delivered to dest pte as well */
909 pte = pte_mkuffd_wp(pte);
910 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
911 return 0;
912}
913
914/*
915 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
916 * is required to copy this pte.
917 */
918static inline int
919copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
920 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
921 struct folio **prealloc)
922{
923 struct mm_struct *src_mm = src_vma->vm_mm;
924 unsigned long vm_flags = src_vma->vm_flags;
925 pte_t pte = *src_pte;
926 struct page *page;
927 struct folio *folio;
928
929 page = vm_normal_page(src_vma, addr, pte);
930 if (page)
931 folio = page_folio(page);
932 if (page && folio_test_anon(folio)) {
933 /*
934 * If this page may have been pinned by the parent process,
935 * copy the page immediately for the child so that we'll always
936 * guarantee the pinned page won't be randomly replaced in the
937 * future.
938 */
939 folio_get(folio);
940 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
941 /* Page may be pinned, we have to copy. */
942 folio_put(folio);
943 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
944 addr, rss, prealloc, page);
945 }
946 rss[MM_ANONPAGES]++;
947 } else if (page) {
948 folio_get(folio);
949 page_dup_file_rmap(page, false);
950 rss[mm_counter_file(page)]++;
951 }
952
953 /*
954 * If it's a COW mapping, write protect it both
955 * in the parent and the child
956 */
957 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
958 ptep_set_wrprotect(src_mm, addr, src_pte);
959 pte = pte_wrprotect(pte);
960 }
961 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
962
963 /*
964 * If it's a shared mapping, mark it clean in
965 * the child
966 */
967 if (vm_flags & VM_SHARED)
968 pte = pte_mkclean(pte);
969 pte = pte_mkold(pte);
970
971 if (!userfaultfd_wp(dst_vma))
972 pte = pte_clear_uffd_wp(pte);
973
974 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
975 return 0;
976}
977
978static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
979 struct vm_area_struct *vma, unsigned long addr)
980{
981 struct folio *new_folio;
982
983 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
984 if (!new_folio)
985 return NULL;
986
987 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
988 folio_put(new_folio);
989 return NULL;
990 }
991 folio_throttle_swaprate(new_folio, GFP_KERNEL);
992
993 return new_folio;
994}
995
996static int
997copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
998 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
999 unsigned long end)
1000{
1001 struct mm_struct *dst_mm = dst_vma->vm_mm;
1002 struct mm_struct *src_mm = src_vma->vm_mm;
1003 pte_t *orig_src_pte, *orig_dst_pte;
1004 pte_t *src_pte, *dst_pte;
1005 spinlock_t *src_ptl, *dst_ptl;
1006 int progress, ret = 0;
1007 int rss[NR_MM_COUNTERS];
1008 swp_entry_t entry = (swp_entry_t){0};
1009 struct folio *prealloc = NULL;
1010
1011again:
1012 progress = 0;
1013 init_rss_vec(rss);
1014
1015 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1016 if (!dst_pte) {
1017 ret = -ENOMEM;
1018 goto out;
1019 }
1020 src_pte = pte_offset_map(src_pmd, addr);
1021 src_ptl = pte_lockptr(src_mm, src_pmd);
1022 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1023 orig_src_pte = src_pte;
1024 orig_dst_pte = dst_pte;
1025 arch_enter_lazy_mmu_mode();
1026
1027 do {
1028 /*
1029 * We are holding two locks at this point - either of them
1030 * could generate latencies in another task on another CPU.
1031 */
1032 if (progress >= 32) {
1033 progress = 0;
1034 if (need_resched() ||
1035 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1036 break;
1037 }
1038 if (pte_none(*src_pte)) {
1039 progress++;
1040 continue;
1041 }
1042 if (unlikely(!pte_present(*src_pte))) {
1043 ret = copy_nonpresent_pte(dst_mm, src_mm,
1044 dst_pte, src_pte,
1045 dst_vma, src_vma,
1046 addr, rss);
1047 if (ret == -EIO) {
1048 entry = pte_to_swp_entry(*src_pte);
1049 break;
1050 } else if (ret == -EBUSY) {
1051 break;
1052 } else if (!ret) {
1053 progress += 8;
1054 continue;
1055 }
1056
1057 /*
1058 * Device exclusive entry restored, continue by copying
1059 * the now present pte.
1060 */
1061 WARN_ON_ONCE(ret != -ENOENT);
1062 }
1063 /* copy_present_pte() will clear `*prealloc' if consumed */
1064 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1065 addr, rss, &prealloc);
1066 /*
1067 * If we need a pre-allocated page for this pte, drop the
1068 * locks, allocate, and try again.
1069 */
1070 if (unlikely(ret == -EAGAIN))
1071 break;
1072 if (unlikely(prealloc)) {
1073 /*
1074 * pre-alloc page cannot be reused by next time so as
1075 * to strictly follow mempolicy (e.g., alloc_page_vma()
1076 * will allocate page according to address). This
1077 * could only happen if one pinned pte changed.
1078 */
1079 folio_put(prealloc);
1080 prealloc = NULL;
1081 }
1082 progress += 8;
1083 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1084
1085 arch_leave_lazy_mmu_mode();
1086 spin_unlock(src_ptl);
1087 pte_unmap(orig_src_pte);
1088 add_mm_rss_vec(dst_mm, rss);
1089 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1090 cond_resched();
1091
1092 if (ret == -EIO) {
1093 VM_WARN_ON_ONCE(!entry.val);
1094 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1095 ret = -ENOMEM;
1096 goto out;
1097 }
1098 entry.val = 0;
1099 } else if (ret == -EBUSY) {
1100 goto out;
1101 } else if (ret == -EAGAIN) {
1102 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1103 if (!prealloc)
1104 return -ENOMEM;
1105 } else if (ret) {
1106 VM_WARN_ON_ONCE(1);
1107 }
1108
1109 /* We've captured and resolved the error. Reset, try again. */
1110 ret = 0;
1111
1112 if (addr != end)
1113 goto again;
1114out:
1115 if (unlikely(prealloc))
1116 folio_put(prealloc);
1117 return ret;
1118}
1119
1120static inline int
1121copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1122 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1123 unsigned long end)
1124{
1125 struct mm_struct *dst_mm = dst_vma->vm_mm;
1126 struct mm_struct *src_mm = src_vma->vm_mm;
1127 pmd_t *src_pmd, *dst_pmd;
1128 unsigned long next;
1129
1130 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1131 if (!dst_pmd)
1132 return -ENOMEM;
1133 src_pmd = pmd_offset(src_pud, addr);
1134 do {
1135 next = pmd_addr_end(addr, end);
1136 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1137 || pmd_devmap(*src_pmd)) {
1138 int err;
1139 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1140 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1141 addr, dst_vma, src_vma);
1142 if (err == -ENOMEM)
1143 return -ENOMEM;
1144 if (!err)
1145 continue;
1146 /* fall through */
1147 }
1148 if (pmd_none_or_clear_bad(src_pmd))
1149 continue;
1150 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1151 addr, next))
1152 return -ENOMEM;
1153 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1154 return 0;
1155}
1156
1157static inline int
1158copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1159 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1160 unsigned long end)
1161{
1162 struct mm_struct *dst_mm = dst_vma->vm_mm;
1163 struct mm_struct *src_mm = src_vma->vm_mm;
1164 pud_t *src_pud, *dst_pud;
1165 unsigned long next;
1166
1167 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1168 if (!dst_pud)
1169 return -ENOMEM;
1170 src_pud = pud_offset(src_p4d, addr);
1171 do {
1172 next = pud_addr_end(addr, end);
1173 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1174 int err;
1175
1176 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1177 err = copy_huge_pud(dst_mm, src_mm,
1178 dst_pud, src_pud, addr, src_vma);
1179 if (err == -ENOMEM)
1180 return -ENOMEM;
1181 if (!err)
1182 continue;
1183 /* fall through */
1184 }
1185 if (pud_none_or_clear_bad(src_pud))
1186 continue;
1187 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1188 addr, next))
1189 return -ENOMEM;
1190 } while (dst_pud++, src_pud++, addr = next, addr != end);
1191 return 0;
1192}
1193
1194static inline int
1195copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1196 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1197 unsigned long end)
1198{
1199 struct mm_struct *dst_mm = dst_vma->vm_mm;
1200 p4d_t *src_p4d, *dst_p4d;
1201 unsigned long next;
1202
1203 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1204 if (!dst_p4d)
1205 return -ENOMEM;
1206 src_p4d = p4d_offset(src_pgd, addr);
1207 do {
1208 next = p4d_addr_end(addr, end);
1209 if (p4d_none_or_clear_bad(src_p4d))
1210 continue;
1211 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1212 addr, next))
1213 return -ENOMEM;
1214 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1215 return 0;
1216}
1217
1218/*
1219 * Return true if the vma needs to copy the pgtable during this fork(). Return
1220 * false when we can speed up fork() by allowing lazy page faults later until
1221 * when the child accesses the memory range.
1222 */
1223static bool
1224vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1225{
1226 /*
1227 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1228 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1229 * contains uffd-wp protection information, that's something we can't
1230 * retrieve from page cache, and skip copying will lose those info.
1231 */
1232 if (userfaultfd_wp(dst_vma))
1233 return true;
1234
1235 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1236 return true;
1237
1238 if (src_vma->anon_vma)
1239 return true;
1240
1241 /*
1242 * Don't copy ptes where a page fault will fill them correctly. Fork
1243 * becomes much lighter when there are big shared or private readonly
1244 * mappings. The tradeoff is that copy_page_range is more efficient
1245 * than faulting.
1246 */
1247 return false;
1248}
1249
1250int
1251copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1252{
1253 pgd_t *src_pgd, *dst_pgd;
1254 unsigned long next;
1255 unsigned long addr = src_vma->vm_start;
1256 unsigned long end = src_vma->vm_end;
1257 struct mm_struct *dst_mm = dst_vma->vm_mm;
1258 struct mm_struct *src_mm = src_vma->vm_mm;
1259 struct mmu_notifier_range range;
1260 bool is_cow;
1261 int ret;
1262
1263 if (!vma_needs_copy(dst_vma, src_vma))
1264 return 0;
1265
1266 if (is_vm_hugetlb_page(src_vma))
1267 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1268
1269 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1270 /*
1271 * We do not free on error cases below as remove_vma
1272 * gets called on error from higher level routine
1273 */
1274 ret = track_pfn_copy(src_vma);
1275 if (ret)
1276 return ret;
1277 }
1278
1279 /*
1280 * We need to invalidate the secondary MMU mappings only when
1281 * there could be a permission downgrade on the ptes of the
1282 * parent mm. And a permission downgrade will only happen if
1283 * is_cow_mapping() returns true.
1284 */
1285 is_cow = is_cow_mapping(src_vma->vm_flags);
1286
1287 if (is_cow) {
1288 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1289 0, src_mm, addr, end);
1290 mmu_notifier_invalidate_range_start(&range);
1291 /*
1292 * Disabling preemption is not needed for the write side, as
1293 * the read side doesn't spin, but goes to the mmap_lock.
1294 *
1295 * Use the raw variant of the seqcount_t write API to avoid
1296 * lockdep complaining about preemptibility.
1297 */
1298 mmap_assert_write_locked(src_mm);
1299 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1300 }
1301
1302 ret = 0;
1303 dst_pgd = pgd_offset(dst_mm, addr);
1304 src_pgd = pgd_offset(src_mm, addr);
1305 do {
1306 next = pgd_addr_end(addr, end);
1307 if (pgd_none_or_clear_bad(src_pgd))
1308 continue;
1309 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1310 addr, next))) {
1311 untrack_pfn_clear(dst_vma);
1312 ret = -ENOMEM;
1313 break;
1314 }
1315 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1316
1317 if (is_cow) {
1318 raw_write_seqcount_end(&src_mm->write_protect_seq);
1319 mmu_notifier_invalidate_range_end(&range);
1320 }
1321 return ret;
1322}
1323
1324/* Whether we should zap all COWed (private) pages too */
1325static inline bool should_zap_cows(struct zap_details *details)
1326{
1327 /* By default, zap all pages */
1328 if (!details)
1329 return true;
1330
1331 /* Or, we zap COWed pages only if the caller wants to */
1332 return details->even_cows;
1333}
1334
1335/* Decides whether we should zap this page with the page pointer specified */
1336static inline bool should_zap_page(struct zap_details *details, struct page *page)
1337{
1338 /* If we can make a decision without *page.. */
1339 if (should_zap_cows(details))
1340 return true;
1341
1342 /* E.g. the caller passes NULL for the case of a zero page */
1343 if (!page)
1344 return true;
1345
1346 /* Otherwise we should only zap non-anon pages */
1347 return !PageAnon(page);
1348}
1349
1350static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1351{
1352 if (!details)
1353 return false;
1354
1355 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1356}
1357
1358/*
1359 * This function makes sure that we'll replace the none pte with an uffd-wp
1360 * swap special pte marker when necessary. Must be with the pgtable lock held.
1361 */
1362static inline void
1363zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1364 unsigned long addr, pte_t *pte,
1365 struct zap_details *details, pte_t pteval)
1366{
1367 /* Zap on anonymous always means dropping everything */
1368 if (vma_is_anonymous(vma))
1369 return;
1370
1371 if (zap_drop_file_uffd_wp(details))
1372 return;
1373
1374 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1375}
1376
1377static unsigned long zap_pte_range(struct mmu_gather *tlb,
1378 struct vm_area_struct *vma, pmd_t *pmd,
1379 unsigned long addr, unsigned long end,
1380 struct zap_details *details)
1381{
1382 struct mm_struct *mm = tlb->mm;
1383 int force_flush = 0;
1384 int rss[NR_MM_COUNTERS];
1385 spinlock_t *ptl;
1386 pte_t *start_pte;
1387 pte_t *pte;
1388 swp_entry_t entry;
1389
1390 tlb_change_page_size(tlb, PAGE_SIZE);
1391again:
1392 init_rss_vec(rss);
1393 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1394 pte = start_pte;
1395 flush_tlb_batched_pending(mm);
1396 arch_enter_lazy_mmu_mode();
1397 do {
1398 pte_t ptent = *pte;
1399 struct page *page;
1400
1401 if (pte_none(ptent))
1402 continue;
1403
1404 if (need_resched())
1405 break;
1406
1407 if (pte_present(ptent)) {
1408 unsigned int delay_rmap;
1409
1410 page = vm_normal_page(vma, addr, ptent);
1411 if (unlikely(!should_zap_page(details, page)))
1412 continue;
1413 ptent = ptep_get_and_clear_full(mm, addr, pte,
1414 tlb->fullmm);
1415 tlb_remove_tlb_entry(tlb, pte, addr);
1416 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1417 ptent);
1418 if (unlikely(!page))
1419 continue;
1420
1421 delay_rmap = 0;
1422 if (!PageAnon(page)) {
1423 if (pte_dirty(ptent)) {
1424 set_page_dirty(page);
1425 if (tlb_delay_rmap(tlb)) {
1426 delay_rmap = 1;
1427 force_flush = 1;
1428 }
1429 }
1430 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1431 mark_page_accessed(page);
1432 }
1433 rss[mm_counter(page)]--;
1434 if (!delay_rmap) {
1435 page_remove_rmap(page, vma, false);
1436 if (unlikely(page_mapcount(page) < 0))
1437 print_bad_pte(vma, addr, ptent, page);
1438 }
1439 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1440 force_flush = 1;
1441 addr += PAGE_SIZE;
1442 break;
1443 }
1444 continue;
1445 }
1446
1447 entry = pte_to_swp_entry(ptent);
1448 if (is_device_private_entry(entry) ||
1449 is_device_exclusive_entry(entry)) {
1450 page = pfn_swap_entry_to_page(entry);
1451 if (unlikely(!should_zap_page(details, page)))
1452 continue;
1453 /*
1454 * Both device private/exclusive mappings should only
1455 * work with anonymous page so far, so we don't need to
1456 * consider uffd-wp bit when zap. For more information,
1457 * see zap_install_uffd_wp_if_needed().
1458 */
1459 WARN_ON_ONCE(!vma_is_anonymous(vma));
1460 rss[mm_counter(page)]--;
1461 if (is_device_private_entry(entry))
1462 page_remove_rmap(page, vma, false);
1463 put_page(page);
1464 } else if (!non_swap_entry(entry)) {
1465 /* Genuine swap entry, hence a private anon page */
1466 if (!should_zap_cows(details))
1467 continue;
1468 rss[MM_SWAPENTS]--;
1469 if (unlikely(!free_swap_and_cache(entry)))
1470 print_bad_pte(vma, addr, ptent, NULL);
1471 } else if (is_migration_entry(entry)) {
1472 page = pfn_swap_entry_to_page(entry);
1473 if (!should_zap_page(details, page))
1474 continue;
1475 rss[mm_counter(page)]--;
1476 } else if (pte_marker_entry_uffd_wp(entry)) {
1477 /*
1478 * For anon: always drop the marker; for file: only
1479 * drop the marker if explicitly requested.
1480 */
1481 if (!vma_is_anonymous(vma) &&
1482 !zap_drop_file_uffd_wp(details))
1483 continue;
1484 } else if (is_hwpoison_entry(entry) ||
1485 is_swapin_error_entry(entry)) {
1486 if (!should_zap_cows(details))
1487 continue;
1488 } else {
1489 /* We should have covered all the swap entry types */
1490 WARN_ON_ONCE(1);
1491 }
1492 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1493 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1494 } while (pte++, addr += PAGE_SIZE, addr != end);
1495
1496 add_mm_rss_vec(mm, rss);
1497 arch_leave_lazy_mmu_mode();
1498
1499 /* Do the actual TLB flush before dropping ptl */
1500 if (force_flush) {
1501 tlb_flush_mmu_tlbonly(tlb);
1502 tlb_flush_rmaps(tlb, vma);
1503 }
1504 pte_unmap_unlock(start_pte, ptl);
1505
1506 /*
1507 * If we forced a TLB flush (either due to running out of
1508 * batch buffers or because we needed to flush dirty TLB
1509 * entries before releasing the ptl), free the batched
1510 * memory too. Restart if we didn't do everything.
1511 */
1512 if (force_flush) {
1513 force_flush = 0;
1514 tlb_flush_mmu(tlb);
1515 }
1516
1517 if (addr != end) {
1518 cond_resched();
1519 goto again;
1520 }
1521
1522 return addr;
1523}
1524
1525static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1526 struct vm_area_struct *vma, pud_t *pud,
1527 unsigned long addr, unsigned long end,
1528 struct zap_details *details)
1529{
1530 pmd_t *pmd;
1531 unsigned long next;
1532
1533 pmd = pmd_offset(pud, addr);
1534 do {
1535 next = pmd_addr_end(addr, end);
1536 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1537 if (next - addr != HPAGE_PMD_SIZE)
1538 __split_huge_pmd(vma, pmd, addr, false, NULL);
1539 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1540 goto next;
1541 /* fall through */
1542 } else if (details && details->single_folio &&
1543 folio_test_pmd_mappable(details->single_folio) &&
1544 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1545 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1546 /*
1547 * Take and drop THP pmd lock so that we cannot return
1548 * prematurely, while zap_huge_pmd() has cleared *pmd,
1549 * but not yet decremented compound_mapcount().
