Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2022 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include "core.h"
24#include "nl80211.h"
25#include "wext-compat.h"
26#include "rdev-ops.h"
27
28/**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64/*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72static int bss_entries_limit = 1000;
73module_param(bss_entries_limit, int, 0644);
74MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79/**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 */
100struct cfg80211_colocated_ap {
101 struct list_head list;
102 u8 bssid[ETH_ALEN];
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
104 size_t ssid_len;
105 u32 short_ssid;
106 u32 center_freq;
107 u8 unsolicited_probe:1,
108 oct_recommended:1,
109 same_ssid:1,
110 multi_bss:1,
111 transmitted_bssid:1,
112 colocated_ess:1,
113 short_ssid_valid:1;
114};
115
116static void bss_free(struct cfg80211_internal_bss *bss)
117{
118 struct cfg80211_bss_ies *ies;
119
120 if (WARN_ON(atomic_read(&bss->hold)))
121 return;
122
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 if (ies)
128 kfree_rcu(ies, rcu_head);
129
130 /*
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
133 */
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
136
137 kfree(bss);
138}
139
140static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
142{
143 lockdep_assert_held(&rdev->bss_lock);
144
145 bss->refcount++;
146
147 if (bss->pub.hidden_beacon_bss)
148 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
149
150 if (bss->pub.transmitted_bss)
151 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
152}
153
154static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
155 struct cfg80211_internal_bss *bss)
156{
157 lockdep_assert_held(&rdev->bss_lock);
158
159 if (bss->pub.hidden_beacon_bss) {
160 struct cfg80211_internal_bss *hbss;
161
162 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
163 hbss->refcount--;
164 if (hbss->refcount == 0)
165 bss_free(hbss);
166 }
167
168 if (bss->pub.transmitted_bss) {
169 struct cfg80211_internal_bss *tbss;
170
171 tbss = bss_from_pub(bss->pub.transmitted_bss);
172 tbss->refcount--;
173 if (tbss->refcount == 0)
174 bss_free(tbss);
175 }
176
177 bss->refcount--;
178 if (bss->refcount == 0)
179 bss_free(bss);
180}
181
182static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
183 struct cfg80211_internal_bss *bss)
184{
185 lockdep_assert_held(&rdev->bss_lock);
186
187 if (!list_empty(&bss->hidden_list)) {
188 /*
189 * don't remove the beacon entry if it has
190 * probe responses associated with it
191 */
192 if (!bss->pub.hidden_beacon_bss)
193 return false;
194 /*
195 * if it's a probe response entry break its
196 * link to the other entries in the group
197 */
198 list_del_init(&bss->hidden_list);
199 }
200
201 list_del_init(&bss->list);
202 list_del_init(&bss->pub.nontrans_list);
203 rb_erase(&bss->rbn, &rdev->bss_tree);
204 rdev->bss_entries--;
205 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
206 "rdev bss entries[%d]/list[empty:%d] corruption\n",
207 rdev->bss_entries, list_empty(&rdev->bss_list));
208 bss_ref_put(rdev, bss);
209 return true;
210}
211
212bool cfg80211_is_element_inherited(const struct element *elem,
213 const struct element *non_inherit_elem)
214{
215 u8 id_len, ext_id_len, i, loop_len, id;
216 const u8 *list;
217
218 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
219 return false;
220
221 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
222 return true;
223
224 /*
225 * non inheritance element format is:
226 * ext ID (56) | IDs list len | list | extension IDs list len | list
227 * Both lists are optional. Both lengths are mandatory.
228 * This means valid length is:
229 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
230 */
231 id_len = non_inherit_elem->data[1];
232 if (non_inherit_elem->datalen < 3 + id_len)
233 return true;
234
235 ext_id_len = non_inherit_elem->data[2 + id_len];
236 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
237 return true;
238
239 if (elem->id == WLAN_EID_EXTENSION) {
240 if (!ext_id_len)
241 return true;
242 loop_len = ext_id_len;
243 list = &non_inherit_elem->data[3 + id_len];
244 id = elem->data[0];
245 } else {
246 if (!id_len)
247 return true;
248 loop_len = id_len;
249 list = &non_inherit_elem->data[2];
250 id = elem->id;
251 }
252
253 for (i = 0; i < loop_len; i++) {
254 if (list[i] == id)
255 return false;
256 }
257
258 return true;
259}
260EXPORT_SYMBOL(cfg80211_is_element_inherited);
261
262static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
263 const u8 *subelement, size_t subie_len,
264 u8 *new_ie, gfp_t gfp)
265{
266 u8 *pos, *tmp;
267 const u8 *tmp_old, *tmp_new;
268 const struct element *non_inherit_elem;
269 u8 *sub_copy;
270
271 /* copy subelement as we need to change its content to
272 * mark an ie after it is processed.
273 */
274 sub_copy = kmemdup(subelement, subie_len, gfp);
275 if (!sub_copy)
276 return 0;
277
278 pos = &new_ie[0];
279
280 /* set new ssid */
281 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
282 if (tmp_new) {
283 memcpy(pos, tmp_new, tmp_new[1] + 2);
284 pos += (tmp_new[1] + 2);
285 }
286
287 /* get non inheritance list if exists */
288 non_inherit_elem =
289 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
290 sub_copy, subie_len);
291
292 /* go through IEs in ie (skip SSID) and subelement,
293 * merge them into new_ie
294 */
295 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
296 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
297
298 while (tmp_old + 2 - ie <= ielen &&
299 tmp_old + tmp_old[1] + 2 - ie <= ielen) {
300 if (tmp_old[0] == 0) {
301 tmp_old++;
302 continue;
303 }
304
305 if (tmp_old[0] == WLAN_EID_EXTENSION)
306 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
307 subie_len);
308 else
309 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
310 subie_len);
311
312 if (!tmp) {
313 const struct element *old_elem = (void *)tmp_old;
314
315 /* ie in old ie but not in subelement */
316 if (cfg80211_is_element_inherited(old_elem,
317 non_inherit_elem)) {
318 memcpy(pos, tmp_old, tmp_old[1] + 2);
319 pos += tmp_old[1] + 2;
320 }
321 } else {
322 /* ie in transmitting ie also in subelement,
323 * copy from subelement and flag the ie in subelement
324 * as copied (by setting eid field to WLAN_EID_SSID,
325 * which is skipped anyway).
326 * For vendor ie, compare OUI + type + subType to
327 * determine if they are the same ie.
328 */
329 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
330 if (tmp_old[1] >= 5 && tmp[1] >= 5 &&
331 !memcmp(tmp_old + 2, tmp + 2, 5)) {
332 /* same vendor ie, copy from
333 * subelement
334 */
335 memcpy(pos, tmp, tmp[1] + 2);
336 pos += tmp[1] + 2;
337 tmp[0] = WLAN_EID_SSID;
338 } else {
339 memcpy(pos, tmp_old, tmp_old[1] + 2);
340 pos += tmp_old[1] + 2;
341 }
342 } else {
343 /* copy ie from subelement into new ie */
344 memcpy(pos, tmp, tmp[1] + 2);
345 pos += tmp[1] + 2;
346 tmp[0] = WLAN_EID_SSID;
347 }
348 }
349
350 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
351 break;
352
353 tmp_old += tmp_old[1] + 2;
354 }
355
356 /* go through subelement again to check if there is any ie not
357 * copied to new ie, skip ssid, capability, bssid-index ie
358 */
359 tmp_new = sub_copy;
360 while (tmp_new + 2 - sub_copy <= subie_len &&
361 tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
362 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
363 tmp_new[0] == WLAN_EID_SSID)) {
364 memcpy(pos, tmp_new, tmp_new[1] + 2);
365 pos += tmp_new[1] + 2;
366 }
367 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
368 break;
369 tmp_new += tmp_new[1] + 2;
370 }
371
372 kfree(sub_copy);
373 return pos - new_ie;
374}
375
376static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
377 const u8 *ssid, size_t ssid_len)
378{
379 const struct cfg80211_bss_ies *ies;
380 const struct element *ssid_elem;
381
382 if (bssid && !ether_addr_equal(a->bssid, bssid))
383 return false;
384
385 if (!ssid)
386 return true;
387
388 ies = rcu_access_pointer(a->ies);
389 if (!ies)
390 return false;
391 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
392 if (!ssid_elem)
393 return false;
394 if (ssid_elem->datalen != ssid_len)
395 return false;
396 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
397}
398
399static int
400cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
401 struct cfg80211_bss *nontrans_bss)
402{
403 const struct element *ssid_elem;
404 struct cfg80211_bss *bss = NULL;
405
406 rcu_read_lock();
407 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
408 if (!ssid_elem) {
409 rcu_read_unlock();
410 return -EINVAL;
411 }
412
413 /* check if nontrans_bss is in the list */
414 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
415 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
416 ssid_elem->datalen)) {
417 rcu_read_unlock();
418 return 0;
419 }
420 }
421
422 rcu_read_unlock();
423
424 /*
425 * This is a bit weird - it's not on the list, but already on another
426 * one! The only way that could happen is if there's some BSSID/SSID
427 * shared by multiple APs in their multi-BSSID profiles, potentially
428 * with hidden SSID mixed in ... ignore it.
429 */
430 if (!list_empty(&nontrans_bss->nontrans_list))
431 return -EINVAL;
432
433 /* add to the list */
434 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
435 return 0;
436}
437
438static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
439 unsigned long expire_time)
440{
441 struct cfg80211_internal_bss *bss, *tmp;
442 bool expired = false;
443
444 lockdep_assert_held(&rdev->bss_lock);
445
446 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
447 if (atomic_read(&bss->hold))
448 continue;
449 if (!time_after(expire_time, bss->ts))
450 continue;
451
452 if (__cfg80211_unlink_bss(rdev, bss))
453 expired = true;
454 }
455
456 if (expired)
457 rdev->bss_generation++;
458}
459
460static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
461{
462 struct cfg80211_internal_bss *bss, *oldest = NULL;
463 bool ret;
464
465 lockdep_assert_held(&rdev->bss_lock);
466
467 list_for_each_entry(bss, &rdev->bss_list, list) {
468 if (atomic_read(&bss->hold))
469 continue;
470
471 if (!list_empty(&bss->hidden_list) &&
472 !bss->pub.hidden_beacon_bss)
473 continue;
474
475 if (oldest && time_before(oldest->ts, bss->ts))
476 continue;
477 oldest = bss;
478 }
479
480 if (WARN_ON(!oldest))
481 return false;
482
483 /*
484 * The callers make sure to increase rdev->bss_generation if anything
485 * gets removed (and a new entry added), so there's no need to also do
486 * it here.
