at v6.4-rc2 166 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Definitions for the Interfaces handler. 8 * 9 * Version: @(#)dev.h 1.0.10 08/12/93 10 * 11 * Authors: Ross Biro 12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 15 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 16 * Bjorn Ekwall. <bj0rn@blox.se> 17 * Pekka Riikonen <priikone@poseidon.pspt.fi> 18 * 19 * Moved to /usr/include/linux for NET3 20 */ 21#ifndef _LINUX_NETDEVICE_H 22#define _LINUX_NETDEVICE_H 23 24#include <linux/timer.h> 25#include <linux/bug.h> 26#include <linux/delay.h> 27#include <linux/atomic.h> 28#include <linux/prefetch.h> 29#include <asm/cache.h> 30#include <asm/byteorder.h> 31#include <asm/local.h> 32 33#include <linux/percpu.h> 34#include <linux/rculist.h> 35#include <linux/workqueue.h> 36#include <linux/dynamic_queue_limits.h> 37 38#include <net/net_namespace.h> 39#ifdef CONFIG_DCB 40#include <net/dcbnl.h> 41#endif 42#include <net/netprio_cgroup.h> 43#include <net/xdp.h> 44 45#include <linux/netdev_features.h> 46#include <linux/neighbour.h> 47#include <uapi/linux/netdevice.h> 48#include <uapi/linux/if_bonding.h> 49#include <uapi/linux/pkt_cls.h> 50#include <uapi/linux/netdev.h> 51#include <linux/hashtable.h> 52#include <linux/rbtree.h> 53#include <net/net_trackers.h> 54#include <net/net_debug.h> 55#include <net/dropreason-core.h> 56 57struct netpoll_info; 58struct device; 59struct ethtool_ops; 60struct phy_device; 61struct dsa_port; 62struct ip_tunnel_parm; 63struct macsec_context; 64struct macsec_ops; 65struct netdev_name_node; 66struct sd_flow_limit; 67struct sfp_bus; 68/* 802.11 specific */ 69struct wireless_dev; 70/* 802.15.4 specific */ 71struct wpan_dev; 72struct mpls_dev; 73/* UDP Tunnel offloads */ 74struct udp_tunnel_info; 75struct udp_tunnel_nic_info; 76struct udp_tunnel_nic; 77struct bpf_prog; 78struct xdp_buff; 79struct xdp_md; 80 81void synchronize_net(void); 82void netdev_set_default_ethtool_ops(struct net_device *dev, 83 const struct ethtool_ops *ops); 84void netdev_sw_irq_coalesce_default_on(struct net_device *dev); 85 86/* Backlog congestion levels */ 87#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 88#define NET_RX_DROP 1 /* packet dropped */ 89 90#define MAX_NEST_DEV 8 91 92/* 93 * Transmit return codes: transmit return codes originate from three different 94 * namespaces: 95 * 96 * - qdisc return codes 97 * - driver transmit return codes 98 * - errno values 99 * 100 * Drivers are allowed to return any one of those in their hard_start_xmit() 101 * function. Real network devices commonly used with qdiscs should only return 102 * the driver transmit return codes though - when qdiscs are used, the actual 103 * transmission happens asynchronously, so the value is not propagated to 104 * higher layers. Virtual network devices transmit synchronously; in this case 105 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 106 * others are propagated to higher layers. 107 */ 108 109/* qdisc ->enqueue() return codes. */ 110#define NET_XMIT_SUCCESS 0x00 111#define NET_XMIT_DROP 0x01 /* skb dropped */ 112#define NET_XMIT_CN 0x02 /* congestion notification */ 113#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 114 115/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 116 * indicates that the device will soon be dropping packets, or already drops 117 * some packets of the same priority; prompting us to send less aggressively. */ 118#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 119#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 120 121/* Driver transmit return codes */ 122#define NETDEV_TX_MASK 0xf0 123 124enum netdev_tx { 125 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 126 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 127 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 128}; 129typedef enum netdev_tx netdev_tx_t; 130 131/* 132 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 133 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 134 */ 135static inline bool dev_xmit_complete(int rc) 136{ 137 /* 138 * Positive cases with an skb consumed by a driver: 139 * - successful transmission (rc == NETDEV_TX_OK) 140 * - error while transmitting (rc < 0) 141 * - error while queueing to a different device (rc & NET_XMIT_MASK) 142 */ 143 if (likely(rc < NET_XMIT_MASK)) 144 return true; 145 146 return false; 147} 148 149/* 150 * Compute the worst-case header length according to the protocols 151 * used. 152 */ 153 154#if defined(CONFIG_HYPERV_NET) 155# define LL_MAX_HEADER 128 156#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 157# if defined(CONFIG_MAC80211_MESH) 158# define LL_MAX_HEADER 128 159# else 160# define LL_MAX_HEADER 96 161# endif 162#else 163# define LL_MAX_HEADER 32 164#endif 165 166#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 167 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 168#define MAX_HEADER LL_MAX_HEADER 169#else 170#define MAX_HEADER (LL_MAX_HEADER + 48) 171#endif 172 173/* 174 * Old network device statistics. Fields are native words 175 * (unsigned long) so they can be read and written atomically. 176 */ 177 178#define NET_DEV_STAT(FIELD) \ 179 union { \ 180 unsigned long FIELD; \ 181 atomic_long_t __##FIELD; \ 182 } 183 184struct net_device_stats { 185 NET_DEV_STAT(rx_packets); 186 NET_DEV_STAT(tx_packets); 187 NET_DEV_STAT(rx_bytes); 188 NET_DEV_STAT(tx_bytes); 189 NET_DEV_STAT(rx_errors); 190 NET_DEV_STAT(tx_errors); 191 NET_DEV_STAT(rx_dropped); 192 NET_DEV_STAT(tx_dropped); 193 NET_DEV_STAT(multicast); 194 NET_DEV_STAT(collisions); 195 NET_DEV_STAT(rx_length_errors); 196 NET_DEV_STAT(rx_over_errors); 197 NET_DEV_STAT(rx_crc_errors); 198 NET_DEV_STAT(rx_frame_errors); 199 NET_DEV_STAT(rx_fifo_errors); 200 NET_DEV_STAT(rx_missed_errors); 201 NET_DEV_STAT(tx_aborted_errors); 202 NET_DEV_STAT(tx_carrier_errors); 203 NET_DEV_STAT(tx_fifo_errors); 204 NET_DEV_STAT(tx_heartbeat_errors); 205 NET_DEV_STAT(tx_window_errors); 206 NET_DEV_STAT(rx_compressed); 207 NET_DEV_STAT(tx_compressed); 208}; 209#undef NET_DEV_STAT 210 211/* per-cpu stats, allocated on demand. 212 * Try to fit them in a single cache line, for dev_get_stats() sake. 213 */ 214struct net_device_core_stats { 215 unsigned long rx_dropped; 216 unsigned long tx_dropped; 217 unsigned long rx_nohandler; 218 unsigned long rx_otherhost_dropped; 219} __aligned(4 * sizeof(unsigned long)); 220 221#include <linux/cache.h> 222#include <linux/skbuff.h> 223 224#ifdef CONFIG_RPS 225#include <linux/static_key.h> 226extern struct static_key_false rps_needed; 227extern struct static_key_false rfs_needed; 228#endif 229 230struct neighbour; 231struct neigh_parms; 232struct sk_buff; 233 234struct netdev_hw_addr { 235 struct list_head list; 236 struct rb_node node; 237 unsigned char addr[MAX_ADDR_LEN]; 238 unsigned char type; 239#define NETDEV_HW_ADDR_T_LAN 1 240#define NETDEV_HW_ADDR_T_SAN 2 241#define NETDEV_HW_ADDR_T_UNICAST 3 242#define NETDEV_HW_ADDR_T_MULTICAST 4 243 bool global_use; 244 int sync_cnt; 245 int refcount; 246 int synced; 247 struct rcu_head rcu_head; 248}; 249 250struct netdev_hw_addr_list { 251 struct list_head list; 252 int count; 253 254 /* Auxiliary tree for faster lookup on addition and deletion */ 255 struct rb_root tree; 256}; 257 258#define netdev_hw_addr_list_count(l) ((l)->count) 259#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 260#define netdev_hw_addr_list_for_each(ha, l) \ 261 list_for_each_entry(ha, &(l)->list, list) 262 263#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 264#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 265#define netdev_for_each_uc_addr(ha, dev) \ 266 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 267#define netdev_for_each_synced_uc_addr(_ha, _dev) \ 268 netdev_for_each_uc_addr((_ha), (_dev)) \ 269 if ((_ha)->sync_cnt) 270 271#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 272#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 273#define netdev_for_each_mc_addr(ha, dev) \ 274 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 275#define netdev_for_each_synced_mc_addr(_ha, _dev) \ 276 netdev_for_each_mc_addr((_ha), (_dev)) \ 277 if ((_ha)->sync_cnt) 278 279struct hh_cache { 280 unsigned int hh_len; 281 seqlock_t hh_lock; 282 283 /* cached hardware header; allow for machine alignment needs. */ 284#define HH_DATA_MOD 16 285#define HH_DATA_OFF(__len) \ 286 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 287#define HH_DATA_ALIGN(__len) \ 288 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 289 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 290}; 291 292/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 293 * Alternative is: 294 * dev->hard_header_len ? (dev->hard_header_len + 295 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 296 * 297 * We could use other alignment values, but we must maintain the 298 * relationship HH alignment <= LL alignment. 299 */ 300#define LL_RESERVED_SPACE(dev) \ 301 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \ 302 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 303#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 304 ((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \ 305 & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 306 307struct header_ops { 308 int (*create) (struct sk_buff *skb, struct net_device *dev, 309 unsigned short type, const void *daddr, 310 const void *saddr, unsigned int len); 311 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 312 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 313 void (*cache_update)(struct hh_cache *hh, 314 const struct net_device *dev, 315 const unsigned char *haddr); 316 bool (*validate)(const char *ll_header, unsigned int len); 317 __be16 (*parse_protocol)(const struct sk_buff *skb); 318}; 319 320/* These flag bits are private to the generic network queueing 321 * layer; they may not be explicitly referenced by any other 322 * code. 323 */ 324 325enum netdev_state_t { 326 __LINK_STATE_START, 327 __LINK_STATE_PRESENT, 328 __LINK_STATE_NOCARRIER, 329 __LINK_STATE_LINKWATCH_PENDING, 330 __LINK_STATE_DORMANT, 331 __LINK_STATE_TESTING, 332}; 333 334struct gro_list { 335 struct list_head list; 336 int count; 337}; 338 339/* 340 * size of gro hash buckets, must less than bit number of 341 * napi_struct::gro_bitmask 342 */ 343#define GRO_HASH_BUCKETS 8 344 345/* 346 * Structure for NAPI scheduling similar to tasklet but with weighting 347 */ 348struct napi_struct { 349 /* The poll_list must only be managed by the entity which 350 * changes the state of the NAPI_STATE_SCHED bit. This means 351 * whoever atomically sets that bit can add this napi_struct 352 * to the per-CPU poll_list, and whoever clears that bit 353 * can remove from the list right before clearing the bit. 354 */ 355 struct list_head poll_list; 356 357 unsigned long state; 358 int weight; 359 int defer_hard_irqs_count; 360 unsigned long gro_bitmask; 361 int (*poll)(struct napi_struct *, int); 362#ifdef CONFIG_NETPOLL 363 /* CPU actively polling if netpoll is configured */ 364 int poll_owner; 365#endif 366 /* CPU on which NAPI has been scheduled for processing */ 367 int list_owner; 368 struct net_device *dev; 369 struct gro_list gro_hash[GRO_HASH_BUCKETS]; 370 struct sk_buff *skb; 371 struct list_head rx_list; /* Pending GRO_NORMAL skbs */ 372 int rx_count; /* length of rx_list */ 373 unsigned int napi_id; 374 struct hrtimer timer; 375 struct task_struct *thread; 376 /* control-path-only fields follow */ 377 struct list_head dev_list; 378 struct hlist_node napi_hash_node; 379}; 380 381enum { 382 NAPI_STATE_SCHED, /* Poll is scheduled */ 383 NAPI_STATE_MISSED, /* reschedule a napi */ 384 NAPI_STATE_DISABLE, /* Disable pending */ 385 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 386 NAPI_STATE_LISTED, /* NAPI added to system lists */ 387 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */ 388 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */ 389 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/ 390 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/ 391 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */ 392}; 393 394enum { 395 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED), 396 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED), 397 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE), 398 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC), 399 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED), 400 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL), 401 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL), 402 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL), 403 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED), 404 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED), 405}; 406 407enum gro_result { 408 GRO_MERGED, 409 GRO_MERGED_FREE, 410 GRO_HELD, 411 GRO_NORMAL, 412 GRO_CONSUMED, 413}; 414typedef enum gro_result gro_result_t; 415 416/* 417 * enum rx_handler_result - Possible return values for rx_handlers. 418 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 419 * further. 420 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 421 * case skb->dev was changed by rx_handler. 422 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 423 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 424 * 425 * rx_handlers are functions called from inside __netif_receive_skb(), to do 426 * special processing of the skb, prior to delivery to protocol handlers. 427 * 428 * Currently, a net_device can only have a single rx_handler registered. Trying 429 * to register a second rx_handler will return -EBUSY. 430 * 431 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 432 * To unregister a rx_handler on a net_device, use 433 * netdev_rx_handler_unregister(). 434 * 435 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 436 * do with the skb. 437 * 438 * If the rx_handler consumed the skb in some way, it should return 439 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 440 * the skb to be delivered in some other way. 441 * 442 * If the rx_handler changed skb->dev, to divert the skb to another 443 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 444 * new device will be called if it exists. 445 * 446 * If the rx_handler decides the skb should be ignored, it should return 447 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 448 * are registered on exact device (ptype->dev == skb->dev). 449 * 450 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 451 * delivered, it should return RX_HANDLER_PASS. 452 * 453 * A device without a registered rx_handler will behave as if rx_handler 454 * returned RX_HANDLER_PASS. 455 */ 456 457enum rx_handler_result { 458 RX_HANDLER_CONSUMED, 459 RX_HANDLER_ANOTHER, 460 RX_HANDLER_EXACT, 461 RX_HANDLER_PASS, 462}; 463typedef enum rx_handler_result rx_handler_result_t; 464typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 465 466void __napi_schedule(struct napi_struct *n); 467void __napi_schedule_irqoff(struct napi_struct *n); 468 469static inline bool napi_disable_pending(struct napi_struct *n) 470{ 471 return test_bit(NAPI_STATE_DISABLE, &n->state); 472} 473 474static inline bool napi_prefer_busy_poll(struct napi_struct *n) 475{ 476 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 477} 478 479bool napi_schedule_prep(struct napi_struct *n); 480 481/** 482 * napi_schedule - schedule NAPI poll 483 * @n: NAPI context 484 * 485 * Schedule NAPI poll routine to be called if it is not already 486 * running. 487 */ 488static inline void napi_schedule(struct napi_struct *n) 489{ 490 if (napi_schedule_prep(n)) 491 __napi_schedule(n); 492} 493 494/** 495 * napi_schedule_irqoff - schedule NAPI poll 496 * @n: NAPI context 497 * 498 * Variant of napi_schedule(), assuming hard irqs are masked. 499 */ 500static inline void napi_schedule_irqoff(struct napi_struct *n) 501{ 502 if (napi_schedule_prep(n)) 503 __napi_schedule_irqoff(n); 504} 505 506/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 507static inline bool napi_reschedule(struct napi_struct *napi) 508{ 509 if (napi_schedule_prep(napi)) { 510 __napi_schedule(napi); 511 return true; 512 } 513 return false; 514} 515 516/** 517 * napi_complete_done - NAPI processing complete 518 * @n: NAPI context 519 * @work_done: number of packets processed 520 * 521 * Mark NAPI processing as complete. Should only be called if poll budget 522 * has not been completely consumed. 523 * Prefer over napi_complete(). 524 * Return false if device should avoid rearming interrupts. 525 */ 526bool napi_complete_done(struct napi_struct *n, int work_done); 527 528static inline bool napi_complete(struct napi_struct *n) 529{ 530 return napi_complete_done(n, 0); 531} 532 533int dev_set_threaded(struct net_device *dev, bool threaded); 534 535/** 536 * napi_disable - prevent NAPI from scheduling 537 * @n: NAPI context 538 * 539 * Stop NAPI from being scheduled on this context. 540 * Waits till any outstanding processing completes. 541 */ 542void napi_disable(struct napi_struct *n); 543 544void napi_enable(struct napi_struct *n); 545 546/** 547 * napi_synchronize - wait until NAPI is not running 548 * @n: NAPI context 549 * 550 * Wait until NAPI is done being scheduled on this context. 551 * Waits till any outstanding processing completes but 552 * does not disable future activations. 553 */ 554static inline void napi_synchronize(const struct napi_struct *n) 555{ 556 if (IS_ENABLED(CONFIG_SMP)) 557 while (test_bit(NAPI_STATE_SCHED, &n->state)) 558 msleep(1); 559 else 560 barrier(); 561} 562 563/** 564 * napi_if_scheduled_mark_missed - if napi is running, set the 565 * NAPIF_STATE_MISSED 566 * @n: NAPI context 567 * 568 * If napi is running, set the NAPIF_STATE_MISSED, and return true if 569 * NAPI is scheduled. 570 **/ 571static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n) 572{ 573 unsigned long val, new; 574 575 val = READ_ONCE(n->state); 576 do { 577 if (val & NAPIF_STATE_DISABLE) 578 return true; 579 580 if (!(val & NAPIF_STATE_SCHED)) 581 return false; 582 583 new = val | NAPIF_STATE_MISSED; 584 } while (!try_cmpxchg(&n->state, &val, new)); 585 586 return true; 587} 588 589enum netdev_queue_state_t { 590 __QUEUE_STATE_DRV_XOFF, 591 __QUEUE_STATE_STACK_XOFF, 592 __QUEUE_STATE_FROZEN, 593}; 594 595#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 596#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 597#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 598 599#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 600#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 601 QUEUE_STATE_FROZEN) 602#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 603 QUEUE_STATE_FROZEN) 604 605/* 606 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 607 * netif_tx_* functions below are used to manipulate this flag. The 608 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 609 * queue independently. The netif_xmit_*stopped functions below are called 610 * to check if the queue has been stopped by the driver or stack (either 611 * of the XOFF bits are set in the state). Drivers should not need to call 612 * netif_xmit*stopped functions, they should only be using netif_tx_*. 613 */ 614 615struct netdev_queue { 616/* 617 * read-mostly part 618 */ 619 struct net_device *dev; 620 netdevice_tracker dev_tracker; 621 622 struct Qdisc __rcu *qdisc; 623 struct Qdisc *qdisc_sleeping; 624#ifdef CONFIG_SYSFS 625 struct kobject kobj; 626#endif 627#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 628 int numa_node; 629#endif 630 unsigned long tx_maxrate; 631 /* 632 * Number of TX timeouts for this queue 633 * (/sys/class/net/DEV/Q/trans_timeout) 634 */ 635 atomic_long_t trans_timeout; 636 637 /* Subordinate device that the queue has been assigned to */ 638 struct net_device *sb_dev; 639#ifdef CONFIG_XDP_SOCKETS 640 struct xsk_buff_pool *pool; 641#endif 642/* 643 * write-mostly part 644 */ 645 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 646 int xmit_lock_owner; 647 /* 648 * Time (in jiffies) of last Tx 649 */ 650 unsigned long trans_start; 651 652 unsigned long state; 653 654#ifdef CONFIG_BQL 655 struct dql dql; 656#endif 657} ____cacheline_aligned_in_smp; 658 659extern int sysctl_fb_tunnels_only_for_init_net; 660extern int sysctl_devconf_inherit_init_net; 661 662/* 663 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns 664 * == 1 : For initns only 665 * == 2 : For none. 666 */ 667static inline bool net_has_fallback_tunnels(const struct net *net) 668{ 669#if IS_ENABLED(CONFIG_SYSCTL) 670 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net); 671 672 return !fb_tunnels_only_for_init_net || 673 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1); 674#else 675 return true; 676#endif 677} 678 679static inline int net_inherit_devconf(void) 680{ 681#if IS_ENABLED(CONFIG_SYSCTL) 682 return READ_ONCE(sysctl_devconf_inherit_init_net); 683#else 684 return 0; 685#endif 686} 687 688static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 689{ 690#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 691 return q->numa_node; 692#else 693 return NUMA_NO_NODE; 694#endif 695} 696 697static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 698{ 699#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 700 q->numa_node = node; 701#endif 702} 703 704#ifdef CONFIG_RPS 705/* 706 * This structure holds an RPS map which can be of variable length. The 707 * map is an array of CPUs. 708 */ 709struct rps_map { 710 unsigned int len; 711 struct rcu_head rcu; 712 u16 cpus[]; 713}; 714#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 715 716/* 717 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 718 * tail pointer for that CPU's input queue at the time of last enqueue, and 719 * a hardware filter index. 720 */ 721struct rps_dev_flow { 722 u16 cpu; 723 u16 filter; 724 unsigned int last_qtail; 725}; 726#define RPS_NO_FILTER 0xffff 727 728/* 729 * The rps_dev_flow_table structure contains a table of flow mappings. 