1550 */
1551 spin_unlock(ptl);
1552 }
1553
1554 /*
1555 * Here there can be other concurrent MADV_DONTNEED or
1556 * trans huge page faults running, and if the pmd is
1557 * none or trans huge it can change under us. This is
1558 * because MADV_DONTNEED holds the mmap_lock in read
1559 * mode.
1560 */
1561 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1562 goto next;
1563 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1564next:
1565 cond_resched();
1566 } while (pmd++, addr = next, addr != end);
1567
1568 return addr;
1569}
1570
1571static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1572 struct vm_area_struct *vma, p4d_t *p4d,
1573 unsigned long addr, unsigned long end,
1574 struct zap_details *details)
1575{
1576 pud_t *pud;
1577 unsigned long next;
1578
1579 pud = pud_offset(p4d, addr);
1580 do {
1581 next = pud_addr_end(addr, end);
1582 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1583 if (next - addr != HPAGE_PUD_SIZE) {
1584 mmap_assert_locked(tlb->mm);
1585 split_huge_pud(vma, pud, addr);
1586 } else if (zap_huge_pud(tlb, vma, pud, addr))
1587 goto next;
1588 /* fall through */
1589 }
1590 if (pud_none_or_clear_bad(pud))
1591 continue;
1592 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1593next:
1594 cond_resched();
1595 } while (pud++, addr = next, addr != end);
1596
1597 return addr;
1598}
1599
1600static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1601 struct vm_area_struct *vma, pgd_t *pgd,
1602 unsigned long addr, unsigned long end,
1603 struct zap_details *details)
1604{
1605 p4d_t *p4d;
1606 unsigned long next;
1607
1608 p4d = p4d_offset(pgd, addr);
1609 do {
1610 next = p4d_addr_end(addr, end);
1611 if (p4d_none_or_clear_bad(p4d))
1612 continue;
1613 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1614 } while (p4d++, addr = next, addr != end);
1615
1616 return addr;
1617}
1618
1619void unmap_page_range(struct mmu_gather *tlb,
1620 struct vm_area_struct *vma,
1621 unsigned long addr, unsigned long end,
1622 struct zap_details *details)
1623{
1624 pgd_t *pgd;
1625 unsigned long next;
1626
1627 BUG_ON(addr >= end);
1628 tlb_start_vma(tlb, vma);
1629 pgd = pgd_offset(vma->vm_mm, addr);
1630 do {
1631 next = pgd_addr_end(addr, end);
1632 if (pgd_none_or_clear_bad(pgd))
1633 continue;
1634 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1635 } while (pgd++, addr = next, addr != end);
1636 tlb_end_vma(tlb, vma);
1637}
1638
1639
1640static void unmap_single_vma(struct mmu_gather *tlb,
1641 struct vm_area_struct *vma, unsigned long start_addr,
1642 unsigned long end_addr,
1643 struct zap_details *details, bool mm_wr_locked)
1644{
1645 unsigned long start = max(vma->vm_start, start_addr);
1646 unsigned long end;
1647
1648 if (start >= vma->vm_end)
1649 return;
1650 end = min(vma->vm_end, end_addr);
1651 if (end <= vma->vm_start)
1652 return;
1653
1654 if (vma->vm_file)
1655 uprobe_munmap(vma, start, end);
1656
1657 if (unlikely(vma->vm_flags & VM_PFNMAP))
1658 untrack_pfn(vma, 0, 0, mm_wr_locked);
1659
1660 if (start != end) {
1661 if (unlikely(is_vm_hugetlb_page(vma))) {
1662 /*
1663 * It is undesirable to test vma->vm_file as it
1664 * should be non-null for valid hugetlb area.
1665 * However, vm_file will be NULL in the error
1666 * cleanup path of mmap_region. When
1667 * hugetlbfs ->mmap method fails,
1668 * mmap_region() nullifies vma->vm_file
1669 * before calling this function to clean up.
1670 * Since no pte has actually been setup, it is
1671 * safe to do nothing in this case.
1672 */
1673 if (vma->vm_file) {
1674 zap_flags_t zap_flags = details ?
1675 details->zap_flags : 0;
1676 __unmap_hugepage_range_final(tlb, vma, start, end,
1677 NULL, zap_flags);
1678 }
1679 } else
1680 unmap_page_range(tlb, vma, start, end, details);
1681 }
1682}
1683
1684/**
1685 * unmap_vmas - unmap a range of memory covered by a list of vma's
1686 * @tlb: address of the caller's struct mmu_gather
1687 * @mt: the maple tree
1688 * @vma: the starting vma
1689 * @start_addr: virtual address at which to start unmapping
1690 * @end_addr: virtual address at which to end unmapping
1691 *
1692 * Unmap all pages in the vma list.
1693 *
1694 * Only addresses between `start' and `end' will be unmapped.
1695 *
1696 * The VMA list must be sorted in ascending virtual address order.
1697 *
1698 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1699 * range after unmap_vmas() returns. So the only responsibility here is to
1700 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1701 * drops the lock and schedules.
1702 */
1703void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1704 struct vm_area_struct *vma, unsigned long start_addr,
1705 unsigned long end_addr, bool mm_wr_locked)
1706{
1707 struct mmu_notifier_range range;
1708 struct zap_details details = {
1709 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1710 /* Careful - we need to zap private pages too! */
1711 .even_cows = true,
1712 };
1713 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1714
1715 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1716 start_addr, end_addr);
1717 mmu_notifier_invalidate_range_start(&range);
1718 do {
1719 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1720 mm_wr_locked);
1721 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1722 mmu_notifier_invalidate_range_end(&range);
1723}
1724
1725/**
1726 * zap_page_range_single - remove user pages in a given range
1727 * @vma: vm_area_struct holding the applicable pages
1728 * @address: starting address of pages to zap
1729 * @size: number of bytes to zap
1730 * @details: details of shared cache invalidation
1731 *
1732 * The range must fit into one VMA.
1733 */
1734void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1735 unsigned long size, struct zap_details *details)
1736{
1737 const unsigned long end = address + size;
1738 struct mmu_notifier_range range;
1739 struct mmu_gather tlb;
1740
1741 lru_add_drain();
1742 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1743 address, end);
1744 if (is_vm_hugetlb_page(vma))
1745 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1746 &range.end);
1747 tlb_gather_mmu(&tlb, vma->vm_mm);
1748 update_hiwater_rss(vma->vm_mm);
1749 mmu_notifier_invalidate_range_start(&range);
1750 /*
1751 * unmap 'address-end' not 'range.start-range.end' as range
1752 * could have been expanded for hugetlb pmd sharing.
1753 */
1754 unmap_single_vma(&tlb, vma, address, end, details, false);
1755 mmu_notifier_invalidate_range_end(&range);
1756 tlb_finish_mmu(&tlb);
1757}
1758
1759/**
1760 * zap_vma_ptes - remove ptes mapping the vma
1761 * @vma: vm_area_struct holding ptes to be zapped
1762 * @address: starting address of pages to zap
1763 * @size: number of bytes to zap
1764 *
1765 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1766 *
1767 * The entire address range must be fully contained within the vma.
1768 *
1769 */
1770void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1771 unsigned long size)
1772{
1773 if (!range_in_vma(vma, address, address + size) ||
1774 !(vma->vm_flags & VM_PFNMAP))
1775 return;
1776
1777 zap_page_range_single(vma, address, size, NULL);
1778}
1779EXPORT_SYMBOL_GPL(zap_vma_ptes);
1780
1781static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1782{
1783 pgd_t *pgd;
1784 p4d_t *p4d;
1785 pud_t *pud;
1786 pmd_t *pmd;
1787
1788 pgd = pgd_offset(mm, addr);
1789 p4d = p4d_alloc(mm, pgd, addr);
1790 if (!p4d)
1791 return NULL;
1792 pud = pud_alloc(mm, p4d, addr);
1793 if (!pud)
1794 return NULL;
1795 pmd = pmd_alloc(mm, pud, addr);
1796 if (!pmd)
1797 return NULL;
1798
1799 VM_BUG_ON(pmd_trans_huge(*pmd));
1800 return pmd;
1801}
1802
1803pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1804 spinlock_t **ptl)
1805{
1806 pmd_t *pmd = walk_to_pmd(mm, addr);
1807
1808 if (!pmd)
1809 return NULL;
1810 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1811}
1812
1813static int validate_page_before_insert(struct page *page)
1814{
1815 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1816 return -EINVAL;
1817 flush_dcache_page(page);
1818 return 0;
1819}
1820
1821static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1822 unsigned long addr, struct page *page, pgprot_t prot)
1823{
1824 if (!pte_none(*pte))
1825 return -EBUSY;
1826 /* Ok, finally just insert the thing.. */
1827 get_page(page);
1828 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1829 page_add_file_rmap(page, vma, false);
1830 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1831 return 0;
1832}
1833
1834/*
1835 * This is the old fallback for page remapping.
1836 *
1837 * For historical reasons, it only allows reserved pages. Only
1838 * old drivers should use this, and they needed to mark their
1839 * pages reserved for the old functions anyway.
1840 */
1841static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1842 struct page *page, pgprot_t prot)
1843{
1844 int retval;
1845 pte_t *pte;
1846 spinlock_t *ptl;
1847
1848 retval = validate_page_before_insert(page);
1849 if (retval)
1850 goto out;
1851 retval = -ENOMEM;
1852 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1853 if (!pte)
1854 goto out;
1855 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1856 pte_unmap_unlock(pte, ptl);
1857out:
1858 return retval;
1859}
1860
1861#ifdef pte_index
1862static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1863 unsigned long addr, struct page *page, pgprot_t prot)
1864{
1865 int err;
1866
1867 if (!page_count(page))
1868 return -EINVAL;
1869 err = validate_page_before_insert(page);
1870 if (err)
1871 return err;
1872 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1873}
1874
1875/* insert_pages() amortizes the cost of spinlock operations
1876 * when inserting pages in a loop. Arch *must* define pte_index.
1877 */
1878static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1879 struct page **pages, unsigned long *num, pgprot_t prot)
1880{
1881 pmd_t *pmd = NULL;
1882 pte_t *start_pte, *pte;
1883 spinlock_t *pte_lock;
1884 struct mm_struct *const mm = vma->vm_mm;
1885 unsigned long curr_page_idx = 0;
1886 unsigned long remaining_pages_total = *num;
1887 unsigned long pages_to_write_in_pmd;
1888 int ret;
1889more:
1890 ret = -EFAULT;
1891 pmd = walk_to_pmd(mm, addr);
1892 if (!pmd)
1893 goto out;
1894
1895 pages_to_write_in_pmd = min_t(unsigned long,
1896 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1897
1898 /* Allocate the PTE if necessary; takes PMD lock once only. */
1899 ret = -ENOMEM;
1900 if (pte_alloc(mm, pmd))
1901 goto out;
1902
1903 while (pages_to_write_in_pmd) {
1904 int pte_idx = 0;
1905 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1906
1907 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1908 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1909 int err = insert_page_in_batch_locked(vma, pte,
1910 addr, pages[curr_page_idx], prot);
1911 if (unlikely(err)) {
1912 pte_unmap_unlock(start_pte, pte_lock);
1913 ret = err;
1914 remaining_pages_total -= pte_idx;
1915 goto out;
1916 }
1917 addr += PAGE_SIZE;
1918 ++curr_page_idx;
1919 }
1920 pte_unmap_unlock(start_pte, pte_lock);
1921 pages_to_write_in_pmd -= batch_size;
1922 remaining_pages_total -= batch_size;
1923 }
1924 if (remaining_pages_total)
1925 goto more;
1926 ret = 0;
1927out:
1928 *num = remaining_pages_total;
1929 return ret;
1930}
1931#endif /* ifdef pte_index */
1932
1933/**
1934 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1935 * @vma: user vma to map to
1936 * @addr: target start user address of these pages
1937 * @pages: source kernel pages
1938 * @num: in: number of pages to map. out: number of pages that were *not*
1939 * mapped. (0 means all pages were successfully mapped).
1940 *
1941 * Preferred over vm_insert_page() when inserting multiple pages.
1942 *
1943 * In case of error, we may have mapped a subset of the provided
1944 * pages. It is the caller's responsibility to account for this case.
1945 *
1946 * The same restrictions apply as in vm_insert_page().
1947 */
1948int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1949 struct page **pages, unsigned long *num)
1950{
1951#ifdef pte_index
1952 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1953
1954 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1955 return -EFAULT;
1956 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1957 BUG_ON(mmap_read_trylock(vma->vm_mm));
1958 BUG_ON(vma->vm_flags & VM_PFNMAP);
1959 vm_flags_set(vma, VM_MIXEDMAP);
1960 }
1961 /* Defer page refcount checking till we're about to map that page. */
1962 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1963#else
1964 unsigned long idx = 0, pgcount = *num;
1965 int err = -EINVAL;
1966
1967 for (; idx < pgcount; ++idx) {
1968 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1969 if (err)
1970 break;
1971 }
1972 *num = pgcount - idx;
1973 return err;
1974#endif /* ifdef pte_index */
1975}
1976EXPORT_SYMBOL(vm_insert_pages);
1977
1978/**
1979 * vm_insert_page - insert single page into user vma
1980 * @vma: user vma to map to
1981 * @addr: target user address of this page
1982 * @page: source kernel page
1983 *
1984 * This allows drivers to insert individual pages they've allocated
1985 * into a user vma.
1986 *
1987 * The page has to be a nice clean _individual_ kernel allocation.
1988 * If you allocate a compound page, you need to have marked it as
1989 * such (__GFP_COMP), or manually just split the page up yourself
1990 * (see split_page()).
1991 *
1992 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1993 * took an arbitrary page protection parameter. This doesn't allow
1994 * that. Your vma protection will have to be set up correctly, which
1995 * means that if you want a shared writable mapping, you'd better
1996 * ask for a shared writable mapping!
1997 *
1998 * The page does not need to be reserved.
1999 *
2000 * Usually this function is called from f_op->mmap() handler
2001 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2002 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2003 * function from other places, for example from page-fault handler.
2004 *
2005 * Return: %0 on success, negative error code otherwise.
2006 */
2007int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2008 struct page *page)
2009{
2010 if (addr < vma->vm_start || addr >= vma->vm_end)
2011 return -EFAULT;
2012 if (!page_count(page))
2013 return -EINVAL;
2014 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2015 BUG_ON(mmap_read_trylock(vma->vm_mm));
2016 BUG_ON(vma->vm_flags & VM_PFNMAP);
2017 vm_flags_set(vma, VM_MIXEDMAP);
2018 }
2019 return insert_page(vma, addr, page, vma->vm_page_prot);
2020}
2021EXPORT_SYMBOL(vm_insert_page);
2022
2023/*
2024 * __vm_map_pages - maps range of kernel pages into user vma
2025 * @vma: user vma to map to
2026 * @pages: pointer to array of source kernel pages
2027 * @num: number of pages in page array
2028 * @offset: user's requested vm_pgoff
2029 *
2030 * This allows drivers to map range of kernel pages into a user vma.
2031 *
2032 * Return: 0 on success and error code otherwise.
2033 */
2034static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2035 unsigned long num, unsigned long offset)
2036{
2037 unsigned long count = vma_pages(vma);
2038 unsigned long uaddr = vma->vm_start;
2039 int ret, i;
2040
2041 /* Fail if the user requested offset is beyond the end of the object */
2042 if (offset >= num)
2043 return -ENXIO;
2044
2045 /* Fail if the user requested size exceeds available object size */
2046 if (count > num - offset)
2047 return -ENXIO;
2048
2049 for (i = 0; i < count; i++) {
2050 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2051 if (ret < 0)
2052 return ret;
2053 uaddr += PAGE_SIZE;
2054 }
2055
2056 return 0;
2057}
2058
2059/**
2060 * vm_map_pages - maps range of kernel pages starts with non zero offset
2061 * @vma: user vma to map to
2062 * @pages: pointer to array of source kernel pages
2063 * @num: number of pages in page array
2064 *
2065 * Maps an object consisting of @num pages, catering for the user's
2066 * requested vm_pgoff
2067 *
2068 * If we fail to insert any page into the vma, the function will return
2069 * immediately leaving any previously inserted pages present. Callers
2070 * from the mmap handler may immediately return the error as their caller
2071 * will destroy the vma, removing any successfully inserted pages. Other
2072 * callers should make their own arrangements for calling unmap_region().
2073 *
2074 * Context: Process context. Called by mmap handlers.
2075 * Return: 0 on success and error code otherwise.
2076 */
2077int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2078 unsigned long num)
2079{
2080 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2081}
2082EXPORT_SYMBOL(vm_map_pages);
2083
2084/**
2085 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2086 * @vma: user vma to map to
2087 * @pages: pointer to array of source kernel pages
2088 * @num: number of pages in page array
2089 *
2090 * Similar to vm_map_pages(), except that it explicitly sets the offset
2091 * to 0. This function is intended for the drivers that did not consider
2092 * vm_pgoff.
2093 *
2094 * Context: Process context. Called by mmap handlers.
2095 * Return: 0 on success and error code otherwise.
2096 */
2097int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2098 unsigned long num)
2099{
2100 return __vm_map_pages(vma, pages, num, 0);
2101}
2102EXPORT_SYMBOL(vm_map_pages_zero);
2103
2104static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2105 pfn_t pfn, pgprot_t prot, bool mkwrite)
2106{
2107 struct mm_struct *mm = vma->vm_mm;
2108 pte_t *pte, entry;
2109 spinlock_t *ptl;
2110
2111 pte = get_locked_pte(mm, addr, &ptl);
2112 if (!pte)
2113 return VM_FAULT_OOM;
2114 if (!pte_none(*pte)) {
2115 if (mkwrite) {
2116 /*
2117 * For read faults on private mappings the PFN passed
2118 * in may not match the PFN we have mapped if the
2119 * mapped PFN is a writeable COW page. In the mkwrite
2120 * case we are creating a writable PTE for a shared
2121 * mapping and we expect the PFNs to match. If they
2122 * don't match, we are likely racing with block
2123 * allocation and mapping invalidation so just skip the
2124 * update.
2125 */
2126 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2127 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2128 goto out_unlock;
2129 }
2130 entry = pte_mkyoung(*pte);
2131 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2132 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2133 update_mmu_cache(vma, addr, pte);
2134 }
2135 goto out_unlock;
2136 }
2137
2138 /* Ok, finally just insert the thing.. */
2139 if (pfn_t_devmap(pfn))
2140 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2141 else
2142 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2143
2144 if (mkwrite) {
2145 entry = pte_mkyoung(entry);
2146 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2147 }
2148
2149 set_pte_at(mm, addr, pte, entry);
2150 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2151
2152out_unlock:
2153 pte_unmap_unlock(pte, ptl);
2154 return VM_FAULT_NOPAGE;
2155}
2156
2157/**
2158 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2159 * @vma: user vma to map to
2160 * @addr: target user address of this page
2161 * @pfn: source kernel pfn
2162 * @pgprot: pgprot flags for the inserted page
2163 *
2164 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2165 * to override pgprot on a per-page basis.
2166 *
2167 * This only makes sense for IO mappings, and it makes no sense for
2168 * COW mappings. In general, using multiple vmas is preferable;
2169 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2170 * impractical.
2171 *
2172 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2173 * caching- and encryption bits different than those of @vma->vm_page_prot,
2174 * because the caching- or encryption mode may not be known at mmap() time.