487 */
488
489 ret = __cfg80211_unlink_bss(rdev, oldest);
490 WARN_ON(!ret);
491 return ret;
492}
493
494static u8 cfg80211_parse_bss_param(u8 data,
495 struct cfg80211_colocated_ap *coloc_ap)
496{
497 coloc_ap->oct_recommended =
498 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
499 coloc_ap->same_ssid =
500 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
501 coloc_ap->multi_bss =
502 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
503 coloc_ap->transmitted_bssid =
504 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
505 coloc_ap->unsolicited_probe =
506 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
507 coloc_ap->colocated_ess =
508 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
509
510 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
511}
512
513static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
514 const struct element **elem, u32 *s_ssid)
515{
516
517 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
518 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
519 return -EINVAL;
520
521 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
522 return 0;
523}
524
525static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
526{
527 struct cfg80211_colocated_ap *ap, *tmp_ap;
528
529 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
530 list_del(&ap->list);
531 kfree(ap);
532 }
533}
534
535static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
536 const u8 *pos, u8 length,
537 const struct element *ssid_elem,
538 int s_ssid_tmp)
539{
540 /* skip the TBTT offset */
541 pos++;
542
543 memcpy(entry->bssid, pos, ETH_ALEN);
544 pos += ETH_ALEN;
545
546 if (length >= IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
547 memcpy(&entry->short_ssid, pos,
548 sizeof(entry->short_ssid));
549 entry->short_ssid_valid = true;
550 pos += 4;
551 }
552
553 /* skip non colocated APs */
554 if (!cfg80211_parse_bss_param(*pos, entry))
555 return -EINVAL;
556 pos++;
557
558 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
559 /*
560 * no information about the short ssid. Consider the entry valid
561 * for now. It would later be dropped in case there are explicit
562 * SSIDs that need to be matched
563 */
564 if (!entry->same_ssid)
565 return 0;
566 }
567
568 if (entry->same_ssid) {
569 entry->short_ssid = s_ssid_tmp;
570 entry->short_ssid_valid = true;
571
572 /*
573 * This is safe because we validate datalen in
574 * cfg80211_parse_colocated_ap(), before calling this
575 * function.
576 */
577 memcpy(&entry->ssid, &ssid_elem->data,
578 ssid_elem->datalen);
579 entry->ssid_len = ssid_elem->datalen;
580 }
581 return 0;
582}
583
584static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
585 struct list_head *list)
586{
587 struct ieee80211_neighbor_ap_info *ap_info;
588 const struct element *elem, *ssid_elem;
589 const u8 *pos, *end;
590 u32 s_ssid_tmp;
591 int n_coloc = 0, ret;
592 LIST_HEAD(ap_list);
593
594 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
595 ies->len);
596 if (!elem)
597 return 0;
598
599 pos = elem->data;
600 end = pos + elem->datalen;
601
602 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
603 if (ret)
604 return ret;
605
606 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
607 while (pos + sizeof(*ap_info) <= end) {
608 enum nl80211_band band;
609 int freq;
610 u8 length, i, count;
611
612 ap_info = (void *)pos;
613 count = u8_get_bits(ap_info->tbtt_info_hdr,
614 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
615 length = ap_info->tbtt_info_len;
616
617 pos += sizeof(*ap_info);
618
619 if (!ieee80211_operating_class_to_band(ap_info->op_class,
620 &band))
621 break;
622
623 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
624
625 if (end - pos < count * length)
626 break;
627
628 /*
629 * TBTT info must include bss param + BSSID +
630 * (short SSID or same_ssid bit to be set).
631 * ignore other options, and move to the
632 * next AP info
633 */
634 if (band != NL80211_BAND_6GHZ ||
635 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
636 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
637 pos += count * length;
638 continue;
639 }
640
641 for (i = 0; i < count; i++) {
642 struct cfg80211_colocated_ap *entry;
643
644 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
645 GFP_ATOMIC);
646
647 if (!entry)
648 break;
649
650 entry->center_freq = freq;
651
652 if (!cfg80211_parse_ap_info(entry, pos, length,
653 ssid_elem, s_ssid_tmp)) {
654 n_coloc++;
655 list_add_tail(&entry->list, &ap_list);
656 } else {
657 kfree(entry);
658 }
659
660 pos += length;
661 }
662 }
663
664 if (pos != end) {
665 cfg80211_free_coloc_ap_list(&ap_list);
666 return 0;
667 }
668
669 list_splice_tail(&ap_list, list);
670 return n_coloc;
671}
672
673static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
674 struct ieee80211_channel *chan,
675 bool add_to_6ghz)
676{
677 int i;
678 u32 n_channels = request->n_channels;
679 struct cfg80211_scan_6ghz_params *params =
680 &request->scan_6ghz_params[request->n_6ghz_params];
681
682 for (i = 0; i < n_channels; i++) {
683 if (request->channels[i] == chan) {
684 if (add_to_6ghz)
685 params->channel_idx = i;
686 return;
687 }
688 }
689
690 request->channels[n_channels] = chan;
691 if (add_to_6ghz)
692 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
693 n_channels;
694
695 request->n_channels++;
696}
697
698static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
699 struct cfg80211_scan_request *request)
700{
701 int i;
702 u32 s_ssid;
703
704 for (i = 0; i < request->n_ssids; i++) {
705 /* wildcard ssid in the scan request */
706 if (!request->ssids[i].ssid_len) {
707 if (ap->multi_bss && !ap->transmitted_bssid)
708 continue;
709
710 return true;
711 }
712
713 if (ap->ssid_len &&
714 ap->ssid_len == request->ssids[i].ssid_len) {
715 if (!memcmp(request->ssids[i].ssid, ap->ssid,
716 ap->ssid_len))
717 return true;
718 } else if (ap->short_ssid_valid) {
719 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
720 request->ssids[i].ssid_len);
721
722 if (ap->short_ssid == s_ssid)
723 return true;
724 }
725 }
726
727 return false;
728}
729
730static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
731{
732 u8 i;
733 struct cfg80211_colocated_ap *ap;
734 int n_channels, count = 0, err;
735 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
736 LIST_HEAD(coloc_ap_list);
737 bool need_scan_psc = true;
738 const struct ieee80211_sband_iftype_data *iftd;
739
740 rdev_req->scan_6ghz = true;
741
742 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
743 return -EOPNOTSUPP;
744
745 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
746 rdev_req->wdev->iftype);
747 if (!iftd || !iftd->he_cap.has_he)
748 return -EOPNOTSUPP;
749
750 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
751
752 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
753 struct cfg80211_internal_bss *intbss;
754
755 spin_lock_bh(&rdev->bss_lock);
756 list_for_each_entry(intbss, &rdev->bss_list, list) {
757 struct cfg80211_bss *res = &intbss->pub;
758 const struct cfg80211_bss_ies *ies;
759
760 ies = rcu_access_pointer(res->ies);
761 count += cfg80211_parse_colocated_ap(ies,
762 &coloc_ap_list);
763 }
764 spin_unlock_bh(&rdev->bss_lock);
765 }
766
767 request = kzalloc(struct_size(request, channels, n_channels) +
768 sizeof(*request->scan_6ghz_params) * count +
769 sizeof(*request->ssids) * rdev_req->n_ssids,
770 GFP_KERNEL);
771 if (!request) {
772 cfg80211_free_coloc_ap_list(&coloc_ap_list);
773 return -ENOMEM;
774 }
775
776 *request = *rdev_req;
777 request->n_channels = 0;
778 request->scan_6ghz_params =
779 (void *)&request->channels[n_channels];
780
781 /*
782 * PSC channels should not be scanned in case of direct scan with 1 SSID
783 * and at least one of the reported co-located APs with same SSID
784 * indicating that all APs in the same ESS are co-located
785 */
786 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
787 list_for_each_entry(ap, &coloc_ap_list, list) {
788 if (ap->colocated_ess &&
789 cfg80211_find_ssid_match(ap, request)) {
790 need_scan_psc = false;
791 break;
792 }
793 }
794 }
795
796 /*
797 * add to the scan request the channels that need to be scanned
798 * regardless of the collocated APs (PSC channels or all channels
799 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
800 */
801 for (i = 0; i < rdev_req->n_channels; i++) {
802 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
803 ((need_scan_psc &&
804 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
805 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
806 cfg80211_scan_req_add_chan(request,
807 rdev_req->channels[i],
808 false);
809 }
810 }
811
812 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
813 goto skip;
814
815 list_for_each_entry(ap, &coloc_ap_list, list) {
816 bool found = false;
817 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
818 &request->scan_6ghz_params[request->n_6ghz_params];
819 struct ieee80211_channel *chan =
820 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
821
822 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
823 continue;
824
825 for (i = 0; i < rdev_req->n_channels; i++) {
826 if (rdev_req->channels[i] == chan)
827 found = true;
828 }
829
830 if (!found)
831 continue;
832
833 if (request->n_ssids > 0 &&
834 !cfg80211_find_ssid_match(ap, request))
835 continue;
836
837 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
838 continue;
839
840 cfg80211_scan_req_add_chan(request, chan, true);
841 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
842 scan_6ghz_params->short_ssid = ap->short_ssid;
843 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
844 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
845
846 /*
847 * If a PSC channel is added to the scan and 'need_scan_psc' is
848 * set to false, then all the APs that the scan logic is
849 * interested with on the channel are collocated and thus there
850 * is no need to perform the initial PSC channel listen.
851 */
852 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
853 scan_6ghz_params->psc_no_listen = true;
854
855 request->n_6ghz_params++;
856 }
857
858skip:
859 cfg80211_free_coloc_ap_list(&coloc_ap_list);
860
861 if (request->n_channels) {
862 struct cfg80211_scan_request *old = rdev->int_scan_req;
863 rdev->int_scan_req = request;
864
865 /*
866 * Add the ssids from the parent scan request to the new scan
867 * request, so the driver would be able to use them in its
868 * probe requests to discover hidden APs on PSC channels.
869 */
870 request->ssids = (void *)&request->channels[request->n_channels];
871 request->n_ssids = rdev_req->n_ssids;
872 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
873 request->n_ssids);
874
875 /*
876 * If this scan follows a previous scan, save the scan start
877 * info from the first part of the scan
878 */
879 if (old)
880 rdev->int_scan_req->info = old->info;
881
882 err = rdev_scan(rdev, request);
883 if (err) {
884 rdev->int_scan_req = old;
885 kfree(request);
886 } else {
887 kfree(old);
888 }
889
890 return err;
891 }
892
893 kfree(request);
894 return -EINVAL;
895}
896
897int cfg80211_scan(struct cfg80211_registered_device *rdev)
898{
899 struct cfg80211_scan_request *request;
900 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
901 u32 n_channels = 0, idx, i;
902
903 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
904 return rdev_scan(rdev, rdev_req);
905
906 for (i = 0; i < rdev_req->n_channels; i++) {
907 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
908 n_channels++;
909 }
910
911 if (!n_channels)
912 return cfg80211_scan_6ghz(rdev);
913
914 request = kzalloc(struct_size(request, channels, n_channels),
915 GFP_KERNEL);
916 if (!request)
917 return -ENOMEM;
918
919 *request = *rdev_req;
920 request->n_channels = n_channels;
921
922 for (i = idx = 0; i < rdev_req->n_channels; i++) {
923 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
924 request->channels[idx++] = rdev_req->channels[i];
925 }
926
927 rdev_req->scan_6ghz = false;
928 rdev->int_scan_req = request;
929 return rdev_scan(rdev, request);
930}
931
932void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
933 bool send_message)
934{
935 struct cfg80211_scan_request *request, *rdev_req;
936 struct wireless_dev *wdev;
937 struct sk_buff *msg;
938#ifdef CONFIG_CFG80211_WEXT
939 union iwreq_data wrqu;
940#endif
941
942 lockdep_assert_held(&rdev->wiphy.mtx);
943
944 if (rdev->scan_msg) {
945 nl80211_send_scan_msg(rdev, rdev->scan_msg);
946 rdev->scan_msg = NULL;
947 return;
948 }
949
950 rdev_req = rdev->scan_req;
951 if (!rdev_req)
952 return;
953
954 wdev = rdev_req->wdev;
955 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
956
957 if (wdev_running(wdev) &&
958 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
959 !rdev_req->scan_6ghz && !request->info.aborted &&
960 !cfg80211_scan_6ghz(rdev))
961 return;
962
963 /*
964 * This must be before sending the other events!
