Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13#include <linux/mm.h>
14#include <linux/swap.h> /* struct reclaim_state */
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/swab.h>
19#include <linux/bitops.h>
20#include <linux/slab.h>
21#include "slab.h"
22#include <linux/proc_fs.h>
23#include <linux/seq_file.h>
24#include <linux/kasan.h>
25#include <linux/kmsan.h>
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
28#include <linux/mempolicy.h>
29#include <linux/ctype.h>
30#include <linux/stackdepot.h>
31#include <linux/debugobjects.h>
32#include <linux/kallsyms.h>
33#include <linux/kfence.h>
34#include <linux/memory.h>
35#include <linux/math64.h>
36#include <linux/fault-inject.h>
37#include <linux/stacktrace.h>
38#include <linux/prefetch.h>
39#include <linux/memcontrol.h>
40#include <linux/random.h>
41#include <kunit/test.h>
42#include <kunit/test-bug.h>
43#include <linux/sort.h>
44
45#include <linux/debugfs.h>
46#include <trace/events/kmem.h>
47
48#include "internal.h"
49
50/*
51 * Lock order:
52 * 1. slab_mutex (Global Mutex)
53 * 2. node->list_lock (Spinlock)
54 * 3. kmem_cache->cpu_slab->lock (Local lock)
55 * 4. slab_lock(slab) (Only on some arches)
56 * 5. object_map_lock (Only for debugging)
57 *
58 * slab_mutex
59 *
60 * The role of the slab_mutex is to protect the list of all the slabs
61 * and to synchronize major metadata changes to slab cache structures.
62 * Also synchronizes memory hotplug callbacks.
63 *
64 * slab_lock
65 *
66 * The slab_lock is a wrapper around the page lock, thus it is a bit
67 * spinlock.
68 *
69 * The slab_lock is only used on arches that do not have the ability
70 * to do a cmpxchg_double. It only protects:
71 *
72 * A. slab->freelist -> List of free objects in a slab
73 * B. slab->inuse -> Number of objects in use
74 * C. slab->objects -> Number of objects in slab
75 * D. slab->frozen -> frozen state
76 *
77 * Frozen slabs
78 *
79 * If a slab is frozen then it is exempt from list management. It is not
80 * on any list except per cpu partial list. The processor that froze the
81 * slab is the one who can perform list operations on the slab. Other
82 * processors may put objects onto the freelist but the processor that
83 * froze the slab is the only one that can retrieve the objects from the
84 * slab's freelist.
85 *
86 * list_lock
87 *
88 * The list_lock protects the partial and full list on each node and
89 * the partial slab counter. If taken then no new slabs may be added or
90 * removed from the lists nor make the number of partial slabs be modified.
91 * (Note that the total number of slabs is an atomic value that may be
92 * modified without taking the list lock).
93 *
94 * The list_lock is a centralized lock and thus we avoid taking it as
95 * much as possible. As long as SLUB does not have to handle partial
96 * slabs, operations can continue without any centralized lock. F.e.
97 * allocating a long series of objects that fill up slabs does not require
98 * the list lock.
99 *
100 * For debug caches, all allocations are forced to go through a list_lock
101 * protected region to serialize against concurrent validation.
102 *
103 * cpu_slab->lock local lock
104 *
105 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
106 * except the stat counters. This is a percpu structure manipulated only by
107 * the local cpu, so the lock protects against being preempted or interrupted
108 * by an irq. Fast path operations rely on lockless operations instead.
109 *
110 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111 * which means the lockless fastpath cannot be used as it might interfere with
112 * an in-progress slow path operations. In this case the local lock is always
113 * taken but it still utilizes the freelist for the common operations.
114 *
115 * lockless fastpaths
116 *
117 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118 * are fully lockless when satisfied from the percpu slab (and when
119 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
120 * They also don't disable preemption or migration or irqs. They rely on
121 * the transaction id (tid) field to detect being preempted or moved to
122 * another cpu.
123 *
124 * irq, preemption, migration considerations
125 *
126 * Interrupts are disabled as part of list_lock or local_lock operations, or
127 * around the slab_lock operation, in order to make the slab allocator safe
128 * to use in the context of an irq.
129 *
130 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133 * doesn't have to be revalidated in each section protected by the local lock.
134 *
135 * SLUB assigns one slab for allocation to each processor.
136 * Allocations only occur from these slabs called cpu slabs.