730 */ 731struct rps_dev_flow_table { 732 unsigned int mask; 733 struct rcu_head rcu; 734 struct rps_dev_flow flows[]; 735}; 736#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 737 ((_num) * sizeof(struct rps_dev_flow))) 738 739/* 740 * The rps_sock_flow_table contains mappings of flows to the last CPU 741 * on which they were processed by the application (set in recvmsg). 742 * Each entry is a 32bit value. Upper part is the high-order bits 743 * of flow hash, lower part is CPU number. 744 * rps_cpu_mask is used to partition the space, depending on number of 745 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 746 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 747 * meaning we use 32-6=26 bits for the hash. 748 */ 749struct rps_sock_flow_table { 750 u32 mask; 751 752 u32 ents[] ____cacheline_aligned_in_smp; 753}; 754#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 755 756#define RPS_NO_CPU 0xffff 757 758extern u32 rps_cpu_mask; 759extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 760 761static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 762 u32 hash) 763{ 764 if (table && hash) { 765 unsigned int index = hash & table->mask; 766 u32 val = hash & ~rps_cpu_mask; 767 768 /* We only give a hint, preemption can change CPU under us */ 769 val |= raw_smp_processor_id(); 770 771 if (table->ents[index] != val) 772 table->ents[index] = val; 773 } 774} 775 776#ifdef CONFIG_RFS_ACCEL 777bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 778 u16 filter_id); 779#endif 780#endif /* CONFIG_RPS */ 781 782/* This structure contains an instance of an RX queue. */ 783struct netdev_rx_queue { 784 struct xdp_rxq_info xdp_rxq; 785#ifdef CONFIG_RPS 786 struct rps_map __rcu *rps_map; 787 struct rps_dev_flow_table __rcu *rps_flow_table; 788#endif 789 struct kobject kobj; 790 struct net_device *dev; 791 netdevice_tracker dev_tracker; 792 793#ifdef CONFIG_XDP_SOCKETS 794 struct xsk_buff_pool *pool; 795#endif 796} ____cacheline_aligned_in_smp; 797 798/* 799 * RX queue sysfs structures and functions. 800 */ 801struct rx_queue_attribute { 802 struct attribute attr; 803 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf); 804 ssize_t (*store)(struct netdev_rx_queue *queue, 805 const char *buf, size_t len); 806}; 807 808/* XPS map type and offset of the xps map within net_device->xps_maps[]. */ 809enum xps_map_type { 810 XPS_CPUS = 0, 811 XPS_RXQS, 812 XPS_MAPS_MAX, 813}; 814 815#ifdef CONFIG_XPS 816/* 817 * This structure holds an XPS map which can be of variable length. The 818 * map is an array of queues. 819 */ 820struct xps_map { 821 unsigned int len; 822 unsigned int alloc_len; 823 struct rcu_head rcu; 824 u16 queues[]; 825}; 826#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 827#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 828 - sizeof(struct xps_map)) / sizeof(u16)) 829 830/* 831 * This structure holds all XPS maps for device. Maps are indexed by CPU. 832 * 833 * We keep track of the number of cpus/rxqs used when the struct is allocated, 834 * in nr_ids. This will help not accessing out-of-bound memory. 835 * 836 * We keep track of the number of traffic classes used when the struct is 837 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're 838 * not crossing its upper bound, as the original dev->num_tc can be updated in 839 * the meantime. 840 */ 841struct xps_dev_maps { 842 struct rcu_head rcu; 843 unsigned int nr_ids; 844 s16 num_tc; 845 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */ 846}; 847 848#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 849 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 850 851#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\ 852 (_rxqs * (_tcs) * sizeof(struct xps_map *))) 853 854#endif /* CONFIG_XPS */ 855 856#define TC_MAX_QUEUE 16 857#define TC_BITMASK 15 858/* HW offloaded queuing disciplines txq count and offset maps */ 859struct netdev_tc_txq { 860 u16 count; 861 u16 offset; 862}; 863 864#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 865/* 866 * This structure is to hold information about the device 867 * configured to run FCoE protocol stack. 868 */ 869struct netdev_fcoe_hbainfo { 870 char manufacturer[64]; 871 char serial_number[64]; 872 char hardware_version[64]; 873 char driver_version[64]; 874 char optionrom_version[64]; 875 char firmware_version[64]; 876 char model[256]; 877 char model_description[256]; 878}; 879#endif 880 881#define MAX_PHYS_ITEM_ID_LEN 32 882 883/* This structure holds a unique identifier to identify some 884 * physical item (port for example) used by a netdevice. 885 */ 886struct netdev_phys_item_id { 887 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 888 unsigned char id_len; 889}; 890 891static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 892 struct netdev_phys_item_id *b) 893{ 894 return a->id_len == b->id_len && 895 memcmp(a->id, b->id, a->id_len) == 0; 896} 897 898typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 899 struct sk_buff *skb, 900 struct net_device *sb_dev); 901 902enum net_device_path_type { 903 DEV_PATH_ETHERNET = 0, 904 DEV_PATH_VLAN, 905 DEV_PATH_BRIDGE, 906 DEV_PATH_PPPOE, 907 DEV_PATH_DSA, 908 DEV_PATH_MTK_WDMA, 909}; 910 911struct net_device_path { 912 enum net_device_path_type type; 913 const struct net_device *dev; 914 union { 915 struct { 916 u16 id; 917 __be16 proto; 918 u8 h_dest[ETH_ALEN]; 919 } encap; 920 struct { 921 enum { 922 DEV_PATH_BR_VLAN_KEEP, 923 DEV_PATH_BR_VLAN_TAG, 924 DEV_PATH_BR_VLAN_UNTAG, 925 DEV_PATH_BR_VLAN_UNTAG_HW, 926 } vlan_mode; 927 u16 vlan_id; 928 __be16 vlan_proto; 929 } bridge; 930 struct { 931 int port; 932 u16 proto; 933 } dsa; 934 struct { 935 u8 wdma_idx; 936 u8 queue; 937 u16 wcid; 938 u8 bss; 939 } mtk_wdma; 940 }; 941}; 942 943#define NET_DEVICE_PATH_STACK_MAX 5 944#define NET_DEVICE_PATH_VLAN_MAX 2 945 946struct net_device_path_stack { 947 int num_paths; 948 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX]; 949}; 950 951struct net_device_path_ctx { 952 const struct net_device *dev; 953 u8 daddr[ETH_ALEN]; 954 955 int num_vlans; 956 struct { 957 u16 id; 958 __be16 proto; 959 } vlan[NET_DEVICE_PATH_VLAN_MAX]; 960}; 961 962enum tc_setup_type { 963 TC_QUERY_CAPS, 964 TC_SETUP_QDISC_MQPRIO, 965 TC_SETUP_CLSU32, 966 TC_SETUP_CLSFLOWER, 967 TC_SETUP_CLSMATCHALL, 968 TC_SETUP_CLSBPF, 969 TC_SETUP_BLOCK, 970 TC_SETUP_QDISC_CBS, 971 TC_SETUP_QDISC_RED, 972 TC_SETUP_QDISC_PRIO, 973 TC_SETUP_QDISC_MQ, 974 TC_SETUP_QDISC_ETF, 975 TC_SETUP_ROOT_QDISC, 976 TC_SETUP_QDISC_GRED, 977 TC_SETUP_QDISC_TAPRIO, 978 TC_SETUP_FT, 979 TC_SETUP_QDISC_ETS, 980 TC_SETUP_QDISC_TBF, 981 TC_SETUP_QDISC_FIFO, 982 TC_SETUP_QDISC_HTB, 983 TC_SETUP_ACT, 984}; 985 986/* These structures hold the attributes of bpf state that are being passed 987 * to the netdevice through the bpf op. 988 */ 989enum bpf_netdev_command { 990 /* Set or clear a bpf program used in the earliest stages of packet 991 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 992 * is responsible for calling bpf_prog_put on any old progs that are 993 * stored. In case of error, the callee need not release the new prog 994 * reference, but on success it takes ownership and must bpf_prog_put 995 * when it is no longer used. 996 */ 997 XDP_SETUP_PROG, 998 XDP_SETUP_PROG_HW, 999 /* BPF program for offload callbacks, invoked at program load time. */ 1000 BPF_OFFLOAD_MAP_ALLOC, 1001 BPF_OFFLOAD_MAP_FREE, 1002 XDP_SETUP_XSK_POOL, 1003}; 1004 1005struct bpf_prog_offload_ops; 1006struct netlink_ext_ack; 1007struct xdp_umem; 1008struct xdp_dev_bulk_queue; 1009struct bpf_xdp_link; 1010 1011enum bpf_xdp_mode { 1012 XDP_MODE_SKB = 0, 1013 XDP_MODE_DRV = 1, 1014 XDP_MODE_HW = 2, 1015 __MAX_XDP_MODE 1016}; 1017 1018struct bpf_xdp_entity { 1019 struct bpf_prog *prog; 1020 struct bpf_xdp_link *link; 1021}; 1022 1023struct netdev_bpf { 1024 enum bpf_netdev_command command; 1025 union { 1026 /* XDP_SETUP_PROG */ 1027 struct { 1028 u32 flags; 1029 struct bpf_prog *prog; 1030 struct netlink_ext_ack *extack; 1031 }; 1032 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */ 1033 struct { 1034 struct bpf_offloaded_map *offmap; 1035 }; 1036 /* XDP_SETUP_XSK_POOL */ 1037 struct { 1038 struct xsk_buff_pool *pool; 1039 u16 queue_id; 1040 } xsk; 1041 }; 1042}; 1043 1044/* Flags for ndo_xsk_wakeup. */ 1045#define XDP_WAKEUP_RX (1 << 0) 1046#define XDP_WAKEUP_TX (1 << 1) 1047 1048#ifdef CONFIG_XFRM_OFFLOAD 1049struct xfrmdev_ops { 1050 int (*xdo_dev_state_add) (struct xfrm_state *x, struct netlink_ext_ack *extack); 1051 void (*xdo_dev_state_delete) (struct xfrm_state *x); 1052 void (*xdo_dev_state_free) (struct xfrm_state *x); 1053 bool (*xdo_dev_offload_ok) (struct sk_buff *skb, 1054 struct xfrm_state *x); 1055 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x); 1056 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x); 1057 int (*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack); 1058 void (*xdo_dev_policy_delete) (struct xfrm_policy *x); 1059 void (*xdo_dev_policy_free) (struct xfrm_policy *x); 1060}; 1061#endif 1062 1063struct dev_ifalias { 1064 struct rcu_head rcuhead; 1065 char ifalias[]; 1066}; 1067 1068struct devlink; 1069struct tlsdev_ops; 1070 1071struct netdev_net_notifier { 1072 struct list_head list; 1073 struct notifier_block *nb; 1074}; 1075 1076/* 1077 * This structure defines the management hooks for network devices. 1078 * The following hooks can be defined; unless noted otherwise, they are 1079 * optional and can be filled with a null pointer. 1080 * 1081 * int (*ndo_init)(struct net_device *dev); 1082 * This function is called once when a network device is registered. 1083 * The network device can use this for any late stage initialization 1084 * or semantic validation. It can fail with an error code which will 1085 * be propagated back to register_netdev. 1086 * 1087 * void (*ndo_uninit)(struct net_device *dev); 1088 * This function is called when device is unregistered or when registration 1089 * fails. It is not called if init fails. 1090 * 1091 * int (*ndo_open)(struct net_device *dev); 1092 * This function is called when a network device transitions to the up 1093 * state. 1094 * 1095 * int (*ndo_stop)(struct net_device *dev); 1096 * This function is called when a network device transitions to the down 1097 * state. 1098 * 1099 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1100 * struct net_device *dev); 1101 * Called when a packet needs to be transmitted. 1102 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 1103 * the queue before that can happen; it's for obsolete devices and weird 1104 * corner cases, but the stack really does a non-trivial amount 1105 * of useless work if you return NETDEV_TX_BUSY. 1106 * Required; cannot be NULL. 1107 * 1108 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1109 * struct net_device *dev 1110 * netdev_features_t features); 1111 * Called by core transmit path to determine if device is capable of 1112 * performing offload operations on a given packet. This is to give 1113 * the device an opportunity to implement any restrictions that cannot 1114 * be otherwise expressed by feature flags. The check is called with 1115 * the set of features that the stack has calculated and it returns 1116 * those the driver believes to be appropriate. 1117 * 1118 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 1119 * struct net_device *sb_dev); 1120 * Called to decide which queue to use when device supports multiple 1121 * transmit queues. 1122 * 1123 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 1124 * This function is called to allow device receiver to make 1125 * changes to configuration when multicast or promiscuous is enabled. 1126 * 1127 * void (*ndo_set_rx_mode)(struct net_device *dev); 1128 * This function is called device changes address list filtering. 1129 * If driver handles unicast address filtering, it should set 1130 * IFF_UNICAST_FLT in its priv_flags. 1131 * 1132 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 1133 * This function is called when the Media Access Control address 1134 * needs to be changed. If this interface is not defined, the 1135 * MAC address can not be changed. 1136 * 1137 * int (*ndo_validate_addr)(struct net_device *dev); 1138 * Test if Media Access Control address is valid for the device. 1139 * 1140 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1141 * Old-style ioctl entry point. This is used internally by the 1142 * appletalk and ieee802154 subsystems but is no longer called by 1143 * the device ioctl handler. 1144 * 1145 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd); 1146 * Used by the bonding driver for its device specific ioctls: 1147 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE, 1148 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY 1149 * 1150 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 1151 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG, 1152 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP. 1153 * 1154 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 1155 * Used to set network devices bus interface parameters. This interface 1156 * is retained for legacy reasons; new devices should use the bus 1157 * interface (PCI) for low level management. 1158 * 1159 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 1160 * Called when a user wants to change the Maximum Transfer Unit 1161 * of a device. 1162 * 1163 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue); 1164 * Callback used when the transmitter has not made any progress 1165 * for dev->watchdog ticks. 1166 * 1167 * void (*ndo_get_stats64)(struct net_device *dev, 1168 * struct rtnl_link_stats64 *storage); 1169 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1170 * Called when a user wants to get the network device usage 1171 * statistics. Drivers must do one of the following: 1172 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 1173 * rtnl_link_stats64 structure passed by the caller. 1174 * 2. Define @ndo_get_stats to update a net_device_stats structure 1175 * (which should normally be dev->stats) and return a pointer to 1176 * it. The structure may be changed asynchronously only if each 1177 * field is written atomically. 1178 * 3. Update dev->stats asynchronously and atomically, and define 1179 * neither operation. 1180 * 1181 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 1182 * Return true if this device supports offload stats of this attr_id. 1183 * 1184 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 1185 * void *attr_data) 1186 * Get statistics for offload operations by attr_id. Write it into the 1187 * attr_data pointer. 1188 * 1189 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 1190 * If device supports VLAN filtering this function is called when a 1191 * VLAN id is registered. 1192 * 1193 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 1194 * If device supports VLAN filtering this function is called when a 1195 * VLAN id is unregistered. 1196 * 1197 * void (*ndo_poll_controller)(struct net_device *dev); 1198 * 1199 * SR-IOV management functions. 1200 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 1201 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 1202 * u8 qos, __be16 proto); 1203 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 1204 * int max_tx_rate); 1205 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 1206 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 1207 * int (*ndo_get_vf_config)(struct net_device *dev, 1208 * int vf, struct ifla_vf_info *ivf); 1209 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 1210 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 1211 * struct nlattr *port[]); 1212 * 1213 * Enable or disable the VF ability to query its RSS Redirection Table and 1214 * Hash Key. This is needed since on some devices VF share this information 1215 * with PF and querying it may introduce a theoretical security risk. 1216 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 1217 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 1218 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type, 1219 * void *type_data); 1220 * Called to setup any 'tc' scheduler, classifier or action on @dev. 1221 * This is always called from the stack with the rtnl lock held and netif 1222 * tx queues stopped. This allows the netdevice to perform queue 1223 * management safely. 1224 * 1225 * Fiber Channel over Ethernet (FCoE) offload functions. 1226 * int (*ndo_fcoe_enable)(struct net_device *dev); 1227 * Called when the FCoE protocol stack wants to start using LLD for FCoE 1228 * so the underlying device can perform whatever needed configuration or 1229 * initialization to support acceleration of FCoE traffic. 1230 * 1231 * int (*ndo_fcoe_disable)(struct net_device *dev); 1232 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 1233 * so the underlying device can perform whatever needed clean-ups to 1234 * stop supporting acceleration of FCoE traffic. 1235 * 1236 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 1237 * struct scatterlist *sgl, unsigned int sgc); 1238 * Called when the FCoE Initiator wants to initialize an I/O that 1239 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1240 * perform necessary setup and returns 1 to indicate the device is set up 1241 * successfully to perform DDP on this I/O, otherwise this returns 0. 1242 * 1243 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 1244 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 1245 * indicated by the FC exchange id 'xid', so the underlying device can 1246 * clean up and reuse resources for later DDP requests. 1247 * 1248 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1249 * struct scatterlist *sgl, unsigned int sgc); 1250 * Called when the FCoE Target wants to initialize an I/O that 1251 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1252 * perform necessary setup and returns 1 to indicate the device is set up 1253 * successfully to perform DDP on this I/O, otherwise this returns 0. 1254 * 1255 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1256 * struct netdev_fcoe_hbainfo *hbainfo); 1257 * Called when the FCoE Protocol stack wants information on the underlying 1258 * device. This information is utilized by the FCoE protocol stack to 1259 * register attributes with Fiber Channel management service as per the 1260 * FC-GS Fabric Device Management Information(FDMI) specification. 1261 * 1262 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1263 * Called when the underlying device wants to override default World Wide 1264 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1265 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1266 * protocol stack to use. 1267 * 1268 * RFS acceleration. 1269 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1270 * u16 rxq_index, u32 flow_id); 1271 * Set hardware filter for RFS. rxq_index is the target queue index; 1272 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1273 * Return the filter ID on success, or a negative error code. 1274 * 1275 * Slave management functions (for bridge, bonding, etc). 1276 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1277 * Called to make another netdev an underling. 1278 * 1279 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1280 * Called to release previously enslaved netdev. 1281 * 1282 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev, 1283 * struct sk_buff *skb, 1284 * bool all_slaves); 1285 * Get the xmit slave of master device. If all_slaves is true, function 1286 * assume all the slaves can transmit. 1287 * 1288 * Feature/offload setting functions. 1289 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1290 * netdev_features_t features); 1291 * Adjusts the requested feature flags according to device-specific 1292 * constraints, and returns the resulting flags. Must not modify 1293 * the device state. 1294 * 1295 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1296 * Called to update device configuration to new features. Passed 1297 * feature set might be less than what was returned by ndo_fix_features()). 1298 * Must return >0 or -errno if it changed dev->features itself. 1299 * 1300 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1301 * struct net_device *dev, 1302 * const unsigned char *addr, u16 vid, u16 flags, 1303 * struct netlink_ext_ack *extack); 1304 * Adds an FDB entry to dev for addr. 1305 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1306 * struct net_device *dev, 1307 * const unsigned char *addr, u16 vid) 1308 * Deletes the FDB entry from dev coresponding to addr. 1309 * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[], 1310 * struct net_device *dev, 1311 * u16 vid, 1312 * struct netlink_ext_ack *extack); 1313 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1314 * struct net_device *dev, struct net_device *filter_dev, 1315 * int *idx) 1316 * Used to add FDB entries to dump requests. Implementers should add 1317 * entries to skb and update idx with the number of entries. 1318 * 1319 * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[], 1320 * u16 nlmsg_flags, struct netlink_ext_ack *extack); 1321 * Adds an MDB entry to dev. 1322 * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[], 1323 * struct netlink_ext_ack *extack); 1324 * Deletes the MDB entry from dev. 1325 * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb, 1326 * struct netlink_callback *cb); 1327 * Dumps MDB entries from dev. The first argument (marker) in the netlink 1328 * callback is used by core rtnetlink code. 1329 * 1330 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1331 * u16 flags, struct netlink_ext_ack *extack) 1332 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1333 * struct net_device *dev, u32 filter_mask, 1334 * int nlflags) 1335 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1336 * u16 flags); 1337 * 1338 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1339 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1340 * which do not represent real hardware may define this to allow their 1341 * userspace components to manage their virtual carrier state. Devices 1342 * that determine carrier state from physical hardware properties (eg 1343 * network cables) or protocol-dependent mechanisms (eg 1344 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1345 * 1346 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1347 * struct netdev_phys_item_id *ppid); 1348 * Called to get ID of physical port of this device. If driver does 1349 * not implement this, it is assumed that the hw is not able to have 1350 * multiple net devices on single physical port. 1351 * 1352 * int (*ndo_get_port_parent_id)(struct net_device *dev, 1353 * struct netdev_phys_item_id *ppid) 1354 * Called to get the parent ID of the physical port of this device. 