965 * Otherwise, wpa_supplicant gets completely confused with
966 * wext events.
967 */
968 if (wdev->netdev)
969 cfg80211_sme_scan_done(wdev->netdev);
970
971 if (!request->info.aborted &&
972 request->flags & NL80211_SCAN_FLAG_FLUSH) {
973 /* flush entries from previous scans */
974 spin_lock_bh(&rdev->bss_lock);
975 __cfg80211_bss_expire(rdev, request->scan_start);
976 spin_unlock_bh(&rdev->bss_lock);
977 }
978
979 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
980
981#ifdef CONFIG_CFG80211_WEXT
982 if (wdev->netdev && !request->info.aborted) {
983 memset(&wrqu, 0, sizeof(wrqu));
984
985 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
986 }
987#endif
988
989 dev_put(wdev->netdev);
990
991 kfree(rdev->int_scan_req);
992 rdev->int_scan_req = NULL;
993
994 kfree(rdev->scan_req);
995 rdev->scan_req = NULL;
996
997 if (!send_message)
998 rdev->scan_msg = msg;
999 else
1000 nl80211_send_scan_msg(rdev, msg);
1001}
1002
1003void __cfg80211_scan_done(struct work_struct *wk)
1004{
1005 struct cfg80211_registered_device *rdev;
1006
1007 rdev = container_of(wk, struct cfg80211_registered_device,
1008 scan_done_wk);
1009
1010 wiphy_lock(&rdev->wiphy);
1011 ___cfg80211_scan_done(rdev, true);
1012 wiphy_unlock(&rdev->wiphy);
1013}
1014
1015void cfg80211_scan_done(struct cfg80211_scan_request *request,
1016 struct cfg80211_scan_info *info)
1017{
1018 struct cfg80211_scan_info old_info = request->info;
1019
1020 trace_cfg80211_scan_done(request, info);
1021 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1022 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1023
1024 request->info = *info;
1025
1026 /*
1027 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1028 * be of the first part. In such a case old_info.scan_start_tsf should
1029 * be non zero.
1030 */
1031 if (request->scan_6ghz && old_info.scan_start_tsf) {
1032 request->info.scan_start_tsf = old_info.scan_start_tsf;
1033 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1034 sizeof(request->info.tsf_bssid));
1035 }
1036
1037 request->notified = true;
1038 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1039}
1040EXPORT_SYMBOL(cfg80211_scan_done);
1041
1042void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1043 struct cfg80211_sched_scan_request *req)
1044{
1045 lockdep_assert_held(&rdev->wiphy.mtx);
1046
1047 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1048}
1049
1050static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1051 struct cfg80211_sched_scan_request *req)
1052{
1053 lockdep_assert_held(&rdev->wiphy.mtx);
1054
1055 list_del_rcu(&req->list);
1056 kfree_rcu(req, rcu_head);
1057}
1058
1059static struct cfg80211_sched_scan_request *
1060cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1061{
1062 struct cfg80211_sched_scan_request *pos;
1063
1064 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1065 lockdep_is_held(&rdev->wiphy.mtx)) {
1066 if (pos->reqid == reqid)
1067 return pos;
1068 }
1069 return NULL;
1070}
1071
1072/*
1073 * Determines if a scheduled scan request can be handled. When a legacy
1074 * scheduled scan is running no other scheduled scan is allowed regardless
1075 * whether the request is for legacy or multi-support scan. When a multi-support
1076 * scheduled scan is running a request for legacy scan is not allowed. In this
1077 * case a request for multi-support scan can be handled if resources are
1078 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1079 */
1080int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1081 bool want_multi)
1082{
1083 struct cfg80211_sched_scan_request *pos;
1084 int i = 0;
1085
1086 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1087 /* request id zero means legacy in progress */
1088 if (!i && !pos->reqid)
1089 return -EINPROGRESS;
1090 i++;
1091 }
1092
1093 if (i) {
1094 /* no legacy allowed when multi request(s) are active */
1095 if (!want_multi)
1096 return -EINPROGRESS;
1097
1098 /* resource limit reached */
1099 if (i == rdev->wiphy.max_sched_scan_reqs)
1100 return -ENOSPC;
1101 }
1102 return 0;
1103}
1104
1105void cfg80211_sched_scan_results_wk(struct work_struct *work)
1106{
1107 struct cfg80211_registered_device *rdev;
1108 struct cfg80211_sched_scan_request *req, *tmp;
1109
1110 rdev = container_of(work, struct cfg80211_registered_device,
1111 sched_scan_res_wk);
1112
1113 wiphy_lock(&rdev->wiphy);
1114 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1115 if (req->report_results) {
1116 req->report_results = false;
1117 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1118 /* flush entries from previous scans */
1119 spin_lock_bh(&rdev->bss_lock);
1120 __cfg80211_bss_expire(rdev, req->scan_start);
1121 spin_unlock_bh(&rdev->bss_lock);
1122 req->scan_start = jiffies;
1123 }
1124 nl80211_send_sched_scan(req,
1125 NL80211_CMD_SCHED_SCAN_RESULTS);
1126 }
1127 }
1128 wiphy_unlock(&rdev->wiphy);
1129}
1130
1131void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1132{
1133 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1134 struct cfg80211_sched_scan_request *request;
1135
1136 trace_cfg80211_sched_scan_results(wiphy, reqid);
1137 /* ignore if we're not scanning */
1138
1139 rcu_read_lock();
1140 request = cfg80211_find_sched_scan_req(rdev, reqid);
1141 if (request) {
1142 request->report_results = true;
1143 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1144 }
1145 rcu_read_unlock();
1146}
1147EXPORT_SYMBOL(cfg80211_sched_scan_results);
1148
1149void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1150{
1151 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1152
1153 lockdep_assert_held(&wiphy->mtx);
1154
1155 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1156
1157 __cfg80211_stop_sched_scan(rdev, reqid, true);
1158}
1159EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1160
1161void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1162{
1163 wiphy_lock(wiphy);
1164 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1165 wiphy_unlock(wiphy);
1166}
1167EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1168
1169int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1170 struct cfg80211_sched_scan_request *req,
1171 bool driver_initiated)
1172{
1173 lockdep_assert_held(&rdev->wiphy.mtx);
1174
1175 if (!driver_initiated) {
1176 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1177 if (err)
1178 return err;
1179 }
1180
1181 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1182
1183 cfg80211_del_sched_scan_req(rdev, req);
1184
1185 return 0;
1186}
1187
1188int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1189 u64 reqid, bool driver_initiated)
1190{
1191 struct cfg80211_sched_scan_request *sched_scan_req;
1192
1193 lockdep_assert_held(&rdev->wiphy.mtx);
1194
1195 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1196 if (!sched_scan_req)
1197 return -ENOENT;
1198
1199 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1200 driver_initiated);
1201}
1202
1203void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1204 unsigned long age_secs)
1205{
1206 struct cfg80211_internal_bss *bss;
1207 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1208
1209 spin_lock_bh(&rdev->bss_lock);
1210 list_for_each_entry(bss, &rdev->bss_list, list)
1211 bss->ts -= age_jiffies;
1212 spin_unlock_bh(&rdev->bss_lock);
1213}
1214
1215void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1216{
1217 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1218}
1219
1220void cfg80211_bss_flush(struct wiphy *wiphy)
1221{
1222 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1223
1224 spin_lock_bh(&rdev->bss_lock);
1225 __cfg80211_bss_expire(rdev, jiffies);
1226 spin_unlock_bh(&rdev->bss_lock);
1227}
1228EXPORT_SYMBOL(cfg80211_bss_flush);
1229
1230const struct element *
1231cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1232 const u8 *match, unsigned int match_len,
1233 unsigned int match_offset)
1234{
1235 const struct element *elem;
1236
1237 for_each_element_id(elem, eid, ies, len) {
1238 if (elem->datalen >= match_offset + match_len &&
1239 !memcmp(elem->data + match_offset, match, match_len))
1240 return elem;
1241 }
1242
1243 return NULL;
1244}
1245EXPORT_SYMBOL(cfg80211_find_elem_match);
1246
1247const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1248 const u8 *ies,
1249 unsigned int len)
1250{
1251 const struct element *elem;
1252 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1253 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1254
1255 if (WARN_ON(oui_type > 0xff))
1256 return NULL;
1257
1258 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1259 match, match_len, 0);
1260
1261 if (!elem || elem->datalen < 4)
1262 return NULL;
1263
1264 return elem;
1265}
1266EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1267
1268/**
1269 * enum bss_compare_mode - BSS compare mode
1270 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1271 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1272 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1273 */
1274enum bss_compare_mode {
1275 BSS_CMP_REGULAR,
1276 BSS_CMP_HIDE_ZLEN,
1277 BSS_CMP_HIDE_NUL,
1278};
1279
1280static int cmp_bss(struct cfg80211_bss *a,
1281 struct cfg80211_bss *b,
1282 enum bss_compare_mode mode)
1283{
1284 const struct cfg80211_bss_ies *a_ies, *b_ies;
1285 const u8 *ie1 = NULL;
1286 const u8 *ie2 = NULL;
1287 int i, r;
1288
1289 if (a->channel != b->channel)
1290 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1291 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1292
1293 a_ies = rcu_access_pointer(a->ies);
1294 if (!a_ies)
1295 return -1;
1296 b_ies = rcu_access_pointer(b->ies);
1297 if (!b_ies)
1298 return 1;
1299
1300 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1301 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1302 a_ies->data, a_ies->len);
1303 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1304 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1305 b_ies->data, b_ies->len);
1306 if (ie1 && ie2) {
1307 int mesh_id_cmp;
1308
1309 if (ie1[1] == ie2[1])
1310 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1311 else
1312 mesh_id_cmp = ie2[1] - ie1[1];
1313
1314 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1315 a_ies->data, a_ies->len);
1316 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1317 b_ies->data, b_ies->len);
1318 if (ie1 && ie2) {
1319 if (mesh_id_cmp)
1320 return mesh_id_cmp;
1321 if (ie1[1] != ie2[1])
1322 return ie2[1] - ie1[1];
1323 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1324 }
1325 }
1326
1327 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1328 if (r)
1329 return r;
1330
1331 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1332 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1333
1334 if (!ie1 && !ie2)
1335 return 0;
1336
1337 /*
1338 * Note that with "hide_ssid", the function returns a match if
1339 * the already-present BSS ("b") is a hidden SSID beacon for
1340 * the new BSS ("a").
1341 */
1342
1343 /* sort missing IE before (left of) present IE */
1344 if (!ie1)
1345 return -1;
1346 if (!ie2)
1347 return 1;
1348
1349 switch (mode) {
1350 case BSS_CMP_HIDE_ZLEN:
1351 /*
1352 * In ZLEN mode we assume the BSS entry we're
1353 * looking for has a zero-length SSID. So if
1354 * the one we're looking at right now has that,
1355 * return 0. Otherwise, return the difference
1356 * in length, but since we're looking for the
1357 * 0-length it's really equivalent to returning
1358 * the length of the one we're looking at.
1359 *
1360 * No content comparison is needed as we assume
1361 * the content length is zero.
