Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <trace/events/qdisc.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_netdev.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148#include <linux/indirect_call_wrapper.h>
149#include <net/devlink.h>
150#include <linux/pm_runtime.h>
151#include <linux/prandom.h>
152#include <linux/once_lite.h>
153
154#include "dev.h"
155#include "net-sysfs.h"
156
157
158static DEFINE_SPINLOCK(ptype_lock);
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
161
162static int netif_rx_internal(struct sk_buff *skb);
163static int call_netdevice_notifiers_info(unsigned long val,
164 struct netdev_notifier_info *info);
165static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170/*
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * semaphore.
173 *
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
189DEFINE_RWLOCK(dev_base_lock);
190EXPORT_SYMBOL(dev_base_lock);
191
192static DEFINE_MUTEX(ifalias_mutex);
193
194/* protects napi_hash addition/deletion and napi_gen_id */
195static DEFINE_SPINLOCK(napi_hash_lock);
196
197static unsigned int napi_gen_id = NR_CPUS;
198static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200static DECLARE_RWSEM(devnet_rename_sem);
201
202static inline void dev_base_seq_inc(struct net *net)
203{
204 while (++net->dev_base_seq == 0)
205 ;
206}
207
208static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209{
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213}
214
215static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216{
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218}
219
220static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
222{
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
227}
228
229static inline void rps_lock_irq_disable(struct softnet_data *sd)
230{
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 local_irq_disable();
235}
236
237static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
239{
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
244}
245
246static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247{
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 local_irq_enable();
252}
253
254static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 const char *name)
256{
257 struct netdev_name_node *name_node;
258
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 if (!name_node)
261 return NULL;
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
265 return name_node;
266}
267
268static struct netdev_name_node *
269netdev_name_node_head_alloc(struct net_device *dev)
270{
271 struct netdev_name_node *name_node;
272
273 name_node = netdev_name_node_alloc(dev, dev->name);
274 if (!name_node)
275 return NULL;
276 INIT_LIST_HEAD(&name_node->list);
277 return name_node;
278}
279
280static void netdev_name_node_free(struct netdev_name_node *name_node)
281{
282 kfree(name_node);
283}
284
285static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
287{
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
290}
291
292static void netdev_name_node_del(struct netdev_name_node *name_node)
293{
294 hlist_del_rcu(&name_node->hlist);
295}
296
297static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 const char *name)
299{
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
302
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
305 return name_node;
306 return NULL;
307}
308
309static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 const char *name)
311{
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
314
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
317 return name_node;
318 return NULL;
319}
320
321bool netdev_name_in_use(struct net *net, const char *name)
322{
323 return netdev_name_node_lookup(net, name);
324}
325EXPORT_SYMBOL(netdev_name_in_use);
326
327int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328{
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (name_node)
334 return -EEXIST;
335 name_node = netdev_name_node_alloc(dev, name);
336 if (!name_node)
337 return -ENOMEM;
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
341
342 return 0;
343}
344
345static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346{
347 list_del(&name_node->list);
348 netdev_name_node_del(name_node);
349 kfree(name_node->name);
350 netdev_name_node_free(name_node);
351}
352
353int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354{
355 struct netdev_name_node *name_node;
356 struct net *net = dev_net(dev);
357
358 name_node = netdev_name_node_lookup(net, name);
359 if (!name_node)
360 return -ENOENT;
361 /* lookup might have found our primary name or a name belonging
362 * to another device.
363 */
364 if (name_node == dev->name_node || name_node->dev != dev)
365 return -EINVAL;
366
367 __netdev_name_node_alt_destroy(name_node);
368
369 return 0;
370}
371
372static void netdev_name_node_alt_flush(struct net_device *dev)
373{
374 struct netdev_name_node *name_node, *tmp;
375
376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 __netdev_name_node_alt_destroy(name_node);
378}
379
380/* Device list insertion */
381static void list_netdevice(struct net_device *dev)
382{
383 struct net *net = dev_net(dev);
384
385 ASSERT_RTNL();
386
387 write_lock(&dev_base_lock);
388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 netdev_name_node_add(net, dev->name_node);
390 hlist_add_head_rcu(&dev->index_hlist,
391 dev_index_hash(net, dev->ifindex));
392 write_unlock(&dev_base_lock);
393
394 dev_base_seq_inc(net);
395}
396
397/* Device list removal
398 * caller must respect a RCU grace period before freeing/reusing dev
399 */
400static void unlist_netdevice(struct net_device *dev, bool lock)
401{
402 ASSERT_RTNL();
403
404 /* Unlink dev from the device chain */
405 if (lock)
406 write_lock(&dev_base_lock);
407 list_del_rcu(&dev->dev_list);
408 netdev_name_node_del(dev->name_node);
409 hlist_del_rcu(&dev->index_hlist);
410 if (lock)
411 write_unlock(&dev_base_lock);
412
413 dev_base_seq_inc(dev_net(dev));
414}
415
416/*
417 * Our notifier list
418 */
419
420static RAW_NOTIFIER_HEAD(netdev_chain);
421
422/*
423 * Device drivers call our routines to queue packets here. We empty the
424 * queue in the local softnet handler.
425 */
426
427DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428EXPORT_PER_CPU_SYMBOL(softnet_data);
429
430#ifdef CONFIG_LOCKDEP
431/*
432 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433 * according to dev->type
434 */
435static const unsigned short netdev_lock_type[] = {
436 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451
452static const char *const netdev_lock_name[] = {
453 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468
469static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471
472static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473{
474 int i;
475
476 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477 if (netdev_lock_type[i] == dev_type)
478 return i;
479 /* the last key is used by default */
480 return ARRAY_SIZE(netdev_lock_type) - 1;
481}
482
483static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484 unsigned short dev_type)
485{
486 int i;
487
488 i = netdev_lock_pos(dev_type);
489 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490 netdev_lock_name[i]);
491}
492
493static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494{
495 int i;
496
497 i = netdev_lock_pos(dev->type);
498 lockdep_set_class_and_name(&dev->addr_list_lock,
499 &netdev_addr_lock_key[i],
500 netdev_lock_name[i]);
501}
502#else
503static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504 unsigned short dev_type)
505{
506}
507
508static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509{
510}
511#endif
512
513/*******************************************************************************
514 *
515 * Protocol management and registration routines
516 *
517 *******************************************************************************/
518
519
520/*
521 * Add a protocol ID to the list. Now that the input handler is
522 * smarter we can dispense with all the messy stuff that used to be
523 * here.
524 *
525 * BEWARE!!! Protocol handlers, mangling input packets,
526 * MUST BE last in hash buckets and checking protocol handlers
527 * MUST start from promiscuous ptype_all chain in net_bh.
528 * It is true now, do not change it.
529 * Explanation follows: if protocol handler, mangling packet, will
530 * be the first on list, it is not able to sense, that packet
531 * is cloned and should be copied-on-write, so that it will
532 * change it and subsequent readers will get broken packet.
533 * --ANK (980803)
534 */
535
536static inline struct list_head *ptype_head(const struct packet_type *pt)
537{
538 if (pt->type == htons(ETH_P_ALL))
539 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540 else
541 return pt->dev ? &pt->dev->ptype_specific :
542 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543}
544
545/**
546 * dev_add_pack - add packet handler
547 * @pt: packet type declaration
548 *
549 * Add a protocol handler to the networking stack. The passed &packet_type
550 * is linked into kernel lists and may not be freed until it has been
551 * removed from the kernel lists.
552 *
553 * This call does not sleep therefore it can not
554 * guarantee all CPU's that are in middle of receiving packets
555 * will see the new packet type (until the next received packet).
556 */
557
558void dev_add_pack(struct packet_type *pt)
559{
560 struct list_head *head = ptype_head(pt);
561
562 spin_lock(&ptype_lock);
563 list_add_rcu(&pt->list, head);
564 spin_unlock(&ptype_lock);
565}
566EXPORT_SYMBOL(dev_add_pack);
567
568/**
569 * __dev_remove_pack - remove packet handler
570 * @pt: packet type declaration
571 *
572 * Remove a protocol handler that was previously added to the kernel
573 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
574 * from the kernel lists and can be freed or reused once this function
575 * returns.
576 *
577 * The packet type might still be in use by receivers
578 * and must not be freed until after all the CPU's have gone
579 * through a quiescent state.
580 */
581void __dev_remove_pack(struct packet_type *pt)
582{
583 struct list_head *head = ptype_head(pt);
584 struct packet_type *pt1;
585
586 spin_lock(&ptype_lock);
587
588 list_for_each_entry(pt1, head, list) {
589 if (pt == pt1) {
590 list_del_rcu(&pt->list);
591 goto out;
592 }
593 }
594
595 pr_warn("dev_remove_pack: %p not found\n", pt);
596out:
597 spin_unlock(&ptype_lock);
598}
599EXPORT_SYMBOL(__dev_remove_pack);
600
601/**
602 * dev_remove_pack - remove packet handler
603 * @pt: packet type declaration
604 *
605 * Remove a protocol handler that was previously added to the kernel
606 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
607 * from the kernel lists and can be freed or reused once this function
608 * returns.
609 *
610 * This call sleeps to guarantee that no CPU is looking at the packet
611 * type after return.
612 */
613void dev_remove_pack(struct packet_type *pt)
614{
615 __dev_remove_pack(pt);
616
617 synchronize_net();
618}
619EXPORT_SYMBOL(dev_remove_pack);
620
621
622/*******************************************************************************
623 *
624 * Device Interface Subroutines
625 *
626 *******************************************************************************/
627
628/**
629 * dev_get_iflink - get 'iflink' value of a interface
630 * @dev: targeted interface
631 *
632 * Indicates the ifindex the interface is linked to.
633 * Physical interfaces have the same 'ifindex' and 'iflink' values.
634 */
635
636int dev_get_iflink(const struct net_device *dev)
637{
638 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639 return dev->netdev_ops->ndo_get_iflink(dev);
640
641 return dev->ifindex;
642}
643EXPORT_SYMBOL(dev_get_iflink);
644
645/**
646 * dev_fill_metadata_dst - Retrieve tunnel egress information.
647 * @dev: targeted interface
648 * @skb: The packet.
649 *
650 * For better visibility of tunnel traffic OVS needs to retrieve
651 * egress tunnel information for a packet. Following API allows
652 * user to get this info.
653 */
654int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655{
656 struct ip_tunnel_info *info;
657
658 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
659 return -EINVAL;
660
661 info = skb_tunnel_info_unclone(skb);
662 if (!info)
663 return -ENOMEM;
664 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665 return -EINVAL;
666
667 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668}
669EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670
671static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672{
673 int k = stack->num_paths++;
674
675 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676 return NULL;
677
678 return &stack->path[k];
679}
680
681int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682 struct net_device_path_stack *stack)
683{
684 const struct net_device *last_dev;
685 struct net_device_path_ctx ctx = {
686 .dev = dev,
687 };
688 struct net_device_path *path;
689 int ret = 0;
690
691 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692 stack->num_paths = 0;
693 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694 last_dev = ctx.dev;
695 path = dev_fwd_path(stack);
696 if (!path)
697 return -1;
698
699 memset(path, 0, sizeof(struct net_device_path));
700 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701 if (ret < 0)
702 return -1;
703
704 if (WARN_ON_ONCE(last_dev == ctx.dev))
705 return -1;
706 }
707
708 if (!ctx.dev)
709 return ret;
710
711 path = dev_fwd_path(stack);
712 if (!path)
713 return -1;
714 path->type = DEV_PATH_ETHERNET;
715 path->dev = ctx.dev;
716
717 return ret;
718}
719EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720
721/**
722 * __dev_get_by_name - find a device by its name
723 * @net: the applicable net namespace
724 * @name: name to find
725 *
726 * Find an interface by name. Must be called under RTNL semaphore
727 * or @dev_base_lock. If the name is found a pointer to the device
728 * is returned. If the name is not found then %NULL is returned. The
729 * reference counters are not incremented so the caller must be
730 * careful with locks.
731 */
732
733struct net_device *__dev_get_by_name(struct net *net, const char *name)
734{
735 struct netdev_name_node *node_name;
736
737 node_name = netdev_name_node_lookup(net, name);
738 return node_name ? node_name->dev : NULL;
739}
740EXPORT_SYMBOL(__dev_get_by_name);
741
742/**
743 * dev_get_by_name_rcu - find a device by its name
744 * @net: the applicable net namespace
745 * @name: name to find
746 *
747 * Find an interface by name.
748 * If the name is found a pointer to the device is returned.
749 * If the name is not found then %NULL is returned.
750 * The reference counters are not incremented so the caller must be
751 * careful with locks. The caller must hold RCU lock.
752 */
753
754struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755{
756 struct netdev_name_node *node_name;
757
758 node_name = netdev_name_node_lookup_rcu(net, name);
759 return node_name ? node_name->dev : NULL;
760}
761EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763/**
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
775struct net_device *dev_get_by_name(struct net *net, const char *name)
776{
777 struct net_device *dev;
778
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
781 dev_hold(dev);
782 rcu_read_unlock();
783 return dev;
784}
785EXPORT_SYMBOL(dev_get_by_name);
786
787/**
788 * __dev_get_by_index - find a device by its ifindex
789 * @net: the applicable net namespace
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns %NULL if the device
793 * is not found or a pointer to the device. The device has not
794 * had its reference counter increased so the caller must be careful
795 * about locking. The caller must hold either the RTNL semaphore
796 * or @dev_base_lock.
797 */
798
799struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800{
801 struct net_device *dev;
802 struct hlist_head *head = dev_index_hash(net, ifindex);
803
804 hlist_for_each_entry(dev, head, index_hlist)
805 if (dev->ifindex == ifindex)
806 return dev;
807
808 return NULL;
809}
810EXPORT_SYMBOL(__dev_get_by_index);
811
812/**
813 * dev_get_by_index_rcu - find a device by its ifindex
814 * @net: the applicable net namespace
815 * @ifindex: index of device
816 *
817 * Search for an interface by index. Returns %NULL if the device
818 * is not found or a pointer to the device. The device has not
819 * had its reference counter increased so the caller must be careful
820 * about locking. The caller must hold RCU lock.
821 */
822
823struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824{
825 struct net_device *dev;
826 struct hlist_head *head = dev_index_hash(net, ifindex);
827
828 hlist_for_each_entry_rcu(dev, head, index_hlist)
829 if (dev->ifindex == ifindex)
830 return dev;
831
832 return NULL;
833}
834EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837/**
838 * dev_get_by_index - find a device by its ifindex
839 * @net: the applicable net namespace
840 * @ifindex: index of device
841 *
842 * Search for an interface by index. Returns NULL if the device
843 * is not found or a pointer to the device. The device returned has
844 * had a reference added and the pointer is safe until the user calls
845 * dev_put to indicate they have finished with it.
846 */
847
848struct net_device *dev_get_by_index(struct net *net, int ifindex)
849{
850 struct net_device *dev;
851
852 rcu_read_lock();
853 dev = dev_get_by_index_rcu(net, ifindex);
854 dev_hold(dev);
855 rcu_read_unlock();
856 return dev;
857}
858EXPORT_SYMBOL(dev_get_by_index);
859
860/**
861 * dev_get_by_napi_id - find a device by napi_id
862 * @napi_id: ID of the NAPI struct
863 *
864 * Search for an interface by NAPI ID. Returns %NULL if the device
865 * is not found or a pointer to the device. The device has not had
866 * its reference counter increased so the caller must be careful
867 * about locking. The caller must hold RCU lock.
868 */
869
870struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871{
872 struct napi_struct *napi;
873
874 WARN_ON_ONCE(!rcu_read_lock_held());
875
876 if (napi_id < MIN_NAPI_ID)
877 return NULL;
878
879 napi = napi_by_id(napi_id);
880
881 return napi ? napi->dev : NULL;
882}
883EXPORT_SYMBOL(dev_get_by_napi_id);
884
885/**
886 * netdev_get_name - get a netdevice name, knowing its ifindex.
887 * @net: network namespace
888 * @name: a pointer to the buffer where the name will be stored.
889 * @ifindex: the ifindex of the interface to get the name from.
890 */
891int netdev_get_name(struct net *net, char *name, int ifindex)
892{
893 struct net_device *dev;
894 int ret;
895
896 down_read(&devnet_rename_sem);
897 rcu_read_lock();
898
899 dev = dev_get_by_index_rcu(net, ifindex);
900 if (!dev) {
901 ret = -ENODEV;
902 goto out;
903 }
904
905 strcpy(name, dev->name);
906
907 ret = 0;
908out:
909 rcu_read_unlock();
910 up_read(&devnet_rename_sem);
911 return ret;
912}
913
914/**
915 * dev_getbyhwaddr_rcu - find a device by its hardware address
916 * @net: the applicable net namespace
917 * @type: media type of device
918 * @ha: hardware address
919 *
920 * Search for an interface by MAC address. Returns NULL if the device
921 * is not found or a pointer to the device.
922 * The caller must hold RCU or RTNL.
923 * The returned device has not had its ref count increased
924 * and the caller must therefore be careful about locking
925 *
926 */
927
928struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929 const char *ha)
930{
931 struct net_device *dev;
932
933 for_each_netdev_rcu(net, dev)
934 if (dev->type == type &&
935 !memcmp(dev->dev_addr, ha, dev->addr_len))
936 return dev;
937
938 return NULL;
939}
940EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941
942struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943{
944 struct net_device *dev, *ret = NULL;
945
946 rcu_read_lock();
947 for_each_netdev_rcu(net, dev)
948 if (dev->type == type) {
949 dev_hold(dev);
950 ret = dev;
951 break;
952 }
953 rcu_read_unlock();
954 return ret;
955}
956EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958/**
959 * __dev_get_by_flags - find any device with given flags
960 * @net: the applicable net namespace
961 * @if_flags: IFF_* values
962 * @mask: bitmask of bits in if_flags to check
963 *
964 * Search for any interface with the given flags. Returns NULL if a device
965 * is not found or a pointer to the device. Must be called inside
966 * rtnl_lock(), and result refcount is unchanged.
967 */
968
969struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 unsigned short mask)
971{
972 struct net_device *dev, *ret;
973
974 ASSERT_RTNL();
975
976 ret = NULL;
977 for_each_netdev(net, dev) {
978 if (((dev->flags ^ if_flags) & mask) == 0) {
979 ret = dev;
980 break;
981 }
982 }
983 return ret;
984}
985EXPORT_SYMBOL(__dev_get_by_flags);
986
987/**
988 * dev_valid_name - check if name is okay for network device
989 * @name: name string
990 *
991 * Network device names need to be valid file names to
992 * allow sysfs to work. We also disallow any kind of
993 * whitespace.
994 */
995bool dev_valid_name(const char *name)
996{
997 if (*name == '\0')
998 return false;
999 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000 return false;
1001 if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 return false;
1003
1004 while (*name) {
1005 if (*name == '/' || *name == ':' || isspace(*name))
1006 return false;
1007 name++;
1008 }
1009 return true;
1010}
1011EXPORT_SYMBOL(dev_valid_name);
1012
1013/**
1014 * __dev_alloc_name - allocate a name for a device
1015 * @net: network namespace to allocate the device name in
1016 * @name: name format string
1017 * @buf: scratch buffer and result name string
1018 *
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029{
1030 int i = 0;
1031 const char *p;
1032 const int max_netdevices = 8*PAGE_SIZE;
1033 unsigned long *inuse;
1034 struct net_device *d;
1035
1036 if (!dev_valid_name(name))
1037 return -EINVAL;
1038
1039 p = strchr(name, '%');
1040 if (p) {
1041 /*
1042 * Verify the string as this thing may have come from
1043 * the user. There must be either one "%d" and no other "%"
1044 * characters.
1045 */
1046 if (p[1] != 'd' || strchr(p + 2, '%'))
1047 return -EINVAL;
1048
1049 /* Use one page as a bit array of possible slots */
1050 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051 if (!inuse)
1052 return -ENOMEM;
1053
1054 for_each_netdev(net, d) {
1055 struct netdev_name_node *name_node;
1056 list_for_each_entry(name_node, &d->name_node->list, list) {
1057 if (!sscanf(name_node->name, name, &i))
1058 continue;
1059 if (i < 0 || i >= max_netdevices)
1060 continue;
1061
1062 /* avoid cases where sscanf is not exact inverse of printf */
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065 __set_bit(i, inuse);
1066 }
1067 if (!sscanf(d->name, name, &i))
1068 continue;
1069 if (i < 0 || i >= max_netdevices)
1070 continue;
1071
1072 /* avoid cases where sscanf is not exact inverse of printf */
1073 snprintf(buf, IFNAMSIZ, name, i);
1074 if (!strncmp(buf, d->name, IFNAMSIZ))
1075 __set_bit(i, inuse);
1076 }
1077
1078 i = find_first_zero_bit(inuse, max_netdevices);
1079 free_page((unsigned long) inuse);
1080 }
1081
1082 snprintf(buf, IFNAMSIZ, name, i);
1083 if (!netdev_name_in_use(net, buf))
1084 return i;
1085
1086 /* It is possible to run out of possible slots
1087 * when the name is long and there isn't enough space left
1088 * for the digits, or if all bits are used.
1089 */
1090 return -ENFILE;
1091}
1092
1093static int dev_alloc_name_ns(struct net *net,
1094 struct net_device *dev,
1095 const char *name)
1096{
1097 char buf[IFNAMSIZ];
1098 int ret;
1099
1100 BUG_ON(!net);
1101 ret = __dev_alloc_name(net, name, buf);
1102 if (ret >= 0)
1103 strscpy(dev->name, buf, IFNAMSIZ);
1104 return ret;
1105}
1106
1107/**
1108 * dev_alloc_name - allocate a name for a device
1109 * @dev: device
1110 * @name: name format string
1111 *
1112 * Passed a format string - eg "lt%d" it will try and find a suitable
1113 * id. It scans list of devices to build up a free map, then chooses
1114 * the first empty slot. The caller must hold the dev_base or rtnl lock
1115 * while allocating the name and adding the device in order to avoid
1116 * duplicates.
1117 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118 * Returns the number of the unit assigned or a negative errno code.
1119 */
1120
1121int dev_alloc_name(struct net_device *dev, const char *name)
1122{
1123 return dev_alloc_name_ns(dev_net(dev), dev, name);
1124}
1125EXPORT_SYMBOL(dev_alloc_name);
1126
1127static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128 const char *name)
1129{
1130 BUG_ON(!net);
1131
1132 if (!dev_valid_name(name))
1133 return -EINVAL;
1134
1135 if (strchr(name, '%'))
1136 return dev_alloc_name_ns(net, dev, name);
1137 else if (netdev_name_in_use(net, name))
1138 return -EEXIST;
1139 else if (dev->name != name)
1140 strscpy(dev->name, name, IFNAMSIZ);
1141
1142 return 0;
1143}
1144
1145/**
1146 * dev_change_name - change name of a device
1147 * @dev: device
1148 * @newname: name (or format string) must be at least IFNAMSIZ
1149 *
1150 * Change name of a device, can pass format strings "eth%d".
1151 * for wildcarding.
1152 */
1153int dev_change_name(struct net_device *dev, const char *newname)
1154{
1155 unsigned char old_assign_type;
1156 char oldname[IFNAMSIZ];
1157 int err = 0;
1158 int ret;
1159 struct net *net;
1160
1161 ASSERT_RTNL();
1162 BUG_ON(!dev_net(dev));
1163
1164 net = dev_net(dev);
1165
1166 down_write(&devnet_rename_sem);
1167
1168 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1169 up_write(&devnet_rename_sem);
1170 return 0;
1171 }
1172
1173 memcpy(oldname, dev->name, IFNAMSIZ);
1174
1175 err = dev_get_valid_name(net, dev, newname);
1176 if (err < 0) {
1177 up_write(&devnet_rename_sem);
1178 return err;
1179 }
1180
1181 if (oldname[0] && !strchr(oldname, '%'))
1182 netdev_info(dev, "renamed from %s%s\n", oldname,
1183 dev->flags & IFF_UP ? " (while UP)" : "");
1184
1185 old_assign_type = dev->name_assign_type;
1186 dev->name_assign_type = NET_NAME_RENAMED;
1187
1188rollback:
1189 ret = device_rename(&dev->dev, dev->name);
1190 if (ret) {
1191 memcpy(dev->name, oldname, IFNAMSIZ);
1192 dev->name_assign_type = old_assign_type;
1193 up_write(&devnet_rename_sem);
1194 return ret;
1195 }
1196
1197 up_write(&devnet_rename_sem);
1198
1199 netdev_adjacent_rename_links(dev, oldname);
1200
1201 write_lock(&dev_base_lock);
1202 netdev_name_node_del(dev->name_node);
1203 write_unlock(&dev_base_lock);
1204
1205 synchronize_rcu();
1206
1207 write_lock(&dev_base_lock);
1208 netdev_name_node_add(net, dev->name_node);
1209 write_unlock(&dev_base_lock);
1210
1211 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1212 ret = notifier_to_errno(ret);
1213
1214 if (ret) {
1215 /* err >= 0 after dev_alloc_name() or stores the first errno */
1216 if (err >= 0) {
1217 err = ret;
1218 down_write(&devnet_rename_sem);
1219 memcpy(dev->name, oldname, IFNAMSIZ);
1220 memcpy(oldname, newname, IFNAMSIZ);
1221 dev->name_assign_type = old_assign_type;
1222 old_assign_type = NET_NAME_RENAMED;
1223 goto rollback;
1224 } else {
1225 netdev_err(dev, "name change rollback failed: %d\n",
1226 ret);
1227 }
1228 }
1229
1230 return err;
1231}
1232
1233/**
1234 * dev_set_alias - change ifalias of a device
1235 * @dev: device
1236 * @alias: name up to IFALIASZ
1237 * @len: limit of bytes to copy from info
1238 *
1239 * Set ifalias for a device,
1240 */
1241int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1242{
1243 struct dev_ifalias *new_alias = NULL;
1244
1245 if (len >= IFALIASZ)
1246 return -EINVAL;
1247
1248 if (len) {
1249 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1250 if (!new_alias)
1251 return -ENOMEM;
1252
1253 memcpy(new_alias->ifalias, alias, len);
1254 new_alias->ifalias[len] = 0;
1255 }
1256
1257 mutex_lock(&ifalias_mutex);
1258 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1259 mutex_is_locked(&ifalias_mutex));
1260 mutex_unlock(&ifalias_mutex);
1261
1262 if (new_alias)
1263 kfree_rcu(new_alias, rcuhead);
1264
1265 return len;
1266}
1267EXPORT_SYMBOL(dev_set_alias);
1268
1269/**
1270 * dev_get_alias - get ifalias of a device
1271 * @dev: device
1272 * @name: buffer to store name of ifalias
1273 * @len: size of buffer
1274 *
1275 * get ifalias for a device. Caller must make sure dev cannot go
1276 * away, e.g. rcu read lock or own a reference count to device.
1277 */
1278int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1279{
1280 const struct dev_ifalias *alias;
1281 int ret = 0;
1282
1283 rcu_read_lock();
1284 alias = rcu_dereference(dev->ifalias);
1285 if (alias)
1286 ret = snprintf(name, len, "%s", alias->ifalias);
1287 rcu_read_unlock();
1288
1289 return ret;
1290}
1291
1292/**
1293 * netdev_features_change - device changes features
1294 * @dev: device to cause notification
1295 *
1296 * Called to indicate a device has changed features.
1297 */
1298void netdev_features_change(struct net_device *dev)
1299{
1300 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301}
1302EXPORT_SYMBOL(netdev_features_change);
1303
1304/**
1305 * netdev_state_change - device changes state
1306 * @dev: device to cause notification
1307 *
1308 * Called to indicate a device has changed state. This function calls
1309 * the notifier chains for netdev_chain and sends a NEWLINK message
1310 * to the routing socket.
1311 */
1312void netdev_state_change(struct net_device *dev)
1313{
1314 if (dev->flags & IFF_UP) {
1315 struct netdev_notifier_change_info change_info = {
1316 .info.dev = dev,
1317 };
1318
1319 call_netdevice_notifiers_info(NETDEV_CHANGE,
1320 &change_info.info);
1321 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1322 }
1323}
1324EXPORT_SYMBOL(netdev_state_change);
1325
1326/**
1327 * __netdev_notify_peers - notify network peers about existence of @dev,
1328 * to be called when rtnl lock is already held.
1329 * @dev: network device
1330 *
1331 * Generate traffic such that interested network peers are aware of
1332 * @dev, such as by generating a gratuitous ARP. This may be used when
1333 * a device wants to inform the rest of the network about some sort of
1334 * reconfiguration such as a failover event or virtual machine
1335 * migration.
1336 */
1337void __netdev_notify_peers(struct net_device *dev)
1338{
1339 ASSERT_RTNL();
1340 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1341 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1342}
1343EXPORT_SYMBOL(__netdev_notify_peers);
1344
1345/**
1346 * netdev_notify_peers - notify network peers about existence of @dev
1347 * @dev: network device
1348 *
1349 * Generate traffic such that interested network peers are aware of
1350 * @dev, such as by generating a gratuitous ARP. This may be used when
1351 * a device wants to inform the rest of the network about some sort of
1352 * reconfiguration such as a failover event or virtual machine
1353 * migration.
1354 */
1355void netdev_notify_peers(struct net_device *dev)
1356{
1357 rtnl_lock();
1358 __netdev_notify_peers(dev);
1359 rtnl_unlock();
1360}
1361EXPORT_SYMBOL(netdev_notify_peers);
1362
1363static int napi_threaded_poll(void *data);
1364
1365static int napi_kthread_create(struct napi_struct *n)
1366{
1367 int err = 0;
1368
1369 /* Create and wake up the kthread once to put it in
1370 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1371 * warning and work with loadavg.
1372 */
1373 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1374 n->dev->name, n->napi_id);
1375 if (IS_ERR(n->thread)) {
1376 err = PTR_ERR(n->thread);
1377 pr_err("kthread_run failed with err %d\n", err);
1378 n->thread = NULL;
1379 }
1380
1381 return err;
1382}
1383
1384static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1385{
1386 const struct net_device_ops *ops = dev->netdev_ops;
1387 int ret;
1388
1389 ASSERT_RTNL();
1390 dev_addr_check(dev);
1391
1392 if (!netif_device_present(dev)) {
1393 /* may be detached because parent is runtime-suspended */
1394 if (dev->dev.parent)
1395 pm_runtime_resume(dev->dev.parent);
1396 if (!netif_device_present(dev))
1397 return -ENODEV;
1398 }
1399
1400 /* Block netpoll from trying to do any rx path servicing.
1401 * If we don't do this there is a chance ndo_poll_controller
1402 * or ndo_poll may be running while we open the device
1403 */
1404 netpoll_poll_disable(dev);
1405
1406 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1407 ret = notifier_to_errno(ret);
1408 if (ret)
1409 return ret;
1410
1411 set_bit(__LINK_STATE_START, &dev->state);
1412
1413 if (ops->ndo_validate_addr)
1414 ret = ops->ndo_validate_addr(dev);
1415
1416 if (!ret && ops->ndo_open)
1417 ret = ops->ndo_open(dev);
1418
1419 netpoll_poll_enable(dev);
1420
1421 if (ret)
1422 clear_bit(__LINK_STATE_START, &dev->state);
1423 else {
1424 dev->flags |= IFF_UP;
1425 dev_set_rx_mode(dev);
1426 dev_activate(dev);
1427 add_device_randomness(dev->dev_addr, dev->addr_len);
1428 }
1429
1430 return ret;
1431}
1432
1433/**
1434 * dev_open - prepare an interface for use.
1435 * @dev: device to open
1436 * @extack: netlink extended ack
1437 *
1438 * Takes a device from down to up state. The device's private open
1439 * function is invoked and then the multicast lists are loaded. Finally
1440 * the device is moved into the up state and a %NETDEV_UP message is
1441 * sent to the netdev notifier chain.
1442 *
1443 * Calling this function on an active interface is a nop. On a failure
1444 * a negative errno code is returned.
1445 */
1446int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1447{
1448 int ret;
1449
1450 if (dev->flags & IFF_UP)
1451 return 0;
1452
1453 ret = __dev_open(dev, extack);
1454 if (ret < 0)
1455 return ret;
1456
1457 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1458 call_netdevice_notifiers(NETDEV_UP, dev);
1459
1460 return ret;
1461}
1462EXPORT_SYMBOL(dev_open);
1463
1464static void __dev_close_many(struct list_head *head)
1465{
1466 struct net_device *dev;
1467
1468 ASSERT_RTNL();
1469 might_sleep();
1470
1471 list_for_each_entry(dev, head, close_list) {
1472 /* Temporarily disable netpoll until the interface is down */
1473 netpoll_poll_disable(dev);
1474
1475 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1476
1477 clear_bit(__LINK_STATE_START, &dev->state);
1478
1479 /* Synchronize to scheduled poll. We cannot touch poll list, it
1480 * can be even on different cpu. So just clear netif_running().
1481 *
1482 * dev->stop() will invoke napi_disable() on all of it's
1483 * napi_struct instances on this device.
1484 */
1485 smp_mb__after_atomic(); /* Commit netif_running(). */
1486 }
1487
1488 dev_deactivate_many(head);
1489
1490 list_for_each_entry(dev, head, close_list) {
1491 const struct net_device_ops *ops = dev->netdev_ops;
1492
1493 /*
1494 * Call the device specific close. This cannot fail.
1495 * Only if device is UP
1496 *
1497 * We allow it to be called even after a DETACH hot-plug
1498 * event.
1499 */
1500 if (ops->ndo_stop)
1501 ops->ndo_stop(dev);
1502
1503 dev->flags &= ~IFF_UP;
1504 netpoll_poll_enable(dev);
1505 }
1506}
1507
1508static void __dev_close(struct net_device *dev)
1509{
1510 LIST_HEAD(single);
1511
1512 list_add(&dev->close_list, &single);
1513 __dev_close_many(&single);
1514 list_del(&single);
1515}
1516
1517void dev_close_many(struct list_head *head, bool unlink)
1518{
1519 struct net_device *dev, *tmp;
1520
1521 /* Remove the devices that don't need to be closed */
1522 list_for_each_entry_safe(dev, tmp, head, close_list)
1523 if (!(dev->flags & IFF_UP))
1524 list_del_init(&dev->close_list);
1525
1526 __dev_close_many(head);
1527
1528 list_for_each_entry_safe(dev, tmp, head, close_list) {
1529 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1530 call_netdevice_notifiers(NETDEV_DOWN, dev);
1531 if (unlink)
1532 list_del_init(&dev->close_list);
1533 }
1534}
1535EXPORT_SYMBOL(dev_close_many);
1536
1537/**
1538 * dev_close - shutdown an interface.
1539 * @dev: device to shutdown
1540 *
1541 * This function moves an active device into down state. A
1542 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1543 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1544 * chain.
1545 */
1546void dev_close(struct net_device *dev)
1547{
1548 if (dev->flags & IFF_UP) {
1549 LIST_HEAD(single);
1550
1551 list_add(&dev->close_list, &single);
1552 dev_close_many(&single, true);
1553 list_del(&single);
1554 }
1555}
1556EXPORT_SYMBOL(dev_close);
1557
1558
1559/**
1560 * dev_disable_lro - disable Large Receive Offload on a device
1561 * @dev: device
1562 *
1563 * Disable Large Receive Offload (LRO) on a net device. Must be
1564 * called under RTNL. This is needed if received packets may be
1565 * forwarded to another interface.
1566 */
1567void dev_disable_lro(struct net_device *dev)
1568{
1569 struct net_device *lower_dev;
1570 struct list_head *iter;
1571
1572 dev->wanted_features &= ~NETIF_F_LRO;
1573 netdev_update_features(dev);
1574
1575 if (unlikely(dev->features & NETIF_F_LRO))
1576 netdev_WARN(dev, "failed to disable LRO!\n");
1577
1578 netdev_for_each_lower_dev(dev, lower_dev, iter)
1579 dev_disable_lro(lower_dev);
1580}
1581EXPORT_SYMBOL(dev_disable_lro);
1582
1583/**
1584 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1585 * @dev: device
1586 *
1587 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1588 * called under RTNL. This is needed if Generic XDP is installed on
1589 * the device.
1590 */
1591static void dev_disable_gro_hw(struct net_device *dev)
1592{
1593 dev->wanted_features &= ~NETIF_F_GRO_HW;
1594 netdev_update_features(dev);
1595
1596 if (unlikely(dev->features & NETIF_F_GRO_HW))
1597 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1598}
1599
1600const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1601{
1602#define N(val) \
1603 case NETDEV_##val: \
1604 return "NETDEV_" __stringify(val);
1605 switch (cmd) {
1606 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1607 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1608 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1609 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1610 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1611 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1612 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1613 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1614 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1615 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1616 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1617 N(XDP_FEAT_CHANGE)
1618 }
1619#undef N
1620 return "UNKNOWN_NETDEV_EVENT";
1621}
1622EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1623
1624static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1625 struct net_device *dev)
1626{
1627 struct netdev_notifier_info info = {
1628 .dev = dev,
1629 };
1630
1631 return nb->notifier_call(nb, val, &info);
1632}
1633
1634static int call_netdevice_register_notifiers(struct notifier_block *nb,
1635 struct net_device *dev)
1636{
1637 int err;
1638
1639 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1640 err = notifier_to_errno(err);
1641 if (err)
1642 return err;
1643
1644 if (!(dev->flags & IFF_UP))
1645 return 0;
1646
1647 call_netdevice_notifier(nb, NETDEV_UP, dev);
1648 return 0;
1649}
1650
1651static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1652 struct net_device *dev)
1653{
1654 if (dev->flags & IFF_UP) {
1655 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1656 dev);
1657 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1658 }
1659 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1660}
1661
1662static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1663 struct net *net)
1664{
1665 struct net_device *dev;
1666 int err;
1667
1668 for_each_netdev(net, dev) {
1669 err = call_netdevice_register_notifiers(nb, dev);
1670 if (err)
1671 goto rollback;
1672 }
1673 return 0;
1674
1675rollback:
1676 for_each_netdev_continue_reverse(net, dev)
1677 call_netdevice_unregister_notifiers(nb, dev);
1678 return err;
1679}
1680
1681static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1682 struct net *net)
1683{
1684 struct net_device *dev;
1685
1686 for_each_netdev(net, dev)
1687 call_netdevice_unregister_notifiers(nb, dev);
1688}
1689
1690static int dev_boot_phase = 1;
1691
1692/**
1693 * register_netdevice_notifier - register a network notifier block
1694 * @nb: notifier
1695 *
1696 * Register a notifier to be called when network device events occur.
1697 * The notifier passed is linked into the kernel structures and must
1698 * not be reused until it has been unregistered. A negative errno code
1699 * is returned on a failure.
1700 *
1701 * When registered all registration and up events are replayed
1702 * to the new notifier to allow device to have a race free
1703 * view of the network device list.
1704 */
1705
1706int register_netdevice_notifier(struct notifier_block *nb)
1707{
1708 struct net *net;
1709 int err;
1710
1711 /* Close race with setup_net() and cleanup_net() */
1712 down_write(&pernet_ops_rwsem);
1713 rtnl_lock();
1714 err = raw_notifier_chain_register(&netdev_chain, nb);
1715 if (err)
1716 goto unlock;
1717 if (dev_boot_phase)
1718 goto unlock;
1719 for_each_net(net) {
1720 err = call_netdevice_register_net_notifiers(nb, net);
1721 if (err)
1722 goto rollback;
1723 }
1724
1725unlock:
1726 rtnl_unlock();
1727 up_write(&pernet_ops_rwsem);
1728 return err;
1729
1730rollback:
1731 for_each_net_continue_reverse(net)
1732 call_netdevice_unregister_net_notifiers(nb, net);
1733
1734 raw_notifier_chain_unregister(&netdev_chain, nb);
1735 goto unlock;
1736}
1737EXPORT_SYMBOL(register_netdevice_notifier);
1738
1739/**
1740 * unregister_netdevice_notifier - unregister a network notifier block
1741 * @nb: notifier
1742 *
1743 * Unregister a notifier previously registered by
1744 * register_netdevice_notifier(). The notifier is unlinked into the
1745 * kernel structures and may then be reused. A negative errno code
1746 * is returned on a failure.