2175 *
2176 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2177 * to set caching and encryption bits for those vmas (except for COW pages).
2178 * This is ensured by core vm only modifying these page table entries using
2179 * functions that don't touch caching- or encryption bits, using pte_modify()
2180 * if needed. (See for example mprotect()).
2181 *
2182 * Also when new page-table entries are created, this is only done using the
2183 * fault() callback, and never using the value of vma->vm_page_prot,
2184 * except for page-table entries that point to anonymous pages as the result
2185 * of COW.
2186 *
2187 * Context: Process context. May allocate using %GFP_KERNEL.
2188 * Return: vm_fault_t value.
2189 */
2190vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2191 unsigned long pfn, pgprot_t pgprot)
2192{
2193 /*
2194 * Technically, architectures with pte_special can avoid all these
2195 * restrictions (same for remap_pfn_range). However we would like
2196 * consistency in testing and feature parity among all, so we should
2197 * try to keep these invariants in place for everybody.
2198 */
2199 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2200 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2201 (VM_PFNMAP|VM_MIXEDMAP));
2202 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2203 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2204
2205 if (addr < vma->vm_start || addr >= vma->vm_end)
2206 return VM_FAULT_SIGBUS;
2207
2208 if (!pfn_modify_allowed(pfn, pgprot))
2209 return VM_FAULT_SIGBUS;
2210
2211 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2212
2213 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2214 false);
2215}
2216EXPORT_SYMBOL(vmf_insert_pfn_prot);
2217
2218/**
2219 * vmf_insert_pfn - insert single pfn into user vma
2220 * @vma: user vma to map to
2221 * @addr: target user address of this page
2222 * @pfn: source kernel pfn
2223 *
2224 * Similar to vm_insert_page, this allows drivers to insert individual pages
2225 * they've allocated into a user vma. Same comments apply.
2226 *
2227 * This function should only be called from a vm_ops->fault handler, and
2228 * in that case the handler should return the result of this function.
2229 *
2230 * vma cannot be a COW mapping.
2231 *
2232 * As this is called only for pages that do not currently exist, we
2233 * do not need to flush old virtual caches or the TLB.
2234 *
2235 * Context: Process context. May allocate using %GFP_KERNEL.
2236 * Return: vm_fault_t value.
2237 */
2238vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2239 unsigned long pfn)
2240{
2241 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2242}
2243EXPORT_SYMBOL(vmf_insert_pfn);
2244
2245static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2246{
2247 /* these checks mirror the abort conditions in vm_normal_page */
2248 if (vma->vm_flags & VM_MIXEDMAP)
2249 return true;
2250 if (pfn_t_devmap(pfn))
2251 return true;
2252 if (pfn_t_special(pfn))
2253 return true;
2254 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2255 return true;
2256 return false;
2257}
2258
2259static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2260 unsigned long addr, pfn_t pfn, bool mkwrite)
2261{
2262 pgprot_t pgprot = vma->vm_page_prot;
2263 int err;
2264
2265 BUG_ON(!vm_mixed_ok(vma, pfn));
2266
2267 if (addr < vma->vm_start || addr >= vma->vm_end)
2268 return VM_FAULT_SIGBUS;
2269
2270 track_pfn_insert(vma, &pgprot, pfn);
2271
2272 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2273 return VM_FAULT_SIGBUS;
2274
2275 /*
2276 * If we don't have pte special, then we have to use the pfn_valid()
2277 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2278 * refcount the page if pfn_valid is true (hence insert_page rather
2279 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2280 * without pte special, it would there be refcounted as a normal page.
2281 */
2282 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2283 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2284 struct page *page;
2285
2286 /*
2287 * At this point we are committed to insert_page()
2288 * regardless of whether the caller specified flags that
2289 * result in pfn_t_has_page() == false.
2290 */
2291 page = pfn_to_page(pfn_t_to_pfn(pfn));
2292 err = insert_page(vma, addr, page, pgprot);
2293 } else {
2294 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2295 }
2296
2297 if (err == -ENOMEM)
2298 return VM_FAULT_OOM;
2299 if (err < 0 && err != -EBUSY)
2300 return VM_FAULT_SIGBUS;
2301
2302 return VM_FAULT_NOPAGE;
2303}
2304
2305vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2306 pfn_t pfn)
2307{
2308 return __vm_insert_mixed(vma, addr, pfn, false);
2309}
2310EXPORT_SYMBOL(vmf_insert_mixed);
2311
2312/*
2313 * If the insertion of PTE failed because someone else already added a
2314 * different entry in the mean time, we treat that as success as we assume
2315 * the same entry was actually inserted.
2316 */
2317vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2318 unsigned long addr, pfn_t pfn)
2319{
2320 return __vm_insert_mixed(vma, addr, pfn, true);
2321}
2322EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2323
2324/*
2325 * maps a range of physical memory into the requested pages. the old
2326 * mappings are removed. any references to nonexistent pages results
2327 * in null mappings (currently treated as "copy-on-access")
2328 */
2329static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2330 unsigned long addr, unsigned long end,
2331 unsigned long pfn, pgprot_t prot)
2332{
2333 pte_t *pte, *mapped_pte;
2334 spinlock_t *ptl;
2335 int err = 0;
2336
2337 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2338 if (!pte)
2339 return -ENOMEM;
2340 arch_enter_lazy_mmu_mode();
2341 do {
2342 BUG_ON(!pte_none(*pte));
2343 if (!pfn_modify_allowed(pfn, prot)) {
2344 err = -EACCES;
2345 break;
2346 }
2347 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2348 pfn++;
2349 } while (pte++, addr += PAGE_SIZE, addr != end);
2350 arch_leave_lazy_mmu_mode();
2351 pte_unmap_unlock(mapped_pte, ptl);
2352 return err;
2353}
2354
2355static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2356 unsigned long addr, unsigned long end,
2357 unsigned long pfn, pgprot_t prot)
2358{
2359 pmd_t *pmd;
2360 unsigned long next;
2361 int err;
2362
2363 pfn -= addr >> PAGE_SHIFT;
2364 pmd = pmd_alloc(mm, pud, addr);
2365 if (!pmd)
2366 return -ENOMEM;
2367 VM_BUG_ON(pmd_trans_huge(*pmd));
2368 do {
2369 next = pmd_addr_end(addr, end);
2370 err = remap_pte_range(mm, pmd, addr, next,
2371 pfn + (addr >> PAGE_SHIFT), prot);
2372 if (err)
2373 return err;
2374 } while (pmd++, addr = next, addr != end);
2375 return 0;
2376}
2377
2378static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2379 unsigned long addr, unsigned long end,
2380 unsigned long pfn, pgprot_t prot)
2381{
2382 pud_t *pud;
2383 unsigned long next;
2384 int err;
2385
2386 pfn -= addr >> PAGE_SHIFT;
2387 pud = pud_alloc(mm, p4d, addr);
2388 if (!pud)
2389 return -ENOMEM;
2390 do {
2391 next = pud_addr_end(addr, end);
2392 err = remap_pmd_range(mm, pud, addr, next,
2393 pfn + (addr >> PAGE_SHIFT), prot);
2394 if (err)
2395 return err;
2396 } while (pud++, addr = next, addr != end);
2397 return 0;
2398}
2399
2400static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2401 unsigned long addr, unsigned long end,
2402 unsigned long pfn, pgprot_t prot)
2403{
2404 p4d_t *p4d;
2405 unsigned long next;
2406 int err;
2407
2408 pfn -= addr >> PAGE_SHIFT;
2409 p4d = p4d_alloc(mm, pgd, addr);
2410 if (!p4d)
2411 return -ENOMEM;
2412 do {
2413 next = p4d_addr_end(addr, end);
2414 err = remap_pud_range(mm, p4d, addr, next,
2415 pfn + (addr >> PAGE_SHIFT), prot);
2416 if (err)
2417 return err;
2418 } while (p4d++, addr = next, addr != end);
2419 return 0;
2420}
2421
2422/*
2423 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2424 * must have pre-validated the caching bits of the pgprot_t.
2425 */
2426int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2427 unsigned long pfn, unsigned long size, pgprot_t prot)
2428{
2429 pgd_t *pgd;
2430 unsigned long next;
2431 unsigned long end = addr + PAGE_ALIGN(size);
2432 struct mm_struct *mm = vma->vm_mm;
2433 int err;
2434
2435 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2436 return -EINVAL;
2437
2438 /*
2439 * Physically remapped pages are special. Tell the
2440 * rest of the world about it:
2441 * VM_IO tells people not to look at these pages
2442 * (accesses can have side effects).
2443 * VM_PFNMAP tells the core MM that the base pages are just
2444 * raw PFN mappings, and do not have a "struct page" associated
2445 * with them.
2446 * VM_DONTEXPAND
2447 * Disable vma merging and expanding with mremap().
2448 * VM_DONTDUMP
2449 * Omit vma from core dump, even when VM_IO turned off.
2450 *
2451 * There's a horrible special case to handle copy-on-write
2452 * behaviour that some programs depend on. We mark the "original"
2453 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2454 * See vm_normal_page() for details.
2455 */
2456 if (is_cow_mapping(vma->vm_flags)) {
2457 if (addr != vma->vm_start || end != vma->vm_end)
2458 return -EINVAL;
2459 vma->vm_pgoff = pfn;
2460 }
2461
2462 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2463
2464 BUG_ON(addr >= end);
2465 pfn -= addr >> PAGE_SHIFT;
2466 pgd = pgd_offset(mm, addr);
2467 flush_cache_range(vma, addr, end);
2468 do {
2469 next = pgd_addr_end(addr, end);
2470 err = remap_p4d_range(mm, pgd, addr, next,
2471 pfn + (addr >> PAGE_SHIFT), prot);
2472 if (err)
2473 return err;
2474 } while (pgd++, addr = next, addr != end);
2475
2476 return 0;
2477}
2478
2479/**
2480 * remap_pfn_range - remap kernel memory to userspace
2481 * @vma: user vma to map to
2482 * @addr: target page aligned user address to start at
2483 * @pfn: page frame number of kernel physical memory address
2484 * @size: size of mapping area
2485 * @prot: page protection flags for this mapping
2486 *
2487 * Note: this is only safe if the mm semaphore is held when called.
2488 *
2489 * Return: %0 on success, negative error code otherwise.
2490 */
2491int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2492 unsigned long pfn, unsigned long size, pgprot_t prot)
2493{
2494 int err;
2495
2496 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2497 if (err)
2498 return -EINVAL;
2499
2500 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2501 if (err)
2502 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2503 return err;
2504}
2505EXPORT_SYMBOL(remap_pfn_range);
2506
2507/**
2508 * vm_iomap_memory - remap memory to userspace
2509 * @vma: user vma to map to
2510 * @start: start of the physical memory to be mapped
2511 * @len: size of area
2512 *
2513 * This is a simplified io_remap_pfn_range() for common driver use. The
2514 * driver just needs to give us the physical memory range to be mapped,
2515 * we'll figure out the rest from the vma information.
2516 *
2517 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2518 * whatever write-combining details or similar.
2519 *
2520 * Return: %0 on success, negative error code otherwise.
2521 */
2522int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2523{
2524 unsigned long vm_len, pfn, pages;
2525
2526 /* Check that the physical memory area passed in looks valid */
2527 if (start + len < start)
2528 return -EINVAL;
2529 /*
2530 * You *really* shouldn't map things that aren't page-aligned,
2531 * but we've historically allowed it because IO memory might
2532 * just have smaller alignment.
2533 */
2534 len += start & ~PAGE_MASK;
2535 pfn = start >> PAGE_SHIFT;
2536 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2537 if (pfn + pages < pfn)
2538 return -EINVAL;
2539
2540 /* We start the mapping 'vm_pgoff' pages into the area */
2541 if (vma->vm_pgoff > pages)
2542 return -EINVAL;
2543 pfn += vma->vm_pgoff;
2544 pages -= vma->vm_pgoff;
2545
2546 /* Can we fit all of the mapping? */
2547 vm_len = vma->vm_end - vma->vm_start;
2548 if (vm_len >> PAGE_SHIFT > pages)
2549 return -EINVAL;
2550
2551 /* Ok, let it rip */
2552 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2553}
2554EXPORT_SYMBOL(vm_iomap_memory);
2555
2556static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2557 unsigned long addr, unsigned long end,
2558 pte_fn_t fn, void *data, bool create,
2559 pgtbl_mod_mask *mask)
2560{
2561 pte_t *pte, *mapped_pte;
2562 int err = 0;
2563 spinlock_t *ptl;
2564
2565 if (create) {
2566 mapped_pte = pte = (mm == &init_mm) ?
2567 pte_alloc_kernel_track(pmd, addr, mask) :
2568 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2569 if (!pte)
2570 return -ENOMEM;
2571 } else {
2572 mapped_pte = pte = (mm == &init_mm) ?
2573 pte_offset_kernel(pmd, addr) :
2574 pte_offset_map_lock(mm, pmd, addr, &ptl);
2575 }
2576
2577 BUG_ON(pmd_huge(*pmd));
2578
2579 arch_enter_lazy_mmu_mode();
2580
2581 if (fn) {
2582 do {
2583 if (create || !pte_none(*pte)) {
2584 err = fn(pte++, addr, data);
2585 if (err)
2586 break;
2587 }
2588 } while (addr += PAGE_SIZE, addr != end);
2589 }
2590 *mask |= PGTBL_PTE_MODIFIED;
2591
2592 arch_leave_lazy_mmu_mode();
2593
2594 if (mm != &init_mm)
2595 pte_unmap_unlock(mapped_pte, ptl);
2596 return err;
2597}
2598
2599static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2600 unsigned long addr, unsigned long end,
2601 pte_fn_t fn, void *data, bool create,
2602 pgtbl_mod_mask *mask)
2603{
2604 pmd_t *pmd;
2605 unsigned long next;
2606 int err = 0;
2607
2608 BUG_ON(pud_huge(*pud));
2609
2610 if (create) {
2611 pmd = pmd_alloc_track(mm, pud, addr, mask);
2612 if (!pmd)
2613 return -ENOMEM;
2614 } else {
2615 pmd = pmd_offset(pud, addr);
2616 }
2617 do {
2618 next = pmd_addr_end(addr, end);
2619 if (pmd_none(*pmd) && !create)
2620 continue;
2621 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2622 return -EINVAL;
2623 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2624 if (!create)
2625 continue;
2626 pmd_clear_bad(pmd);
2627 }
2628 err = apply_to_pte_range(mm, pmd, addr, next,
2629 fn, data, create, mask);
2630 if (err)
2631 break;
2632 } while (pmd++, addr = next, addr != end);
2633
2634 return err;
2635}
2636
2637static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2638 unsigned long addr, unsigned long end,
2639 pte_fn_t fn, void *data, bool create,
2640 pgtbl_mod_mask *mask)
2641{
2642 pud_t *pud;
2643 unsigned long next;
2644 int err = 0;
2645
2646 if (create) {
2647 pud = pud_alloc_track(mm, p4d, addr, mask);
2648 if (!pud)
2649 return -ENOMEM;
2650 } else {
2651 pud = pud_offset(p4d, addr);
2652 }
2653 do {
2654 next = pud_addr_end(addr, end);
2655 if (pud_none(*pud) && !create)
2656 continue;
2657 if (WARN_ON_ONCE(pud_leaf(*pud)))
2658 return -EINVAL;
2659 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2660 if (!create)
2661 continue;
2662 pud_clear_bad(pud);
2663 }
2664 err = apply_to_pmd_range(mm, pud, addr, next,
2665 fn, data, create, mask);
2666 if (err)
2667 break;
2668 } while (pud++, addr = next, addr != end);
2669
2670 return err;
2671}
2672
2673static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2674 unsigned long addr, unsigned long end,
2675 pte_fn_t fn, void *data, bool create,
2676 pgtbl_mod_mask *mask)
2677{
2678 p4d_t *p4d;
2679 unsigned long next;
2680 int err = 0;
2681
2682 if (create) {
2683 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2684 if (!p4d)
2685 return -ENOMEM;
2686 } else {
2687 p4d = p4d_offset(pgd, addr);
2688 }
2689 do {
2690 next = p4d_addr_end(addr, end);
2691 if (p4d_none(*p4d) && !create)
2692 continue;
2693 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2694 return -EINVAL;
2695 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2696 if (!create)
2697 continue;
2698 p4d_clear_bad(p4d);
2699 }
2700 err = apply_to_pud_range(mm, p4d, addr, next,
2701 fn, data, create, mask);
2702 if (err)
2703 break;
2704 } while (p4d++, addr = next, addr != end);
2705
2706 return err;
2707}
2708
2709static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2710 unsigned long size, pte_fn_t fn,
2711 void *data, bool create)
2712{
2713 pgd_t *pgd;
2714 unsigned long start = addr, next;
2715 unsigned long end = addr + size;
2716 pgtbl_mod_mask mask = 0;
2717 int err = 0;
2718
2719 if (WARN_ON(addr >= end))
2720 return -EINVAL;
2721
2722 pgd = pgd_offset(mm, addr);
2723 do {
2724 next = pgd_addr_end(addr, end);
2725 if (pgd_none(*pgd) && !create)
2726 continue;
2727 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2728 return -EINVAL;
2729 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2730 if (!create)
2731 continue;
2732 pgd_clear_bad(pgd);
2733 }
2734 err = apply_to_p4d_range(mm, pgd, addr, next,
2735 fn, data, create, &mask);
2736 if (err)
2737 break;
2738 } while (pgd++, addr = next, addr != end);
2739
2740 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2741 arch_sync_kernel_mappings(start, start + size);
2742
2743 return err;
2744}
2745
2746/*
2747 * Scan a region of virtual memory, filling in page tables as necessary
2748 * and calling a provided function on each leaf page table.
2749 */
2750int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2751 unsigned long size, pte_fn_t fn, void *data)
2752{
2753 return __apply_to_page_range(mm, addr, size, fn, data, true);
2754}
2755EXPORT_SYMBOL_GPL(apply_to_page_range);
2756
2757/*
2758 * Scan a region of virtual memory, calling a provided function on
2759 * each leaf page table where it exists.
2760 *
2761 * Unlike apply_to_page_range, this does _not_ fill in page tables
2762 * where they are absent.
2763 */
2764int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2765 unsigned long size, pte_fn_t fn, void *data)
2766{
2767 return __apply_to_page_range(mm, addr, size, fn, data, false);
2768}
2769EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2770
2771/*
2772 * handle_pte_fault chooses page fault handler according to an entry which was
2773 * read non-atomically. Before making any commitment, on those architectures
2774 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2775 * parts, do_swap_page must check under lock before unmapping the pte and
2776 * proceeding (but do_wp_page is only called after already making such a check;
2777 * and do_anonymous_page can safely check later on).