1362 */
1363 return ie2[1];
1364 case BSS_CMP_REGULAR:
1365 default:
1366 /* sort by length first, then by contents */
1367 if (ie1[1] != ie2[1])
1368 return ie2[1] - ie1[1];
1369 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1370 case BSS_CMP_HIDE_NUL:
1371 if (ie1[1] != ie2[1])
1372 return ie2[1] - ie1[1];
1373 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1374 for (i = 0; i < ie2[1]; i++)
1375 if (ie2[i + 2])
1376 return -1;
1377 return 0;
1378 }
1379}
1380
1381static bool cfg80211_bss_type_match(u16 capability,
1382 enum nl80211_band band,
1383 enum ieee80211_bss_type bss_type)
1384{
1385 bool ret = true;
1386 u16 mask, val;
1387
1388 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1389 return ret;
1390
1391 if (band == NL80211_BAND_60GHZ) {
1392 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1393 switch (bss_type) {
1394 case IEEE80211_BSS_TYPE_ESS:
1395 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1396 break;
1397 case IEEE80211_BSS_TYPE_PBSS:
1398 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1399 break;
1400 case IEEE80211_BSS_TYPE_IBSS:
1401 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1402 break;
1403 default:
1404 return false;
1405 }
1406 } else {
1407 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1408 switch (bss_type) {
1409 case IEEE80211_BSS_TYPE_ESS:
1410 val = WLAN_CAPABILITY_ESS;
1411 break;
1412 case IEEE80211_BSS_TYPE_IBSS:
1413 val = WLAN_CAPABILITY_IBSS;
1414 break;
1415 case IEEE80211_BSS_TYPE_MBSS:
1416 val = 0;
1417 break;
1418 default:
1419 return false;
1420 }
1421 }
1422
1423 ret = ((capability & mask) == val);
1424 return ret;
1425}
1426
1427/* Returned bss is reference counted and must be cleaned up appropriately. */
1428struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1429 struct ieee80211_channel *channel,
1430 const u8 *bssid,
1431 const u8 *ssid, size_t ssid_len,
1432 enum ieee80211_bss_type bss_type,
1433 enum ieee80211_privacy privacy)
1434{
1435 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1436 struct cfg80211_internal_bss *bss, *res = NULL;
1437 unsigned long now = jiffies;
1438 int bss_privacy;
1439
1440 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1441 privacy);
1442
1443 spin_lock_bh(&rdev->bss_lock);
1444
1445 list_for_each_entry(bss, &rdev->bss_list, list) {
1446 if (!cfg80211_bss_type_match(bss->pub.capability,
1447 bss->pub.channel->band, bss_type))
1448 continue;
1449
1450 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1451 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1452 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1453 continue;
1454 if (channel && bss->pub.channel != channel)
1455 continue;
1456 if (!is_valid_ether_addr(bss->pub.bssid))
1457 continue;
1458 /* Don't get expired BSS structs */
1459 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1460 !atomic_read(&bss->hold))
1461 continue;
1462 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1463 res = bss;
1464 bss_ref_get(rdev, res);
1465 break;
1466 }
1467 }
1468
1469 spin_unlock_bh(&rdev->bss_lock);
1470 if (!res)
1471 return NULL;
1472 trace_cfg80211_return_bss(&res->pub);
1473 return &res->pub;
1474}
1475EXPORT_SYMBOL(cfg80211_get_bss);
1476
1477static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1478 struct cfg80211_internal_bss *bss)
1479{
1480 struct rb_node **p = &rdev->bss_tree.rb_node;
1481 struct rb_node *parent = NULL;
1482 struct cfg80211_internal_bss *tbss;
1483 int cmp;
1484
1485 while (*p) {
1486 parent = *p;
1487 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1488
1489 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1490
1491 if (WARN_ON(!cmp)) {
1492 /* will sort of leak this BSS */
1493 return;
1494 }
1495
1496 if (cmp < 0)
1497 p = &(*p)->rb_left;
1498 else
1499 p = &(*p)->rb_right;
1500 }
1501
1502 rb_link_node(&bss->rbn, parent, p);
1503 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1504}
1505
1506static struct cfg80211_internal_bss *
1507rb_find_bss(struct cfg80211_registered_device *rdev,
1508 struct cfg80211_internal_bss *res,
1509 enum bss_compare_mode mode)
1510{
1511 struct rb_node *n = rdev->bss_tree.rb_node;
1512 struct cfg80211_internal_bss *bss;
1513 int r;
1514
1515 while (n) {
1516 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1517 r = cmp_bss(&res->pub, &bss->pub, mode);
1518
1519 if (r == 0)
1520 return bss;
1521 else if (r < 0)
1522 n = n->rb_left;
1523 else
1524 n = n->rb_right;
1525 }
1526
1527 return NULL;
1528}
1529
1530static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1531 struct cfg80211_internal_bss *new)
1532{
1533 const struct cfg80211_bss_ies *ies;
1534 struct cfg80211_internal_bss *bss;
1535 const u8 *ie;
1536 int i, ssidlen;
1537 u8 fold = 0;
1538 u32 n_entries = 0;
1539
1540 ies = rcu_access_pointer(new->pub.beacon_ies);
1541 if (WARN_ON(!ies))
1542 return false;
1543
1544 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1545 if (!ie) {
1546 /* nothing to do */
1547 return true;
1548 }
1549
1550 ssidlen = ie[1];
1551 for (i = 0; i < ssidlen; i++)
1552 fold |= ie[2 + i];
1553
1554 if (fold) {
1555 /* not a hidden SSID */
1556 return true;
1557 }
1558
1559 /* This is the bad part ... */
1560
1561 list_for_each_entry(bss, &rdev->bss_list, list) {
1562 /*
1563 * we're iterating all the entries anyway, so take the
1564 * opportunity to validate the list length accounting
1565 */
1566 n_entries++;
1567
1568 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1569 continue;
1570 if (bss->pub.channel != new->pub.channel)
1571 continue;
1572 if (bss->pub.scan_width != new->pub.scan_width)
1573 continue;
1574 if (rcu_access_pointer(bss->pub.beacon_ies))
1575 continue;
1576 ies = rcu_access_pointer(bss->pub.ies);
1577 if (!ies)
1578 continue;
1579 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1580 if (!ie)
1581 continue;
1582 if (ssidlen && ie[1] != ssidlen)
1583 continue;
1584 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1585 continue;
1586 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1587 list_del(&bss->hidden_list);
1588 /* combine them */
1589 list_add(&bss->hidden_list, &new->hidden_list);
1590 bss->pub.hidden_beacon_bss = &new->pub;
1591 new->refcount += bss->refcount;
1592 rcu_assign_pointer(bss->pub.beacon_ies,
1593 new->pub.beacon_ies);
1594 }
1595
1596 WARN_ONCE(n_entries != rdev->bss_entries,
1597 "rdev bss entries[%d]/list[len:%d] corruption\n",
1598 rdev->bss_entries, n_entries);
1599
1600 return true;
1601}
1602
1603struct cfg80211_non_tx_bss {
1604 struct cfg80211_bss *tx_bss;
1605 u8 max_bssid_indicator;
1606 u8 bssid_index;
1607};
1608
1609static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1610 const struct cfg80211_bss_ies *new_ies,
1611 const struct cfg80211_bss_ies *old_ies)
1612{
1613 struct cfg80211_internal_bss *bss;
1614
1615 /* Assign beacon IEs to all sub entries */
1616 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1617 const struct cfg80211_bss_ies *ies;
1618
1619 ies = rcu_access_pointer(bss->pub.beacon_ies);
1620 WARN_ON(ies != old_ies);
1621
1622 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1623 }
1624}
1625
1626static bool
1627cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1628 struct cfg80211_internal_bss *known,
1629 struct cfg80211_internal_bss *new,
1630 bool signal_valid)
1631{
1632 lockdep_assert_held(&rdev->bss_lock);
1633
1634 /* Update IEs */
1635 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1636 const struct cfg80211_bss_ies *old;
1637
1638 old = rcu_access_pointer(known->pub.proberesp_ies);
1639
1640 rcu_assign_pointer(known->pub.proberesp_ies,
1641 new->pub.proberesp_ies);
1642 /* Override possible earlier Beacon frame IEs */
1643 rcu_assign_pointer(known->pub.ies,
1644 new->pub.proberesp_ies);
1645 if (old)
1646 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1647 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1648 const struct cfg80211_bss_ies *old;
1649
1650 if (known->pub.hidden_beacon_bss &&
1651 !list_empty(&known->hidden_list)) {
1652 const struct cfg80211_bss_ies *f;
1653
1654 /* The known BSS struct is one of the probe
1655 * response members of a group, but we're
1656 * receiving a beacon (beacon_ies in the new
1657 * bss is used). This can only mean that the
1658 * AP changed its beacon from not having an
1659 * SSID to showing it, which is confusing so
1660 * drop this information.
1661 */
1662
1663 f = rcu_access_pointer(new->pub.beacon_ies);
1664 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1665 return false;
1666 }
1667
1668 old = rcu_access_pointer(known->pub.beacon_ies);
1669
1670 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1671
1672 /* Override IEs if they were from a beacon before */
1673 if (old == rcu_access_pointer(known->pub.ies))
1674 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1675
1676 cfg80211_update_hidden_bsses(known,
1677 rcu_access_pointer(new->pub.beacon_ies),
1678 old);
1679
1680 if (old)
1681 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1682 }
1683
1684 known->pub.beacon_interval = new->pub.beacon_interval;
1685
1686 /* don't update the signal if beacon was heard on
1687 * adjacent channel.
1688 */
1689 if (signal_valid)
1690 known->pub.signal = new->pub.signal;
1691 known->pub.capability = new->pub.capability;
1692 known->ts = new->ts;
1693 known->ts_boottime = new->ts_boottime;
1694 known->parent_tsf = new->parent_tsf;
1695 known->pub.chains = new->pub.chains;
1696 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1697 IEEE80211_MAX_CHAINS);
1698 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1699 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1700 known->pub.bssid_index = new->pub.bssid_index;
1701
1702 return true;
1703}
1704
1705/* Returned bss is reference counted and must be cleaned up appropriately. */
1706struct cfg80211_internal_bss *
1707cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1708 struct cfg80211_internal_bss *tmp,
1709 bool signal_valid, unsigned long ts)
1710{
1711 struct cfg80211_internal_bss *found = NULL;
1712
1713 if (WARN_ON(!tmp->pub.channel))
1714 return NULL;
1715
1716 tmp->ts = ts;
1717
1718 spin_lock_bh(&rdev->bss_lock);
1719
1720 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1721 spin_unlock_bh(&rdev->bss_lock);
1722 return NULL;
1723 }
1724
1725 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1726
1727 if (found) {
1728 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1729 goto drop;
1730 } else {
1731 struct cfg80211_internal_bss *new;
1732 struct cfg80211_internal_bss *hidden;
1733 struct cfg80211_bss_ies *ies;
1734
1735 /*
1736 * create a copy -- the "res" variable that is passed in
1737 * is allocated on the stack since it's not needed in the
1738 * more common case of an update
1739 */
1740 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1741 GFP_ATOMIC);
1742 if (!new) {
1743 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1744 if (ies)
1745 kfree_rcu(ies, rcu_head);
1746 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1747 if (ies)
1748 kfree_rcu(ies, rcu_head);
1749 goto drop;
1750 }
1751 memcpy(new, tmp, sizeof(*new));
1752 new->refcount = 1;
1753 INIT_LIST_HEAD(&new->hidden_list);
1754 INIT_LIST_HEAD(&new->pub.nontrans_list);
1755 /* we'll set this later if it was non-NULL */
1756 new->pub.transmitted_bss = NULL;
1757
1758 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1759 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1760 if (!hidden)
1761 hidden = rb_find_bss(rdev, tmp,
1762 BSS_CMP_HIDE_NUL);
1763 if (hidden) {
1764 new->pub.hidden_beacon_bss = &hidden->pub;
1765 list_add(&new->hidden_list,
1766 &hidden->hidden_list);
1767 hidden->refcount++;
1768 rcu_assign_pointer(new->pub.beacon_ies,
1769 hidden->pub.beacon_ies);
1770 }
1771 } else {
1772 /*
1773 * Ok so we found a beacon, and don't have an entry. If
1774 * it's a beacon with hidden SSID, we might be in for an
1775 * expensive search for any probe responses that should
1776 * be grouped with this beacon for updates ...