137 *
138 * Slabs with free elements are kept on a partial list and during regular
139 * operations no list for full slabs is used. If an object in a full slab is
140 * freed then the slab will show up again on the partial lists.
141 * We track full slabs for debugging purposes though because otherwise we
142 * cannot scan all objects.
143 *
144 * Slabs are freed when they become empty. Teardown and setup is
145 * minimal so we rely on the page allocators per cpu caches for
146 * fast frees and allocs.
147 *
148 * slab->frozen The slab is frozen and exempt from list processing.
149 * This means that the slab is dedicated to a purpose
150 * such as satisfying allocations for a specific
151 * processor. Objects may be freed in the slab while
152 * it is frozen but slab_free will then skip the usual
153 * list operations. It is up to the processor holding
154 * the slab to integrate the slab into the slab lists
155 * when the slab is no longer needed.
156 *
157 * One use of this flag is to mark slabs that are
158 * used for allocations. Then such a slab becomes a cpu
159 * slab. The cpu slab may be equipped with an additional
160 * freelist that allows lockless access to
161 * free objects in addition to the regular freelist
162 * that requires the slab lock.
163 *
164 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
165 * options set. This moves slab handling out of
166 * the fast path and disables lockless freelists.
167 */
168
169/*
170 * We could simply use migrate_disable()/enable() but as long as it's a
171 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172 */
173#ifndef CONFIG_PREEMPT_RT
174#define slub_get_cpu_ptr(var) get_cpu_ptr(var)
175#define slub_put_cpu_ptr(var) put_cpu_ptr(var)
176#define USE_LOCKLESS_FAST_PATH() (true)
177#else
178#define slub_get_cpu_ptr(var) \
179({ \
180 migrate_disable(); \
181 this_cpu_ptr(var); \
182})
183#define slub_put_cpu_ptr(var) \
184do { \
185 (void)(var); \
186 migrate_enable(); \
187} while (0)
188#define USE_LOCKLESS_FAST_PATH() (false)
189#endif
190
191#ifndef CONFIG_SLUB_TINY
192#define __fastpath_inline __always_inline
193#else
194#define __fastpath_inline
195#endif
196
197#ifdef CONFIG_SLUB_DEBUG
198#ifdef CONFIG_SLUB_DEBUG_ON
199DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
200#else
201DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
202#endif
203#endif /* CONFIG_SLUB_DEBUG */
204
205/* Structure holding parameters for get_partial() call chain */
206struct partial_context {
207 struct slab **slab;
208 gfp_t flags;
209 unsigned int orig_size;
210};
211
212static inline bool kmem_cache_debug(struct kmem_cache *s)
213{
214 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
215}
216
217static inline bool slub_debug_orig_size(struct kmem_cache *s)
218{
219 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 (s->flags & SLAB_KMALLOC));
221}
222
223void *fixup_red_left(struct kmem_cache *s, void *p)
224{
225 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
226 p += s->red_left_pad;
227
228 return p;
229}
230
231static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
232{
233#ifdef CONFIG_SLUB_CPU_PARTIAL
234 return !kmem_cache_debug(s);
235#else
236 return false;
237#endif
238}
239
240/*
241 * Issues still to be resolved:
242 *
243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
244 *
245 * - Variable sizing of the per node arrays
246 */
247
248/* Enable to log cmpxchg failures */
249#undef SLUB_DEBUG_CMPXCHG
250
251#ifndef CONFIG_SLUB_TINY
252/*
253 * Minimum number of partial slabs. These will be left on the partial
254 * lists even if they are empty. kmem_cache_shrink may reclaim them.
255 */
256#define MIN_PARTIAL 5
257
258/*
259 * Maximum number of desirable partial slabs.
260 * The existence of more partial slabs makes kmem_cache_shrink
261 * sort the partial list by the number of objects in use.
262 */
263#define MAX_PARTIAL 10
264#else
265#define MIN_PARTIAL 0
266#define MAX_PARTIAL 0
267#endif
268
269#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
270 SLAB_POISON | SLAB_STORE_USER)
271
272/*
273 * These debug flags cannot use CMPXCHG because there might be consistency
274 * issues when checking or reading debug information
275 */
276#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
277 SLAB_TRACE)
278
279
280/*
281 * Debugging flags that require metadata to be stored in the slab. These get
282 * disabled when slub_debug=O is used and a cache's min order increases with
283 * metadata.