2778 */
2779static inline int pte_unmap_same(struct vm_fault *vmf)
2780{
2781 int same = 1;
2782#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2783 if (sizeof(pte_t) > sizeof(unsigned long)) {
2784 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2785 spin_lock(ptl);
2786 same = pte_same(*vmf->pte, vmf->orig_pte);
2787 spin_unlock(ptl);
2788 }
2789#endif
2790 pte_unmap(vmf->pte);
2791 vmf->pte = NULL;
2792 return same;
2793}
2794
2795/*
2796 * Return:
2797 * 0: copied succeeded
2798 * -EHWPOISON: copy failed due to hwpoison in source page
2799 * -EAGAIN: copied failed (some other reason)
2800 */
2801static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2802 struct vm_fault *vmf)
2803{
2804 int ret;
2805 void *kaddr;
2806 void __user *uaddr;
2807 bool locked = false;
2808 struct vm_area_struct *vma = vmf->vma;
2809 struct mm_struct *mm = vma->vm_mm;
2810 unsigned long addr = vmf->address;
2811
2812 if (likely(src)) {
2813 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2814 memory_failure_queue(page_to_pfn(src), 0);
2815 return -EHWPOISON;
2816 }
2817 return 0;
2818 }
2819
2820 /*
2821 * If the source page was a PFN mapping, we don't have
2822 * a "struct page" for it. We do a best-effort copy by
2823 * just copying from the original user address. If that
2824 * fails, we just zero-fill it. Live with it.
2825 */
2826 kaddr = kmap_atomic(dst);
2827 uaddr = (void __user *)(addr & PAGE_MASK);
2828
2829 /*
2830 * On architectures with software "accessed" bits, we would
2831 * take a double page fault, so mark it accessed here.
2832 */
2833 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2834 pte_t entry;
2835
2836 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2837 locked = true;
2838 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2839 /*
2840 * Other thread has already handled the fault
2841 * and update local tlb only
2842 */
2843 update_mmu_tlb(vma, addr, vmf->pte);
2844 ret = -EAGAIN;
2845 goto pte_unlock;
2846 }
2847
2848 entry = pte_mkyoung(vmf->orig_pte);
2849 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2850 update_mmu_cache(vma, addr, vmf->pte);
2851 }
2852
2853 /*
2854 * This really shouldn't fail, because the page is there
2855 * in the page tables. But it might just be unreadable,
2856 * in which case we just give up and fill the result with
2857 * zeroes.
2858 */
2859 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2860 if (locked)
2861 goto warn;
2862
2863 /* Re-validate under PTL if the page is still mapped */
2864 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2865 locked = true;
2866 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2867 /* The PTE changed under us, update local tlb */
2868 update_mmu_tlb(vma, addr, vmf->pte);
2869 ret = -EAGAIN;
2870 goto pte_unlock;
2871 }
2872
2873 /*
2874 * The same page can be mapped back since last copy attempt.
2875 * Try to copy again under PTL.
2876 */
2877 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2878 /*
2879 * Give a warn in case there can be some obscure
2880 * use-case
2881 */
2882warn:
2883 WARN_ON_ONCE(1);
2884 clear_page(kaddr);
2885 }
2886 }
2887
2888 ret = 0;
2889
2890pte_unlock:
2891 if (locked)
2892 pte_unmap_unlock(vmf->pte, vmf->ptl);
2893 kunmap_atomic(kaddr);
2894 flush_dcache_page(dst);
2895
2896 return ret;
2897}
2898
2899static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2900{
2901 struct file *vm_file = vma->vm_file;
2902
2903 if (vm_file)
2904 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2905
2906 /*
2907 * Special mappings (e.g. VDSO) do not have any file so fake
2908 * a default GFP_KERNEL for them.
2909 */
2910 return GFP_KERNEL;
2911}
2912
2913/*
2914 * Notify the address space that the page is about to become writable so that
2915 * it can prohibit this or wait for the page to get into an appropriate state.
2916 *
2917 * We do this without the lock held, so that it can sleep if it needs to.
2918 */
2919static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2920{
2921 vm_fault_t ret;
2922 struct page *page = vmf->page;
2923 unsigned int old_flags = vmf->flags;
2924
2925 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2926
2927 if (vmf->vma->vm_file &&
2928 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2929 return VM_FAULT_SIGBUS;
2930
2931 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2932 /* Restore original flags so that caller is not surprised */
2933 vmf->flags = old_flags;
2934 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2935 return ret;
2936 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2937 lock_page(page);
2938 if (!page->mapping) {
2939 unlock_page(page);
2940 return 0; /* retry */
2941 }
2942 ret |= VM_FAULT_LOCKED;
2943 } else
2944 VM_BUG_ON_PAGE(!PageLocked(page), page);
2945 return ret;
2946}
2947
2948/*
2949 * Handle dirtying of a page in shared file mapping on a write fault.
2950 *
2951 * The function expects the page to be locked and unlocks it.
2952 */
2953static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2954{
2955 struct vm_area_struct *vma = vmf->vma;
2956 struct address_space *mapping;
2957 struct page *page = vmf->page;
2958 bool dirtied;
2959 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2960
2961 dirtied = set_page_dirty(page);
2962 VM_BUG_ON_PAGE(PageAnon(page), page);
2963 /*
2964 * Take a local copy of the address_space - page.mapping may be zeroed
2965 * by truncate after unlock_page(). The address_space itself remains
2966 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2967 * release semantics to prevent the compiler from undoing this copying.
2968 */
2969 mapping = page_rmapping(page);
2970 unlock_page(page);
2971
2972 if (!page_mkwrite)
2973 file_update_time(vma->vm_file);
2974
2975 /*
2976 * Throttle page dirtying rate down to writeback speed.
2977 *
2978 * mapping may be NULL here because some device drivers do not
2979 * set page.mapping but still dirty their pages
2980 *
2981 * Drop the mmap_lock before waiting on IO, if we can. The file
2982 * is pinning the mapping, as per above.
2983 */
2984 if ((dirtied || page_mkwrite) && mapping) {
2985 struct file *fpin;
2986
2987 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2988 balance_dirty_pages_ratelimited(mapping);
2989 if (fpin) {
2990 fput(fpin);
2991 return VM_FAULT_COMPLETED;
2992 }
2993 }
2994
2995 return 0;
2996}
2997
2998/*
2999 * Handle write page faults for pages that can be reused in the current vma
3000 *
3001 * This can happen either due to the mapping being with the VM_SHARED flag,
3002 * or due to us being the last reference standing to the page. In either
3003 * case, all we need to do here is to mark the page as writable and update
3004 * any related book-keeping.
3005 */
3006static inline void wp_page_reuse(struct vm_fault *vmf)
3007 __releases(vmf->ptl)
3008{
3009 struct vm_area_struct *vma = vmf->vma;
3010 struct page *page = vmf->page;
3011 pte_t entry;
3012
3013 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3014 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3015
3016 /*
3017 * Clear the pages cpupid information as the existing
3018 * information potentially belongs to a now completely
3019 * unrelated process.
3020 */
3021 if (page)
3022 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3023
3024 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3025 entry = pte_mkyoung(vmf->orig_pte);
3026 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3027 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3028 update_mmu_cache(vma, vmf->address, vmf->pte);
3029 pte_unmap_unlock(vmf->pte, vmf->ptl);
3030 count_vm_event(PGREUSE);
3031}
3032
3033/*
3034 * Handle the case of a page which we actually need to copy to a new page,
3035 * either due to COW or unsharing.
3036 *
3037 * Called with mmap_lock locked and the old page referenced, but
3038 * without the ptl held.
3039 *
3040 * High level logic flow:
3041 *
3042 * - Allocate a page, copy the content of the old page to the new one.
3043 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3044 * - Take the PTL. If the pte changed, bail out and release the allocated page
3045 * - If the pte is still the way we remember it, update the page table and all
3046 * relevant references. This includes dropping the reference the page-table
3047 * held to the old page, as well as updating the rmap.
3048 * - In any case, unlock the PTL and drop the reference we took to the old page.
3049 */
3050static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3051{
3052 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3053 struct vm_area_struct *vma = vmf->vma;
3054 struct mm_struct *mm = vma->vm_mm;
3055 struct folio *old_folio = NULL;
3056 struct folio *new_folio = NULL;
3057 pte_t entry;
3058 int page_copied = 0;
3059 struct mmu_notifier_range range;
3060 int ret;
3061
3062 delayacct_wpcopy_start();
3063
3064 if (vmf->page)
3065 old_folio = page_folio(vmf->page);
3066 if (unlikely(anon_vma_prepare(vma)))
3067 goto oom;
3068
3069 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3070 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3071 if (!new_folio)
3072 goto oom;
3073 } else {
3074 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3075 vmf->address, false);
3076 if (!new_folio)
3077 goto oom;
3078
3079 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3080 if (ret) {
3081 /*
3082 * COW failed, if the fault was solved by other,
3083 * it's fine. If not, userspace would re-fault on
3084 * the same address and we will handle the fault
3085 * from the second attempt.
3086 * The -EHWPOISON case will not be retried.
3087 */
3088 folio_put(new_folio);
3089 if (old_folio)
3090 folio_put(old_folio);
3091
3092 delayacct_wpcopy_end();
3093 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3094 }
3095 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3096 }
3097
3098 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3099 goto oom_free_new;
3100 folio_throttle_swaprate(new_folio, GFP_KERNEL);
3101
3102 __folio_mark_uptodate(new_folio);
3103
3104 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3105 vmf->address & PAGE_MASK,
3106 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3107 mmu_notifier_invalidate_range_start(&range);
3108
3109 /*
3110 * Re-check the pte - we dropped the lock
3111 */
3112 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3113 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3114 if (old_folio) {
3115 if (!folio_test_anon(old_folio)) {
3116 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3117 inc_mm_counter(mm, MM_ANONPAGES);
3118 }
3119 } else {
3120 inc_mm_counter(mm, MM_ANONPAGES);
3121 }
3122 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3123 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3124 entry = pte_sw_mkyoung(entry);
3125 if (unlikely(unshare)) {
3126 if (pte_soft_dirty(vmf->orig_pte))
3127 entry = pte_mksoft_dirty(entry);
3128 if (pte_uffd_wp(vmf->orig_pte))
3129 entry = pte_mkuffd_wp(entry);
3130 } else {
3131 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3132 }
3133
3134 /*
3135 * Clear the pte entry and flush it first, before updating the
3136 * pte with the new entry, to keep TLBs on different CPUs in
3137 * sync. This code used to set the new PTE then flush TLBs, but
3138 * that left a window where the new PTE could be loaded into
3139 * some TLBs while the old PTE remains in others.
3140 */
3141 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3142 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3143 folio_add_lru_vma(new_folio, vma);
3144 /*
3145 * We call the notify macro here because, when using secondary
3146 * mmu page tables (such as kvm shadow page tables), we want the
3147 * new page to be mapped directly into the secondary page table.
3148 */
3149 BUG_ON(unshare && pte_write(entry));
3150 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3151 update_mmu_cache(vma, vmf->address, vmf->pte);
3152 if (old_folio) {
3153 /*
3154 * Only after switching the pte to the new page may
3155 * we remove the mapcount here. Otherwise another
3156 * process may come and find the rmap count decremented
3157 * before the pte is switched to the new page, and
3158 * "reuse" the old page writing into it while our pte
3159 * here still points into it and can be read by other
3160 * threads.
3161 *
3162 * The critical issue is to order this
3163 * page_remove_rmap with the ptp_clear_flush above.
3164 * Those stores are ordered by (if nothing else,)
3165 * the barrier present in the atomic_add_negative
3166 * in page_remove_rmap.
3167 *
3168 * Then the TLB flush in ptep_clear_flush ensures that
3169 * no process can access the old page before the
3170 * decremented mapcount is visible. And the old page
3171 * cannot be reused until after the decremented
3172 * mapcount is visible. So transitively, TLBs to
3173 * old page will be flushed before it can be reused.
3174 */
3175 page_remove_rmap(vmf->page, vma, false);
3176 }
3177
3178 /* Free the old page.. */
3179 new_folio = old_folio;
3180 page_copied = 1;
3181 } else {
3182 update_mmu_tlb(vma, vmf->address, vmf->pte);
3183 }
3184
3185 if (new_folio)
3186 folio_put(new_folio);
3187
3188 pte_unmap_unlock(vmf->pte, vmf->ptl);
3189 /*
3190 * No need to double call mmu_notifier->invalidate_range() callback as
3191 * the above ptep_clear_flush_notify() did already call it.
3192 */
3193 mmu_notifier_invalidate_range_only_end(&range);
3194 if (old_folio) {
3195 if (page_copied)
3196 free_swap_cache(&old_folio->page);
3197 folio_put(old_folio);
3198 }
3199
3200 delayacct_wpcopy_end();
3201 return 0;
3202oom_free_new:
3203 folio_put(new_folio);
3204oom:
3205 if (old_folio)
3206 folio_put(old_folio);
3207
3208 delayacct_wpcopy_end();
3209 return VM_FAULT_OOM;
3210}
3211
3212/**
3213 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3214 * writeable once the page is prepared
3215 *
3216 * @vmf: structure describing the fault
3217 *
3218 * This function handles all that is needed to finish a write page fault in a
3219 * shared mapping due to PTE being read-only once the mapped page is prepared.
3220 * It handles locking of PTE and modifying it.
3221 *
3222 * The function expects the page to be locked or other protection against
3223 * concurrent faults / writeback (such as DAX radix tree locks).
3224 *
3225 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3226 * we acquired PTE lock.
3227 */
3228vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3229{
3230 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3231 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3232 &vmf->ptl);
3233 /*
3234 * We might have raced with another page fault while we released the
3235 * pte_offset_map_lock.
3236 */
3237 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3238 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3239 pte_unmap_unlock(vmf->pte, vmf->ptl);
3240 return VM_FAULT_NOPAGE;
3241 }
3242 wp_page_reuse(vmf);
3243 return 0;
3244}
3245
3246/*
3247 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3248 * mapping
3249 */
3250static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3251{
3252 struct vm_area_struct *vma = vmf->vma;
3253
3254 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3255 vm_fault_t ret;
3256
3257 pte_unmap_unlock(vmf->pte, vmf->ptl);
3258 vmf->flags |= FAULT_FLAG_MKWRITE;
3259 ret = vma->vm_ops->pfn_mkwrite(vmf);
3260 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3261 return ret;
3262 return finish_mkwrite_fault(vmf);
3263 }
3264 wp_page_reuse(vmf);
3265 return 0;
3266}
3267
3268static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3269 __releases(vmf->ptl)
3270{
3271 struct vm_area_struct *vma = vmf->vma;
3272 vm_fault_t ret = 0;
3273
3274 get_page(vmf->page);
3275
3276 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3277 vm_fault_t tmp;
3278
3279 pte_unmap_unlock(vmf->pte, vmf->ptl);
3280 tmp = do_page_mkwrite(vmf);
3281 if (unlikely(!tmp || (tmp &
3282 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3283 put_page(vmf->page);
3284 return tmp;
3285 }
3286 tmp = finish_mkwrite_fault(vmf);
3287 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3288 unlock_page(vmf->page);
3289 put_page(vmf->page);
3290 return tmp;
3291 }
3292 } else {
3293 wp_page_reuse(vmf);
3294 lock_page(vmf->page);
3295 }
3296 ret |= fault_dirty_shared_page(vmf);
3297 put_page(vmf->page);
3298
3299 return ret;
3300}
3301
3302/*
3303 * This routine handles present pages, when
3304 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3305 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3306 * (FAULT_FLAG_UNSHARE)
3307 *
3308 * It is done by copying the page to a new address and decrementing the
3309 * shared-page counter for the old page.
3310 *
3311 * Note that this routine assumes that the protection checks have been
3312 * done by the caller (the low-level page fault routine in most cases).
3313 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3314 * done any necessary COW.
3315 *
3316 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3317 * though the page will change only once the write actually happens. This
3318 * avoids a few races, and potentially makes it more efficient.
3319 *
3320 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3321 * but allow concurrent faults), with pte both mapped and locked.
3322 * We return with mmap_lock still held, but pte unmapped and unlocked.
3323 */
3324static vm_fault_t do_wp_page(struct vm_fault *vmf)
3325 __releases(vmf->ptl)
3326{
3327 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3328 struct vm_area_struct *vma = vmf->vma;
3329 struct folio *folio = NULL;
3330
3331 if (likely(!unshare)) {
3332 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3333 pte_unmap_unlock(vmf->pte, vmf->ptl);
3334 return handle_userfault(vmf, VM_UFFD_WP);
3335 }
3336
3337 /*
3338 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3339 * is flushed in this case before copying.
3340 */
3341 if (unlikely(userfaultfd_wp(vmf->vma) &&
3342 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3343 flush_tlb_page(vmf->vma, vmf->address);
3344 }
3345
3346 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3347
3348 /*
3349 * Shared mapping: we are guaranteed to have VM_WRITE and
3350 * FAULT_FLAG_WRITE set at this point.
3351 */
3352 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3353 /*
3354 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3355 * VM_PFNMAP VMA.
3356 *
3357 * We should not cow pages in a shared writeable mapping.
3358 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3359 */
3360 if (!vmf->page)
3361 return wp_pfn_shared(vmf);
3362 return wp_page_shared(vmf);
3363 }
3364
3365 if (vmf->page)
3366 folio = page_folio(vmf->page);
3367
3368 /*
3369 * Private mapping: create an exclusive anonymous page copy if reuse
3370 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3371 */
3372 if (folio && folio_test_anon(folio)) {
3373 /*
3374 * If the page is exclusive to this process we must reuse the
3375 * page without further checks.
3376 */
3377 if (PageAnonExclusive(vmf->page))
3378 goto reuse;
3379
3380 /*
3381 * We have to verify under folio lock: these early checks are
3382 * just an optimization to avoid locking the folio and freeing
3383 * the swapcache if there is little hope that we can reuse.
3384 *
3385 * KSM doesn't necessarily raise the folio refcount.
3386 */
3387 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3388 goto copy;
3389 if (!folio_test_lru(folio))
3390 /*
3391 * Note: We cannot easily detect+handle references from
3392 * remote LRU pagevecs or references to LRU folios.
3393 */
3394 lru_add_drain();
3395 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3396 goto copy;
3397 if (!folio_trylock(folio))
3398 goto copy;
3399 if (folio_test_swapcache(folio))
3400 folio_free_swap(folio);
3401 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3402 folio_unlock(folio);
3403 goto copy;
3404 }
3405 /*
3406 * Ok, we've got the only folio reference from our mapping
3407 * and the folio is locked, it's dark out, and we're wearing
3408 * sunglasses. Hit it.
3409 */
3410 page_move_anon_rmap(vmf->page, vma);
3411 folio_unlock(folio);
3412reuse:
3413 if (unlikely(unshare)) {
3414 pte_unmap_unlock(vmf->pte, vmf->ptl);
3415 return 0;
3416 }
3417 wp_page_reuse(vmf);
3418 return 0;
3419 }
3420copy:
3421 /*
3422 * Ok, we need to copy. Oh, well..
3423 */
3424 if (folio)
3425 folio_get(folio);
3426
3427 pte_unmap_unlock(vmf->pte, vmf->ptl);
3428#ifdef CONFIG_KSM
3429 if (folio && folio_test_ksm(folio))
3430 count_vm_event(COW_KSM);
3431#endif
3432 return wp_page_copy(vmf);
3433}
3434
3435static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3436 unsigned long start_addr, unsigned long end_addr,
3437 struct zap_details *details)
3438{
3439 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3440}
3441
3442static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3443 pgoff_t first_index,
3444 pgoff_t last_index,
3445 struct zap_details *details)
3446{
3447 struct vm_area_struct *vma;
3448 pgoff_t vba, vea, zba, zea;
3449
3450 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3451 vba = vma->vm_pgoff;
3452 vea = vba + vma_pages(vma) - 1;
3453 zba = max(first_index, vba);
3454 zea = min(last_index, vea);
3455
3456 unmap_mapping_range_vma(vma,
3457 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3458 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3459 details);
3460 }
3461}
3462
3463/**
3464 * unmap_mapping_folio() - Unmap single folio from processes.