1355 * 1356 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1357 * struct net_device *dev) 1358 * Called by upper layer devices to accelerate switching or other 1359 * station functionality into hardware. 'pdev is the lowerdev 1360 * to use for the offload and 'dev' is the net device that will 1361 * back the offload. Returns a pointer to the private structure 1362 * the upper layer will maintain. 1363 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1364 * Called by upper layer device to delete the station created 1365 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1366 * the station and priv is the structure returned by the add 1367 * operation. 1368 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1369 * int queue_index, u32 maxrate); 1370 * Called when a user wants to set a max-rate limitation of specific 1371 * TX queue. 1372 * int (*ndo_get_iflink)(const struct net_device *dev); 1373 * Called to get the iflink value of this device. 1374 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1375 * This function is used to get egress tunnel information for given skb. 1376 * This is useful for retrieving outer tunnel header parameters while 1377 * sampling packet. 1378 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1379 * This function is used to specify the headroom that the skb must 1380 * consider when allocation skb during packet reception. Setting 1381 * appropriate rx headroom value allows avoiding skb head copy on 1382 * forward. Setting a negative value resets the rx headroom to the 1383 * default value. 1384 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf); 1385 * This function is used to set or query state related to XDP on the 1386 * netdevice and manage BPF offload. See definition of 1387 * enum bpf_netdev_command for details. 1388 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp, 1389 * u32 flags); 1390 * This function is used to submit @n XDP packets for transmit on a 1391 * netdevice. Returns number of frames successfully transmitted, frames 1392 * that got dropped are freed/returned via xdp_return_frame(). 1393 * Returns negative number, means general error invoking ndo, meaning 1394 * no frames were xmit'ed and core-caller will free all frames. 1395 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1396 * struct xdp_buff *xdp); 1397 * Get the xmit slave of master device based on the xdp_buff. 1398 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags); 1399 * This function is used to wake up the softirq, ksoftirqd or kthread 1400 * responsible for sending and/or receiving packets on a specific 1401 * queue id bound to an AF_XDP socket. The flags field specifies if 1402 * only RX, only Tx, or both should be woken up using the flags 1403 * XDP_WAKEUP_RX and XDP_WAKEUP_TX. 1404 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p, 1405 * int cmd); 1406 * Add, change, delete or get information on an IPv4 tunnel. 1407 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev); 1408 * If a device is paired with a peer device, return the peer instance. 1409 * The caller must be under RCU read context. 1410 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path); 1411 * Get the forwarding path to reach the real device from the HW destination address 1412 * ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1413 * const struct skb_shared_hwtstamps *hwtstamps, 1414 * bool cycles); 1415 * Get hardware timestamp based on normal/adjustable time or free running 1416 * cycle counter. This function is required if physical clock supports a 1417 * free running cycle counter. 1418 */ 1419struct net_device_ops { 1420 int (*ndo_init)(struct net_device *dev); 1421 void (*ndo_uninit)(struct net_device *dev); 1422 int (*ndo_open)(struct net_device *dev); 1423 int (*ndo_stop)(struct net_device *dev); 1424 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1425 struct net_device *dev); 1426 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1427 struct net_device *dev, 1428 netdev_features_t features); 1429 u16 (*ndo_select_queue)(struct net_device *dev, 1430 struct sk_buff *skb, 1431 struct net_device *sb_dev); 1432 void (*ndo_change_rx_flags)(struct net_device *dev, 1433 int flags); 1434 void (*ndo_set_rx_mode)(struct net_device *dev); 1435 int (*ndo_set_mac_address)(struct net_device *dev, 1436 void *addr); 1437 int (*ndo_validate_addr)(struct net_device *dev); 1438 int (*ndo_do_ioctl)(struct net_device *dev, 1439 struct ifreq *ifr, int cmd); 1440 int (*ndo_eth_ioctl)(struct net_device *dev, 1441 struct ifreq *ifr, int cmd); 1442 int (*ndo_siocbond)(struct net_device *dev, 1443 struct ifreq *ifr, int cmd); 1444 int (*ndo_siocwandev)(struct net_device *dev, 1445 struct if_settings *ifs); 1446 int (*ndo_siocdevprivate)(struct net_device *dev, 1447 struct ifreq *ifr, 1448 void __user *data, int cmd); 1449 int (*ndo_set_config)(struct net_device *dev, 1450 struct ifmap *map); 1451 int (*ndo_change_mtu)(struct net_device *dev, 1452 int new_mtu); 1453 int (*ndo_neigh_setup)(struct net_device *dev, 1454 struct neigh_parms *); 1455 void (*ndo_tx_timeout) (struct net_device *dev, 1456 unsigned int txqueue); 1457 1458 void (*ndo_get_stats64)(struct net_device *dev, 1459 struct rtnl_link_stats64 *storage); 1460 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1461 int (*ndo_get_offload_stats)(int attr_id, 1462 const struct net_device *dev, 1463 void *attr_data); 1464 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1465 1466 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1467 __be16 proto, u16 vid); 1468 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1469 __be16 proto, u16 vid); 1470#ifdef CONFIG_NET_POLL_CONTROLLER 1471 void (*ndo_poll_controller)(struct net_device *dev); 1472 int (*ndo_netpoll_setup)(struct net_device *dev, 1473 struct netpoll_info *info); 1474 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1475#endif 1476 int (*ndo_set_vf_mac)(struct net_device *dev, 1477 int queue, u8 *mac); 1478 int (*ndo_set_vf_vlan)(struct net_device *dev, 1479 int queue, u16 vlan, 1480 u8 qos, __be16 proto); 1481 int (*ndo_set_vf_rate)(struct net_device *dev, 1482 int vf, int min_tx_rate, 1483 int max_tx_rate); 1484 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1485 int vf, bool setting); 1486 int (*ndo_set_vf_trust)(struct net_device *dev, 1487 int vf, bool setting); 1488 int (*ndo_get_vf_config)(struct net_device *dev, 1489 int vf, 1490 struct ifla_vf_info *ivf); 1491 int (*ndo_set_vf_link_state)(struct net_device *dev, 1492 int vf, int link_state); 1493 int (*ndo_get_vf_stats)(struct net_device *dev, 1494 int vf, 1495 struct ifla_vf_stats 1496 *vf_stats); 1497 int (*ndo_set_vf_port)(struct net_device *dev, 1498 int vf, 1499 struct nlattr *port[]); 1500 int (*ndo_get_vf_port)(struct net_device *dev, 1501 int vf, struct sk_buff *skb); 1502 int (*ndo_get_vf_guid)(struct net_device *dev, 1503 int vf, 1504 struct ifla_vf_guid *node_guid, 1505 struct ifla_vf_guid *port_guid); 1506 int (*ndo_set_vf_guid)(struct net_device *dev, 1507 int vf, u64 guid, 1508 int guid_type); 1509 int (*ndo_set_vf_rss_query_en)( 1510 struct net_device *dev, 1511 int vf, bool setting); 1512 int (*ndo_setup_tc)(struct net_device *dev, 1513 enum tc_setup_type type, 1514 void *type_data); 1515#if IS_ENABLED(CONFIG_FCOE) 1516 int (*ndo_fcoe_enable)(struct net_device *dev); 1517 int (*ndo_fcoe_disable)(struct net_device *dev); 1518 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1519 u16 xid, 1520 struct scatterlist *sgl, 1521 unsigned int sgc); 1522 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1523 u16 xid); 1524 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1525 u16 xid, 1526 struct scatterlist *sgl, 1527 unsigned int sgc); 1528 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1529 struct netdev_fcoe_hbainfo *hbainfo); 1530#endif 1531 1532#if IS_ENABLED(CONFIG_LIBFCOE) 1533#define NETDEV_FCOE_WWNN 0 1534#define NETDEV_FCOE_WWPN 1 1535 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1536 u64 *wwn, int type); 1537#endif 1538 1539#ifdef CONFIG_RFS_ACCEL 1540 int (*ndo_rx_flow_steer)(struct net_device *dev, 1541 const struct sk_buff *skb, 1542 u16 rxq_index, 1543 u32 flow_id); 1544#endif 1545 int (*ndo_add_slave)(struct net_device *dev, 1546 struct net_device *slave_dev, 1547 struct netlink_ext_ack *extack); 1548 int (*ndo_del_slave)(struct net_device *dev, 1549 struct net_device *slave_dev); 1550 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev, 1551 struct sk_buff *skb, 1552 bool all_slaves); 1553 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev, 1554 struct sock *sk); 1555 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1556 netdev_features_t features); 1557 int (*ndo_set_features)(struct net_device *dev, 1558 netdev_features_t features); 1559 int (*ndo_neigh_construct)(struct net_device *dev, 1560 struct neighbour *n); 1561 void (*ndo_neigh_destroy)(struct net_device *dev, 1562 struct neighbour *n); 1563 1564 int (*ndo_fdb_add)(struct ndmsg *ndm, 1565 struct nlattr *tb[], 1566 struct net_device *dev, 1567 const unsigned char *addr, 1568 u16 vid, 1569 u16 flags, 1570 struct netlink_ext_ack *extack); 1571 int (*ndo_fdb_del)(struct ndmsg *ndm, 1572 struct nlattr *tb[], 1573 struct net_device *dev, 1574 const unsigned char *addr, 1575 u16 vid, struct netlink_ext_ack *extack); 1576 int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, 1577 struct nlattr *tb[], 1578 struct net_device *dev, 1579 u16 vid, 1580 struct netlink_ext_ack *extack); 1581 int (*ndo_fdb_dump)(struct sk_buff *skb, 1582 struct netlink_callback *cb, 1583 struct net_device *dev, 1584 struct net_device *filter_dev, 1585 int *idx); 1586 int (*ndo_fdb_get)(struct sk_buff *skb, 1587 struct nlattr *tb[], 1588 struct net_device *dev, 1589 const unsigned char *addr, 1590 u16 vid, u32 portid, u32 seq, 1591 struct netlink_ext_ack *extack); 1592 int (*ndo_mdb_add)(struct net_device *dev, 1593 struct nlattr *tb[], 1594 u16 nlmsg_flags, 1595 struct netlink_ext_ack *extack); 1596 int (*ndo_mdb_del)(struct net_device *dev, 1597 struct nlattr *tb[], 1598 struct netlink_ext_ack *extack); 1599 int (*ndo_mdb_dump)(struct net_device *dev, 1600 struct sk_buff *skb, 1601 struct netlink_callback *cb); 1602 int (*ndo_bridge_setlink)(struct net_device *dev, 1603 struct nlmsghdr *nlh, 1604 u16 flags, 1605 struct netlink_ext_ack *extack); 1606 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1607 u32 pid, u32 seq, 1608 struct net_device *dev, 1609 u32 filter_mask, 1610 int nlflags); 1611 int (*ndo_bridge_dellink)(struct net_device *dev, 1612 struct nlmsghdr *nlh, 1613 u16 flags); 1614 int (*ndo_change_carrier)(struct net_device *dev, 1615 bool new_carrier); 1616 int (*ndo_get_phys_port_id)(struct net_device *dev, 1617 struct netdev_phys_item_id *ppid); 1618 int (*ndo_get_port_parent_id)(struct net_device *dev, 1619 struct netdev_phys_item_id *ppid); 1620 int (*ndo_get_phys_port_name)(struct net_device *dev, 1621 char *name, size_t len); 1622 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1623 struct net_device *dev); 1624 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1625 void *priv); 1626 1627 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1628 int queue_index, 1629 u32 maxrate); 1630 int (*ndo_get_iflink)(const struct net_device *dev); 1631 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1632 struct sk_buff *skb); 1633 void (*ndo_set_rx_headroom)(struct net_device *dev, 1634 int needed_headroom); 1635 int (*ndo_bpf)(struct net_device *dev, 1636 struct netdev_bpf *bpf); 1637 int (*ndo_xdp_xmit)(struct net_device *dev, int n, 1638 struct xdp_frame **xdp, 1639 u32 flags); 1640 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev, 1641 struct xdp_buff *xdp); 1642 int (*ndo_xsk_wakeup)(struct net_device *dev, 1643 u32 queue_id, u32 flags); 1644 int (*ndo_tunnel_ctl)(struct net_device *dev, 1645 struct ip_tunnel_parm *p, int cmd); 1646 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev); 1647 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, 1648 struct net_device_path *path); 1649 ktime_t (*ndo_get_tstamp)(struct net_device *dev, 1650 const struct skb_shared_hwtstamps *hwtstamps, 1651 bool cycles); 1652}; 1653 1654struct xdp_metadata_ops { 1655 int (*xmo_rx_timestamp)(const struct xdp_md *ctx, u64 *timestamp); 1656 int (*xmo_rx_hash)(const struct xdp_md *ctx, u32 *hash, 1657 enum xdp_rss_hash_type *rss_type); 1658}; 1659 1660/** 1661 * enum netdev_priv_flags - &struct net_device priv_flags 1662 * 1663 * These are the &struct net_device, they are only set internally 1664 * by drivers and used in the kernel. These flags are invisible to 1665 * userspace; this means that the order of these flags can change 1666 * during any kernel release. 1667 * 1668 * You should have a pretty good reason to be extending these flags. 1669 * 1670 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1671 * @IFF_EBRIDGE: Ethernet bridging device 1672 * @IFF_BONDING: bonding master or slave 1673 * @IFF_ISATAP: ISATAP interface (RFC4214) 1674 * @IFF_WAN_HDLC: WAN HDLC device 1675 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1676 * release skb->dst 1677 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1678 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1679 * @IFF_MACVLAN_PORT: device used as macvlan port 1680 * @IFF_BRIDGE_PORT: device used as bridge port 1681 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1682 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1683 * @IFF_UNICAST_FLT: Supports unicast filtering 1684 * @IFF_TEAM_PORT: device used as team port 1685 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1686 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1687 * change when it's running 1688 * @IFF_MACVLAN: Macvlan device 1689 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1690 * underlying stacked devices 1691 * @IFF_L3MDEV_MASTER: device is an L3 master device 1692 * @IFF_NO_QUEUE: device can run without qdisc attached 1693 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1694 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1695 * @IFF_TEAM: device is a team device 1696 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1697 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1698 * entity (i.e. the master device for bridged veth) 1699 * @IFF_MACSEC: device is a MACsec device 1700 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook 1701 * @IFF_FAILOVER: device is a failover master device 1702 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device 1703 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device 1704 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf 1705 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with 1706 * skb_headlen(skb) == 0 (data starts from frag0) 1707 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN 1708 */ 1709enum netdev_priv_flags { 1710 IFF_802_1Q_VLAN = 1<<0, 1711 IFF_EBRIDGE = 1<<1, 1712 IFF_BONDING = 1<<2, 1713 IFF_ISATAP = 1<<3, 1714 IFF_WAN_HDLC = 1<<4, 1715 IFF_XMIT_DST_RELEASE = 1<<5, 1716 IFF_DONT_BRIDGE = 1<<6, 1717 IFF_DISABLE_NETPOLL = 1<<7, 1718 IFF_MACVLAN_PORT = 1<<8, 1719 IFF_BRIDGE_PORT = 1<<9, 1720 IFF_OVS_DATAPATH = 1<<10, 1721 IFF_TX_SKB_SHARING = 1<<11, 1722 IFF_UNICAST_FLT = 1<<12, 1723 IFF_TEAM_PORT = 1<<13, 1724 IFF_SUPP_NOFCS = 1<<14, 1725 IFF_LIVE_ADDR_CHANGE = 1<<15, 1726 IFF_MACVLAN = 1<<16, 1727 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1728 IFF_L3MDEV_MASTER = 1<<18, 1729 IFF_NO_QUEUE = 1<<19, 1730 IFF_OPENVSWITCH = 1<<20, 1731 IFF_L3MDEV_SLAVE = 1<<21, 1732 IFF_TEAM = 1<<22, 1733 IFF_RXFH_CONFIGURED = 1<<23, 1734 IFF_PHONY_HEADROOM = 1<<24, 1735 IFF_MACSEC = 1<<25, 1736 IFF_NO_RX_HANDLER = 1<<26, 1737 IFF_FAILOVER = 1<<27, 1738 IFF_FAILOVER_SLAVE = 1<<28, 1739 IFF_L3MDEV_RX_HANDLER = 1<<29, 1740 IFF_NO_ADDRCONF = BIT_ULL(30), 1741 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31), 1742 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32), 1743}; 1744 1745#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1746#define IFF_EBRIDGE IFF_EBRIDGE 1747#define IFF_BONDING IFF_BONDING 1748#define IFF_ISATAP IFF_ISATAP 1749#define IFF_WAN_HDLC IFF_WAN_HDLC 1750#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1751#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1752#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1753#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1754#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1755#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1756#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1757#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1758#define IFF_TEAM_PORT IFF_TEAM_PORT 1759#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1760#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1761#define IFF_MACVLAN IFF_MACVLAN 1762#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1763#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1764#define IFF_NO_QUEUE IFF_NO_QUEUE 1765#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1766#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1767#define IFF_TEAM IFF_TEAM 1768#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1769#define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM 1770#define IFF_MACSEC IFF_MACSEC 1771#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER 1772#define IFF_FAILOVER IFF_FAILOVER 1773#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE 1774#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER 1775#define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR 1776 1777/* Specifies the type of the struct net_device::ml_priv pointer */ 1778enum netdev_ml_priv_type { 1779 ML_PRIV_NONE, 1780 ML_PRIV_CAN, 1781}; 1782 1783/** 1784 * struct net_device - The DEVICE structure. 1785 * 1786 * Actually, this whole structure is a big mistake. It mixes I/O 1787 * data with strictly "high-level" data, and it has to know about 1788 * almost every data structure used in the INET module. 1789 * 1790 * @name: This is the first field of the "visible" part of this structure 1791 * (i.e. as seen by users in the "Space.c" file). It is the name 1792 * of the interface. 1793 * 1794 * @name_node: Name hashlist node 1795 * @ifalias: SNMP alias 1796 * @mem_end: Shared memory end 1797 * @mem_start: Shared memory start 1798 * @base_addr: Device I/O address 1799 * @irq: Device IRQ number 1800 * 1801 * @state: Generic network queuing layer state, see netdev_state_t 1802 * @dev_list: The global list of network devices 1803 * @napi_list: List entry used for polling NAPI devices 1804 * @unreg_list: List entry when we are unregistering the 1805 * device; see the function unregister_netdev 1806 * @close_list: List entry used when we are closing the device 1807 * @ptype_all: Device-specific packet handlers for all protocols 1808 * @ptype_specific: Device-specific, protocol-specific packet handlers 1809 * 1810 * @adj_list: Directly linked devices, like slaves for bonding 1811 * @features: Currently active device features 1812 * @hw_features: User-changeable features 1813 * 1814 * @wanted_features: User-requested features 1815 * @vlan_features: Mask of features inheritable by VLAN devices 1816 * 1817 * @hw_enc_features: Mask of features inherited by encapsulating devices 1818 * This field indicates what encapsulation 1819 * offloads the hardware is capable of doing, 1820 * and drivers will need to set them appropriately. 1821 * 1822 * @mpls_features: Mask of features inheritable by MPLS 1823 * @gso_partial_features: value(s) from NETIF_F_GSO\* 1824 * 1825 * @ifindex: interface index 1826 * @group: The group the device belongs to 1827 * 1828 * @stats: Statistics struct, which was left as a legacy, use 1829 * rtnl_link_stats64 instead 1830 * 1831 * @core_stats: core networking counters, 1832 * do not use this in drivers 1833 * @carrier_up_count: Number of times the carrier has been up 1834 * @carrier_down_count: Number of times the carrier has been down 1835 * 1836 * @wireless_handlers: List of functions to handle Wireless Extensions, 1837 * instead of ioctl, 1838 * see <net/iw_handler.h> for details. 1839 * @wireless_data: Instance data managed by the core of wireless extensions 1840 * 1841 * @netdev_ops: Includes several pointers to callbacks, 1842 * if one wants to override the ndo_*() functions 1843 * @xdp_metadata_ops: Includes pointers to XDP metadata callbacks. 1844 * @ethtool_ops: Management operations 1845 * @l3mdev_ops: Layer 3 master device operations 1846 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1847 * discovery handling. Necessary for e.g. 6LoWPAN. 1848 * @xfrmdev_ops: Transformation offload operations 1849 * @tlsdev_ops: Transport Layer Security offload operations 1850 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1851 * of Layer 2 headers. 1852 * 1853 * @flags: Interface flags (a la BSD) 1854 * @xdp_features: XDP capability supported by the device 1855 * @priv_flags: Like 'flags' but invisible to userspace, 1856 * see if.h for the definitions 1857 * @gflags: Global flags ( kept as legacy ) 1858 * @padded: How much padding added by alloc_netdev() 1859 * @operstate: RFC2863 operstate 1860 * @link_mode: Mapping policy to operstate 1861 * @if_port: Selectable AUI, TP, ... 