1747 *
1748 * After unregistering unregister and down device events are synthesized
1749 * for all devices on the device list to the removed notifier to remove
1750 * the need for special case cleanup code.
1751 */
1752
1753int unregister_netdevice_notifier(struct notifier_block *nb)
1754{
1755 struct net *net;
1756 int err;
1757
1758 /* Close race with setup_net() and cleanup_net() */
1759 down_write(&pernet_ops_rwsem);
1760 rtnl_lock();
1761 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1762 if (err)
1763 goto unlock;
1764
1765 for_each_net(net)
1766 call_netdevice_unregister_net_notifiers(nb, net);
1767
1768unlock:
1769 rtnl_unlock();
1770 up_write(&pernet_ops_rwsem);
1771 return err;
1772}
1773EXPORT_SYMBOL(unregister_netdevice_notifier);
1774
1775static int __register_netdevice_notifier_net(struct net *net,
1776 struct notifier_block *nb,
1777 bool ignore_call_fail)
1778{
1779 int err;
1780
1781 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1782 if (err)
1783 return err;
1784 if (dev_boot_phase)
1785 return 0;
1786
1787 err = call_netdevice_register_net_notifiers(nb, net);
1788 if (err && !ignore_call_fail)
1789 goto chain_unregister;
1790
1791 return 0;
1792
1793chain_unregister:
1794 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1795 return err;
1796}
1797
1798static int __unregister_netdevice_notifier_net(struct net *net,
1799 struct notifier_block *nb)
1800{
1801 int err;
1802
1803 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1804 if (err)
1805 return err;
1806
1807 call_netdevice_unregister_net_notifiers(nb, net);
1808 return 0;
1809}
1810
1811/**
1812 * register_netdevice_notifier_net - register a per-netns network notifier block
1813 * @net: network namespace
1814 * @nb: notifier
1815 *
1816 * Register a notifier to be called when network device events occur.
1817 * The notifier passed is linked into the kernel structures and must
1818 * not be reused until it has been unregistered. A negative errno code
1819 * is returned on a failure.
1820 *
1821 * When registered all registration and up events are replayed
1822 * to the new notifier to allow device to have a race free
1823 * view of the network device list.
1824 */
1825
1826int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1827{
1828 int err;
1829
1830 rtnl_lock();
1831 err = __register_netdevice_notifier_net(net, nb, false);
1832 rtnl_unlock();
1833 return err;
1834}
1835EXPORT_SYMBOL(register_netdevice_notifier_net);
1836
1837/**
1838 * unregister_netdevice_notifier_net - unregister a per-netns
1839 * network notifier block
1840 * @net: network namespace
1841 * @nb: notifier
1842 *
1843 * Unregister a notifier previously registered by
1844 * register_netdevice_notifier_net(). The notifier is unlinked from the
1845 * kernel structures and may then be reused. A negative errno code
1846 * is returned on a failure.
1847 *
1848 * After unregistering unregister and down device events are synthesized
1849 * for all devices on the device list to the removed notifier to remove
1850 * the need for special case cleanup code.
1851 */
1852
1853int unregister_netdevice_notifier_net(struct net *net,
1854 struct notifier_block *nb)
1855{
1856 int err;
1857
1858 rtnl_lock();
1859 err = __unregister_netdevice_notifier_net(net, nb);
1860 rtnl_unlock();
1861 return err;
1862}
1863EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1864
1865static void __move_netdevice_notifier_net(struct net *src_net,
1866 struct net *dst_net,
1867 struct notifier_block *nb)
1868{
1869 __unregister_netdevice_notifier_net(src_net, nb);
1870 __register_netdevice_notifier_net(dst_net, nb, true);
1871}
1872
1873int register_netdevice_notifier_dev_net(struct net_device *dev,
1874 struct notifier_block *nb,
1875 struct netdev_net_notifier *nn)
1876{
1877 int err;
1878
1879 rtnl_lock();
1880 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1881 if (!err) {
1882 nn->nb = nb;
1883 list_add(&nn->list, &dev->net_notifier_list);
1884 }
1885 rtnl_unlock();
1886 return err;
1887}
1888EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1889
1890int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1891 struct notifier_block *nb,
1892 struct netdev_net_notifier *nn)
1893{
1894 int err;
1895
1896 rtnl_lock();
1897 list_del(&nn->list);
1898 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1899 rtnl_unlock();
1900 return err;
1901}
1902EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1903
1904static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1905 struct net *net)
1906{
1907 struct netdev_net_notifier *nn;
1908
1909 list_for_each_entry(nn, &dev->net_notifier_list, list)
1910 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1911}
1912
1913/**
1914 * call_netdevice_notifiers_info - call all network notifier blocks
1915 * @val: value passed unmodified to notifier function
1916 * @info: notifier information data
1917 *
1918 * Call all network notifier blocks. Parameters and return value
1919 * are as for raw_notifier_call_chain().
1920 */
1921
1922static int call_netdevice_notifiers_info(unsigned long val,
1923 struct netdev_notifier_info *info)
1924{
1925 struct net *net = dev_net(info->dev);
1926 int ret;
1927
1928 ASSERT_RTNL();
1929
1930 /* Run per-netns notifier block chain first, then run the global one.
1931 * Hopefully, one day, the global one is going to be removed after
1932 * all notifier block registrators get converted to be per-netns.
1933 */
1934 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1935 if (ret & NOTIFY_STOP_MASK)
1936 return ret;
1937 return raw_notifier_call_chain(&netdev_chain, val, info);
1938}
1939
1940/**
1941 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1942 * for and rollback on error
1943 * @val_up: value passed unmodified to notifier function
1944 * @val_down: value passed unmodified to the notifier function when
1945 * recovering from an error on @val_up
1946 * @info: notifier information data
1947 *
1948 * Call all per-netns network notifier blocks, but not notifier blocks on
1949 * the global notifier chain. Parameters and return value are as for
1950 * raw_notifier_call_chain_robust().
1951 */
1952
1953static int
1954call_netdevice_notifiers_info_robust(unsigned long val_up,
1955 unsigned long val_down,
1956 struct netdev_notifier_info *info)
1957{
1958 struct net *net = dev_net(info->dev);
1959
1960 ASSERT_RTNL();
1961
1962 return raw_notifier_call_chain_robust(&net->netdev_chain,
1963 val_up, val_down, info);
1964}
1965
1966static int call_netdevice_notifiers_extack(unsigned long val,
1967 struct net_device *dev,
1968 struct netlink_ext_ack *extack)
1969{
1970 struct netdev_notifier_info info = {
1971 .dev = dev,
1972 .extack = extack,
1973 };
1974
1975 return call_netdevice_notifiers_info(val, &info);
1976}
1977
1978/**
1979 * call_netdevice_notifiers - call all network notifier blocks
1980 * @val: value passed unmodified to notifier function
1981 * @dev: net_device pointer passed unmodified to notifier function
1982 *
1983 * Call all network notifier blocks. Parameters and return value
1984 * are as for raw_notifier_call_chain().
1985 */
1986
1987int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1988{
1989 return call_netdevice_notifiers_extack(val, dev, NULL);
1990}
1991EXPORT_SYMBOL(call_netdevice_notifiers);
1992
1993/**
1994 * call_netdevice_notifiers_mtu - call all network notifier blocks
1995 * @val: value passed unmodified to notifier function
1996 * @dev: net_device pointer passed unmodified to notifier function
1997 * @arg: additional u32 argument passed to the notifier function
1998 *
1999 * Call all network notifier blocks. Parameters and return value
2000 * are as for raw_notifier_call_chain().
2001 */
2002static int call_netdevice_notifiers_mtu(unsigned long val,
2003 struct net_device *dev, u32 arg)
2004{
2005 struct netdev_notifier_info_ext info = {
2006 .info.dev = dev,
2007 .ext.mtu = arg,
2008 };
2009
2010 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2011
2012 return call_netdevice_notifiers_info(val, &info.info);
2013}
2014
2015#ifdef CONFIG_NET_INGRESS
2016static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2017
2018void net_inc_ingress_queue(void)
2019{
2020 static_branch_inc(&ingress_needed_key);
2021}
2022EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2023
2024void net_dec_ingress_queue(void)
2025{
2026 static_branch_dec(&ingress_needed_key);
2027}
2028EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2029#endif
2030
2031#ifdef CONFIG_NET_EGRESS
2032static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2033
2034void net_inc_egress_queue(void)
2035{
2036 static_branch_inc(&egress_needed_key);
2037}
2038EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2039
2040void net_dec_egress_queue(void)
2041{
2042 static_branch_dec(&egress_needed_key);
2043}
2044EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2045#endif
2046
2047DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2048EXPORT_SYMBOL(netstamp_needed_key);
2049#ifdef CONFIG_JUMP_LABEL
2050static atomic_t netstamp_needed_deferred;
2051static atomic_t netstamp_wanted;
2052static void netstamp_clear(struct work_struct *work)
2053{
2054 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2055 int wanted;
2056
2057 wanted = atomic_add_return(deferred, &netstamp_wanted);
2058 if (wanted > 0)
2059 static_branch_enable(&netstamp_needed_key);
2060 else
2061 static_branch_disable(&netstamp_needed_key);
2062}
2063static DECLARE_WORK(netstamp_work, netstamp_clear);
2064#endif
2065
2066void net_enable_timestamp(void)
2067{
2068#ifdef CONFIG_JUMP_LABEL
2069 int wanted = atomic_read(&netstamp_wanted);
2070
2071 while (wanted > 0) {
2072 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2073 return;
2074 }
2075 atomic_inc(&netstamp_needed_deferred);
2076 schedule_work(&netstamp_work);
2077#else
2078 static_branch_inc(&netstamp_needed_key);
2079#endif
2080}
2081EXPORT_SYMBOL(net_enable_timestamp);
2082
2083void net_disable_timestamp(void)
2084{
2085#ifdef CONFIG_JUMP_LABEL
2086 int wanted = atomic_read(&netstamp_wanted);
2087
2088 while (wanted > 1) {
2089 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2090 return;
2091 }
2092 atomic_dec(&netstamp_needed_deferred);
2093 schedule_work(&netstamp_work);
2094#else
2095 static_branch_dec(&netstamp_needed_key);
2096#endif
2097}
2098EXPORT_SYMBOL(net_disable_timestamp);
2099
2100static inline void net_timestamp_set(struct sk_buff *skb)
2101{
2102 skb->tstamp = 0;
2103 skb->mono_delivery_time = 0;
2104 if (static_branch_unlikely(&netstamp_needed_key))
2105 skb->tstamp = ktime_get_real();
2106}
2107
2108#define net_timestamp_check(COND, SKB) \
2109 if (static_branch_unlikely(&netstamp_needed_key)) { \
2110 if ((COND) && !(SKB)->tstamp) \
2111 (SKB)->tstamp = ktime_get_real(); \
2112 } \
2113
2114bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2115{
2116 return __is_skb_forwardable(dev, skb, true);
2117}
2118EXPORT_SYMBOL_GPL(is_skb_forwardable);
2119
2120static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2121 bool check_mtu)
2122{
2123 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2124
2125 if (likely(!ret)) {
2126 skb->protocol = eth_type_trans(skb, dev);
2127 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2128 }
2129
2130 return ret;
2131}
2132
2133int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2134{
2135 return __dev_forward_skb2(dev, skb, true);
2136}
2137EXPORT_SYMBOL_GPL(__dev_forward_skb);
2138
2139/**
2140 * dev_forward_skb - loopback an skb to another netif
2141 *
2142 * @dev: destination network device
2143 * @skb: buffer to forward
2144 *
2145 * return values:
2146 * NET_RX_SUCCESS (no congestion)
2147 * NET_RX_DROP (packet was dropped, but freed)
2148 *
2149 * dev_forward_skb can be used for injecting an skb from the
2150 * start_xmit function of one device into the receive queue
2151 * of another device.
2152 *
2153 * The receiving device may be in another namespace, so
2154 * we have to clear all information in the skb that could
2155 * impact namespace isolation.
2156 */
2157int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2158{
2159 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2160}
2161EXPORT_SYMBOL_GPL(dev_forward_skb);
2162
2163int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2164{
2165 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2166}
2167
2168static inline int deliver_skb(struct sk_buff *skb,
2169 struct packet_type *pt_prev,
2170 struct net_device *orig_dev)
2171{
2172 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2173 return -ENOMEM;
2174 refcount_inc(&skb->users);
2175 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2176}
2177
2178static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2179 struct packet_type **pt,
2180 struct net_device *orig_dev,
2181 __be16 type,
2182 struct list_head *ptype_list)
2183{
2184 struct packet_type *ptype, *pt_prev = *pt;
2185
2186 list_for_each_entry_rcu(ptype, ptype_list, list) {
2187 if (ptype->type != type)
2188 continue;
2189 if (pt_prev)
2190 deliver_skb(skb, pt_prev, orig_dev);
2191 pt_prev = ptype;
2192 }
2193 *pt = pt_prev;
2194}
2195
2196static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2197{
2198 if (!ptype->af_packet_priv || !skb->sk)
2199 return false;
2200
2201 if (ptype->id_match)
2202 return ptype->id_match(ptype, skb->sk);
2203 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2204 return true;
2205
2206 return false;
2207}
2208
2209/**
2210 * dev_nit_active - return true if any network interface taps are in use
2211 *
2212 * @dev: network device to check for the presence of taps
2213 */
2214bool dev_nit_active(struct net_device *dev)
2215{
2216 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2217}
2218EXPORT_SYMBOL_GPL(dev_nit_active);
2219
2220/*
2221 * Support routine. Sends outgoing frames to any network
2222 * taps currently in use.
2223 */
2224
2225void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2226{
2227 struct packet_type *ptype;
2228 struct sk_buff *skb2 = NULL;
2229 struct packet_type *pt_prev = NULL;
2230 struct list_head *ptype_list = &ptype_all;
2231
2232 rcu_read_lock();
2233again:
2234 list_for_each_entry_rcu(ptype, ptype_list, list) {
2235 if (ptype->ignore_outgoing)
2236 continue;
2237
2238 /* Never send packets back to the socket
2239 * they originated from - MvS (miquels@drinkel.ow.org)
2240 */
2241 if (skb_loop_sk(ptype, skb))
2242 continue;
2243
2244 if (pt_prev) {
2245 deliver_skb(skb2, pt_prev, skb->dev);
2246 pt_prev = ptype;
2247 continue;
2248 }
2249
2250 /* need to clone skb, done only once */
2251 skb2 = skb_clone(skb, GFP_ATOMIC);
2252 if (!skb2)
2253 goto out_unlock;
2254
2255 net_timestamp_set(skb2);
2256
2257 /* skb->nh should be correctly
2258 * set by sender, so that the second statement is
2259 * just protection against buggy protocols.
2260 */
2261 skb_reset_mac_header(skb2);
2262
2263 if (skb_network_header(skb2) < skb2->data ||
2264 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2265 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2266 ntohs(skb2->protocol),
2267 dev->name);
2268 skb_reset_network_header(skb2);
2269 }
2270
2271 skb2->transport_header = skb2->network_header;
2272 skb2->pkt_type = PACKET_OUTGOING;
2273 pt_prev = ptype;
2274 }
2275
2276 if (ptype_list == &ptype_all) {
2277 ptype_list = &dev->ptype_all;
2278 goto again;
2279 }
2280out_unlock:
2281 if (pt_prev) {
2282 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2283 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2284 else
2285 kfree_skb(skb2);
2286 }
2287 rcu_read_unlock();
2288}
2289EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2290
2291/**
2292 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2293 * @dev: Network device
2294 * @txq: number of queues available
2295 *
2296 * If real_num_tx_queues is changed the tc mappings may no longer be
2297 * valid. To resolve this verify the tc mapping remains valid and if
2298 * not NULL the mapping. With no priorities mapping to this
2299 * offset/count pair it will no longer be used. In the worst case TC0
2300 * is invalid nothing can be done so disable priority mappings. If is
2301 * expected that drivers will fix this mapping if they can before
2302 * calling netif_set_real_num_tx_queues.
2303 */
2304static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2305{
2306 int i;
2307 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2308
2309 /* If TC0 is invalidated disable TC mapping */
2310 if (tc->offset + tc->count > txq) {
2311 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2312 dev->num_tc = 0;
2313 return;
2314 }
2315
2316 /* Invalidated prio to tc mappings set to TC0 */
2317 for (i = 1; i < TC_BITMASK + 1; i++) {
2318 int q = netdev_get_prio_tc_map(dev, i);
2319
2320 tc = &dev->tc_to_txq[q];
2321 if (tc->offset + tc->count > txq) {
2322 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2323 i, q);
2324 netdev_set_prio_tc_map(dev, i, 0);
2325 }
2326 }
2327}
2328
2329int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2330{
2331 if (dev->num_tc) {
2332 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2333 int i;
2334
2335 /* walk through the TCs and see if it falls into any of them */
2336 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2337 if ((txq - tc->offset) < tc->count)
2338 return i;
2339 }
2340
2341 /* didn't find it, just return -1 to indicate no match */
2342 return -1;
2343 }
2344
2345 return 0;
2346}
2347EXPORT_SYMBOL(netdev_txq_to_tc);
2348
2349#ifdef CONFIG_XPS
2350static struct static_key xps_needed __read_mostly;
2351static struct static_key xps_rxqs_needed __read_mostly;
2352static DEFINE_MUTEX(xps_map_mutex);
2353#define xmap_dereference(P) \
2354 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2355
2356static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2357 struct xps_dev_maps *old_maps, int tci, u16 index)
2358{
2359 struct xps_map *map = NULL;
2360 int pos;
2361
2362 if (dev_maps)
2363 map = xmap_dereference(dev_maps->attr_map[tci]);
2364 if (!map)
2365 return false;
2366
2367 for (pos = map->len; pos--;) {
2368 if (map->queues[pos] != index)
2369 continue;
2370
2371 if (map->len > 1) {
2372 map->queues[pos] = map->queues[--map->len];
2373 break;
2374 }
2375
2376 if (old_maps)
2377 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2378 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2379 kfree_rcu(map, rcu);
2380 return false;
2381 }
2382
2383 return true;
2384}
2385
2386static bool remove_xps_queue_cpu(struct net_device *dev,
2387 struct xps_dev_maps *dev_maps,
2388 int cpu, u16 offset, u16 count)
2389{
2390 int num_tc = dev_maps->num_tc;
2391 bool active = false;
2392 int tci;
2393
2394 for (tci = cpu * num_tc; num_tc--; tci++) {
2395 int i, j;
2396
2397 for (i = count, j = offset; i--; j++) {
2398 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2399 break;
2400 }
2401
2402 active |= i < 0;
2403 }
2404
2405 return active;
2406}
2407
2408static void reset_xps_maps(struct net_device *dev,
2409 struct xps_dev_maps *dev_maps,
2410 enum xps_map_type type)
2411{
2412 static_key_slow_dec_cpuslocked(&xps_needed);
2413 if (type == XPS_RXQS)
2414 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2415
2416 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2417
2418 kfree_rcu(dev_maps, rcu);
2419}
2420
2421static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2422 u16 offset, u16 count)
2423{
2424 struct xps_dev_maps *dev_maps;
2425 bool active = false;
2426 int i, j;
2427
2428 dev_maps = xmap_dereference(dev->xps_maps[type]);
2429 if (!dev_maps)
2430 return;
2431
2432 for (j = 0; j < dev_maps->nr_ids; j++)
2433 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2434 if (!active)
2435 reset_xps_maps(dev, dev_maps, type);
2436
2437 if (type == XPS_CPUS) {
2438 for (i = offset + (count - 1); count--; i--)
2439 netdev_queue_numa_node_write(
2440 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2441 }
2442}
2443
2444static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2445 u16 count)
2446{
2447 if (!static_key_false(&xps_needed))
2448 return;
2449
2450 cpus_read_lock();
2451 mutex_lock(&xps_map_mutex);
2452
2453 if (static_key_false(&xps_rxqs_needed))
2454 clean_xps_maps(dev, XPS_RXQS, offset, count);
2455
2456 clean_xps_maps(dev, XPS_CPUS, offset, count);
2457
2458 mutex_unlock(&xps_map_mutex);
2459 cpus_read_unlock();
2460}
2461
2462static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2463{
2464 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2465}
2466
2467static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2468 u16 index, bool is_rxqs_map)
2469{
2470 struct xps_map *new_map;
2471 int alloc_len = XPS_MIN_MAP_ALLOC;
2472 int i, pos;
2473
2474 for (pos = 0; map && pos < map->len; pos++) {
2475 if (map->queues[pos] != index)
2476 continue;
2477 return map;
2478 }
2479
2480 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2481 if (map) {
2482 if (pos < map->alloc_len)
2483 return map;
2484
2485 alloc_len = map->alloc_len * 2;
2486 }
2487
2488 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2489 * map
2490 */
2491 if (is_rxqs_map)
2492 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2493 else
2494 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2495 cpu_to_node(attr_index));
2496 if (!new_map)
2497 return NULL;
2498
2499 for (i = 0; i < pos; i++)
2500 new_map->queues[i] = map->queues[i];
2501 new_map->alloc_len = alloc_len;
2502 new_map->len = pos;
2503
2504 return new_map;
2505}
2506
2507/* Copy xps maps at a given index */
2508static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2509 struct xps_dev_maps *new_dev_maps, int index,
2510 int tc, bool skip_tc)
2511{
2512 int i, tci = index * dev_maps->num_tc;
2513 struct xps_map *map;
2514
2515 /* copy maps belonging to foreign traffic classes */
2516 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2517 if (i == tc && skip_tc)
2518 continue;
2519
2520 /* fill in the new device map from the old device map */
2521 map = xmap_dereference(dev_maps->attr_map[tci]);
2522 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2523 }
2524}
2525
2526/* Must be called under cpus_read_lock */
2527int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2528 u16 index, enum xps_map_type type)
2529{
2530 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2531 const unsigned long *online_mask = NULL;
2532 bool active = false, copy = false;
2533 int i, j, tci, numa_node_id = -2;
2534 int maps_sz, num_tc = 1, tc = 0;
2535 struct xps_map *map, *new_map;
2536 unsigned int nr_ids;
2537
2538 if (dev->num_tc) {
2539 /* Do not allow XPS on subordinate device directly */
2540 num_tc = dev->num_tc;
2541 if (num_tc < 0)
2542 return -EINVAL;
2543
2544 /* If queue belongs to subordinate dev use its map */
2545 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2546
2547 tc = netdev_txq_to_tc(dev, index);
2548 if (tc < 0)
2549 return -EINVAL;
2550 }
2551
2552 mutex_lock(&xps_map_mutex);
2553
2554 dev_maps = xmap_dereference(dev->xps_maps[type]);
2555 if (type == XPS_RXQS) {
2556 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2557 nr_ids = dev->num_rx_queues;
2558 } else {
2559 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2560 if (num_possible_cpus() > 1)
2561 online_mask = cpumask_bits(cpu_online_mask);
2562 nr_ids = nr_cpu_ids;
2563 }
2564
2565 if (maps_sz < L1_CACHE_BYTES)
2566 maps_sz = L1_CACHE_BYTES;
2567
2568 /* The old dev_maps could be larger or smaller than the one we're
2569 * setting up now, as dev->num_tc or nr_ids could have been updated in
2570 * between. We could try to be smart, but let's be safe instead and only
2571 * copy foreign traffic classes if the two map sizes match.
2572 */
2573 if (dev_maps &&
2574 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2575 copy = true;
2576
2577 /* allocate memory for queue storage */
2578 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2579 j < nr_ids;) {
2580 if (!new_dev_maps) {
2581 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2582 if (!new_dev_maps) {
2583 mutex_unlock(&xps_map_mutex);
2584 return -ENOMEM;
2585 }
2586
2587 new_dev_maps->nr_ids = nr_ids;
2588 new_dev_maps->num_tc = num_tc;
2589 }
2590
2591 tci = j * num_tc + tc;
2592 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2593
2594 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2595 if (!map)
2596 goto error;
2597
2598 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2599 }
2600
2601 if (!new_dev_maps)
2602 goto out_no_new_maps;
2603
2604 if (!dev_maps) {
2605 /* Increment static keys at most once per type */
2606 static_key_slow_inc_cpuslocked(&xps_needed);
2607 if (type == XPS_RXQS)
2608 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2609 }
2610
2611 for (j = 0; j < nr_ids; j++) {
2612 bool skip_tc = false;
2613
2614 tci = j * num_tc + tc;
2615 if (netif_attr_test_mask(j, mask, nr_ids) &&
2616 netif_attr_test_online(j, online_mask, nr_ids)) {
2617 /* add tx-queue to CPU/rx-queue maps */
2618 int pos = 0;
2619
2620 skip_tc = true;
2621
2622 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2623 while ((pos < map->len) && (map->queues[pos] != index))
2624 pos++;
2625
2626 if (pos == map->len)
2627 map->queues[map->len++] = index;
2628#ifdef CONFIG_NUMA
2629 if (type == XPS_CPUS) {
2630 if (numa_node_id == -2)
2631 numa_node_id = cpu_to_node(j);
2632 else if (numa_node_id != cpu_to_node(j))
2633 numa_node_id = -1;
2634 }
2635#endif
2636 }
2637
2638 if (copy)
2639 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2640 skip_tc);
2641 }
2642
2643 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2644
2645 /* Cleanup old maps */
2646 if (!dev_maps)
2647 goto out_no_old_maps;
2648
2649 for (j = 0; j < dev_maps->nr_ids; j++) {
2650 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2651 map = xmap_dereference(dev_maps->attr_map[tci]);
2652 if (!map)
2653 continue;
2654
2655 if (copy) {
2656 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2657 if (map == new_map)
2658 continue;
2659 }
2660
2661 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2662 kfree_rcu(map, rcu);
2663 }
2664 }
2665
2666 old_dev_maps = dev_maps;
2667
2668out_no_old_maps:
2669 dev_maps = new_dev_maps;
2670 active = true;
2671
2672out_no_new_maps:
2673 if (type == XPS_CPUS)
2674 /* update Tx queue numa node */
2675 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2676 (numa_node_id >= 0) ?
2677 numa_node_id : NUMA_NO_NODE);
2678
2679 if (!dev_maps)
2680 goto out_no_maps;
2681
2682 /* removes tx-queue from unused CPUs/rx-queues */
2683 for (j = 0; j < dev_maps->nr_ids; j++) {
2684 tci = j * dev_maps->num_tc;
2685
2686 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2687 if (i == tc &&
2688 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2689 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2690 continue;
2691
2692 active |= remove_xps_queue(dev_maps,
2693 copy ? old_dev_maps : NULL,
2694 tci, index);
2695 }
2696 }
2697
2698 if (old_dev_maps)
2699 kfree_rcu(old_dev_maps, rcu);
2700
2701 /* free map if not active */
2702 if (!active)
2703 reset_xps_maps(dev, dev_maps, type);
2704
2705out_no_maps:
2706 mutex_unlock(&xps_map_mutex);
2707
2708 return 0;
2709error:
2710 /* remove any maps that we added */
2711 for (j = 0; j < nr_ids; j++) {
2712 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2713 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2714 map = copy ?
2715 xmap_dereference(dev_maps->attr_map[tci]) :
2716 NULL;
2717 if (new_map && new_map != map)
2718 kfree(new_map);
2719 }
2720 }
2721
2722 mutex_unlock(&xps_map_mutex);
2723
2724 kfree(new_dev_maps);
2725 return -ENOMEM;
2726}
2727EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2728
2729int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2730 u16 index)
2731{
2732 int ret;
2733
2734 cpus_read_lock();
2735 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2736 cpus_read_unlock();
2737
2738 return ret;
2739}
2740EXPORT_SYMBOL(netif_set_xps_queue);
2741
2742#endif
2743static void netdev_unbind_all_sb_channels(struct net_device *dev)
2744{
2745 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2746
2747 /* Unbind any subordinate channels */
2748 while (txq-- != &dev->_tx[0]) {
2749 if (txq->sb_dev)
2750 netdev_unbind_sb_channel(dev, txq->sb_dev);
2751 }
2752}
2753
2754void netdev_reset_tc(struct net_device *dev)
2755{
2756#ifdef CONFIG_XPS
2757 netif_reset_xps_queues_gt(dev, 0);
2758#endif
2759 netdev_unbind_all_sb_channels(dev);
2760
2761 /* Reset TC configuration of device */
2762 dev->num_tc = 0;
2763 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2764 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2765}
2766EXPORT_SYMBOL(netdev_reset_tc);
2767
2768int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2769{
2770 if (tc >= dev->num_tc)
2771 return -EINVAL;
2772
2773#ifdef CONFIG_XPS
2774 netif_reset_xps_queues(dev, offset, count);
2775#endif
2776 dev->tc_to_txq[tc].count = count;
2777 dev->tc_to_txq[tc].offset = offset;
2778 return 0;
2779}
2780EXPORT_SYMBOL(netdev_set_tc_queue);
2781
2782int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2783{
2784 if (num_tc > TC_MAX_QUEUE)
2785 return -EINVAL;
2786
2787#ifdef CONFIG_XPS
2788 netif_reset_xps_queues_gt(dev, 0);
2789#endif
2790 netdev_unbind_all_sb_channels(dev);
2791
2792 dev->num_tc = num_tc;
2793 return 0;
2794}
2795EXPORT_SYMBOL(netdev_set_num_tc);
2796
2797void netdev_unbind_sb_channel(struct net_device *dev,
2798 struct net_device *sb_dev)
2799{
2800 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2801
2802#ifdef CONFIG_XPS
2803 netif_reset_xps_queues_gt(sb_dev, 0);
2804#endif
2805 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2806 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2807
2808 while (txq-- != &dev->_tx[0]) {
2809 if (txq->sb_dev == sb_dev)
2810 txq->sb_dev = NULL;
2811 }
2812}
2813EXPORT_SYMBOL(netdev_unbind_sb_channel);
2814
2815int netdev_bind_sb_channel_queue(struct net_device *dev,
2816 struct net_device *sb_dev,
2817 u8 tc, u16 count, u16 offset)
2818{
2819 /* Make certain the sb_dev and dev are already configured */
2820 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2821 return -EINVAL;
2822
2823 /* We cannot hand out queues we don't have */
2824 if ((offset + count) > dev->real_num_tx_queues)
2825 return -EINVAL;
2826
2827 /* Record the mapping */
2828 sb_dev->tc_to_txq[tc].count = count;
2829 sb_dev->tc_to_txq[tc].offset = offset;
2830
2831 /* Provide a way for Tx queue to find the tc_to_txq map or
2832 * XPS map for itself.
2833 */
2834 while (count--)
2835 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2836
2837 return 0;
2838}
2839EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2840
2841int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2842{
2843 /* Do not use a multiqueue device to represent a subordinate channel */
2844 if (netif_is_multiqueue(dev))
2845 return -ENODEV;
2846
2847 /* We allow channels 1 - 32767 to be used for subordinate channels.
2848 * Channel 0 is meant to be "native" mode and used only to represent
2849 * the main root device. We allow writing 0 to reset the device back
2850 * to normal mode after being used as a subordinate channel.
2851 */
2852 if (channel > S16_MAX)
2853 return -EINVAL;
2854
2855 dev->num_tc = -channel;
2856
2857 return 0;
2858}
2859EXPORT_SYMBOL(netdev_set_sb_channel);
2860
2861/*
2862 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2863 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2864 */
2865int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2866{
2867 bool disabling;
2868 int rc;
2869
2870 disabling = txq < dev->real_num_tx_queues;
2871
2872 if (txq < 1 || txq > dev->num_tx_queues)
2873 return -EINVAL;
2874
2875 if (dev->reg_state == NETREG_REGISTERED ||
2876 dev->reg_state == NETREG_UNREGISTERING) {
2877 ASSERT_RTNL();
2878
2879 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2880 txq);
2881 if (rc)
2882 return rc;
2883
2884 if (dev->num_tc)
2885 netif_setup_tc(dev, txq);
2886
2887 dev_qdisc_change_real_num_tx(dev, txq);
2888
2889 dev->real_num_tx_queues = txq;
2890
2891 if (disabling) {
2892 synchronize_net();
2893 qdisc_reset_all_tx_gt(dev, txq);
2894#ifdef CONFIG_XPS
2895 netif_reset_xps_queues_gt(dev, txq);
2896#endif
2897 }
2898 } else {
2899 dev->real_num_tx_queues = txq;
2900 }
2901
2902 return 0;
2903}
2904EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2905
2906#ifdef CONFIG_SYSFS
2907/**
2908 * netif_set_real_num_rx_queues - set actual number of RX queues used
2909 * @dev: Network device
2910 * @rxq: Actual number of RX queues
2911 *
2912 * This must be called either with the rtnl_lock held or before
2913 * registration of the net device. Returns 0 on success, or a
2914 * negative error code. If called before registration, it always
2915 * succeeds.
2916 */
2917int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2918{
2919 int rc;
2920
2921 if (rxq < 1 || rxq > dev->num_rx_queues)
2922 return -EINVAL;
2923
2924 if (dev->reg_state == NETREG_REGISTERED) {
2925 ASSERT_RTNL();
2926
2927 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2928 rxq);
2929 if (rc)
2930 return rc;
2931 }
2932
2933 dev->real_num_rx_queues = rxq;
2934 return 0;
2935}
2936EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2937#endif
2938
2939/**
2940 * netif_set_real_num_queues - set actual number of RX and TX queues used
2941 * @dev: Network device
2942 * @txq: Actual number of TX queues
2943 * @rxq: Actual number of RX queues
2944 *
2945 * Set the real number of both TX and RX queues.
2946 * Does nothing if the number of queues is already correct.
2947 */
2948int netif_set_real_num_queues(struct net_device *dev,
2949 unsigned int txq, unsigned int rxq)
2950{
2951 unsigned int old_rxq = dev->real_num_rx_queues;
2952 int err;
2953
2954 if (txq < 1 || txq > dev->num_tx_queues ||
2955 rxq < 1 || rxq > dev->num_rx_queues)
2956 return -EINVAL;
2957
2958 /* Start from increases, so the error path only does decreases -
2959 * decreases can't fail.
2960 */
2961 if (rxq > dev->real_num_rx_queues) {
2962 err = netif_set_real_num_rx_queues(dev, rxq);
2963 if (err)
2964 return err;
2965 }
2966 if (txq > dev->real_num_tx_queues) {
2967 err = netif_set_real_num_tx_queues(dev, txq);
2968 if (err)
2969 goto undo_rx;
2970 }
2971 if (rxq < dev->real_num_rx_queues)
2972 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2973 if (txq < dev->real_num_tx_queues)
2974 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2975
2976 return 0;
2977undo_rx:
2978 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2979 return err;
2980}
2981EXPORT_SYMBOL(netif_set_real_num_queues);
2982
2983/**
2984 * netif_set_tso_max_size() - set the max size of TSO frames supported
2985 * @dev: netdev to update
2986 * @size: max skb->len of a TSO frame
2987 *
2988 * Set the limit on the size of TSO super-frames the device can handle.
2989 * Unless explicitly set the stack will assume the value of
2990 * %GSO_LEGACY_MAX_SIZE.
2991 */
2992void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
2993{
2994 dev->tso_max_size = min(GSO_MAX_SIZE, size);
2995 if (size < READ_ONCE(dev->gso_max_size))
2996 netif_set_gso_max_size(dev, size);
2997 if (size < READ_ONCE(dev->gso_ipv4_max_size))
2998 netif_set_gso_ipv4_max_size(dev, size);
2999}
3000EXPORT_SYMBOL(netif_set_tso_max_size);
3001
3002/**
3003 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3004 * @dev: netdev to update
3005 * @segs: max number of TCP segments
3006 *
3007 * Set the limit on the number of TCP segments the device can generate from
3008 * a single TSO super-frame.
3009 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3010 */
3011void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3012{
3013 dev->tso_max_segs = segs;
3014 if (segs < READ_ONCE(dev->gso_max_segs))
3015 netif_set_gso_max_segs(dev, segs);
3016}
3017EXPORT_SYMBOL(netif_set_tso_max_segs);
3018
3019/**
3020 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3021 * @to: netdev to update
3022 * @from: netdev from which to copy the limits
3023 */
3024void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3025{
3026 netif_set_tso_max_size(to, from->tso_max_size);
3027 netif_set_tso_max_segs(to, from->tso_max_segs);
3028}
3029EXPORT_SYMBOL(netif_inherit_tso_max);
3030
3031/**
3032 * netif_get_num_default_rss_queues - default number of RSS queues
3033 *
3034 * Default value is the number of physical cores if there are only 1 or 2, or
3035 * divided by 2 if there are more.
3036 */
3037int netif_get_num_default_rss_queues(void)
3038{
3039 cpumask_var_t cpus;
3040 int cpu, count = 0;
3041
3042 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3043 return 1;
3044
3045 cpumask_copy(cpus, cpu_online_mask);
3046 for_each_cpu(cpu, cpus) {
3047 ++count;
3048 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3049 }
3050 free_cpumask_var(cpus);
3051
3052 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3053}
3054EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3055
3056static void __netif_reschedule(struct Qdisc *q)
3057{
3058 struct softnet_data *sd;
3059 unsigned long flags;
3060
3061 local_irq_save(flags);
3062 sd = this_cpu_ptr(&softnet_data);
3063 q->next_sched = NULL;
3064 *sd->output_queue_tailp = q;
3065 sd->output_queue_tailp = &q->next_sched;
3066 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3067 local_irq_restore(flags);
3068}
3069
3070void __netif_schedule(struct Qdisc *q)
3071{
3072 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3073 __netif_reschedule(q);
3074}
3075EXPORT_SYMBOL(__netif_schedule);
3076
3077struct dev_kfree_skb_cb {
3078 enum skb_free_reason reason;
3079};
3080
3081static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3082{
3083 return (struct dev_kfree_skb_cb *)skb->cb;
3084}
3085
3086void netif_schedule_queue(struct netdev_queue *txq)
3087{
3088 rcu_read_lock();
3089 if (!netif_xmit_stopped(txq)) {
3090 struct Qdisc *q = rcu_dereference(txq->qdisc);
3091
3092 __netif_schedule(q);
3093 }
3094 rcu_read_unlock();
3095}
3096EXPORT_SYMBOL(netif_schedule_queue);
3097
3098void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3099{
3100 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3101 struct Qdisc *q;
3102
3103 rcu_read_lock();
3104 q = rcu_dereference(dev_queue->qdisc);
3105 __netif_schedule(q);
3106 rcu_read_unlock();
3107 }
3108}
3109EXPORT_SYMBOL(netif_tx_wake_queue);
3110
3111void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3112{
3113 unsigned long flags;
3114
3115 if (unlikely(!skb))
3116 return;
3117
3118 if (likely(refcount_read(&skb->users) == 1)) {
3119 smp_rmb();
3120 refcount_set(&skb->users, 0);
3121 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3122 return;
3123 }
3124 get_kfree_skb_cb(skb)->reason = reason;
3125 local_irq_save(flags);
3126 skb->next = __this_cpu_read(softnet_data.completion_queue);
3127 __this_cpu_write(softnet_data.completion_queue, skb);
3128 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3129 local_irq_restore(flags);
3130}
3131EXPORT_SYMBOL(__dev_kfree_skb_irq);
3132
3133void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3134{
3135 if (in_hardirq() || irqs_disabled())
3136 __dev_kfree_skb_irq(skb, reason);
3137 else if (unlikely(reason == SKB_REASON_DROPPED))
3138 kfree_skb(skb);
3139 else
3140 consume_skb(skb);
3141}
3142EXPORT_SYMBOL(__dev_kfree_skb_any);
3143
3144
3145/**
3146 * netif_device_detach - mark device as removed
3147 * @dev: network device
3148 *
3149 * Mark device as removed from system and therefore no longer available.