3465 * @folio: The locked folio to be unmapped.
3466 *
3467 * Unmap this folio from any userspace process which still has it mmaped.
3468 * Typically, for efficiency, the range of nearby pages has already been
3469 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3470 * truncation or invalidation holds the lock on a folio, it may find that
3471 * the page has been remapped again: and then uses unmap_mapping_folio()
3472 * to unmap it finally.
3473 */
3474void unmap_mapping_folio(struct folio *folio)
3475{
3476 struct address_space *mapping = folio->mapping;
3477 struct zap_details details = { };
3478 pgoff_t first_index;
3479 pgoff_t last_index;
3480
3481 VM_BUG_ON(!folio_test_locked(folio));
3482
3483 first_index = folio->index;
3484 last_index = folio->index + folio_nr_pages(folio) - 1;
3485
3486 details.even_cows = false;
3487 details.single_folio = folio;
3488 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3489
3490 i_mmap_lock_read(mapping);
3491 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3492 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3493 last_index, &details);
3494 i_mmap_unlock_read(mapping);
3495}
3496
3497/**
3498 * unmap_mapping_pages() - Unmap pages from processes.
3499 * @mapping: The address space containing pages to be unmapped.
3500 * @start: Index of first page to be unmapped.
3501 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3502 * @even_cows: Whether to unmap even private COWed pages.
3503 *
3504 * Unmap the pages in this address space from any userspace process which
3505 * has them mmaped. Generally, you want to remove COWed pages as well when
3506 * a file is being truncated, but not when invalidating pages from the page
3507 * cache.
3508 */
3509void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3510 pgoff_t nr, bool even_cows)
3511{
3512 struct zap_details details = { };
3513 pgoff_t first_index = start;
3514 pgoff_t last_index = start + nr - 1;
3515
3516 details.even_cows = even_cows;
3517 if (last_index < first_index)
3518 last_index = ULONG_MAX;
3519
3520 i_mmap_lock_read(mapping);
3521 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3522 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3523 last_index, &details);
3524 i_mmap_unlock_read(mapping);
3525}
3526EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3527
3528/**
3529 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3530 * address_space corresponding to the specified byte range in the underlying
3531 * file.
3532 *
3533 * @mapping: the address space containing mmaps to be unmapped.
3534 * @holebegin: byte in first page to unmap, relative to the start of
3535 * the underlying file. This will be rounded down to a PAGE_SIZE
3536 * boundary. Note that this is different from truncate_pagecache(), which
3537 * must keep the partial page. In contrast, we must get rid of
3538 * partial pages.
3539 * @holelen: size of prospective hole in bytes. This will be rounded
3540 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3541 * end of the file.
3542 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3543 * but 0 when invalidating pagecache, don't throw away private data.
3544 */
3545void unmap_mapping_range(struct address_space *mapping,
3546 loff_t const holebegin, loff_t const holelen, int even_cows)
3547{
3548 pgoff_t hba = holebegin >> PAGE_SHIFT;
3549 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3550
3551 /* Check for overflow. */
3552 if (sizeof(holelen) > sizeof(hlen)) {
3553 long long holeend =
3554 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3555 if (holeend & ~(long long)ULONG_MAX)
3556 hlen = ULONG_MAX - hba + 1;
3557 }
3558
3559 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3560}
3561EXPORT_SYMBOL(unmap_mapping_range);
3562
3563/*
3564 * Restore a potential device exclusive pte to a working pte entry
3565 */
3566static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3567{
3568 struct folio *folio = page_folio(vmf->page);
3569 struct vm_area_struct *vma = vmf->vma;
3570 struct mmu_notifier_range range;
3571
3572 /*
3573 * We need a reference to lock the folio because we don't hold
3574 * the PTL so a racing thread can remove the device-exclusive
3575 * entry and unmap it. If the folio is free the entry must
3576 * have been removed already. If it happens to have already
3577 * been re-allocated after being freed all we do is lock and
3578 * unlock it.
3579 */
3580 if (!folio_try_get(folio))
3581 return 0;
3582
3583 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3584 folio_put(folio);
3585 return VM_FAULT_RETRY;
3586 }
3587 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3588 vma->vm_mm, vmf->address & PAGE_MASK,
3589 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3590 mmu_notifier_invalidate_range_start(&range);
3591
3592 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3593 &vmf->ptl);
3594 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3595 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3596
3597 pte_unmap_unlock(vmf->pte, vmf->ptl);
3598 folio_unlock(folio);
3599 folio_put(folio);
3600
3601 mmu_notifier_invalidate_range_end(&range);
3602 return 0;
3603}
3604
3605static inline bool should_try_to_free_swap(struct folio *folio,
3606 struct vm_area_struct *vma,
3607 unsigned int fault_flags)
3608{
3609 if (!folio_test_swapcache(folio))
3610 return false;
3611 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3612 folio_test_mlocked(folio))
3613 return true;
3614 /*
3615 * If we want to map a page that's in the swapcache writable, we
3616 * have to detect via the refcount if we're really the exclusive
3617 * user. Try freeing the swapcache to get rid of the swapcache
3618 * reference only in case it's likely that we'll be the exlusive user.
3619 */
3620 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3621 folio_ref_count(folio) == 2;
3622}
3623
3624static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3625{
3626 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3627 vmf->address, &vmf->ptl);
3628 /*
3629 * Be careful so that we will only recover a special uffd-wp pte into a
3630 * none pte. Otherwise it means the pte could have changed, so retry.
3631 *
3632 * This should also cover the case where e.g. the pte changed
3633 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3634 * So is_pte_marker() check is not enough to safely drop the pte.
3635 */
3636 if (pte_same(vmf->orig_pte, *vmf->pte))
3637 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3638 pte_unmap_unlock(vmf->pte, vmf->ptl);
3639 return 0;
3640}
3641
3642static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3643{
3644 if (vma_is_anonymous(vmf->vma))
3645 return do_anonymous_page(vmf);
3646 else
3647 return do_fault(vmf);
3648}
3649
3650/*
3651 * This is actually a page-missing access, but with uffd-wp special pte
3652 * installed. It means this pte was wr-protected before being unmapped.
3653 */
3654static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3655{
3656 /*
3657 * Just in case there're leftover special ptes even after the region
3658 * got unregistered - we can simply clear them.
3659 */
3660 if (unlikely(!userfaultfd_wp(vmf->vma)))
3661 return pte_marker_clear(vmf);
3662
3663 return do_pte_missing(vmf);
3664}
3665
3666static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3667{
3668 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3669 unsigned long marker = pte_marker_get(entry);
3670
3671 /*
3672 * PTE markers should never be empty. If anything weird happened,
3673 * the best thing to do is to kill the process along with its mm.
3674 */
3675 if (WARN_ON_ONCE(!marker))
3676 return VM_FAULT_SIGBUS;
3677
3678 /* Higher priority than uffd-wp when data corrupted */
3679 if (marker & PTE_MARKER_SWAPIN_ERROR)
3680 return VM_FAULT_SIGBUS;
3681
3682 if (pte_marker_entry_uffd_wp(entry))
3683 return pte_marker_handle_uffd_wp(vmf);
3684
3685 /* This is an unknown pte marker */
3686 return VM_FAULT_SIGBUS;
3687}
3688
3689/*
3690 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3691 * but allow concurrent faults), and pte mapped but not yet locked.
3692 * We return with pte unmapped and unlocked.
3693 *
3694 * We return with the mmap_lock locked or unlocked in the same cases
3695 * as does filemap_fault().
3696 */
3697vm_fault_t do_swap_page(struct vm_fault *vmf)
3698{
3699 struct vm_area_struct *vma = vmf->vma;
3700 struct folio *swapcache, *folio = NULL;
3701 struct page *page;
3702 struct swap_info_struct *si = NULL;
3703 rmap_t rmap_flags = RMAP_NONE;
3704 bool exclusive = false;
3705 swp_entry_t entry;
3706 pte_t pte;
3707 int locked;
3708 vm_fault_t ret = 0;
3709 void *shadow = NULL;
3710
3711 if (!pte_unmap_same(vmf))
3712 goto out;
3713
3714 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3715 ret = VM_FAULT_RETRY;
3716 goto out;
3717 }
3718
3719 entry = pte_to_swp_entry(vmf->orig_pte);
3720 if (unlikely(non_swap_entry(entry))) {
3721 if (is_migration_entry(entry)) {
3722 migration_entry_wait(vma->vm_mm, vmf->pmd,
3723 vmf->address);
3724 } else if (is_device_exclusive_entry(entry)) {
3725 vmf->page = pfn_swap_entry_to_page(entry);
3726 ret = remove_device_exclusive_entry(vmf);
3727 } else if (is_device_private_entry(entry)) {
3728 vmf->page = pfn_swap_entry_to_page(entry);
3729 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3730 vmf->address, &vmf->ptl);
3731 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3732 spin_unlock(vmf->ptl);
3733 goto out;
3734 }
3735
3736 /*
3737 * Get a page reference while we know the page can't be
3738 * freed.
3739 */
3740 get_page(vmf->page);
3741 pte_unmap_unlock(vmf->pte, vmf->ptl);
3742 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3743 put_page(vmf->page);
3744 } else if (is_hwpoison_entry(entry)) {
3745 ret = VM_FAULT_HWPOISON;
3746 } else if (is_pte_marker_entry(entry)) {
3747 ret = handle_pte_marker(vmf);
3748 } else {
3749 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3750 ret = VM_FAULT_SIGBUS;
3751 }
3752 goto out;
3753 }
3754
3755 /* Prevent swapoff from happening to us. */
3756 si = get_swap_device(entry);
3757 if (unlikely(!si))
3758 goto out;
3759
3760 folio = swap_cache_get_folio(entry, vma, vmf->address);
3761 if (folio)
3762 page = folio_file_page(folio, swp_offset(entry));
3763 swapcache = folio;
3764
3765 if (!folio) {
3766 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3767 __swap_count(entry) == 1) {
3768 /* skip swapcache */
3769 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3770 vma, vmf->address, false);
3771 page = &folio->page;
3772 if (folio) {
3773 __folio_set_locked(folio);
3774 __folio_set_swapbacked(folio);
3775
3776 if (mem_cgroup_swapin_charge_folio(folio,
3777 vma->vm_mm, GFP_KERNEL,
3778 entry)) {
3779 ret = VM_FAULT_OOM;
3780 goto out_page;
3781 }
3782 mem_cgroup_swapin_uncharge_swap(entry);
3783
3784 shadow = get_shadow_from_swap_cache(entry);
3785 if (shadow)
3786 workingset_refault(folio, shadow);
3787
3788 folio_add_lru(folio);
3789
3790 /* To provide entry to swap_readpage() */
3791 folio_set_swap_entry(folio, entry);
3792 swap_readpage(page, true, NULL);
3793 folio->private = NULL;
3794 }
3795 } else {
3796 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3797 vmf);
3798 if (page)
3799 folio = page_folio(page);
3800 swapcache = folio;
3801 }
3802
3803 if (!folio) {
3804 /*
3805 * Back out if somebody else faulted in this pte
3806 * while we released the pte lock.
3807 */
3808 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3809 vmf->address, &vmf->ptl);
3810 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3811 ret = VM_FAULT_OOM;
3812 goto unlock;
3813 }
3814
3815 /* Had to read the page from swap area: Major fault */
3816 ret = VM_FAULT_MAJOR;
3817 count_vm_event(PGMAJFAULT);
3818 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3819 } else if (PageHWPoison(page)) {
3820 /*
3821 * hwpoisoned dirty swapcache pages are kept for killing
3822 * owner processes (which may be unknown at hwpoison time)
3823 */
3824 ret = VM_FAULT_HWPOISON;
3825 goto out_release;
3826 }
3827
3828 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3829
3830 if (!locked) {
3831 ret |= VM_FAULT_RETRY;
3832 goto out_release;
3833 }
3834
3835 if (swapcache) {
3836 /*
3837 * Make sure folio_free_swap() or swapoff did not release the
3838 * swapcache from under us. The page pin, and pte_same test
3839 * below, are not enough to exclude that. Even if it is still
3840 * swapcache, we need to check that the page's swap has not
3841 * changed.
3842 */
3843 if (unlikely(!folio_test_swapcache(folio) ||
3844 page_private(page) != entry.val))
3845 goto out_page;
3846
3847 /*
3848 * KSM sometimes has to copy on read faults, for example, if
3849 * page->index of !PageKSM() pages would be nonlinear inside the
3850 * anon VMA -- PageKSM() is lost on actual swapout.
3851 */
3852 page = ksm_might_need_to_copy(page, vma, vmf->address);
3853 if (unlikely(!page)) {
3854 ret = VM_FAULT_OOM;
3855 goto out_page;
3856 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3857 ret = VM_FAULT_HWPOISON;
3858 goto out_page;
3859 }
3860 folio = page_folio(page);
3861
3862 /*
3863 * If we want to map a page that's in the swapcache writable, we
3864 * have to detect via the refcount if we're really the exclusive
3865 * owner. Try removing the extra reference from the local LRU
3866 * pagevecs if required.
3867 */
3868 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3869 !folio_test_ksm(folio) && !folio_test_lru(folio))
3870 lru_add_drain();
3871 }
3872
3873 folio_throttle_swaprate(folio, GFP_KERNEL);
3874
3875 /*
3876 * Back out if somebody else already faulted in this pte.
3877 */
3878 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3879 &vmf->ptl);
3880 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3881 goto out_nomap;
3882
3883 if (unlikely(!folio_test_uptodate(folio))) {
3884 ret = VM_FAULT_SIGBUS;
3885 goto out_nomap;
3886 }
3887
3888 /*
3889 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3890 * must never point at an anonymous page in the swapcache that is
3891 * PG_anon_exclusive. Sanity check that this holds and especially, that
3892 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3893 * check after taking the PT lock and making sure that nobody
3894 * concurrently faulted in this page and set PG_anon_exclusive.
3895 */
3896 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3897 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3898
3899 /*
3900 * Check under PT lock (to protect against concurrent fork() sharing
3901 * the swap entry concurrently) for certainly exclusive pages.
3902 */
3903 if (!folio_test_ksm(folio)) {
3904 exclusive = pte_swp_exclusive(vmf->orig_pte);
3905 if (folio != swapcache) {
3906 /*
3907 * We have a fresh page that is not exposed to the
3908 * swapcache -> certainly exclusive.
3909 */
3910 exclusive = true;
3911 } else if (exclusive && folio_test_writeback(folio) &&
3912 data_race(si->flags & SWP_STABLE_WRITES)) {
3913 /*
3914 * This is tricky: not all swap backends support
3915 * concurrent page modifications while under writeback.
3916 *
3917 * So if we stumble over such a page in the swapcache
3918 * we must not set the page exclusive, otherwise we can
3919 * map it writable without further checks and modify it
3920 * while still under writeback.
3921 *
3922 * For these problematic swap backends, simply drop the
3923 * exclusive marker: this is perfectly fine as we start
3924 * writeback only if we fully unmapped the page and
3925 * there are no unexpected references on the page after
3926 * unmapping succeeded. After fully unmapped, no
3927 * further GUP references (FOLL_GET and FOLL_PIN) can
3928 * appear, so dropping the exclusive marker and mapping
3929 * it only R/O is fine.
3930 */
3931 exclusive = false;
3932 }
3933 }
3934
3935 /*
3936 * Remove the swap entry and conditionally try to free up the swapcache.
3937 * We're already holding a reference on the page but haven't mapped it
3938 * yet.
3939 */
3940 swap_free(entry);
3941 if (should_try_to_free_swap(folio, vma, vmf->flags))
3942 folio_free_swap(folio);
3943
3944 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3945 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3946 pte = mk_pte(page, vma->vm_page_prot);
3947
3948 /*
3949 * Same logic as in do_wp_page(); however, optimize for pages that are
3950 * certainly not shared either because we just allocated them without
3951 * exposing them to the swapcache or because the swap entry indicates
3952 * exclusivity.
3953 */
3954 if (!folio_test_ksm(folio) &&
3955 (exclusive || folio_ref_count(folio) == 1)) {
3956 if (vmf->flags & FAULT_FLAG_WRITE) {
3957 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3958 vmf->flags &= ~FAULT_FLAG_WRITE;
3959 }
3960 rmap_flags |= RMAP_EXCLUSIVE;
3961 }
3962 flush_icache_page(vma, page);
3963 if (pte_swp_soft_dirty(vmf->orig_pte))
3964 pte = pte_mksoft_dirty(pte);
3965 if (pte_swp_uffd_wp(vmf->orig_pte))
3966 pte = pte_mkuffd_wp(pte);
3967 vmf->orig_pte = pte;
3968
3969 /* ksm created a completely new copy */
3970 if (unlikely(folio != swapcache && swapcache)) {
3971 page_add_new_anon_rmap(page, vma, vmf->address);
3972 folio_add_lru_vma(folio, vma);
3973 } else {
3974 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3975 }
3976
3977 VM_BUG_ON(!folio_test_anon(folio) ||
3978 (pte_write(pte) && !PageAnonExclusive(page)));
3979 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3980 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3981
3982 folio_unlock(folio);
3983 if (folio != swapcache && swapcache) {
3984 /*
3985 * Hold the lock to avoid the swap entry to be reused
3986 * until we take the PT lock for the pte_same() check
3987 * (to avoid false positives from pte_same). For
3988 * further safety release the lock after the swap_free
3989 * so that the swap count won't change under a
3990 * parallel locked swapcache.
3991 */
3992 folio_unlock(swapcache);
3993 folio_put(swapcache);
3994 }
3995
3996 if (vmf->flags & FAULT_FLAG_WRITE) {
3997 ret |= do_wp_page(vmf);
3998 if (ret & VM_FAULT_ERROR)
3999 ret &= VM_FAULT_ERROR;
4000 goto out;
4001 }
4002
4003 /* No need to invalidate - it was non-present before */
4004 update_mmu_cache(vma, vmf->address, vmf->pte);
4005unlock:
4006 pte_unmap_unlock(vmf->pte, vmf->ptl);
4007out:
4008 if (si)
4009 put_swap_device(si);
4010 return ret;
4011out_nomap:
4012 pte_unmap_unlock(vmf->pte, vmf->ptl);
4013out_page:
4014 folio_unlock(folio);
4015out_release:
4016 folio_put(folio);
4017 if (folio != swapcache && swapcache) {
4018 folio_unlock(swapcache);
4019 folio_put(swapcache);
4020 }
4021 if (si)
4022 put_swap_device(si);
4023 return ret;
4024}
4025
4026/*
4027 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4028 * but allow concurrent faults), and pte mapped but not yet locked.
4029 * We return with mmap_lock still held, but pte unmapped and unlocked.
4030 */
4031static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4032{
4033 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4034 struct vm_area_struct *vma = vmf->vma;
4035 struct folio *folio;
4036 vm_fault_t ret = 0;
4037 pte_t entry;
4038
4039 /* File mapping without ->vm_ops ? */
4040 if (vma->vm_flags & VM_SHARED)
4041 return VM_FAULT_SIGBUS;
4042
4043 /*
4044 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4045 * pte_offset_map() on pmds where a huge pmd might be created
4046 * from a different thread.