1862 * @dma: DMA channel 1863 * @mtu: Interface MTU value 1864 * @min_mtu: Interface Minimum MTU value 1865 * @max_mtu: Interface Maximum MTU value 1866 * @type: Interface hardware type 1867 * @hard_header_len: Maximum hardware header length. 1868 * @min_header_len: Minimum hardware header length 1869 * 1870 * @needed_headroom: Extra headroom the hardware may need, but not in all 1871 * cases can this be guaranteed 1872 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1873 * cases can this be guaranteed. Some cases also use 1874 * LL_MAX_HEADER instead to allocate the skb 1875 * 1876 * interface address info: 1877 * 1878 * @perm_addr: Permanent hw address 1879 * @addr_assign_type: Hw address assignment type 1880 * @addr_len: Hardware address length 1881 * @upper_level: Maximum depth level of upper devices. 1882 * @lower_level: Maximum depth level of lower devices. 1883 * @neigh_priv_len: Used in neigh_alloc() 1884 * @dev_id: Used to differentiate devices that share 1885 * the same link layer address 1886 * @dev_port: Used to differentiate devices that share 1887 * the same function 1888 * @addr_list_lock: XXX: need comments on this one 1889 * @name_assign_type: network interface name assignment type 1890 * @uc_promisc: Counter that indicates promiscuous mode 1891 * has been enabled due to the need to listen to 1892 * additional unicast addresses in a device that 1893 * does not implement ndo_set_rx_mode() 1894 * @uc: unicast mac addresses 1895 * @mc: multicast mac addresses 1896 * @dev_addrs: list of device hw addresses 1897 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1898 * @promiscuity: Number of times the NIC is told to work in 1899 * promiscuous mode; if it becomes 0 the NIC will 1900 * exit promiscuous mode 1901 * @allmulti: Counter, enables or disables allmulticast mode 1902 * 1903 * @vlan_info: VLAN info 1904 * @dsa_ptr: dsa specific data 1905 * @tipc_ptr: TIPC specific data 1906 * @atalk_ptr: AppleTalk link 1907 * @ip_ptr: IPv4 specific data 1908 * @ip6_ptr: IPv6 specific data 1909 * @ax25_ptr: AX.25 specific data 1910 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1911 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network 1912 * device struct 1913 * @mpls_ptr: mpls_dev struct pointer 1914 * @mctp_ptr: MCTP specific data 1915 * 1916 * @dev_addr: Hw address (before bcast, 1917 * because most packets are unicast) 1918 * 1919 * @_rx: Array of RX queues 1920 * @num_rx_queues: Number of RX queues 1921 * allocated at register_netdev() time 1922 * @real_num_rx_queues: Number of RX queues currently active in device 1923 * @xdp_prog: XDP sockets filter program pointer 1924 * @gro_flush_timeout: timeout for GRO layer in NAPI 1925 * @napi_defer_hard_irqs: If not zero, provides a counter that would 1926 * allow to avoid NIC hard IRQ, on busy queues. 1927 * 1928 * @rx_handler: handler for received packets 1929 * @rx_handler_data: XXX: need comments on this one 1930 * @miniq_ingress: ingress/clsact qdisc specific data for 1931 * ingress processing 1932 * @ingress_queue: XXX: need comments on this one 1933 * @nf_hooks_ingress: netfilter hooks executed for ingress packets 1934 * @broadcast: hw bcast address 1935 * 1936 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1937 * indexed by RX queue number. Assigned by driver. 1938 * This must only be set if the ndo_rx_flow_steer 1939 * operation is defined 1940 * @index_hlist: Device index hash chain 1941 * 1942 * @_tx: Array of TX queues 1943 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1944 * @real_num_tx_queues: Number of TX queues currently active in device 1945 * @qdisc: Root qdisc from userspace point of view 1946 * @tx_queue_len: Max frames per queue allowed 1947 * @tx_global_lock: XXX: need comments on this one 1948 * @xdp_bulkq: XDP device bulk queue 1949 * @xps_maps: all CPUs/RXQs maps for XPS device 1950 * 1951 * @xps_maps: XXX: need comments on this one 1952 * @miniq_egress: clsact qdisc specific data for 1953 * egress processing 1954 * @nf_hooks_egress: netfilter hooks executed for egress packets 1955 * @qdisc_hash: qdisc hash table 1956 * @watchdog_timeo: Represents the timeout that is used by 1957 * the watchdog (see dev_watchdog()) 1958 * @watchdog_timer: List of timers 1959 * 1960 * @proto_down_reason: reason a netdev interface is held down 1961 * @pcpu_refcnt: Number of references to this device 1962 * @dev_refcnt: Number of references to this device 1963 * @refcnt_tracker: Tracker directory for tracked references to this device 1964 * @todo_list: Delayed register/unregister 1965 * @link_watch_list: XXX: need comments on this one 1966 * 1967 * @reg_state: Register/unregister state machine 1968 * @dismantle: Device is going to be freed 1969 * @rtnl_link_state: This enum represents the phases of creating 1970 * a new link 1971 * 1972 * @needs_free_netdev: Should unregister perform free_netdev? 1973 * @priv_destructor: Called from unregister 1974 * @npinfo: XXX: need comments on this one 1975 * @nd_net: Network namespace this network device is inside 1976 * 1977 * @ml_priv: Mid-layer private 1978 * @ml_priv_type: Mid-layer private type 1979 * @lstats: Loopback statistics 1980 * @tstats: Tunnel statistics 1981 * @dstats: Dummy statistics 1982 * @vstats: Virtual ethernet statistics 1983 * 1984 * @garp_port: GARP 1985 * @mrp_port: MRP 1986 * 1987 * @dm_private: Drop monitor private 1988 * 1989 * @dev: Class/net/name entry 1990 * @sysfs_groups: Space for optional device, statistics and wireless 1991 * sysfs groups 1992 * 1993 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1994 * @rtnl_link_ops: Rtnl_link_ops 1995 * 1996 * @gso_max_size: Maximum size of generic segmentation offload 1997 * @tso_max_size: Device (as in HW) limit on the max TSO request size 1998 * @gso_max_segs: Maximum number of segments that can be passed to the 1999 * NIC for GSO 2000 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count 2001 * @gso_ipv4_max_size: Maximum size of generic segmentation offload, 2002 * for IPv4. 2003 * 2004 * @dcbnl_ops: Data Center Bridging netlink ops 2005 * @num_tc: Number of traffic classes in the net device 2006 * @tc_to_txq: XXX: need comments on this one 2007 * @prio_tc_map: XXX: need comments on this one 2008 * 2009 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 2010 * 2011 * @priomap: XXX: need comments on this one 2012 * @phydev: Physical device may attach itself 2013 * for hardware timestamping 2014 * @sfp_bus: attached &struct sfp_bus structure. 2015 * 2016 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 2017 * 2018 * @proto_down: protocol port state information can be sent to the 2019 * switch driver and used to set the phys state of the 2020 * switch port. 2021 * 2022 * @wol_enabled: Wake-on-LAN is enabled 2023 * 2024 * @threaded: napi threaded mode is enabled 2025 * 2026 * @net_notifier_list: List of per-net netdev notifier block 2027 * that follow this device when it is moved 2028 * to another network namespace. 2029 * 2030 * @macsec_ops: MACsec offloading ops 2031 * 2032 * @udp_tunnel_nic_info: static structure describing the UDP tunnel 2033 * offload capabilities of the device 2034 * @udp_tunnel_nic: UDP tunnel offload state 2035 * @xdp_state: stores info on attached XDP BPF programs 2036 * 2037 * @nested_level: Used as a parameter of spin_lock_nested() of 2038 * dev->addr_list_lock. 2039 * @unlink_list: As netif_addr_lock() can be called recursively, 2040 * keep a list of interfaces to be deleted. 2041 * @gro_max_size: Maximum size of aggregated packet in generic 2042 * receive offload (GRO) 2043 * @gro_ipv4_max_size: Maximum size of aggregated packet in generic 2044 * receive offload (GRO), for IPv4. 2045 * 2046 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes. 2047 * @linkwatch_dev_tracker: refcount tracker used by linkwatch. 2048 * @watchdog_dev_tracker: refcount tracker used by watchdog. 2049 * @dev_registered_tracker: tracker for reference held while 2050 * registered 2051 * @offload_xstats_l3: L3 HW stats for this netdevice. 2052 * 2053 * @devlink_port: Pointer to related devlink port structure. 2054 * Assigned by a driver before netdev registration using 2055 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static 2056 * during the time netdevice is registered. 2057 * 2058 * FIXME: cleanup struct net_device such that network protocol info 2059 * moves out. 2060 */ 2061 2062struct net_device { 2063 char name[IFNAMSIZ]; 2064 struct netdev_name_node *name_node; 2065 struct dev_ifalias __rcu *ifalias; 2066 /* 2067 * I/O specific fields 2068 * FIXME: Merge these and struct ifmap into one 2069 */ 2070 unsigned long mem_end; 2071 unsigned long mem_start; 2072 unsigned long base_addr; 2073 2074 /* 2075 * Some hardware also needs these fields (state,dev_list, 2076 * napi_list,unreg_list,close_list) but they are not 2077 * part of the usual set specified in Space.c. 2078 */ 2079 2080 unsigned long state; 2081 2082 struct list_head dev_list; 2083 struct list_head napi_list; 2084 struct list_head unreg_list; 2085 struct list_head close_list; 2086 struct list_head ptype_all; 2087 struct list_head ptype_specific; 2088 2089 struct { 2090 struct list_head upper; 2091 struct list_head lower; 2092 } adj_list; 2093 2094 /* Read-mostly cache-line for fast-path access */ 2095 unsigned int flags; 2096 xdp_features_t xdp_features; 2097 unsigned long long priv_flags; 2098 const struct net_device_ops *netdev_ops; 2099 const struct xdp_metadata_ops *xdp_metadata_ops; 2100 int ifindex; 2101 unsigned short gflags; 2102 unsigned short hard_header_len; 2103 2104 /* Note : dev->mtu is often read without holding a lock. 2105 * Writers usually hold RTNL. 2106 * It is recommended to use READ_ONCE() to annotate the reads, 2107 * and to use WRITE_ONCE() to annotate the writes. 2108 */ 2109 unsigned int mtu; 2110 unsigned short needed_headroom; 2111 unsigned short needed_tailroom; 2112 2113 netdev_features_t features; 2114 netdev_features_t hw_features; 2115 netdev_features_t wanted_features; 2116 netdev_features_t vlan_features; 2117 netdev_features_t hw_enc_features; 2118 netdev_features_t mpls_features; 2119 netdev_features_t gso_partial_features; 2120 2121 unsigned int min_mtu; 2122 unsigned int max_mtu; 2123 unsigned short type; 2124 unsigned char min_header_len; 2125 unsigned char name_assign_type; 2126 2127 int group; 2128 2129 struct net_device_stats stats; /* not used by modern drivers */ 2130 2131 struct net_device_core_stats __percpu *core_stats; 2132 2133 /* Stats to monitor link on/off, flapping */ 2134 atomic_t carrier_up_count; 2135 atomic_t carrier_down_count; 2136 2137#ifdef CONFIG_WIRELESS_EXT 2138 const struct iw_handler_def *wireless_handlers; 2139 struct iw_public_data *wireless_data; 2140#endif 2141 const struct ethtool_ops *ethtool_ops; 2142#ifdef CONFIG_NET_L3_MASTER_DEV 2143 const struct l3mdev_ops *l3mdev_ops; 2144#endif 2145#if IS_ENABLED(CONFIG_IPV6) 2146 const struct ndisc_ops *ndisc_ops; 2147#endif 2148 2149#ifdef CONFIG_XFRM_OFFLOAD 2150 const struct xfrmdev_ops *xfrmdev_ops; 2151#endif 2152 2153#if IS_ENABLED(CONFIG_TLS_DEVICE) 2154 const struct tlsdev_ops *tlsdev_ops; 2155#endif 2156 2157 const struct header_ops *header_ops; 2158 2159 unsigned char operstate; 2160 unsigned char link_mode; 2161 2162 unsigned char if_port; 2163 unsigned char dma; 2164 2165 /* Interface address info. */ 2166 unsigned char perm_addr[MAX_ADDR_LEN]; 2167 unsigned char addr_assign_type; 2168 unsigned char addr_len; 2169 unsigned char upper_level; 2170 unsigned char lower_level; 2171 2172 unsigned short neigh_priv_len; 2173 unsigned short dev_id; 2174 unsigned short dev_port; 2175 unsigned short padded; 2176 2177 spinlock_t addr_list_lock; 2178 int irq; 2179 2180 struct netdev_hw_addr_list uc; 2181 struct netdev_hw_addr_list mc; 2182 struct netdev_hw_addr_list dev_addrs; 2183 2184#ifdef CONFIG_SYSFS 2185 struct kset *queues_kset; 2186#endif 2187#ifdef CONFIG_LOCKDEP 2188 struct list_head unlink_list; 2189#endif 2190 unsigned int promiscuity; 2191 unsigned int allmulti; 2192 bool uc_promisc; 2193#ifdef CONFIG_LOCKDEP 2194 unsigned char nested_level; 2195#endif 2196 2197 2198 /* Protocol-specific pointers */ 2199 2200 struct in_device __rcu *ip_ptr; 2201 struct inet6_dev __rcu *ip6_ptr; 2202#if IS_ENABLED(CONFIG_VLAN_8021Q) 2203 struct vlan_info __rcu *vlan_info; 2204#endif 2205#if IS_ENABLED(CONFIG_NET_DSA) 2206 struct dsa_port *dsa_ptr; 2207#endif 2208#if IS_ENABLED(CONFIG_TIPC) 2209 struct tipc_bearer __rcu *tipc_ptr; 2210#endif 2211#if IS_ENABLED(CONFIG_ATALK) 2212 void *atalk_ptr; 2213#endif 2214#if IS_ENABLED(CONFIG_AX25) 2215 void *ax25_ptr; 2216#endif 2217#if IS_ENABLED(CONFIG_CFG80211) 2218 struct wireless_dev *ieee80211_ptr; 2219#endif 2220#if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN) 2221 struct wpan_dev *ieee802154_ptr; 2222#endif 2223#if IS_ENABLED(CONFIG_MPLS_ROUTING) 2224 struct mpls_dev __rcu *mpls_ptr; 2225#endif 2226#if IS_ENABLED(CONFIG_MCTP) 2227 struct mctp_dev __rcu *mctp_ptr; 2228#endif 2229 2230/* 2231 * Cache lines mostly used on receive path (including eth_type_trans()) 2232 */ 2233 /* Interface address info used in eth_type_trans() */ 2234 const unsigned char *dev_addr; 2235 2236 struct netdev_rx_queue *_rx; 2237 unsigned int num_rx_queues; 2238 unsigned int real_num_rx_queues; 2239 2240 struct bpf_prog __rcu *xdp_prog; 2241 unsigned long gro_flush_timeout; 2242 int napi_defer_hard_irqs; 2243#define GRO_LEGACY_MAX_SIZE 65536u 2244/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2245 * and shinfo->gso_segs is a 16bit field. 2246 */ 2247#define GRO_MAX_SIZE (8 * 65535u) 2248 unsigned int gro_max_size; 2249 unsigned int gro_ipv4_max_size; 2250 rx_handler_func_t __rcu *rx_handler; 2251 void __rcu *rx_handler_data; 2252 2253#ifdef CONFIG_NET_CLS_ACT 2254 struct mini_Qdisc __rcu *miniq_ingress; 2255#endif 2256 struct netdev_queue __rcu *ingress_queue; 2257#ifdef CONFIG_NETFILTER_INGRESS 2258 struct nf_hook_entries __rcu *nf_hooks_ingress; 2259#endif 2260 2261 unsigned char broadcast[MAX_ADDR_LEN]; 2262#ifdef CONFIG_RFS_ACCEL 2263 struct cpu_rmap *rx_cpu_rmap; 2264#endif 2265 struct hlist_node index_hlist; 2266 2267/* 2268 * Cache lines mostly used on transmit path 2269 */ 2270 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 2271 unsigned int num_tx_queues; 2272 unsigned int real_num_tx_queues; 2273 struct Qdisc __rcu *qdisc; 2274 unsigned int tx_queue_len; 2275 spinlock_t tx_global_lock; 2276 2277 struct xdp_dev_bulk_queue __percpu *xdp_bulkq; 2278 2279#ifdef CONFIG_XPS 2280 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX]; 2281#endif 2282#ifdef CONFIG_NET_CLS_ACT 2283 struct mini_Qdisc __rcu *miniq_egress; 2284#endif 2285#ifdef CONFIG_NETFILTER_EGRESS 2286 struct nf_hook_entries __rcu *nf_hooks_egress; 2287#endif 2288 2289#ifdef CONFIG_NET_SCHED 2290 DECLARE_HASHTABLE (qdisc_hash, 4); 2291#endif 2292 /* These may be needed for future network-power-down code. */ 2293 struct timer_list watchdog_timer; 2294 int watchdog_timeo; 2295 2296 u32 proto_down_reason; 2297 2298 struct list_head todo_list; 2299 2300#ifdef CONFIG_PCPU_DEV_REFCNT 2301 int __percpu *pcpu_refcnt; 2302#else 2303 refcount_t dev_refcnt; 2304#endif 2305 struct ref_tracker_dir refcnt_tracker; 2306 2307 struct list_head link_watch_list; 2308 2309 enum { NETREG_UNINITIALIZED=0, 2310 NETREG_REGISTERED, /* completed register_netdevice */ 2311 NETREG_UNREGISTERING, /* called unregister_netdevice */ 2312 NETREG_UNREGISTERED, /* completed unregister todo */ 2313 NETREG_RELEASED, /* called free_netdev */ 2314 NETREG_DUMMY, /* dummy device for NAPI poll */ 2315 } reg_state:8; 2316 2317 bool dismantle; 2318 2319 enum { 2320 RTNL_LINK_INITIALIZED, 2321 RTNL_LINK_INITIALIZING, 2322 } rtnl_link_state:16; 2323 2324 bool needs_free_netdev; 2325 void (*priv_destructor)(struct net_device *dev); 2326 2327#ifdef CONFIG_NETPOLL 2328 struct netpoll_info __rcu *npinfo; 2329#endif 2330 2331 possible_net_t nd_net; 2332 2333 /* mid-layer private */ 2334 void *ml_priv; 2335 enum netdev_ml_priv_type ml_priv_type; 2336 2337 union { 2338 struct pcpu_lstats __percpu *lstats; 2339 struct pcpu_sw_netstats __percpu *tstats; 2340 struct pcpu_dstats __percpu *dstats; 2341 }; 2342 2343#if IS_ENABLED(CONFIG_GARP) 2344 struct garp_port __rcu *garp_port; 2345#endif 2346#if IS_ENABLED(CONFIG_MRP) 2347 struct mrp_port __rcu *mrp_port; 2348#endif 2349#if IS_ENABLED(CONFIG_NET_DROP_MONITOR) 2350 struct dm_hw_stat_delta __rcu *dm_private; 2351#endif 2352 struct device dev; 2353 const struct attribute_group *sysfs_groups[4]; 2354 const struct attribute_group *sysfs_rx_queue_group; 2355 2356 const struct rtnl_link_ops *rtnl_link_ops; 2357 2358 /* for setting kernel sock attribute on TCP connection setup */ 2359#define GSO_MAX_SEGS 65535u 2360#define GSO_LEGACY_MAX_SIZE 65536u 2361/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE), 2362 * and shinfo->gso_segs is a 16bit field. 2363 */ 2364#define GSO_MAX_SIZE (8 * GSO_MAX_SEGS) 2365 2366 unsigned int gso_max_size; 2367#define TSO_LEGACY_MAX_SIZE 65536 2368#define TSO_MAX_SIZE UINT_MAX 2369 unsigned int tso_max_size; 2370 u16 gso_max_segs; 2371#define TSO_MAX_SEGS U16_MAX 2372 u16 tso_max_segs; 2373 unsigned int gso_ipv4_max_size; 2374 2375#ifdef CONFIG_DCB 2376 const struct dcbnl_rtnl_ops *dcbnl_ops; 2377#endif 2378 s16 num_tc; 2379 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 2380 u8 prio_tc_map[TC_BITMASK + 1]; 2381 2382#if IS_ENABLED(CONFIG_FCOE) 2383 unsigned int fcoe_ddp_xid; 2384#endif 2385#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2386 struct netprio_map __rcu *priomap; 2387#endif 2388 struct phy_device *phydev; 2389 struct sfp_bus *sfp_bus; 2390 struct lock_class_key *qdisc_tx_busylock; 2391 bool proto_down; 2392 unsigned wol_enabled:1; 2393 unsigned threaded:1; 2394 2395 struct list_head net_notifier_list; 2396 2397#if IS_ENABLED(CONFIG_MACSEC) 2398 /* MACsec management functions */ 2399 const struct macsec_ops *macsec_ops; 2400#endif 2401 const struct udp_tunnel_nic_info *udp_tunnel_nic_info; 2402 struct udp_tunnel_nic *udp_tunnel_nic; 2403 2404 /* protected by rtnl_lock */ 2405 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE]; 2406 2407 u8 dev_addr_shadow[MAX_ADDR_LEN]; 2408 netdevice_tracker linkwatch_dev_tracker; 2409 netdevice_tracker watchdog_dev_tracker; 2410 netdevice_tracker dev_registered_tracker; 2411 struct rtnl_hw_stats64 *offload_xstats_l3; 2412 2413 struct devlink_port *devlink_port; 2414}; 2415#define to_net_dev(d) container_of(d, struct net_device, dev) 2416 2417/* 2418 * Driver should use this to assign devlink port instance to a netdevice 2419 * before it registers the netdevice. Therefore devlink_port is static 2420 * during the netdev lifetime after it is registered. 2421 */ 2422#define SET_NETDEV_DEVLINK_PORT(dev, port) \ 2423({ \ 2424 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \ 2425 ((dev)->devlink_port = (port)); \ 2426}) 2427 2428static inline bool netif_elide_gro(const struct net_device *dev) 2429{ 2430 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog) 2431 return true; 2432 return false; 2433} 2434 2435#define NETDEV_ALIGN 32 2436 2437static inline 2438int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 2439{ 2440 return dev->prio_tc_map[prio & TC_BITMASK]; 2441} 2442 2443static inline 2444int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 2445{ 2446 if (tc >= dev->num_tc) 2447 return -EINVAL; 2448 2449 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 2450 return 0; 2451} 2452 2453int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 2454void netdev_reset_tc(struct net_device *dev); 2455int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 2456int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 2457 2458static inline 2459int netdev_get_num_tc(struct net_device *dev) 2460{ 2461 return dev->num_tc; 2462} 2463 2464static inline void net_prefetch(void *p) 2465{ 2466 prefetch(p); 2467#if L1_CACHE_BYTES < 128 2468 prefetch((u8 *)p + L1_CACHE_BYTES); 2469#endif 2470} 2471 2472static inline void net_prefetchw(void *p) 2473{ 2474 prefetchw(p); 2475#if L1_CACHE_BYTES < 128 2476 prefetchw((u8 *)p + L1_CACHE_BYTES); 2477#endif 2478} 2479 2480void netdev_unbind_sb_channel(struct net_device *dev, 2481 struct net_device *sb_dev); 2482int netdev_bind_sb_channel_queue(struct net_device *dev, 2483 struct net_device *sb_dev, 2484 u8 tc, u16 count, u16 offset); 2485int netdev_set_sb_channel(struct net_device *dev, u16 channel); 2486static inline int netdev_get_sb_channel(struct net_device *dev) 2487{ 2488 return max_t(int, -dev->num_tc, 0); 2489} 2490 2491static inline 2492struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 2493 unsigned int index) 2494{ 2495 DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues); 2496 return &dev->_tx[index]; 2497} 2498 2499static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 2500 const struct sk_buff *skb) 2501{ 2502 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 2503} 2504 2505static inline void netdev_for_each_tx_queue(struct net_device *dev, 2506 void (*f)(struct net_device *, 2507 struct netdev_queue *, 2508 void *), 2509 void *arg) 2510{ 2511 unsigned int i; 2512 2513 for (i = 0; i < dev->num_tx_queues; i++) 2514 f(dev, &dev->_tx[i], arg); 2515} 2516 2517#define netdev_lockdep_set_classes(dev) \ 2518{ \ 2519 static struct lock_class_key qdisc_tx_busylock_key; \ 2520 static struct lock_class_key qdisc_xmit_lock_key; \ 2521 static struct lock_class_key dev_addr_list_lock_key; \ 2522 unsigned int i; \ 2523 \ 2524 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 2525 lockdep_set_class(&(dev)->addr_list_lock, \ 2526 &dev_addr_list_lock_key); \ 2527 for (i = 0; i < (dev)->num_tx_queues; i++) \ 2528 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 2529 &qdisc_xmit_lock_key); \ 2530} 2531 2532u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 2533 struct net_device *sb_dev); 2534struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 2535 struct sk_buff *skb, 2536 struct net_device *sb_dev); 2537 2538/* returns the headroom that the master device needs to take in account 2539 * when forwarding to this dev 2540 */ 2541static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 2542{ 2543 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 2544} 2545 2546static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 2547{ 2548 if (dev->netdev_ops->ndo_set_rx_headroom) 2549 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 2550} 2551 2552/* set the device rx headroom to the dev's default */ 2553static inline void netdev_reset_rx_headroom(struct net_device *dev) 2554{ 2555 netdev_set_rx_headroom(dev, -1); 2556} 2557 2558static inline void *netdev_get_ml_priv(struct net_device *dev, 2559 enum netdev_ml_priv_type type) 2560{ 2561 if (dev->ml_priv_type != type) 2562 return NULL; 2563 2564 return dev->ml_priv; 2565} 2566 2567static inline void netdev_set_ml_priv(struct net_device *dev, 2568 void *ml_priv, 2569 enum netdev_ml_priv_type type) 2570{ 2571 WARN(dev->ml_priv_type && dev->ml_priv_type != type, 2572 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n", 2573 dev->ml_priv_type, type); 2574 WARN(!dev->ml_priv_type && dev->ml_priv, 2575 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n"); 2576 2577 dev->ml_priv = ml_priv; 2578 dev->ml_priv_type = type; 2579} 2580 2581/* 2582 * Net namespace inlines 2583 */ 2584static inline 2585struct net *dev_net(const struct net_device *dev) 2586{ 2587 return read_pnet(&dev->nd_net); 2588} 2589 2590static inline 2591void dev_net_set(struct net_device *dev, struct net *net) 2592{ 2593 write_pnet(&dev->nd_net, net); 2594} 2595 2596/** 2597 * netdev_priv - access network device private data 2598 * @dev: network device 2599 * 2600 * Get network device private data 2601 */ 2602static inline void *netdev_priv(const struct net_device *dev) 2603{ 2604 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2605} 2606 2607/* Set the sysfs physical device reference for the network logical device 2608 * if set prior to registration will cause a symlink during initialization. 