284 */
285#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
286
287#define OO_SHIFT 16
288#define OO_MASK ((1 << OO_SHIFT) - 1)
289#define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
290
291/* Internal SLUB flags */
292/* Poison object */
293#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
294/* Use cmpxchg_double */
295#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
296
297/*
298 * Tracking user of a slab.
299 */
300#define TRACK_ADDRS_COUNT 16
301struct track {
302 unsigned long addr; /* Called from address */
303#ifdef CONFIG_STACKDEPOT
304 depot_stack_handle_t handle;
305#endif
306 int cpu; /* Was running on cpu */
307 int pid; /* Pid context */
308 unsigned long when; /* When did the operation occur */
309};
310
311enum track_item { TRACK_ALLOC, TRACK_FREE };
312
313#ifdef SLAB_SUPPORTS_SYSFS
314static int sysfs_slab_add(struct kmem_cache *);
315static int sysfs_slab_alias(struct kmem_cache *, const char *);
316#else
317static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
318static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
319 { return 0; }
320#endif
321
322#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
323static void debugfs_slab_add(struct kmem_cache *);
324#else
325static inline void debugfs_slab_add(struct kmem_cache *s) { }
326#endif
327
328static inline void stat(const struct kmem_cache *s, enum stat_item si)
329{
330#ifdef CONFIG_SLUB_STATS
331 /*
332 * The rmw is racy on a preemptible kernel but this is acceptable, so
333 * avoid this_cpu_add()'s irq-disable overhead.
334 */
335 raw_cpu_inc(s->cpu_slab->stat[si]);
336#endif
337}
338
339/*
340 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
341 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
342 * differ during memory hotplug/hotremove operations.
343 * Protected by slab_mutex.
344 */
345static nodemask_t slab_nodes;
346
347#ifndef CONFIG_SLUB_TINY
348/*
349 * Workqueue used for flush_cpu_slab().
350 */
351static struct workqueue_struct *flushwq;
352#endif
353
354/********************************************************************
355 * Core slab cache functions
356 *******************************************************************/
357
358/*
359 * Returns freelist pointer (ptr). With hardening, this is obfuscated
360 * with an XOR of the address where the pointer is held and a per-cache
361 * random number.
362 */
363static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
364 unsigned long ptr_addr)
365{
366#ifdef CONFIG_SLAB_FREELIST_HARDENED
367 /*
368 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
369 * Normally, this doesn't cause any issues, as both set_freepointer()
370 * and get_freepointer() are called with a pointer with the same tag.
371 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
372 * example, when __free_slub() iterates over objects in a cache, it
373 * passes untagged pointers to check_object(). check_object() in turns
374 * calls get_freepointer() with an untagged pointer, which causes the
375 * freepointer to be restored incorrectly.
376 */
377 return (void *)((unsigned long)ptr ^ s->random ^
378 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
379#else
380 return ptr;
381#endif
382}
383
384/* Returns the freelist pointer recorded at location ptr_addr. */
385static inline void *freelist_dereference(const struct kmem_cache *s,
386 void *ptr_addr)
387{
388 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
389 (unsigned long)ptr_addr);
390}
391
392static inline void *get_freepointer(struct kmem_cache *s, void *object)
393{
394 object = kasan_reset_tag(object);
395 return freelist_dereference(s, object + s->offset);
396}
397
398#ifndef CONFIG_SLUB_TINY
399static void prefetch_freepointer(const struct kmem_cache *s, void *object)
400{
401 prefetchw(object + s->offset);
402}
403#endif
404
405/*
406 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
407 * pointer value in the case the current thread loses the race for the next
408 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
409 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
410 * KMSAN will still check all arguments of cmpxchg because of imperfect
411 * handling of inline assembly.
412 * To work around this problem, we apply __no_kmsan_checks to ensure that
413 * get_freepointer_safe() returns initialized memory.