4047 *
4048 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4049 * parallel threads are excluded by other means.
4050 *
4051 * Here we only have mmap_read_lock(mm).
4052 */
4053 if (pte_alloc(vma->vm_mm, vmf->pmd))
4054 return VM_FAULT_OOM;
4055
4056 /* See comment in handle_pte_fault() */
4057 if (unlikely(pmd_trans_unstable(vmf->pmd)))
4058 return 0;
4059
4060 /* Use the zero-page for reads */
4061 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4062 !mm_forbids_zeropage(vma->vm_mm)) {
4063 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4064 vma->vm_page_prot));
4065 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4066 vmf->address, &vmf->ptl);
4067 if (vmf_pte_changed(vmf)) {
4068 update_mmu_tlb(vma, vmf->address, vmf->pte);
4069 goto unlock;
4070 }
4071 ret = check_stable_address_space(vma->vm_mm);
4072 if (ret)
4073 goto unlock;
4074 /* Deliver the page fault to userland, check inside PT lock */
4075 if (userfaultfd_missing(vma)) {
4076 pte_unmap_unlock(vmf->pte, vmf->ptl);
4077 return handle_userfault(vmf, VM_UFFD_MISSING);
4078 }
4079 goto setpte;
4080 }
4081
4082 /* Allocate our own private page. */
4083 if (unlikely(anon_vma_prepare(vma)))
4084 goto oom;
4085 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4086 if (!folio)
4087 goto oom;
4088
4089 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4090 goto oom_free_page;
4091 folio_throttle_swaprate(folio, GFP_KERNEL);
4092
4093 /*
4094 * The memory barrier inside __folio_mark_uptodate makes sure that
4095 * preceding stores to the page contents become visible before
4096 * the set_pte_at() write.
4097 */
4098 __folio_mark_uptodate(folio);
4099
4100 entry = mk_pte(&folio->page, vma->vm_page_prot);
4101 entry = pte_sw_mkyoung(entry);
4102 if (vma->vm_flags & VM_WRITE)
4103 entry = pte_mkwrite(pte_mkdirty(entry));
4104
4105 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4106 &vmf->ptl);
4107 if (vmf_pte_changed(vmf)) {
4108 update_mmu_tlb(vma, vmf->address, vmf->pte);
4109 goto release;
4110 }
4111
4112 ret = check_stable_address_space(vma->vm_mm);
4113 if (ret)
4114 goto release;
4115
4116 /* Deliver the page fault to userland, check inside PT lock */
4117 if (userfaultfd_missing(vma)) {
4118 pte_unmap_unlock(vmf->pte, vmf->ptl);
4119 folio_put(folio);
4120 return handle_userfault(vmf, VM_UFFD_MISSING);
4121 }
4122
4123 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4124 folio_add_new_anon_rmap(folio, vma, vmf->address);
4125 folio_add_lru_vma(folio, vma);
4126setpte:
4127 if (uffd_wp)
4128 entry = pte_mkuffd_wp(entry);
4129 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4130
4131 /* No need to invalidate - it was non-present before */
4132 update_mmu_cache(vma, vmf->address, vmf->pte);
4133unlock:
4134 pte_unmap_unlock(vmf->pte, vmf->ptl);
4135 return ret;
4136release:
4137 folio_put(folio);
4138 goto unlock;
4139oom_free_page:
4140 folio_put(folio);
4141oom:
4142 return VM_FAULT_OOM;
4143}
4144
4145/*
4146 * The mmap_lock must have been held on entry, and may have been
4147 * released depending on flags and vma->vm_ops->fault() return value.
4148 * See filemap_fault() and __lock_page_retry().
4149 */
4150static vm_fault_t __do_fault(struct vm_fault *vmf)
4151{
4152 struct vm_area_struct *vma = vmf->vma;
4153 vm_fault_t ret;
4154
4155 /*
4156 * Preallocate pte before we take page_lock because this might lead to
4157 * deadlocks for memcg reclaim which waits for pages under writeback:
4158 * lock_page(A)
4159 * SetPageWriteback(A)
4160 * unlock_page(A)
4161 * lock_page(B)
4162 * lock_page(B)
4163 * pte_alloc_one
4164 * shrink_page_list
4165 * wait_on_page_writeback(A)
4166 * SetPageWriteback(B)
4167 * unlock_page(B)
4168 * # flush A, B to clear the writeback
4169 */
4170 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4171 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4172 if (!vmf->prealloc_pte)
4173 return VM_FAULT_OOM;
4174 }
4175
4176 ret = vma->vm_ops->fault(vmf);
4177 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4178 VM_FAULT_DONE_COW)))
4179 return ret;
4180
4181 if (unlikely(PageHWPoison(vmf->page))) {
4182 struct page *page = vmf->page;
4183 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4184 if (ret & VM_FAULT_LOCKED) {
4185 if (page_mapped(page))
4186 unmap_mapping_pages(page_mapping(page),
4187 page->index, 1, false);
4188 /* Retry if a clean page was removed from the cache. */
4189 if (invalidate_inode_page(page))
4190 poisonret = VM_FAULT_NOPAGE;
4191 unlock_page(page);
4192 }
4193 put_page(page);
4194 vmf->page = NULL;
4195 return poisonret;
4196 }
4197
4198 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4199 lock_page(vmf->page);
4200 else
4201 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4202
4203 return ret;
4204}
4205
4206#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4207static void deposit_prealloc_pte(struct vm_fault *vmf)
4208{
4209 struct vm_area_struct *vma = vmf->vma;
4210
4211 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4212 /*
4213 * We are going to consume the prealloc table,
4214 * count that as nr_ptes.
4215 */
4216 mm_inc_nr_ptes(vma->vm_mm);
4217 vmf->prealloc_pte = NULL;
4218}
4219
4220vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4221{
4222 struct vm_area_struct *vma = vmf->vma;
4223 bool write = vmf->flags & FAULT_FLAG_WRITE;
4224 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4225 pmd_t entry;
4226 int i;
4227 vm_fault_t ret = VM_FAULT_FALLBACK;
4228
4229 if (!transhuge_vma_suitable(vma, haddr))
4230 return ret;
4231
4232 page = compound_head(page);
4233 if (compound_order(page) != HPAGE_PMD_ORDER)
4234 return ret;
4235
4236 /*
4237 * Just backoff if any subpage of a THP is corrupted otherwise
4238 * the corrupted page may mapped by PMD silently to escape the
4239 * check. This kind of THP just can be PTE mapped. Access to
4240 * the corrupted subpage should trigger SIGBUS as expected.
4241 */
4242 if (unlikely(PageHasHWPoisoned(page)))
4243 return ret;
4244
4245 /*
4246 * Archs like ppc64 need additional space to store information
4247 * related to pte entry. Use the preallocated table for that.
4248 */
4249 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4250 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4251 if (!vmf->prealloc_pte)
4252 return VM_FAULT_OOM;
4253 }
4254
4255 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4256 if (unlikely(!pmd_none(*vmf->pmd)))
4257 goto out;
4258
4259 for (i = 0; i < HPAGE_PMD_NR; i++)
4260 flush_icache_page(vma, page + i);
4261
4262 entry = mk_huge_pmd(page, vma->vm_page_prot);
4263 if (write)
4264 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4265
4266 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4267 page_add_file_rmap(page, vma, true);
4268
4269 /*
4270 * deposit and withdraw with pmd lock held
4271 */
4272 if (arch_needs_pgtable_deposit())
4273 deposit_prealloc_pte(vmf);
4274
4275 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4276
4277 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4278
4279 /* fault is handled */
4280 ret = 0;
4281 count_vm_event(THP_FILE_MAPPED);
4282out:
4283 spin_unlock(vmf->ptl);
4284 return ret;
4285}
4286#else
4287vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4288{
4289 return VM_FAULT_FALLBACK;
4290}
4291#endif
4292
4293void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4294{
4295 struct vm_area_struct *vma = vmf->vma;
4296 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4297 bool write = vmf->flags & FAULT_FLAG_WRITE;
4298 bool prefault = vmf->address != addr;
4299 pte_t entry;
4300
4301 flush_icache_page(vma, page);
4302 entry = mk_pte(page, vma->vm_page_prot);
4303
4304 if (prefault && arch_wants_old_prefaulted_pte())
4305 entry = pte_mkold(entry);
4306 else
4307 entry = pte_sw_mkyoung(entry);
4308
4309 if (write)
4310 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4311 if (unlikely(uffd_wp))
4312 entry = pte_mkuffd_wp(entry);
4313 /* copy-on-write page */
4314 if (write && !(vma->vm_flags & VM_SHARED)) {
4315 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4316 page_add_new_anon_rmap(page, vma, addr);
4317 lru_cache_add_inactive_or_unevictable(page, vma);
4318 } else {
4319 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4320 page_add_file_rmap(page, vma, false);
4321 }
4322 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4323}
4324
4325static bool vmf_pte_changed(struct vm_fault *vmf)
4326{
4327 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4328 return !pte_same(*vmf->pte, vmf->orig_pte);
4329
4330 return !pte_none(*vmf->pte);
4331}
4332
4333/**
4334 * finish_fault - finish page fault once we have prepared the page to fault
4335 *
4336 * @vmf: structure describing the fault
4337 *
4338 * This function handles all that is needed to finish a page fault once the
4339 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4340 * given page, adds reverse page mapping, handles memcg charges and LRU
4341 * addition.
4342 *
4343 * The function expects the page to be locked and on success it consumes a
4344 * reference of a page being mapped (for the PTE which maps it).
4345 *
4346 * Return: %0 on success, %VM_FAULT_ code in case of error.
4347 */
4348vm_fault_t finish_fault(struct vm_fault *vmf)
4349{
4350 struct vm_area_struct *vma = vmf->vma;
4351 struct page *page;
4352 vm_fault_t ret;
4353
4354 /* Did we COW the page? */
4355 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4356 page = vmf->cow_page;
4357 else
4358 page = vmf->page;
4359
4360 /*
4361 * check even for read faults because we might have lost our CoWed
4362 * page
4363 */
4364 if (!(vma->vm_flags & VM_SHARED)) {
4365 ret = check_stable_address_space(vma->vm_mm);
4366 if (ret)
4367 return ret;
4368 }
4369
4370 if (pmd_none(*vmf->pmd)) {
4371 if (PageTransCompound(page)) {
4372 ret = do_set_pmd(vmf, page);
4373 if (ret != VM_FAULT_FALLBACK)
4374 return ret;
4375 }
4376
4377 if (vmf->prealloc_pte)
4378 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4379 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4380 return VM_FAULT_OOM;
4381 }
4382
4383 /*
4384 * See comment in handle_pte_fault() for how this scenario happens, we
4385 * need to return NOPAGE so that we drop this page.
4386 */
4387 if (pmd_devmap_trans_unstable(vmf->pmd))
4388 return VM_FAULT_NOPAGE;
4389
4390 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4391 vmf->address, &vmf->ptl);
4392
4393 /* Re-check under ptl */
4394 if (likely(!vmf_pte_changed(vmf))) {
4395 do_set_pte(vmf, page, vmf->address);
4396
4397 /* no need to invalidate: a not-present page won't be cached */
4398 update_mmu_cache(vma, vmf->address, vmf->pte);
4399
4400 ret = 0;
4401 } else {
4402 update_mmu_tlb(vma, vmf->address, vmf->pte);
4403 ret = VM_FAULT_NOPAGE;
4404 }
4405
4406 pte_unmap_unlock(vmf->pte, vmf->ptl);
4407 return ret;
4408}
4409
4410static unsigned long fault_around_pages __read_mostly =
4411 65536 >> PAGE_SHIFT;
4412
4413#ifdef CONFIG_DEBUG_FS
4414static int fault_around_bytes_get(void *data, u64 *val)
4415{
4416 *val = fault_around_pages << PAGE_SHIFT;
4417 return 0;
4418}
4419
4420/*
4421 * fault_around_bytes must be rounded down to the nearest page order as it's
4422 * what do_fault_around() expects to see.
4423 */
4424static int fault_around_bytes_set(void *data, u64 val)
4425{
4426 if (val / PAGE_SIZE > PTRS_PER_PTE)
4427 return -EINVAL;
4428
4429 /*
4430 * The minimum value is 1 page, however this results in no fault-around
4431 * at all. See should_fault_around().
4432 */
4433 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4434
4435 return 0;
4436}
4437DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4438 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4439
4440static int __init fault_around_debugfs(void)
4441{
4442 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4443 &fault_around_bytes_fops);
4444 return 0;
4445}
4446late_initcall(fault_around_debugfs);
4447#endif
4448
4449/*
4450 * do_fault_around() tries to map few pages around the fault address. The hope
4451 * is that the pages will be needed soon and this will lower the number of
4452 * faults to handle.
4453 *
4454 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4455 * not ready to be mapped: not up-to-date, locked, etc.
4456 *
4457 * This function doesn't cross VMA or page table boundaries, in order to call
4458 * map_pages() and acquire a PTE lock only once.
4459 *
4460 * fault_around_pages defines how many pages we'll try to map.
4461 * do_fault_around() expects it to be set to a power of two less than or equal
4462 * to PTRS_PER_PTE.
4463 *
4464 * The virtual address of the area that we map is naturally aligned to
4465 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4466 * (and therefore to page order). This way it's easier to guarantee
4467 * that we don't cross page table boundaries.
4468 */
4469static vm_fault_t do_fault_around(struct vm_fault *vmf)
4470{
4471 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4472 pgoff_t pte_off = pte_index(vmf->address);
4473 /* The page offset of vmf->address within the VMA. */
4474 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4475 pgoff_t from_pte, to_pte;
4476 vm_fault_t ret;
4477
4478 /* The PTE offset of the start address, clamped to the VMA. */
4479 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4480 pte_off - min(pte_off, vma_off));
4481
4482 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4483 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4484 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4485
4486 if (pmd_none(*vmf->pmd)) {
4487 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4488 if (!vmf->prealloc_pte)
4489 return VM_FAULT_OOM;
4490 }
4491
4492 rcu_read_lock();
4493 ret = vmf->vma->vm_ops->map_pages(vmf,
4494 vmf->pgoff + from_pte - pte_off,
4495 vmf->pgoff + to_pte - pte_off);
4496 rcu_read_unlock();
4497
4498 return ret;
4499}
4500
4501/* Return true if we should do read fault-around, false otherwise */
4502static inline bool should_fault_around(struct vm_fault *vmf)
4503{
4504 /* No ->map_pages? No way to fault around... */
4505 if (!vmf->vma->vm_ops->map_pages)
4506 return false;
4507
4508 if (uffd_disable_fault_around(vmf->vma))
4509 return false;
4510
4511 /* A single page implies no faulting 'around' at all. */
4512 return fault_around_pages > 1;
4513}
4514
4515static vm_fault_t do_read_fault(struct vm_fault *vmf)
4516{
4517 vm_fault_t ret = 0;
4518
4519 /*
4520 * Let's call ->map_pages() first and use ->fault() as fallback
4521 * if page by the offset is not ready to be mapped (cold cache or
4522 * something).
4523 */
4524 if (should_fault_around(vmf)) {
4525 ret = do_fault_around(vmf);
4526 if (ret)
4527 return ret;
4528 }
4529
4530 ret = __do_fault(vmf);
4531 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4532 return ret;
4533
4534 ret |= finish_fault(vmf);
4535 unlock_page(vmf->page);
4536 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4537 put_page(vmf->page);
4538 return ret;
4539}
4540
4541static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4542{
4543 struct vm_area_struct *vma = vmf->vma;
4544 vm_fault_t ret;
4545
4546 if (unlikely(anon_vma_prepare(vma)))
4547 return VM_FAULT_OOM;
4548
4549 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4550 if (!vmf->cow_page)
4551 return VM_FAULT_OOM;
4552
4553 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4554 GFP_KERNEL)) {
4555 put_page(vmf->cow_page);
4556 return VM_FAULT_OOM;
4557 }
4558 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4559
4560 ret = __do_fault(vmf);
4561 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4562 goto uncharge_out;
4563 if (ret & VM_FAULT_DONE_COW)
4564 return ret;
4565
4566 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4567 __SetPageUptodate(vmf->cow_page);
4568
4569 ret |= finish_fault(vmf);
4570 unlock_page(vmf->page);
4571 put_page(vmf->page);
4572 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4573 goto uncharge_out;
4574 return ret;
4575uncharge_out:
4576 put_page(vmf->cow_page);
4577 return ret;
4578}
4579
4580static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4581{
4582 struct vm_area_struct *vma = vmf->vma;
4583 vm_fault_t ret, tmp;
4584
4585 ret = __do_fault(vmf);
4586 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4587 return ret;
4588
4589 /*
4590 * Check if the backing address space wants to know that the page is
4591 * about to become writable
4592 */
4593 if (vma->vm_ops->page_mkwrite) {
4594 unlock_page(vmf->page);
4595 tmp = do_page_mkwrite(vmf);
4596 if (unlikely(!tmp ||
4597 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4598 put_page(vmf->page);
4599 return tmp;
4600 }
4601 }
4602
4603 ret |= finish_fault(vmf);
4604 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4605 VM_FAULT_RETRY))) {
4606 unlock_page(vmf->page);
4607 put_page(vmf->page);
4608 return ret;
4609 }
4610
4611 ret |= fault_dirty_shared_page(vmf);
4612 return ret;
4613}
4614
4615/*
4616 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4617 * but allow concurrent faults).
4618 * The mmap_lock may have been released depending on flags and our
4619 * return value. See filemap_fault() and __folio_lock_or_retry().
4620 * If mmap_lock is released, vma may become invalid (for example
4621 * by other thread calling munmap()).
4622 */
4623static vm_fault_t do_fault(struct vm_fault *vmf)
4624{
4625 struct vm_area_struct *vma = vmf->vma;
4626 struct mm_struct *vm_mm = vma->vm_mm;
4627 vm_fault_t ret;
4628
4629 /*
4630 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4631 */
4632 if (!vma->vm_ops->fault) {
4633 /*
4634 * If we find a migration pmd entry or a none pmd entry, which
4635 * should never happen, return SIGBUS
4636 */
4637 if (unlikely(!pmd_present(*vmf->pmd)))
4638 ret = VM_FAULT_SIGBUS;
4639 else {
4640 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4641 vmf->pmd,
4642 vmf->address,
4643 &vmf->ptl);
4644 /*
4645 * Make sure this is not a temporary clearing of pte
4646 * by holding ptl and checking again. A R/M/W update
4647 * of pte involves: take ptl, clearing the pte so that
4648 * we don't have concurrent modification by hardware
4649 * followed by an update.