2609 */ 2610#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2611 2612/* Set the sysfs device type for the network logical device to allow 2613 * fine-grained identification of different network device types. For 2614 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2615 */ 2616#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2617 2618/* Default NAPI poll() weight 2619 * Device drivers are strongly advised to not use bigger value 2620 */ 2621#define NAPI_POLL_WEIGHT 64 2622 2623void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 2624 int (*poll)(struct napi_struct *, int), int weight); 2625 2626/** 2627 * netif_napi_add() - initialize a NAPI context 2628 * @dev: network device 2629 * @napi: NAPI context 2630 * @poll: polling function 2631 * 2632 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2633 * *any* of the other NAPI-related functions. 2634 */ 2635static inline void 2636netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2637 int (*poll)(struct napi_struct *, int)) 2638{ 2639 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2640} 2641 2642static inline void 2643netif_napi_add_tx_weight(struct net_device *dev, 2644 struct napi_struct *napi, 2645 int (*poll)(struct napi_struct *, int), 2646 int weight) 2647{ 2648 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2649 netif_napi_add_weight(dev, napi, poll, weight); 2650} 2651 2652/** 2653 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only 2654 * @dev: network device 2655 * @napi: NAPI context 2656 * @poll: polling function 2657 * 2658 * This variant of netif_napi_add() should be used from drivers using NAPI 2659 * to exclusively poll a TX queue. 2660 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2661 */ 2662static inline void netif_napi_add_tx(struct net_device *dev, 2663 struct napi_struct *napi, 2664 int (*poll)(struct napi_struct *, int)) 2665{ 2666 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT); 2667} 2668 2669/** 2670 * __netif_napi_del - remove a NAPI context 2671 * @napi: NAPI context 2672 * 2673 * Warning: caller must observe RCU grace period before freeing memory 2674 * containing @napi. Drivers might want to call this helper to combine 2675 * all the needed RCU grace periods into a single one. 2676 */ 2677void __netif_napi_del(struct napi_struct *napi); 2678 2679/** 2680 * netif_napi_del - remove a NAPI context 2681 * @napi: NAPI context 2682 * 2683 * netif_napi_del() removes a NAPI context from the network device NAPI list 2684 */ 2685static inline void netif_napi_del(struct napi_struct *napi) 2686{ 2687 __netif_napi_del(napi); 2688 synchronize_net(); 2689} 2690 2691struct packet_type { 2692 __be16 type; /* This is really htons(ether_type). */ 2693 bool ignore_outgoing; 2694 struct net_device *dev; /* NULL is wildcarded here */ 2695 netdevice_tracker dev_tracker; 2696 int (*func) (struct sk_buff *, 2697 struct net_device *, 2698 struct packet_type *, 2699 struct net_device *); 2700 void (*list_func) (struct list_head *, 2701 struct packet_type *, 2702 struct net_device *); 2703 bool (*id_match)(struct packet_type *ptype, 2704 struct sock *sk); 2705 struct net *af_packet_net; 2706 void *af_packet_priv; 2707 struct list_head list; 2708}; 2709 2710struct offload_callbacks { 2711 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2712 netdev_features_t features); 2713 struct sk_buff *(*gro_receive)(struct list_head *head, 2714 struct sk_buff *skb); 2715 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2716}; 2717 2718struct packet_offload { 2719 __be16 type; /* This is really htons(ether_type). */ 2720 u16 priority; 2721 struct offload_callbacks callbacks; 2722 struct list_head list; 2723}; 2724 2725/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2726struct pcpu_sw_netstats { 2727 u64_stats_t rx_packets; 2728 u64_stats_t rx_bytes; 2729 u64_stats_t tx_packets; 2730 u64_stats_t tx_bytes; 2731 struct u64_stats_sync syncp; 2732} __aligned(4 * sizeof(u64)); 2733 2734struct pcpu_lstats { 2735 u64_stats_t packets; 2736 u64_stats_t bytes; 2737 struct u64_stats_sync syncp; 2738} __aligned(2 * sizeof(u64)); 2739 2740void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes); 2741 2742static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len) 2743{ 2744 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2745 2746 u64_stats_update_begin(&tstats->syncp); 2747 u64_stats_add(&tstats->rx_bytes, len); 2748 u64_stats_inc(&tstats->rx_packets); 2749 u64_stats_update_end(&tstats->syncp); 2750} 2751 2752static inline void dev_sw_netstats_tx_add(struct net_device *dev, 2753 unsigned int packets, 2754 unsigned int len) 2755{ 2756 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 2757 2758 u64_stats_update_begin(&tstats->syncp); 2759 u64_stats_add(&tstats->tx_bytes, len); 2760 u64_stats_add(&tstats->tx_packets, packets); 2761 u64_stats_update_end(&tstats->syncp); 2762} 2763 2764static inline void dev_lstats_add(struct net_device *dev, unsigned int len) 2765{ 2766 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats); 2767 2768 u64_stats_update_begin(&lstats->syncp); 2769 u64_stats_add(&lstats->bytes, len); 2770 u64_stats_inc(&lstats->packets); 2771 u64_stats_update_end(&lstats->syncp); 2772} 2773 2774#define __netdev_alloc_pcpu_stats(type, gfp) \ 2775({ \ 2776 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2777 if (pcpu_stats) { \ 2778 int __cpu; \ 2779 for_each_possible_cpu(__cpu) { \ 2780 typeof(type) *stat; \ 2781 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2782 u64_stats_init(&stat->syncp); \ 2783 } \ 2784 } \ 2785 pcpu_stats; \ 2786}) 2787 2788#define netdev_alloc_pcpu_stats(type) \ 2789 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2790 2791#define devm_netdev_alloc_pcpu_stats(dev, type) \ 2792({ \ 2793 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\ 2794 if (pcpu_stats) { \ 2795 int __cpu; \ 2796 for_each_possible_cpu(__cpu) { \ 2797 typeof(type) *stat; \ 2798 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2799 u64_stats_init(&stat->syncp); \ 2800 } \ 2801 } \ 2802 pcpu_stats; \ 2803}) 2804 2805enum netdev_lag_tx_type { 2806 NETDEV_LAG_TX_TYPE_UNKNOWN, 2807 NETDEV_LAG_TX_TYPE_RANDOM, 2808 NETDEV_LAG_TX_TYPE_BROADCAST, 2809 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2810 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2811 NETDEV_LAG_TX_TYPE_HASH, 2812}; 2813 2814enum netdev_lag_hash { 2815 NETDEV_LAG_HASH_NONE, 2816 NETDEV_LAG_HASH_L2, 2817 NETDEV_LAG_HASH_L34, 2818 NETDEV_LAG_HASH_L23, 2819 NETDEV_LAG_HASH_E23, 2820 NETDEV_LAG_HASH_E34, 2821 NETDEV_LAG_HASH_VLAN_SRCMAC, 2822 NETDEV_LAG_HASH_UNKNOWN, 2823}; 2824 2825struct netdev_lag_upper_info { 2826 enum netdev_lag_tx_type tx_type; 2827 enum netdev_lag_hash hash_type; 2828}; 2829 2830struct netdev_lag_lower_state_info { 2831 u8 link_up : 1, 2832 tx_enabled : 1; 2833}; 2834 2835#include <linux/notifier.h> 2836 2837/* netdevice notifier chain. Please remember to update netdev_cmd_to_name() 2838 * and the rtnetlink notification exclusion list in rtnetlink_event() when 2839 * adding new types. 2840 */ 2841enum netdev_cmd { 2842 NETDEV_UP = 1, /* For now you can't veto a device up/down */ 2843 NETDEV_DOWN, 2844 NETDEV_REBOOT, /* Tell a protocol stack a network interface 2845 detected a hardware crash and restarted 2846 - we can use this eg to kick tcp sessions 2847 once done */ 2848 NETDEV_CHANGE, /* Notify device state change */ 2849 NETDEV_REGISTER, 2850 NETDEV_UNREGISTER, 2851 NETDEV_CHANGEMTU, /* notify after mtu change happened */ 2852 NETDEV_CHANGEADDR, /* notify after the address change */ 2853 NETDEV_PRE_CHANGEADDR, /* notify before the address change */ 2854 NETDEV_GOING_DOWN, 2855 NETDEV_CHANGENAME, 2856 NETDEV_FEAT_CHANGE, 2857 NETDEV_BONDING_FAILOVER, 2858 NETDEV_PRE_UP, 2859 NETDEV_PRE_TYPE_CHANGE, 2860 NETDEV_POST_TYPE_CHANGE, 2861 NETDEV_POST_INIT, 2862 NETDEV_PRE_UNINIT, 2863 NETDEV_RELEASE, 2864 NETDEV_NOTIFY_PEERS, 2865 NETDEV_JOIN, 2866 NETDEV_CHANGEUPPER, 2867 NETDEV_RESEND_IGMP, 2868 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */ 2869 NETDEV_CHANGEINFODATA, 2870 NETDEV_BONDING_INFO, 2871 NETDEV_PRECHANGEUPPER, 2872 NETDEV_CHANGELOWERSTATE, 2873 NETDEV_UDP_TUNNEL_PUSH_INFO, 2874 NETDEV_UDP_TUNNEL_DROP_INFO, 2875 NETDEV_CHANGE_TX_QUEUE_LEN, 2876 NETDEV_CVLAN_FILTER_PUSH_INFO, 2877 NETDEV_CVLAN_FILTER_DROP_INFO, 2878 NETDEV_SVLAN_FILTER_PUSH_INFO, 2879 NETDEV_SVLAN_FILTER_DROP_INFO, 2880 NETDEV_OFFLOAD_XSTATS_ENABLE, 2881 NETDEV_OFFLOAD_XSTATS_DISABLE, 2882 NETDEV_OFFLOAD_XSTATS_REPORT_USED, 2883 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 2884 NETDEV_XDP_FEAT_CHANGE, 2885}; 2886const char *netdev_cmd_to_name(enum netdev_cmd cmd); 2887 2888int register_netdevice_notifier(struct notifier_block *nb); 2889int unregister_netdevice_notifier(struct notifier_block *nb); 2890int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb); 2891int unregister_netdevice_notifier_net(struct net *net, 2892 struct notifier_block *nb); 2893int register_netdevice_notifier_dev_net(struct net_device *dev, 2894 struct notifier_block *nb, 2895 struct netdev_net_notifier *nn); 2896int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2897 struct notifier_block *nb, 2898 struct netdev_net_notifier *nn); 2899 2900struct netdev_notifier_info { 2901 struct net_device *dev; 2902 struct netlink_ext_ack *extack; 2903}; 2904 2905struct netdev_notifier_info_ext { 2906 struct netdev_notifier_info info; /* must be first */ 2907 union { 2908 u32 mtu; 2909 } ext; 2910}; 2911 2912struct netdev_notifier_change_info { 2913 struct netdev_notifier_info info; /* must be first */ 2914 unsigned int flags_changed; 2915}; 2916 2917struct netdev_notifier_changeupper_info { 2918 struct netdev_notifier_info info; /* must be first */ 2919 struct net_device *upper_dev; /* new upper dev */ 2920 bool master; /* is upper dev master */ 2921 bool linking; /* is the notification for link or unlink */ 2922 void *upper_info; /* upper dev info */ 2923}; 2924 2925struct netdev_notifier_changelowerstate_info { 2926 struct netdev_notifier_info info; /* must be first */ 2927 void *lower_state_info; /* is lower dev state */ 2928}; 2929 2930struct netdev_notifier_pre_changeaddr_info { 2931 struct netdev_notifier_info info; /* must be first */ 2932 const unsigned char *dev_addr; 2933}; 2934 2935enum netdev_offload_xstats_type { 2936 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1, 2937}; 2938 2939struct netdev_notifier_offload_xstats_info { 2940 struct netdev_notifier_info info; /* must be first */ 2941 enum netdev_offload_xstats_type type; 2942 2943 union { 2944 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */ 2945 struct netdev_notifier_offload_xstats_rd *report_delta; 2946 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */ 2947 struct netdev_notifier_offload_xstats_ru *report_used; 2948 }; 2949}; 2950 2951int netdev_offload_xstats_enable(struct net_device *dev, 2952 enum netdev_offload_xstats_type type, 2953 struct netlink_ext_ack *extack); 2954int netdev_offload_xstats_disable(struct net_device *dev, 2955 enum netdev_offload_xstats_type type); 2956bool netdev_offload_xstats_enabled(const struct net_device *dev, 2957 enum netdev_offload_xstats_type type); 2958int netdev_offload_xstats_get(struct net_device *dev, 2959 enum netdev_offload_xstats_type type, 2960 struct rtnl_hw_stats64 *stats, bool *used, 2961 struct netlink_ext_ack *extack); 2962void 2963netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd, 2964 const struct rtnl_hw_stats64 *stats); 2965void 2966netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru); 2967void netdev_offload_xstats_push_delta(struct net_device *dev, 2968 enum netdev_offload_xstats_type type, 2969 const struct rtnl_hw_stats64 *stats); 2970 2971static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2972 struct net_device *dev) 2973{ 2974 info->dev = dev; 2975 info->extack = NULL; 2976} 2977 2978static inline struct net_device * 2979netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2980{ 2981 return info->dev; 2982} 2983 2984static inline struct netlink_ext_ack * 2985netdev_notifier_info_to_extack(const struct netdev_notifier_info *info) 2986{ 2987 return info->extack; 2988} 2989 2990int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2991int call_netdevice_notifiers_info(unsigned long val, 2992 struct netdev_notifier_info *info); 2993 2994extern rwlock_t dev_base_lock; /* Device list lock */ 2995 2996#define for_each_netdev(net, d) \ 2997 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2998#define for_each_netdev_reverse(net, d) \ 2999 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 3000#define for_each_netdev_rcu(net, d) \ 3001 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 3002#define for_each_netdev_safe(net, d, n) \ 3003 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 3004#define for_each_netdev_continue(net, d) \ 3005 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 3006#define for_each_netdev_continue_reverse(net, d) \ 3007 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \ 3008 dev_list) 3009#define for_each_netdev_continue_rcu(net, d) \ 3010 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 3011#define for_each_netdev_in_bond_rcu(bond, slave) \ 3012 for_each_netdev_rcu(&init_net, slave) \ 3013 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 3014#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 3015 3016static inline struct net_device *next_net_device(struct net_device *dev) 3017{ 3018 struct list_head *lh; 3019 struct net *net; 3020 3021 net = dev_net(dev); 3022 lh = dev->dev_list.next; 3023 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3024} 3025 3026static inline struct net_device *next_net_device_rcu(struct net_device *dev) 3027{ 3028 struct list_head *lh; 3029 struct net *net; 3030 3031 net = dev_net(dev); 3032 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 3033 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3034} 3035 3036static inline struct net_device *first_net_device(struct net *net) 3037{ 3038 return list_empty(&net->dev_base_head) ? NULL : 3039 net_device_entry(net->dev_base_head.next); 3040} 3041 3042static inline struct net_device *first_net_device_rcu(struct net *net) 3043{ 3044 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 3045 3046 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 3047} 3048 3049int netdev_boot_setup_check(struct net_device *dev); 3050struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 3051 const char *hwaddr); 3052struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 3053void dev_add_pack(struct packet_type *pt); 3054void dev_remove_pack(struct packet_type *pt); 3055void __dev_remove_pack(struct packet_type *pt); 3056void dev_add_offload(struct packet_offload *po); 3057void dev_remove_offload(struct packet_offload *po); 3058 3059int dev_get_iflink(const struct net_device *dev); 3060int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 3061int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 3062 struct net_device_path_stack *stack); 3063struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 3064 unsigned short mask); 3065struct net_device *dev_get_by_name(struct net *net, const char *name); 3066struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 3067struct net_device *__dev_get_by_name(struct net *net, const char *name); 3068bool netdev_name_in_use(struct net *net, const char *name); 3069int dev_alloc_name(struct net_device *dev, const char *name); 3070int dev_open(struct net_device *dev, struct netlink_ext_ack *extack); 3071void dev_close(struct net_device *dev); 3072void dev_close_many(struct list_head *head, bool unlink); 3073void dev_disable_lro(struct net_device *dev); 3074int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 3075u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3076 struct net_device *sb_dev); 3077u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3078 struct net_device *sb_dev); 3079 3080int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev); 3081int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id); 3082 3083static inline int dev_queue_xmit(struct sk_buff *skb) 3084{ 3085 return __dev_queue_xmit(skb, NULL); 3086} 3087 3088static inline int dev_queue_xmit_accel(struct sk_buff *skb, 3089 struct net_device *sb_dev) 3090{ 3091 return __dev_queue_xmit(skb, sb_dev); 3092} 3093 3094static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3095{ 3096 int ret; 3097 3098 ret = __dev_direct_xmit(skb, queue_id); 3099 if (!dev_xmit_complete(ret)) 3100 kfree_skb(skb); 3101 return ret; 3102} 3103 3104int register_netdevice(struct net_device *dev); 3105void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 3106void unregister_netdevice_many(struct list_head *head); 3107static inline void unregister_netdevice(struct net_device *dev) 3108{ 3109 unregister_netdevice_queue(dev, NULL); 3110} 3111 3112int netdev_refcnt_read(const struct net_device *dev); 3113void free_netdev(struct net_device *dev); 3114void netdev_freemem(struct net_device *dev); 3115int init_dummy_netdev(struct net_device *dev); 3116 3117struct net_device *netdev_get_xmit_slave(struct net_device *dev, 3118 struct sk_buff *skb, 3119 bool all_slaves); 3120struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 3121 struct sock *sk); 3122struct net_device *dev_get_by_index(struct net *net, int ifindex); 3123struct net_device *__dev_get_by_index(struct net *net, int ifindex); 3124struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 3125struct net_device *dev_get_by_napi_id(unsigned int napi_id); 3126int dev_restart(struct net_device *dev); 3127 3128 3129static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 3130 unsigned short type, 3131 const void *daddr, const void *saddr, 3132 unsigned int len) 3133{ 3134 if (!dev->header_ops || !dev->header_ops->create) 3135 return 0; 3136 3137 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 3138} 3139 3140static inline int dev_parse_header(const struct sk_buff *skb, 3141 unsigned char *haddr) 3142{ 3143 const struct net_device *dev = skb->dev; 3144 3145 if (!dev->header_ops || !dev->header_ops->parse) 3146 return 0; 3147 return dev->header_ops->parse(skb, haddr); 3148} 3149 3150static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb) 3151{ 3152 const struct net_device *dev = skb->dev; 3153 3154 if (!dev->header_ops || !dev->header_ops->parse_protocol) 3155 return 0; 3156 return dev->header_ops->parse_protocol(skb); 3157} 3158 3159/* ll_header must have at least hard_header_len allocated */ 3160static inline bool dev_validate_header(const struct net_device *dev, 3161 char *ll_header, int len) 3162{ 3163 if (likely(len >= dev->hard_header_len)) 3164 return true; 3165 if (len < dev->min_header_len) 3166 return false; 3167 3168 if (capable(CAP_SYS_RAWIO)) { 3169 memset(ll_header + len, 0, dev->hard_header_len - len); 3170 return true; 3171 } 3172 3173 if (dev->header_ops && dev->header_ops->validate) 3174 return dev->header_ops->validate(ll_header, len); 3175 3176 return false; 3177} 3178 3179static inline bool dev_has_header(const struct net_device *dev) 3180{ 3181 return dev->header_ops && dev->header_ops->create; 3182} 3183 3184/* 3185 * Incoming packets are placed on per-CPU queues 3186 */ 3187struct softnet_data { 3188 struct list_head poll_list; 3189 struct sk_buff_head process_queue; 3190 3191 /* stats */ 3192 unsigned int processed; 3193 unsigned int time_squeeze; 3194#ifdef CONFIG_RPS 3195 struct softnet_data *rps_ipi_list; 3196#endif 3197 3198 bool in_net_rx_action; 3199 bool in_napi_threaded_poll; 3200 3201#ifdef CONFIG_NET_FLOW_LIMIT 3202 struct sd_flow_limit __rcu *flow_limit; 3203#endif 3204 struct Qdisc *output_queue; 3205 struct Qdisc **output_queue_tailp; 3206 struct sk_buff *completion_queue; 3207#ifdef CONFIG_XFRM_OFFLOAD 3208 struct sk_buff_head xfrm_backlog; 3209#endif 3210 /* written and read only by owning cpu: */ 3211 struct { 3212 u16 recursion; 3213 u8 more; 3214#ifdef CONFIG_NET_EGRESS 3215 u8 skip_txqueue; 3216#endif 3217 } xmit; 3218#ifdef CONFIG_RPS 3219 /* input_queue_head should be written by cpu owning this struct, 3220 * and only read by other cpus. Worth using a cache line. 3221 */ 3222 unsigned int input_queue_head ____cacheline_aligned_in_smp; 3223 3224 /* Elements below can be accessed between CPUs for RPS/RFS */ 3225 call_single_data_t csd ____cacheline_aligned_in_smp; 3226 struct softnet_data *rps_ipi_next; 3227 unsigned int cpu; 3228 unsigned int input_queue_tail; 3229#endif 3230 unsigned int received_rps; 3231 unsigned int dropped; 3232 struct sk_buff_head input_pkt_queue; 3233 struct napi_struct backlog; 3234 3235 /* Another possibly contended cache line */ 3236 spinlock_t defer_lock ____cacheline_aligned_in_smp; 3237 int defer_count; 3238 int defer_ipi_scheduled; 3239 struct sk_buff *defer_list; 3240 call_single_data_t defer_csd; 3241}; 3242 3243static inline void input_queue_head_incr(struct softnet_data *sd) 3244{ 3245#ifdef CONFIG_RPS 3246 sd->input_queue_head++; 3247#endif 3248} 3249 3250static inline void input_queue_tail_incr_save(struct softnet_data *sd, 3251 unsigned int *qtail) 3252{ 3253#ifdef CONFIG_RPS 3254 *qtail = ++sd->input_queue_tail; 3255#endif 3256} 3257 3258DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 3259 3260static inline int dev_recursion_level(void) 3261{ 3262 return this_cpu_read(softnet_data.xmit.recursion); 3263} 3264 3265#define XMIT_RECURSION_LIMIT 8 3266static inline bool dev_xmit_recursion(void) 3267{ 3268 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) > 3269 XMIT_RECURSION_LIMIT); 3270} 3271 3272static inline void dev_xmit_recursion_inc(void) 3273{ 3274 __this_cpu_inc(softnet_data.xmit.recursion); 3275} 3276 3277static inline void dev_xmit_recursion_dec(void) 3278{ 3279 __this_cpu_dec(softnet_data.xmit.recursion); 3280} 3281 3282void __netif_schedule(struct Qdisc *q); 3283void netif_schedule_queue(struct netdev_queue *txq); 3284 3285static inline void netif_tx_schedule_all(struct net_device *dev) 3286{ 3287 unsigned int i; 3288 3289 for (i = 0; i < dev->num_tx_queues; i++) 3290 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 3291} 3292 3293static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 3294{ 3295 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3296} 3297 3298/** 3299 * netif_start_queue - allow transmit 3300 * @dev: network device 3301 * 3302 * Allow upper layers to call the device hard_start_xmit routine. 