3150 */
3151void netif_device_detach(struct net_device *dev)
3152{
3153 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3154 netif_running(dev)) {
3155 netif_tx_stop_all_queues(dev);
3156 }
3157}
3158EXPORT_SYMBOL(netif_device_detach);
3159
3160/**
3161 * netif_device_attach - mark device as attached
3162 * @dev: network device
3163 *
3164 * Mark device as attached from system and restart if needed.
3165 */
3166void netif_device_attach(struct net_device *dev)
3167{
3168 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3169 netif_running(dev)) {
3170 netif_tx_wake_all_queues(dev);
3171 __netdev_watchdog_up(dev);
3172 }
3173}
3174EXPORT_SYMBOL(netif_device_attach);
3175
3176/*
3177 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3178 * to be used as a distribution range.
3179 */
3180static u16 skb_tx_hash(const struct net_device *dev,
3181 const struct net_device *sb_dev,
3182 struct sk_buff *skb)
3183{
3184 u32 hash;
3185 u16 qoffset = 0;
3186 u16 qcount = dev->real_num_tx_queues;
3187
3188 if (dev->num_tc) {
3189 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3190
3191 qoffset = sb_dev->tc_to_txq[tc].offset;
3192 qcount = sb_dev->tc_to_txq[tc].count;
3193 if (unlikely(!qcount)) {
3194 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3195 sb_dev->name, qoffset, tc);
3196 qoffset = 0;
3197 qcount = dev->real_num_tx_queues;
3198 }
3199 }
3200
3201 if (skb_rx_queue_recorded(skb)) {
3202 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3203 hash = skb_get_rx_queue(skb);
3204 if (hash >= qoffset)
3205 hash -= qoffset;
3206 while (unlikely(hash >= qcount))
3207 hash -= qcount;
3208 return hash + qoffset;
3209 }
3210
3211 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3212}
3213
3214static void skb_warn_bad_offload(const struct sk_buff *skb)
3215{
3216 static const netdev_features_t null_features;
3217 struct net_device *dev = skb->dev;
3218 const char *name = "";
3219
3220 if (!net_ratelimit())
3221 return;
3222
3223 if (dev) {
3224 if (dev->dev.parent)
3225 name = dev_driver_string(dev->dev.parent);
3226 else
3227 name = netdev_name(dev);
3228 }
3229 skb_dump(KERN_WARNING, skb, false);
3230 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3231 name, dev ? &dev->features : &null_features,
3232 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3233}
3234
3235/*
3236 * Invalidate hardware checksum when packet is to be mangled, and
3237 * complete checksum manually on outgoing path.
3238 */
3239int skb_checksum_help(struct sk_buff *skb)
3240{
3241 __wsum csum;
3242 int ret = 0, offset;
3243
3244 if (skb->ip_summed == CHECKSUM_COMPLETE)
3245 goto out_set_summed;
3246
3247 if (unlikely(skb_is_gso(skb))) {
3248 skb_warn_bad_offload(skb);
3249 return -EINVAL;
3250 }
3251
3252 /* Before computing a checksum, we should make sure no frag could
3253 * be modified by an external entity : checksum could be wrong.
3254 */
3255 if (skb_has_shared_frag(skb)) {
3256 ret = __skb_linearize(skb);
3257 if (ret)
3258 goto out;
3259 }
3260
3261 offset = skb_checksum_start_offset(skb);
3262 ret = -EINVAL;
3263 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3264 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3265 goto out;
3266 }
3267 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3268
3269 offset += skb->csum_offset;
3270 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3271 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3272 goto out;
3273 }
3274 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3275 if (ret)
3276 goto out;
3277
3278 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3279out_set_summed:
3280 skb->ip_summed = CHECKSUM_NONE;
3281out:
3282 return ret;
3283}
3284EXPORT_SYMBOL(skb_checksum_help);
3285
3286int skb_crc32c_csum_help(struct sk_buff *skb)
3287{
3288 __le32 crc32c_csum;
3289 int ret = 0, offset, start;
3290
3291 if (skb->ip_summed != CHECKSUM_PARTIAL)
3292 goto out;
3293
3294 if (unlikely(skb_is_gso(skb)))
3295 goto out;
3296
3297 /* Before computing a checksum, we should make sure no frag could
3298 * be modified by an external entity : checksum could be wrong.
3299 */
3300 if (unlikely(skb_has_shared_frag(skb))) {
3301 ret = __skb_linearize(skb);
3302 if (ret)
3303 goto out;
3304 }
3305 start = skb_checksum_start_offset(skb);
3306 offset = start + offsetof(struct sctphdr, checksum);
3307 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3308 ret = -EINVAL;
3309 goto out;
3310 }
3311
3312 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3313 if (ret)
3314 goto out;
3315
3316 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3317 skb->len - start, ~(__u32)0,
3318 crc32c_csum_stub));
3319 *(__le32 *)(skb->data + offset) = crc32c_csum;
3320 skb->ip_summed = CHECKSUM_NONE;
3321 skb->csum_not_inet = 0;
3322out:
3323 return ret;
3324}
3325
3326__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3327{
3328 __be16 type = skb->protocol;
3329
3330 /* Tunnel gso handlers can set protocol to ethernet. */
3331 if (type == htons(ETH_P_TEB)) {
3332 struct ethhdr *eth;
3333
3334 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3335 return 0;
3336
3337 eth = (struct ethhdr *)skb->data;
3338 type = eth->h_proto;
3339 }
3340
3341 return __vlan_get_protocol(skb, type, depth);
3342}
3343
3344/* openvswitch calls this on rx path, so we need a different check.
3345 */
3346static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3347{
3348 if (tx_path)
3349 return skb->ip_summed != CHECKSUM_PARTIAL &&
3350 skb->ip_summed != CHECKSUM_UNNECESSARY;
3351
3352 return skb->ip_summed == CHECKSUM_NONE;
3353}
3354
3355/**
3356 * __skb_gso_segment - Perform segmentation on skb.
3357 * @skb: buffer to segment
3358 * @features: features for the output path (see dev->features)
3359 * @tx_path: whether it is called in TX path
3360 *
3361 * This function segments the given skb and returns a list of segments.
3362 *
3363 * It may return NULL if the skb requires no segmentation. This is
3364 * only possible when GSO is used for verifying header integrity.
3365 *
3366 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3367 */
3368struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3369 netdev_features_t features, bool tx_path)
3370{
3371 struct sk_buff *segs;
3372
3373 if (unlikely(skb_needs_check(skb, tx_path))) {
3374 int err;
3375
3376 /* We're going to init ->check field in TCP or UDP header */
3377 err = skb_cow_head(skb, 0);
3378 if (err < 0)
3379 return ERR_PTR(err);
3380 }
3381
3382 /* Only report GSO partial support if it will enable us to
3383 * support segmentation on this frame without needing additional
3384 * work.
3385 */
3386 if (features & NETIF_F_GSO_PARTIAL) {
3387 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3388 struct net_device *dev = skb->dev;
3389
3390 partial_features |= dev->features & dev->gso_partial_features;
3391 if (!skb_gso_ok(skb, features | partial_features))
3392 features &= ~NETIF_F_GSO_PARTIAL;
3393 }
3394
3395 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3396 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3397
3398 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3399 SKB_GSO_CB(skb)->encap_level = 0;
3400
3401 skb_reset_mac_header(skb);
3402 skb_reset_mac_len(skb);
3403
3404 segs = skb_mac_gso_segment(skb, features);
3405
3406 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3407 skb_warn_bad_offload(skb);
3408
3409 return segs;
3410}
3411EXPORT_SYMBOL(__skb_gso_segment);
3412
3413/* Take action when hardware reception checksum errors are detected. */
3414#ifdef CONFIG_BUG
3415static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3416{
3417 netdev_err(dev, "hw csum failure\n");
3418 skb_dump(KERN_ERR, skb, true);
3419 dump_stack();
3420}
3421
3422void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3423{
3424 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3425}
3426EXPORT_SYMBOL(netdev_rx_csum_fault);
3427#endif
3428
3429/* XXX: check that highmem exists at all on the given machine. */
3430static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3431{
3432#ifdef CONFIG_HIGHMEM
3433 int i;
3434
3435 if (!(dev->features & NETIF_F_HIGHDMA)) {
3436 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3437 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3438
3439 if (PageHighMem(skb_frag_page(frag)))
3440 return 1;
3441 }
3442 }
3443#endif
3444 return 0;
3445}
3446
3447/* If MPLS offload request, verify we are testing hardware MPLS features
3448 * instead of standard features for the netdev.
3449 */
3450#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3451static netdev_features_t net_mpls_features(struct sk_buff *skb,
3452 netdev_features_t features,
3453 __be16 type)
3454{
3455 if (eth_p_mpls(type))
3456 features &= skb->dev->mpls_features;
3457
3458 return features;
3459}
3460#else
3461static netdev_features_t net_mpls_features(struct sk_buff *skb,
3462 netdev_features_t features,
3463 __be16 type)
3464{
3465 return features;
3466}
3467#endif
3468
3469static netdev_features_t harmonize_features(struct sk_buff *skb,
3470 netdev_features_t features)
3471{
3472 __be16 type;
3473
3474 type = skb_network_protocol(skb, NULL);
3475 features = net_mpls_features(skb, features, type);
3476
3477 if (skb->ip_summed != CHECKSUM_NONE &&
3478 !can_checksum_protocol(features, type)) {
3479 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3480 }
3481 if (illegal_highdma(skb->dev, skb))
3482 features &= ~NETIF_F_SG;
3483
3484 return features;
3485}
3486
3487netdev_features_t passthru_features_check(struct sk_buff *skb,
3488 struct net_device *dev,
3489 netdev_features_t features)
3490{
3491 return features;
3492}
3493EXPORT_SYMBOL(passthru_features_check);
3494
3495static netdev_features_t dflt_features_check(struct sk_buff *skb,
3496 struct net_device *dev,
3497 netdev_features_t features)
3498{
3499 return vlan_features_check(skb, features);
3500}
3501
3502static netdev_features_t gso_features_check(const struct sk_buff *skb,
3503 struct net_device *dev,
3504 netdev_features_t features)
3505{
3506 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3507
3508 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3509 return features & ~NETIF_F_GSO_MASK;
3510
3511 if (!skb_shinfo(skb)->gso_type) {
3512 skb_warn_bad_offload(skb);
3513 return features & ~NETIF_F_GSO_MASK;
3514 }
3515
3516 /* Support for GSO partial features requires software
3517 * intervention before we can actually process the packets
3518 * so we need to strip support for any partial features now
3519 * and we can pull them back in after we have partially
3520 * segmented the frame.
3521 */
3522 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3523 features &= ~dev->gso_partial_features;
3524
3525 /* Make sure to clear the IPv4 ID mangling feature if the
3526 * IPv4 header has the potential to be fragmented.
3527 */
3528 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3529 struct iphdr *iph = skb->encapsulation ?
3530 inner_ip_hdr(skb) : ip_hdr(skb);
3531
3532 if (!(iph->frag_off & htons(IP_DF)))
3533 features &= ~NETIF_F_TSO_MANGLEID;
3534 }
3535
3536 return features;
3537}
3538
3539netdev_features_t netif_skb_features(struct sk_buff *skb)
3540{
3541 struct net_device *dev = skb->dev;
3542 netdev_features_t features = dev->features;
3543
3544 if (skb_is_gso(skb))
3545 features = gso_features_check(skb, dev, features);
3546
3547 /* If encapsulation offload request, verify we are testing
3548 * hardware encapsulation features instead of standard
3549 * features for the netdev
3550 */
3551 if (skb->encapsulation)
3552 features &= dev->hw_enc_features;
3553
3554 if (skb_vlan_tagged(skb))
3555 features = netdev_intersect_features(features,
3556 dev->vlan_features |
3557 NETIF_F_HW_VLAN_CTAG_TX |
3558 NETIF_F_HW_VLAN_STAG_TX);
3559
3560 if (dev->netdev_ops->ndo_features_check)
3561 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3562 features);
3563 else
3564 features &= dflt_features_check(skb, dev, features);
3565
3566 return harmonize_features(skb, features);
3567}
3568EXPORT_SYMBOL(netif_skb_features);
3569
3570static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3571 struct netdev_queue *txq, bool more)
3572{
3573 unsigned int len;
3574 int rc;
3575
3576 if (dev_nit_active(dev))
3577 dev_queue_xmit_nit(skb, dev);
3578
3579 len = skb->len;
3580 trace_net_dev_start_xmit(skb, dev);
3581 rc = netdev_start_xmit(skb, dev, txq, more);
3582 trace_net_dev_xmit(skb, rc, dev, len);
3583
3584 return rc;
3585}
3586
3587struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3588 struct netdev_queue *txq, int *ret)
3589{
3590 struct sk_buff *skb = first;
3591 int rc = NETDEV_TX_OK;
3592
3593 while (skb) {
3594 struct sk_buff *next = skb->next;
3595
3596 skb_mark_not_on_list(skb);
3597 rc = xmit_one(skb, dev, txq, next != NULL);
3598 if (unlikely(!dev_xmit_complete(rc))) {
3599 skb->next = next;
3600 goto out;
3601 }
3602
3603 skb = next;
3604 if (netif_tx_queue_stopped(txq) && skb) {
3605 rc = NETDEV_TX_BUSY;
3606 break;
3607 }
3608 }
3609
3610out:
3611 *ret = rc;
3612 return skb;
3613}
3614
3615static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3616 netdev_features_t features)
3617{
3618 if (skb_vlan_tag_present(skb) &&
3619 !vlan_hw_offload_capable(features, skb->vlan_proto))
3620 skb = __vlan_hwaccel_push_inside(skb);
3621 return skb;
3622}
3623
3624int skb_csum_hwoffload_help(struct sk_buff *skb,
3625 const netdev_features_t features)
3626{
3627 if (unlikely(skb_csum_is_sctp(skb)))
3628 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3629 skb_crc32c_csum_help(skb);
3630
3631 if (features & NETIF_F_HW_CSUM)
3632 return 0;
3633
3634 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3635 switch (skb->csum_offset) {
3636 case offsetof(struct tcphdr, check):
3637 case offsetof(struct udphdr, check):
3638 return 0;
3639 }
3640 }
3641
3642 return skb_checksum_help(skb);
3643}
3644EXPORT_SYMBOL(skb_csum_hwoffload_help);
3645
3646static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3647{
3648 netdev_features_t features;
3649
3650 features = netif_skb_features(skb);
3651 skb = validate_xmit_vlan(skb, features);
3652 if (unlikely(!skb))
3653 goto out_null;
3654
3655 skb = sk_validate_xmit_skb(skb, dev);
3656 if (unlikely(!skb))
3657 goto out_null;
3658
3659 if (netif_needs_gso(skb, features)) {
3660 struct sk_buff *segs;
3661
3662 segs = skb_gso_segment(skb, features);
3663 if (IS_ERR(segs)) {
3664 goto out_kfree_skb;
3665 } else if (segs) {
3666 consume_skb(skb);
3667 skb = segs;
3668 }
3669 } else {
3670 if (skb_needs_linearize(skb, features) &&
3671 __skb_linearize(skb))
3672 goto out_kfree_skb;
3673
3674 /* If packet is not checksummed and device does not
3675 * support checksumming for this protocol, complete
3676 * checksumming here.
3677 */
3678 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3679 if (skb->encapsulation)
3680 skb_set_inner_transport_header(skb,
3681 skb_checksum_start_offset(skb));
3682 else
3683 skb_set_transport_header(skb,
3684 skb_checksum_start_offset(skb));
3685 if (skb_csum_hwoffload_help(skb, features))
3686 goto out_kfree_skb;
3687 }
3688 }
3689
3690 skb = validate_xmit_xfrm(skb, features, again);
3691
3692 return skb;
3693
3694out_kfree_skb:
3695 kfree_skb(skb);
3696out_null:
3697 dev_core_stats_tx_dropped_inc(dev);
3698 return NULL;
3699}
3700
3701struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3702{
3703 struct sk_buff *next, *head = NULL, *tail;
3704
3705 for (; skb != NULL; skb = next) {
3706 next = skb->next;
3707 skb_mark_not_on_list(skb);
3708
3709 /* in case skb wont be segmented, point to itself */
3710 skb->prev = skb;
3711
3712 skb = validate_xmit_skb(skb, dev, again);
3713 if (!skb)
3714 continue;
3715
3716 if (!head)
3717 head = skb;
3718 else
3719 tail->next = skb;
3720 /* If skb was segmented, skb->prev points to
3721 * the last segment. If not, it still contains skb.
3722 */
3723 tail = skb->prev;
3724 }
3725 return head;
3726}
3727EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3728
3729static void qdisc_pkt_len_init(struct sk_buff *skb)
3730{
3731 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3732
3733 qdisc_skb_cb(skb)->pkt_len = skb->len;
3734
3735 /* To get more precise estimation of bytes sent on wire,
3736 * we add to pkt_len the headers size of all segments
3737 */
3738 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3739 unsigned int hdr_len;
3740 u16 gso_segs = shinfo->gso_segs;
3741
3742 /* mac layer + network layer */
3743 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3744
3745 /* + transport layer */
3746 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3747 const struct tcphdr *th;
3748 struct tcphdr _tcphdr;
3749
3750 th = skb_header_pointer(skb, skb_transport_offset(skb),
3751 sizeof(_tcphdr), &_tcphdr);
3752 if (likely(th))
3753 hdr_len += __tcp_hdrlen(th);
3754 } else {
3755 struct udphdr _udphdr;
3756
3757 if (skb_header_pointer(skb, skb_transport_offset(skb),
3758 sizeof(_udphdr), &_udphdr))
3759 hdr_len += sizeof(struct udphdr);
3760 }
3761
3762 if (shinfo->gso_type & SKB_GSO_DODGY)
3763 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3764 shinfo->gso_size);
3765
3766 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3767 }
3768}
3769
3770static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3771 struct sk_buff **to_free,
3772 struct netdev_queue *txq)
3773{
3774 int rc;
3775
3776 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3777 if (rc == NET_XMIT_SUCCESS)
3778 trace_qdisc_enqueue(q, txq, skb);
3779 return rc;
3780}
3781
3782static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3783 struct net_device *dev,
3784 struct netdev_queue *txq)
3785{
3786 spinlock_t *root_lock = qdisc_lock(q);
3787 struct sk_buff *to_free = NULL;
3788 bool contended;
3789 int rc;
3790
3791 qdisc_calculate_pkt_len(skb, q);
3792
3793 if (q->flags & TCQ_F_NOLOCK) {
3794 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3795 qdisc_run_begin(q)) {
3796 /* Retest nolock_qdisc_is_empty() within the protection
3797 * of q->seqlock to protect from racing with requeuing.
3798 */
3799 if (unlikely(!nolock_qdisc_is_empty(q))) {
3800 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3801 __qdisc_run(q);
3802 qdisc_run_end(q);
3803
3804 goto no_lock_out;
3805 }
3806
3807 qdisc_bstats_cpu_update(q, skb);
3808 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3809 !nolock_qdisc_is_empty(q))
3810 __qdisc_run(q);
3811
3812 qdisc_run_end(q);
3813 return NET_XMIT_SUCCESS;
3814 }
3815
3816 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3817 qdisc_run(q);
3818
3819no_lock_out:
3820 if (unlikely(to_free))
3821 kfree_skb_list_reason(to_free,
3822 SKB_DROP_REASON_QDISC_DROP);
3823 return rc;
3824 }
3825
3826 /*
3827 * Heuristic to force contended enqueues to serialize on a
3828 * separate lock before trying to get qdisc main lock.
3829 * This permits qdisc->running owner to get the lock more
3830 * often and dequeue packets faster.
3831 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3832 * and then other tasks will only enqueue packets. The packets will be
3833 * sent after the qdisc owner is scheduled again. To prevent this
3834 * scenario the task always serialize on the lock.
3835 */
3836 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3837 if (unlikely(contended))
3838 spin_lock(&q->busylock);
3839
3840 spin_lock(root_lock);
3841 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3842 __qdisc_drop(skb, &to_free);
3843 rc = NET_XMIT_DROP;
3844 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3845 qdisc_run_begin(q)) {
3846 /*
3847 * This is a work-conserving queue; there are no old skbs
3848 * waiting to be sent out; and the qdisc is not running -
3849 * xmit the skb directly.
3850 */
3851
3852 qdisc_bstats_update(q, skb);
3853
3854 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3855 if (unlikely(contended)) {
3856 spin_unlock(&q->busylock);
3857 contended = false;
3858 }
3859 __qdisc_run(q);
3860 }
3861
3862 qdisc_run_end(q);
3863 rc = NET_XMIT_SUCCESS;
3864 } else {
3865 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3866 if (qdisc_run_begin(q)) {
3867 if (unlikely(contended)) {
3868 spin_unlock(&q->busylock);
3869 contended = false;
3870 }
3871 __qdisc_run(q);
3872 qdisc_run_end(q);
3873 }
3874 }
3875 spin_unlock(root_lock);
3876 if (unlikely(to_free))
3877 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3878 if (unlikely(contended))
3879 spin_unlock(&q->busylock);
3880 return rc;
3881}
3882
3883#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3884static void skb_update_prio(struct sk_buff *skb)
3885{
3886 const struct netprio_map *map;
3887 const struct sock *sk;
3888 unsigned int prioidx;
3889
3890 if (skb->priority)
3891 return;
3892 map = rcu_dereference_bh(skb->dev->priomap);
3893 if (!map)
3894 return;
3895 sk = skb_to_full_sk(skb);
3896 if (!sk)
3897 return;
3898
3899 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3900
3901 if (prioidx < map->priomap_len)
3902 skb->priority = map->priomap[prioidx];
3903}
3904#else
3905#define skb_update_prio(skb)
3906#endif
3907
3908/**
3909 * dev_loopback_xmit - loop back @skb
3910 * @net: network namespace this loopback is happening in
3911 * @sk: sk needed to be a netfilter okfn
3912 * @skb: buffer to transmit
3913 */
3914int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3915{
3916 skb_reset_mac_header(skb);
3917 __skb_pull(skb, skb_network_offset(skb));
3918 skb->pkt_type = PACKET_LOOPBACK;
3919 if (skb->ip_summed == CHECKSUM_NONE)
3920 skb->ip_summed = CHECKSUM_UNNECESSARY;
3921 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3922 skb_dst_force(skb);
3923 netif_rx(skb);
3924 return 0;
3925}
3926EXPORT_SYMBOL(dev_loopback_xmit);
3927
3928#ifdef CONFIG_NET_EGRESS
3929static struct sk_buff *
3930sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3931{
3932#ifdef CONFIG_NET_CLS_ACT
3933 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3934 struct tcf_result cl_res;
3935
3936 if (!miniq)
3937 return skb;
3938
3939 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3940 tc_skb_cb(skb)->mru = 0;
3941 tc_skb_cb(skb)->post_ct = false;
3942 mini_qdisc_bstats_cpu_update(miniq, skb);
3943
3944 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3945 case TC_ACT_OK:
3946 case TC_ACT_RECLASSIFY:
3947 skb->tc_index = TC_H_MIN(cl_res.classid);
3948 break;
3949 case TC_ACT_SHOT:
3950 mini_qdisc_qstats_cpu_drop(miniq);
3951 *ret = NET_XMIT_DROP;
3952 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3953 return NULL;
3954 case TC_ACT_STOLEN:
3955 case TC_ACT_QUEUED:
3956 case TC_ACT_TRAP:
3957 *ret = NET_XMIT_SUCCESS;
3958 consume_skb(skb);
3959 return NULL;
3960 case TC_ACT_REDIRECT:
3961 /* No need to push/pop skb's mac_header here on egress! */
3962 skb_do_redirect(skb);
3963 *ret = NET_XMIT_SUCCESS;
3964 return NULL;
3965 default:
3966 break;
3967 }
3968#endif /* CONFIG_NET_CLS_ACT */
3969
3970 return skb;
3971}
3972
3973static struct netdev_queue *
3974netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3975{
3976 int qm = skb_get_queue_mapping(skb);
3977
3978 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3979}
3980
3981static bool netdev_xmit_txqueue_skipped(void)
3982{
3983 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3984}
3985
3986void netdev_xmit_skip_txqueue(bool skip)
3987{
3988 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3989}
3990EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3991#endif /* CONFIG_NET_EGRESS */
3992
3993#ifdef CONFIG_XPS
3994static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3995 struct xps_dev_maps *dev_maps, unsigned int tci)
3996{
3997 int tc = netdev_get_prio_tc_map(dev, skb->priority);
3998 struct xps_map *map;
3999 int queue_index = -1;
4000
4001 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4002 return queue_index;
4003
4004 tci *= dev_maps->num_tc;
4005 tci += tc;
4006
4007 map = rcu_dereference(dev_maps->attr_map[tci]);
4008 if (map) {
4009 if (map->len == 1)
4010 queue_index = map->queues[0];
4011 else
4012 queue_index = map->queues[reciprocal_scale(
4013 skb_get_hash(skb), map->len)];
4014 if (unlikely(queue_index >= dev->real_num_tx_queues))
4015 queue_index = -1;
4016 }
4017 return queue_index;
4018}
4019#endif
4020
4021static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4022 struct sk_buff *skb)
4023{
4024#ifdef CONFIG_XPS
4025 struct xps_dev_maps *dev_maps;
4026 struct sock *sk = skb->sk;
4027 int queue_index = -1;
4028
4029 if (!static_key_false(&xps_needed))
4030 return -1;
4031
4032 rcu_read_lock();
4033 if (!static_key_false(&xps_rxqs_needed))
4034 goto get_cpus_map;
4035
4036 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4037 if (dev_maps) {
4038 int tci = sk_rx_queue_get(sk);
4039
4040 if (tci >= 0)
4041 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4042 tci);
4043 }
4044
4045get_cpus_map:
4046 if (queue_index < 0) {
4047 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4048 if (dev_maps) {
4049 unsigned int tci = skb->sender_cpu - 1;
4050
4051 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4052 tci);
4053 }
4054 }
4055 rcu_read_unlock();
4056
4057 return queue_index;
4058#else
4059 return -1;
4060#endif
4061}
4062
4063u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4064 struct net_device *sb_dev)
4065{
4066 return 0;
4067}
4068EXPORT_SYMBOL(dev_pick_tx_zero);
4069
4070u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4071 struct net_device *sb_dev)
4072{
4073 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4074}
4075EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4076
4077u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4078 struct net_device *sb_dev)
4079{
4080 struct sock *sk = skb->sk;
4081 int queue_index = sk_tx_queue_get(sk);
4082
4083 sb_dev = sb_dev ? : dev;
4084
4085 if (queue_index < 0 || skb->ooo_okay ||
4086 queue_index >= dev->real_num_tx_queues) {
4087 int new_index = get_xps_queue(dev, sb_dev, skb);
4088
4089 if (new_index < 0)
4090 new_index = skb_tx_hash(dev, sb_dev, skb);
4091
4092 if (queue_index != new_index && sk &&
4093 sk_fullsock(sk) &&
4094 rcu_access_pointer(sk->sk_dst_cache))
4095 sk_tx_queue_set(sk, new_index);
4096
4097 queue_index = new_index;
4098 }
4099
4100 return queue_index;
4101}
4102EXPORT_SYMBOL(netdev_pick_tx);
4103
4104struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4105 struct sk_buff *skb,
4106 struct net_device *sb_dev)
4107{
4108 int queue_index = 0;
4109
4110#ifdef CONFIG_XPS
4111 u32 sender_cpu = skb->sender_cpu - 1;
4112
4113 if (sender_cpu >= (u32)NR_CPUS)
4114 skb->sender_cpu = raw_smp_processor_id() + 1;
4115#endif
4116
4117 if (dev->real_num_tx_queues != 1) {
4118 const struct net_device_ops *ops = dev->netdev_ops;
4119
4120 if (ops->ndo_select_queue)
4121 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4122 else
4123 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4124
4125 queue_index = netdev_cap_txqueue(dev, queue_index);
4126 }
4127
4128 skb_set_queue_mapping(skb, queue_index);
4129 return netdev_get_tx_queue(dev, queue_index);
4130}
4131
4132/**
4133 * __dev_queue_xmit() - transmit a buffer
4134 * @skb: buffer to transmit
4135 * @sb_dev: suboordinate device used for L2 forwarding offload
4136 *
4137 * Queue a buffer for transmission to a network device. The caller must
4138 * have set the device and priority and built the buffer before calling
4139 * this function. The function can be called from an interrupt.
4140 *
4141 * When calling this method, interrupts MUST be enabled. This is because
4142 * the BH enable code must have IRQs enabled so that it will not deadlock.
4143 *
4144 * Regardless of the return value, the skb is consumed, so it is currently
4145 * difficult to retry a send to this method. (You can bump the ref count
4146 * before sending to hold a reference for retry if you are careful.)
4147 *
4148 * Return:
4149 * * 0 - buffer successfully transmitted
4150 * * positive qdisc return code - NET_XMIT_DROP etc.
4151 * * negative errno - other errors
4152 */
4153int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4154{
4155 struct net_device *dev = skb->dev;
4156 struct netdev_queue *txq = NULL;
4157 struct Qdisc *q;
4158 int rc = -ENOMEM;
4159 bool again = false;
4160
4161 skb_reset_mac_header(skb);
4162 skb_assert_len(skb);
4163
4164 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4165 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4166
4167 /* Disable soft irqs for various locks below. Also
4168 * stops preemption for RCU.
4169 */
4170 rcu_read_lock_bh();
4171
4172 skb_update_prio(skb);
4173
4174 qdisc_pkt_len_init(skb);
4175#ifdef CONFIG_NET_CLS_ACT
4176 skb->tc_at_ingress = 0;
4177#endif
4178#ifdef CONFIG_NET_EGRESS
4179 if (static_branch_unlikely(&egress_needed_key)) {
4180 if (nf_hook_egress_active()) {
4181 skb = nf_hook_egress(skb, &rc, dev);
4182 if (!skb)
4183 goto out;
4184 }
4185
4186 netdev_xmit_skip_txqueue(false);
4187
4188 nf_skip_egress(skb, true);
4189 skb = sch_handle_egress(skb, &rc, dev);
4190 if (!skb)
4191 goto out;
4192 nf_skip_egress(skb, false);
4193
4194 if (netdev_xmit_txqueue_skipped())
4195 txq = netdev_tx_queue_mapping(dev, skb);
4196 }
4197#endif
4198 /* If device/qdisc don't need skb->dst, release it right now while
4199 * its hot in this cpu cache.
4200 */
4201 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4202 skb_dst_drop(skb);
4203 else
4204 skb_dst_force(skb);
4205
4206 if (!txq)
4207 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4208
4209 q = rcu_dereference_bh(txq->qdisc);
4210
4211 trace_net_dev_queue(skb);
4212 if (q->enqueue) {
4213 rc = __dev_xmit_skb(skb, q, dev, txq);
4214 goto out;
4215 }
4216
4217 /* The device has no queue. Common case for software devices:
4218 * loopback, all the sorts of tunnels...
4219
4220 * Really, it is unlikely that netif_tx_lock protection is necessary
4221 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4222 * counters.)
4223 * However, it is possible, that they rely on protection
4224 * made by us here.
4225
4226 * Check this and shot the lock. It is not prone from deadlocks.
4227 *Either shot noqueue qdisc, it is even simpler 8)
4228 */
4229 if (dev->flags & IFF_UP) {
4230 int cpu = smp_processor_id(); /* ok because BHs are off */
4231
4232 /* Other cpus might concurrently change txq->xmit_lock_owner
4233 * to -1 or to their cpu id, but not to our id.
4234 */
4235 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4236 if (dev_xmit_recursion())
4237 goto recursion_alert;
4238
4239 skb = validate_xmit_skb(skb, dev, &again);
4240 if (!skb)
4241 goto out;
4242
4243 HARD_TX_LOCK(dev, txq, cpu);
4244
4245 if (!netif_xmit_stopped(txq)) {
4246 dev_xmit_recursion_inc();
4247 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4248 dev_xmit_recursion_dec();
4249 if (dev_xmit_complete(rc)) {
4250 HARD_TX_UNLOCK(dev, txq);
4251 goto out;
4252 }
4253 }
4254 HARD_TX_UNLOCK(dev, txq);
4255 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4256 dev->name);
4257 } else {
4258 /* Recursion is detected! It is possible,
4259 * unfortunately
4260 */
4261recursion_alert:
4262 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4263 dev->name);
4264 }
4265 }
4266
4267 rc = -ENETDOWN;
4268 rcu_read_unlock_bh();
4269
4270 dev_core_stats_tx_dropped_inc(dev);
4271 kfree_skb_list(skb);
4272 return rc;
4273out:
4274 rcu_read_unlock_bh();
4275 return rc;
4276}
4277EXPORT_SYMBOL(__dev_queue_xmit);
4278
4279int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4280{
4281 struct net_device *dev = skb->dev;
4282 struct sk_buff *orig_skb = skb;
4283 struct netdev_queue *txq;
4284 int ret = NETDEV_TX_BUSY;
4285 bool again = false;
4286
4287 if (unlikely(!netif_running(dev) ||
4288 !netif_carrier_ok(dev)))
4289 goto drop;
4290
4291 skb = validate_xmit_skb_list(skb, dev, &again);
4292 if (skb != orig_skb)
4293 goto drop;
4294
4295 skb_set_queue_mapping(skb, queue_id);
4296 txq = skb_get_tx_queue(dev, skb);
4297
4298 local_bh_disable();
4299
4300 dev_xmit_recursion_inc();
4301 HARD_TX_LOCK(dev, txq, smp_processor_id());
4302 if (!netif_xmit_frozen_or_drv_stopped(txq))
4303 ret = netdev_start_xmit(skb, dev, txq, false);
4304 HARD_TX_UNLOCK(dev, txq);
4305 dev_xmit_recursion_dec();
4306
4307 local_bh_enable();
4308 return ret;
4309drop:
4310 dev_core_stats_tx_dropped_inc(dev);
4311 kfree_skb_list(skb);
4312 return NET_XMIT_DROP;
4313}
4314EXPORT_SYMBOL(__dev_direct_xmit);
4315
4316/*************************************************************************
4317 * Receiver routines
4318 *************************************************************************/
4319
4320int netdev_max_backlog __read_mostly = 1000;
4321EXPORT_SYMBOL(netdev_max_backlog);
4322
4323int netdev_tstamp_prequeue __read_mostly = 1;
4324unsigned int sysctl_skb_defer_max __read_mostly = 64;
4325int netdev_budget __read_mostly = 300;
4326/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4327unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4328int weight_p __read_mostly = 64; /* old backlog weight */
4329int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4330int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4331int dev_rx_weight __read_mostly = 64;
4332int dev_tx_weight __read_mostly = 64;
4333
4334/* Called with irq disabled */
4335static inline void ____napi_schedule(struct softnet_data *sd,
4336 struct napi_struct *napi)
4337{
4338 struct task_struct *thread;
4339
4340 lockdep_assert_irqs_disabled();
4341
4342 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4343 /* Paired with smp_mb__before_atomic() in
4344 * napi_enable()/dev_set_threaded().
4345 * Use READ_ONCE() to guarantee a complete
4346 * read on napi->thread. Only call
4347 * wake_up_process() when it's not NULL.
4348 */
4349 thread = READ_ONCE(napi->thread);
4350 if (thread) {
4351 /* Avoid doing set_bit() if the thread is in
4352 * INTERRUPTIBLE state, cause napi_thread_wait()
4353 * makes sure to proceed with napi polling
4354 * if the thread is explicitly woken from here.
4355 */
4356 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4357 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4358 wake_up_process(thread);
4359 return;
4360 }
4361 }
4362
4363 list_add_tail(&napi->poll_list, &sd->poll_list);
4364 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4365}
4366
4367#ifdef CONFIG_RPS
4368
4369/* One global table that all flow-based protocols share. */
4370struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4371EXPORT_SYMBOL(rps_sock_flow_table);
4372u32 rps_cpu_mask __read_mostly;
4373EXPORT_SYMBOL(rps_cpu_mask);
4374
4375struct static_key_false rps_needed __read_mostly;
4376EXPORT_SYMBOL(rps_needed);
4377struct static_key_false rfs_needed __read_mostly;
4378EXPORT_SYMBOL(rfs_needed);
4379
4380static struct rps_dev_flow *
4381set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4382 struct rps_dev_flow *rflow, u16 next_cpu)
4383{
4384 if (next_cpu < nr_cpu_ids) {
4385#ifdef CONFIG_RFS_ACCEL
4386 struct netdev_rx_queue *rxqueue;
4387 struct rps_dev_flow_table *flow_table;
4388 struct rps_dev_flow *old_rflow;
4389 u32 flow_id;
4390 u16 rxq_index;
4391 int rc;
4392
4393 /* Should we steer this flow to a different hardware queue? */
4394 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4395 !(dev->features & NETIF_F_NTUPLE))
4396 goto out;
4397 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4398 if (rxq_index == skb_get_rx_queue(skb))
4399 goto out;
4400
4401 rxqueue = dev->_rx + rxq_index;
4402 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4403 if (!flow_table)
4404 goto out;
4405 flow_id = skb_get_hash(skb) & flow_table->mask;
4406 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4407 rxq_index, flow_id);
4408 if (rc < 0)
4409 goto out;
4410 old_rflow = rflow;
4411 rflow = &flow_table->flows[flow_id];
4412 rflow->filter = rc;
4413 if (old_rflow->filter == rflow->filter)
4414 old_rflow->filter = RPS_NO_FILTER;
4415 out:
4416#endif
4417 rflow->last_qtail =
4418 per_cpu(softnet_data, next_cpu).input_queue_head;
4419 }
4420
4421 rflow->cpu = next_cpu;
4422 return rflow;
4423}
4424
4425/*
4426 * get_rps_cpu is called from netif_receive_skb and returns the target
4427 * CPU from the RPS map of the receiving queue for a given skb.
4428 * rcu_read_lock must be held on entry.
4429 */
4430static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4431 struct rps_dev_flow **rflowp)
4432{
4433 const struct rps_sock_flow_table *sock_flow_table;
4434 struct netdev_rx_queue *rxqueue = dev->_rx;
4435 struct rps_dev_flow_table *flow_table;
4436 struct rps_map *map;
4437 int cpu = -1;
4438 u32 tcpu;
4439 u32 hash;
4440
4441 if (skb_rx_queue_recorded(skb)) {
4442 u16 index = skb_get_rx_queue(skb);
4443
4444 if (unlikely(index >= dev->real_num_rx_queues)) {
4445 WARN_ONCE(dev->real_num_rx_queues > 1,
4446 "%s received packet on queue %u, but number "
4447 "of RX queues is %u\n",
4448 dev->name, index, dev->real_num_rx_queues);
4449 goto done;
4450 }
4451 rxqueue += index;
4452 }
4453
4454 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4455
4456 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4457 map = rcu_dereference(rxqueue->rps_map);
4458 if (!flow_table && !map)
4459 goto done;
4460
4461 skb_reset_network_header(skb);
4462 hash = skb_get_hash(skb);
4463 if (!hash)
4464 goto done;
4465
4466 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4467 if (flow_table && sock_flow_table) {
4468 struct rps_dev_flow *rflow;
4469 u32 next_cpu;
4470 u32 ident;
4471
4472 /* First check into global flow table if there is a match */
4473 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4474 if ((ident ^ hash) & ~rps_cpu_mask)
4475 goto try_rps;
4476
4477 next_cpu = ident & rps_cpu_mask;
4478
4479 /* OK, now we know there is a match,
4480 * we can look at the local (per receive queue) flow table
4481 */
4482 rflow = &flow_table->flows[hash & flow_table->mask];
4483 tcpu = rflow->cpu;
4484
4485 /*
4486 * If the desired CPU (where last recvmsg was done) is
4487 * different from current CPU (one in the rx-queue flow
4488 * table entry), switch if one of the following holds:
4489 * - Current CPU is unset (>= nr_cpu_ids).