4650 */
4651 if (unlikely(pte_none(*vmf->pte)))
4652 ret = VM_FAULT_SIGBUS;
4653 else
4654 ret = VM_FAULT_NOPAGE;
4655
4656 pte_unmap_unlock(vmf->pte, vmf->ptl);
4657 }
4658 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4659 ret = do_read_fault(vmf);
4660 else if (!(vma->vm_flags & VM_SHARED))
4661 ret = do_cow_fault(vmf);
4662 else
4663 ret = do_shared_fault(vmf);
4664
4665 /* preallocated pagetable is unused: free it */
4666 if (vmf->prealloc_pte) {
4667 pte_free(vm_mm, vmf->prealloc_pte);
4668 vmf->prealloc_pte = NULL;
4669 }
4670 return ret;
4671}
4672
4673int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4674 unsigned long addr, int page_nid, int *flags)
4675{
4676 get_page(page);
4677
4678 /* Record the current PID acceesing VMA */
4679 vma_set_access_pid_bit(vma);
4680
4681 count_vm_numa_event(NUMA_HINT_FAULTS);
4682 if (page_nid == numa_node_id()) {
4683 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4684 *flags |= TNF_FAULT_LOCAL;
4685 }
4686
4687 return mpol_misplaced(page, vma, addr);
4688}
4689
4690static vm_fault_t do_numa_page(struct vm_fault *vmf)
4691{
4692 struct vm_area_struct *vma = vmf->vma;
4693 struct page *page = NULL;
4694 int page_nid = NUMA_NO_NODE;
4695 bool writable = false;
4696 int last_cpupid;
4697 int target_nid;
4698 pte_t pte, old_pte;
4699 int flags = 0;
4700
4701 /*
4702 * The "pte" at this point cannot be used safely without
4703 * validation through pte_unmap_same(). It's of NUMA type but
4704 * the pfn may be screwed if the read is non atomic.
4705 */
4706 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4707 spin_lock(vmf->ptl);
4708 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4709 pte_unmap_unlock(vmf->pte, vmf->ptl);
4710 goto out;
4711 }
4712
4713 /* Get the normal PTE */
4714 old_pte = ptep_get(vmf->pte);
4715 pte = pte_modify(old_pte, vma->vm_page_prot);
4716
4717 /*
4718 * Detect now whether the PTE could be writable; this information
4719 * is only valid while holding the PT lock.
4720 */
4721 writable = pte_write(pte);
4722 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4723 can_change_pte_writable(vma, vmf->address, pte))
4724 writable = true;
4725
4726 page = vm_normal_page(vma, vmf->address, pte);
4727 if (!page || is_zone_device_page(page))
4728 goto out_map;
4729
4730 /* TODO: handle PTE-mapped THP */
4731 if (PageCompound(page))
4732 goto out_map;
4733
4734 /*
4735 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4736 * much anyway since they can be in shared cache state. This misses
4737 * the case where a mapping is writable but the process never writes
4738 * to it but pte_write gets cleared during protection updates and
4739 * pte_dirty has unpredictable behaviour between PTE scan updates,
4740 * background writeback, dirty balancing and application behaviour.
4741 */
4742 if (!writable)
4743 flags |= TNF_NO_GROUP;
4744
4745 /*
4746 * Flag if the page is shared between multiple address spaces. This
4747 * is later used when determining whether to group tasks together
4748 */
4749 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4750 flags |= TNF_SHARED;
4751
4752 page_nid = page_to_nid(page);
4753 /*
4754 * For memory tiering mode, cpupid of slow memory page is used
4755 * to record page access time. So use default value.
4756 */
4757 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4758 !node_is_toptier(page_nid))
4759 last_cpupid = (-1 & LAST_CPUPID_MASK);
4760 else
4761 last_cpupid = page_cpupid_last(page);
4762 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4763 &flags);
4764 if (target_nid == NUMA_NO_NODE) {
4765 put_page(page);
4766 goto out_map;
4767 }
4768 pte_unmap_unlock(vmf->pte, vmf->ptl);
4769 writable = false;
4770
4771 /* Migrate to the requested node */
4772 if (migrate_misplaced_page(page, vma, target_nid)) {
4773 page_nid = target_nid;
4774 flags |= TNF_MIGRATED;
4775 } else {
4776 flags |= TNF_MIGRATE_FAIL;
4777 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4778 spin_lock(vmf->ptl);
4779 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4780 pte_unmap_unlock(vmf->pte, vmf->ptl);
4781 goto out;
4782 }
4783 goto out_map;
4784 }
4785
4786out:
4787 if (page_nid != NUMA_NO_NODE)
4788 task_numa_fault(last_cpupid, page_nid, 1, flags);
4789 return 0;
4790out_map:
4791 /*
4792 * Make it present again, depending on how arch implements
4793 * non-accessible ptes, some can allow access by kernel mode.
4794 */
4795 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4796 pte = pte_modify(old_pte, vma->vm_page_prot);
4797 pte = pte_mkyoung(pte);
4798 if (writable)
4799 pte = pte_mkwrite(pte);
4800 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4801 update_mmu_cache(vma, vmf->address, vmf->pte);
4802 pte_unmap_unlock(vmf->pte, vmf->ptl);
4803 goto out;
4804}
4805
4806static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4807{
4808 if (vma_is_anonymous(vmf->vma))
4809 return do_huge_pmd_anonymous_page(vmf);
4810 if (vmf->vma->vm_ops->huge_fault)
4811 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4812 return VM_FAULT_FALLBACK;
4813}
4814
4815/* `inline' is required to avoid gcc 4.1.2 build error */
4816static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4817{
4818 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4819 vm_fault_t ret;
4820
4821 if (vma_is_anonymous(vmf->vma)) {
4822 if (likely(!unshare) &&
4823 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4824 return handle_userfault(vmf, VM_UFFD_WP);
4825 return do_huge_pmd_wp_page(vmf);
4826 }
4827
4828 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4829 if (vmf->vma->vm_ops->huge_fault) {
4830 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4831 if (!(ret & VM_FAULT_FALLBACK))
4832 return ret;
4833 }
4834 }
4835
4836 /* COW or write-notify handled on pte level: split pmd. */
4837 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4838
4839 return VM_FAULT_FALLBACK;
4840}
4841
4842static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4843{
4844#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4845 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4846 /* No support for anonymous transparent PUD pages yet */
4847 if (vma_is_anonymous(vmf->vma))
4848 return VM_FAULT_FALLBACK;
4849 if (vmf->vma->vm_ops->huge_fault)
4850 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4851#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4852 return VM_FAULT_FALLBACK;
4853}
4854
4855static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4856{
4857#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4858 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4859 vm_fault_t ret;
4860
4861 /* No support for anonymous transparent PUD pages yet */
4862 if (vma_is_anonymous(vmf->vma))
4863 goto split;
4864 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4865 if (vmf->vma->vm_ops->huge_fault) {
4866 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4867 if (!(ret & VM_FAULT_FALLBACK))
4868 return ret;
4869 }
4870 }
4871split:
4872 /* COW or write-notify not handled on PUD level: split pud.*/
4873 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4874#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4875 return VM_FAULT_FALLBACK;
4876}
4877
4878/*
4879 * These routines also need to handle stuff like marking pages dirty
4880 * and/or accessed for architectures that don't do it in hardware (most
4881 * RISC architectures). The early dirtying is also good on the i386.
4882 *
4883 * There is also a hook called "update_mmu_cache()" that architectures
4884 * with external mmu caches can use to update those (ie the Sparc or
4885 * PowerPC hashed page tables that act as extended TLBs).
4886 *
4887 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4888 * concurrent faults).
4889 *
4890 * The mmap_lock may have been released depending on flags and our return value.
4891 * See filemap_fault() and __folio_lock_or_retry().
4892 */
4893static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4894{
4895 pte_t entry;
4896
4897 if (unlikely(pmd_none(*vmf->pmd))) {
4898 /*
4899 * Leave __pte_alloc() until later: because vm_ops->fault may
4900 * want to allocate huge page, and if we expose page table
4901 * for an instant, it will be difficult to retract from
4902 * concurrent faults and from rmap lookups.
4903 */
4904 vmf->pte = NULL;
4905 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4906 } else {
4907 /*
4908 * If a huge pmd materialized under us just retry later. Use
4909 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4910 * of pmd_trans_huge() to ensure the pmd didn't become
4911 * pmd_trans_huge under us and then back to pmd_none, as a
4912 * result of MADV_DONTNEED running immediately after a huge pmd
4913 * fault in a different thread of this mm, in turn leading to a
4914 * misleading pmd_trans_huge() retval. All we have to ensure is
4915 * that it is a regular pmd that we can walk with
4916 * pte_offset_map() and we can do that through an atomic read
4917 * in C, which is what pmd_trans_unstable() provides.
4918 */
4919 if (pmd_devmap_trans_unstable(vmf->pmd))
4920 return 0;
4921 /*
4922 * A regular pmd is established and it can't morph into a huge
4923 * pmd from under us anymore at this point because we hold the
4924 * mmap_lock read mode and khugepaged takes it in write mode.
4925 * So now it's safe to run pte_offset_map().
4926 */
4927 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4928 vmf->orig_pte = *vmf->pte;
4929 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4930
4931 /*
4932 * some architectures can have larger ptes than wordsize,
4933 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4934 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4935 * accesses. The code below just needs a consistent view
4936 * for the ifs and we later double check anyway with the
4937 * ptl lock held. So here a barrier will do.
4938 */
4939 barrier();
4940 if (pte_none(vmf->orig_pte)) {
4941 pte_unmap(vmf->pte);
4942 vmf->pte = NULL;
4943 }
4944 }
4945
4946 if (!vmf->pte)
4947 return do_pte_missing(vmf);
4948
4949 if (!pte_present(vmf->orig_pte))
4950 return do_swap_page(vmf);
4951
4952 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4953 return do_numa_page(vmf);
4954
4955 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4956 spin_lock(vmf->ptl);
4957 entry = vmf->orig_pte;
4958 if (unlikely(!pte_same(*vmf->pte, entry))) {
4959 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4960 goto unlock;
4961 }
4962 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4963 if (!pte_write(entry))
4964 return do_wp_page(vmf);
4965 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4966 entry = pte_mkdirty(entry);
4967 }
4968 entry = pte_mkyoung(entry);
4969 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4970 vmf->flags & FAULT_FLAG_WRITE)) {
4971 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4972 } else {
4973 /* Skip spurious TLB flush for retried page fault */
4974 if (vmf->flags & FAULT_FLAG_TRIED)
4975 goto unlock;
4976 /*
4977 * This is needed only for protection faults but the arch code
4978 * is not yet telling us if this is a protection fault or not.
4979 * This still avoids useless tlb flushes for .text page faults
4980 * with threads.
4981 */
4982 if (vmf->flags & FAULT_FLAG_WRITE)
4983 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4984 vmf->pte);
4985 }
4986unlock:
4987 pte_unmap_unlock(vmf->pte, vmf->ptl);
4988 return 0;
4989}
4990
4991/*
4992 * By the time we get here, we already hold the mm semaphore
4993 *
4994 * The mmap_lock may have been released depending on flags and our
4995 * return value. See filemap_fault() and __folio_lock_or_retry().
4996 */
4997static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4998 unsigned long address, unsigned int flags)
4999{
5000 struct vm_fault vmf = {
5001 .vma = vma,
5002 .address = address & PAGE_MASK,
5003 .real_address = address,
5004 .flags = flags,
5005 .pgoff = linear_page_index(vma, address),
5006 .gfp_mask = __get_fault_gfp_mask(vma),
5007 };
5008 struct mm_struct *mm = vma->vm_mm;
5009 unsigned long vm_flags = vma->vm_flags;
5010 pgd_t *pgd;
5011 p4d_t *p4d;
5012 vm_fault_t ret;
5013
5014 pgd = pgd_offset(mm, address);
5015 p4d = p4d_alloc(mm, pgd, address);
5016 if (!p4d)
5017 return VM_FAULT_OOM;
5018
5019 vmf.pud = pud_alloc(mm, p4d, address);
5020 if (!vmf.pud)
5021 return VM_FAULT_OOM;
5022retry_pud:
5023 if (pud_none(*vmf.pud) &&
5024 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5025 ret = create_huge_pud(&vmf);
5026 if (!(ret & VM_FAULT_FALLBACK))
5027 return ret;
5028 } else {
5029 pud_t orig_pud = *vmf.pud;
5030
5031 barrier();
5032 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5033
5034 /*
5035 * TODO once we support anonymous PUDs: NUMA case and
5036 * FAULT_FLAG_UNSHARE handling.
5037 */
5038 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5039 ret = wp_huge_pud(&vmf, orig_pud);
5040 if (!(ret & VM_FAULT_FALLBACK))
5041 return ret;
5042 } else {
5043 huge_pud_set_accessed(&vmf, orig_pud);
5044 return 0;
5045 }
5046 }
5047 }
5048
5049 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5050 if (!vmf.pmd)
5051 return VM_FAULT_OOM;
5052
5053 /* Huge pud page fault raced with pmd_alloc? */
5054 if (pud_trans_unstable(vmf.pud))
5055 goto retry_pud;
5056
5057 if (pmd_none(*vmf.pmd) &&
5058 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5059 ret = create_huge_pmd(&vmf);
5060 if (!(ret & VM_FAULT_FALLBACK))
5061 return ret;
5062 } else {
5063 vmf.orig_pmd = *vmf.pmd;
5064
5065 barrier();
5066 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5067 VM_BUG_ON(thp_migration_supported() &&
5068 !is_pmd_migration_entry(vmf.orig_pmd));
5069 if (is_pmd_migration_entry(vmf.orig_pmd))
5070 pmd_migration_entry_wait(mm, vmf.pmd);
5071 return 0;
5072 }
5073 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5074 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5075 return do_huge_pmd_numa_page(&vmf);
5076
5077 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5078 !pmd_write(vmf.orig_pmd)) {
5079 ret = wp_huge_pmd(&vmf);
5080 if (!(ret & VM_FAULT_FALLBACK))
5081 return ret;
5082 } else {
5083 huge_pmd_set_accessed(&vmf);
5084 return 0;
5085 }
5086 }
5087 }
5088
5089 return handle_pte_fault(&vmf);
5090}
5091
5092/**
5093 * mm_account_fault - Do page fault accounting
5094 *
5095 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5096 * of perf event counters, but we'll still do the per-task accounting to
5097 * the task who triggered this page fault.
5098 * @address: the faulted address.
5099 * @flags: the fault flags.
5100 * @ret: the fault retcode.
5101 *
5102 * This will take care of most of the page fault accounting. Meanwhile, it
5103 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5104 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5105 * still be in per-arch page fault handlers at the entry of page fault.
5106 */
5107static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5108 unsigned long address, unsigned int flags,
5109 vm_fault_t ret)
5110{
5111 bool major;
5112
5113 /* Incomplete faults will be accounted upon completion. */
5114 if (ret & VM_FAULT_RETRY)
5115 return;
5116
5117 /*
5118 * To preserve the behavior of older kernels, PGFAULT counters record
5119 * both successful and failed faults, as opposed to perf counters,
5120 * which ignore failed cases.
5121 */
5122 count_vm_event(PGFAULT);
5123 count_memcg_event_mm(mm, PGFAULT);
5124
5125 /*
5126 * Do not account for unsuccessful faults (e.g. when the address wasn't
5127 * valid). That includes arch_vma_access_permitted() failing before
5128 * reaching here. So this is not a "this many hardware page faults"
5129 * counter. We should use the hw profiling for that.
5130 */
5131 if (ret & VM_FAULT_ERROR)
5132 return;
5133
5134 /*
5135 * We define the fault as a major fault when the final successful fault
5136 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5137 * handle it immediately previously).
5138 */
5139 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5140
5141 if (major)
5142 current->maj_flt++;
5143 else
5144 current->min_flt++;
5145
5146 /*
5147 * If the fault is done for GUP, regs will be NULL. We only do the
5148 * accounting for the per thread fault counters who triggered the
5149 * fault, and we skip the perf event updates.
5150 */
5151 if (!regs)
5152 return;
5153
5154 if (major)
5155 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5156 else
5157 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5158}
5159
5160#ifdef CONFIG_LRU_GEN
5161static void lru_gen_enter_fault(struct vm_area_struct *vma)
5162{
5163 /* the LRU algorithm only applies to accesses with recency */
5164 current->in_lru_fault = vma_has_recency(vma);
5165}
5166
5167static void lru_gen_exit_fault(void)
5168{
5169 current->in_lru_fault = false;
5170}
5171#else
5172static void lru_gen_enter_fault(struct vm_area_struct *vma)
5173{
5174}
5175
5176static void lru_gen_exit_fault(void)
5177{
5178}
5179#endif /* CONFIG_LRU_GEN */
5180
5181static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5182 unsigned int *flags)
5183{
5184 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5185 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5186 return VM_FAULT_SIGSEGV;
5187 /*
5188 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5189 * just treat it like an ordinary read-fault otherwise.
5190 */
5191 if (!is_cow_mapping(vma->vm_flags))
5192 *flags &= ~FAULT_FLAG_UNSHARE;
5193 } else if (*flags & FAULT_FLAG_WRITE) {
5194 /* Write faults on read-only mappings are impossible ... */
5195 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5196 return VM_FAULT_SIGSEGV;
5197 /* ... and FOLL_FORCE only applies to COW mappings. */
5198 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5199 !is_cow_mapping(vma->vm_flags)))
5200 return VM_FAULT_SIGSEGV;
5201 }
5202 return 0;
5203}
5204
5205/*
5206 * By the time we get here, we already hold the mm semaphore
5207 *
5208 * The mmap_lock may have been released depending on flags and our
5209 * return value. See filemap_fault() and __folio_lock_or_retry().
5210 */
5211vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5212 unsigned int flags, struct pt_regs *regs)
5213{
5214 /* If the fault handler drops the mmap_lock, vma may be freed */
5215 struct mm_struct *mm = vma->vm_mm;
5216 vm_fault_t ret;
5217
5218 __set_current_state(TASK_RUNNING);
5219
5220 ret = sanitize_fault_flags(vma, &flags);
5221 if (ret)
5222 goto out;
5223
5224 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5225 flags & FAULT_FLAG_INSTRUCTION,
5226 flags & FAULT_FLAG_REMOTE)) {
5227 ret = VM_FAULT_SIGSEGV;
5228 goto out;
5229 }
5230
5231 /*
5232 * Enable the memcg OOM handling for faults triggered in user
5233 * space. Kernel faults are handled more gracefully.
5234 */
5235 if (flags & FAULT_FLAG_USER)
5236 mem_cgroup_enter_user_fault();
5237
5238 lru_gen_enter_fault(vma);
5239
5240 if (unlikely(is_vm_hugetlb_page(vma)))
5241 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5242 else
5243 ret = __handle_mm_fault(vma, address, flags);
5244
5245 lru_gen_exit_fault();
5246
5247 if (flags & FAULT_FLAG_USER) {
5248 mem_cgroup_exit_user_fault();
5249 /*
5250 * The task may have entered a memcg OOM situation but
5251 * if the allocation error was handled gracefully (no
5252 * VM_FAULT_OOM), there is no need to kill anything.
5253 * Just clean up the OOM state peacefully.
5254 */
5255 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5256 mem_cgroup_oom_synchronize(false);
5257 }
5258out:
5259 mm_account_fault(mm, regs, address, flags, ret);
5260
5261 return ret;
5262}
5263EXPORT_SYMBOL_GPL(handle_mm_fault);
5264
5265#ifdef CONFIG_PER_VMA_LOCK
5266/*
5267 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5268 * stable and not isolated. If the VMA is not found or is being modified the
5269 * function returns NULL.