3303 */ 3304static inline void netif_start_queue(struct net_device *dev) 3305{ 3306 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 3307} 3308 3309static inline void netif_tx_start_all_queues(struct net_device *dev) 3310{ 3311 unsigned int i; 3312 3313 for (i = 0; i < dev->num_tx_queues; i++) { 3314 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3315 netif_tx_start_queue(txq); 3316 } 3317} 3318 3319void netif_tx_wake_queue(struct netdev_queue *dev_queue); 3320 3321/** 3322 * netif_wake_queue - restart transmit 3323 * @dev: network device 3324 * 3325 * Allow upper layers to call the device hard_start_xmit routine. 3326 * Used for flow control when transmit resources are available. 3327 */ 3328static inline void netif_wake_queue(struct net_device *dev) 3329{ 3330 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 3331} 3332 3333static inline void netif_tx_wake_all_queues(struct net_device *dev) 3334{ 3335 unsigned int i; 3336 3337 for (i = 0; i < dev->num_tx_queues; i++) { 3338 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3339 netif_tx_wake_queue(txq); 3340 } 3341} 3342 3343static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 3344{ 3345 /* Must be an atomic op see netif_txq_try_stop() */ 3346 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3347} 3348 3349/** 3350 * netif_stop_queue - stop transmitted packets 3351 * @dev: network device 3352 * 3353 * Stop upper layers calling the device hard_start_xmit routine. 3354 * Used for flow control when transmit resources are unavailable. 3355 */ 3356static inline void netif_stop_queue(struct net_device *dev) 3357{ 3358 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 3359} 3360 3361void netif_tx_stop_all_queues(struct net_device *dev); 3362 3363static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 3364{ 3365 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 3366} 3367 3368/** 3369 * netif_queue_stopped - test if transmit queue is flowblocked 3370 * @dev: network device 3371 * 3372 * Test if transmit queue on device is currently unable to send. 3373 */ 3374static inline bool netif_queue_stopped(const struct net_device *dev) 3375{ 3376 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 3377} 3378 3379static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 3380{ 3381 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 3382} 3383 3384static inline bool 3385netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 3386{ 3387 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 3388} 3389 3390static inline bool 3391netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 3392{ 3393 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 3394} 3395 3396/** 3397 * netdev_queue_set_dql_min_limit - set dql minimum limit 3398 * @dev_queue: pointer to transmit queue 3399 * @min_limit: dql minimum limit 3400 * 3401 * Forces xmit_more() to return true until the minimum threshold 3402 * defined by @min_limit is reached (or until the tx queue is 3403 * empty). Warning: to be use with care, misuse will impact the 3404 * latency. 3405 */ 3406static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue, 3407 unsigned int min_limit) 3408{ 3409#ifdef CONFIG_BQL 3410 dev_queue->dql.min_limit = min_limit; 3411#endif 3412} 3413 3414/** 3415 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 3416 * @dev_queue: pointer to transmit queue 3417 * 3418 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 3419 * to give appropriate hint to the CPU. 3420 */ 3421static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 3422{ 3423#ifdef CONFIG_BQL 3424 prefetchw(&dev_queue->dql.num_queued); 3425#endif 3426} 3427 3428/** 3429 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 3430 * @dev_queue: pointer to transmit queue 3431 * 3432 * BQL enabled drivers might use this helper in their TX completion path, 3433 * to give appropriate hint to the CPU. 3434 */ 3435static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 3436{ 3437#ifdef CONFIG_BQL 3438 prefetchw(&dev_queue->dql.limit); 3439#endif 3440} 3441 3442/** 3443 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue 3444 * @dev_queue: network device queue 3445 * @bytes: number of bytes queued to the device queue 3446 * 3447 * Report the number of bytes queued for sending/completion to the network 3448 * device hardware queue. @bytes should be a good approximation and should 3449 * exactly match netdev_completed_queue() @bytes. 3450 * This is typically called once per packet, from ndo_start_xmit(). 3451 */ 3452static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3453 unsigned int bytes) 3454{ 3455#ifdef CONFIG_BQL 3456 dql_queued(&dev_queue->dql, bytes); 3457 3458 if (likely(dql_avail(&dev_queue->dql) >= 0)) 3459 return; 3460 3461 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3462 3463 /* 3464 * The XOFF flag must be set before checking the dql_avail below, 3465 * because in netdev_tx_completed_queue we update the dql_completed 3466 * before checking the XOFF flag. 3467 */ 3468 smp_mb(); 3469 3470 /* check again in case another CPU has just made room avail */ 3471 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 3472 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 3473#endif 3474} 3475 3476/* Variant of netdev_tx_sent_queue() for drivers that are aware 3477 * that they should not test BQL status themselves. 3478 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last 3479 * skb of a batch. 3480 * Returns true if the doorbell must be used to kick the NIC. 3481 */ 3482static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue, 3483 unsigned int bytes, 3484 bool xmit_more) 3485{ 3486 if (xmit_more) { 3487#ifdef CONFIG_BQL 3488 dql_queued(&dev_queue->dql, bytes); 3489#endif 3490 return netif_tx_queue_stopped(dev_queue); 3491 } 3492 netdev_tx_sent_queue(dev_queue, bytes); 3493 return true; 3494} 3495 3496/** 3497 * netdev_sent_queue - report the number of bytes queued to hardware 3498 * @dev: network device 3499 * @bytes: number of bytes queued to the hardware device queue 3500 * 3501 * Report the number of bytes queued for sending/completion to the network 3502 * device hardware queue#0. @bytes should be a good approximation and should 3503 * exactly match netdev_completed_queue() @bytes. 3504 * This is typically called once per packet, from ndo_start_xmit(). 3505 */ 3506static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 3507{ 3508 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 3509} 3510 3511static inline bool __netdev_sent_queue(struct net_device *dev, 3512 unsigned int bytes, 3513 bool xmit_more) 3514{ 3515 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes, 3516 xmit_more); 3517} 3518 3519/** 3520 * netdev_tx_completed_queue - report number of packets/bytes at TX completion. 3521 * @dev_queue: network device queue 3522 * @pkts: number of packets (currently ignored) 3523 * @bytes: number of bytes dequeued from the device queue 3524 * 3525 * Must be called at most once per TX completion round (and not per 3526 * individual packet), so that BQL can adjust its limits appropriately. 3527 */ 3528static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 3529 unsigned int pkts, unsigned int bytes) 3530{ 3531#ifdef CONFIG_BQL 3532 if (unlikely(!bytes)) 3533 return; 3534 3535 dql_completed(&dev_queue->dql, bytes); 3536 3537 /* 3538 * Without the memory barrier there is a small possiblity that 3539 * netdev_tx_sent_queue will miss the update and cause the queue to 3540 * be stopped forever 3541 */ 3542 smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */ 3543 3544 if (unlikely(dql_avail(&dev_queue->dql) < 0)) 3545 return; 3546 3547 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 3548 netif_schedule_queue(dev_queue); 3549#endif 3550} 3551 3552/** 3553 * netdev_completed_queue - report bytes and packets completed by device 3554 * @dev: network device 3555 * @pkts: actual number of packets sent over the medium 3556 * @bytes: actual number of bytes sent over the medium 3557 * 3558 * Report the number of bytes and packets transmitted by the network device 3559 * hardware queue over the physical medium, @bytes must exactly match the 3560 * @bytes amount passed to netdev_sent_queue() 3561 */ 3562static inline void netdev_completed_queue(struct net_device *dev, 3563 unsigned int pkts, unsigned int bytes) 3564{ 3565 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3566} 3567 3568static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3569{ 3570#ifdef CONFIG_BQL 3571 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3572 dql_reset(&q->dql); 3573#endif 3574} 3575 3576/** 3577 * netdev_reset_queue - reset the packets and bytes count of a network device 3578 * @dev_queue: network device 3579 * 3580 * Reset the bytes and packet count of a network device and clear the 3581 * software flow control OFF bit for this network device 3582 */ 3583static inline void netdev_reset_queue(struct net_device *dev_queue) 3584{ 3585 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3586} 3587 3588/** 3589 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3590 * @dev: network device 3591 * @queue_index: given tx queue index 3592 * 3593 * Returns 0 if given tx queue index >= number of device tx queues, 3594 * otherwise returns the originally passed tx queue index. 3595 */ 3596static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3597{ 3598 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3599 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3600 dev->name, queue_index, 3601 dev->real_num_tx_queues); 3602 return 0; 3603 } 3604 3605 return queue_index; 3606} 3607 3608/** 3609 * netif_running - test if up 3610 * @dev: network device 3611 * 3612 * Test if the device has been brought up. 3613 */ 3614static inline bool netif_running(const struct net_device *dev) 3615{ 3616 return test_bit(__LINK_STATE_START, &dev->state); 3617} 3618 3619/* 3620 * Routines to manage the subqueues on a device. We only need start, 3621 * stop, and a check if it's stopped. All other device management is 3622 * done at the overall netdevice level. 3623 * Also test the device if we're multiqueue. 3624 */ 3625 3626/** 3627 * netif_start_subqueue - allow sending packets on subqueue 3628 * @dev: network device 3629 * @queue_index: sub queue index 3630 * 3631 * Start individual transmit queue of a device with multiple transmit queues. 3632 */ 3633static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3634{ 3635 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3636 3637 netif_tx_start_queue(txq); 3638} 3639 3640/** 3641 * netif_stop_subqueue - stop sending packets on subqueue 3642 * @dev: network device 3643 * @queue_index: sub queue index 3644 * 3645 * Stop individual transmit queue of a device with multiple transmit queues. 3646 */ 3647static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3648{ 3649 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3650 netif_tx_stop_queue(txq); 3651} 3652 3653/** 3654 * __netif_subqueue_stopped - test status of subqueue 3655 * @dev: network device 3656 * @queue_index: sub queue index 3657 * 3658 * Check individual transmit queue of a device with multiple transmit queues. 3659 */ 3660static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3661 u16 queue_index) 3662{ 3663 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3664 3665 return netif_tx_queue_stopped(txq); 3666} 3667 3668/** 3669 * netif_subqueue_stopped - test status of subqueue 3670 * @dev: network device 3671 * @skb: sub queue buffer pointer 3672 * 3673 * Check individual transmit queue of a device with multiple transmit queues. 3674 */ 3675static inline bool netif_subqueue_stopped(const struct net_device *dev, 3676 struct sk_buff *skb) 3677{ 3678 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3679} 3680 3681/** 3682 * netif_wake_subqueue - allow sending packets on subqueue 3683 * @dev: network device 3684 * @queue_index: sub queue index 3685 * 3686 * Resume individual transmit queue of a device with multiple transmit queues. 3687 */ 3688static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 3689{ 3690 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3691 3692 netif_tx_wake_queue(txq); 3693} 3694 3695#ifdef CONFIG_XPS 3696int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3697 u16 index); 3698int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 3699 u16 index, enum xps_map_type type); 3700 3701/** 3702 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask 3703 * @j: CPU/Rx queue index 3704 * @mask: bitmask of all cpus/rx queues 3705 * @nr_bits: number of bits in the bitmask 3706 * 3707 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues. 3708 */ 3709static inline bool netif_attr_test_mask(unsigned long j, 3710 const unsigned long *mask, 3711 unsigned int nr_bits) 3712{ 3713 cpu_max_bits_warn(j, nr_bits); 3714 return test_bit(j, mask); 3715} 3716 3717/** 3718 * netif_attr_test_online - Test for online CPU/Rx queue 3719 * @j: CPU/Rx queue index 3720 * @online_mask: bitmask for CPUs/Rx queues that are online 3721 * @nr_bits: number of bits in the bitmask 3722 * 3723 * Returns true if a CPU/Rx queue is online. 3724 */ 3725static inline bool netif_attr_test_online(unsigned long j, 3726 const unsigned long *online_mask, 3727 unsigned int nr_bits) 3728{ 3729 cpu_max_bits_warn(j, nr_bits); 3730 3731 if (online_mask) 3732 return test_bit(j, online_mask); 3733 3734 return (j < nr_bits); 3735} 3736 3737/** 3738 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask 3739 * @n: CPU/Rx queue index 3740 * @srcp: the cpumask/Rx queue mask pointer 3741 * @nr_bits: number of bits in the bitmask 3742 * 3743 * Returns >= nr_bits if no further CPUs/Rx queues set. 3744 */ 3745static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp, 3746 unsigned int nr_bits) 3747{ 3748 /* -1 is a legal arg here. */ 3749 if (n != -1) 3750 cpu_max_bits_warn(n, nr_bits); 3751 3752 if (srcp) 3753 return find_next_bit(srcp, nr_bits, n + 1); 3754 3755 return n + 1; 3756} 3757 3758/** 3759 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p 3760 * @n: CPU/Rx queue index 3761 * @src1p: the first CPUs/Rx queues mask pointer 3762 * @src2p: the second CPUs/Rx queues mask pointer 3763 * @nr_bits: number of bits in the bitmask 3764 * 3765 * Returns >= nr_bits if no further CPUs/Rx queues set in both. 3766 */ 3767static inline int netif_attrmask_next_and(int n, const unsigned long *src1p, 3768 const unsigned long *src2p, 3769 unsigned int nr_bits) 3770{ 3771 /* -1 is a legal arg here. */ 3772 if (n != -1) 3773 cpu_max_bits_warn(n, nr_bits); 3774 3775 if (src1p && src2p) 3776 return find_next_and_bit(src1p, src2p, nr_bits, n + 1); 3777 else if (src1p) 3778 return find_next_bit(src1p, nr_bits, n + 1); 3779 else if (src2p) 3780 return find_next_bit(src2p, nr_bits, n + 1); 3781 3782 return n + 1; 3783} 3784#else 3785static inline int netif_set_xps_queue(struct net_device *dev, 3786 const struct cpumask *mask, 3787 u16 index) 3788{ 3789 return 0; 3790} 3791 3792static inline int __netif_set_xps_queue(struct net_device *dev, 3793 const unsigned long *mask, 3794 u16 index, enum xps_map_type type) 3795{ 3796 return 0; 3797} 3798#endif 3799 3800/** 3801 * netif_is_multiqueue - test if device has multiple transmit queues 3802 * @dev: network device 3803 * 3804 * Check if device has multiple transmit queues 3805 */ 3806static inline bool netif_is_multiqueue(const struct net_device *dev) 3807{ 3808 return dev->num_tx_queues > 1; 3809} 3810 3811int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3812 3813#ifdef CONFIG_SYSFS 3814int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3815#else 3816static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3817 unsigned int rxqs) 3818{ 3819 dev->real_num_rx_queues = rxqs; 3820 return 0; 3821} 3822#endif 3823int netif_set_real_num_queues(struct net_device *dev, 3824 unsigned int txq, unsigned int rxq); 3825 3826static inline struct netdev_rx_queue * 3827__netif_get_rx_queue(struct net_device *dev, unsigned int rxq) 3828{ 3829 return dev->_rx + rxq; 3830} 3831 3832#ifdef CONFIG_SYSFS 3833static inline unsigned int get_netdev_rx_queue_index( 3834 struct netdev_rx_queue *queue) 3835{ 3836 struct net_device *dev = queue->dev; 3837 int index = queue - dev->_rx; 3838 3839 BUG_ON(index >= dev->num_rx_queues); 3840 return index; 3841} 3842#endif 3843 3844int netif_get_num_default_rss_queues(void); 3845 3846void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3847void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason); 3848 3849/* 3850 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3851 * interrupt context or with hardware interrupts being disabled. 