1777 */
1778 if (!cfg80211_combine_bsses(rdev, new)) {
1779 bss_ref_put(rdev, new);
1780 goto drop;
1781 }
1782 }
1783
1784 if (rdev->bss_entries >= bss_entries_limit &&
1785 !cfg80211_bss_expire_oldest(rdev)) {
1786 bss_ref_put(rdev, new);
1787 goto drop;
1788 }
1789
1790 /* This must be before the call to bss_ref_get */
1791 if (tmp->pub.transmitted_bss) {
1792 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1793 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1794 }
1795
1796 list_add_tail(&new->list, &rdev->bss_list);
1797 rdev->bss_entries++;
1798 rb_insert_bss(rdev, new);
1799 found = new;
1800 }
1801
1802 rdev->bss_generation++;
1803 bss_ref_get(rdev, found);
1804 spin_unlock_bh(&rdev->bss_lock);
1805
1806 return found;
1807 drop:
1808 spin_unlock_bh(&rdev->bss_lock);
1809 return NULL;
1810}
1811
1812int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1813 enum nl80211_band band)
1814{
1815 const struct element *tmp;
1816
1817 if (band == NL80211_BAND_6GHZ) {
1818 struct ieee80211_he_operation *he_oper;
1819
1820 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1821 ielen);
1822 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1823 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1824 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1825
1826 he_oper = (void *)&tmp->data[1];
1827
1828 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1829 if (!he_6ghz_oper)
1830 return -1;
1831
1832 return he_6ghz_oper->primary;
1833 }
1834 } else if (band == NL80211_BAND_S1GHZ) {
1835 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1836 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1837 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1838
1839 return s1gop->oper_ch;
1840 }
1841 } else {
1842 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1843 if (tmp && tmp->datalen == 1)
1844 return tmp->data[0];
1845
1846 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1847 if (tmp &&
1848 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1849 struct ieee80211_ht_operation *htop = (void *)tmp->data;
1850
1851 return htop->primary_chan;
1852 }
1853 }
1854
1855 return -1;
1856}
1857EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1858
1859/*
1860 * Update RX channel information based on the available frame payload
1861 * information. This is mainly for the 2.4 GHz band where frames can be received
1862 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1863 * element to indicate the current (transmitting) channel, but this might also
1864 * be needed on other bands if RX frequency does not match with the actual
1865 * operating channel of a BSS, or if the AP reports a different primary channel.
1866 */
1867static struct ieee80211_channel *
1868cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1869 struct ieee80211_channel *channel,
1870 enum nl80211_bss_scan_width scan_width)
1871{
1872 u32 freq;
1873 int channel_number;
1874 struct ieee80211_channel *alt_channel;
1875
1876 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1877 channel->band);
1878
1879 if (channel_number < 0) {
1880 /* No channel information in frame payload */
1881 return channel;
1882 }
1883
1884 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1885
1886 /*
1887 * Frame info (beacon/prob res) is the same as received channel,
1888 * no need for further processing.
1889 */
1890 if (freq == ieee80211_channel_to_khz(channel))
1891 return channel;
1892
1893 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1894 if (!alt_channel) {
1895 if (channel->band == NL80211_BAND_2GHZ ||
1896 channel->band == NL80211_BAND_6GHZ) {
1897 /*
1898 * Better not allow unexpected channels when that could
1899 * be going beyond the 1-11 range (e.g., discovering
1900 * BSS on channel 12 when radio is configured for
1901 * channel 11) or beyond the 6 GHz channel range.
1902 */
1903 return NULL;
1904 }
1905
1906 /* No match for the payload channel number - ignore it */
1907 return channel;
1908 }
1909
1910 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1911 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1912 /*
1913 * Ignore channel number in 5 and 10 MHz channels where there
1914 * may not be an n:1 or 1:n mapping between frequencies and
1915 * channel numbers.
1916 */
1917 return channel;
1918 }
1919
1920 /*
1921 * Use the channel determined through the payload channel number
1922 * instead of the RX channel reported by the driver.
1923 */
1924 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1925 return NULL;
1926 return alt_channel;
1927}
1928
1929/* Returned bss is reference counted and must be cleaned up appropriately. */
1930static struct cfg80211_bss *
1931cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1932 struct cfg80211_inform_bss *data,
1933 enum cfg80211_bss_frame_type ftype,
1934 const u8 *bssid, u64 tsf, u16 capability,
1935 u16 beacon_interval, const u8 *ie, size_t ielen,
1936 struct cfg80211_non_tx_bss *non_tx_data,
1937 gfp_t gfp)
1938{
1939 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1940 struct cfg80211_bss_ies *ies;
1941 struct ieee80211_channel *channel;
1942 struct cfg80211_internal_bss tmp = {}, *res;
1943 int bss_type;
1944 bool signal_valid;
1945 unsigned long ts;
1946
1947 if (WARN_ON(!wiphy))
1948 return NULL;
1949
1950 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1951 (data->signal < 0 || data->signal > 100)))
1952 return NULL;
1953
1954 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1955 data->scan_width);
1956 if (!channel)
1957 return NULL;
1958
1959 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1960 tmp.pub.channel = channel;
1961 tmp.pub.scan_width = data->scan_width;
1962 tmp.pub.signal = data->signal;
1963 tmp.pub.beacon_interval = beacon_interval;
1964 tmp.pub.capability = capability;
1965 tmp.ts_boottime = data->boottime_ns;
1966 tmp.parent_tsf = data->parent_tsf;
1967 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1968
1969 if (non_tx_data) {
1970 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1971 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1972 tmp.pub.bssid_index = non_tx_data->bssid_index;
1973 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1974 } else {
1975 ts = jiffies;
1976 }
1977
1978 /*
1979 * If we do not know here whether the IEs are from a Beacon or Probe
1980 * Response frame, we need to pick one of the options and only use it
1981 * with the driver that does not provide the full Beacon/Probe Response
1982 * frame. Use Beacon frame pointer to avoid indicating that this should
1983 * override the IEs pointer should we have received an earlier
1984 * indication of Probe Response data.
1985 */
1986 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1987 if (!ies)
1988 return NULL;
1989 ies->len = ielen;
1990 ies->tsf = tsf;
1991 ies->from_beacon = false;
1992 memcpy(ies->data, ie, ielen);
1993
1994 switch (ftype) {
1995 case CFG80211_BSS_FTYPE_BEACON:
1996 ies->from_beacon = true;
1997 fallthrough;
1998 case CFG80211_BSS_FTYPE_UNKNOWN:
1999 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2000 break;
2001 case CFG80211_BSS_FTYPE_PRESP:
2002 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2003 break;
2004 }
2005 rcu_assign_pointer(tmp.pub.ies, ies);
2006
2007 signal_valid = data->chan == channel;
2008 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
2009 if (!res)
2010 return NULL;
2011
2012 if (channel->band == NL80211_BAND_60GHZ) {
2013 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2014 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2015 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2016 regulatory_hint_found_beacon(wiphy, channel, gfp);
2017 } else {
2018 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2019 regulatory_hint_found_beacon(wiphy, channel, gfp);
2020 }
2021
2022 if (non_tx_data) {
2023 /* this is a nontransmitting bss, we need to add it to
2024 * transmitting bss' list if it is not there
2025 */
2026 spin_lock_bh(&rdev->bss_lock);
2027 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
2028 &res->pub)) {
2029 if (__cfg80211_unlink_bss(rdev, res)) {
2030 rdev->bss_generation++;
2031 res = NULL;
2032 }
2033 }
2034 spin_unlock_bh(&rdev->bss_lock);
2035
2036 if (!res)
2037 return NULL;
2038 }
2039
2040 trace_cfg80211_return_bss(&res->pub);
2041 /* cfg80211_bss_update gives us a referenced result */
2042 return &res->pub;
2043}
2044
2045static const struct element
2046*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2047 const struct element *mbssid_elem,
2048 const struct element *sub_elem)
2049{
2050 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2051 const struct element *next_mbssid;
2052 const struct element *next_sub;
2053
2054 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2055 mbssid_end,
2056 ielen - (mbssid_end - ie));
2057
2058 /*
2059 * If it is not the last subelement in current MBSSID IE or there isn't
2060 * a next MBSSID IE - profile is complete.
2061 */
2062 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2063 !next_mbssid)
2064 return NULL;
2065
2066 /* For any length error, just return NULL */
2067
2068 if (next_mbssid->datalen < 4)
2069 return NULL;
2070
2071 next_sub = (void *)&next_mbssid->data[1];
2072
2073 if (next_mbssid->data + next_mbssid->datalen <
2074 next_sub->data + next_sub->datalen)
2075 return NULL;
2076
2077 if (next_sub->id != 0 || next_sub->datalen < 2)
2078 return NULL;
2079
2080 /*
2081 * Check if the first element in the next sub element is a start
2082 * of a new profile
2083 */
2084 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2085 NULL : next_mbssid;
2086}
2087
2088size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2089 const struct element *mbssid_elem,
2090 const struct element *sub_elem,
2091 u8 *merged_ie, size_t max_copy_len)
2092{
2093 size_t copied_len = sub_elem->datalen;
2094 const struct element *next_mbssid;
2095
2096 if (sub_elem->datalen > max_copy_len)
2097 return 0;
2098
2099 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2100
2101 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2102 mbssid_elem,
2103 sub_elem))) {
2104 const struct element *next_sub = (void *)&next_mbssid->data[1];
2105
2106 if (copied_len + next_sub->datalen > max_copy_len)
2107 break;
2108 memcpy(merged_ie + copied_len, next_sub->data,
2109 next_sub->datalen);
2110 copied_len += next_sub->datalen;
2111 }
2112
2113 return copied_len;
2114}
2115EXPORT_SYMBOL(cfg80211_merge_profile);
2116
2117static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2118 struct cfg80211_inform_bss *data,
2119 enum cfg80211_bss_frame_type ftype,
2120 const u8 *bssid, u64 tsf,
2121 u16 beacon_interval, const u8 *ie,
2122 size_t ielen,
2123 struct cfg80211_non_tx_bss *non_tx_data,
2124 gfp_t gfp)
2125{
2126 const u8 *mbssid_index_ie;
2127 const struct element *elem, *sub;
2128 size_t new_ie_len;
2129 u8 new_bssid[ETH_ALEN];
2130 u8 *new_ie, *profile;
2131 u64 seen_indices = 0;
2132 u16 capability;
2133 struct cfg80211_bss *bss;
2134
2135 if (!non_tx_data)
2136 return;
2137 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2138 return;
2139 if (!wiphy->support_mbssid)
2140 return;
2141 if (wiphy->support_only_he_mbssid &&
2142 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2143 return;
2144
2145 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2146 if (!new_ie)
2147 return;
2148
2149 profile = kmalloc(ielen, gfp);
2150 if (!profile)
2151 goto out;
2152
2153 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2154 if (elem->datalen < 4)
2155 continue;
2156 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2157 continue;
2158 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2159 u8 profile_len;
2160
2161 if (sub->id != 0 || sub->datalen < 4) {
2162 /* not a valid BSS profile */
2163 continue;
2164 }
2165
2166 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2167 sub->data[1] != 2) {
2168 /* The first element within the Nontransmitted
2169 * BSSID Profile is not the Nontransmitted
2170 * BSSID Capability element.