4490 * - Current CPU is offline.
4491 * - The current CPU's queue tail has advanced beyond the
4492 * last packet that was enqueued using this table entry.
4493 * This guarantees that all previous packets for the flow
4494 * have been dequeued, thus preserving in order delivery.
4495 */
4496 if (unlikely(tcpu != next_cpu) &&
4497 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4498 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4499 rflow->last_qtail)) >= 0)) {
4500 tcpu = next_cpu;
4501 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4502 }
4503
4504 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4505 *rflowp = rflow;
4506 cpu = tcpu;
4507 goto done;
4508 }
4509 }
4510
4511try_rps:
4512
4513 if (map) {
4514 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4515 if (cpu_online(tcpu)) {
4516 cpu = tcpu;
4517 goto done;
4518 }
4519 }
4520
4521done:
4522 return cpu;
4523}
4524
4525#ifdef CONFIG_RFS_ACCEL
4526
4527/**
4528 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4529 * @dev: Device on which the filter was set
4530 * @rxq_index: RX queue index
4531 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4532 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4533 *
4534 * Drivers that implement ndo_rx_flow_steer() should periodically call
4535 * this function for each installed filter and remove the filters for
4536 * which it returns %true.
4537 */
4538bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4539 u32 flow_id, u16 filter_id)
4540{
4541 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4542 struct rps_dev_flow_table *flow_table;
4543 struct rps_dev_flow *rflow;
4544 bool expire = true;
4545 unsigned int cpu;
4546
4547 rcu_read_lock();
4548 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4549 if (flow_table && flow_id <= flow_table->mask) {
4550 rflow = &flow_table->flows[flow_id];
4551 cpu = READ_ONCE(rflow->cpu);
4552 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4553 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4554 rflow->last_qtail) <
4555 (int)(10 * flow_table->mask)))
4556 expire = false;
4557 }
4558 rcu_read_unlock();
4559 return expire;
4560}
4561EXPORT_SYMBOL(rps_may_expire_flow);
4562
4563#endif /* CONFIG_RFS_ACCEL */
4564
4565/* Called from hardirq (IPI) context */
4566static void rps_trigger_softirq(void *data)
4567{
4568 struct softnet_data *sd = data;
4569
4570 ____napi_schedule(sd, &sd->backlog);
4571 sd->received_rps++;
4572}
4573
4574#endif /* CONFIG_RPS */
4575
4576/* Called from hardirq (IPI) context */
4577static void trigger_rx_softirq(void *data)
4578{
4579 struct softnet_data *sd = data;
4580
4581 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4582 smp_store_release(&sd->defer_ipi_scheduled, 0);
4583}
4584
4585/*
4586 * Check if this softnet_data structure is another cpu one
4587 * If yes, queue it to our IPI list and return 1
4588 * If no, return 0
4589 */
4590static int napi_schedule_rps(struct softnet_data *sd)
4591{
4592 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4593
4594#ifdef CONFIG_RPS
4595 if (sd != mysd) {
4596 sd->rps_ipi_next = mysd->rps_ipi_list;
4597 mysd->rps_ipi_list = sd;
4598
4599 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4600 return 1;
4601 }
4602#endif /* CONFIG_RPS */
4603 __napi_schedule_irqoff(&mysd->backlog);
4604 return 0;
4605}
4606
4607#ifdef CONFIG_NET_FLOW_LIMIT
4608int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4609#endif
4610
4611static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4612{
4613#ifdef CONFIG_NET_FLOW_LIMIT
4614 struct sd_flow_limit *fl;
4615 struct softnet_data *sd;
4616 unsigned int old_flow, new_flow;
4617
4618 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4619 return false;
4620
4621 sd = this_cpu_ptr(&softnet_data);
4622
4623 rcu_read_lock();
4624 fl = rcu_dereference(sd->flow_limit);
4625 if (fl) {
4626 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4627 old_flow = fl->history[fl->history_head];
4628 fl->history[fl->history_head] = new_flow;
4629
4630 fl->history_head++;
4631 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4632
4633 if (likely(fl->buckets[old_flow]))
4634 fl->buckets[old_flow]--;
4635
4636 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4637 fl->count++;
4638 rcu_read_unlock();
4639 return true;
4640 }
4641 }
4642 rcu_read_unlock();
4643#endif
4644 return false;
4645}
4646
4647/*
4648 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4649 * queue (may be a remote CPU queue).
4650 */
4651static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4652 unsigned int *qtail)
4653{
4654 enum skb_drop_reason reason;
4655 struct softnet_data *sd;
4656 unsigned long flags;
4657 unsigned int qlen;
4658
4659 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4660 sd = &per_cpu(softnet_data, cpu);
4661
4662 rps_lock_irqsave(sd, &flags);
4663 if (!netif_running(skb->dev))
4664 goto drop;
4665 qlen = skb_queue_len(&sd->input_pkt_queue);
4666 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4667 if (qlen) {
4668enqueue:
4669 __skb_queue_tail(&sd->input_pkt_queue, skb);
4670 input_queue_tail_incr_save(sd, qtail);
4671 rps_unlock_irq_restore(sd, &flags);
4672 return NET_RX_SUCCESS;
4673 }
4674
4675 /* Schedule NAPI for backlog device
4676 * We can use non atomic operation since we own the queue lock
4677 */
4678 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4679 napi_schedule_rps(sd);
4680 goto enqueue;
4681 }
4682 reason = SKB_DROP_REASON_CPU_BACKLOG;
4683
4684drop:
4685 sd->dropped++;
4686 rps_unlock_irq_restore(sd, &flags);
4687
4688 dev_core_stats_rx_dropped_inc(skb->dev);
4689 kfree_skb_reason(skb, reason);
4690 return NET_RX_DROP;
4691}
4692
4693static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4694{
4695 struct net_device *dev = skb->dev;
4696 struct netdev_rx_queue *rxqueue;
4697
4698 rxqueue = dev->_rx;
4699
4700 if (skb_rx_queue_recorded(skb)) {
4701 u16 index = skb_get_rx_queue(skb);
4702
4703 if (unlikely(index >= dev->real_num_rx_queues)) {
4704 WARN_ONCE(dev->real_num_rx_queues > 1,
4705 "%s received packet on queue %u, but number "
4706 "of RX queues is %u\n",
4707 dev->name, index, dev->real_num_rx_queues);
4708
4709 return rxqueue; /* Return first rxqueue */
4710 }
4711 rxqueue += index;
4712 }
4713 return rxqueue;
4714}
4715
4716u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4717 struct bpf_prog *xdp_prog)
4718{
4719 void *orig_data, *orig_data_end, *hard_start;
4720 struct netdev_rx_queue *rxqueue;
4721 bool orig_bcast, orig_host;
4722 u32 mac_len, frame_sz;
4723 __be16 orig_eth_type;
4724 struct ethhdr *eth;
4725 u32 metalen, act;
4726 int off;
4727
4728 /* The XDP program wants to see the packet starting at the MAC
4729 * header.
4730 */
4731 mac_len = skb->data - skb_mac_header(skb);
4732 hard_start = skb->data - skb_headroom(skb);
4733
4734 /* SKB "head" area always have tailroom for skb_shared_info */
4735 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4736 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4737
4738 rxqueue = netif_get_rxqueue(skb);
4739 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4740 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4741 skb_headlen(skb) + mac_len, true);
4742
4743 orig_data_end = xdp->data_end;
4744 orig_data = xdp->data;
4745 eth = (struct ethhdr *)xdp->data;
4746 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4747 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4748 orig_eth_type = eth->h_proto;
4749
4750 act = bpf_prog_run_xdp(xdp_prog, xdp);
4751
4752 /* check if bpf_xdp_adjust_head was used */
4753 off = xdp->data - orig_data;
4754 if (off) {
4755 if (off > 0)
4756 __skb_pull(skb, off);
4757 else if (off < 0)
4758 __skb_push(skb, -off);
4759
4760 skb->mac_header += off;
4761 skb_reset_network_header(skb);
4762 }
4763
4764 /* check if bpf_xdp_adjust_tail was used */
4765 off = xdp->data_end - orig_data_end;
4766 if (off != 0) {
4767 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4768 skb->len += off; /* positive on grow, negative on shrink */
4769 }
4770
4771 /* check if XDP changed eth hdr such SKB needs update */
4772 eth = (struct ethhdr *)xdp->data;
4773 if ((orig_eth_type != eth->h_proto) ||
4774 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4775 skb->dev->dev_addr)) ||
4776 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4777 __skb_push(skb, ETH_HLEN);
4778 skb->pkt_type = PACKET_HOST;
4779 skb->protocol = eth_type_trans(skb, skb->dev);
4780 }
4781
4782 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4783 * before calling us again on redirect path. We do not call do_redirect
4784 * as we leave that up to the caller.
4785 *
4786 * Caller is responsible for managing lifetime of skb (i.e. calling
4787 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4788 */
4789 switch (act) {
4790 case XDP_REDIRECT:
4791 case XDP_TX:
4792 __skb_push(skb, mac_len);
4793 break;
4794 case XDP_PASS:
4795 metalen = xdp->data - xdp->data_meta;
4796 if (metalen)
4797 skb_metadata_set(skb, metalen);
4798 break;
4799 }
4800
4801 return act;
4802}
4803
4804static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4805 struct xdp_buff *xdp,
4806 struct bpf_prog *xdp_prog)
4807{
4808 u32 act = XDP_DROP;
4809
4810 /* Reinjected packets coming from act_mirred or similar should
4811 * not get XDP generic processing.
4812 */
4813 if (skb_is_redirected(skb))
4814 return XDP_PASS;
4815
4816 /* XDP packets must be linear and must have sufficient headroom
4817 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4818 * native XDP provides, thus we need to do it here as well.
4819 */
4820 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4821 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4822 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4823 int troom = skb->tail + skb->data_len - skb->end;
4824
4825 /* In case we have to go down the path and also linearize,
4826 * then lets do the pskb_expand_head() work just once here.
4827 */
4828 if (pskb_expand_head(skb,
4829 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4830 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4831 goto do_drop;
4832 if (skb_linearize(skb))
4833 goto do_drop;
4834 }
4835
4836 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4837 switch (act) {
4838 case XDP_REDIRECT:
4839 case XDP_TX:
4840 case XDP_PASS:
4841 break;
4842 default:
4843 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4844 fallthrough;
4845 case XDP_ABORTED:
4846 trace_xdp_exception(skb->dev, xdp_prog, act);
4847 fallthrough;
4848 case XDP_DROP:
4849 do_drop:
4850 kfree_skb(skb);
4851 break;
4852 }
4853
4854 return act;
4855}
4856
4857/* When doing generic XDP we have to bypass the qdisc layer and the
4858 * network taps in order to match in-driver-XDP behavior. This also means
4859 * that XDP packets are able to starve other packets going through a qdisc,
4860 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4861 * queues, so they do not have this starvation issue.
4862 */
4863void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4864{
4865 struct net_device *dev = skb->dev;
4866 struct netdev_queue *txq;
4867 bool free_skb = true;
4868 int cpu, rc;
4869
4870 txq = netdev_core_pick_tx(dev, skb, NULL);
4871 cpu = smp_processor_id();
4872 HARD_TX_LOCK(dev, txq, cpu);
4873 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4874 rc = netdev_start_xmit(skb, dev, txq, 0);
4875 if (dev_xmit_complete(rc))
4876 free_skb = false;
4877 }
4878 HARD_TX_UNLOCK(dev, txq);
4879 if (free_skb) {
4880 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4881 dev_core_stats_tx_dropped_inc(dev);
4882 kfree_skb(skb);
4883 }
4884}
4885
4886static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4887
4888int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4889{
4890 if (xdp_prog) {
4891 struct xdp_buff xdp;
4892 u32 act;
4893 int err;
4894
4895 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4896 if (act != XDP_PASS) {
4897 switch (act) {
4898 case XDP_REDIRECT:
4899 err = xdp_do_generic_redirect(skb->dev, skb,
4900 &xdp, xdp_prog);
4901 if (err)
4902 goto out_redir;
4903 break;
4904 case XDP_TX:
4905 generic_xdp_tx(skb, xdp_prog);
4906 break;
4907 }
4908 return XDP_DROP;
4909 }
4910 }
4911 return XDP_PASS;
4912out_redir:
4913 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4914 return XDP_DROP;
4915}
4916EXPORT_SYMBOL_GPL(do_xdp_generic);
4917
4918static int netif_rx_internal(struct sk_buff *skb)
4919{
4920 int ret;
4921
4922 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4923
4924 trace_netif_rx(skb);
4925
4926#ifdef CONFIG_RPS
4927 if (static_branch_unlikely(&rps_needed)) {
4928 struct rps_dev_flow voidflow, *rflow = &voidflow;
4929 int cpu;
4930
4931 rcu_read_lock();
4932
4933 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4934 if (cpu < 0)
4935 cpu = smp_processor_id();
4936
4937 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4938
4939 rcu_read_unlock();
4940 } else
4941#endif
4942 {
4943 unsigned int qtail;
4944
4945 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4946 }
4947 return ret;
4948}
4949
4950/**
4951 * __netif_rx - Slightly optimized version of netif_rx
4952 * @skb: buffer to post
4953 *
4954 * This behaves as netif_rx except that it does not disable bottom halves.
4955 * As a result this function may only be invoked from the interrupt context
4956 * (either hard or soft interrupt).
4957 */
4958int __netif_rx(struct sk_buff *skb)
4959{
4960 int ret;
4961
4962 lockdep_assert_once(hardirq_count() | softirq_count());
4963
4964 trace_netif_rx_entry(skb);
4965 ret = netif_rx_internal(skb);
4966 trace_netif_rx_exit(ret);
4967 return ret;
4968}
4969EXPORT_SYMBOL(__netif_rx);
4970
4971/**
4972 * netif_rx - post buffer to the network code
4973 * @skb: buffer to post
4974 *
4975 * This function receives a packet from a device driver and queues it for
4976 * the upper (protocol) levels to process via the backlog NAPI device. It
4977 * always succeeds. The buffer may be dropped during processing for
4978 * congestion control or by the protocol layers.
4979 * The network buffer is passed via the backlog NAPI device. Modern NIC
4980 * driver should use NAPI and GRO.
4981 * This function can used from interrupt and from process context. The
4982 * caller from process context must not disable interrupts before invoking
4983 * this function.
4984 *
4985 * return values:
4986 * NET_RX_SUCCESS (no congestion)
4987 * NET_RX_DROP (packet was dropped)
4988 *
4989 */
4990int netif_rx(struct sk_buff *skb)
4991{
4992 bool need_bh_off = !(hardirq_count() | softirq_count());
4993 int ret;
4994
4995 if (need_bh_off)
4996 local_bh_disable();
4997 trace_netif_rx_entry(skb);
4998 ret = netif_rx_internal(skb);
4999 trace_netif_rx_exit(ret);
5000 if (need_bh_off)
5001 local_bh_enable();
5002 return ret;
5003}
5004EXPORT_SYMBOL(netif_rx);
5005
5006static __latent_entropy void net_tx_action(struct softirq_action *h)
5007{
5008 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5009
5010 if (sd->completion_queue) {
5011 struct sk_buff *clist;
5012
5013 local_irq_disable();
5014 clist = sd->completion_queue;
5015 sd->completion_queue = NULL;
5016 local_irq_enable();
5017
5018 while (clist) {
5019 struct sk_buff *skb = clist;
5020
5021 clist = clist->next;
5022
5023 WARN_ON(refcount_read(&skb->users));
5024 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5025 trace_consume_skb(skb, net_tx_action);
5026 else
5027 trace_kfree_skb(skb, net_tx_action,
5028 SKB_DROP_REASON_NOT_SPECIFIED);
5029
5030 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5031 __kfree_skb(skb);
5032 else
5033 __kfree_skb_defer(skb);
5034 }
5035 }
5036
5037 if (sd->output_queue) {
5038 struct Qdisc *head;
5039
5040 local_irq_disable();
5041 head = sd->output_queue;
5042 sd->output_queue = NULL;
5043 sd->output_queue_tailp = &sd->output_queue;
5044 local_irq_enable();
5045
5046 rcu_read_lock();
5047
5048 while (head) {
5049 struct Qdisc *q = head;
5050 spinlock_t *root_lock = NULL;
5051
5052 head = head->next_sched;
5053
5054 /* We need to make sure head->next_sched is read
5055 * before clearing __QDISC_STATE_SCHED
5056 */
5057 smp_mb__before_atomic();
5058
5059 if (!(q->flags & TCQ_F_NOLOCK)) {
5060 root_lock = qdisc_lock(q);
5061 spin_lock(root_lock);
5062 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5063 &q->state))) {
5064 /* There is a synchronize_net() between
5065 * STATE_DEACTIVATED flag being set and
5066 * qdisc_reset()/some_qdisc_is_busy() in
5067 * dev_deactivate(), so we can safely bail out
5068 * early here to avoid data race between
5069 * qdisc_deactivate() and some_qdisc_is_busy()
5070 * for lockless qdisc.
5071 */
5072 clear_bit(__QDISC_STATE_SCHED, &q->state);
5073 continue;
5074 }
5075
5076 clear_bit(__QDISC_STATE_SCHED, &q->state);
5077 qdisc_run(q);
5078 if (root_lock)
5079 spin_unlock(root_lock);
5080 }
5081
5082 rcu_read_unlock();
5083 }
5084
5085 xfrm_dev_backlog(sd);
5086}
5087
5088#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5089/* This hook is defined here for ATM LANE */
5090int (*br_fdb_test_addr_hook)(struct net_device *dev,
5091 unsigned char *addr) __read_mostly;
5092EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5093#endif
5094
5095static inline struct sk_buff *
5096sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5097 struct net_device *orig_dev, bool *another)
5098{
5099#ifdef CONFIG_NET_CLS_ACT
5100 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5101 struct tcf_result cl_res;
5102
5103 /* If there's at least one ingress present somewhere (so
5104 * we get here via enabled static key), remaining devices
5105 * that are not configured with an ingress qdisc will bail
5106 * out here.
5107 */
5108 if (!miniq)
5109 return skb;
5110
5111 if (*pt_prev) {
5112 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5113 *pt_prev = NULL;
5114 }
5115
5116 qdisc_skb_cb(skb)->pkt_len = skb->len;
5117 tc_skb_cb(skb)->mru = 0;
5118 tc_skb_cb(skb)->post_ct = false;
5119 skb->tc_at_ingress = 1;
5120 mini_qdisc_bstats_cpu_update(miniq, skb);
5121
5122 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5123 case TC_ACT_OK:
5124 case TC_ACT_RECLASSIFY:
5125 skb->tc_index = TC_H_MIN(cl_res.classid);
5126 break;
5127 case TC_ACT_SHOT:
5128 mini_qdisc_qstats_cpu_drop(miniq);
5129 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5130 *ret = NET_RX_DROP;
5131 return NULL;
5132 case TC_ACT_STOLEN:
5133 case TC_ACT_QUEUED:
5134 case TC_ACT_TRAP:
5135 consume_skb(skb);
5136 *ret = NET_RX_SUCCESS;
5137 return NULL;
5138 case TC_ACT_REDIRECT:
5139 /* skb_mac_header check was done by cls/act_bpf, so
5140 * we can safely push the L2 header back before
5141 * redirecting to another netdev
5142 */
5143 __skb_push(skb, skb->mac_len);
5144 if (skb_do_redirect(skb) == -EAGAIN) {
5145 __skb_pull(skb, skb->mac_len);
5146 *another = true;
5147 break;
5148 }
5149 *ret = NET_RX_SUCCESS;
5150 return NULL;
5151 case TC_ACT_CONSUMED:
5152 *ret = NET_RX_SUCCESS;
5153 return NULL;
5154 default:
5155 break;
5156 }
5157#endif /* CONFIG_NET_CLS_ACT */
5158 return skb;
5159}
5160
5161/**
5162 * netdev_is_rx_handler_busy - check if receive handler is registered
5163 * @dev: device to check
5164 *
5165 * Check if a receive handler is already registered for a given device.
5166 * Return true if there one.
5167 *
5168 * The caller must hold the rtnl_mutex.
5169 */
5170bool netdev_is_rx_handler_busy(struct net_device *dev)
5171{
5172 ASSERT_RTNL();
5173 return dev && rtnl_dereference(dev->rx_handler);
5174}
5175EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5176
5177/**
5178 * netdev_rx_handler_register - register receive handler
5179 * @dev: device to register a handler for
5180 * @rx_handler: receive handler to register
5181 * @rx_handler_data: data pointer that is used by rx handler
5182 *
5183 * Register a receive handler for a device. This handler will then be
5184 * called from __netif_receive_skb. A negative errno code is returned
5185 * on a failure.
5186 *
5187 * The caller must hold the rtnl_mutex.
5188 *
5189 * For a general description of rx_handler, see enum rx_handler_result.
5190 */
5191int netdev_rx_handler_register(struct net_device *dev,
5192 rx_handler_func_t *rx_handler,
5193 void *rx_handler_data)
5194{
5195 if (netdev_is_rx_handler_busy(dev))
5196 return -EBUSY;
5197
5198 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5199 return -EINVAL;
5200
5201 /* Note: rx_handler_data must be set before rx_handler */
5202 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5203 rcu_assign_pointer(dev->rx_handler, rx_handler);
5204
5205 return 0;
5206}
5207EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5208
5209/**
5210 * netdev_rx_handler_unregister - unregister receive handler
5211 * @dev: device to unregister a handler from
5212 *
5213 * Unregister a receive handler from a device.
5214 *
5215 * The caller must hold the rtnl_mutex.
5216 */
5217void netdev_rx_handler_unregister(struct net_device *dev)
5218{
5219
5220 ASSERT_RTNL();
5221 RCU_INIT_POINTER(dev->rx_handler, NULL);
5222 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5223 * section has a guarantee to see a non NULL rx_handler_data
5224 * as well.
5225 */
5226 synchronize_net();
5227 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5228}
5229EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5230
5231/*
5232 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5233 * the special handling of PFMEMALLOC skbs.
5234 */
5235static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5236{
5237 switch (skb->protocol) {
5238 case htons(ETH_P_ARP):
5239 case htons(ETH_P_IP):
5240 case htons(ETH_P_IPV6):
5241 case htons(ETH_P_8021Q):
5242 case htons(ETH_P_8021AD):
5243 return true;
5244 default:
5245 return false;
5246 }
5247}
5248
5249static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5250 int *ret, struct net_device *orig_dev)
5251{
5252 if (nf_hook_ingress_active(skb)) {
5253 int ingress_retval;
5254
5255 if (*pt_prev) {
5256 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5257 *pt_prev = NULL;
5258 }
5259
5260 rcu_read_lock();
5261 ingress_retval = nf_hook_ingress(skb);
5262 rcu_read_unlock();
5263 return ingress_retval;
5264 }
5265 return 0;
5266}
5267
5268static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5269 struct packet_type **ppt_prev)
5270{
5271 struct packet_type *ptype, *pt_prev;
5272 rx_handler_func_t *rx_handler;
5273 struct sk_buff *skb = *pskb;
5274 struct net_device *orig_dev;
5275 bool deliver_exact = false;
5276 int ret = NET_RX_DROP;
5277 __be16 type;
5278
5279 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5280
5281 trace_netif_receive_skb(skb);
5282
5283 orig_dev = skb->dev;
5284
5285 skb_reset_network_header(skb);
5286 if (!skb_transport_header_was_set(skb))
5287 skb_reset_transport_header(skb);
5288 skb_reset_mac_len(skb);
5289
5290 pt_prev = NULL;
5291
5292another_round:
5293 skb->skb_iif = skb->dev->ifindex;
5294
5295 __this_cpu_inc(softnet_data.processed);
5296
5297 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5298 int ret2;
5299
5300 migrate_disable();
5301 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5302 migrate_enable();
5303
5304 if (ret2 != XDP_PASS) {
5305 ret = NET_RX_DROP;
5306 goto out;
5307 }
5308 }
5309
5310 if (eth_type_vlan(skb->protocol)) {
5311 skb = skb_vlan_untag(skb);
5312 if (unlikely(!skb))
5313 goto out;
5314 }
5315
5316 if (skb_skip_tc_classify(skb))
5317 goto skip_classify;
5318
5319 if (pfmemalloc)
5320 goto skip_taps;
5321
5322 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5323 if (pt_prev)
5324 ret = deliver_skb(skb, pt_prev, orig_dev);
5325 pt_prev = ptype;
5326 }
5327
5328 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5329 if (pt_prev)
5330 ret = deliver_skb(skb, pt_prev, orig_dev);
5331 pt_prev = ptype;
5332 }
5333
5334skip_taps:
5335#ifdef CONFIG_NET_INGRESS
5336 if (static_branch_unlikely(&ingress_needed_key)) {
5337 bool another = false;
5338
5339 nf_skip_egress(skb, true);
5340 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5341 &another);
5342 if (another)
5343 goto another_round;
5344 if (!skb)
5345 goto out;
5346
5347 nf_skip_egress(skb, false);
5348 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5349 goto out;
5350 }
5351#endif
5352 skb_reset_redirect(skb);
5353skip_classify:
5354 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5355 goto drop;
5356
5357 if (skb_vlan_tag_present(skb)) {
5358 if (pt_prev) {
5359 ret = deliver_skb(skb, pt_prev, orig_dev);
5360 pt_prev = NULL;
5361 }
5362 if (vlan_do_receive(&skb))
5363 goto another_round;
5364 else if (unlikely(!skb))
5365 goto out;
5366 }
5367
5368 rx_handler = rcu_dereference(skb->dev->rx_handler);
5369 if (rx_handler) {
5370 if (pt_prev) {
5371 ret = deliver_skb(skb, pt_prev, orig_dev);
5372 pt_prev = NULL;
5373 }
5374 switch (rx_handler(&skb)) {
5375 case RX_HANDLER_CONSUMED:
5376 ret = NET_RX_SUCCESS;
5377 goto out;
5378 case RX_HANDLER_ANOTHER:
5379 goto another_round;
5380 case RX_HANDLER_EXACT:
5381 deliver_exact = true;
5382 break;
5383 case RX_HANDLER_PASS:
5384 break;
5385 default:
5386 BUG();
5387 }
5388 }
5389
5390 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5391check_vlan_id:
5392 if (skb_vlan_tag_get_id(skb)) {
5393 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5394 * find vlan device.
5395 */
5396 skb->pkt_type = PACKET_OTHERHOST;
5397 } else if (eth_type_vlan(skb->protocol)) {
5398 /* Outer header is 802.1P with vlan 0, inner header is
5399 * 802.1Q or 802.1AD and vlan_do_receive() above could
5400 * not find vlan dev for vlan id 0.
5401 */
5402 __vlan_hwaccel_clear_tag(skb);
5403 skb = skb_vlan_untag(skb);
5404 if (unlikely(!skb))
5405 goto out;
5406 if (vlan_do_receive(&skb))
5407 /* After stripping off 802.1P header with vlan 0
5408 * vlan dev is found for inner header.
5409 */
5410 goto another_round;
5411 else if (unlikely(!skb))
5412 goto out;
5413 else
5414 /* We have stripped outer 802.1P vlan 0 header.
5415 * But could not find vlan dev.
5416 * check again for vlan id to set OTHERHOST.
5417 */
5418 goto check_vlan_id;
5419 }
5420 /* Note: we might in the future use prio bits
5421 * and set skb->priority like in vlan_do_receive()
5422 * For the time being, just ignore Priority Code Point
5423 */
5424 __vlan_hwaccel_clear_tag(skb);
5425 }
5426
5427 type = skb->protocol;
5428
5429 /* deliver only exact match when indicated */
5430 if (likely(!deliver_exact)) {
5431 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5432 &ptype_base[ntohs(type) &
5433 PTYPE_HASH_MASK]);
5434 }
5435
5436 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5437 &orig_dev->ptype_specific);
5438
5439 if (unlikely(skb->dev != orig_dev)) {
5440 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5441 &skb->dev->ptype_specific);
5442 }
5443
5444 if (pt_prev) {
5445 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5446 goto drop;
5447 *ppt_prev = pt_prev;
5448 } else {
5449drop:
5450 if (!deliver_exact)
5451 dev_core_stats_rx_dropped_inc(skb->dev);
5452 else
5453 dev_core_stats_rx_nohandler_inc(skb->dev);
5454 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5455 /* Jamal, now you will not able to escape explaining
5456 * me how you were going to use this. :-)
5457 */
5458 ret = NET_RX_DROP;
5459 }
5460
5461out:
5462 /* The invariant here is that if *ppt_prev is not NULL
5463 * then skb should also be non-NULL.
5464 *
5465 * Apparently *ppt_prev assignment above holds this invariant due to
5466 * skb dereferencing near it.
5467 */
5468 *pskb = skb;
5469 return ret;
5470}
5471
5472static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5473{
5474 struct net_device *orig_dev = skb->dev;
5475 struct packet_type *pt_prev = NULL;
5476 int ret;
5477
5478 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5479 if (pt_prev)
5480 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5481 skb->dev, pt_prev, orig_dev);
5482 return ret;
5483}
5484
5485/**
5486 * netif_receive_skb_core - special purpose version of netif_receive_skb
5487 * @skb: buffer to process
5488 *
5489 * More direct receive version of netif_receive_skb(). It should
5490 * only be used by callers that have a need to skip RPS and Generic XDP.
5491 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5492 *
5493 * This function may only be called from softirq context and interrupts
5494 * should be enabled.
5495 *
5496 * Return values (usually ignored):
5497 * NET_RX_SUCCESS: no congestion
5498 * NET_RX_DROP: packet was dropped
5499 */
5500int netif_receive_skb_core(struct sk_buff *skb)
5501{
5502 int ret;
5503
5504 rcu_read_lock();
5505 ret = __netif_receive_skb_one_core(skb, false);
5506 rcu_read_unlock();
5507
5508 return ret;
5509}
5510EXPORT_SYMBOL(netif_receive_skb_core);
5511
5512static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5513 struct packet_type *pt_prev,
5514 struct net_device *orig_dev)
5515{
5516 struct sk_buff *skb, *next;
5517
5518 if (!pt_prev)
5519 return;
5520 if (list_empty(head))
5521 return;
5522 if (pt_prev->list_func != NULL)
5523 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5524 ip_list_rcv, head, pt_prev, orig_dev);
5525 else
5526 list_for_each_entry_safe(skb, next, head, list) {
5527 skb_list_del_init(skb);
5528 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5529 }
5530}
5531
5532static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5533{
5534 /* Fast-path assumptions:
5535 * - There is no RX handler.
5536 * - Only one packet_type matches.
5537 * If either of these fails, we will end up doing some per-packet
5538 * processing in-line, then handling the 'last ptype' for the whole
5539 * sublist. This can't cause out-of-order delivery to any single ptype,
5540 * because the 'last ptype' must be constant across the sublist, and all
5541 * other ptypes are handled per-packet.
5542 */
5543 /* Current (common) ptype of sublist */
5544 struct packet_type *pt_curr = NULL;
5545 /* Current (common) orig_dev of sublist */
5546 struct net_device *od_curr = NULL;
5547 struct list_head sublist;
5548 struct sk_buff *skb, *next;
5549
5550 INIT_LIST_HEAD(&sublist);
5551 list_for_each_entry_safe(skb, next, head, list) {
5552 struct net_device *orig_dev = skb->dev;
5553 struct packet_type *pt_prev = NULL;
5554
5555 skb_list_del_init(skb);
5556 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5557 if (!pt_prev)
5558 continue;
5559 if (pt_curr != pt_prev || od_curr != orig_dev) {
5560 /* dispatch old sublist */
5561 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5562 /* start new sublist */
5563 INIT_LIST_HEAD(&sublist);
5564 pt_curr = pt_prev;
5565 od_curr = orig_dev;
5566 }
5567 list_add_tail(&skb->list, &sublist);
5568 }
5569
5570 /* dispatch final sublist */
5571 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5572}
5573
5574static int __netif_receive_skb(struct sk_buff *skb)
5575{
5576 int ret;
5577
5578 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5579 unsigned int noreclaim_flag;
5580
5581 /*
5582 * PFMEMALLOC skbs are special, they should
5583 * - be delivered to SOCK_MEMALLOC sockets only
5584 * - stay away from userspace
5585 * - have bounded memory usage
5586 *
5587 * Use PF_MEMALLOC as this saves us from propagating the allocation
5588 * context down to all allocation sites.
5589 */
5590 noreclaim_flag = memalloc_noreclaim_save();
5591 ret = __netif_receive_skb_one_core(skb, true);
5592 memalloc_noreclaim_restore(noreclaim_flag);
5593 } else
5594 ret = __netif_receive_skb_one_core(skb, false);
5595
5596 return ret;
5597}
5598
5599static void __netif_receive_skb_list(struct list_head *head)
5600{
5601 unsigned long noreclaim_flag = 0;
5602 struct sk_buff *skb, *next;
5603 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5604
5605 list_for_each_entry_safe(skb, next, head, list) {
5606 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5607 struct list_head sublist;
5608
5609 /* Handle the previous sublist */
5610 list_cut_before(&sublist, head, &skb->list);
5611 if (!list_empty(&sublist))
5612 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5613 pfmemalloc = !pfmemalloc;
5614 /* See comments in __netif_receive_skb */
5615 if (pfmemalloc)
5616 noreclaim_flag = memalloc_noreclaim_save();
5617 else
5618 memalloc_noreclaim_restore(noreclaim_flag);
5619 }
5620 }
5621 /* Handle the remaining sublist */
5622 if (!list_empty(head))
5623 __netif_receive_skb_list_core(head, pfmemalloc);
5624 /* Restore pflags */
5625 if (pfmemalloc)
5626 memalloc_noreclaim_restore(noreclaim_flag);
5627}
5628
5629static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5630{
5631 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5632 struct bpf_prog *new = xdp->prog;
5633 int ret = 0;
5634
5635 switch (xdp->command) {
5636 case XDP_SETUP_PROG:
5637 rcu_assign_pointer(dev->xdp_prog, new);
5638 if (old)
5639 bpf_prog_put(old);
5640
5641 if (old && !new) {
5642 static_branch_dec(&generic_xdp_needed_key);
5643 } else if (new && !old) {
5644 static_branch_inc(&generic_xdp_needed_key);
5645 dev_disable_lro(dev);
5646 dev_disable_gro_hw(dev);
5647 }
5648 break;
5649
5650 default:
5651 ret = -EINVAL;
5652 break;
5653 }
5654
5655 return ret;
5656}
5657
5658static int netif_receive_skb_internal(struct sk_buff *skb)
5659{
5660 int ret;
5661
5662 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5663
5664 if (skb_defer_rx_timestamp(skb))
5665 return NET_RX_SUCCESS;
5666
5667 rcu_read_lock();
5668#ifdef CONFIG_RPS
5669 if (static_branch_unlikely(&rps_needed)) {
5670 struct rps_dev_flow voidflow, *rflow = &voidflow;
5671 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5672
5673 if (cpu >= 0) {
5674 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5675 rcu_read_unlock();
5676 return ret;
5677 }
5678 }
5679#endif
5680 ret = __netif_receive_skb(skb);
5681 rcu_read_unlock();
5682 return ret;
5683}
5684
5685void netif_receive_skb_list_internal(struct list_head *head)
5686{
5687 struct sk_buff *skb, *next;
5688 struct list_head sublist;
5689
5690 INIT_LIST_HEAD(&sublist);
5691 list_for_each_entry_safe(skb, next, head, list) {
5692 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5693 skb_list_del_init(skb);
5694 if (!skb_defer_rx_timestamp(skb))
5695 list_add_tail(&skb->list, &sublist);
5696 }
5697 list_splice_init(&sublist, head);
5698
5699 rcu_read_lock();
5700#ifdef CONFIG_RPS
5701 if (static_branch_unlikely(&rps_needed)) {
5702 list_for_each_entry_safe(skb, next, head, list) {
5703 struct rps_dev_flow voidflow, *rflow = &voidflow;
5704 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5705
5706 if (cpu >= 0) {
5707 /* Will be handled, remove from list */
5708 skb_list_del_init(skb);
5709 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5710 }
5711 }
5712 }
5713#endif
5714 __netif_receive_skb_list(head);
5715 rcu_read_unlock();
5716}
5717
5718/**
5719 * netif_receive_skb - process receive buffer from network
5720 * @skb: buffer to process
5721 *
5722 * netif_receive_skb() is the main receive data processing function.
5723 * It always succeeds. The buffer may be dropped during processing
5724 * for congestion control or by the protocol layers.
5725 *
5726 * This function may only be called from softirq context and interrupts
5727 * should be enabled.
5728 *
5729 * Return values (usually ignored):
5730 * NET_RX_SUCCESS: no congestion
5731 * NET_RX_DROP: packet was dropped
5732 */
5733int netif_receive_skb(struct sk_buff *skb)
5734{
5735 int ret;
5736
5737 trace_netif_receive_skb_entry(skb);
5738
5739 ret = netif_receive_skb_internal(skb);
5740 trace_netif_receive_skb_exit(ret);
5741
5742 return ret;
5743}
5744EXPORT_SYMBOL(netif_receive_skb);
5745
5746/**
5747 * netif_receive_skb_list - process many receive buffers from network
5748 * @head: list of skbs to process.
5749 *
5750 * Since return value of netif_receive_skb() is normally ignored, and
5751 * wouldn't be meaningful for a list, this function returns void.
5752 *
5753 * This function may only be called from softirq context and interrupts
5754 * should be enabled.
5755 */
5756void netif_receive_skb_list(struct list_head *head)
5757{
5758 struct sk_buff *skb;
5759
5760 if (list_empty(head))
5761 return;
5762 if (trace_netif_receive_skb_list_entry_enabled()) {
5763 list_for_each_entry(skb, head, list)
5764 trace_netif_receive_skb_list_entry(skb);
5765 }
5766 netif_receive_skb_list_internal(head);
5767 trace_netif_receive_skb_list_exit(0);
5768}
5769EXPORT_SYMBOL(netif_receive_skb_list);
5770
5771static DEFINE_PER_CPU(struct work_struct, flush_works);
5772
5773/* Network device is going away, flush any packets still pending */
5774static void flush_backlog(struct work_struct *work)
5775{
5776 struct sk_buff *skb, *tmp;
5777 struct softnet_data *sd;
5778
5779 local_bh_disable();
5780 sd = this_cpu_ptr(&softnet_data);
5781
5782 rps_lock_irq_disable(sd);
5783 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5784 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5785 __skb_unlink(skb, &sd->input_pkt_queue);
5786 dev_kfree_skb_irq(skb);
5787 input_queue_head_incr(sd);
5788 }
5789 }
5790 rps_unlock_irq_enable(sd);
5791
5792 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5793 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5794 __skb_unlink(skb, &sd->process_queue);
5795 kfree_skb(skb);
5796 input_queue_head_incr(sd);
5797 }
5798 }
5799 local_bh_enable();
5800}
5801
5802static bool flush_required(int cpu)
5803{
5804#if IS_ENABLED(CONFIG_RPS)
5805 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5806 bool do_flush;
5807
5808 rps_lock_irq_disable(sd);
5809
5810 /* as insertion into process_queue happens with the rps lock held,
5811 * process_queue access may race only with dequeue
5812 */
5813 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5814 !skb_queue_empty_lockless(&sd->process_queue);
5815 rps_unlock_irq_enable(sd);
5816
5817 return do_flush;
5818#endif
5819 /* without RPS we can't safely check input_pkt_queue: during a
5820 * concurrent remote skb_queue_splice() we can detect as empty both
5821 * input_pkt_queue and process_queue even if the latter could end-up
5822 * containing a lot of packets.