3852 * (in_hardirq() || irqs_disabled()) 3853 * 3854 * We provide four helpers that can be used in following contexts : 3855 * 3856 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3857 * replacing kfree_skb(skb) 3858 * 3859 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3860 * Typically used in place of consume_skb(skb) in TX completion path 3861 * 3862 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3863 * replacing kfree_skb(skb) 3864 * 3865 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3866 * and consumed a packet. Used in place of consume_skb(skb) 3867 */ 3868static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3869{ 3870 dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3871} 3872 3873static inline void dev_consume_skb_irq(struct sk_buff *skb) 3874{ 3875 dev_kfree_skb_irq_reason(skb, SKB_CONSUMED); 3876} 3877 3878static inline void dev_kfree_skb_any(struct sk_buff *skb) 3879{ 3880 dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 3881} 3882 3883static inline void dev_consume_skb_any(struct sk_buff *skb) 3884{ 3885 dev_kfree_skb_any_reason(skb, SKB_CONSUMED); 3886} 3887 3888u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 3889 struct bpf_prog *xdp_prog); 3890void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog); 3891int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb); 3892int netif_rx(struct sk_buff *skb); 3893int __netif_rx(struct sk_buff *skb); 3894 3895int netif_receive_skb(struct sk_buff *skb); 3896int netif_receive_skb_core(struct sk_buff *skb); 3897void netif_receive_skb_list_internal(struct list_head *head); 3898void netif_receive_skb_list(struct list_head *head); 3899gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3900void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3901struct sk_buff *napi_get_frags(struct napi_struct *napi); 3902void napi_get_frags_check(struct napi_struct *napi); 3903gro_result_t napi_gro_frags(struct napi_struct *napi); 3904struct packet_offload *gro_find_receive_by_type(__be16 type); 3905struct packet_offload *gro_find_complete_by_type(__be16 type); 3906 3907static inline void napi_free_frags(struct napi_struct *napi) 3908{ 3909 kfree_skb(napi->skb); 3910 napi->skb = NULL; 3911} 3912 3913bool netdev_is_rx_handler_busy(struct net_device *dev); 3914int netdev_rx_handler_register(struct net_device *dev, 3915 rx_handler_func_t *rx_handler, 3916 void *rx_handler_data); 3917void netdev_rx_handler_unregister(struct net_device *dev); 3918 3919bool dev_valid_name(const char *name); 3920static inline bool is_socket_ioctl_cmd(unsigned int cmd) 3921{ 3922 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE; 3923} 3924int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg); 3925int put_user_ifreq(struct ifreq *ifr, void __user *arg); 3926int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr, 3927 void __user *data, bool *need_copyout); 3928int dev_ifconf(struct net *net, struct ifconf __user *ifc); 3929int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata); 3930unsigned int dev_get_flags(const struct net_device *); 3931int __dev_change_flags(struct net_device *dev, unsigned int flags, 3932 struct netlink_ext_ack *extack); 3933int dev_change_flags(struct net_device *dev, unsigned int flags, 3934 struct netlink_ext_ack *extack); 3935int dev_set_alias(struct net_device *, const char *, size_t); 3936int dev_get_alias(const struct net_device *, char *, size_t); 3937int __dev_change_net_namespace(struct net_device *dev, struct net *net, 3938 const char *pat, int new_ifindex); 3939static inline 3940int dev_change_net_namespace(struct net_device *dev, struct net *net, 3941 const char *pat) 3942{ 3943 return __dev_change_net_namespace(dev, net, pat, 0); 3944} 3945int __dev_set_mtu(struct net_device *, int); 3946int dev_set_mtu(struct net_device *, int); 3947int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 3948 struct netlink_ext_ack *extack); 3949int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 3950 struct netlink_ext_ack *extack); 3951int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 3952 struct netlink_ext_ack *extack); 3953int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name); 3954int dev_get_port_parent_id(struct net_device *dev, 3955 struct netdev_phys_item_id *ppid, bool recurse); 3956bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b); 3957struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again); 3958struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3959 struct netdev_queue *txq, int *ret); 3960 3961int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog); 3962u8 dev_xdp_prog_count(struct net_device *dev); 3963u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode); 3964 3965int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3966int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3967int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb); 3968bool is_skb_forwardable(const struct net_device *dev, 3969 const struct sk_buff *skb); 3970 3971static __always_inline bool __is_skb_forwardable(const struct net_device *dev, 3972 const struct sk_buff *skb, 3973 const bool check_mtu) 3974{ 3975 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */ 3976 unsigned int len; 3977 3978 if (!(dev->flags & IFF_UP)) 3979 return false; 3980 3981 if (!check_mtu) 3982 return true; 3983 3984 len = dev->mtu + dev->hard_header_len + vlan_hdr_len; 3985 if (skb->len <= len) 3986 return true; 3987 3988 /* if TSO is enabled, we don't care about the length as the packet 3989 * could be forwarded without being segmented before 3990 */ 3991 if (skb_is_gso(skb)) 3992 return true; 3993 3994 return false; 3995} 3996 3997struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev); 3998 3999static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev) 4000{ 4001 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 4002 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 4003 4004 if (likely(p)) 4005 return p; 4006 4007 return netdev_core_stats_alloc(dev); 4008} 4009 4010#define DEV_CORE_STATS_INC(FIELD) \ 4011static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \ 4012{ \ 4013 struct net_device_core_stats __percpu *p; \ 4014 \ 4015 p = dev_core_stats(dev); \ 4016 if (p) \ 4017 this_cpu_inc(p->FIELD); \ 4018} 4019DEV_CORE_STATS_INC(rx_dropped) 4020DEV_CORE_STATS_INC(tx_dropped) 4021DEV_CORE_STATS_INC(rx_nohandler) 4022DEV_CORE_STATS_INC(rx_otherhost_dropped) 4023 4024static __always_inline int ____dev_forward_skb(struct net_device *dev, 4025 struct sk_buff *skb, 4026 const bool check_mtu) 4027{ 4028 if (skb_orphan_frags(skb, GFP_ATOMIC) || 4029 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) { 4030 dev_core_stats_rx_dropped_inc(dev); 4031 kfree_skb(skb); 4032 return NET_RX_DROP; 4033 } 4034 4035 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev))); 4036 skb->priority = 0; 4037 return 0; 4038} 4039 4040bool dev_nit_active(struct net_device *dev); 4041void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 4042 4043static inline void __dev_put(struct net_device *dev) 4044{ 4045 if (dev) { 4046#ifdef CONFIG_PCPU_DEV_REFCNT 4047 this_cpu_dec(*dev->pcpu_refcnt); 4048#else 4049 refcount_dec(&dev->dev_refcnt); 4050#endif 4051 } 4052} 4053 4054static inline void __dev_hold(struct net_device *dev) 4055{ 4056 if (dev) { 4057#ifdef CONFIG_PCPU_DEV_REFCNT 4058 this_cpu_inc(*dev->pcpu_refcnt); 4059#else 4060 refcount_inc(&dev->dev_refcnt); 4061#endif 4062 } 4063} 4064 4065static inline void __netdev_tracker_alloc(struct net_device *dev, 4066 netdevice_tracker *tracker, 4067 gfp_t gfp) 4068{ 4069#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4070 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp); 4071#endif 4072} 4073 4074/* netdev_tracker_alloc() can upgrade a prior untracked reference 4075 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one. 4076 */ 4077static inline void netdev_tracker_alloc(struct net_device *dev, 4078 netdevice_tracker *tracker, gfp_t gfp) 4079{ 4080#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4081 refcount_dec(&dev->refcnt_tracker.no_tracker); 4082 __netdev_tracker_alloc(dev, tracker, gfp); 4083#endif 4084} 4085 4086static inline void netdev_tracker_free(struct net_device *dev, 4087 netdevice_tracker *tracker) 4088{ 4089#ifdef CONFIG_NET_DEV_REFCNT_TRACKER 4090 ref_tracker_free(&dev->refcnt_tracker, tracker); 4091#endif 4092} 4093 4094static inline void netdev_hold(struct net_device *dev, 4095 netdevice_tracker *tracker, gfp_t gfp) 4096{ 4097 if (dev) { 4098 __dev_hold(dev); 4099 __netdev_tracker_alloc(dev, tracker, gfp); 4100 } 4101} 4102 4103static inline void netdev_put(struct net_device *dev, 4104 netdevice_tracker *tracker) 4105{ 4106 if (dev) { 4107 netdev_tracker_free(dev, tracker); 4108 __dev_put(dev); 4109 } 4110} 4111 4112/** 4113 * dev_hold - get reference to device 4114 * @dev: network device 4115 * 4116 * Hold reference to device to keep it from being freed. 4117 * Try using netdev_hold() instead. 4118 */ 4119static inline void dev_hold(struct net_device *dev) 4120{ 4121 netdev_hold(dev, NULL, GFP_ATOMIC); 4122} 4123 4124/** 4125 * dev_put - release reference to device 4126 * @dev: network device 4127 * 4128 * Release reference to device to allow it to be freed. 4129 * Try using netdev_put() instead. 4130 */ 4131static inline void dev_put(struct net_device *dev) 4132{ 4133 netdev_put(dev, NULL); 4134} 4135 4136static inline void netdev_ref_replace(struct net_device *odev, 4137 struct net_device *ndev, 4138 netdevice_tracker *tracker, 4139 gfp_t gfp) 4140{ 4141 if (odev) 4142 netdev_tracker_free(odev, tracker); 4143 4144 __dev_hold(ndev); 4145 __dev_put(odev); 4146 4147 if (ndev) 4148 __netdev_tracker_alloc(ndev, tracker, gfp); 4149} 4150 4151/* Carrier loss detection, dial on demand. The functions netif_carrier_on 4152 * and _off may be called from IRQ context, but it is caller 4153 * who is responsible for serialization of these calls. 4154 * 4155 * The name carrier is inappropriate, these functions should really be 4156 * called netif_lowerlayer_*() because they represent the state of any 4157 * kind of lower layer not just hardware media. 4158 */ 4159void linkwatch_fire_event(struct net_device *dev); 4160 4161/** 4162 * netif_carrier_ok - test if carrier present 4163 * @dev: network device 4164 * 4165 * Check if carrier is present on device 4166 */ 4167static inline bool netif_carrier_ok(const struct net_device *dev) 4168{ 4169 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 4170} 4171 4172unsigned long dev_trans_start(struct net_device *dev); 4173 4174void __netdev_watchdog_up(struct net_device *dev); 4175 4176void netif_carrier_on(struct net_device *dev); 4177void netif_carrier_off(struct net_device *dev); 4178void netif_carrier_event(struct net_device *dev); 4179 4180/** 4181 * netif_dormant_on - mark device as dormant. 4182 * @dev: network device 4183 * 4184 * Mark device as dormant (as per RFC2863). 4185 * 4186 * The dormant state indicates that the relevant interface is not 4187 * actually in a condition to pass packets (i.e., it is not 'up') but is 4188 * in a "pending" state, waiting for some external event. For "on- 4189 * demand" interfaces, this new state identifies the situation where the 4190 * interface is waiting for events to place it in the up state. 4191 */ 4192static inline void netif_dormant_on(struct net_device *dev) 4193{ 4194 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 4195 linkwatch_fire_event(dev); 4196} 4197 4198/** 4199 * netif_dormant_off - set device as not dormant. 4200 * @dev: network device 4201 * 4202 * Device is not in dormant state. 4203 */ 4204static inline void netif_dormant_off(struct net_device *dev) 4205{ 4206 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 4207 linkwatch_fire_event(dev); 4208} 4209 4210/** 4211 * netif_dormant - test if device is dormant 4212 * @dev: network device 4213 * 4214 * Check if device is dormant. 4215 */ 4216static inline bool netif_dormant(const struct net_device *dev) 4217{ 4218 return test_bit(__LINK_STATE_DORMANT, &dev->state); 4219} 4220 4221 4222/** 4223 * netif_testing_on - mark device as under test. 4224 * @dev: network device 4225 * 4226 * Mark device as under test (as per RFC2863). 4227 * 4228 * The testing state indicates that some test(s) must be performed on 4229 * the interface. After completion, of the test, the interface state 4230 * will change to up, dormant, or down, as appropriate. 4231 */ 4232static inline void netif_testing_on(struct net_device *dev) 4233{ 4234 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state)) 4235 linkwatch_fire_event(dev); 4236} 4237 4238/** 4239 * netif_testing_off - set device as not under test. 4240 * @dev: network device 4241 * 4242 * Device is not in testing state. 4243 */ 4244static inline void netif_testing_off(struct net_device *dev) 4245{ 4246 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state)) 4247 linkwatch_fire_event(dev); 4248} 4249 4250/** 4251 * netif_testing - test if device is under test 4252 * @dev: network device 4253 * 4254 * Check if device is under test 4255 */ 4256static inline bool netif_testing(const struct net_device *dev) 4257{ 4258 return test_bit(__LINK_STATE_TESTING, &dev->state); 4259} 4260 4261 4262/** 4263 * netif_oper_up - test if device is operational 4264 * @dev: network device 4265 * 4266 * Check if carrier is operational 4267 */ 4268static inline bool netif_oper_up(const struct net_device *dev) 4269{ 4270 return (dev->operstate == IF_OPER_UP || 4271 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 4272} 4273 4274/** 4275 * netif_device_present - is device available or removed 4276 * @dev: network device 4277 * 4278 * Check if device has not been removed from system. 4279 */ 4280static inline bool netif_device_present(const struct net_device *dev) 4281{ 4282 return test_bit(__LINK_STATE_PRESENT, &dev->state); 4283} 4284 4285void netif_device_detach(struct net_device *dev); 4286 4287void netif_device_attach(struct net_device *dev); 4288 4289/* 4290 * Network interface message level settings 4291 */ 4292 4293enum { 4294 NETIF_MSG_DRV_BIT, 4295 NETIF_MSG_PROBE_BIT, 4296 NETIF_MSG_LINK_BIT, 4297 NETIF_MSG_TIMER_BIT, 4298 NETIF_MSG_IFDOWN_BIT, 4299 NETIF_MSG_IFUP_BIT, 4300 NETIF_MSG_RX_ERR_BIT, 4301 NETIF_MSG_TX_ERR_BIT, 4302 NETIF_MSG_TX_QUEUED_BIT, 4303 NETIF_MSG_INTR_BIT, 4304 NETIF_MSG_TX_DONE_BIT, 4305 NETIF_MSG_RX_STATUS_BIT, 4306 NETIF_MSG_PKTDATA_BIT, 4307 NETIF_MSG_HW_BIT, 4308 NETIF_MSG_WOL_BIT, 4309 4310 /* When you add a new bit above, update netif_msg_class_names array 4311 * in net/ethtool/common.c 4312 */ 4313 NETIF_MSG_CLASS_COUNT, 4314}; 4315/* Both ethtool_ops interface and internal driver implementation use u32 */ 4316static_assert(NETIF_MSG_CLASS_COUNT <= 32); 4317 4318#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit)) 4319#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT) 4320 4321#define NETIF_MSG_DRV __NETIF_MSG(DRV) 4322#define NETIF_MSG_PROBE __NETIF_MSG(PROBE) 4323#define NETIF_MSG_LINK __NETIF_MSG(LINK) 4324#define NETIF_MSG_TIMER __NETIF_MSG(TIMER) 4325#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN) 4326#define NETIF_MSG_IFUP __NETIF_MSG(IFUP) 4327#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR) 4328#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR) 4329#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED) 4330#define NETIF_MSG_INTR __NETIF_MSG(INTR) 4331#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE) 4332#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS) 4333#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA) 4334#define NETIF_MSG_HW __NETIF_MSG(HW) 4335#define NETIF_MSG_WOL __NETIF_MSG(WOL) 4336 4337#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 4338#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 4339#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 4340#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 4341#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 4342#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 4343#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 4344#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 4345#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 4346#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 4347#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 4348#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 4349#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 4350#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 4351#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 4352 4353static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 4354{ 4355 /* use default */ 4356 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 4357 return default_msg_enable_bits; 4358 if (debug_value == 0) /* no output */ 4359 return 0; 4360 /* set low N bits */ 4361 return (1U << debug_value) - 1; 4362} 4363 4364static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 4365{ 4366 spin_lock(&txq->_xmit_lock); 4367 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4368 WRITE_ONCE(txq->xmit_lock_owner, cpu); 4369} 4370 4371static inline bool __netif_tx_acquire(struct netdev_queue *txq) 4372{ 4373 __acquire(&txq->_xmit_lock); 4374 return true; 4375} 4376 4377static inline void __netif_tx_release(struct netdev_queue *txq) 4378{ 4379 __release(&txq->_xmit_lock); 4380} 4381 4382static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 4383{ 4384 spin_lock_bh(&txq->_xmit_lock); 4385 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4386 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4387} 4388 4389static inline bool __netif_tx_trylock(struct netdev_queue *txq) 4390{ 4391 bool ok = spin_trylock(&txq->_xmit_lock); 4392 4393 if (likely(ok)) { 4394 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4395 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id()); 4396 } 4397 return ok; 4398} 4399 4400static inline void __netif_tx_unlock(struct netdev_queue *txq) 4401{ 4402 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4403 WRITE_ONCE(txq->xmit_lock_owner, -1); 4404 spin_unlock(&txq->_xmit_lock); 4405} 4406 4407static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 4408{ 4409 /* Pairs with READ_ONCE() in __dev_queue_xmit() */ 4410 WRITE_ONCE(txq->xmit_lock_owner, -1); 4411 spin_unlock_bh(&txq->_xmit_lock); 4412} 4413 4414/* 4415 * txq->trans_start can be read locklessly from dev_watchdog() 4416 */ 4417static inline void txq_trans_update(struct netdev_queue *txq) 4418{ 4419 if (txq->xmit_lock_owner != -1) 4420 WRITE_ONCE(txq->trans_start, jiffies); 4421} 4422 4423static inline void txq_trans_cond_update(struct netdev_queue *txq) 4424{ 4425 unsigned long now = jiffies; 4426 4427 if (READ_ONCE(txq->trans_start) != now) 4428 WRITE_ONCE(txq->trans_start, now); 4429} 4430 4431/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 4432static inline void netif_trans_update(struct net_device *dev) 4433{ 4434 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 4435 4436 txq_trans_cond_update(txq); 4437} 4438 4439/** 4440 * netif_tx_lock - grab network device transmit lock 4441 * @dev: network device 4442 * 4443 * Get network device transmit lock 4444 */ 4445void netif_tx_lock(struct net_device *dev); 4446 4447static inline void netif_tx_lock_bh(struct net_device *dev) 4448{ 4449 local_bh_disable(); 4450 netif_tx_lock(dev); 4451} 4452 4453void netif_tx_unlock(struct net_device *dev); 4454 4455static inline void netif_tx_unlock_bh(struct net_device *dev) 4456{ 4457 netif_tx_unlock(dev); 4458 local_bh_enable(); 4459} 4460 4461#define HARD_TX_LOCK(dev, txq, cpu) { \ 4462 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4463 __netif_tx_lock(txq, cpu); \ 4464 } else { \ 4465 __netif_tx_acquire(txq); \ 4466 } \ 4467} 4468 4469#define HARD_TX_TRYLOCK(dev, txq) \ 4470 (((dev->features & NETIF_F_LLTX) == 0) ? \ 4471 __netif_tx_trylock(txq) : \ 4472 __netif_tx_acquire(txq)) 4473 4474#define HARD_TX_UNLOCK(dev, txq) { \ 4475 if ((dev->features & NETIF_F_LLTX) == 0) { \ 4476 __netif_tx_unlock(txq); \ 4477 } else { \ 4478 __netif_tx_release(txq); \ 4479 } \ 4480} 4481 4482static inline void netif_tx_disable(struct net_device *dev) 4483{ 4484 unsigned int i; 4485 int cpu; 4486 4487 local_bh_disable(); 4488 cpu = smp_processor_id(); 4489 spin_lock(&dev->tx_global_lock); 4490 for (i = 0; i < dev->num_tx_queues; i++) { 4491 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 4492 4493 __netif_tx_lock(txq, cpu); 4494 netif_tx_stop_queue(txq); 4495 __netif_tx_unlock(txq); 4496 } 4497 spin_unlock(&dev->tx_global_lock); 4498 local_bh_enable(); 4499} 4500 4501static inline void netif_addr_lock(struct net_device *dev) 4502{ 4503 unsigned char nest_level = 0; 4504 4505#ifdef CONFIG_LOCKDEP 4506 nest_level = dev->nested_level; 4507#endif 4508 spin_lock_nested(&dev->addr_list_lock, nest_level); 4509} 4510 4511static inline void netif_addr_lock_bh(struct net_device *dev) 4512{ 4513 unsigned char nest_level = 0; 4514 4515#ifdef CONFIG_LOCKDEP 4516 nest_level = dev->nested_level; 4517#endif 4518 local_bh_disable(); 4519 spin_lock_nested(&dev->addr_list_lock, nest_level); 4520} 4521 4522static inline void netif_addr_unlock(struct net_device *dev) 4523{ 4524 spin_unlock(&dev->addr_list_lock); 4525} 4526 4527static inline void netif_addr_unlock_bh(struct net_device *dev) 4528{ 4529 spin_unlock_bh(&dev->addr_list_lock); 4530} 4531 4532/* 4533 * dev_addrs walker. Should be used only for read access. Call with 4534 * rcu_read_lock held. 4535 */ 4536#define for_each_dev_addr(dev, ha) \ 4537 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 4538 4539/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 4540 4541void ether_setup(struct net_device *dev); 4542 4543/* Support for loadable net-drivers */ 4544struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 4545 unsigned char name_assign_type, 4546 void (*setup)(struct net_device *), 4547 unsigned int txqs, unsigned int rxqs); 4548#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 4549 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 4550 4551#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 4552 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 4553 count) 4554 4555int register_netdev(struct net_device *dev); 4556void unregister_netdev(struct net_device *dev); 4557 4558int devm_register_netdev(struct device *dev, struct net_device *ndev); 4559 4560/* General hardware address lists handling functions */ 4561int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 4562 struct netdev_hw_addr_list *from_list, int addr_len); 4563void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 4564 struct netdev_hw_addr_list *from_list, int addr_len); 4565int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 4566 struct net_device *dev, 4567 int (*sync)(struct net_device *, const unsigned char *), 4568 int (*unsync)(struct net_device *, 4569 const unsigned char *)); 4570int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list, 4571 struct net_device *dev, 4572 int (*sync)(struct net_device *, 4573 const unsigned char *, int), 4574 int (*unsync)(struct net_device *, 4575 const unsigned char *, int)); 4576void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list, 4577 struct net_device *dev, 4578 int (*unsync)(struct net_device *, 4579 const unsigned char *, int)); 4580void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 4581 struct net_device *dev, 4582 int (*unsync)(struct net_device *, 4583 const unsigned char *)); 4584void __hw_addr_init(struct netdev_hw_addr_list *list); 4585 4586/* Functions used for device addresses handling */ 4587void dev_addr_mod(struct net_device *dev, unsigned int offset, 4588 const void *addr, size_t len); 4589 4590static inline void 4591__dev_addr_set(struct net_device *dev, const void *addr, size_t len) 4592{ 4593 dev_addr_mod(dev, 0, addr, len); 4594} 4595 4596static inline void dev_addr_set(struct net_device *dev, const u8 *addr) 4597{ 4598 __dev_addr_set(dev, addr, dev->addr_len); 4599} 4600 4601int dev_addr_add(struct net_device *dev, const unsigned char *addr, 4602 unsigned char addr_type); 4603int dev_addr_del(struct net_device *dev, const unsigned char *addr, 4604 unsigned char addr_type); 4605 4606/* Functions used for unicast addresses handling */ 4607int dev_uc_add(struct net_device *dev, const unsigned char *addr); 4608int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 4609int dev_uc_del(struct net_device *dev, const unsigned char *addr); 4610int dev_uc_sync(struct net_device *to, struct net_device *from); 4611int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 4612void dev_uc_unsync(struct net_device *to, struct net_device *from); 4613void dev_uc_flush(struct net_device *dev); 4614void dev_uc_init(struct net_device *dev); 4615 4616/** 4617 * __dev_uc_sync - Synchonize device's unicast list 4618 * @dev: device to sync 4619 * @sync: function to call if address should be added 4620 * @unsync: function to call if address should be removed 4621 * 4622 * Add newly added addresses to the interface, and release 4623 * addresses that have been deleted. 