2171 */
2172 continue;
2173 }
2174
2175 memset(profile, 0, ielen);
2176 profile_len = cfg80211_merge_profile(ie, ielen,
2177 elem,
2178 sub,
2179 profile,
2180 ielen);
2181
2182 /* found a Nontransmitted BSSID Profile */
2183 mbssid_index_ie = cfg80211_find_ie
2184 (WLAN_EID_MULTI_BSSID_IDX,
2185 profile, profile_len);
2186 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2187 mbssid_index_ie[2] == 0 ||
2188 mbssid_index_ie[2] > 46) {
2189 /* No valid Multiple BSSID-Index element */
2190 continue;
2191 }
2192
2193 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2194 /* We don't support legacy split of a profile */
2195 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2196 mbssid_index_ie[2]);
2197
2198 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2199
2200 non_tx_data->bssid_index = mbssid_index_ie[2];
2201 non_tx_data->max_bssid_indicator = elem->data[0];
2202
2203 cfg80211_gen_new_bssid(bssid,
2204 non_tx_data->max_bssid_indicator,
2205 non_tx_data->bssid_index,
2206 new_bssid);
2207 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2208 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2209 profile,
2210 profile_len, new_ie,
2211 gfp);
2212 if (!new_ie_len)
2213 continue;
2214
2215 capability = get_unaligned_le16(profile + 2);
2216 bss = cfg80211_inform_single_bss_data(wiphy, data,
2217 ftype,
2218 new_bssid, tsf,
2219 capability,
2220 beacon_interval,
2221 new_ie,
2222 new_ie_len,
2223 non_tx_data,
2224 gfp);
2225 if (!bss)
2226 break;
2227 cfg80211_put_bss(wiphy, bss);
2228 }
2229 }
2230
2231out:
2232 kfree(new_ie);
2233 kfree(profile);
2234}
2235
2236struct cfg80211_bss *
2237cfg80211_inform_bss_data(struct wiphy *wiphy,
2238 struct cfg80211_inform_bss *data,
2239 enum cfg80211_bss_frame_type ftype,
2240 const u8 *bssid, u64 tsf, u16 capability,
2241 u16 beacon_interval, const u8 *ie, size_t ielen,
2242 gfp_t gfp)
2243{
2244 struct cfg80211_bss *res;
2245 struct cfg80211_non_tx_bss non_tx_data;
2246
2247 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2248 capability, beacon_interval, ie,
2249 ielen, NULL, gfp);
2250 if (!res)
2251 return NULL;
2252 non_tx_data.tx_bss = res;
2253 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2254 beacon_interval, ie, ielen, &non_tx_data,
2255 gfp);
2256 return res;
2257}
2258EXPORT_SYMBOL(cfg80211_inform_bss_data);
2259
2260static void
2261cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2262 struct cfg80211_inform_bss *data,
2263 struct ieee80211_mgmt *mgmt, size_t len,
2264 struct cfg80211_non_tx_bss *non_tx_data,
2265 gfp_t gfp)
2266{
2267 enum cfg80211_bss_frame_type ftype;
2268 const u8 *ie = mgmt->u.probe_resp.variable;
2269 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2270 u.probe_resp.variable);
2271
2272 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2273 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2274
2275 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2276 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2277 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2278 ie, ielen, non_tx_data, gfp);
2279}
2280
2281static void
2282cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2283 struct cfg80211_bss *nontrans_bss,
2284 struct ieee80211_mgmt *mgmt, size_t len)
2285{
2286 u8 *ie, *new_ie, *pos;
2287 const struct element *nontrans_ssid;
2288 const u8 *trans_ssid, *mbssid;
2289 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2290 u.probe_resp.variable);
2291 size_t new_ie_len;
2292 struct cfg80211_bss_ies *new_ies;
2293 const struct cfg80211_bss_ies *old;
2294 size_t cpy_len;
2295
2296 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2297
2298 ie = mgmt->u.probe_resp.variable;
2299
2300 new_ie_len = ielen;
2301 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2302 if (!trans_ssid)
2303 return;
2304 new_ie_len -= trans_ssid[1];
2305 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2306 /*
2307 * It's not valid to have the MBSSID element before SSID
2308 * ignore if that happens - the code below assumes it is
2309 * after (while copying things inbetween).
2310 */
2311 if (!mbssid || mbssid < trans_ssid)
2312 return;
2313 new_ie_len -= mbssid[1];
2314
2315 nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
2316 if (!nontrans_ssid)
2317 return;
2318
2319 new_ie_len += nontrans_ssid->datalen;
2320
2321 /* generate new ie for nontrans BSS
2322 * 1. replace SSID with nontrans BSS' SSID
2323 * 2. skip MBSSID IE
2324 */
2325 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2326 if (!new_ie)
2327 return;
2328
2329 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2330 if (!new_ies)
2331 goto out_free;
2332
2333 pos = new_ie;
2334
2335 /* copy the nontransmitted SSID */
2336 cpy_len = nontrans_ssid->datalen + 2;
2337 memcpy(pos, nontrans_ssid, cpy_len);
2338 pos += cpy_len;
2339 /* copy the IEs between SSID and MBSSID */
2340 cpy_len = trans_ssid[1] + 2;
2341 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2342 pos += (mbssid - (trans_ssid + cpy_len));
2343 /* copy the IEs after MBSSID */
2344 cpy_len = mbssid[1] + 2;
2345 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2346
2347 /* update ie */
2348 new_ies->len = new_ie_len;
2349 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2350 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2351 memcpy(new_ies->data, new_ie, new_ie_len);
2352 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2353 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2354 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2355 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2356 if (old)
2357 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2358 } else {
2359 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2360 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2361 cfg80211_update_hidden_bsses(bss_from_pub(nontrans_bss),
2362 new_ies, old);
2363 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2364 if (old)
2365 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2366 }
2367
2368out_free:
2369 kfree(new_ie);
2370}
2371
2372/* cfg80211_inform_bss_width_frame helper */
2373static struct cfg80211_bss *
2374cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2375 struct cfg80211_inform_bss *data,
2376 struct ieee80211_mgmt *mgmt, size_t len,
2377 gfp_t gfp)
2378{
2379 struct cfg80211_internal_bss tmp = {}, *res;
2380 struct cfg80211_bss_ies *ies;
2381 struct ieee80211_channel *channel;
2382 bool signal_valid;
2383 struct ieee80211_ext *ext = NULL;
2384 u8 *bssid, *variable;
2385 u16 capability, beacon_int;
2386 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2387 u.probe_resp.variable);
2388 int bss_type;
2389
2390 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2391 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2392
2393 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2394
2395 if (WARN_ON(!mgmt))
2396 return NULL;
2397
2398 if (WARN_ON(!wiphy))
2399 return NULL;
2400
2401 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2402 (data->signal < 0 || data->signal > 100)))
2403 return NULL;
2404
2405 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2406 ext = (void *) mgmt;
2407 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2408 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2409 min_hdr_len = offsetof(struct ieee80211_ext,
2410 u.s1g_short_beacon.variable);
2411 }
2412
2413 if (WARN_ON(len < min_hdr_len))
2414 return NULL;
2415
2416 ielen = len - min_hdr_len;
2417 variable = mgmt->u.probe_resp.variable;
2418 if (ext) {
2419 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2420 variable = ext->u.s1g_short_beacon.variable;
2421 else
2422 variable = ext->u.s1g_beacon.variable;
2423 }
2424
2425 channel = cfg80211_get_bss_channel(wiphy, variable,
2426 ielen, data->chan, data->scan_width);
2427 if (!channel)
2428 return NULL;
2429
2430 if (ext) {
2431 const struct ieee80211_s1g_bcn_compat_ie *compat;
2432 const struct element *elem;
2433
2434 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2435 variable, ielen);
2436 if (!elem)
2437 return NULL;
2438 if (elem->datalen < sizeof(*compat))
2439 return NULL;
2440 compat = (void *)elem->data;
2441 bssid = ext->u.s1g_beacon.sa;
2442 capability = le16_to_cpu(compat->compat_info);
2443 beacon_int = le16_to_cpu(compat->beacon_int);
2444 } else {
2445 bssid = mgmt->bssid;
2446 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2447 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2448 }
2449
2450 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2451 if (!ies)
2452 return NULL;
2453 ies->len = ielen;
2454 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2455 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2456 ieee80211_is_s1g_beacon(mgmt->frame_control);
2457 memcpy(ies->data, variable, ielen);
2458
2459 if (ieee80211_is_probe_resp(mgmt->frame_control))
2460 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2461 else
2462 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2463 rcu_assign_pointer(tmp.pub.ies, ies);
2464
2465 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2466 tmp.pub.beacon_interval = beacon_int;
2467 tmp.pub.capability = capability;
2468 tmp.pub.channel = channel;
2469 tmp.pub.scan_width = data->scan_width;
2470 tmp.pub.signal = data->signal;
2471 tmp.ts_boottime = data->boottime_ns;
2472 tmp.parent_tsf = data->parent_tsf;
2473 tmp.pub.chains = data->chains;