5823 */
5824 return true;
5825}
5826
5827static void flush_all_backlogs(void)
5828{
5829 static cpumask_t flush_cpus;
5830 unsigned int cpu;
5831
5832 /* since we are under rtnl lock protection we can use static data
5833 * for the cpumask and avoid allocating on stack the possibly
5834 * large mask
5835 */
5836 ASSERT_RTNL();
5837
5838 cpus_read_lock();
5839
5840 cpumask_clear(&flush_cpus);
5841 for_each_online_cpu(cpu) {
5842 if (flush_required(cpu)) {
5843 queue_work_on(cpu, system_highpri_wq,
5844 per_cpu_ptr(&flush_works, cpu));
5845 cpumask_set_cpu(cpu, &flush_cpus);
5846 }
5847 }
5848
5849 /* we can have in flight packet[s] on the cpus we are not flushing,
5850 * synchronize_net() in unregister_netdevice_many() will take care of
5851 * them
5852 */
5853 for_each_cpu(cpu, &flush_cpus)
5854 flush_work(per_cpu_ptr(&flush_works, cpu));
5855
5856 cpus_read_unlock();
5857}
5858
5859static void net_rps_send_ipi(struct softnet_data *remsd)
5860{
5861#ifdef CONFIG_RPS
5862 while (remsd) {
5863 struct softnet_data *next = remsd->rps_ipi_next;
5864
5865 if (cpu_online(remsd->cpu))
5866 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5867 remsd = next;
5868 }
5869#endif
5870}
5871
5872/*
5873 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5874 * Note: called with local irq disabled, but exits with local irq enabled.
5875 */
5876static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5877{
5878#ifdef CONFIG_RPS
5879 struct softnet_data *remsd = sd->rps_ipi_list;
5880
5881 if (remsd) {
5882 sd->rps_ipi_list = NULL;
5883
5884 local_irq_enable();
5885
5886 /* Send pending IPI's to kick RPS processing on remote cpus. */
5887 net_rps_send_ipi(remsd);
5888 } else
5889#endif
5890 local_irq_enable();
5891}
5892
5893static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5894{
5895#ifdef CONFIG_RPS
5896 return sd->rps_ipi_list != NULL;
5897#else
5898 return false;
5899#endif
5900}
5901
5902static int process_backlog(struct napi_struct *napi, int quota)
5903{
5904 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5905 bool again = true;
5906 int work = 0;
5907
5908 /* Check if we have pending ipi, its better to send them now,
5909 * not waiting net_rx_action() end.
5910 */
5911 if (sd_has_rps_ipi_waiting(sd)) {
5912 local_irq_disable();
5913 net_rps_action_and_irq_enable(sd);
5914 }
5915
5916 napi->weight = READ_ONCE(dev_rx_weight);
5917 while (again) {
5918 struct sk_buff *skb;
5919
5920 while ((skb = __skb_dequeue(&sd->process_queue))) {
5921 rcu_read_lock();
5922 __netif_receive_skb(skb);
5923 rcu_read_unlock();
5924 input_queue_head_incr(sd);
5925 if (++work >= quota)
5926 return work;
5927
5928 }
5929
5930 rps_lock_irq_disable(sd);
5931 if (skb_queue_empty(&sd->input_pkt_queue)) {
5932 /*
5933 * Inline a custom version of __napi_complete().
5934 * only current cpu owns and manipulates this napi,
5935 * and NAPI_STATE_SCHED is the only possible flag set
5936 * on backlog.
5937 * We can use a plain write instead of clear_bit(),
5938 * and we dont need an smp_mb() memory barrier.
5939 */
5940 napi->state = 0;
5941 again = false;
5942 } else {
5943 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5944 &sd->process_queue);
5945 }
5946 rps_unlock_irq_enable(sd);
5947 }
5948
5949 return work;
5950}
5951
5952/**
5953 * __napi_schedule - schedule for receive
5954 * @n: entry to schedule
5955 *
5956 * The entry's receive function will be scheduled to run.
5957 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5958 */
5959void __napi_schedule(struct napi_struct *n)
5960{
5961 unsigned long flags;
5962
5963 local_irq_save(flags);
5964 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5965 local_irq_restore(flags);
5966}
5967EXPORT_SYMBOL(__napi_schedule);
5968
5969/**
5970 * napi_schedule_prep - check if napi can be scheduled
5971 * @n: napi context
5972 *
5973 * Test if NAPI routine is already running, and if not mark
5974 * it as running. This is used as a condition variable to
5975 * insure only one NAPI poll instance runs. We also make
5976 * sure there is no pending NAPI disable.
5977 */
5978bool napi_schedule_prep(struct napi_struct *n)
5979{
5980 unsigned long new, val = READ_ONCE(n->state);
5981
5982 do {
5983 if (unlikely(val & NAPIF_STATE_DISABLE))
5984 return false;
5985 new = val | NAPIF_STATE_SCHED;
5986
5987 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5988 * This was suggested by Alexander Duyck, as compiler
5989 * emits better code than :
5990 * if (val & NAPIF_STATE_SCHED)
5991 * new |= NAPIF_STATE_MISSED;
5992 */
5993 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5994 NAPIF_STATE_MISSED;
5995 } while (!try_cmpxchg(&n->state, &val, new));
5996
5997 return !(val & NAPIF_STATE_SCHED);
5998}
5999EXPORT_SYMBOL(napi_schedule_prep);
6000
6001/**
6002 * __napi_schedule_irqoff - schedule for receive
6003 * @n: entry to schedule
6004 *
6005 * Variant of __napi_schedule() assuming hard irqs are masked.
6006 *
6007 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6008 * because the interrupt disabled assumption might not be true
6009 * due to force-threaded interrupts and spinlock substitution.
6010 */
6011void __napi_schedule_irqoff(struct napi_struct *n)
6012{
6013 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6014 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6015 else
6016 __napi_schedule(n);
6017}
6018EXPORT_SYMBOL(__napi_schedule_irqoff);
6019
6020bool napi_complete_done(struct napi_struct *n, int work_done)
6021{
6022 unsigned long flags, val, new, timeout = 0;
6023 bool ret = true;
6024
6025 /*
6026 * 1) Don't let napi dequeue from the cpu poll list
6027 * just in case its running on a different cpu.
6028 * 2) If we are busy polling, do nothing here, we have
6029 * the guarantee we will be called later.
6030 */
6031 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6032 NAPIF_STATE_IN_BUSY_POLL)))
6033 return false;
6034
6035 if (work_done) {
6036 if (n->gro_bitmask)
6037 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6038 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6039 }
6040 if (n->defer_hard_irqs_count > 0) {
6041 n->defer_hard_irqs_count--;
6042 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6043 if (timeout)
6044 ret = false;
6045 }
6046 if (n->gro_bitmask) {
6047 /* When the NAPI instance uses a timeout and keeps postponing
6048 * it, we need to bound somehow the time packets are kept in
6049 * the GRO layer
6050 */
6051 napi_gro_flush(n, !!timeout);
6052 }
6053
6054 gro_normal_list(n);
6055
6056 if (unlikely(!list_empty(&n->poll_list))) {
6057 /* If n->poll_list is not empty, we need to mask irqs */
6058 local_irq_save(flags);
6059 list_del_init(&n->poll_list);
6060 local_irq_restore(flags);
6061 }
6062
6063 val = READ_ONCE(n->state);
6064 do {
6065 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6066
6067 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6068 NAPIF_STATE_SCHED_THREADED |
6069 NAPIF_STATE_PREFER_BUSY_POLL);
6070
6071 /* If STATE_MISSED was set, leave STATE_SCHED set,
6072 * because we will call napi->poll() one more time.
6073 * This C code was suggested by Alexander Duyck to help gcc.
6074 */
6075 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6076 NAPIF_STATE_SCHED;
6077 } while (!try_cmpxchg(&n->state, &val, new));
6078
6079 if (unlikely(val & NAPIF_STATE_MISSED)) {
6080 __napi_schedule(n);
6081 return false;
6082 }
6083
6084 if (timeout)
6085 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6086 HRTIMER_MODE_REL_PINNED);
6087 return ret;
6088}
6089EXPORT_SYMBOL(napi_complete_done);
6090
6091/* must be called under rcu_read_lock(), as we dont take a reference */
6092static struct napi_struct *napi_by_id(unsigned int napi_id)
6093{
6094 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6095 struct napi_struct *napi;
6096
6097 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6098 if (napi->napi_id == napi_id)
6099 return napi;
6100
6101 return NULL;
6102}
6103
6104#if defined(CONFIG_NET_RX_BUSY_POLL)
6105
6106static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6107{
6108 if (!skip_schedule) {
6109 gro_normal_list(napi);
6110 __napi_schedule(napi);
6111 return;
6112 }
6113
6114 if (napi->gro_bitmask) {
6115 /* flush too old packets
6116 * If HZ < 1000, flush all packets.
6117 */
6118 napi_gro_flush(napi, HZ >= 1000);
6119 }
6120
6121 gro_normal_list(napi);
6122 clear_bit(NAPI_STATE_SCHED, &napi->state);
6123}
6124
6125static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6126 u16 budget)
6127{
6128 bool skip_schedule = false;
6129 unsigned long timeout;
6130 int rc;
6131
6132 /* Busy polling means there is a high chance device driver hard irq
6133 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6134 * set in napi_schedule_prep().
6135 * Since we are about to call napi->poll() once more, we can safely
6136 * clear NAPI_STATE_MISSED.
6137 *
6138 * Note: x86 could use a single "lock and ..." instruction
6139 * to perform these two clear_bit()
6140 */
6141 clear_bit(NAPI_STATE_MISSED, &napi->state);
6142 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6143
6144 local_bh_disable();
6145
6146 if (prefer_busy_poll) {
6147 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6148 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6149 if (napi->defer_hard_irqs_count && timeout) {
6150 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6151 skip_schedule = true;
6152 }
6153 }
6154
6155 /* All we really want here is to re-enable device interrupts.
6156 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6157 */
6158 rc = napi->poll(napi, budget);
6159 /* We can't gro_normal_list() here, because napi->poll() might have
6160 * rearmed the napi (napi_complete_done()) in which case it could
6161 * already be running on another CPU.
6162 */
6163 trace_napi_poll(napi, rc, budget);
6164 netpoll_poll_unlock(have_poll_lock);
6165 if (rc == budget)
6166 __busy_poll_stop(napi, skip_schedule);
6167 local_bh_enable();
6168}
6169
6170void napi_busy_loop(unsigned int napi_id,
6171 bool (*loop_end)(void *, unsigned long),
6172 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6173{
6174 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6175 int (*napi_poll)(struct napi_struct *napi, int budget);
6176 void *have_poll_lock = NULL;
6177 struct napi_struct *napi;
6178
6179restart:
6180 napi_poll = NULL;
6181
6182 rcu_read_lock();
6183
6184 napi = napi_by_id(napi_id);
6185 if (!napi)
6186 goto out;
6187
6188 preempt_disable();
6189 for (;;) {
6190 int work = 0;
6191
6192 local_bh_disable();
6193 if (!napi_poll) {
6194 unsigned long val = READ_ONCE(napi->state);
6195
6196 /* If multiple threads are competing for this napi,
6197 * we avoid dirtying napi->state as much as we can.
6198 */
6199 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6200 NAPIF_STATE_IN_BUSY_POLL)) {
6201 if (prefer_busy_poll)
6202 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6203 goto count;
6204 }
6205 if (cmpxchg(&napi->state, val,
6206 val | NAPIF_STATE_IN_BUSY_POLL |
6207 NAPIF_STATE_SCHED) != val) {
6208 if (prefer_busy_poll)
6209 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6210 goto count;
6211 }
6212 have_poll_lock = netpoll_poll_lock(napi);
6213 napi_poll = napi->poll;
6214 }
6215 work = napi_poll(napi, budget);
6216 trace_napi_poll(napi, work, budget);
6217 gro_normal_list(napi);
6218count:
6219 if (work > 0)
6220 __NET_ADD_STATS(dev_net(napi->dev),
6221 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6222 local_bh_enable();
6223
6224 if (!loop_end || loop_end(loop_end_arg, start_time))
6225 break;
6226
6227 if (unlikely(need_resched())) {
6228 if (napi_poll)
6229 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6230 preempt_enable();
6231 rcu_read_unlock();
6232 cond_resched();
6233 if (loop_end(loop_end_arg, start_time))
6234 return;
6235 goto restart;
6236 }
6237 cpu_relax();
6238 }
6239 if (napi_poll)
6240 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6241 preempt_enable();
6242out:
6243 rcu_read_unlock();
6244}
6245EXPORT_SYMBOL(napi_busy_loop);
6246
6247#endif /* CONFIG_NET_RX_BUSY_POLL */
6248
6249static void napi_hash_add(struct napi_struct *napi)
6250{
6251 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6252 return;
6253
6254 spin_lock(&napi_hash_lock);
6255
6256 /* 0..NR_CPUS range is reserved for sender_cpu use */
6257 do {
6258 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6259 napi_gen_id = MIN_NAPI_ID;
6260 } while (napi_by_id(napi_gen_id));
6261 napi->napi_id = napi_gen_id;
6262
6263 hlist_add_head_rcu(&napi->napi_hash_node,
6264 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6265
6266 spin_unlock(&napi_hash_lock);
6267}
6268
6269/* Warning : caller is responsible to make sure rcu grace period
6270 * is respected before freeing memory containing @napi
6271 */
6272static void napi_hash_del(struct napi_struct *napi)
6273{
6274 spin_lock(&napi_hash_lock);
6275
6276 hlist_del_init_rcu(&napi->napi_hash_node);
6277
6278 spin_unlock(&napi_hash_lock);
6279}
6280
6281static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6282{
6283 struct napi_struct *napi;
6284
6285 napi = container_of(timer, struct napi_struct, timer);
6286
6287 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6288 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6289 */
6290 if (!napi_disable_pending(napi) &&
6291 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6292 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6293 __napi_schedule_irqoff(napi);
6294 }
6295
6296 return HRTIMER_NORESTART;
6297}
6298
6299static void init_gro_hash(struct napi_struct *napi)
6300{
6301 int i;
6302
6303 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6304 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6305 napi->gro_hash[i].count = 0;
6306 }
6307 napi->gro_bitmask = 0;
6308}
6309
6310int dev_set_threaded(struct net_device *dev, bool threaded)
6311{
6312 struct napi_struct *napi;
6313 int err = 0;
6314
6315 if (dev->threaded == threaded)
6316 return 0;
6317
6318 if (threaded) {
6319 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6320 if (!napi->thread) {
6321 err = napi_kthread_create(napi);
6322 if (err) {
6323 threaded = false;
6324 break;
6325 }
6326 }
6327 }
6328 }
6329
6330 dev->threaded = threaded;
6331
6332 /* Make sure kthread is created before THREADED bit
6333 * is set.
6334 */
6335 smp_mb__before_atomic();
6336
6337 /* Setting/unsetting threaded mode on a napi might not immediately
6338 * take effect, if the current napi instance is actively being
6339 * polled. In this case, the switch between threaded mode and
6340 * softirq mode will happen in the next round of napi_schedule().
6341 * This should not cause hiccups/stalls to the live traffic.
6342 */
6343 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6344 if (threaded)
6345 set_bit(NAPI_STATE_THREADED, &napi->state);
6346 else
6347 clear_bit(NAPI_STATE_THREADED, &napi->state);
6348 }
6349
6350 return err;
6351}
6352EXPORT_SYMBOL(dev_set_threaded);
6353
6354void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6355 int (*poll)(struct napi_struct *, int), int weight)
6356{
6357 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6358 return;
6359
6360 INIT_LIST_HEAD(&napi->poll_list);
6361 INIT_HLIST_NODE(&napi->napi_hash_node);
6362 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6363 napi->timer.function = napi_watchdog;
6364 init_gro_hash(napi);
6365 napi->skb = NULL;
6366 INIT_LIST_HEAD(&napi->rx_list);
6367 napi->rx_count = 0;
6368 napi->poll = poll;
6369 if (weight > NAPI_POLL_WEIGHT)
6370 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6371 weight);
6372 napi->weight = weight;
6373 napi->dev = dev;
6374#ifdef CONFIG_NETPOLL
6375 napi->poll_owner = -1;
6376#endif
6377 set_bit(NAPI_STATE_SCHED, &napi->state);
6378 set_bit(NAPI_STATE_NPSVC, &napi->state);
6379 list_add_rcu(&napi->dev_list, &dev->napi_list);
6380 napi_hash_add(napi);
6381 napi_get_frags_check(napi);
6382 /* Create kthread for this napi if dev->threaded is set.
6383 * Clear dev->threaded if kthread creation failed so that
6384 * threaded mode will not be enabled in napi_enable().
6385 */
6386 if (dev->threaded && napi_kthread_create(napi))
6387 dev->threaded = 0;
6388}
6389EXPORT_SYMBOL(netif_napi_add_weight);
6390
6391void napi_disable(struct napi_struct *n)
6392{
6393 unsigned long val, new;
6394
6395 might_sleep();
6396 set_bit(NAPI_STATE_DISABLE, &n->state);
6397
6398 val = READ_ONCE(n->state);
6399 do {
6400 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6401 usleep_range(20, 200);
6402 val = READ_ONCE(n->state);
6403 }
6404
6405 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6406 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6407 } while (!try_cmpxchg(&n->state, &val, new));
6408
6409 hrtimer_cancel(&n->timer);
6410
6411 clear_bit(NAPI_STATE_DISABLE, &n->state);
6412}
6413EXPORT_SYMBOL(napi_disable);
6414
6415/**
6416 * napi_enable - enable NAPI scheduling
6417 * @n: NAPI context
6418 *
6419 * Resume NAPI from being scheduled on this context.
6420 * Must be paired with napi_disable.
6421 */
6422void napi_enable(struct napi_struct *n)
6423{
6424 unsigned long new, val = READ_ONCE(n->state);
6425
6426 do {
6427 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6428
6429 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6430 if (n->dev->threaded && n->thread)
6431 new |= NAPIF_STATE_THREADED;
6432 } while (!try_cmpxchg(&n->state, &val, new));
6433}
6434EXPORT_SYMBOL(napi_enable);
6435
6436static void flush_gro_hash(struct napi_struct *napi)
6437{
6438 int i;
6439
6440 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6441 struct sk_buff *skb, *n;
6442
6443 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6444 kfree_skb(skb);
6445 napi->gro_hash[i].count = 0;
6446 }
6447}
6448
6449/* Must be called in process context */
6450void __netif_napi_del(struct napi_struct *napi)
6451{
6452 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6453 return;
6454
6455 napi_hash_del(napi);
6456 list_del_rcu(&napi->dev_list);
6457 napi_free_frags(napi);
6458
6459 flush_gro_hash(napi);
6460 napi->gro_bitmask = 0;
6461
6462 if (napi->thread) {
6463 kthread_stop(napi->thread);
6464 napi->thread = NULL;
6465 }
6466}
6467EXPORT_SYMBOL(__netif_napi_del);
6468
6469static int __napi_poll(struct napi_struct *n, bool *repoll)
6470{
6471 int work, weight;
6472
6473 weight = n->weight;
6474
6475 /* This NAPI_STATE_SCHED test is for avoiding a race
6476 * with netpoll's poll_napi(). Only the entity which
6477 * obtains the lock and sees NAPI_STATE_SCHED set will
6478 * actually make the ->poll() call. Therefore we avoid
6479 * accidentally calling ->poll() when NAPI is not scheduled.
6480 */
6481 work = 0;
6482 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6483 work = n->poll(n, weight);
6484 trace_napi_poll(n, work, weight);
6485 }
6486
6487 if (unlikely(work > weight))
6488 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6489 n->poll, work, weight);
6490
6491 if (likely(work < weight))
6492 return work;
6493
6494 /* Drivers must not modify the NAPI state if they
6495 * consume the entire weight. In such cases this code
6496 * still "owns" the NAPI instance and therefore can
6497 * move the instance around on the list at-will.
6498 */
6499 if (unlikely(napi_disable_pending(n))) {
6500 napi_complete(n);
6501 return work;
6502 }
6503
6504 /* The NAPI context has more processing work, but busy-polling
6505 * is preferred. Exit early.
6506 */
6507 if (napi_prefer_busy_poll(n)) {
6508 if (napi_complete_done(n, work)) {
6509 /* If timeout is not set, we need to make sure
6510 * that the NAPI is re-scheduled.
6511 */
6512 napi_schedule(n);
6513 }
6514 return work;
6515 }
6516
6517 if (n->gro_bitmask) {
6518 /* flush too old packets
6519 * If HZ < 1000, flush all packets.
6520 */
6521 napi_gro_flush(n, HZ >= 1000);
6522 }
6523
6524 gro_normal_list(n);
6525
6526 /* Some drivers may have called napi_schedule
6527 * prior to exhausting their budget.
6528 */
6529 if (unlikely(!list_empty(&n->poll_list))) {
6530 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6531 n->dev ? n->dev->name : "backlog");
6532 return work;
6533 }
6534
6535 *repoll = true;
6536
6537 return work;
6538}
6539
6540static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6541{
6542 bool do_repoll = false;
6543 void *have;
6544 int work;
6545
6546 list_del_init(&n->poll_list);
6547
6548 have = netpoll_poll_lock(n);
6549
6550 work = __napi_poll(n, &do_repoll);
6551
6552 if (do_repoll)
6553 list_add_tail(&n->poll_list, repoll);
6554
6555 netpoll_poll_unlock(have);
6556
6557 return work;
6558}
6559
6560static int napi_thread_wait(struct napi_struct *napi)
6561{
6562 bool woken = false;
6563
6564 set_current_state(TASK_INTERRUPTIBLE);
6565
6566 while (!kthread_should_stop()) {
6567 /* Testing SCHED_THREADED bit here to make sure the current
6568 * kthread owns this napi and could poll on this napi.
6569 * Testing SCHED bit is not enough because SCHED bit might be
6570 * set by some other busy poll thread or by napi_disable().
6571 */
6572 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6573 WARN_ON(!list_empty(&napi->poll_list));
6574 __set_current_state(TASK_RUNNING);
6575 return 0;
6576 }
6577
6578 schedule();
6579 /* woken being true indicates this thread owns this napi. */
6580 woken = true;
6581 set_current_state(TASK_INTERRUPTIBLE);
6582 }
6583 __set_current_state(TASK_RUNNING);
6584
6585 return -1;
6586}
6587
6588static int napi_threaded_poll(void *data)
6589{
6590 struct napi_struct *napi = data;
6591 void *have;
6592
6593 while (!napi_thread_wait(napi)) {
6594 for (;;) {
6595 bool repoll = false;
6596
6597 local_bh_disable();
6598
6599 have = netpoll_poll_lock(napi);
6600 __napi_poll(napi, &repoll);
6601 netpoll_poll_unlock(have);
6602
6603 local_bh_enable();
6604
6605 if (!repoll)
6606 break;
6607
6608 cond_resched();
6609 }
6610 }
6611 return 0;
6612}
6613
6614static void skb_defer_free_flush(struct softnet_data *sd)
6615{
6616 struct sk_buff *skb, *next;
6617
6618 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6619 if (!READ_ONCE(sd->defer_list))
6620 return;
6621
6622 spin_lock_irq(&sd->defer_lock);
6623 skb = sd->defer_list;
6624 sd->defer_list = NULL;
6625 sd->defer_count = 0;
6626 spin_unlock_irq(&sd->defer_lock);
6627
6628 while (skb != NULL) {
6629 next = skb->next;
6630 napi_consume_skb(skb, 1);
6631 skb = next;
6632 }
6633}
6634
6635static __latent_entropy void net_rx_action(struct softirq_action *h)
6636{
6637 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6638 unsigned long time_limit = jiffies +
6639 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6640 int budget = READ_ONCE(netdev_budget);
6641 LIST_HEAD(list);
6642 LIST_HEAD(repoll);
6643
6644 local_irq_disable();
6645 list_splice_init(&sd->poll_list, &list);
6646 local_irq_enable();
6647
6648 for (;;) {
6649 struct napi_struct *n;
6650
6651 skb_defer_free_flush(sd);
6652
6653 if (list_empty(&list)) {
6654 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6655 goto end;
6656 break;
6657 }
6658
6659 n = list_first_entry(&list, struct napi_struct, poll_list);
6660 budget -= napi_poll(n, &repoll);
6661
6662 /* If softirq window is exhausted then punt.
6663 * Allow this to run for 2 jiffies since which will allow
6664 * an average latency of 1.5/HZ.
6665 */
6666 if (unlikely(budget <= 0 ||
6667 time_after_eq(jiffies, time_limit))) {
6668 sd->time_squeeze++;
6669 break;
6670 }
6671 }
6672
6673 local_irq_disable();
6674
6675 list_splice_tail_init(&sd->poll_list, &list);
6676 list_splice_tail(&repoll, &list);
6677 list_splice(&list, &sd->poll_list);
6678 if (!list_empty(&sd->poll_list))
6679 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6680
6681 net_rps_action_and_irq_enable(sd);
6682end:;
6683}
6684
6685struct netdev_adjacent {
6686 struct net_device *dev;
6687 netdevice_tracker dev_tracker;
6688
6689 /* upper master flag, there can only be one master device per list */
6690 bool master;
6691
6692 /* lookup ignore flag */
6693 bool ignore;
6694
6695 /* counter for the number of times this device was added to us */
6696 u16 ref_nr;
6697
6698 /* private field for the users */
6699 void *private;
6700
6701 struct list_head list;
6702 struct rcu_head rcu;
6703};
6704
6705static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6706 struct list_head *adj_list)
6707{
6708 struct netdev_adjacent *adj;
6709
6710 list_for_each_entry(adj, adj_list, list) {
6711 if (adj->dev == adj_dev)
6712 return adj;
6713 }
6714 return NULL;
6715}
6716
6717static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6718 struct netdev_nested_priv *priv)
6719{
6720 struct net_device *dev = (struct net_device *)priv->data;
6721
6722 return upper_dev == dev;
6723}
6724
6725/**
6726 * netdev_has_upper_dev - Check if device is linked to an upper device
6727 * @dev: device
6728 * @upper_dev: upper device to check
6729 *
6730 * Find out if a device is linked to specified upper device and return true
6731 * in case it is. Note that this checks only immediate upper device,
6732 * not through a complete stack of devices. The caller must hold the RTNL lock.
6733 */
6734bool netdev_has_upper_dev(struct net_device *dev,
6735 struct net_device *upper_dev)
6736{
6737 struct netdev_nested_priv priv = {
6738 .data = (void *)upper_dev,
6739 };
6740
6741 ASSERT_RTNL();
6742
6743 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6744 &priv);
6745}
6746EXPORT_SYMBOL(netdev_has_upper_dev);
6747
6748/**
6749 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6750 * @dev: device
6751 * @upper_dev: upper device to check
6752 *
6753 * Find out if a device is linked to specified upper device and return true
6754 * in case it is. Note that this checks the entire upper device chain.
6755 * The caller must hold rcu lock.
6756 */
6757
6758bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6759 struct net_device *upper_dev)
6760{
6761 struct netdev_nested_priv priv = {
6762 .data = (void *)upper_dev,
6763 };
6764
6765 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6766 &priv);
6767}
6768EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6769
6770/**
6771 * netdev_has_any_upper_dev - Check if device is linked to some device
6772 * @dev: device
6773 *
6774 * Find out if a device is linked to an upper device and return true in case
6775 * it is. The caller must hold the RTNL lock.
6776 */
6777bool netdev_has_any_upper_dev(struct net_device *dev)
6778{
6779 ASSERT_RTNL();
6780
6781 return !list_empty(&dev->adj_list.upper);
6782}
6783EXPORT_SYMBOL(netdev_has_any_upper_dev);
6784
6785/**
6786 * netdev_master_upper_dev_get - Get master upper device
6787 * @dev: device
6788 *
6789 * Find a master upper device and return pointer to it or NULL in case
6790 * it's not there. The caller must hold the RTNL lock.
6791 */
6792struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6793{
6794 struct netdev_adjacent *upper;
6795
6796 ASSERT_RTNL();
6797
6798 if (list_empty(&dev->adj_list.upper))
6799 return NULL;
6800
6801 upper = list_first_entry(&dev->adj_list.upper,
6802 struct netdev_adjacent, list);
6803 if (likely(upper->master))
6804 return upper->dev;
6805 return NULL;
6806}
6807EXPORT_SYMBOL(netdev_master_upper_dev_get);
6808
6809static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6810{
6811 struct netdev_adjacent *upper;
6812
6813 ASSERT_RTNL();
6814
6815 if (list_empty(&dev->adj_list.upper))
6816 return NULL;
6817
6818 upper = list_first_entry(&dev->adj_list.upper,
6819 struct netdev_adjacent, list);
6820 if (likely(upper->master) && !upper->ignore)
6821 return upper->dev;
6822 return NULL;
6823}
6824
6825/**
6826 * netdev_has_any_lower_dev - Check if device is linked to some device
6827 * @dev: device
6828 *
6829 * Find out if a device is linked to a lower device and return true in case
6830 * it is. The caller must hold the RTNL lock.
6831 */
6832static bool netdev_has_any_lower_dev(struct net_device *dev)
6833{
6834 ASSERT_RTNL();
6835
6836 return !list_empty(&dev->adj_list.lower);
6837}
6838
6839void *netdev_adjacent_get_private(struct list_head *adj_list)
6840{
6841 struct netdev_adjacent *adj;
6842
6843 adj = list_entry(adj_list, struct netdev_adjacent, list);
6844
6845 return adj->private;
6846}
6847EXPORT_SYMBOL(netdev_adjacent_get_private);
6848
6849/**
6850 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6851 * @dev: device
6852 * @iter: list_head ** of the current position
6853 *
6854 * Gets the next device from the dev's upper list, starting from iter
6855 * position. The caller must hold RCU read lock.
6856 */
6857struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6858 struct list_head **iter)
6859{
6860 struct netdev_adjacent *upper;
6861
6862 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6863
6864 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6865
6866 if (&upper->list == &dev->adj_list.upper)
6867 return NULL;
6868
6869 *iter = &upper->list;
6870
6871 return upper->dev;
6872}
6873EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6874
6875static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6876 struct list_head **iter,
6877 bool *ignore)
6878{
6879 struct netdev_adjacent *upper;
6880
6881 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6882
6883 if (&upper->list == &dev->adj_list.upper)
6884 return NULL;
6885
6886 *iter = &upper->list;
6887 *ignore = upper->ignore;
6888
6889 return upper->dev;
6890}
6891
6892static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6893 struct list_head **iter)
6894{
6895 struct netdev_adjacent *upper;
6896
6897 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6898
6899 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6900
6901 if (&upper->list == &dev->adj_list.upper)
6902 return NULL;
6903
6904 *iter = &upper->list;
6905
6906 return upper->dev;
6907}
6908
6909static int __netdev_walk_all_upper_dev(struct net_device *dev,
6910 int (*fn)(struct net_device *dev,
6911 struct netdev_nested_priv *priv),
6912 struct netdev_nested_priv *priv)
6913{
6914 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6915 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6916 int ret, cur = 0;
6917 bool ignore;
6918
6919 now = dev;
6920 iter = &dev->adj_list.upper;
6921
6922 while (1) {
6923 if (now != dev) {
6924 ret = fn(now, priv);
6925 if (ret)
6926 return ret;
6927 }
6928
6929 next = NULL;
6930 while (1) {
6931 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6932 if (!udev)
6933 break;
6934 if (ignore)
6935 continue;
6936
6937 next = udev;
6938 niter = &udev->adj_list.upper;
6939 dev_stack[cur] = now;
6940 iter_stack[cur++] = iter;
6941 break;
6942 }
6943
6944 if (!next) {
6945 if (!cur)
6946 return 0;
6947 next = dev_stack[--cur];
6948 niter = iter_stack[cur];
6949 }
6950
6951 now = next;
6952 iter = niter;
6953 }
6954
6955 return 0;
6956}
6957
6958int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6959 int (*fn)(struct net_device *dev,
6960 struct netdev_nested_priv *priv),
6961 struct netdev_nested_priv *priv)
6962{
6963 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6964 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6965 int ret, cur = 0;
6966
6967 now = dev;
6968 iter = &dev->adj_list.upper;
6969
6970 while (1) {
6971 if (now != dev) {
6972 ret = fn(now, priv);
6973 if (ret)
6974 return ret;
6975 }
6976
6977 next = NULL;
6978 while (1) {
6979 udev = netdev_next_upper_dev_rcu(now, &iter);
6980 if (!udev)
6981 break;
6982
6983 next = udev;
6984 niter = &udev->adj_list.upper;
6985 dev_stack[cur] = now;
6986 iter_stack[cur++] = iter;
6987 break;
6988 }
6989
6990 if (!next) {
6991 if (!cur)
6992 return 0;
6993 next = dev_stack[--cur];
6994 niter = iter_stack[cur];
6995 }
6996
6997 now = next;
6998 iter = niter;
6999 }
7000
7001 return 0;
7002}
7003EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7004
7005static bool __netdev_has_upper_dev(struct net_device *dev,
7006 struct net_device *upper_dev)
7007{
7008 struct netdev_nested_priv priv = {
7009 .flags = 0,
7010 .data = (void *)upper_dev,
7011 };
7012
7013 ASSERT_RTNL();
7014
7015 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7016 &priv);
7017}
7018
7019/**
7020 * netdev_lower_get_next_private - Get the next ->private from the
7021 * lower neighbour list
7022 * @dev: device
7023 * @iter: list_head ** of the current position
7024 *
7025 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7026 * list, starting from iter position. The caller must hold either hold the
7027 * RTNL lock or its own locking that guarantees that the neighbour lower
7028 * list will remain unchanged.
7029 */
7030void *netdev_lower_get_next_private(struct net_device *dev,
7031 struct list_head **iter)
7032{
7033 struct netdev_adjacent *lower;
7034
7035 lower = list_entry(*iter, struct netdev_adjacent, list);
7036
7037 if (&lower->list == &dev->adj_list.lower)
7038 return NULL;
7039
7040 *iter = lower->list.next;
7041
7042 return lower->private;
7043}
7044EXPORT_SYMBOL(netdev_lower_get_next_private);
7045
7046/**
7047 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7048 * lower neighbour list, RCU
7049 * variant
7050 * @dev: device
7051 * @iter: list_head ** of the current position
7052 *
7053 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7054 * list, starting from iter position. The caller must hold RCU read lock.
7055 */
7056void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7057 struct list_head **iter)
7058{
7059 struct netdev_adjacent *lower;
7060
7061 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7062
7063 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7064
7065 if (&lower->list == &dev->adj_list.lower)
7066 return NULL;
7067
7068 *iter = &lower->list;
7069
7070 return lower->private;
7071}
7072EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7073
7074/**
7075 * netdev_lower_get_next - Get the next device from the lower neighbour
7076 * list
7077 * @dev: device
7078 * @iter: list_head ** of the current position
7079 *
7080 * Gets the next netdev_adjacent from the dev's lower neighbour
7081 * list, starting from iter position. The caller must hold RTNL lock or
7082 * its own locking that guarantees that the neighbour lower
7083 * list will remain unchanged.
7084 */
7085void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7086{
7087 struct netdev_adjacent *lower;
7088
7089 lower = list_entry(*iter, struct netdev_adjacent, list);
7090
7091 if (&lower->list == &dev->adj_list.lower)
7092 return NULL;
7093
7094 *iter = lower->list.next;
7095
7096 return lower->dev;
7097}
7098EXPORT_SYMBOL(netdev_lower_get_next);
7099
7100static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7101 struct list_head **iter)
7102{
7103 struct netdev_adjacent *lower;
7104
7105 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7106
7107 if (&lower->list == &dev->adj_list.lower)
7108 return NULL;
7109
7110 *iter = &lower->list;
7111
7112 return lower->dev;
7113}
7114
7115static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7116 struct list_head **iter,
7117 bool *ignore)
7118{
7119 struct netdev_adjacent *lower;
7120
7121 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7122
7123 if (&lower->list == &dev->adj_list.lower)
7124 return NULL;
7125
7126 *iter = &lower->list;
7127 *ignore = lower->ignore;
7128
7129 return lower->dev;
7130}
7131
7132int netdev_walk_all_lower_dev(struct net_device *dev,
7133 int (*fn)(struct net_device *dev,
7134 struct netdev_nested_priv *priv),
7135 struct netdev_nested_priv *priv)
7136{
7137 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7138 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7139 int ret, cur = 0;
7140
7141 now = dev;
7142 iter = &dev->adj_list.lower;
7143
7144 while (1) {
7145 if (now != dev) {
7146 ret = fn(now, priv);
7147 if (ret)
7148 return ret;
7149 }
7150
7151 next = NULL;
7152 while (1) {
7153 ldev = netdev_next_lower_dev(now, &iter);
7154 if (!ldev)
7155 break;
7156
7157 next = ldev;
7158 niter = &ldev->adj_list.lower;
7159 dev_stack[cur] = now;
7160 iter_stack[cur++] = iter;
7161 break;
7162 }
7163
7164 if (!next) {
7165 if (!cur)
7166 return 0;
7167 next = dev_stack[--cur];
7168 niter = iter_stack[cur];
7169 }
7170
7171 now = next;
7172 iter = niter;
7173 }
7174
7175 return 0;
7176}
7177EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7178
7179static int __netdev_walk_all_lower_dev(struct net_device *dev,
7180 int (*fn)(struct net_device *dev,
7181 struct netdev_nested_priv *priv),
7182 struct netdev_nested_priv *priv)
7183{
7184 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7185 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7186 int ret, cur = 0;
7187 bool ignore;
7188
7189 now = dev;
7190 iter = &dev->adj_list.lower;
7191
7192 while (1) {
7193 if (now != dev) {
7194 ret = fn(now, priv);
7195 if (ret)
7196 return ret;
7197 }
7198
7199 next = NULL;
7200 while (1) {
7201 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7202 if (!ldev)
7203 break;
7204 if (ignore)
7205 continue;
7206
7207 next = ldev;
7208 niter = &ldev->adj_list.lower;
7209 dev_stack[cur] = now;
7210 iter_stack[cur++] = iter;
7211 break;
7212 }
7213
7214 if (!next) {
7215 if (!cur)
7216 return 0;
7217 next = dev_stack[--cur];
7218 niter = iter_stack[cur];
7219 }
7220
7221 now = next;
7222 iter = niter;
7223 }
7224
7225 return 0;
7226}
7227
7228struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7229 struct list_head **iter)
7230{
7231 struct netdev_adjacent *lower;
7232
7233 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7234 if (&lower->list == &dev->adj_list.lower)
7235 return NULL;
7236
7237 *iter = &lower->list;
7238
7239 return lower->dev;
7240}
7241EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7242
7243static u8 __netdev_upper_depth(struct net_device *dev)
7244{
7245 struct net_device *udev;
7246 struct list_head *iter;
7247 u8 max_depth = 0;
7248 bool ignore;
7249
7250 for (iter = &dev->adj_list.upper,
7251 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7252 udev;
7253 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7254 if (ignore)
7255 continue;
7256 if (max_depth < udev->upper_level)
7257 max_depth = udev->upper_level;
7258 }
7259
7260 return max_depth;
7261}
7262
7263static u8 __netdev_lower_depth(struct net_device *dev)
7264{
7265 struct net_device *ldev;
7266 struct list_head *iter;
7267 u8 max_depth = 0;
7268 bool ignore;
7269
7270 for (iter = &dev->adj_list.lower,
7271 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7272 ldev;
7273 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7274 if (ignore)
7275 continue;
7276 if (max_depth < ldev->lower_level)
7277 max_depth = ldev->lower_level;
7278 }
7279
7280 return max_depth;
7281}
7282
7283static int __netdev_update_upper_level(struct net_device *dev,
7284 struct netdev_nested_priv *__unused)
7285{
7286 dev->upper_level = __netdev_upper_depth(dev) + 1;
7287 return 0;
7288}
7289
7290#ifdef CONFIG_LOCKDEP
7291static LIST_HEAD(net_unlink_list);
7292
7293static void net_unlink_todo(struct net_device *dev)
7294{
7295 if (list_empty(&dev->unlink_list))
7296 list_add_tail(&dev->unlink_list, &net_unlink_list);
7297}
7298#endif
7299
7300static int __netdev_update_lower_level(struct net_device *dev,
7301 struct netdev_nested_priv *priv)
7302{
7303 dev->lower_level = __netdev_lower_depth(dev) + 1;
7304
7305#ifdef CONFIG_LOCKDEP
7306 if (!priv)
7307 return 0;
7308
7309 if (priv->flags & NESTED_SYNC_IMM)
7310 dev->nested_level = dev->lower_level - 1;
7311 if (priv->flags & NESTED_SYNC_TODO)
7312 net_unlink_todo(dev);
7313#endif
7314 return 0;
7315}
7316
7317int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7318 int (*fn)(struct net_device *dev,
7319 struct netdev_nested_priv *priv),
7320 struct netdev_nested_priv *priv)
7321{
7322 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7323 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7324 int ret, cur = 0;
7325
7326 now = dev;
7327 iter = &dev->adj_list.lower;
7328
7329 while (1) {
7330 if (now != dev) {
7331 ret = fn(now, priv);
7332 if (ret)
7333 return ret;
7334 }
7335
7336 next = NULL;
7337 while (1) {
7338 ldev = netdev_next_lower_dev_rcu(now, &iter);
7339 if (!ldev)
7340 break;
7341
7342 next = ldev;
7343 niter = &ldev->adj_list.lower;
7344 dev_stack[cur] = now;
7345 iter_stack[cur++] = iter;
7346 break;
7347 }
7348
7349 if (!next) {
7350 if (!cur)
7351 return 0;
7352 next = dev_stack[--cur];
7353 niter = iter_stack[cur];
7354 }
7355
7356 now = next;
7357 iter = niter;
7358 }
7359
7360 return 0;
7361}
7362EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7363
7364/**
7365 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7366 * lower neighbour list, RCU
7367 * variant
7368 * @dev: device
7369 *
7370 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7371 * list. The caller must hold RCU read lock.