4624 */ 4625static inline int __dev_uc_sync(struct net_device *dev, 4626 int (*sync)(struct net_device *, 4627 const unsigned char *), 4628 int (*unsync)(struct net_device *, 4629 const unsigned char *)) 4630{ 4631 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 4632} 4633 4634/** 4635 * __dev_uc_unsync - Remove synchronized addresses from device 4636 * @dev: device to sync 4637 * @unsync: function to call if address should be removed 4638 * 4639 * Remove all addresses that were added to the device by dev_uc_sync(). 4640 */ 4641static inline void __dev_uc_unsync(struct net_device *dev, 4642 int (*unsync)(struct net_device *, 4643 const unsigned char *)) 4644{ 4645 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 4646} 4647 4648/* Functions used for multicast addresses handling */ 4649int dev_mc_add(struct net_device *dev, const unsigned char *addr); 4650int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 4651int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 4652int dev_mc_del(struct net_device *dev, const unsigned char *addr); 4653int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 4654int dev_mc_sync(struct net_device *to, struct net_device *from); 4655int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 4656void dev_mc_unsync(struct net_device *to, struct net_device *from); 4657void dev_mc_flush(struct net_device *dev); 4658void dev_mc_init(struct net_device *dev); 4659 4660/** 4661 * __dev_mc_sync - Synchonize device's multicast list 4662 * @dev: device to sync 4663 * @sync: function to call if address should be added 4664 * @unsync: function to call if address should be removed 4665 * 4666 * Add newly added addresses to the interface, and release 4667 * addresses that have been deleted. 4668 */ 4669static inline int __dev_mc_sync(struct net_device *dev, 4670 int (*sync)(struct net_device *, 4671 const unsigned char *), 4672 int (*unsync)(struct net_device *, 4673 const unsigned char *)) 4674{ 4675 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 4676} 4677 4678/** 4679 * __dev_mc_unsync - Remove synchronized addresses from device 4680 * @dev: device to sync 4681 * @unsync: function to call if address should be removed 4682 * 4683 * Remove all addresses that were added to the device by dev_mc_sync(). 4684 */ 4685static inline void __dev_mc_unsync(struct net_device *dev, 4686 int (*unsync)(struct net_device *, 4687 const unsigned char *)) 4688{ 4689 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 4690} 4691 4692/* Functions used for secondary unicast and multicast support */ 4693void dev_set_rx_mode(struct net_device *dev); 4694int dev_set_promiscuity(struct net_device *dev, int inc); 4695int dev_set_allmulti(struct net_device *dev, int inc); 4696void netdev_state_change(struct net_device *dev); 4697void __netdev_notify_peers(struct net_device *dev); 4698void netdev_notify_peers(struct net_device *dev); 4699void netdev_features_change(struct net_device *dev); 4700/* Load a device via the kmod */ 4701void dev_load(struct net *net, const char *name); 4702struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 4703 struct rtnl_link_stats64 *storage); 4704void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 4705 const struct net_device_stats *netdev_stats); 4706void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 4707 const struct pcpu_sw_netstats __percpu *netstats); 4708void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s); 4709 4710extern int netdev_max_backlog; 4711extern int dev_rx_weight; 4712extern int dev_tx_weight; 4713extern int gro_normal_batch; 4714 4715enum { 4716 NESTED_SYNC_IMM_BIT, 4717 NESTED_SYNC_TODO_BIT, 4718}; 4719 4720#define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit)) 4721#define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT) 4722 4723#define NESTED_SYNC_IMM __NESTED_SYNC(IMM) 4724#define NESTED_SYNC_TODO __NESTED_SYNC(TODO) 4725 4726struct netdev_nested_priv { 4727 unsigned char flags; 4728 void *data; 4729}; 4730 4731bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 4732struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4733 struct list_head **iter); 4734 4735/* iterate through upper list, must be called under RCU read lock */ 4736#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 4737 for (iter = &(dev)->adj_list.upper, \ 4738 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 4739 updev; \ 4740 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 4741 4742int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 4743 int (*fn)(struct net_device *upper_dev, 4744 struct netdev_nested_priv *priv), 4745 struct netdev_nested_priv *priv); 4746 4747bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 4748 struct net_device *upper_dev); 4749 4750bool netdev_has_any_upper_dev(struct net_device *dev); 4751 4752void *netdev_lower_get_next_private(struct net_device *dev, 4753 struct list_head **iter); 4754void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4755 struct list_head **iter); 4756 4757#define netdev_for_each_lower_private(dev, priv, iter) \ 4758 for (iter = (dev)->adj_list.lower.next, \ 4759 priv = netdev_lower_get_next_private(dev, &(iter)); \ 4760 priv; \ 4761 priv = netdev_lower_get_next_private(dev, &(iter))) 4762 4763#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 4764 for (iter = &(dev)->adj_list.lower, \ 4765 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 4766 priv; \ 4767 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 4768 4769void *netdev_lower_get_next(struct net_device *dev, 4770 struct list_head **iter); 4771 4772#define netdev_for_each_lower_dev(dev, ldev, iter) \ 4773 for (iter = (dev)->adj_list.lower.next, \ 4774 ldev = netdev_lower_get_next(dev, &(iter)); \ 4775 ldev; \ 4776 ldev = netdev_lower_get_next(dev, &(iter))) 4777 4778struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 4779 struct list_head **iter); 4780int netdev_walk_all_lower_dev(struct net_device *dev, 4781 int (*fn)(struct net_device *lower_dev, 4782 struct netdev_nested_priv *priv), 4783 struct netdev_nested_priv *priv); 4784int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 4785 int (*fn)(struct net_device *lower_dev, 4786 struct netdev_nested_priv *priv), 4787 struct netdev_nested_priv *priv); 4788 4789void *netdev_adjacent_get_private(struct list_head *adj_list); 4790void *netdev_lower_get_first_private_rcu(struct net_device *dev); 4791struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 4792struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 4793int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev, 4794 struct netlink_ext_ack *extack); 4795int netdev_master_upper_dev_link(struct net_device *dev, 4796 struct net_device *upper_dev, 4797 void *upper_priv, void *upper_info, 4798 struct netlink_ext_ack *extack); 4799void netdev_upper_dev_unlink(struct net_device *dev, 4800 struct net_device *upper_dev); 4801int netdev_adjacent_change_prepare(struct net_device *old_dev, 4802 struct net_device *new_dev, 4803 struct net_device *dev, 4804 struct netlink_ext_ack *extack); 4805void netdev_adjacent_change_commit(struct net_device *old_dev, 4806 struct net_device *new_dev, 4807 struct net_device *dev); 4808void netdev_adjacent_change_abort(struct net_device *old_dev, 4809 struct net_device *new_dev, 4810 struct net_device *dev); 4811void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 4812void *netdev_lower_dev_get_private(struct net_device *dev, 4813 struct net_device *lower_dev); 4814void netdev_lower_state_changed(struct net_device *lower_dev, 4815 void *lower_state_info); 4816 4817/* RSS keys are 40 or 52 bytes long */ 4818#define NETDEV_RSS_KEY_LEN 52 4819extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 4820void netdev_rss_key_fill(void *buffer, size_t len); 4821 4822int skb_checksum_help(struct sk_buff *skb); 4823int skb_crc32c_csum_help(struct sk_buff *skb); 4824int skb_csum_hwoffload_help(struct sk_buff *skb, 4825 const netdev_features_t features); 4826 4827struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 4828 netdev_features_t features, bool tx_path); 4829struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb, 4830 netdev_features_t features, __be16 type); 4831struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 4832 netdev_features_t features); 4833 4834struct netdev_bonding_info { 4835 ifslave slave; 4836 ifbond master; 4837}; 4838 4839struct netdev_notifier_bonding_info { 4840 struct netdev_notifier_info info; /* must be first */ 4841 struct netdev_bonding_info bonding_info; 4842}; 4843 4844void netdev_bonding_info_change(struct net_device *dev, 4845 struct netdev_bonding_info *bonding_info); 4846 4847#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK) 4848void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data); 4849#else 4850static inline void ethtool_notify(struct net_device *dev, unsigned int cmd, 4851 const void *data) 4852{ 4853} 4854#endif 4855 4856static inline 4857struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 4858{ 4859 return __skb_gso_segment(skb, features, true); 4860} 4861__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 4862 4863static inline bool can_checksum_protocol(netdev_features_t features, 4864 __be16 protocol) 4865{ 4866 if (protocol == htons(ETH_P_FCOE)) 4867 return !!(features & NETIF_F_FCOE_CRC); 4868 4869 /* Assume this is an IP checksum (not SCTP CRC) */ 4870 4871 if (features & NETIF_F_HW_CSUM) { 4872 /* Can checksum everything */ 4873 return true; 4874 } 4875 4876 switch (protocol) { 4877 case htons(ETH_P_IP): 4878 return !!(features & NETIF_F_IP_CSUM); 4879 case htons(ETH_P_IPV6): 4880 return !!(features & NETIF_F_IPV6_CSUM); 4881 default: 4882 return false; 4883 } 4884} 4885 4886#ifdef CONFIG_BUG 4887void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb); 4888#else 4889static inline void netdev_rx_csum_fault(struct net_device *dev, 4890 struct sk_buff *skb) 4891{ 4892} 4893#endif 4894/* rx skb timestamps */ 4895void net_enable_timestamp(void); 4896void net_disable_timestamp(void); 4897 4898static inline ktime_t netdev_get_tstamp(struct net_device *dev, 4899 const struct skb_shared_hwtstamps *hwtstamps, 4900 bool cycles) 4901{ 4902 const struct net_device_ops *ops = dev->netdev_ops; 4903 4904 if (ops->ndo_get_tstamp) 4905 return ops->ndo_get_tstamp(dev, hwtstamps, cycles); 4906 4907 return hwtstamps->hwtstamp; 4908} 4909 4910static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 4911 struct sk_buff *skb, struct net_device *dev, 4912 bool more) 4913{ 4914 __this_cpu_write(softnet_data.xmit.more, more); 4915 return ops->ndo_start_xmit(skb, dev); 4916} 4917 4918static inline bool netdev_xmit_more(void) 4919{ 4920 return __this_cpu_read(softnet_data.xmit.more); 4921} 4922 4923static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 4924 struct netdev_queue *txq, bool more) 4925{ 4926 const struct net_device_ops *ops = dev->netdev_ops; 4927 netdev_tx_t rc; 4928 4929 rc = __netdev_start_xmit(ops, skb, dev, more); 4930 if (rc == NETDEV_TX_OK) 4931 txq_trans_update(txq); 4932 4933 return rc; 4934} 4935 4936int netdev_class_create_file_ns(const struct class_attribute *class_attr, 4937 const void *ns); 4938void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 4939 const void *ns); 4940 4941extern const struct kobj_ns_type_operations net_ns_type_operations; 4942 4943const char *netdev_drivername(const struct net_device *dev); 4944 4945static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4946 netdev_features_t f2) 4947{ 4948 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4949 if (f1 & NETIF_F_HW_CSUM) 4950 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4951 else 4952 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4953 } 4954 4955 return f1 & f2; 4956} 4957 4958static inline netdev_features_t netdev_get_wanted_features( 4959 struct net_device *dev) 4960{ 4961 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4962} 4963netdev_features_t netdev_increment_features(netdev_features_t all, 4964 netdev_features_t one, netdev_features_t mask); 4965 4966/* Allow TSO being used on stacked device : 4967 * Performing the GSO segmentation before last device 4968 * is a performance improvement. 4969 */ 4970static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4971 netdev_features_t mask) 4972{ 4973 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4974} 4975 4976int __netdev_update_features(struct net_device *dev); 4977void netdev_update_features(struct net_device *dev); 4978void netdev_change_features(struct net_device *dev); 4979 4980void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4981 struct net_device *dev); 4982 4983netdev_features_t passthru_features_check(struct sk_buff *skb, 4984 struct net_device *dev, 4985 netdev_features_t features); 4986netdev_features_t netif_skb_features(struct sk_buff *skb); 4987 4988static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4989{ 4990 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4991 4992 /* check flags correspondence */ 4993 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4994 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4995 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4996 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4997 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4998 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4999 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 5000 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 5001 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 5002 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 5003 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 5004 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 5005 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 5006 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 5007 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 5008 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT)); 5009 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT)); 5010 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT)); 5011 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT)); 5012 5013 return (features & feature) == feature; 5014} 5015 5016static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 5017{ 5018 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 5019 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 5020} 5021 5022static inline bool netif_needs_gso(struct sk_buff *skb, 5023 netdev_features_t features) 5024{ 5025 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 5026 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 5027 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 5028} 5029 5030void netif_set_tso_max_size(struct net_device *dev, unsigned int size); 5031void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs); 5032void netif_inherit_tso_max(struct net_device *to, 5033 const struct net_device *from); 5034 5035static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 5036 int pulled_hlen, u16 mac_offset, 5037 int mac_len) 5038{ 5039 skb->protocol = protocol; 5040 skb->encapsulation = 1; 5041 skb_push(skb, pulled_hlen); 5042 skb_reset_transport_header(skb); 5043 skb->mac_header = mac_offset; 5044 skb->network_header = skb->mac_header + mac_len; 5045 skb->mac_len = mac_len; 5046} 5047 5048static inline bool netif_is_macsec(const struct net_device *dev) 5049{ 5050 return dev->priv_flags & IFF_MACSEC; 5051} 5052 5053static inline bool netif_is_macvlan(const struct net_device *dev) 5054{ 5055 return dev->priv_flags & IFF_MACVLAN; 5056} 5057 5058static inline bool netif_is_macvlan_port(const struct net_device *dev) 5059{ 5060 return dev->priv_flags & IFF_MACVLAN_PORT; 5061} 5062 5063static inline bool netif_is_bond_master(const struct net_device *dev) 5064{ 5065 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 5066} 5067 5068static inline bool netif_is_bond_slave(const struct net_device *dev) 5069{ 5070 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 5071} 5072 5073static inline bool netif_supports_nofcs(struct net_device *dev) 5074{ 5075 return dev->priv_flags & IFF_SUPP_NOFCS; 5076} 5077 5078static inline bool netif_has_l3_rx_handler(const struct net_device *dev) 5079{ 5080 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER; 5081} 5082 5083static inline bool netif_is_l3_master(const struct net_device *dev) 5084{ 5085 return dev->priv_flags & IFF_L3MDEV_MASTER; 5086} 5087 5088static inline bool netif_is_l3_slave(const struct net_device *dev) 5089{ 5090 return dev->priv_flags & IFF_L3MDEV_SLAVE; 5091} 5092 5093static inline bool netif_is_bridge_master(const struct net_device *dev) 5094{ 5095 return dev->priv_flags & IFF_EBRIDGE; 5096} 5097 5098static inline bool netif_is_bridge_port(const struct net_device *dev) 5099{ 5100 return dev->priv_flags & IFF_BRIDGE_PORT; 5101} 5102 5103static inline bool netif_is_ovs_master(const struct net_device *dev) 5104{ 5105 return dev->priv_flags & IFF_OPENVSWITCH; 5106} 5107 5108static inline bool netif_is_ovs_port(const struct net_device *dev) 5109{ 5110 return dev->priv_flags & IFF_OVS_DATAPATH; 5111} 5112 5113static inline bool netif_is_any_bridge_port(const struct net_device *dev) 5114{ 5115 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev); 5116} 5117 5118static inline bool netif_is_team_master(const struct net_device *dev) 5119{ 5120 return dev->priv_flags & IFF_TEAM; 5121} 5122 5123static inline bool netif_is_team_port(const struct net_device *dev) 5124{ 5125 return dev->priv_flags & IFF_TEAM_PORT; 5126} 5127 5128static inline bool netif_is_lag_master(const struct net_device *dev) 5129{ 5130 return netif_is_bond_master(dev) || netif_is_team_master(dev); 5131} 5132 5133static inline bool netif_is_lag_port(const struct net_device *dev) 5134{ 5135 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 5136} 5137 5138static inline bool netif_is_rxfh_configured(const struct net_device *dev) 5139{ 5140 return dev->priv_flags & IFF_RXFH_CONFIGURED; 5141} 5142 5143static inline bool netif_is_failover(const struct net_device *dev) 5144{ 5145 return dev->priv_flags & IFF_FAILOVER; 5146} 5147 5148static inline bool netif_is_failover_slave(const struct net_device *dev) 5149{ 5150 return dev->priv_flags & IFF_FAILOVER_SLAVE; 5151} 5152 5153/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 5154static inline void netif_keep_dst(struct net_device *dev) 5155{ 5156 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 5157} 5158 5159/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 5160static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 5161{ 5162 /* TODO: reserve and use an additional IFF bit, if we get more users */ 5163 return netif_is_macsec(dev); 5164} 5165 5166extern struct pernet_operations __net_initdata loopback_net_ops; 5167 5168/* Logging, debugging and troubleshooting/diagnostic helpers. */ 5169 5170/* netdev_printk helpers, similar to dev_printk */ 5171 5172static inline const char *netdev_name(const struct net_device *dev) 5173{ 5174 if (!dev->name[0] || strchr(dev->name, '%')) 5175 return "(unnamed net_device)"; 5176 return dev->name; 5177} 5178 5179static inline const char *netdev_reg_state(const struct net_device *dev) 5180{ 5181 switch (dev->reg_state) { 5182 case NETREG_UNINITIALIZED: return " (uninitialized)"; 5183 case NETREG_REGISTERED: return ""; 5184 case NETREG_UNREGISTERING: return " (unregistering)"; 5185 case NETREG_UNREGISTERED: return " (unregistered)"; 5186 case NETREG_RELEASED: return " (released)"; 5187 case NETREG_DUMMY: return " (dummy)"; 5188 } 5189 5190 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 5191 return " (unknown)"; 5192} 5193 5194#define MODULE_ALIAS_NETDEV(device) \ 5195 MODULE_ALIAS("netdev-" device) 5196 5197/* 5198 * netdev_WARN() acts like dev_printk(), but with the key difference 5199 * of using a WARN/WARN_ON to get the message out, including the 5200 * file/line information and a backtrace. 5201 */ 5202#define netdev_WARN(dev, format, args...) \ 5203 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5204 netdev_reg_state(dev), ##args) 5205 5206#define netdev_WARN_ONCE(dev, format, args...) \ 5207 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \ 5208 netdev_reg_state(dev), ##args) 5209 5210/* 5211 * The list of packet types we will receive (as opposed to discard) 5212 * and the routines to invoke. 5213 * 5214 * Why 16. Because with 16 the only overlap we get on a hash of the 5215 * low nibble of the protocol value is RARP/SNAP/X.25. 5216 * 5217 * 0800 IP 5218 * 0001 802.3 5219 * 0002 AX.25 5220 * 0004 802.2 5221 * 8035 RARP 5222 * 0005 SNAP 5223 * 0805 X.25 5224 * 0806 ARP 5225 * 8137 IPX 5226 * 0009 Localtalk 5227 * 86DD IPv6 5228 */ 5229#define PTYPE_HASH_SIZE (16) 5230#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 5231 5232extern struct list_head ptype_all __read_mostly; 5233extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 5234 5235extern struct net_device *blackhole_netdev; 5236 5237/* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */ 5238#define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD) 5239#define DEV_STATS_ADD(DEV, FIELD, VAL) \ 5240 atomic_long_add((VAL), &(DEV)->stats.__##FIELD) 5241 5242#endif /* _LINUX_NETDEVICE_H */