2474 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2475 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2476
2477 signal_valid = data->chan == channel;
2478 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2479 jiffies);
2480 if (!res)
2481 return NULL;
2482
2483 if (channel->band == NL80211_BAND_60GHZ) {
2484 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2485 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2486 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2487 regulatory_hint_found_beacon(wiphy, channel, gfp);
2488 } else {
2489 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2490 regulatory_hint_found_beacon(wiphy, channel, gfp);
2491 }
2492
2493 trace_cfg80211_return_bss(&res->pub);
2494 /* cfg80211_bss_update gives us a referenced result */
2495 return &res->pub;
2496}
2497
2498struct cfg80211_bss *
2499cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2500 struct cfg80211_inform_bss *data,
2501 struct ieee80211_mgmt *mgmt, size_t len,
2502 gfp_t gfp)
2503{
2504 struct cfg80211_bss *res, *tmp_bss;
2505 const u8 *ie = mgmt->u.probe_resp.variable;
2506 const struct cfg80211_bss_ies *ies1, *ies2;
2507 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2508 u.probe_resp.variable);
2509 struct cfg80211_non_tx_bss non_tx_data = {};
2510
2511 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2512 len, gfp);
2513
2514 /* don't do any further MBSSID handling for S1G */
2515 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2516 return res;
2517
2518 if (!res || !wiphy->support_mbssid ||
2519 !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2520 return res;
2521 if (wiphy->support_only_he_mbssid &&
2522 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2523 return res;
2524
2525 non_tx_data.tx_bss = res;
2526 /* process each non-transmitting bss */
2527 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2528 &non_tx_data, gfp);
2529
2530 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2531
2532 /* check if the res has other nontransmitting bss which is not
2533 * in MBSSID IE
2534 */
2535 ies1 = rcu_access_pointer(res->ies);
2536
2537 /* go through nontrans_list, if the timestamp of the BSS is
2538 * earlier than the timestamp of the transmitting BSS then
2539 * update it
2540 */
2541 list_for_each_entry(tmp_bss, &res->nontrans_list,
2542 nontrans_list) {
2543 ies2 = rcu_access_pointer(tmp_bss->ies);
2544 if (ies2->tsf < ies1->tsf)
2545 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2546 mgmt, len);
2547 }
2548 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2549
2550 return res;
2551}
2552EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2553
2554void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2555{
2556 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2557
2558 if (!pub)
2559 return;
2560
2561 spin_lock_bh(&rdev->bss_lock);
2562 bss_ref_get(rdev, bss_from_pub(pub));
2563 spin_unlock_bh(&rdev->bss_lock);
2564}
2565EXPORT_SYMBOL(cfg80211_ref_bss);
2566
2567void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2568{
2569 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2570
2571 if (!pub)
2572 return;
2573
2574 spin_lock_bh(&rdev->bss_lock);
2575 bss_ref_put(rdev, bss_from_pub(pub));
2576 spin_unlock_bh(&rdev->bss_lock);
2577}
2578EXPORT_SYMBOL(cfg80211_put_bss);
2579
2580void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2581{
2582 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2583 struct cfg80211_internal_bss *bss, *tmp1;
2584 struct cfg80211_bss *nontrans_bss, *tmp;
2585
2586 if (WARN_ON(!pub))
2587 return;
2588
2589 bss = bss_from_pub(pub);
2590
2591 spin_lock_bh(&rdev->bss_lock);
2592 if (list_empty(&bss->list))
2593 goto out;
2594
2595 list_for_each_entry_safe(nontrans_bss, tmp,
2596 &pub->nontrans_list,
2597 nontrans_list) {
2598 tmp1 = bss_from_pub(nontrans_bss);
2599 if (__cfg80211_unlink_bss(rdev, tmp1))
2600 rdev->bss_generation++;
2601 }
2602
2603 if (__cfg80211_unlink_bss(rdev, bss))
2604 rdev->bss_generation++;
2605out:
2606 spin_unlock_bh(&rdev->bss_lock);
2607}
2608EXPORT_SYMBOL(cfg80211_unlink_bss);
2609
2610void cfg80211_bss_iter(struct wiphy *wiphy,
2611 struct cfg80211_chan_def *chandef,
2612 void (*iter)(struct wiphy *wiphy,
2613 struct cfg80211_bss *bss,
2614 void *data),
2615 void *iter_data)
2616{
2617 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2618 struct cfg80211_internal_bss *bss;
2619
2620 spin_lock_bh(&rdev->bss_lock);
2621
2622 list_for_each_entry(bss, &rdev->bss_list, list) {
2623 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
2624 false))
2625 iter(wiphy, &bss->pub, iter_data);
2626 }
2627
2628 spin_unlock_bh(&rdev->bss_lock);
2629}
2630EXPORT_SYMBOL(cfg80211_bss_iter);
2631
2632void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2633 unsigned int link_id,
2634 struct ieee80211_channel *chan)
2635{
2636 struct wiphy *wiphy = wdev->wiphy;
2637 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2638 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
2639 struct cfg80211_internal_bss *new = NULL;
2640 struct cfg80211_internal_bss *bss;
2641 struct cfg80211_bss *nontrans_bss;
2642 struct cfg80211_bss *tmp;
2643
2644 spin_lock_bh(&rdev->bss_lock);
2645
2646 /*
2647 * Some APs use CSA also for bandwidth changes, i.e., without actually
2648 * changing the control channel, so no need to update in such a case.
2649 */
2650 if (cbss->pub.channel == chan)
2651 goto done;
2652
2653 /* use transmitting bss */
2654 if (cbss->pub.transmitted_bss)
2655 cbss = bss_from_pub(cbss->pub.transmitted_bss);
2656
2657 cbss->pub.channel = chan;
2658
2659 list_for_each_entry(bss, &rdev->bss_list, list) {
2660 if (!cfg80211_bss_type_match(bss->pub.capability,
2661 bss->pub.channel->band,
2662 wdev->conn_bss_type))
2663 continue;
2664
2665 if (bss == cbss)
2666 continue;
2667
2668 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2669 new = bss;
2670 break;
2671 }
2672 }
2673
2674 if (new) {
2675 /* to save time, update IEs for transmitting bss only */
2676 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2677 new->pub.proberesp_ies = NULL;
2678 new->pub.beacon_ies = NULL;
2679 }
2680
2681 list_for_each_entry_safe(nontrans_bss, tmp,
2682 &new->pub.nontrans_list,
2683 nontrans_list) {
2684 bss = bss_from_pub(nontrans_bss);
2685 if (__cfg80211_unlink_bss(rdev, bss))
2686 rdev->bss_generation++;
2687 }
2688
2689 WARN_ON(atomic_read(&new->hold));
2690 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2691 rdev->bss_generation++;
2692 }
2693
2694 rb_erase(&cbss->rbn, &rdev->bss_tree);
2695 rb_insert_bss(rdev, cbss);
2696 rdev->bss_generation++;
2697
2698 list_for_each_entry_safe(nontrans_bss, tmp,
2699 &cbss->pub.nontrans_list,
2700 nontrans_list) {
2701 bss = bss_from_pub(nontrans_bss);
2702 bss->pub.channel = chan;
2703 rb_erase(&bss->rbn, &rdev->bss_tree);
2704 rb_insert_bss(rdev, bss);
2705 rdev->bss_generation++;
2706 }
2707
2708done:
2709 spin_unlock_bh(&rdev->bss_lock);
2710}
2711
2712#ifdef CONFIG_CFG80211_WEXT
2713static struct cfg80211_registered_device *
2714cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2715{
2716 struct cfg80211_registered_device *rdev;
2717 struct net_device *dev;
2718
2719 ASSERT_RTNL();
2720
2721 dev = dev_get_by_index(net, ifindex);
2722 if (!dev)
2723 return ERR_PTR(-ENODEV);
2724 if (dev->ieee80211_ptr)
2725 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2726 else
2727 rdev = ERR_PTR(-ENODEV);
2728 dev_put(dev);
2729 return rdev;
2730}
2731
2732int cfg80211_wext_siwscan(struct net_device *dev,
2733 struct iw_request_info *info,
2734 union iwreq_data *wrqu, char *extra)
2735{
2736 struct cfg80211_registered_device *rdev;
2737 struct wiphy *wiphy;
2738 struct iw_scan_req *wreq = NULL;
2739 struct cfg80211_scan_request *creq;
2740 int i, err, n_channels = 0;
2741 enum nl80211_band band;
2742
2743 if (!netif_running(dev))
2744 return -ENETDOWN;
2745
2746 if (wrqu->data.length == sizeof(struct iw_scan_req))
2747 wreq = (struct iw_scan_req *)extra;
2748
2749 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2750
2751 if (IS_ERR(rdev))
2752 return PTR_ERR(rdev);
2753
2754 if (rdev->scan_req || rdev->scan_msg)
2755 return -EBUSY;
2756
2757 wiphy = &rdev->wiphy;
2758
2759 /* Determine number of channels, needed to allocate creq */
2760 if (wreq && wreq->num_channels)
2761 n_channels = wreq->num_channels;
2762 else
2763 n_channels = ieee80211_get_num_supported_channels(wiphy);
2764
2765 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2766 n_channels * sizeof(void *),
2767 GFP_ATOMIC);
2768 if (!creq)
2769 return -ENOMEM;
2770
2771 creq->wiphy = wiphy;
2772 creq->wdev = dev->ieee80211_ptr;
2773 /* SSIDs come after channels */
2774 creq->ssids = (void *)&creq->channels[n_channels];
2775 creq->n_channels = n_channels;
2776 creq->n_ssids = 1;
2777 creq->scan_start = jiffies;
2778
2779 /* translate "Scan on frequencies" request */
2780 i = 0;
2781 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2782 int j;
2783
2784 if (!wiphy->bands[band])
2785 continue;
2786
2787 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2788 /* ignore disabled channels */
2789 if (wiphy->bands[band]->channels[j].flags &
2790 IEEE80211_CHAN_DISABLED)
2791 continue;
2792
2793 /* If we have a wireless request structure and the
2794 * wireless request specifies frequencies, then search
2795 * for the matching hardware channel.