7372 */
7373void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7374{
7375 struct netdev_adjacent *lower;
7376
7377 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7378 struct netdev_adjacent, list);
7379 if (lower)
7380 return lower->private;
7381 return NULL;
7382}
7383EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7384
7385/**
7386 * netdev_master_upper_dev_get_rcu - Get master upper device
7387 * @dev: device
7388 *
7389 * Find a master upper device and return pointer to it or NULL in case
7390 * it's not there. The caller must hold the RCU read lock.
7391 */
7392struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7393{
7394 struct netdev_adjacent *upper;
7395
7396 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7397 struct netdev_adjacent, list);
7398 if (upper && likely(upper->master))
7399 return upper->dev;
7400 return NULL;
7401}
7402EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7403
7404static int netdev_adjacent_sysfs_add(struct net_device *dev,
7405 struct net_device *adj_dev,
7406 struct list_head *dev_list)
7407{
7408 char linkname[IFNAMSIZ+7];
7409
7410 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7411 "upper_%s" : "lower_%s", adj_dev->name);
7412 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7413 linkname);
7414}
7415static void netdev_adjacent_sysfs_del(struct net_device *dev,
7416 char *name,
7417 struct list_head *dev_list)
7418{
7419 char linkname[IFNAMSIZ+7];
7420
7421 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7422 "upper_%s" : "lower_%s", name);
7423 sysfs_remove_link(&(dev->dev.kobj), linkname);
7424}
7425
7426static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7427 struct net_device *adj_dev,
7428 struct list_head *dev_list)
7429{
7430 return (dev_list == &dev->adj_list.upper ||
7431 dev_list == &dev->adj_list.lower) &&
7432 net_eq(dev_net(dev), dev_net(adj_dev));
7433}
7434
7435static int __netdev_adjacent_dev_insert(struct net_device *dev,
7436 struct net_device *adj_dev,
7437 struct list_head *dev_list,
7438 void *private, bool master)
7439{
7440 struct netdev_adjacent *adj;
7441 int ret;
7442
7443 adj = __netdev_find_adj(adj_dev, dev_list);
7444
7445 if (adj) {
7446 adj->ref_nr += 1;
7447 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7448 dev->name, adj_dev->name, adj->ref_nr);
7449
7450 return 0;
7451 }
7452
7453 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7454 if (!adj)
7455 return -ENOMEM;
7456
7457 adj->dev = adj_dev;
7458 adj->master = master;
7459 adj->ref_nr = 1;
7460 adj->private = private;
7461 adj->ignore = false;
7462 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7463
7464 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7465 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7466
7467 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7468 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7469 if (ret)
7470 goto free_adj;
7471 }
7472
7473 /* Ensure that master link is always the first item in list. */
7474 if (master) {
7475 ret = sysfs_create_link(&(dev->dev.kobj),
7476 &(adj_dev->dev.kobj), "master");
7477 if (ret)
7478 goto remove_symlinks;
7479
7480 list_add_rcu(&adj->list, dev_list);
7481 } else {
7482 list_add_tail_rcu(&adj->list, dev_list);
7483 }
7484
7485 return 0;
7486
7487remove_symlinks:
7488 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7489 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7490free_adj:
7491 netdev_put(adj_dev, &adj->dev_tracker);
7492 kfree(adj);
7493
7494 return ret;
7495}
7496
7497static void __netdev_adjacent_dev_remove(struct net_device *dev,
7498 struct net_device *adj_dev,
7499 u16 ref_nr,
7500 struct list_head *dev_list)
7501{
7502 struct netdev_adjacent *adj;
7503
7504 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7505 dev->name, adj_dev->name, ref_nr);
7506
7507 adj = __netdev_find_adj(adj_dev, dev_list);
7508
7509 if (!adj) {
7510 pr_err("Adjacency does not exist for device %s from %s\n",
7511 dev->name, adj_dev->name);
7512 WARN_ON(1);
7513 return;
7514 }
7515
7516 if (adj->ref_nr > ref_nr) {
7517 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7518 dev->name, adj_dev->name, ref_nr,
7519 adj->ref_nr - ref_nr);
7520 adj->ref_nr -= ref_nr;
7521 return;
7522 }
7523
7524 if (adj->master)
7525 sysfs_remove_link(&(dev->dev.kobj), "master");
7526
7527 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7528 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7529
7530 list_del_rcu(&adj->list);
7531 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7532 adj_dev->name, dev->name, adj_dev->name);
7533 netdev_put(adj_dev, &adj->dev_tracker);
7534 kfree_rcu(adj, rcu);
7535}
7536
7537static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7538 struct net_device *upper_dev,
7539 struct list_head *up_list,
7540 struct list_head *down_list,
7541 void *private, bool master)
7542{
7543 int ret;
7544
7545 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7546 private, master);
7547 if (ret)
7548 return ret;
7549
7550 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7551 private, false);
7552 if (ret) {
7553 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7554 return ret;
7555 }
7556
7557 return 0;
7558}
7559
7560static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7561 struct net_device *upper_dev,
7562 u16 ref_nr,
7563 struct list_head *up_list,
7564 struct list_head *down_list)
7565{
7566 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7567 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7568}
7569
7570static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7571 struct net_device *upper_dev,
7572 void *private, bool master)
7573{
7574 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7575 &dev->adj_list.upper,
7576 &upper_dev->adj_list.lower,
7577 private, master);
7578}
7579
7580static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7581 struct net_device *upper_dev)
7582{
7583 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7584 &dev->adj_list.upper,
7585 &upper_dev->adj_list.lower);
7586}
7587
7588static int __netdev_upper_dev_link(struct net_device *dev,
7589 struct net_device *upper_dev, bool master,
7590 void *upper_priv, void *upper_info,
7591 struct netdev_nested_priv *priv,
7592 struct netlink_ext_ack *extack)
7593{
7594 struct netdev_notifier_changeupper_info changeupper_info = {
7595 .info = {
7596 .dev = dev,
7597 .extack = extack,
7598 },
7599 .upper_dev = upper_dev,
7600 .master = master,
7601 .linking = true,
7602 .upper_info = upper_info,
7603 };
7604 struct net_device *master_dev;
7605 int ret = 0;
7606
7607 ASSERT_RTNL();
7608
7609 if (dev == upper_dev)
7610 return -EBUSY;
7611
7612 /* To prevent loops, check if dev is not upper device to upper_dev. */
7613 if (__netdev_has_upper_dev(upper_dev, dev))
7614 return -EBUSY;
7615
7616 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7617 return -EMLINK;
7618
7619 if (!master) {
7620 if (__netdev_has_upper_dev(dev, upper_dev))
7621 return -EEXIST;
7622 } else {
7623 master_dev = __netdev_master_upper_dev_get(dev);
7624 if (master_dev)
7625 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7626 }
7627
7628 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7629 &changeupper_info.info);
7630 ret = notifier_to_errno(ret);
7631 if (ret)
7632 return ret;
7633
7634 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7635 master);
7636 if (ret)
7637 return ret;
7638
7639 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7640 &changeupper_info.info);
7641 ret = notifier_to_errno(ret);
7642 if (ret)
7643 goto rollback;
7644
7645 __netdev_update_upper_level(dev, NULL);
7646 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7647
7648 __netdev_update_lower_level(upper_dev, priv);
7649 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7650 priv);
7651
7652 return 0;
7653
7654rollback:
7655 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7656
7657 return ret;
7658}
7659
7660/**
7661 * netdev_upper_dev_link - Add a link to the upper device
7662 * @dev: device
7663 * @upper_dev: new upper device
7664 * @extack: netlink extended ack
7665 *
7666 * Adds a link to device which is upper to this one. The caller must hold
7667 * the RTNL lock. On a failure a negative errno code is returned.
7668 * On success the reference counts are adjusted and the function
7669 * returns zero.
7670 */
7671int netdev_upper_dev_link(struct net_device *dev,
7672 struct net_device *upper_dev,
7673 struct netlink_ext_ack *extack)
7674{
7675 struct netdev_nested_priv priv = {
7676 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7677 .data = NULL,
7678 };
7679
7680 return __netdev_upper_dev_link(dev, upper_dev, false,
7681 NULL, NULL, &priv, extack);
7682}
7683EXPORT_SYMBOL(netdev_upper_dev_link);
7684
7685/**
7686 * netdev_master_upper_dev_link - Add a master link to the upper device
7687 * @dev: device
7688 * @upper_dev: new upper device
7689 * @upper_priv: upper device private
7690 * @upper_info: upper info to be passed down via notifier
7691 * @extack: netlink extended ack
7692 *
7693 * Adds a link to device which is upper to this one. In this case, only
7694 * one master upper device can be linked, although other non-master devices
7695 * might be linked as well. The caller must hold the RTNL lock.
7696 * On a failure a negative errno code is returned. On success the reference
7697 * counts are adjusted and the function returns zero.
7698 */
7699int netdev_master_upper_dev_link(struct net_device *dev,
7700 struct net_device *upper_dev,
7701 void *upper_priv, void *upper_info,
7702 struct netlink_ext_ack *extack)
7703{
7704 struct netdev_nested_priv priv = {
7705 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7706 .data = NULL,
7707 };
7708
7709 return __netdev_upper_dev_link(dev, upper_dev, true,
7710 upper_priv, upper_info, &priv, extack);
7711}
7712EXPORT_SYMBOL(netdev_master_upper_dev_link);
7713
7714static void __netdev_upper_dev_unlink(struct net_device *dev,
7715 struct net_device *upper_dev,
7716 struct netdev_nested_priv *priv)
7717{
7718 struct netdev_notifier_changeupper_info changeupper_info = {
7719 .info = {
7720 .dev = dev,
7721 },
7722 .upper_dev = upper_dev,
7723 .linking = false,
7724 };
7725
7726 ASSERT_RTNL();
7727
7728 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7729
7730 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7731 &changeupper_info.info);
7732
7733 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7734
7735 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7736 &changeupper_info.info);
7737
7738 __netdev_update_upper_level(dev, NULL);
7739 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7740
7741 __netdev_update_lower_level(upper_dev, priv);
7742 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7743 priv);
7744}
7745
7746/**
7747 * netdev_upper_dev_unlink - Removes a link to upper device
7748 * @dev: device
7749 * @upper_dev: new upper device
7750 *
7751 * Removes a link to device which is upper to this one. The caller must hold
7752 * the RTNL lock.
7753 */
7754void netdev_upper_dev_unlink(struct net_device *dev,
7755 struct net_device *upper_dev)
7756{
7757 struct netdev_nested_priv priv = {
7758 .flags = NESTED_SYNC_TODO,
7759 .data = NULL,
7760 };
7761
7762 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7763}
7764EXPORT_SYMBOL(netdev_upper_dev_unlink);
7765
7766static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7767 struct net_device *lower_dev,
7768 bool val)
7769{
7770 struct netdev_adjacent *adj;
7771
7772 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7773 if (adj)
7774 adj->ignore = val;
7775
7776 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7777 if (adj)
7778 adj->ignore = val;
7779}
7780
7781static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7782 struct net_device *lower_dev)
7783{
7784 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7785}
7786
7787static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7788 struct net_device *lower_dev)
7789{
7790 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7791}
7792
7793int netdev_adjacent_change_prepare(struct net_device *old_dev,
7794 struct net_device *new_dev,
7795 struct net_device *dev,
7796 struct netlink_ext_ack *extack)
7797{
7798 struct netdev_nested_priv priv = {
7799 .flags = 0,
7800 .data = NULL,
7801 };
7802 int err;
7803
7804 if (!new_dev)
7805 return 0;
7806
7807 if (old_dev && new_dev != old_dev)
7808 netdev_adjacent_dev_disable(dev, old_dev);
7809 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7810 extack);
7811 if (err) {
7812 if (old_dev && new_dev != old_dev)
7813 netdev_adjacent_dev_enable(dev, old_dev);
7814 return err;
7815 }
7816
7817 return 0;
7818}
7819EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7820
7821void netdev_adjacent_change_commit(struct net_device *old_dev,
7822 struct net_device *new_dev,
7823 struct net_device *dev)
7824{
7825 struct netdev_nested_priv priv = {
7826 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7827 .data = NULL,
7828 };
7829
7830 if (!new_dev || !old_dev)
7831 return;
7832
7833 if (new_dev == old_dev)
7834 return;
7835
7836 netdev_adjacent_dev_enable(dev, old_dev);
7837 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7838}
7839EXPORT_SYMBOL(netdev_adjacent_change_commit);
7840
7841void netdev_adjacent_change_abort(struct net_device *old_dev,
7842 struct net_device *new_dev,
7843 struct net_device *dev)
7844{
7845 struct netdev_nested_priv priv = {
7846 .flags = 0,
7847 .data = NULL,
7848 };
7849
7850 if (!new_dev)
7851 return;
7852
7853 if (old_dev && new_dev != old_dev)
7854 netdev_adjacent_dev_enable(dev, old_dev);
7855
7856 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7857}
7858EXPORT_SYMBOL(netdev_adjacent_change_abort);
7859
7860/**
7861 * netdev_bonding_info_change - Dispatch event about slave change
7862 * @dev: device
7863 * @bonding_info: info to dispatch
7864 *
7865 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7866 * The caller must hold the RTNL lock.
7867 */
7868void netdev_bonding_info_change(struct net_device *dev,
7869 struct netdev_bonding_info *bonding_info)
7870{
7871 struct netdev_notifier_bonding_info info = {
7872 .info.dev = dev,
7873 };
7874
7875 memcpy(&info.bonding_info, bonding_info,
7876 sizeof(struct netdev_bonding_info));
7877 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7878 &info.info);
7879}
7880EXPORT_SYMBOL(netdev_bonding_info_change);
7881
7882static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7883 struct netlink_ext_ack *extack)
7884{
7885 struct netdev_notifier_offload_xstats_info info = {
7886 .info.dev = dev,
7887 .info.extack = extack,
7888 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7889 };
7890 int err;
7891 int rc;
7892
7893 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7894 GFP_KERNEL);
7895 if (!dev->offload_xstats_l3)
7896 return -ENOMEM;
7897
7898 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7899 NETDEV_OFFLOAD_XSTATS_DISABLE,
7900 &info.info);
7901 err = notifier_to_errno(rc);
7902 if (err)
7903 goto free_stats;
7904
7905 return 0;
7906
7907free_stats:
7908 kfree(dev->offload_xstats_l3);
7909 dev->offload_xstats_l3 = NULL;
7910 return err;
7911}
7912
7913int netdev_offload_xstats_enable(struct net_device *dev,
7914 enum netdev_offload_xstats_type type,
7915 struct netlink_ext_ack *extack)
7916{
7917 ASSERT_RTNL();
7918
7919 if (netdev_offload_xstats_enabled(dev, type))
7920 return -EALREADY;
7921
7922 switch (type) {
7923 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7924 return netdev_offload_xstats_enable_l3(dev, extack);
7925 }
7926
7927 WARN_ON(1);
7928 return -EINVAL;
7929}
7930EXPORT_SYMBOL(netdev_offload_xstats_enable);
7931
7932static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7933{
7934 struct netdev_notifier_offload_xstats_info info = {
7935 .info.dev = dev,
7936 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7937 };
7938
7939 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7940 &info.info);
7941 kfree(dev->offload_xstats_l3);
7942 dev->offload_xstats_l3 = NULL;
7943}
7944
7945int netdev_offload_xstats_disable(struct net_device *dev,
7946 enum netdev_offload_xstats_type type)
7947{
7948 ASSERT_RTNL();
7949
7950 if (!netdev_offload_xstats_enabled(dev, type))
7951 return -EALREADY;
7952
7953 switch (type) {
7954 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7955 netdev_offload_xstats_disable_l3(dev);
7956 return 0;
7957 }
7958
7959 WARN_ON(1);
7960 return -EINVAL;
7961}
7962EXPORT_SYMBOL(netdev_offload_xstats_disable);
7963
7964static void netdev_offload_xstats_disable_all(struct net_device *dev)
7965{
7966 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7967}
7968
7969static struct rtnl_hw_stats64 *
7970netdev_offload_xstats_get_ptr(const struct net_device *dev,
7971 enum netdev_offload_xstats_type type)
7972{
7973 switch (type) {
7974 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7975 return dev->offload_xstats_l3;
7976 }
7977
7978 WARN_ON(1);
7979 return NULL;
7980}
7981
7982bool netdev_offload_xstats_enabled(const struct net_device *dev,
7983 enum netdev_offload_xstats_type type)
7984{
7985 ASSERT_RTNL();
7986
7987 return netdev_offload_xstats_get_ptr(dev, type);
7988}
7989EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7990
7991struct netdev_notifier_offload_xstats_ru {
7992 bool used;
7993};
7994
7995struct netdev_notifier_offload_xstats_rd {
7996 struct rtnl_hw_stats64 stats;
7997 bool used;
7998};
7999
8000static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8001 const struct rtnl_hw_stats64 *src)
8002{
8003 dest->rx_packets += src->rx_packets;
8004 dest->tx_packets += src->tx_packets;
8005 dest->rx_bytes += src->rx_bytes;
8006 dest->tx_bytes += src->tx_bytes;
8007 dest->rx_errors += src->rx_errors;
8008 dest->tx_errors += src->tx_errors;
8009 dest->rx_dropped += src->rx_dropped;
8010 dest->tx_dropped += src->tx_dropped;
8011 dest->multicast += src->multicast;
8012}
8013
8014static int netdev_offload_xstats_get_used(struct net_device *dev,
8015 enum netdev_offload_xstats_type type,
8016 bool *p_used,
8017 struct netlink_ext_ack *extack)
8018{
8019 struct netdev_notifier_offload_xstats_ru report_used = {};
8020 struct netdev_notifier_offload_xstats_info info = {
8021 .info.dev = dev,
8022 .info.extack = extack,
8023 .type = type,
8024 .report_used = &report_used,
8025 };
8026 int rc;
8027
8028 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8029 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8030 &info.info);
8031 *p_used = report_used.used;
8032 return notifier_to_errno(rc);
8033}
8034
8035static int netdev_offload_xstats_get_stats(struct net_device *dev,
8036 enum netdev_offload_xstats_type type,
8037 struct rtnl_hw_stats64 *p_stats,
8038 bool *p_used,
8039 struct netlink_ext_ack *extack)
8040{
8041 struct netdev_notifier_offload_xstats_rd report_delta = {};
8042 struct netdev_notifier_offload_xstats_info info = {
8043 .info.dev = dev,
8044 .info.extack = extack,
8045 .type = type,
8046 .report_delta = &report_delta,
8047 };
8048 struct rtnl_hw_stats64 *stats;
8049 int rc;
8050
8051 stats = netdev_offload_xstats_get_ptr(dev, type);
8052 if (WARN_ON(!stats))
8053 return -EINVAL;
8054
8055 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8056 &info.info);
8057
8058 /* Cache whatever we got, even if there was an error, otherwise the
8059 * successful stats retrievals would get lost.
8060 */
8061 netdev_hw_stats64_add(stats, &report_delta.stats);
8062
8063 if (p_stats)
8064 *p_stats = *stats;
8065 *p_used = report_delta.used;
8066
8067 return notifier_to_errno(rc);
8068}
8069
8070int netdev_offload_xstats_get(struct net_device *dev,
8071 enum netdev_offload_xstats_type type,
8072 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8073 struct netlink_ext_ack *extack)
8074{
8075 ASSERT_RTNL();
8076
8077 if (p_stats)
8078 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8079 p_used, extack);
8080 else
8081 return netdev_offload_xstats_get_used(dev, type, p_used,
8082 extack);
8083}
8084EXPORT_SYMBOL(netdev_offload_xstats_get);
8085
8086void
8087netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8088 const struct rtnl_hw_stats64 *stats)
8089{
8090 report_delta->used = true;
8091 netdev_hw_stats64_add(&report_delta->stats, stats);
8092}
8093EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8094
8095void
8096netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8097{
8098 report_used->used = true;
8099}
8100EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8101
8102void netdev_offload_xstats_push_delta(struct net_device *dev,
8103 enum netdev_offload_xstats_type type,
8104 const struct rtnl_hw_stats64 *p_stats)
8105{
8106 struct rtnl_hw_stats64 *stats;
8107
8108 ASSERT_RTNL();
8109
8110 stats = netdev_offload_xstats_get_ptr(dev, type);
8111 if (WARN_ON(!stats))
8112 return;
8113
8114 netdev_hw_stats64_add(stats, p_stats);
8115}
8116EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8117
8118/**
8119 * netdev_get_xmit_slave - Get the xmit slave of master device
8120 * @dev: device
8121 * @skb: The packet
8122 * @all_slaves: assume all the slaves are active
8123 *
8124 * The reference counters are not incremented so the caller must be
8125 * careful with locks. The caller must hold RCU lock.
8126 * %NULL is returned if no slave is found.
8127 */
8128
8129struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8130 struct sk_buff *skb,
8131 bool all_slaves)
8132{
8133 const struct net_device_ops *ops = dev->netdev_ops;
8134
8135 if (!ops->ndo_get_xmit_slave)
8136 return NULL;
8137 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8138}
8139EXPORT_SYMBOL(netdev_get_xmit_slave);
8140
8141static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8142 struct sock *sk)
8143{
8144 const struct net_device_ops *ops = dev->netdev_ops;
8145
8146 if (!ops->ndo_sk_get_lower_dev)
8147 return NULL;
8148 return ops->ndo_sk_get_lower_dev(dev, sk);
8149}
8150
8151/**
8152 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8153 * @dev: device
8154 * @sk: the socket
8155 *
8156 * %NULL is returned if no lower device is found.
8157 */
8158
8159struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8160 struct sock *sk)
8161{
8162 struct net_device *lower;
8163
8164 lower = netdev_sk_get_lower_dev(dev, sk);
8165 while (lower) {
8166 dev = lower;
8167 lower = netdev_sk_get_lower_dev(dev, sk);
8168 }
8169
8170 return dev;
8171}
8172EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8173
8174static void netdev_adjacent_add_links(struct net_device *dev)
8175{
8176 struct netdev_adjacent *iter;
8177
8178 struct net *net = dev_net(dev);
8179
8180 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8181 if (!net_eq(net, dev_net(iter->dev)))
8182 continue;
8183 netdev_adjacent_sysfs_add(iter->dev, dev,
8184 &iter->dev->adj_list.lower);
8185 netdev_adjacent_sysfs_add(dev, iter->dev,
8186 &dev->adj_list.upper);
8187 }
8188
8189 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8190 if (!net_eq(net, dev_net(iter->dev)))
8191 continue;
8192 netdev_adjacent_sysfs_add(iter->dev, dev,
8193 &iter->dev->adj_list.upper);
8194 netdev_adjacent_sysfs_add(dev, iter->dev,
8195 &dev->adj_list.lower);
8196 }
8197}
8198
8199static void netdev_adjacent_del_links(struct net_device *dev)
8200{
8201 struct netdev_adjacent *iter;
8202
8203 struct net *net = dev_net(dev);
8204
8205 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8206 if (!net_eq(net, dev_net(iter->dev)))
8207 continue;
8208 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8209 &iter->dev->adj_list.lower);
8210 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8211 &dev->adj_list.upper);
8212 }
8213
8214 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8215 if (!net_eq(net, dev_net(iter->dev)))
8216 continue;
8217 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8218 &iter->dev->adj_list.upper);
8219 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8220 &dev->adj_list.lower);
8221 }
8222}
8223
8224void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8225{
8226 struct netdev_adjacent *iter;
8227
8228 struct net *net = dev_net(dev);
8229
8230 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8231 if (!net_eq(net, dev_net(iter->dev)))
8232 continue;
8233 netdev_adjacent_sysfs_del(iter->dev, oldname,
8234 &iter->dev->adj_list.lower);
8235 netdev_adjacent_sysfs_add(iter->dev, dev,
8236 &iter->dev->adj_list.lower);
8237 }
8238
8239 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8240 if (!net_eq(net, dev_net(iter->dev)))
8241 continue;
8242 netdev_adjacent_sysfs_del(iter->dev, oldname,
8243 &iter->dev->adj_list.upper);
8244 netdev_adjacent_sysfs_add(iter->dev, dev,
8245 &iter->dev->adj_list.upper);
8246 }
8247}
8248
8249void *netdev_lower_dev_get_private(struct net_device *dev,
8250 struct net_device *lower_dev)
8251{
8252 struct netdev_adjacent *lower;
8253
8254 if (!lower_dev)
8255 return NULL;
8256 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8257 if (!lower)
8258 return NULL;
8259
8260 return lower->private;
8261}
8262EXPORT_SYMBOL(netdev_lower_dev_get_private);
8263
8264
8265/**
8266 * netdev_lower_state_changed - Dispatch event about lower device state change
8267 * @lower_dev: device
8268 * @lower_state_info: state to dispatch
8269 *
8270 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8271 * The caller must hold the RTNL lock.
8272 */
8273void netdev_lower_state_changed(struct net_device *lower_dev,
8274 void *lower_state_info)
8275{
8276 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8277 .info.dev = lower_dev,
8278 };
8279
8280 ASSERT_RTNL();
8281 changelowerstate_info.lower_state_info = lower_state_info;
8282 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8283 &changelowerstate_info.info);
8284}
8285EXPORT_SYMBOL(netdev_lower_state_changed);
8286
8287static void dev_change_rx_flags(struct net_device *dev, int flags)
8288{
8289 const struct net_device_ops *ops = dev->netdev_ops;
8290
8291 if (ops->ndo_change_rx_flags)
8292 ops->ndo_change_rx_flags(dev, flags);
8293}
8294
8295static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8296{
8297 unsigned int old_flags = dev->flags;
8298 kuid_t uid;
8299 kgid_t gid;
8300
8301 ASSERT_RTNL();
8302
8303 dev->flags |= IFF_PROMISC;
8304 dev->promiscuity += inc;
8305 if (dev->promiscuity == 0) {
8306 /*
8307 * Avoid overflow.
8308 * If inc causes overflow, untouch promisc and return error.
8309 */
8310 if (inc < 0)
8311 dev->flags &= ~IFF_PROMISC;
8312 else {
8313 dev->promiscuity -= inc;
8314 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8315 return -EOVERFLOW;
8316 }
8317 }
8318 if (dev->flags != old_flags) {
8319 netdev_info(dev, "%s promiscuous mode\n",
8320 dev->flags & IFF_PROMISC ? "entered" : "left");
8321 if (audit_enabled) {
8322 current_uid_gid(&uid, &gid);
8323 audit_log(audit_context(), GFP_ATOMIC,
8324 AUDIT_ANOM_PROMISCUOUS,
8325 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8326 dev->name, (dev->flags & IFF_PROMISC),
8327 (old_flags & IFF_PROMISC),
8328 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8329 from_kuid(&init_user_ns, uid),
8330 from_kgid(&init_user_ns, gid),
8331 audit_get_sessionid(current));
8332 }
8333
8334 dev_change_rx_flags(dev, IFF_PROMISC);
8335 }
8336 if (notify)
8337 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8338 return 0;
8339}
8340
8341/**
8342 * dev_set_promiscuity - update promiscuity count on a device
8343 * @dev: device
8344 * @inc: modifier
8345 *
8346 * Add or remove promiscuity from a device. While the count in the device
8347 * remains above zero the interface remains promiscuous. Once it hits zero
8348 * the device reverts back to normal filtering operation. A negative inc
8349 * value is used to drop promiscuity on the device.
8350 * Return 0 if successful or a negative errno code on error.
8351 */
8352int dev_set_promiscuity(struct net_device *dev, int inc)
8353{
8354 unsigned int old_flags = dev->flags;
8355 int err;
8356
8357 err = __dev_set_promiscuity(dev, inc, true);
8358 if (err < 0)
8359 return err;
8360 if (dev->flags != old_flags)
8361 dev_set_rx_mode(dev);
8362 return err;
8363}
8364EXPORT_SYMBOL(dev_set_promiscuity);
8365
8366static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8367{
8368 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8369
8370 ASSERT_RTNL();
8371
8372 dev->flags |= IFF_ALLMULTI;
8373 dev->allmulti += inc;
8374 if (dev->allmulti == 0) {
8375 /*
8376 * Avoid overflow.
8377 * If inc causes overflow, untouch allmulti and return error.
8378 */
8379 if (inc < 0)
8380 dev->flags &= ~IFF_ALLMULTI;
8381 else {
8382 dev->allmulti -= inc;
8383 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8384 return -EOVERFLOW;
8385 }
8386 }
8387 if (dev->flags ^ old_flags) {
8388 netdev_info(dev, "%s allmulticast mode\n",
8389 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8390 dev_change_rx_flags(dev, IFF_ALLMULTI);
8391 dev_set_rx_mode(dev);
8392 if (notify)
8393 __dev_notify_flags(dev, old_flags,
8394 dev->gflags ^ old_gflags, 0, NULL);
8395 }
8396 return 0;
8397}
8398
8399/**
8400 * dev_set_allmulti - update allmulti count on a device
8401 * @dev: device
8402 * @inc: modifier
8403 *
8404 * Add or remove reception of all multicast frames to a device. While the
8405 * count in the device remains above zero the interface remains listening
8406 * to all interfaces. Once it hits zero the device reverts back to normal
8407 * filtering operation. A negative @inc value is used to drop the counter
8408 * when releasing a resource needing all multicasts.
8409 * Return 0 if successful or a negative errno code on error.
8410 */
8411
8412int dev_set_allmulti(struct net_device *dev, int inc)
8413{
8414 return __dev_set_allmulti(dev, inc, true);
8415}
8416EXPORT_SYMBOL(dev_set_allmulti);
8417
8418/*
8419 * Upload unicast and multicast address lists to device and
8420 * configure RX filtering. When the device doesn't support unicast
8421 * filtering it is put in promiscuous mode while unicast addresses
8422 * are present.
8423 */
8424void __dev_set_rx_mode(struct net_device *dev)
8425{
8426 const struct net_device_ops *ops = dev->netdev_ops;
8427
8428 /* dev_open will call this function so the list will stay sane. */
8429 if (!(dev->flags&IFF_UP))
8430 return;
8431
8432 if (!netif_device_present(dev))
8433 return;
8434
8435 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8436 /* Unicast addresses changes may only happen under the rtnl,
8437 * therefore calling __dev_set_promiscuity here is safe.
8438 */
8439 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8440 __dev_set_promiscuity(dev, 1, false);
8441 dev->uc_promisc = true;
8442 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8443 __dev_set_promiscuity(dev, -1, false);
8444 dev->uc_promisc = false;
8445 }
8446 }
8447
8448 if (ops->ndo_set_rx_mode)
8449 ops->ndo_set_rx_mode(dev);
8450}
8451
8452void dev_set_rx_mode(struct net_device *dev)
8453{
8454 netif_addr_lock_bh(dev);
8455 __dev_set_rx_mode(dev);
8456 netif_addr_unlock_bh(dev);
8457}
8458
8459/**
8460 * dev_get_flags - get flags reported to userspace
8461 * @dev: device
8462 *
8463 * Get the combination of flag bits exported through APIs to userspace.
8464 */
8465unsigned int dev_get_flags(const struct net_device *dev)
8466{
8467 unsigned int flags;
8468
8469 flags = (dev->flags & ~(IFF_PROMISC |
8470 IFF_ALLMULTI |
8471 IFF_RUNNING |
8472 IFF_LOWER_UP |
8473 IFF_DORMANT)) |
8474 (dev->gflags & (IFF_PROMISC |
8475 IFF_ALLMULTI));
8476
8477 if (netif_running(dev)) {
8478 if (netif_oper_up(dev))
8479 flags |= IFF_RUNNING;
8480 if (netif_carrier_ok(dev))
8481 flags |= IFF_LOWER_UP;
8482 if (netif_dormant(dev))
8483 flags |= IFF_DORMANT;
8484 }
8485
8486 return flags;
8487}
8488EXPORT_SYMBOL(dev_get_flags);
8489
8490int __dev_change_flags(struct net_device *dev, unsigned int flags,
8491 struct netlink_ext_ack *extack)
8492{
8493 unsigned int old_flags = dev->flags;
8494 int ret;
8495
8496 ASSERT_RTNL();
8497
8498 /*
8499 * Set the flags on our device.
8500 */
8501
8502 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8503 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8504 IFF_AUTOMEDIA)) |
8505 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8506 IFF_ALLMULTI));
8507
8508 /*
8509 * Load in the correct multicast list now the flags have changed.
8510 */
8511
8512 if ((old_flags ^ flags) & IFF_MULTICAST)
8513 dev_change_rx_flags(dev, IFF_MULTICAST);
8514
8515 dev_set_rx_mode(dev);
8516
8517 /*
8518 * Have we downed the interface. We handle IFF_UP ourselves
8519 * according to user attempts to set it, rather than blindly
8520 * setting it.
8521 */
8522
8523 ret = 0;
8524 if ((old_flags ^ flags) & IFF_UP) {
8525 if (old_flags & IFF_UP)
8526 __dev_close(dev);
8527 else
8528 ret = __dev_open(dev, extack);
8529 }
8530
8531 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8532 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8533 unsigned int old_flags = dev->flags;
8534
8535 dev->gflags ^= IFF_PROMISC;
8536
8537 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8538 if (dev->flags != old_flags)
8539 dev_set_rx_mode(dev);
8540 }
8541
8542 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8543 * is important. Some (broken) drivers set IFF_PROMISC, when
8544 * IFF_ALLMULTI is requested not asking us and not reporting.
8545 */
8546 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8547 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8548
8549 dev->gflags ^= IFF_ALLMULTI;
8550 __dev_set_allmulti(dev, inc, false);
8551 }
8552
8553 return ret;
8554}
8555
8556void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8557 unsigned int gchanges, u32 portid,
8558 const struct nlmsghdr *nlh)
8559{
8560 unsigned int changes = dev->flags ^ old_flags;
8561
8562 if (gchanges)
8563 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8564
8565 if (changes & IFF_UP) {
8566 if (dev->flags & IFF_UP)
8567 call_netdevice_notifiers(NETDEV_UP, dev);
8568 else
8569 call_netdevice_notifiers(NETDEV_DOWN, dev);
8570 }
8571
8572 if (dev->flags & IFF_UP &&
8573 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8574 struct netdev_notifier_change_info change_info = {
8575 .info = {
8576 .dev = dev,
8577 },
8578 .flags_changed = changes,
8579 };
8580
8581 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8582 }
8583}
8584
8585/**
8586 * dev_change_flags - change device settings
8587 * @dev: device
8588 * @flags: device state flags
8589 * @extack: netlink extended ack
8590 *
8591 * Change settings on device based state flags. The flags are
8592 * in the userspace exported format.
8593 */
8594int dev_change_flags(struct net_device *dev, unsigned int flags,
8595 struct netlink_ext_ack *extack)
8596{
8597 int ret;
8598 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8599
8600 ret = __dev_change_flags(dev, flags, extack);
8601 if (ret < 0)
8602 return ret;
8603
8604 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8605 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8606 return ret;
8607}
8608EXPORT_SYMBOL(dev_change_flags);
8609
8610int __dev_set_mtu(struct net_device *dev, int new_mtu)
8611{
8612 const struct net_device_ops *ops = dev->netdev_ops;
8613
8614 if (ops->ndo_change_mtu)
8615 return ops->ndo_change_mtu(dev, new_mtu);
8616
8617 /* Pairs with all the lockless reads of dev->mtu in the stack */
8618 WRITE_ONCE(dev->mtu, new_mtu);
8619 return 0;
8620}
8621EXPORT_SYMBOL(__dev_set_mtu);
8622
8623int dev_validate_mtu(struct net_device *dev, int new_mtu,
8624 struct netlink_ext_ack *extack)
8625{
8626 /* MTU must be positive, and in range */
8627 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8628 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8629 return -EINVAL;
8630 }
8631
8632 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8633 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8634 return -EINVAL;
8635 }
8636 return 0;
8637}
8638
8639/**
8640 * dev_set_mtu_ext - Change maximum transfer unit
8641 * @dev: device
8642 * @new_mtu: new transfer unit
8643 * @extack: netlink extended ack
8644 *
8645 * Change the maximum transfer size of the network device.
8646 */
8647int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8648 struct netlink_ext_ack *extack)
8649{
8650 int err, orig_mtu;
8651
8652 if (new_mtu == dev->mtu)
8653 return 0;
8654
8655 err = dev_validate_mtu(dev, new_mtu, extack);
8656 if (err)
8657 return err;
8658
8659 if (!netif_device_present(dev))
8660 return -ENODEV;
8661
8662 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8663 err = notifier_to_errno(err);
8664 if (err)
8665 return err;
8666
8667 orig_mtu = dev->mtu;
8668 err = __dev_set_mtu(dev, new_mtu);
8669
8670 if (!err) {
8671 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8672 orig_mtu);
8673 err = notifier_to_errno(err);
8674 if (err) {
8675 /* setting mtu back and notifying everyone again,
8676 * so that they have a chance to revert changes.