5270 */
5271struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5272 unsigned long address)
5273{
5274 MA_STATE(mas, &mm->mm_mt, address, address);
5275 struct vm_area_struct *vma;
5276
5277 rcu_read_lock();
5278retry:
5279 vma = mas_walk(&mas);
5280 if (!vma)
5281 goto inval;
5282
5283 /* Only anonymous vmas are supported for now */
5284 if (!vma_is_anonymous(vma))
5285 goto inval;
5286
5287 /* find_mergeable_anon_vma uses adjacent vmas which are not locked */
5288 if (!vma->anon_vma)
5289 goto inval;
5290
5291 if (!vma_start_read(vma))
5292 goto inval;
5293
5294 /*
5295 * Due to the possibility of userfault handler dropping mmap_lock, avoid
5296 * it for now and fall back to page fault handling under mmap_lock.
5297 */
5298 if (userfaultfd_armed(vma)) {
5299 vma_end_read(vma);
5300 goto inval;
5301 }
5302
5303 /* Check since vm_start/vm_end might change before we lock the VMA */
5304 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
5305 vma_end_read(vma);
5306 goto inval;
5307 }
5308
5309 /* Check if the VMA got isolated after we found it */
5310 if (vma->detached) {
5311 vma_end_read(vma);
5312 count_vm_vma_lock_event(VMA_LOCK_MISS);
5313 /* The area was replaced with another one */
5314 goto retry;
5315 }
5316
5317 rcu_read_unlock();
5318 return vma;
5319inval:
5320 rcu_read_unlock();
5321 count_vm_vma_lock_event(VMA_LOCK_ABORT);
5322 return NULL;
5323}
5324#endif /* CONFIG_PER_VMA_LOCK */
5325
5326#ifndef __PAGETABLE_P4D_FOLDED
5327/*
5328 * Allocate p4d page table.
5329 * We've already handled the fast-path in-line.
5330 */
5331int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5332{
5333 p4d_t *new = p4d_alloc_one(mm, address);
5334 if (!new)
5335 return -ENOMEM;
5336
5337 spin_lock(&mm->page_table_lock);
5338 if (pgd_present(*pgd)) { /* Another has populated it */
5339 p4d_free(mm, new);
5340 } else {
5341 smp_wmb(); /* See comment in pmd_install() */
5342 pgd_populate(mm, pgd, new);
5343 }
5344 spin_unlock(&mm->page_table_lock);
5345 return 0;
5346}
5347#endif /* __PAGETABLE_P4D_FOLDED */
5348
5349#ifndef __PAGETABLE_PUD_FOLDED
5350/*
5351 * Allocate page upper directory.
5352 * We've already handled the fast-path in-line.
5353 */
5354int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5355{
5356 pud_t *new = pud_alloc_one(mm, address);
5357 if (!new)
5358 return -ENOMEM;
5359
5360 spin_lock(&mm->page_table_lock);
5361 if (!p4d_present(*p4d)) {
5362 mm_inc_nr_puds(mm);
5363 smp_wmb(); /* See comment in pmd_install() */
5364 p4d_populate(mm, p4d, new);
5365 } else /* Another has populated it */
5366 pud_free(mm, new);
5367 spin_unlock(&mm->page_table_lock);
5368 return 0;
5369}
5370#endif /* __PAGETABLE_PUD_FOLDED */
5371
5372#ifndef __PAGETABLE_PMD_FOLDED
5373/*
5374 * Allocate page middle directory.
5375 * We've already handled the fast-path in-line.
5376 */
5377int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5378{
5379 spinlock_t *ptl;
5380 pmd_t *new = pmd_alloc_one(mm, address);
5381 if (!new)
5382 return -ENOMEM;
5383
5384 ptl = pud_lock(mm, pud);
5385 if (!pud_present(*pud)) {
5386 mm_inc_nr_pmds(mm);
5387 smp_wmb(); /* See comment in pmd_install() */
5388 pud_populate(mm, pud, new);
5389 } else { /* Another has populated it */
5390 pmd_free(mm, new);
5391 }
5392 spin_unlock(ptl);
5393 return 0;
5394}
5395#endif /* __PAGETABLE_PMD_FOLDED */
5396
5397/**
5398 * follow_pte - look up PTE at a user virtual address
5399 * @mm: the mm_struct of the target address space
5400 * @address: user virtual address
5401 * @ptepp: location to store found PTE
5402 * @ptlp: location to store the lock for the PTE
5403 *
5404 * On a successful return, the pointer to the PTE is stored in @ptepp;
5405 * the corresponding lock is taken and its location is stored in @ptlp.
5406 * The contents of the PTE are only stable until @ptlp is released;
5407 * any further use, if any, must be protected against invalidation
5408 * with MMU notifiers.
5409 *
5410 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5411 * should be taken for read.
5412 *
5413 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5414 * it is not a good general-purpose API.
5415 *
5416 * Return: zero on success, -ve otherwise.
5417 */
5418int follow_pte(struct mm_struct *mm, unsigned long address,
5419 pte_t **ptepp, spinlock_t **ptlp)
5420{
5421 pgd_t *pgd;
5422 p4d_t *p4d;
5423 pud_t *pud;
5424 pmd_t *pmd;
5425 pte_t *ptep;
5426
5427 pgd = pgd_offset(mm, address);
5428 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5429 goto out;
5430
5431 p4d = p4d_offset(pgd, address);
5432 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5433 goto out;
5434
5435 pud = pud_offset(p4d, address);
5436 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5437 goto out;
5438
5439 pmd = pmd_offset(pud, address);
5440 VM_BUG_ON(pmd_trans_huge(*pmd));
5441
5442 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5443 goto out;
5444
5445 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5446 if (!pte_present(*ptep))
5447 goto unlock;
5448 *ptepp = ptep;
5449 return 0;
5450unlock:
5451 pte_unmap_unlock(ptep, *ptlp);
5452out:
5453 return -EINVAL;
5454}
5455EXPORT_SYMBOL_GPL(follow_pte);
5456
5457/**
5458 * follow_pfn - look up PFN at a user virtual address
5459 * @vma: memory mapping
5460 * @address: user virtual address
5461 * @pfn: location to store found PFN
5462 *
5463 * Only IO mappings and raw PFN mappings are allowed.
5464 *
5465 * This function does not allow the caller to read the permissions
5466 * of the PTE. Do not use it.
5467 *
5468 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5469 */
5470int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5471 unsigned long *pfn)
5472{
5473 int ret = -EINVAL;
5474 spinlock_t *ptl;
5475 pte_t *ptep;
5476
5477 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5478 return ret;
5479
5480 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5481 if (ret)
5482 return ret;
5483 *pfn = pte_pfn(*ptep);
5484 pte_unmap_unlock(ptep, ptl);
5485 return 0;
5486}
5487EXPORT_SYMBOL(follow_pfn);
5488
5489#ifdef CONFIG_HAVE_IOREMAP_PROT
5490int follow_phys(struct vm_area_struct *vma,
5491 unsigned long address, unsigned int flags,
5492 unsigned long *prot, resource_size_t *phys)
5493{
5494 int ret = -EINVAL;
5495 pte_t *ptep, pte;
5496 spinlock_t *ptl;
5497
5498 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5499 goto out;
5500
5501 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5502 goto out;
5503 pte = *ptep;
5504
5505 if ((flags & FOLL_WRITE) && !pte_write(pte))
5506 goto unlock;
5507
5508 *prot = pgprot_val(pte_pgprot(pte));
5509 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5510
5511 ret = 0;
5512unlock:
5513 pte_unmap_unlock(ptep, ptl);
5514out:
5515 return ret;
5516}
5517
5518/**
5519 * generic_access_phys - generic implementation for iomem mmap access
5520 * @vma: the vma to access
5521 * @addr: userspace address, not relative offset within @vma
5522 * @buf: buffer to read/write
5523 * @len: length of transfer
5524 * @write: set to FOLL_WRITE when writing, otherwise reading
5525 *
5526 * This is a generic implementation for &vm_operations_struct.access for an
5527 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5528 * not page based.
5529 */
5530int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5531 void *buf, int len, int write)
5532{
5533 resource_size_t phys_addr;
5534 unsigned long prot = 0;
5535 void __iomem *maddr;
5536 pte_t *ptep, pte;
5537 spinlock_t *ptl;
5538 int offset = offset_in_page(addr);
5539 int ret = -EINVAL;
5540
5541 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5542 return -EINVAL;
5543
5544retry:
5545 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5546 return -EINVAL;
5547 pte = *ptep;
5548 pte_unmap_unlock(ptep, ptl);
5549
5550 prot = pgprot_val(pte_pgprot(pte));
5551 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5552
5553 if ((write & FOLL_WRITE) && !pte_write(pte))
5554 return -EINVAL;
5555
5556 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5557 if (!maddr)
5558 return -ENOMEM;
5559
5560 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5561 goto out_unmap;
5562
5563 if (!pte_same(pte, *ptep)) {
5564 pte_unmap_unlock(ptep, ptl);
5565 iounmap(maddr);
5566
5567 goto retry;
5568 }
5569
5570 if (write)
5571 memcpy_toio(maddr + offset, buf, len);
5572 else
5573 memcpy_fromio(buf, maddr + offset, len);
5574 ret = len;
5575 pte_unmap_unlock(ptep, ptl);
5576out_unmap:
5577 iounmap(maddr);
5578
5579 return ret;
5580}
5581EXPORT_SYMBOL_GPL(generic_access_phys);
5582#endif
5583
5584/*
5585 * Access another process' address space as given in mm.
5586 */
5587int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5588 int len, unsigned int gup_flags)
5589{
5590 struct vm_area_struct *vma;
5591 void *old_buf = buf;
5592 int write = gup_flags & FOLL_WRITE;
5593
5594 if (mmap_read_lock_killable(mm))
5595 return 0;
5596
5597 /* ignore errors, just check how much was successfully transferred */
5598 while (len) {
5599 int bytes, ret, offset;
5600 void *maddr;
5601 struct page *page = NULL;
5602
5603 ret = get_user_pages_remote(mm, addr, 1,
5604 gup_flags, &page, &vma, NULL);
5605 if (ret <= 0) {
5606#ifndef CONFIG_HAVE_IOREMAP_PROT
5607 break;
5608#else
5609 /*
5610 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5611 * we can access using slightly different code.
5612 */
5613 vma = vma_lookup(mm, addr);
5614 if (!vma)
5615 break;
5616 if (vma->vm_ops && vma->vm_ops->access)
5617 ret = vma->vm_ops->access(vma, addr, buf,
5618 len, write);
5619 if (ret <= 0)
5620 break;
5621 bytes = ret;
5622#endif
5623 } else {
5624 bytes = len;
5625 offset = addr & (PAGE_SIZE-1);
5626 if (bytes > PAGE_SIZE-offset)
5627 bytes = PAGE_SIZE-offset;
5628
5629 maddr = kmap(page);
5630 if (write) {
5631 copy_to_user_page(vma, page, addr,
5632 maddr + offset, buf, bytes);
5633 set_page_dirty_lock(page);
5634 } else {
5635 copy_from_user_page(vma, page, addr,
5636 buf, maddr + offset, bytes);
5637 }
5638 kunmap(page);
5639 put_page(page);
5640 }
5641 len -= bytes;
5642 buf += bytes;
5643 addr += bytes;
5644 }
5645 mmap_read_unlock(mm);
5646
5647 return buf - old_buf;
5648}
5649
5650/**
5651 * access_remote_vm - access another process' address space
5652 * @mm: the mm_struct of the target address space
5653 * @addr: start address to access
5654 * @buf: source or destination buffer
5655 * @len: number of bytes to transfer
5656 * @gup_flags: flags modifying lookup behaviour
5657 *
5658 * The caller must hold a reference on @mm.
5659 *
5660 * Return: number of bytes copied from source to destination.
5661 */
5662int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5663 void *buf, int len, unsigned int gup_flags)
5664{
5665 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5666}
5667
5668/*
5669 * Access another process' address space.
5670 * Source/target buffer must be kernel space,
5671 * Do not walk the page table directly, use get_user_pages
5672 */
5673int access_process_vm(struct task_struct *tsk, unsigned long addr,
5674 void *buf, int len, unsigned int gup_flags)
5675{
5676 struct mm_struct *mm;
5677 int ret;
5678
5679 mm = get_task_mm(tsk);
5680 if (!mm)
5681 return 0;
5682
5683 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5684
5685 mmput(mm);
5686
5687 return ret;
5688}
5689EXPORT_SYMBOL_GPL(access_process_vm);
5690
5691/*
5692 * Print the name of a VMA.
5693 */
5694void print_vma_addr(char *prefix, unsigned long ip)
5695{
5696 struct mm_struct *mm = current->mm;
5697 struct vm_area_struct *vma;
5698
5699 /*
5700 * we might be running from an atomic context so we cannot sleep
5701 */
5702 if (!mmap_read_trylock(mm))
5703 return;
5704
5705 vma = find_vma(mm, ip);
5706 if (vma && vma->vm_file) {
5707 struct file *f = vma->vm_file;
5708 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5709 if (buf) {
5710 char *p;
5711
5712 p = file_path(f, buf, PAGE_SIZE);
5713 if (IS_ERR(p))
5714 p = "?";
5715 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5716 vma->vm_start,
5717 vma->vm_end - vma->vm_start);
5718 free_page((unsigned long)buf);
5719 }
5720 }
5721 mmap_read_unlock(mm);
5722}
5723
5724#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5725void __might_fault(const char *file, int line)
5726{
5727 if (pagefault_disabled())
5728 return;
5729 __might_sleep(file, line);
5730#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5731 if (current->mm)
5732 might_lock_read(¤t->mm->mmap_lock);
5733#endif
5734}
5735EXPORT_SYMBOL(__might_fault);
5736#endif
5737
5738#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5739/*
5740 * Process all subpages of the specified huge page with the specified
5741 * operation. The target subpage will be processed last to keep its
5742 * cache lines hot.
5743 */
5744static inline int process_huge_page(
5745 unsigned long addr_hint, unsigned int pages_per_huge_page,
5746 int (*process_subpage)(unsigned long addr, int idx, void *arg),
5747 void *arg)
5748{
5749 int i, n, base, l, ret;
5750 unsigned long addr = addr_hint &
5751 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5752
5753 /* Process target subpage last to keep its cache lines hot */
5754 might_sleep();
5755 n = (addr_hint - addr) / PAGE_SIZE;
5756 if (2 * n <= pages_per_huge_page) {
5757 /* If target subpage in first half of huge page */
5758 base = 0;
5759 l = n;
5760 /* Process subpages at the end of huge page */
5761 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5762 cond_resched();
5763 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5764 if (ret)
5765 return ret;
5766 }
5767 } else {
5768 /* If target subpage in second half of huge page */
5769 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5770 l = pages_per_huge_page - n;
5771 /* Process subpages at the begin of huge page */
5772 for (i = 0; i < base; i++) {
5773 cond_resched();
5774 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5775 if (ret)
5776 return ret;
5777 }
5778 }
5779 /*
5780 * Process remaining subpages in left-right-left-right pattern
5781 * towards the target subpage
5782 */
5783 for (i = 0; i < l; i++) {
5784 int left_idx = base + i;
5785 int right_idx = base + 2 * l - 1 - i;
5786
5787 cond_resched();
5788 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5789 if (ret)
5790 return ret;
5791 cond_resched();
5792 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5793 if (ret)
5794 return ret;
5795 }
5796 return 0;
5797}
5798
5799static void clear_gigantic_page(struct page *page,
5800 unsigned long addr,
5801 unsigned int pages_per_huge_page)
5802{
5803 int i;
5804 struct page *p;
5805
5806 might_sleep();
5807 for (i = 0; i < pages_per_huge_page; i++) {
5808 p = nth_page(page, i);
5809 cond_resched();
5810 clear_user_highpage(p, addr + i * PAGE_SIZE);
5811 }
5812}
5813
5814static int clear_subpage(unsigned long addr, int idx, void *arg)
5815{
5816 struct page *page = arg;
5817
5818 clear_user_highpage(page + idx, addr);
5819 return 0;
5820}
5821
5822void clear_huge_page(struct page *page,
5823 unsigned long addr_hint, unsigned int pages_per_huge_page)
5824{
5825 unsigned long addr = addr_hint &
5826 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5827
5828 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5829 clear_gigantic_page(page, addr, pages_per_huge_page);
5830 return;
5831 }
5832
5833 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5834}
5835
5836static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
5837 unsigned long addr,
5838 struct vm_area_struct *vma,
5839 unsigned int pages_per_huge_page)
5840{
5841 int i;
5842 struct page *dst_page;
5843 struct page *src_page;
5844
5845 for (i = 0; i < pages_per_huge_page; i++) {
5846 dst_page = folio_page(dst, i);
5847 src_page = folio_page(src, i);
5848
5849 cond_resched();
5850 if (copy_mc_user_highpage(dst_page, src_page,
5851 addr + i*PAGE_SIZE, vma)) {
5852 memory_failure_queue(page_to_pfn(src_page), 0);
5853 return -EHWPOISON;
5854 }
5855 }
5856 return 0;
5857}
5858
5859struct copy_subpage_arg {
5860 struct page *dst;
5861 struct page *src;
5862 struct vm_area_struct *vma;
5863};
5864
5865static int copy_subpage(unsigned long addr, int idx, void *arg)
5866{
5867 struct copy_subpage_arg *copy_arg = arg;
5868
5869 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5870 addr, copy_arg->vma)) {
5871 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
5872 return -EHWPOISON;
5873 }
5874 return 0;
5875}
5876
5877int copy_user_large_folio(struct folio *dst, struct folio *src,
5878 unsigned long addr_hint, struct vm_area_struct *vma)
5879{
5880 unsigned int pages_per_huge_page = folio_nr_pages(dst);
5881 unsigned long addr = addr_hint &
5882 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5883 struct copy_subpage_arg arg = {
5884 .dst = &dst->page,
5885 .src = &src->page,
5886 .vma = vma,
5887 };
5888
5889 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
5890 return copy_user_gigantic_page(dst, src, addr, vma,
5891 pages_per_huge_page);
5892
5893 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5894}
5895
5896long copy_folio_from_user(struct folio *dst_folio,
5897 const void __user *usr_src,
5898 bool allow_pagefault)
5899{
5900 void *kaddr;
5901 unsigned long i, rc = 0;
5902 unsigned int nr_pages = folio_nr_pages(dst_folio);
5903 unsigned long ret_val = nr_pages * PAGE_SIZE;
5904 struct page *subpage;
5905
5906 for (i = 0; i < nr_pages; i++) {
5907 subpage = folio_page(dst_folio, i);
5908 kaddr = kmap_local_page(subpage);
5909 if (!allow_pagefault)
5910 pagefault_disable();
5911 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
5912 if (!allow_pagefault)
5913 pagefault_enable();
5914 kunmap_local(kaddr);
5915
5916 ret_val -= (PAGE_SIZE - rc);
5917 if (rc)
5918 break;
5919
5920 flush_dcache_page(subpage);
5921
5922 cond_resched();
5923 }
5924 return ret_val;
5925}
5926#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5927
5928#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5929
5930static struct kmem_cache *page_ptl_cachep;
5931
5932void __init ptlock_cache_init(void)
5933{
5934 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5935 SLAB_PANIC, NULL);
5936}
5937
5938bool ptlock_alloc(struct page *page)
5939{
5940 spinlock_t *ptl;
5941
5942 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5943 if (!ptl)
5944 return false;
5945 page->ptl = ptl;
5946 return true;
5947}
5948
5949void ptlock_free(struct page *page)
5950{
5951 kmem_cache_free(page_ptl_cachep, page->ptl);
5952}
5953#endif