2796 */
2797 if (wreq && wreq->num_channels) {
2798 int k;
2799 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2800 for (k = 0; k < wreq->num_channels; k++) {
2801 struct iw_freq *freq =
2802 &wreq->channel_list[k];
2803 int wext_freq =
2804 cfg80211_wext_freq(freq);
2805
2806 if (wext_freq == wiphy_freq)
2807 goto wext_freq_found;
2808 }
2809 goto wext_freq_not_found;
2810 }
2811
2812 wext_freq_found:
2813 creq->channels[i] = &wiphy->bands[band]->channels[j];
2814 i++;
2815 wext_freq_not_found: ;
2816 }
2817 }
2818 /* No channels found? */
2819 if (!i) {
2820 err = -EINVAL;
2821 goto out;
2822 }
2823
2824 /* Set real number of channels specified in creq->channels[] */
2825 creq->n_channels = i;
2826
2827 /* translate "Scan for SSID" request */
2828 if (wreq) {
2829 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2830 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2831 err = -EINVAL;
2832 goto out;
2833 }
2834 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2835 creq->ssids[0].ssid_len = wreq->essid_len;
2836 }
2837 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2838 creq->n_ssids = 0;
2839 }
2840
2841 for (i = 0; i < NUM_NL80211_BANDS; i++)
2842 if (wiphy->bands[i])
2843 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2844
2845 eth_broadcast_addr(creq->bssid);
2846
2847 wiphy_lock(&rdev->wiphy);
2848
2849 rdev->scan_req = creq;
2850 err = rdev_scan(rdev, creq);
2851 if (err) {
2852 rdev->scan_req = NULL;
2853 /* creq will be freed below */
2854 } else {
2855 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2856 /* creq now owned by driver */
2857 creq = NULL;
2858 dev_hold(dev);
2859 }
2860 wiphy_unlock(&rdev->wiphy);
2861 out:
2862 kfree(creq);
2863 return err;
2864}
2865EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2866
2867static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2868 const struct cfg80211_bss_ies *ies,
2869 char *current_ev, char *end_buf)
2870{
2871 const u8 *pos, *end, *next;
2872 struct iw_event iwe;
2873
2874 if (!ies)
2875 return current_ev;
2876
2877 /*
2878 * If needed, fragment the IEs buffer (at IE boundaries) into short
2879 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2880 */
2881 pos = ies->data;
2882 end = pos + ies->len;
2883
2884 while (end - pos > IW_GENERIC_IE_MAX) {
2885 next = pos + 2 + pos[1];
2886 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2887 next = next + 2 + next[1];
2888
2889 memset(&iwe, 0, sizeof(iwe));
2890 iwe.cmd = IWEVGENIE;
2891 iwe.u.data.length = next - pos;
2892 current_ev = iwe_stream_add_point_check(info, current_ev,
2893 end_buf, &iwe,
2894 (void *)pos);
2895 if (IS_ERR(current_ev))
2896 return current_ev;
2897 pos = next;
2898 }
2899
2900 if (end > pos) {
2901 memset(&iwe, 0, sizeof(iwe));
2902 iwe.cmd = IWEVGENIE;
2903 iwe.u.data.length = end - pos;
2904 current_ev = iwe_stream_add_point_check(info, current_ev,
2905 end_buf, &iwe,
2906 (void *)pos);
2907 if (IS_ERR(current_ev))
2908 return current_ev;
2909 }
2910
2911 return current_ev;
2912}
2913
2914static char *
2915ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2916 struct cfg80211_internal_bss *bss, char *current_ev,
2917 char *end_buf)
2918{
2919 const struct cfg80211_bss_ies *ies;
2920 struct iw_event iwe;
2921 const u8 *ie;
2922 u8 buf[50];
2923 u8 *cfg, *p, *tmp;
2924 int rem, i, sig;
2925 bool ismesh = false;
2926
2927 memset(&iwe, 0, sizeof(iwe));
2928 iwe.cmd = SIOCGIWAP;
2929 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2930 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2931 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2932 IW_EV_ADDR_LEN);
2933 if (IS_ERR(current_ev))
2934 return current_ev;
2935
2936 memset(&iwe, 0, sizeof(iwe));
2937 iwe.cmd = SIOCGIWFREQ;
2938 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2939 iwe.u.freq.e = 0;
2940 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2941 IW_EV_FREQ_LEN);
2942 if (IS_ERR(current_ev))
2943 return current_ev;
2944
2945 memset(&iwe, 0, sizeof(iwe));
2946 iwe.cmd = SIOCGIWFREQ;
2947 iwe.u.freq.m = bss->pub.channel->center_freq;
2948 iwe.u.freq.e = 6;
2949 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2950 IW_EV_FREQ_LEN);
2951 if (IS_ERR(current_ev))
2952 return current_ev;
2953
2954 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2955 memset(&iwe, 0, sizeof(iwe));
2956 iwe.cmd = IWEVQUAL;
2957 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2958 IW_QUAL_NOISE_INVALID |
2959 IW_QUAL_QUAL_UPDATED;
2960 switch (wiphy->signal_type) {
2961 case CFG80211_SIGNAL_TYPE_MBM:
2962 sig = bss->pub.signal / 100;
2963 iwe.u.qual.level = sig;
2964 iwe.u.qual.updated |= IW_QUAL_DBM;
2965 if (sig < -110) /* rather bad */
2966 sig = -110;
2967 else if (sig > -40) /* perfect */
2968 sig = -40;
2969 /* will give a range of 0 .. 70 */
2970 iwe.u.qual.qual = sig + 110;
2971 break;
2972 case CFG80211_SIGNAL_TYPE_UNSPEC:
2973 iwe.u.qual.level = bss->pub.signal;
2974 /* will give range 0 .. 100 */
2975 iwe.u.qual.qual = bss->pub.signal;
2976 break;
2977 default:
2978 /* not reached */
2979 break;
2980 }
2981 current_ev = iwe_stream_add_event_check(info, current_ev,
2982 end_buf, &iwe,
2983 IW_EV_QUAL_LEN);
2984 if (IS_ERR(current_ev))
2985 return current_ev;
2986 }
2987
2988 memset(&iwe, 0, sizeof(iwe));
2989 iwe.cmd = SIOCGIWENCODE;
2990 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2991 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2992 else
2993 iwe.u.data.flags = IW_ENCODE_DISABLED;
2994 iwe.u.data.length = 0;
2995 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2996 &iwe, "");
2997 if (IS_ERR(current_ev))
2998 return current_ev;
2999
3000 rcu_read_lock();
3001 ies = rcu_dereference(bss->pub.ies);
3002 rem = ies->len;
3003 ie = ies->data;
3004
3005 while (rem >= 2) {
3006 /* invalid data */
3007 if (ie[1] > rem - 2)
3008 break;
3009
3010 switch (ie[0]) {
3011 case WLAN_EID_SSID:
3012 memset(&iwe, 0, sizeof(iwe));
3013 iwe.cmd = SIOCGIWESSID;
3014 iwe.u.data.length = ie[1];
3015 iwe.u.data.flags = 1;
3016 current_ev = iwe_stream_add_point_check(info,
3017 current_ev,
3018 end_buf, &iwe,
3019 (u8 *)ie + 2);
3020 if (IS_ERR(current_ev))
3021 goto unlock;
3022 break;
3023 case WLAN_EID_MESH_ID:
3024 memset(&iwe, 0, sizeof(iwe));
3025 iwe.cmd = SIOCGIWESSID;
3026 iwe.u.data.length = ie[1];
3027 iwe.u.data.flags = 1;
3028 current_ev = iwe_stream_add_point_check(info,
3029 current_ev,
3030 end_buf, &iwe,
3031 (u8 *)ie + 2);
3032 if (IS_ERR(current_ev))
3033 goto unlock;
3034 break;
3035 case WLAN_EID_MESH_CONFIG:
3036 ismesh = true;
3037 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3038 break;
3039 cfg = (u8 *)ie + 2;
3040 memset(&iwe, 0, sizeof(iwe));
3041 iwe.cmd = IWEVCUSTOM;
3042 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3043 "0x%02X", cfg[0]);
3044 iwe.u.data.length = strlen(buf);
3045 current_ev = iwe_stream_add_point_check(info,
3046 current_ev,
3047 end_buf,
3048 &iwe, buf);
3049 if (IS_ERR(current_ev))
3050 goto unlock;
3051 sprintf(buf, "Path Selection Metric ID: 0x%02X",
3052 cfg[1]);
3053 iwe.u.data.length = strlen(buf);
3054 current_ev = iwe_stream_add_point_check(info,
3055 current_ev,
3056 end_buf,
3057 &iwe, buf);
3058 if (IS_ERR(current_ev))
3059 goto unlock;
3060 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3061 cfg[2]);
3062 iwe.u.data.length = strlen(buf);
3063 current_ev = iwe_stream_add_point_check(info,
3064 current_ev,
3065 end_buf,
3066 &iwe, buf);
3067 if (IS_ERR(current_ev))
3068 goto unlock;
3069 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3070 iwe.u.data.length = strlen(buf);
3071 current_ev = iwe_stream_add_point_check(info,
3072 current_ev,
3073 end_buf,
3074 &iwe, buf);
3075 if (IS_ERR(current_ev))
3076 goto unlock;
3077 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3078 iwe.u.data.length = strlen(buf);
3079 current_ev = iwe_stream_add_point_check(info,
3080 current_ev,
3081 end_buf,
3082 &iwe, buf);
3083 if (IS_ERR(current_ev))
3084 goto unlock;
3085 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3086 iwe.u.data.length = strlen(buf);
3087 current_ev = iwe_stream_add_point_check(info,
3088 current_ev,
3089 end_buf,
3090 &iwe, buf);
3091 if (IS_ERR(current_ev))
3092 goto unlock;
3093 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3094 iwe.u.data.length = strlen(buf);
3095 current_ev = iwe_stream_add_point_check(info,
3096 current_ev,
3097 end_buf,
3098 &iwe, buf);
3099 if (IS_ERR(current_ev))
3100 goto unlock;
3101 break;
3102 case WLAN_EID_SUPP_RATES:
3103 case WLAN_EID_EXT_SUPP_RATES:
3104 /* display all supported rates in readable format */
3105 p = current_ev + iwe_stream_lcp_len(info);
3106
3107 memset(&iwe, 0, sizeof(iwe));
3108 iwe.cmd = SIOCGIWRATE;
3109 /* Those two flags are ignored... */
3110 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3111
3112 for (i = 0; i < ie[1]; i++) {
3113 iwe.u.bitrate.value =
3114 ((ie[i + 2] & 0x7f) * 500000);
3115 tmp = p;
3116 p = iwe_stream_add_value(info, current_ev, p,
3117 end_buf, &iwe,
3118 IW_EV_PARAM_LEN);
3119 if (p == tmp) {
3120 current_ev = ERR_PTR(-E2BIG);
3121 goto unlock;
3122 }
3123 }
3124 current_ev = p;
3125 break;
3126 }
3127 rem -= ie[1] + 2;
3128 ie += ie[1] + 2;
3129 }
3130
3131 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3132 ismesh) {
3133 memset(&iwe, 0, sizeof(iwe));
3134 iwe.cmd = SIOCGIWMODE;
3135 if (ismesh)
3136 iwe.u.mode = IW_MODE_MESH;
3137 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3138 iwe.u.mode = IW_MODE_MASTER;
3139 else
3140 iwe.u.mode = IW_MODE_ADHOC;
3141 current_ev = iwe_stream_add_event_check(info, current_ev,
3142 end_buf, &iwe,
3143 IW_EV_UINT_LEN);
3144 if (IS_ERR(current_ev))
3145 goto unlock;
3146 }
3147
3148 memset(&iwe, 0, sizeof(iwe));
3149 iwe.cmd = IWEVCUSTOM;
3150 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3151 iwe.u.data.length = strlen(buf);
3152 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3153 &iwe, buf);
3154 if (IS_ERR(current_ev))
3155 goto unlock;
3156 memset(&iwe, 0, sizeof(iwe));
3157 iwe.cmd = IWEVCUSTOM;
3158 sprintf(buf, " Last beacon: %ums ago",
3159 elapsed_jiffies_msecs(bss->ts));
3160 iwe.u.data.length = strlen(buf);
3161 current_ev = iwe_stream_add_point_check(info, current_ev,
3162 end_buf, &iwe, buf);
3163 if (IS_ERR(current_ev))
3164 goto unlock;
3165
3166 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3167
3168 unlock:
3169 rcu_read_unlock();
3170 return current_ev;
3171}
3172
3173
3174static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3175 struct iw_request_info *info,
3176 char *buf, size_t len)
3177{
3178 char *current_ev = buf;
3179 char *end_buf = buf + len;
3180 struct cfg80211_internal_bss *bss;
3181 int err = 0;
3182
3183 spin_lock_bh(&rdev->bss_lock);
3184 cfg80211_bss_expire(rdev);
3185
3186 list_for_each_entry(bss, &rdev->bss_list, list) {
3187 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3188 err = -E2BIG;
3189 break;
3190 }
3191 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3192 current_ev, end_buf);
3193 if (IS_ERR(current_ev)) {
3194 err = PTR_ERR(current_ev);
3195 break;
3196 }
3197 }
3198 spin_unlock_bh(&rdev->bss_lock);
3199
3200 if (err)
3201 return err;
3202 return current_ev - buf;
3203}
3204
3205
3206int cfg80211_wext_giwscan(struct net_device *dev,
3207 struct iw_request_info *info,
3208 union iwreq_data *wrqu, char *extra)
3209{
3210 struct iw_point *data = &wrqu->data;
3211 struct cfg80211_registered_device *rdev;
3212 int res;
3213
3214 if (!netif_running(dev))
3215 return -ENETDOWN;
3216
3217 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3218
3219 if (IS_ERR(rdev))
3220 return PTR_ERR(rdev);
3221
3222 if (rdev->scan_req || rdev->scan_msg)
3223 return -EAGAIN;
3224
3225 res = ieee80211_scan_results(rdev, info, extra, data->length);
3226 data->length = 0;
3227 if (res >= 0) {
3228 data->length = res;
3229 res = 0;
3230 }
3231
3232 return res;
3233}
3234EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3235#endif