8677 */
8678 __dev_set_mtu(dev, orig_mtu);
8679 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8680 new_mtu);
8681 }
8682 }
8683 return err;
8684}
8685
8686int dev_set_mtu(struct net_device *dev, int new_mtu)
8687{
8688 struct netlink_ext_ack extack;
8689 int err;
8690
8691 memset(&extack, 0, sizeof(extack));
8692 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8693 if (err && extack._msg)
8694 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8695 return err;
8696}
8697EXPORT_SYMBOL(dev_set_mtu);
8698
8699/**
8700 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8701 * @dev: device
8702 * @new_len: new tx queue length
8703 */
8704int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8705{
8706 unsigned int orig_len = dev->tx_queue_len;
8707 int res;
8708
8709 if (new_len != (unsigned int)new_len)
8710 return -ERANGE;
8711
8712 if (new_len != orig_len) {
8713 dev->tx_queue_len = new_len;
8714 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8715 res = notifier_to_errno(res);
8716 if (res)
8717 goto err_rollback;
8718 res = dev_qdisc_change_tx_queue_len(dev);
8719 if (res)
8720 goto err_rollback;
8721 }
8722
8723 return 0;
8724
8725err_rollback:
8726 netdev_err(dev, "refused to change device tx_queue_len\n");
8727 dev->tx_queue_len = orig_len;
8728 return res;
8729}
8730
8731/**
8732 * dev_set_group - Change group this device belongs to
8733 * @dev: device
8734 * @new_group: group this device should belong to
8735 */
8736void dev_set_group(struct net_device *dev, int new_group)
8737{
8738 dev->group = new_group;
8739}
8740
8741/**
8742 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8743 * @dev: device
8744 * @addr: new address
8745 * @extack: netlink extended ack
8746 */
8747int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8748 struct netlink_ext_ack *extack)
8749{
8750 struct netdev_notifier_pre_changeaddr_info info = {
8751 .info.dev = dev,
8752 .info.extack = extack,
8753 .dev_addr = addr,
8754 };
8755 int rc;
8756
8757 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8758 return notifier_to_errno(rc);
8759}
8760EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8761
8762/**
8763 * dev_set_mac_address - Change Media Access Control Address
8764 * @dev: device
8765 * @sa: new address
8766 * @extack: netlink extended ack
8767 *
8768 * Change the hardware (MAC) address of the device
8769 */
8770int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8771 struct netlink_ext_ack *extack)
8772{
8773 const struct net_device_ops *ops = dev->netdev_ops;
8774 int err;
8775
8776 if (!ops->ndo_set_mac_address)
8777 return -EOPNOTSUPP;
8778 if (sa->sa_family != dev->type)
8779 return -EINVAL;
8780 if (!netif_device_present(dev))
8781 return -ENODEV;
8782 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8783 if (err)
8784 return err;
8785 err = ops->ndo_set_mac_address(dev, sa);
8786 if (err)
8787 return err;
8788 dev->addr_assign_type = NET_ADDR_SET;
8789 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8790 add_device_randomness(dev->dev_addr, dev->addr_len);
8791 return 0;
8792}
8793EXPORT_SYMBOL(dev_set_mac_address);
8794
8795static DECLARE_RWSEM(dev_addr_sem);
8796
8797int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8798 struct netlink_ext_ack *extack)
8799{
8800 int ret;
8801
8802 down_write(&dev_addr_sem);
8803 ret = dev_set_mac_address(dev, sa, extack);
8804 up_write(&dev_addr_sem);
8805 return ret;
8806}
8807EXPORT_SYMBOL(dev_set_mac_address_user);
8808
8809int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8810{
8811 size_t size = sizeof(sa->sa_data_min);
8812 struct net_device *dev;
8813 int ret = 0;
8814
8815 down_read(&dev_addr_sem);
8816 rcu_read_lock();
8817
8818 dev = dev_get_by_name_rcu(net, dev_name);
8819 if (!dev) {
8820 ret = -ENODEV;
8821 goto unlock;
8822 }
8823 if (!dev->addr_len)
8824 memset(sa->sa_data, 0, size);
8825 else
8826 memcpy(sa->sa_data, dev->dev_addr,
8827 min_t(size_t, size, dev->addr_len));
8828 sa->sa_family = dev->type;
8829
8830unlock:
8831 rcu_read_unlock();
8832 up_read(&dev_addr_sem);
8833 return ret;
8834}
8835EXPORT_SYMBOL(dev_get_mac_address);
8836
8837/**
8838 * dev_change_carrier - Change device carrier
8839 * @dev: device
8840 * @new_carrier: new value
8841 *
8842 * Change device carrier
8843 */
8844int dev_change_carrier(struct net_device *dev, bool new_carrier)
8845{
8846 const struct net_device_ops *ops = dev->netdev_ops;
8847
8848 if (!ops->ndo_change_carrier)
8849 return -EOPNOTSUPP;
8850 if (!netif_device_present(dev))
8851 return -ENODEV;
8852 return ops->ndo_change_carrier(dev, new_carrier);
8853}
8854
8855/**
8856 * dev_get_phys_port_id - Get device physical port ID
8857 * @dev: device
8858 * @ppid: port ID
8859 *
8860 * Get device physical port ID
8861 */
8862int dev_get_phys_port_id(struct net_device *dev,
8863 struct netdev_phys_item_id *ppid)
8864{
8865 const struct net_device_ops *ops = dev->netdev_ops;
8866
8867 if (!ops->ndo_get_phys_port_id)
8868 return -EOPNOTSUPP;
8869 return ops->ndo_get_phys_port_id(dev, ppid);
8870}
8871
8872/**
8873 * dev_get_phys_port_name - Get device physical port name
8874 * @dev: device
8875 * @name: port name
8876 * @len: limit of bytes to copy to name
8877 *
8878 * Get device physical port name
8879 */
8880int dev_get_phys_port_name(struct net_device *dev,
8881 char *name, size_t len)
8882{
8883 const struct net_device_ops *ops = dev->netdev_ops;
8884 int err;
8885
8886 if (ops->ndo_get_phys_port_name) {
8887 err = ops->ndo_get_phys_port_name(dev, name, len);
8888 if (err != -EOPNOTSUPP)
8889 return err;
8890 }
8891 return devlink_compat_phys_port_name_get(dev, name, len);
8892}
8893
8894/**
8895 * dev_get_port_parent_id - Get the device's port parent identifier
8896 * @dev: network device
8897 * @ppid: pointer to a storage for the port's parent identifier
8898 * @recurse: allow/disallow recursion to lower devices
8899 *
8900 * Get the devices's port parent identifier
8901 */
8902int dev_get_port_parent_id(struct net_device *dev,
8903 struct netdev_phys_item_id *ppid,
8904 bool recurse)
8905{
8906 const struct net_device_ops *ops = dev->netdev_ops;
8907 struct netdev_phys_item_id first = { };
8908 struct net_device *lower_dev;
8909 struct list_head *iter;
8910 int err;
8911
8912 if (ops->ndo_get_port_parent_id) {
8913 err = ops->ndo_get_port_parent_id(dev, ppid);
8914 if (err != -EOPNOTSUPP)
8915 return err;
8916 }
8917
8918 err = devlink_compat_switch_id_get(dev, ppid);
8919 if (!recurse || err != -EOPNOTSUPP)
8920 return err;
8921
8922 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8923 err = dev_get_port_parent_id(lower_dev, ppid, true);
8924 if (err)
8925 break;
8926 if (!first.id_len)
8927 first = *ppid;
8928 else if (memcmp(&first, ppid, sizeof(*ppid)))
8929 return -EOPNOTSUPP;
8930 }
8931
8932 return err;
8933}
8934EXPORT_SYMBOL(dev_get_port_parent_id);
8935
8936/**
8937 * netdev_port_same_parent_id - Indicate if two network devices have
8938 * the same port parent identifier
8939 * @a: first network device
8940 * @b: second network device
8941 */
8942bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8943{
8944 struct netdev_phys_item_id a_id = { };
8945 struct netdev_phys_item_id b_id = { };
8946
8947 if (dev_get_port_parent_id(a, &a_id, true) ||
8948 dev_get_port_parent_id(b, &b_id, true))
8949 return false;
8950
8951 return netdev_phys_item_id_same(&a_id, &b_id);
8952}
8953EXPORT_SYMBOL(netdev_port_same_parent_id);
8954
8955/**
8956 * dev_change_proto_down - set carrier according to proto_down.
8957 *
8958 * @dev: device
8959 * @proto_down: new value
8960 */
8961int dev_change_proto_down(struct net_device *dev, bool proto_down)
8962{
8963 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8964 return -EOPNOTSUPP;
8965 if (!netif_device_present(dev))
8966 return -ENODEV;
8967 if (proto_down)
8968 netif_carrier_off(dev);
8969 else
8970 netif_carrier_on(dev);
8971 dev->proto_down = proto_down;
8972 return 0;
8973}
8974
8975/**
8976 * dev_change_proto_down_reason - proto down reason
8977 *
8978 * @dev: device
8979 * @mask: proto down mask
8980 * @value: proto down value
8981 */
8982void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8983 u32 value)
8984{
8985 int b;
8986
8987 if (!mask) {
8988 dev->proto_down_reason = value;
8989 } else {
8990 for_each_set_bit(b, &mask, 32) {
8991 if (value & (1 << b))
8992 dev->proto_down_reason |= BIT(b);
8993 else
8994 dev->proto_down_reason &= ~BIT(b);
8995 }
8996 }
8997}
8998
8999struct bpf_xdp_link {
9000 struct bpf_link link;
9001 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9002 int flags;
9003};
9004
9005static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9006{
9007 if (flags & XDP_FLAGS_HW_MODE)
9008 return XDP_MODE_HW;
9009 if (flags & XDP_FLAGS_DRV_MODE)
9010 return XDP_MODE_DRV;
9011 if (flags & XDP_FLAGS_SKB_MODE)
9012 return XDP_MODE_SKB;
9013 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9014}
9015
9016static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9017{
9018 switch (mode) {
9019 case XDP_MODE_SKB:
9020 return generic_xdp_install;
9021 case XDP_MODE_DRV:
9022 case XDP_MODE_HW:
9023 return dev->netdev_ops->ndo_bpf;
9024 default:
9025 return NULL;
9026 }
9027}
9028
9029static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9030 enum bpf_xdp_mode mode)
9031{
9032 return dev->xdp_state[mode].link;
9033}
9034
9035static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9036 enum bpf_xdp_mode mode)
9037{
9038 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9039
9040 if (link)
9041 return link->link.prog;
9042 return dev->xdp_state[mode].prog;
9043}
9044
9045u8 dev_xdp_prog_count(struct net_device *dev)
9046{
9047 u8 count = 0;
9048 int i;
9049
9050 for (i = 0; i < __MAX_XDP_MODE; i++)
9051 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9052 count++;
9053 return count;
9054}
9055EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9056
9057u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9058{
9059 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9060
9061 return prog ? prog->aux->id : 0;
9062}
9063
9064static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9065 struct bpf_xdp_link *link)
9066{
9067 dev->xdp_state[mode].link = link;
9068 dev->xdp_state[mode].prog = NULL;
9069}
9070
9071static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9072 struct bpf_prog *prog)
9073{
9074 dev->xdp_state[mode].link = NULL;
9075 dev->xdp_state[mode].prog = prog;
9076}
9077
9078static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9079 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9080 u32 flags, struct bpf_prog *prog)
9081{
9082 struct netdev_bpf xdp;
9083 int err;
9084
9085 memset(&xdp, 0, sizeof(xdp));
9086 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9087 xdp.extack = extack;
9088 xdp.flags = flags;
9089 xdp.prog = prog;
9090
9091 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9092 * "moved" into driver), so they don't increment it on their own, but
9093 * they do decrement refcnt when program is detached or replaced.
9094 * Given net_device also owns link/prog, we need to bump refcnt here
9095 * to prevent drivers from underflowing it.
9096 */
9097 if (prog)
9098 bpf_prog_inc(prog);
9099 err = bpf_op(dev, &xdp);
9100 if (err) {
9101 if (prog)
9102 bpf_prog_put(prog);
9103 return err;
9104 }
9105
9106 if (mode != XDP_MODE_HW)
9107 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9108
9109 return 0;
9110}
9111
9112static void dev_xdp_uninstall(struct net_device *dev)
9113{
9114 struct bpf_xdp_link *link;
9115 struct bpf_prog *prog;
9116 enum bpf_xdp_mode mode;
9117 bpf_op_t bpf_op;
9118
9119 ASSERT_RTNL();
9120
9121 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9122 prog = dev_xdp_prog(dev, mode);
9123 if (!prog)
9124 continue;
9125
9126 bpf_op = dev_xdp_bpf_op(dev, mode);
9127 if (!bpf_op)
9128 continue;
9129
9130 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9131
9132 /* auto-detach link from net device */
9133 link = dev_xdp_link(dev, mode);
9134 if (link)
9135 link->dev = NULL;
9136 else
9137 bpf_prog_put(prog);
9138
9139 dev_xdp_set_link(dev, mode, NULL);
9140 }
9141}
9142
9143static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9144 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9145 struct bpf_prog *old_prog, u32 flags)
9146{
9147 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9148 struct bpf_prog *cur_prog;
9149 struct net_device *upper;
9150 struct list_head *iter;
9151 enum bpf_xdp_mode mode;
9152 bpf_op_t bpf_op;
9153 int err;
9154
9155 ASSERT_RTNL();
9156
9157 /* either link or prog attachment, never both */
9158 if (link && (new_prog || old_prog))
9159 return -EINVAL;
9160 /* link supports only XDP mode flags */
9161 if (link && (flags & ~XDP_FLAGS_MODES)) {
9162 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9163 return -EINVAL;
9164 }
9165 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9166 if (num_modes > 1) {
9167 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9168 return -EINVAL;
9169 }
9170 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9171 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9172 NL_SET_ERR_MSG(extack,
9173 "More than one program loaded, unset mode is ambiguous");
9174 return -EINVAL;
9175 }
9176 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9177 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9178 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9179 return -EINVAL;
9180 }
9181
9182 mode = dev_xdp_mode(dev, flags);
9183 /* can't replace attached link */
9184 if (dev_xdp_link(dev, mode)) {
9185 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9186 return -EBUSY;
9187 }
9188
9189 /* don't allow if an upper device already has a program */
9190 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9191 if (dev_xdp_prog_count(upper) > 0) {
9192 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9193 return -EEXIST;
9194 }
9195 }
9196
9197 cur_prog = dev_xdp_prog(dev, mode);
9198 /* can't replace attached prog with link */
9199 if (link && cur_prog) {
9200 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9201 return -EBUSY;
9202 }
9203 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9204 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9205 return -EEXIST;
9206 }
9207
9208 /* put effective new program into new_prog */
9209 if (link)
9210 new_prog = link->link.prog;
9211
9212 if (new_prog) {
9213 bool offload = mode == XDP_MODE_HW;
9214 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9215 ? XDP_MODE_DRV : XDP_MODE_SKB;
9216
9217 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9218 NL_SET_ERR_MSG(extack, "XDP program already attached");
9219 return -EBUSY;
9220 }
9221 if (!offload && dev_xdp_prog(dev, other_mode)) {
9222 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9223 return -EEXIST;
9224 }
9225 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9226 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9227 return -EINVAL;
9228 }
9229 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9230 NL_SET_ERR_MSG(extack, "Program bound to different device");
9231 return -EINVAL;
9232 }
9233 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9234 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9235 return -EINVAL;
9236 }
9237 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9238 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9239 return -EINVAL;
9240 }
9241 }
9242
9243 /* don't call drivers if the effective program didn't change */
9244 if (new_prog != cur_prog) {
9245 bpf_op = dev_xdp_bpf_op(dev, mode);
9246 if (!bpf_op) {
9247 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9248 return -EOPNOTSUPP;
9249 }
9250
9251 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9252 if (err)
9253 return err;
9254 }
9255
9256 if (link)
9257 dev_xdp_set_link(dev, mode, link);
9258 else
9259 dev_xdp_set_prog(dev, mode, new_prog);
9260 if (cur_prog)
9261 bpf_prog_put(cur_prog);
9262
9263 return 0;
9264}
9265
9266static int dev_xdp_attach_link(struct net_device *dev,
9267 struct netlink_ext_ack *extack,
9268 struct bpf_xdp_link *link)
9269{
9270 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9271}
9272
9273static int dev_xdp_detach_link(struct net_device *dev,
9274 struct netlink_ext_ack *extack,
9275 struct bpf_xdp_link *link)
9276{
9277 enum bpf_xdp_mode mode;
9278 bpf_op_t bpf_op;
9279
9280 ASSERT_RTNL();
9281
9282 mode = dev_xdp_mode(dev, link->flags);
9283 if (dev_xdp_link(dev, mode) != link)
9284 return -EINVAL;
9285
9286 bpf_op = dev_xdp_bpf_op(dev, mode);
9287 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9288 dev_xdp_set_link(dev, mode, NULL);
9289 return 0;
9290}
9291
9292static void bpf_xdp_link_release(struct bpf_link *link)
9293{
9294 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9295
9296 rtnl_lock();
9297
9298 /* if racing with net_device's tear down, xdp_link->dev might be
9299 * already NULL, in which case link was already auto-detached
9300 */
9301 if (xdp_link->dev) {
9302 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9303 xdp_link->dev = NULL;
9304 }
9305
9306 rtnl_unlock();
9307}
9308
9309static int bpf_xdp_link_detach(struct bpf_link *link)
9310{
9311 bpf_xdp_link_release(link);
9312 return 0;
9313}
9314
9315static void bpf_xdp_link_dealloc(struct bpf_link *link)
9316{
9317 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9318
9319 kfree(xdp_link);
9320}
9321
9322static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9323 struct seq_file *seq)
9324{
9325 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9326 u32 ifindex = 0;
9327
9328 rtnl_lock();
9329 if (xdp_link->dev)
9330 ifindex = xdp_link->dev->ifindex;
9331 rtnl_unlock();
9332
9333 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9334}
9335
9336static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9337 struct bpf_link_info *info)
9338{
9339 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9340 u32 ifindex = 0;
9341
9342 rtnl_lock();
9343 if (xdp_link->dev)
9344 ifindex = xdp_link->dev->ifindex;
9345 rtnl_unlock();
9346
9347 info->xdp.ifindex = ifindex;
9348 return 0;
9349}
9350
9351static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9352 struct bpf_prog *old_prog)
9353{
9354 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9355 enum bpf_xdp_mode mode;
9356 bpf_op_t bpf_op;
9357 int err = 0;
9358
9359 rtnl_lock();
9360
9361 /* link might have been auto-released already, so fail */
9362 if (!xdp_link->dev) {
9363 err = -ENOLINK;
9364 goto out_unlock;
9365 }
9366
9367 if (old_prog && link->prog != old_prog) {
9368 err = -EPERM;
9369 goto out_unlock;
9370 }
9371 old_prog = link->prog;
9372 if (old_prog->type != new_prog->type ||
9373 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9374 err = -EINVAL;
9375 goto out_unlock;
9376 }
9377
9378 if (old_prog == new_prog) {
9379 /* no-op, don't disturb drivers */
9380 bpf_prog_put(new_prog);
9381 goto out_unlock;
9382 }
9383
9384 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9385 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9386 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9387 xdp_link->flags, new_prog);
9388 if (err)
9389 goto out_unlock;
9390
9391 old_prog = xchg(&link->prog, new_prog);
9392 bpf_prog_put(old_prog);
9393
9394out_unlock:
9395 rtnl_unlock();
9396 return err;
9397}
9398
9399static const struct bpf_link_ops bpf_xdp_link_lops = {
9400 .release = bpf_xdp_link_release,
9401 .dealloc = bpf_xdp_link_dealloc,
9402 .detach = bpf_xdp_link_detach,
9403 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9404 .fill_link_info = bpf_xdp_link_fill_link_info,
9405 .update_prog = bpf_xdp_link_update,
9406};
9407
9408int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9409{
9410 struct net *net = current->nsproxy->net_ns;
9411 struct bpf_link_primer link_primer;
9412 struct bpf_xdp_link *link;
9413 struct net_device *dev;
9414 int err, fd;
9415
9416 rtnl_lock();
9417 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9418 if (!dev) {
9419 rtnl_unlock();
9420 return -EINVAL;
9421 }
9422
9423 link = kzalloc(sizeof(*link), GFP_USER);
9424 if (!link) {
9425 err = -ENOMEM;
9426 goto unlock;
9427 }
9428
9429 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9430 link->dev = dev;
9431 link->flags = attr->link_create.flags;
9432
9433 err = bpf_link_prime(&link->link, &link_primer);
9434 if (err) {
9435 kfree(link);
9436 goto unlock;
9437 }
9438
9439 err = dev_xdp_attach_link(dev, NULL, link);
9440 rtnl_unlock();
9441
9442 if (err) {
9443 link->dev = NULL;
9444 bpf_link_cleanup(&link_primer);
9445 goto out_put_dev;
9446 }
9447
9448 fd = bpf_link_settle(&link_primer);
9449 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9450 dev_put(dev);
9451 return fd;
9452
9453unlock:
9454 rtnl_unlock();
9455
9456out_put_dev:
9457 dev_put(dev);
9458 return err;
9459}
9460
9461/**
9462 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9463 * @dev: device
9464 * @extack: netlink extended ack
9465 * @fd: new program fd or negative value to clear
9466 * @expected_fd: old program fd that userspace expects to replace or clear
9467 * @flags: xdp-related flags
9468 *
9469 * Set or clear a bpf program for a device
9470 */
9471int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9472 int fd, int expected_fd, u32 flags)
9473{
9474 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9475 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9476 int err;
9477
9478 ASSERT_RTNL();
9479
9480 if (fd >= 0) {
9481 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9482 mode != XDP_MODE_SKB);
9483 if (IS_ERR(new_prog))
9484 return PTR_ERR(new_prog);
9485 }
9486
9487 if (expected_fd >= 0) {
9488 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9489 mode != XDP_MODE_SKB);
9490 if (IS_ERR(old_prog)) {
9491 err = PTR_ERR(old_prog);
9492 old_prog = NULL;
9493 goto err_out;
9494 }
9495 }
9496
9497 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9498
9499err_out:
9500 if (err && new_prog)
9501 bpf_prog_put(new_prog);
9502 if (old_prog)
9503 bpf_prog_put(old_prog);
9504 return err;
9505}
9506
9507/**
9508 * dev_new_index - allocate an ifindex
9509 * @net: the applicable net namespace
9510 *
9511 * Returns a suitable unique value for a new device interface
9512 * number. The caller must hold the rtnl semaphore or the
9513 * dev_base_lock to be sure it remains unique.
9514 */
9515static int dev_new_index(struct net *net)
9516{
9517 int ifindex = net->ifindex;
9518
9519 for (;;) {
9520 if (++ifindex <= 0)
9521 ifindex = 1;
9522 if (!__dev_get_by_index(net, ifindex))
9523 return net->ifindex = ifindex;
9524 }
9525}
9526
9527/* Delayed registration/unregisteration */
9528LIST_HEAD(net_todo_list);
9529DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9530
9531static void net_set_todo(struct net_device *dev)
9532{
9533 list_add_tail(&dev->todo_list, &net_todo_list);
9534 atomic_inc(&dev_net(dev)->dev_unreg_count);
9535}
9536
9537static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9538 struct net_device *upper, netdev_features_t features)
9539{
9540 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9541 netdev_features_t feature;
9542 int feature_bit;
9543
9544 for_each_netdev_feature(upper_disables, feature_bit) {
9545 feature = __NETIF_F_BIT(feature_bit);
9546 if (!(upper->wanted_features & feature)
9547 && (features & feature)) {
9548 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9549 &feature, upper->name);
9550 features &= ~feature;
9551 }
9552 }
9553
9554 return features;
9555}
9556
9557static void netdev_sync_lower_features(struct net_device *upper,
9558 struct net_device *lower, netdev_features_t features)
9559{
9560 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9561 netdev_features_t feature;
9562 int feature_bit;
9563
9564 for_each_netdev_feature(upper_disables, feature_bit) {
9565 feature = __NETIF_F_BIT(feature_bit);
9566 if (!(features & feature) && (lower->features & feature)) {
9567 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9568 &feature, lower->name);
9569 lower->wanted_features &= ~feature;
9570 __netdev_update_features(lower);
9571
9572 if (unlikely(lower->features & feature))
9573 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9574 &feature, lower->name);
9575 else
9576 netdev_features_change(lower);
9577 }
9578 }
9579}
9580
9581static netdev_features_t netdev_fix_features(struct net_device *dev,
9582 netdev_features_t features)
9583{
9584 /* Fix illegal checksum combinations */
9585 if ((features & NETIF_F_HW_CSUM) &&
9586 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9587 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9588 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9589 }
9590
9591 /* TSO requires that SG is present as well. */
9592 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9593 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9594 features &= ~NETIF_F_ALL_TSO;
9595 }
9596
9597 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9598 !(features & NETIF_F_IP_CSUM)) {
9599 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9600 features &= ~NETIF_F_TSO;
9601 features &= ~NETIF_F_TSO_ECN;
9602 }
9603
9604 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9605 !(features & NETIF_F_IPV6_CSUM)) {
9606 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9607 features &= ~NETIF_F_TSO6;
9608 }
9609
9610 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9611 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9612 features &= ~NETIF_F_TSO_MANGLEID;
9613
9614 /* TSO ECN requires that TSO is present as well. */
9615 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9616 features &= ~NETIF_F_TSO_ECN;
9617
9618 /* Software GSO depends on SG. */
9619 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9620 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9621 features &= ~NETIF_F_GSO;
9622 }
9623
9624 /* GSO partial features require GSO partial be set */
9625 if ((features & dev->gso_partial_features) &&
9626 !(features & NETIF_F_GSO_PARTIAL)) {
9627 netdev_dbg(dev,
9628 "Dropping partially supported GSO features since no GSO partial.\n");
9629 features &= ~dev->gso_partial_features;
9630 }
9631
9632 if (!(features & NETIF_F_RXCSUM)) {
9633 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9634 * successfully merged by hardware must also have the
9635 * checksum verified by hardware. If the user does not
9636 * want to enable RXCSUM, logically, we should disable GRO_HW.
9637 */
9638 if (features & NETIF_F_GRO_HW) {
9639 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9640 features &= ~NETIF_F_GRO_HW;
9641 }
9642 }
9643
9644 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9645 if (features & NETIF_F_RXFCS) {
9646 if (features & NETIF_F_LRO) {
9647 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9648 features &= ~NETIF_F_LRO;
9649 }
9650
9651 if (features & NETIF_F_GRO_HW) {
9652 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9653 features &= ~NETIF_F_GRO_HW;
9654 }
9655 }
9656
9657 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9658 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9659 features &= ~NETIF_F_LRO;
9660 }
9661
9662 if (features & NETIF_F_HW_TLS_TX) {
9663 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9664 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9665 bool hw_csum = features & NETIF_F_HW_CSUM;
9666
9667 if (!ip_csum && !hw_csum) {
9668 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9669 features &= ~NETIF_F_HW_TLS_TX;
9670 }
9671 }
9672
9673 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9674 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9675 features &= ~NETIF_F_HW_TLS_RX;
9676 }
9677
9678 return features;
9679}
9680
9681int __netdev_update_features(struct net_device *dev)
9682{
9683 struct net_device *upper, *lower;
9684 netdev_features_t features;
9685 struct list_head *iter;
9686 int err = -1;
9687
9688 ASSERT_RTNL();
9689
9690 features = netdev_get_wanted_features(dev);
9691
9692 if (dev->netdev_ops->ndo_fix_features)
9693 features = dev->netdev_ops->ndo_fix_features(dev, features);
9694
9695 /* driver might be less strict about feature dependencies */
9696 features = netdev_fix_features(dev, features);
9697
9698 /* some features can't be enabled if they're off on an upper device */
9699 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9700 features = netdev_sync_upper_features(dev, upper, features);
9701
9702 if (dev->features == features)
9703 goto sync_lower;
9704
9705 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9706 &dev->features, &features);
9707
9708 if (dev->netdev_ops->ndo_set_features)
9709 err = dev->netdev_ops->ndo_set_features(dev, features);
9710 else
9711 err = 0;
9712
9713 if (unlikely(err < 0)) {
9714 netdev_err(dev,
9715 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9716 err, &features, &dev->features);
9717 /* return non-0 since some features might have changed and
9718 * it's better to fire a spurious notification than miss it
9719 */
9720 return -1;
9721 }
9722
9723sync_lower:
9724 /* some features must be disabled on lower devices when disabled
9725 * on an upper device (think: bonding master or bridge)
9726 */
9727 netdev_for_each_lower_dev(dev, lower, iter)
9728 netdev_sync_lower_features(dev, lower, features);
9729
9730 if (!err) {
9731 netdev_features_t diff = features ^ dev->features;
9732
9733 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9734 /* udp_tunnel_{get,drop}_rx_info both need
9735 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9736 * device, or they won't do anything.
9737 * Thus we need to update dev->features
9738 * *before* calling udp_tunnel_get_rx_info,
9739 * but *after* calling udp_tunnel_drop_rx_info.
9740 */
9741 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9742 dev->features = features;
9743 udp_tunnel_get_rx_info(dev);
9744 } else {
9745 udp_tunnel_drop_rx_info(dev);
9746 }
9747 }
9748
9749 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9750 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9751 dev->features = features;
9752 err |= vlan_get_rx_ctag_filter_info(dev);
9753 } else {
9754 vlan_drop_rx_ctag_filter_info(dev);
9755 }
9756 }
9757
9758 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9759 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9760 dev->features = features;
9761 err |= vlan_get_rx_stag_filter_info(dev);
9762 } else {
9763 vlan_drop_rx_stag_filter_info(dev);
9764 }
9765 }
9766
9767 dev->features = features;
9768 }
9769
9770 return err < 0 ? 0 : 1;
9771}
9772
9773/**
9774 * netdev_update_features - recalculate device features
9775 * @dev: the device to check
9776 *
9777 * Recalculate dev->features set and send notifications if it
9778 * has changed. Should be called after driver or hardware dependent
9779 * conditions might have changed that influence the features.
9780 */
9781void netdev_update_features(struct net_device *dev)
9782{
9783 if (__netdev_update_features(dev))
9784 netdev_features_change(dev);
9785}
9786EXPORT_SYMBOL(netdev_update_features);
9787
9788/**
9789 * netdev_change_features - recalculate device features
9790 * @dev: the device to check
9791 *
9792 * Recalculate dev->features set and send notifications even
9793 * if they have not changed. Should be called instead of
9794 * netdev_update_features() if also dev->vlan_features might
9795 * have changed to allow the changes to be propagated to stacked
9796 * VLAN devices.
9797 */
9798void netdev_change_features(struct net_device *dev)
9799{
9800 __netdev_update_features(dev);
9801 netdev_features_change(dev);
9802}
9803EXPORT_SYMBOL(netdev_change_features);
9804
9805/**
9806 * netif_stacked_transfer_operstate - transfer operstate
9807 * @rootdev: the root or lower level device to transfer state from
9808 * @dev: the device to transfer operstate to
9809 *
9810 * Transfer operational state from root to device. This is normally
9811 * called when a stacking relationship exists between the root
9812 * device and the device(a leaf device).
9813 */
9814void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9815 struct net_device *dev)
9816{
9817 if (rootdev->operstate == IF_OPER_DORMANT)
9818 netif_dormant_on(dev);
9819 else
9820 netif_dormant_off(dev);
9821
9822 if (rootdev->operstate == IF_OPER_TESTING)
9823 netif_testing_on(dev);
9824 else
9825 netif_testing_off(dev);
9826
9827 if (netif_carrier_ok(rootdev))
9828 netif_carrier_on(dev);
9829 else
9830 netif_carrier_off(dev);
9831}
9832EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9833
9834static int netif_alloc_rx_queues(struct net_device *dev)
9835{
9836 unsigned int i, count = dev->num_rx_queues;
9837 struct netdev_rx_queue *rx;
9838 size_t sz = count * sizeof(*rx);
9839 int err = 0;
9840
9841 BUG_ON(count < 1);
9842
9843 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9844 if (!rx)
9845 return -ENOMEM;
9846
9847 dev->_rx = rx;
9848
9849 for (i = 0; i < count; i++) {
9850 rx[i].dev = dev;
9851
9852 /* XDP RX-queue setup */
9853 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9854 if (err < 0)
9855 goto err_rxq_info;
9856 }
9857 return 0;
9858
9859err_rxq_info:
9860 /* Rollback successful reg's and free other resources */
9861 while (i--)
9862 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9863 kvfree(dev->_rx);
9864 dev->_rx = NULL;
9865 return err;
9866}
9867
9868static void netif_free_rx_queues(struct net_device *dev)
9869{
9870 unsigned int i, count = dev->num_rx_queues;
9871
9872 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9873 if (!dev->_rx)
9874 return;
9875
9876 for (i = 0; i < count; i++)
9877 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9878
9879 kvfree(dev->_rx);
9880}
9881
9882static void netdev_init_one_queue(struct net_device *dev,
9883 struct netdev_queue *queue, void *_unused)
9884{
9885 /* Initialize queue lock */
9886 spin_lock_init(&queue->_xmit_lock);
9887 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9888 queue->xmit_lock_owner = -1;
9889 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9890 queue->dev = dev;
9891#ifdef CONFIG_BQL
9892 dql_init(&queue->dql, HZ);
9893#endif
9894}
9895
9896static void netif_free_tx_queues(struct net_device *dev)
9897{
9898 kvfree(dev->_tx);
9899}
9900
9901static int netif_alloc_netdev_queues(struct net_device *dev)
9902{
9903 unsigned int count = dev->num_tx_queues;
9904 struct netdev_queue *tx;
9905 size_t sz = count * sizeof(*tx);
9906
9907 if (count < 1 || count > 0xffff)
9908 return -EINVAL;
9909
9910 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9911 if (!tx)
9912 return -ENOMEM;
9913
9914 dev->_tx = tx;
9915
9916 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9917 spin_lock_init(&dev->tx_global_lock);
9918
9919 return 0;
9920}
9921
9922void netif_tx_stop_all_queues(struct net_device *dev)
9923{
9924 unsigned int i;
9925
9926 for (i = 0; i < dev->num_tx_queues; i++) {
9927 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9928
9929 netif_tx_stop_queue(txq);
9930 }
9931}
9932EXPORT_SYMBOL(netif_tx_stop_all_queues);
9933
9934/**
9935 * register_netdevice() - register a network device
9936 * @dev: device to register
9937 *
9938 * Take a prepared network device structure and make it externally accessible.
9939 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9940 * Callers must hold the rtnl lock - you may want register_netdev()
9941 * instead of this.
9942 */
9943int register_netdevice(struct net_device *dev)
9944{
9945 int ret;
9946 struct net *net = dev_net(dev);
9947
9948 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9949 NETDEV_FEATURE_COUNT);
9950 BUG_ON(dev_boot_phase);
9951 ASSERT_RTNL();
9952
9953 might_sleep();
9954
9955 /* When net_device's are persistent, this will be fatal. */
9956 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9957 BUG_ON(!net);
9958
9959 ret = ethtool_check_ops(dev->ethtool_ops);
9960 if (ret)
9961 return ret;
9962
9963 spin_lock_init(&dev->addr_list_lock);
9964 netdev_set_addr_lockdep_class(dev);
9965
9966 ret = dev_get_valid_name(net, dev, dev->name);
9967 if (ret < 0)
9968 goto out;
9969
9970 ret = -ENOMEM;
9971 dev->name_node = netdev_name_node_head_alloc(dev);
9972 if (!dev->name_node)
9973 goto out;
9974
9975 /* Init, if this function is available */
9976 if (dev->netdev_ops->ndo_init) {
9977 ret = dev->netdev_ops->ndo_init(dev);
9978 if (ret) {
9979 if (ret > 0)
9980 ret = -EIO;
9981 goto err_free_name;
9982 }
9983 }
9984
9985 if (((dev->hw_features | dev->features) &
9986 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9987 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9988 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9989 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9990 ret = -EINVAL;
9991 goto err_uninit;
9992 }
9993
9994 ret = -EBUSY;
9995 if (!dev->ifindex)
9996 dev->ifindex = dev_new_index(net);
9997 else if (__dev_get_by_index(net, dev->ifindex))
9998 goto err_uninit;
9999
10000 /* Transfer changeable features to wanted_features and enable
10001 * software offloads (GSO and GRO).
10002 */
10003 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10004 dev->features |= NETIF_F_SOFT_FEATURES;
10005
10006 if (dev->udp_tunnel_nic_info) {
10007 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10008 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10009 }
10010
10011 dev->wanted_features = dev->features & dev->hw_features;
10012
10013 if (!(dev->flags & IFF_LOOPBACK))
10014 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10015
10016 /* If IPv4 TCP segmentation offload is supported we should also
10017 * allow the device to enable segmenting the frame with the option
10018 * of ignoring a static IP ID value. This doesn't enable the
10019 * feature itself but allows the user to enable it later.
10020 */
10021 if (dev->hw_features & NETIF_F_TSO)
10022 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10023 if (dev->vlan_features & NETIF_F_TSO)
10024 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10025 if (dev->mpls_features & NETIF_F_TSO)
10026 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10027 if (dev->hw_enc_features & NETIF_F_TSO)
10028 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10029
10030 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10031 */
10032 dev->vlan_features |= NETIF_F_HIGHDMA;
10033
10034 /* Make NETIF_F_SG inheritable to tunnel devices.
10035 */
10036 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10037
10038 /* Make NETIF_F_SG inheritable to MPLS.
10039 */
10040 dev->mpls_features |= NETIF_F_SG;
10041
10042 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10043 ret = notifier_to_errno(ret);
10044 if (ret)
10045 goto err_uninit;
10046
10047 ret = netdev_register_kobject(dev);
10048 write_lock(&dev_base_lock);
10049 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10050 write_unlock(&dev_base_lock);
10051 if (ret)
10052 goto err_uninit_notify;
10053
10054 __netdev_update_features(dev);
10055
10056 /*
10057 * Default initial state at registry is that the
10058 * device is present.
10059 */
10060
10061 set_bit(__LINK_STATE_PRESENT, &dev->state);
10062
10063 linkwatch_init_dev(dev);
10064
10065 dev_init_scheduler(dev);
10066
10067 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10068 list_netdevice(dev);
10069
10070 add_device_randomness(dev->dev_addr, dev->addr_len);
10071
10072 /* If the device has permanent device address, driver should
10073 * set dev_addr and also addr_assign_type should be set to
10074 * NET_ADDR_PERM (default value).
10075 */
10076 if (dev->addr_assign_type == NET_ADDR_PERM)
10077 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10078
10079 /* Notify protocols, that a new device appeared. */
10080 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10081 ret = notifier_to_errno(ret);
10082 if (ret) {
10083 /* Expect explicit free_netdev() on failure */
10084 dev->needs_free_netdev = false;
10085 unregister_netdevice_queue(dev, NULL);
10086 goto out;
10087 }
10088 /*
10089 * Prevent userspace races by waiting until the network
10090 * device is fully setup before sending notifications.
10091 */
10092 if (!dev->rtnl_link_ops ||
10093 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10094 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10095
10096out:
10097 return ret;
10098
10099err_uninit_notify:
10100 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10101err_uninit:
10102 if (dev->netdev_ops->ndo_uninit)
10103 dev->netdev_ops->ndo_uninit(dev);
10104 if (dev->priv_destructor)
10105 dev->priv_destructor(dev);
10106err_free_name:
10107 netdev_name_node_free(dev->name_node);
10108 goto out;
10109}
10110EXPORT_SYMBOL(register_netdevice);
10111
10112/**
10113 * init_dummy_netdev - init a dummy network device for NAPI
10114 * @dev: device to init
10115 *
10116 * This takes a network device structure and initialize the minimum
10117 * amount of fields so it can be used to schedule NAPI polls without
10118 * registering a full blown interface. This is to be used by drivers
10119 * that need to tie several hardware interfaces to a single NAPI
10120 * poll scheduler due to HW limitations.
10121 */
10122int init_dummy_netdev(struct net_device *dev)
10123{
10124 /* Clear everything. Note we don't initialize spinlocks
10125 * are they aren't supposed to be taken by any of the
10126 * NAPI code and this dummy netdev is supposed to be
10127 * only ever used for NAPI polls
10128 */
10129 memset(dev, 0, sizeof(struct net_device));
10130
10131 /* make sure we BUG if trying to hit standard
10132 * register/unregister code path
10133 */
10134 dev->reg_state = NETREG_DUMMY;
10135
10136 /* NAPI wants this */
10137 INIT_LIST_HEAD(&dev->napi_list);
10138
10139 /* a dummy interface is started by default */
10140 set_bit(__LINK_STATE_PRESENT, &dev->state);
10141 set_bit(__LINK_STATE_START, &dev->state);
10142
10143 /* napi_busy_loop stats accounting wants this */
10144 dev_net_set(dev, &init_net);
10145
10146 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10147 * because users of this 'device' dont need to change
10148 * its refcount.
10149 */
10150
10151 return 0;
10152}
10153EXPORT_SYMBOL_GPL(init_dummy_netdev);
10154
10155
10156/**
10157 * register_netdev - register a network device
10158 * @dev: device to register
10159 *
10160 * Take a completed network device structure and add it to the kernel
10161 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10162 * chain. 0 is returned on success. A negative errno code is returned
10163 * on a failure to set up the device, or if the name is a duplicate.
10164 *
10165 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10166 * and expands the device name if you passed a format string to
10167 * alloc_netdev.
10168 */
10169int register_netdev(struct net_device *dev)
10170{
10171 int err;
10172
10173 if (rtnl_lock_killable())
10174 return -EINTR;
10175 err = register_netdevice(dev);
10176 rtnl_unlock();
10177 return err;
10178}
10179EXPORT_SYMBOL(register_netdev);
10180
10181int netdev_refcnt_read(const struct net_device *dev)
10182{
10183#ifdef CONFIG_PCPU_DEV_REFCNT
10184 int i, refcnt = 0;
10185
10186 for_each_possible_cpu(i)
10187 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10188 return refcnt;
10189#else
10190 return refcount_read(&dev->dev_refcnt);
10191#endif
10192}
10193EXPORT_SYMBOL(netdev_refcnt_read);
10194
10195int netdev_unregister_timeout_secs __read_mostly = 10;
10196
10197#define WAIT_REFS_MIN_MSECS 1
10198#define WAIT_REFS_MAX_MSECS 250
10199/**
10200 * netdev_wait_allrefs_any - wait until all references are gone.
10201 * @list: list of net_devices to wait on
10202 *
10203 * This is called when unregistering network devices.
10204 *
10205 * Any protocol or device that holds a reference should register
10206 * for netdevice notification, and cleanup and put back the
10207 * reference if they receive an UNREGISTER event.
10208 * We can get stuck here if buggy protocols don't correctly
10209 * call dev_put.
10210 */
10211static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10212{
10213 unsigned long rebroadcast_time, warning_time;
10214 struct net_device *dev;
10215 int wait = 0;
10216
10217 rebroadcast_time = warning_time = jiffies;
10218
10219 list_for_each_entry(dev, list, todo_list)
10220 if (netdev_refcnt_read(dev) == 1)
10221 return dev;
10222
10223 while (true) {
10224 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10225 rtnl_lock();
10226
10227 /* Rebroadcast unregister notification */
10228 list_for_each_entry(dev, list, todo_list)
10229 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10230
10231 __rtnl_unlock();
10232 rcu_barrier();
10233 rtnl_lock();
10234
10235 list_for_each_entry(dev, list, todo_list)
10236 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10237 &dev->state)) {
10238 /* We must not have linkwatch events
10239 * pending on unregister. If this
10240 * happens, we simply run the queue
10241 * unscheduled, resulting in a noop
10242 * for this device.
10243 */
10244 linkwatch_run_queue();
10245 break;
10246 }
10247
10248 __rtnl_unlock();
10249
10250 rebroadcast_time = jiffies;
10251 }
10252
10253 if (!wait) {
10254 rcu_barrier();
10255 wait = WAIT_REFS_MIN_MSECS;
10256 } else {
10257 msleep(wait);
10258 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10259 }
10260
10261 list_for_each_entry(dev, list, todo_list)
10262 if (netdev_refcnt_read(dev) == 1)
10263 return dev;
10264
10265 if (time_after(jiffies, warning_time +
10266 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10267 list_for_each_entry(dev, list, todo_list) {
10268 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10269 dev->name, netdev_refcnt_read(dev));
10270 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10271 }
10272
10273 warning_time = jiffies;
10274 }
10275 }
10276}
10277
10278/* The sequence is:
10279 *
10280 * rtnl_lock();
10281 * ...
10282 * register_netdevice(x1);
10283 * register_netdevice(x2);
10284 * ...
10285 * unregister_netdevice(y1);
10286 * unregister_netdevice(y2);
10287 * ...
10288 * rtnl_unlock();
10289 * free_netdev(y1);
10290 * free_netdev(y2);
10291 *
10292 * We are invoked by rtnl_unlock().
10293 * This allows us to deal with problems:
10294 * 1) We can delete sysfs objects which invoke hotplug
10295 * without deadlocking with linkwatch via keventd.
10296 * 2) Since we run with the RTNL semaphore not held, we can sleep
10297 * safely in order to wait for the netdev refcnt to drop to zero.
10298 *
10299 * We must not return until all unregister events added during
10300 * the interval the lock was held have been completed.
10301 */
10302void netdev_run_todo(void)
10303{
10304 struct net_device *dev, *tmp;
10305 struct list_head list;
10306#ifdef CONFIG_LOCKDEP
10307 struct list_head unlink_list;
10308
10309 list_replace_init(&net_unlink_list, &unlink_list);
10310
10311 while (!list_empty(&unlink_list)) {
10312 struct net_device *dev = list_first_entry(&unlink_list,
10313 struct net_device,
10314 unlink_list);
10315 list_del_init(&dev->unlink_list);
10316 dev->nested_level = dev->lower_level - 1;
10317 }
10318#endif
10319
10320 /* Snapshot list, allow later requests */
10321 list_replace_init(&net_todo_list, &list);
10322
10323 __rtnl_unlock();
10324
10325 /* Wait for rcu callbacks to finish before next phase */
10326 if (!list_empty(&list))
10327 rcu_barrier();
10328
10329 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10330 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10331 netdev_WARN(dev, "run_todo but not unregistering\n");
10332 list_del(&dev->todo_list);
10333 continue;
10334 }
10335
10336 write_lock(&dev_base_lock);
10337 dev->reg_state = NETREG_UNREGISTERED;
10338 write_unlock(&dev_base_lock);
10339 linkwatch_forget_dev(dev);
10340 }
10341
10342 while (!list_empty(&list)) {
10343 dev = netdev_wait_allrefs_any(&list);
10344 list_del(&dev->todo_list);
10345
10346 /* paranoia */
10347 BUG_ON(netdev_refcnt_read(dev) != 1);
10348 BUG_ON(!list_empty(&dev->ptype_all));
10349 BUG_ON(!list_empty(&dev->ptype_specific));
10350 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10351 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10352
10353 if (dev->priv_destructor)
10354 dev->priv_destructor(dev);
10355 if (dev->needs_free_netdev)
10356 free_netdev(dev);
10357
10358 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10359 wake_up(&netdev_unregistering_wq);
10360
10361 /* Free network device */
10362 kobject_put(&dev->dev.kobj);
10363 }
10364}
10365
10366/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10367 * all the same fields in the same order as net_device_stats, with only
10368 * the type differing, but rtnl_link_stats64 may have additional fields
10369 * at the end for newer counters.
10370 */
10371void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10372 const struct net_device_stats *netdev_stats)
10373{
10374 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10375 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10376 u64 *dst = (u64 *)stats64;
10377
10378 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10379 for (i = 0; i < n; i++)
10380 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10381 /* zero out counters that only exist in rtnl_link_stats64 */
10382 memset((char *)stats64 + n * sizeof(u64), 0,
10383 sizeof(*stats64) - n * sizeof(u64));
10384}
10385EXPORT_SYMBOL(netdev_stats_to_stats64);
10386
10387struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10388{
10389 struct net_device_core_stats __percpu *p;
10390
10391 p = alloc_percpu_gfp(struct net_device_core_stats,
10392 GFP_ATOMIC | __GFP_NOWARN);
10393
10394 if (p && cmpxchg(&dev->core_stats, NULL, p))
10395 free_percpu(p);
10396
10397 /* This READ_ONCE() pairs with the cmpxchg() above */
10398 return READ_ONCE(dev->core_stats);
10399}
10400EXPORT_SYMBOL(netdev_core_stats_alloc);
10401
10402/**
10403 * dev_get_stats - get network device statistics
10404 * @dev: device to get statistics from
10405 * @storage: place to store stats
10406 *
10407 * Get network statistics from device. Return @storage.
10408 * The device driver may provide its own method by setting
10409 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10410 * otherwise the internal statistics structure is used.
10411 */
10412struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10413 struct rtnl_link_stats64 *storage)
10414{
10415 const struct net_device_ops *ops = dev->netdev_ops;
10416 const struct net_device_core_stats __percpu *p;
10417
10418 if (ops->ndo_get_stats64) {
10419 memset(storage, 0, sizeof(*storage));
10420 ops->ndo_get_stats64(dev, storage);
10421 } else if (ops->ndo_get_stats) {
10422 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10423 } else {
10424 netdev_stats_to_stats64(storage, &dev->stats);
10425 }
10426
10427 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10428 p = READ_ONCE(dev->core_stats);
10429 if (p) {
10430 const struct net_device_core_stats *core_stats;
10431 int i;
10432
10433 for_each_possible_cpu(i) {
10434 core_stats = per_cpu_ptr(p, i);
10435 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10436 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10437 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10438 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10439 }
10440 }
10441 return storage;
10442}
10443EXPORT_SYMBOL(dev_get_stats);
10444
10445/**
10446 * dev_fetch_sw_netstats - get per-cpu network device statistics
10447 * @s: place to store stats
10448 * @netstats: per-cpu network stats to read from
10449 *
10450 * Read per-cpu network statistics and populate the related fields in @s.
10451 */
10452void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10453 const struct pcpu_sw_netstats __percpu *netstats)
10454{
10455 int cpu;
10456
10457 for_each_possible_cpu(cpu) {
10458 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10459 const struct pcpu_sw_netstats *stats;
10460 unsigned int start;
10461
10462 stats = per_cpu_ptr(netstats, cpu);
10463 do {
10464 start = u64_stats_fetch_begin(&stats->syncp);
10465 rx_packets = u64_stats_read(&stats->rx_packets);
10466 rx_bytes = u64_stats_read(&stats->rx_bytes);
10467 tx_packets = u64_stats_read(&stats->tx_packets);
10468 tx_bytes = u64_stats_read(&stats->tx_bytes);
10469 } while (u64_stats_fetch_retry(&stats->syncp, start));
10470
10471 s->rx_packets += rx_packets;
10472 s->rx_bytes += rx_bytes;
10473 s->tx_packets += tx_packets;
10474 s->tx_bytes += tx_bytes;
10475 }
10476}
10477EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10478
10479/**
10480 * dev_get_tstats64 - ndo_get_stats64 implementation
10481 * @dev: device to get statistics from
10482 * @s: place to store stats
10483 *
10484 * Populate @s from dev->stats and dev->tstats. Can be used as
10485 * ndo_get_stats64() callback.
10486 */
10487void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10488{
10489 netdev_stats_to_stats64(s, &dev->stats);
10490 dev_fetch_sw_netstats(s, dev->tstats);
10491}
10492EXPORT_SYMBOL_GPL(dev_get_tstats64);
10493
10494struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10495{
10496 struct netdev_queue *queue = dev_ingress_queue(dev);
10497
10498#ifdef CONFIG_NET_CLS_ACT
10499 if (queue)
10500 return queue;
10501 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10502 if (!queue)
10503 return NULL;
10504 netdev_init_one_queue(dev, queue, NULL);
10505 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10506 queue->qdisc_sleeping = &noop_qdisc;
10507 rcu_assign_pointer(dev->ingress_queue, queue);
10508#endif
10509 return queue;
10510}
10511
10512static const struct ethtool_ops default_ethtool_ops;
10513
10514void netdev_set_default_ethtool_ops(struct net_device *dev,
10515 const struct ethtool_ops *ops)
10516{
10517 if (dev->ethtool_ops == &default_ethtool_ops)
10518 dev->ethtool_ops = ops;
10519}
10520EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10521
10522/**
10523 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10524 * @dev: netdev to enable the IRQ coalescing on
10525 *
10526 * Sets a conservative default for SW IRQ coalescing. Users can use
10527 * sysfs attributes to override the default values.
10528 */
10529void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10530{
10531 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10532
10533 dev->gro_flush_timeout = 20000;
10534 dev->napi_defer_hard_irqs = 1;
10535}
10536EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10537
10538void netdev_freemem(struct net_device *dev)
10539{
10540 char *addr = (char *)dev - dev->padded;
10541
10542 kvfree(addr);
10543}
10544
10545/**
10546 * alloc_netdev_mqs - allocate network device
10547 * @sizeof_priv: size of private data to allocate space for
10548 * @name: device name format string
10549 * @name_assign_type: origin of device name
10550 * @setup: callback to initialize device
10551 * @txqs: the number of TX subqueues to allocate
10552 * @rxqs: the number of RX subqueues to allocate
10553 *
10554 * Allocates a struct net_device with private data area for driver use
10555 * and performs basic initialization. Also allocates subqueue structs
10556 * for each queue on the device.
10557 */
10558struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10559 unsigned char name_assign_type,
10560 void (*setup)(struct net_device *),
10561 unsigned int txqs, unsigned int rxqs)
10562{
10563 struct net_device *dev;
10564 unsigned int alloc_size;
10565 struct net_device *p;
10566
10567 BUG_ON(strlen(name) >= sizeof(dev->name));
10568
10569 if (txqs < 1) {
10570 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10571 return NULL;
10572 }
10573
10574 if (rxqs < 1) {
10575 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10576 return NULL;
10577 }
10578
10579 alloc_size = sizeof(struct net_device);
10580 if (sizeof_priv) {
10581 /* ensure 32-byte alignment of private area */
10582 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10583 alloc_size += sizeof_priv;
10584 }
10585 /* ensure 32-byte alignment of whole construct */
10586 alloc_size += NETDEV_ALIGN - 1;
10587
10588 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10589 if (!p)
10590 return NULL;
10591
10592 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10593 dev->padded = (char *)dev - (char *)p;
10594
10595 ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10596#ifdef CONFIG_PCPU_DEV_REFCNT
10597 dev->pcpu_refcnt = alloc_percpu(int);
10598 if (!dev->pcpu_refcnt)
10599 goto free_dev;
10600 __dev_hold(dev);
10601#else
10602 refcount_set(&dev->dev_refcnt, 1);
10603#endif
10604
10605 if (dev_addr_init(dev))
10606 goto free_pcpu;
10607
10608 dev_mc_init(dev);
10609 dev_uc_init(dev);
10610
10611 dev_net_set(dev, &init_net);
10612
10613 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10614 dev->gso_max_segs = GSO_MAX_SEGS;
10615 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10616 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10617 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10618 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10619 dev->tso_max_segs = TSO_MAX_SEGS;
10620 dev->upper_level = 1;
10621 dev->lower_level = 1;
10622#ifdef CONFIG_LOCKDEP
10623 dev->nested_level = 0;
10624 INIT_LIST_HEAD(&dev->unlink_list);
10625#endif
10626
10627 INIT_LIST_HEAD(&dev->napi_list);
10628 INIT_LIST_HEAD(&dev->unreg_list);
10629 INIT_LIST_HEAD(&dev->close_list);
10630 INIT_LIST_HEAD(&dev->link_watch_list);
10631 INIT_LIST_HEAD(&dev->adj_list.upper);
10632 INIT_LIST_HEAD(&dev->adj_list.lower);
10633 INIT_LIST_HEAD(&dev->ptype_all);
10634 INIT_LIST_HEAD(&dev->ptype_specific);
10635 INIT_LIST_HEAD(&dev->net_notifier_list);
10636#ifdef CONFIG_NET_SCHED
10637 hash_init(dev->qdisc_hash);
10638#endif
10639 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10640 setup(dev);
10641
10642 if (!dev->tx_queue_len) {
10643 dev->priv_flags |= IFF_NO_QUEUE;
10644 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10645 }
10646
10647 dev->num_tx_queues = txqs;
10648 dev->real_num_tx_queues = txqs;
10649 if (netif_alloc_netdev_queues(dev))
10650 goto free_all;
10651
10652 dev->num_rx_queues = rxqs;
10653 dev->real_num_rx_queues = rxqs;
10654 if (netif_alloc_rx_queues(dev))
10655 goto free_all;
10656
10657 strcpy(dev->name, name);
10658 dev->name_assign_type = name_assign_type;
10659 dev->group = INIT_NETDEV_GROUP;
10660 if (!dev->ethtool_ops)
10661 dev->ethtool_ops = &default_ethtool_ops;
10662
10663 nf_hook_netdev_init(dev);
10664
10665 return dev;
10666
10667free_all:
10668 free_netdev(dev);
10669 return NULL;
10670
10671free_pcpu:
10672#ifdef CONFIG_PCPU_DEV_REFCNT
10673 free_percpu(dev->pcpu_refcnt);
10674free_dev:
10675#endif
10676 netdev_freemem(dev);
10677 return NULL;
10678}
10679EXPORT_SYMBOL(alloc_netdev_mqs);
10680
10681/**
10682 * free_netdev - free network device
10683 * @dev: device
10684 *
10685 * This function does the last stage of destroying an allocated device
10686 * interface. The reference to the device object is released. If this
10687 * is the last reference then it will be freed.Must be called in process
10688 * context.
10689 */
10690void free_netdev(struct net_device *dev)
10691{
10692 struct napi_struct *p, *n;
10693
10694 might_sleep();
10695
10696 /* When called immediately after register_netdevice() failed the unwind
10697 * handling may still be dismantling the device. Handle that case by
10698 * deferring the free.
10699 */
10700 if (dev->reg_state == NETREG_UNREGISTERING) {
10701 ASSERT_RTNL();
10702 dev->needs_free_netdev = true;
10703 return;
10704 }
10705
10706 netif_free_tx_queues(dev);
10707 netif_free_rx_queues(dev);
10708
10709 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10710
10711 /* Flush device addresses */
10712 dev_addr_flush(dev);
10713
10714 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10715 netif_napi_del(p);
10716
10717 ref_tracker_dir_exit(&dev->refcnt_tracker);
10718#ifdef CONFIG_PCPU_DEV_REFCNT
10719 free_percpu(dev->pcpu_refcnt);
10720 dev->pcpu_refcnt = NULL;
10721#endif
10722 free_percpu(dev->core_stats);
10723 dev->core_stats = NULL;
10724 free_percpu(dev->xdp_bulkq);
10725 dev->xdp_bulkq = NULL;
10726
10727 /* Compatibility with error handling in drivers */
10728 if (dev->reg_state == NETREG_UNINITIALIZED) {
10729 netdev_freemem(dev);
10730 return;
10731 }
10732
10733 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10734 dev->reg_state = NETREG_RELEASED;
10735
10736 /* will free via device release */
10737 put_device(&dev->dev);
10738}
10739EXPORT_SYMBOL(free_netdev);
10740
10741/**
10742 * synchronize_net - Synchronize with packet receive processing
10743 *
10744 * Wait for packets currently being received to be done.
10745 * Does not block later packets from starting.
10746 */
10747void synchronize_net(void)
10748{
10749 might_sleep();
10750 if (rtnl_is_locked())
10751 synchronize_rcu_expedited();
10752 else
10753 synchronize_rcu();
10754}
10755EXPORT_SYMBOL(synchronize_net);
10756
10757/**
10758 * unregister_netdevice_queue - remove device from the kernel
10759 * @dev: device
10760 * @head: list
10761 *
10762 * This function shuts down a device interface and removes it
10763 * from the kernel tables.
10764 * If head not NULL, device is queued to be unregistered later.
10765 *
10766 * Callers must hold the rtnl semaphore. You may want
10767 * unregister_netdev() instead of this.
10768 */
10769
10770void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10771{
10772 ASSERT_RTNL();
10773
10774 if (head) {
10775 list_move_tail(&dev->unreg_list, head);
10776 } else {
10777 LIST_HEAD(single);
10778
10779 list_add(&dev->unreg_list, &single);
10780 unregister_netdevice_many(&single);
10781 }
10782}
10783EXPORT_SYMBOL(unregister_netdevice_queue);
10784
10785void unregister_netdevice_many_notify(struct list_head *head,
10786 u32 portid, const struct nlmsghdr *nlh)
10787{
10788 struct net_device *dev, *tmp;
10789 LIST_HEAD(close_head);
10790
10791 BUG_ON(dev_boot_phase);
10792 ASSERT_RTNL();
10793
10794 if (list_empty(head))
10795 return;
10796
10797 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10798 /* Some devices call without registering
10799 * for initialization unwind. Remove those
10800 * devices and proceed with the remaining.
10801 */
10802 if (dev->reg_state == NETREG_UNINITIALIZED) {
10803 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10804 dev->name, dev);
10805
10806 WARN_ON(1);
10807 list_del(&dev->unreg_list);
10808 continue;
10809 }
10810 dev->dismantle = true;
10811 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10812 }
10813
10814 /* If device is running, close it first. */
10815 list_for_each_entry(dev, head, unreg_list)
10816 list_add_tail(&dev->close_list, &close_head);
10817 dev_close_many(&close_head, true);
10818
10819 list_for_each_entry(dev, head, unreg_list) {
10820 /* And unlink it from device chain. */
10821 write_lock(&dev_base_lock);
10822 unlist_netdevice(dev, false);
10823 dev->reg_state = NETREG_UNREGISTERING;
10824 write_unlock(&dev_base_lock);
10825 }
10826 flush_all_backlogs();
10827
10828 synchronize_net();
10829
10830 list_for_each_entry(dev, head, unreg_list) {
10831 struct sk_buff *skb = NULL;
10832
10833 /* Shutdown queueing discipline. */
10834 dev_shutdown(dev);
10835
10836 dev_xdp_uninstall(dev);
10837 bpf_dev_bound_netdev_unregister(dev);
10838
10839 netdev_offload_xstats_disable_all(dev);
10840
10841 /* Notify protocols, that we are about to destroy
10842 * this device. They should clean all the things.
10843 */
10844 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10845
10846 if (!dev->rtnl_link_ops ||
10847 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10848 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10849 GFP_KERNEL, NULL, 0,
10850 portid, nlh);
10851
10852 /*
10853 * Flush the unicast and multicast chains
10854 */
10855 dev_uc_flush(dev);
10856 dev_mc_flush(dev);
10857
10858 netdev_name_node_alt_flush(dev);
10859 netdev_name_node_free(dev->name_node);
10860
10861 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10862
10863 if (dev->netdev_ops->ndo_uninit)
10864 dev->netdev_ops->ndo_uninit(dev);
10865
10866 if (skb)
10867 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10868
10869 /* Notifier chain MUST detach us all upper devices. */
10870 WARN_ON(netdev_has_any_upper_dev(dev));
10871 WARN_ON(netdev_has_any_lower_dev(dev));
10872
10873 /* Remove entries from kobject tree */
10874 netdev_unregister_kobject(dev);
10875#ifdef CONFIG_XPS
10876 /* Remove XPS queueing entries */
10877 netif_reset_xps_queues_gt(dev, 0);
10878#endif
10879 }
10880
10881 synchronize_net();
10882
10883 list_for_each_entry(dev, head, unreg_list) {
10884 netdev_put(dev, &dev->dev_registered_tracker);
10885 net_set_todo(dev);
10886 }
10887
10888 list_del(head);
10889}
10890
10891/**
10892 * unregister_netdevice_many - unregister many devices
10893 * @head: list of devices
10894 *
10895 * Note: As most callers use a stack allocated list_head,
10896 * we force a list_del() to make sure stack wont be corrupted later.
10897 */
10898void unregister_netdevice_many(struct list_head *head)
10899{
10900 unregister_netdevice_many_notify(head, 0, NULL);
10901}
10902EXPORT_SYMBOL(unregister_netdevice_many);
10903
10904/**
10905 * unregister_netdev - remove device from the kernel
10906 * @dev: device
10907 *
10908 * This function shuts down a device interface and removes it
10909 * from the kernel tables.
10910 *
10911 * This is just a wrapper for unregister_netdevice that takes
10912 * the rtnl semaphore. In general you want to use this and not
10913 * unregister_netdevice.
10914 */
10915void unregister_netdev(struct net_device *dev)
10916{
10917 rtnl_lock();
10918 unregister_netdevice(dev);
10919 rtnl_unlock();
10920}
10921EXPORT_SYMBOL(unregister_netdev);
10922
10923/**
10924 * __dev_change_net_namespace - move device to different nethost namespace
10925 * @dev: device
10926 * @net: network namespace
10927 * @pat: If not NULL name pattern to try if the current device name
10928 * is already taken in the destination network namespace.
10929 * @new_ifindex: If not zero, specifies device index in the target
10930 * namespace.
10931 *
10932 * This function shuts down a device interface and moves it
10933 * to a new network namespace. On success 0 is returned, on
10934 * a failure a netagive errno code is returned.
10935 *
10936 * Callers must hold the rtnl semaphore.
10937 */
10938
10939int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10940 const char *pat, int new_ifindex)
10941{
10942 struct net *net_old = dev_net(dev);
10943 int err, new_nsid;
10944
10945 ASSERT_RTNL();
10946
10947 /* Don't allow namespace local devices to be moved. */
10948 err = -EINVAL;
10949 if (dev->features & NETIF_F_NETNS_LOCAL)
10950 goto out;
10951
10952 /* Ensure the device has been registrered */
10953 if (dev->reg_state != NETREG_REGISTERED)
10954 goto out;
10955
10956 /* Get out if there is nothing todo */
10957 err = 0;
10958 if (net_eq(net_old, net))
10959 goto out;
10960
10961 /* Pick the destination device name, and ensure
10962 * we can use it in the destination network namespace.
10963 */
10964 err = -EEXIST;
10965 if (netdev_name_in_use(net, dev->name)) {
10966 /* We get here if we can't use the current device name */
10967 if (!pat)
10968 goto out;
10969 err = dev_get_valid_name(net, dev, pat);
10970 if (err < 0)
10971 goto out;
10972 }
10973
10974 /* Check that new_ifindex isn't used yet. */
10975 err = -EBUSY;
10976 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10977 goto out;
10978
10979 /*
10980 * And now a mini version of register_netdevice unregister_netdevice.
10981 */
10982
10983 /* If device is running close it first. */
10984 dev_close(dev);
10985
10986 /* And unlink it from device chain */
10987 unlist_netdevice(dev, true);
10988
10989 synchronize_net();
10990
10991 /* Shutdown queueing discipline. */
10992 dev_shutdown(dev);
10993
10994 /* Notify protocols, that we are about to destroy
10995 * this device. They should clean all the things.
10996 *
10997 * Note that dev->reg_state stays at NETREG_REGISTERED.
10998 * This is wanted because this way 8021q and macvlan know
10999 * the device is just moving and can keep their slaves up.
11000 */
11001 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11002 rcu_barrier();
11003
11004 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11005 /* If there is an ifindex conflict assign a new one */
11006 if (!new_ifindex) {
11007 if (__dev_get_by_index(net, dev->ifindex))
11008 new_ifindex = dev_new_index(net);
11009 else
11010 new_ifindex = dev->ifindex;
11011 }
11012
11013 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11014 new_ifindex);
11015
11016 /*
11017 * Flush the unicast and multicast chains
11018 */
11019 dev_uc_flush(dev);
11020 dev_mc_flush(dev);
11021
11022 /* Send a netdev-removed uevent to the old namespace */
11023 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11024 netdev_adjacent_del_links(dev);
11025
11026 /* Move per-net netdevice notifiers that are following the netdevice */
11027 move_netdevice_notifiers_dev_net(dev, net);
11028
11029 /* Actually switch the network namespace */
11030 dev_net_set(dev, net);
11031 dev->ifindex = new_ifindex;
11032
11033 /* Send a netdev-add uevent to the new namespace */
11034 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11035 netdev_adjacent_add_links(dev);
11036
11037 /* Fixup kobjects */
11038 err = device_rename(&dev->dev, dev->name);
11039 WARN_ON(err);
11040
11041 /* Adapt owner in case owning user namespace of target network
11042 * namespace is different from the original one.
11043 */
11044 err = netdev_change_owner(dev, net_old, net);
11045 WARN_ON(err);
11046
11047 /* Add the device back in the hashes */
11048 list_netdevice(dev);
11049
11050 /* Notify protocols, that a new device appeared. */
11051 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11052
11053 /*
11054 * Prevent userspace races by waiting until the network
11055 * device is fully setup before sending notifications.
11056 */
11057 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11058
11059 synchronize_net();
11060 err = 0;
11061out:
11062 return err;
11063}
11064EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11065
11066static int dev_cpu_dead(unsigned int oldcpu)
11067{
11068 struct sk_buff **list_skb;
11069 struct sk_buff *skb;
11070 unsigned int cpu;
11071 struct softnet_data *sd, *oldsd, *remsd = NULL;
11072
11073 local_irq_disable();
11074 cpu = smp_processor_id();
11075 sd = &per_cpu(softnet_data, cpu);
11076 oldsd = &per_cpu(softnet_data, oldcpu);
11077
11078 /* Find end of our completion_queue. */
11079 list_skb = &sd->completion_queue;
11080 while (*list_skb)
11081 list_skb = &(*list_skb)->next;
11082 /* Append completion queue from offline CPU. */
11083 *list_skb = oldsd->completion_queue;
11084 oldsd->completion_queue = NULL;
11085
11086 /* Append output queue from offline CPU. */
11087 if (oldsd->output_queue) {
11088 *sd->output_queue_tailp = oldsd->output_queue;
11089 sd->output_queue_tailp = oldsd->output_queue_tailp;
11090 oldsd->output_queue = NULL;
11091 oldsd->output_queue_tailp = &oldsd->output_queue;
11092 }
11093 /* Append NAPI poll list from offline CPU, with one exception :
11094 * process_backlog() must be called by cpu owning percpu backlog.
11095 * We properly handle process_queue & input_pkt_queue later.
11096 */
11097 while (!list_empty(&oldsd->poll_list)) {
11098 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11099 struct napi_struct,
11100 poll_list);
11101
11102 list_del_init(&napi->poll_list);
11103 if (napi->poll == process_backlog)
11104 napi->state = 0;
11105 else
11106 ____napi_schedule(sd, napi);
11107 }
11108
11109 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11110 local_irq_enable();
11111
11112#ifdef CONFIG_RPS
11113 remsd = oldsd->rps_ipi_list;
11114 oldsd->rps_ipi_list = NULL;
11115#endif
11116 /* send out pending IPI's on offline CPU */
11117 net_rps_send_ipi(remsd);
11118
11119 /* Process offline CPU's input_pkt_queue */
11120 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11121 netif_rx(skb);
11122 input_queue_head_incr(oldsd);
11123 }
11124 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11125 netif_rx(skb);
11126 input_queue_head_incr(oldsd);
11127 }
11128
11129 return 0;
11130}
11131
11132/**
11133 * netdev_increment_features - increment feature set by one
11134 * @all: current feature set
11135 * @one: new feature set
11136 * @mask: mask feature set
11137 *
11138 * Computes a new feature set after adding a device with feature set
11139 * @one to the master device with current feature set @all. Will not
11140 * enable anything that is off in @mask. Returns the new feature set.
11141 */
11142netdev_features_t netdev_increment_features(netdev_features_t all,
11143 netdev_features_t one, netdev_features_t mask)
11144{
11145 if (mask & NETIF_F_HW_CSUM)
11146 mask |= NETIF_F_CSUM_MASK;
11147 mask |= NETIF_F_VLAN_CHALLENGED;
11148
11149 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11150 all &= one | ~NETIF_F_ALL_FOR_ALL;
11151
11152 /* If one device supports hw checksumming, set for all. */
11153 if (all & NETIF_F_HW_CSUM)
11154 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11155
11156 return all;
11157}
11158EXPORT_SYMBOL(netdev_increment_features);
11159
11160static struct hlist_head * __net_init netdev_create_hash(void)
11161{
11162 int i;
11163 struct hlist_head *hash;
11164
11165 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11166 if (hash != NULL)
11167 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11168 INIT_HLIST_HEAD(&hash[i]);
11169
11170 return hash;
11171}
11172
11173/* Initialize per network namespace state */
11174static int __net_init netdev_init(struct net *net)
11175{
11176 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11177 8 * sizeof_field(struct napi_struct, gro_bitmask));
11178
11179 INIT_LIST_HEAD(&net->dev_base_head);
11180
11181 net->dev_name_head = netdev_create_hash();
11182 if (net->dev_name_head == NULL)
11183 goto err_name;
11184
11185 net->dev_index_head = netdev_create_hash();
11186 if (net->dev_index_head == NULL)
11187 goto err_idx;
11188
11189 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11190
11191 return 0;
11192
11193err_idx:
11194 kfree(net->dev_name_head);
11195err_name:
11196 return -ENOMEM;
11197}
11198
11199/**
11200 * netdev_drivername - network driver for the device
11201 * @dev: network device
11202 *
11203 * Determine network driver for device.
11204 */
11205const char *netdev_drivername(const struct net_device *dev)
11206{
11207 const struct device_driver *driver;
11208 const struct device *parent;
11209 const char *empty = "";
11210
11211 parent = dev->dev.parent;
11212 if (!parent)
11213 return empty;
11214
11215 driver = parent->driver;
11216 if (driver && driver->name)
11217 return driver->name;
11218 return empty;
11219}
11220
11221static void __netdev_printk(const char *level, const struct net_device *dev,
11222 struct va_format *vaf)
11223{
11224 if (dev && dev->dev.parent) {
11225 dev_printk_emit(level[1] - '0',
11226 dev->dev.parent,
11227 "%s %s %s%s: %pV",
11228 dev_driver_string(dev->dev.parent),
11229 dev_name(dev->dev.parent),
11230 netdev_name(dev), netdev_reg_state(dev),
11231 vaf);
11232 } else if (dev) {
11233 printk("%s%s%s: %pV",
11234 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11235 } else {
11236 printk("%s(NULL net_device): %pV", level, vaf);
11237 }
11238}
11239
11240void netdev_printk(const char *level, const struct net_device *dev,
11241 const char *format, ...)
11242{
11243 struct va_format vaf;
11244 va_list args;
11245
11246 va_start(args, format);
11247
11248 vaf.fmt = format;
11249 vaf.va = &args;
11250
11251 __netdev_printk(level, dev, &vaf);
11252
11253 va_end(args);
11254}
11255EXPORT_SYMBOL(netdev_printk);
11256
11257#define define_netdev_printk_level(func, level) \
11258void func(const struct net_device *dev, const char *fmt, ...) \
11259{ \
11260 struct va_format vaf; \
11261 va_list args; \
11262 \
11263 va_start(args, fmt); \
11264 \
11265 vaf.fmt = fmt; \
11266 vaf.va = &args; \
11267 \
11268 __netdev_printk(level, dev, &vaf); \
11269 \
11270 va_end(args); \
11271} \
11272EXPORT_SYMBOL(func);
11273
11274define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11275define_netdev_printk_level(netdev_alert, KERN_ALERT);
11276define_netdev_printk_level(netdev_crit, KERN_CRIT);
11277define_netdev_printk_level(netdev_err, KERN_ERR);
11278define_netdev_printk_level(netdev_warn, KERN_WARNING);
11279define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11280define_netdev_printk_level(netdev_info, KERN_INFO);
11281
11282static void __net_exit netdev_exit(struct net *net)
11283{
11284 kfree(net->dev_name_head);
11285 kfree(net->dev_index_head);
11286 if (net != &init_net)
11287 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11288}
11289
11290static struct pernet_operations __net_initdata netdev_net_ops = {
11291 .init = netdev_init,
11292 .exit = netdev_exit,
11293};
11294
11295static void __net_exit default_device_exit_net(struct net *net)
11296{
11297 struct net_device *dev, *aux;
11298 /*
11299 * Push all migratable network devices back to the
11300 * initial network namespace
11301 */
11302 ASSERT_RTNL();
11303 for_each_netdev_safe(net, dev, aux) {
11304 int err;
11305 char fb_name[IFNAMSIZ];
11306
11307 /* Ignore unmoveable devices (i.e. loopback) */
11308 if (dev->features & NETIF_F_NETNS_LOCAL)
11309 continue;
11310
11311 /* Leave virtual devices for the generic cleanup */
11312 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11313 continue;
11314
11315 /* Push remaining network devices to init_net */
11316 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11317 if (netdev_name_in_use(&init_net, fb_name))
11318 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11319 err = dev_change_net_namespace(dev, &init_net, fb_name);
11320 if (err) {
11321 pr_emerg("%s: failed to move %s to init_net: %d\n",
11322 __func__, dev->name, err);
11323 BUG();
11324 }
11325 }
11326}
11327
11328static void __net_exit default_device_exit_batch(struct list_head *net_list)
11329{
11330 /* At exit all network devices most be removed from a network
11331 * namespace. Do this in the reverse order of registration.
11332 * Do this across as many network namespaces as possible to
11333 * improve batching efficiency.
11334 */
11335 struct net_device *dev;
11336 struct net *net;
11337 LIST_HEAD(dev_kill_list);
11338
11339 rtnl_lock();
11340 list_for_each_entry(net, net_list, exit_list) {
11341 default_device_exit_net(net);
11342 cond_resched();
11343 }
11344
11345 list_for_each_entry(net, net_list, exit_list) {
11346 for_each_netdev_reverse(net, dev) {
11347 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11348 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11349 else
11350 unregister_netdevice_queue(dev, &dev_kill_list);
11351 }
11352 }
11353 unregister_netdevice_many(&dev_kill_list);
11354 rtnl_unlock();
11355}
11356
11357static struct pernet_operations __net_initdata default_device_ops = {
11358 .exit_batch = default_device_exit_batch,
11359};
11360
11361/*
11362 * Initialize the DEV module. At boot time this walks the device list and
11363 * unhooks any devices that fail to initialise (normally hardware not
11364 * present) and leaves us with a valid list of present and active devices.
11365 *
11366 */
11367
11368/*
11369 * This is called single threaded during boot, so no need
11370 * to take the rtnl semaphore.
11371 */
11372static int __init net_dev_init(void)
11373{
11374 int i, rc = -ENOMEM;
11375
11376 BUG_ON(!dev_boot_phase);
11377
11378 if (dev_proc_init())
11379 goto out;
11380
11381 if (netdev_kobject_init())
11382 goto out;
11383
11384 INIT_LIST_HEAD(&ptype_all);
11385 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11386 INIT_LIST_HEAD(&ptype_base[i]);
11387
11388 if (register_pernet_subsys(&netdev_net_ops))
11389 goto out;
11390
11391 /*
11392 * Initialise the packet receive queues.
11393 */
11394
11395 for_each_possible_cpu(i) {
11396 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11397 struct softnet_data *sd = &per_cpu(softnet_data, i);
11398
11399 INIT_WORK(flush, flush_backlog);
11400
11401 skb_queue_head_init(&sd->input_pkt_queue);
11402 skb_queue_head_init(&sd->process_queue);
11403#ifdef CONFIG_XFRM_OFFLOAD
11404 skb_queue_head_init(&sd->xfrm_backlog);
11405#endif
11406 INIT_LIST_HEAD(&sd->poll_list);
11407 sd->output_queue_tailp = &sd->output_queue;
11408#ifdef CONFIG_RPS
11409 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11410 sd->cpu = i;
11411#endif
11412 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11413 spin_lock_init(&sd->defer_lock);
11414
11415 init_gro_hash(&sd->backlog);
11416 sd->backlog.poll = process_backlog;
11417 sd->backlog.weight = weight_p;
11418 }
11419
11420 dev_boot_phase = 0;
11421
11422 /* The loopback device is special if any other network devices
11423 * is present in a network namespace the loopback device must
11424 * be present. Since we now dynamically allocate and free the
11425 * loopback device ensure this invariant is maintained by
11426 * keeping the loopback device as the first device on the
11427 * list of network devices. Ensuring the loopback devices
11428 * is the first device that appears and the last network device
11429 * that disappears.
11430 */
11431 if (register_pernet_device(&loopback_net_ops))
11432 goto out;
11433
11434 if (register_pernet_device(&default_device_ops))
11435 goto out;
11436
11437 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11438 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11439
11440 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11441 NULL, dev_cpu_dead);
11442 WARN_ON(rc < 0);
11443 rc = 0;
11444out:
11445 return rc;
11446}
11447
11448subsys_initcall(net_dev_init);