414 */
415__no_kmsan_checks
416static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
417{
418 unsigned long freepointer_addr;
419 void *p;
420
421 if (!debug_pagealloc_enabled_static())
422 return get_freepointer(s, object);
423
424 object = kasan_reset_tag(object);
425 freepointer_addr = (unsigned long)object + s->offset;
426 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
427 return freelist_ptr(s, p, freepointer_addr);
428}
429
430static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
431{
432 unsigned long freeptr_addr = (unsigned long)object + s->offset;
433
434#ifdef CONFIG_SLAB_FREELIST_HARDENED
435 BUG_ON(object == fp); /* naive detection of double free or corruption */
436#endif
437
438 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
439 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
440}
441
442/* Loop over all objects in a slab */
443#define for_each_object(__p, __s, __addr, __objects) \
444 for (__p = fixup_red_left(__s, __addr); \
445 __p < (__addr) + (__objects) * (__s)->size; \
446 __p += (__s)->size)
447
448static inline unsigned int order_objects(unsigned int order, unsigned int size)
449{
450 return ((unsigned int)PAGE_SIZE << order) / size;
451}
452
453static inline struct kmem_cache_order_objects oo_make(unsigned int order,
454 unsigned int size)
455{
456 struct kmem_cache_order_objects x = {
457 (order << OO_SHIFT) + order_objects(order, size)
458 };
459
460 return x;
461}
462
463static inline unsigned int oo_order(struct kmem_cache_order_objects x)
464{
465 return x.x >> OO_SHIFT;
466}
467
468static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
469{
470 return x.x & OO_MASK;
471}
472
473#ifdef CONFIG_SLUB_CPU_PARTIAL
474static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
475{
476 unsigned int nr_slabs;
477
478 s->cpu_partial = nr_objects;
479
480 /*
481 * We take the number of objects but actually limit the number of
482 * slabs on the per cpu partial list, in order to limit excessive
483 * growth of the list. For simplicity we assume that the slabs will
484 * be half-full.
485 */
486 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
487 s->cpu_partial_slabs = nr_slabs;
488}
489#else
490static inline void
491slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
492{
493}
494#endif /* CONFIG_SLUB_CPU_PARTIAL */
495
496/*
497 * Per slab locking using the pagelock
498 */
499static __always_inline void slab_lock(struct slab *slab)
500{
501 struct page *page = slab_page(slab);
502
503 VM_BUG_ON_PAGE(PageTail(page), page);
504 bit_spin_lock(PG_locked, &page->flags);
505}
506
507static __always_inline void slab_unlock(struct slab *slab)
508{
509 struct page *page = slab_page(slab);
510
511 VM_BUG_ON_PAGE(PageTail(page), page);
512 __bit_spin_unlock(PG_locked, &page->flags);
513}
514
515/*
516 * Interrupts must be disabled (for the fallback code to work right), typically
517 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
518 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
519 * allocation/ free operation in hardirq context. Therefore nothing can
520 * interrupt the operation.
521 */
522static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
523 void *freelist_old, unsigned long counters_old,
524 void *freelist_new, unsigned long counters_new,
525 const char *n)
526{
527 if (USE_LOCKLESS_FAST_PATH())
528 lockdep_assert_irqs_disabled();
529#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
530 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
531 if (s->flags & __CMPXCHG_DOUBLE) {
532 if (cmpxchg_double(&slab->freelist, &slab->counters,
533 freelist_old, counters_old,
534 freelist_new, counters_new))
535 return true;
536 } else
537#endif
538 {
539 slab_lock(slab);
540 if (slab->freelist == freelist_old &&
541 slab->counters == counters_old) {
542 slab->freelist = freelist_new;
543 slab->counters = counters_new;
544 slab_unlock(slab);
545 return true;
546 }
547 slab_unlock(slab);
548 }
549
550 cpu_relax();
551 stat(s, CMPXCHG_DOUBLE_FAIL);
552
553#ifdef SLUB_DEBUG_CMPXCHG
554 pr_info("%s %s: cmpxchg double redo ", n, s->name);
555#endif
556
557 return false;
558}
559
560static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
561 void *freelist_old, unsigned long counters_old,
562 void *freelist_new, unsigned long counters_new,
563 const char *n)
564{
565#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
566 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
567 if (s->flags & __CMPXCHG_DOUBLE) {
568 if (cmpxchg_double(&slab->freelist, &slab->counters,
569 freelist_old, counters_old,
570 freelist_new, counters_new))
571 return true;
572 } else
573#endif
574 {
575 unsigned long flags;
576
577 local_irq_save(flags);
578 slab_lock(slab);
579 if (slab->freelist == freelist_old &&
580 slab->counters == counters_old) {
581 slab->freelist = freelist_new;
582 slab->counters = counters_new;
583 slab_unlock(slab);
584 local_irq_restore(flags);
585 return true;
586 }
587 slab_unlock(slab);
588 local_irq_restore(flags);
589 }
590
591 cpu_relax();
592 stat(s, CMPXCHG_DOUBLE_FAIL);
593
594#ifdef SLUB_DEBUG_CMPXCHG
595 pr_info("%s %s: cmpxchg double redo ", n, s->name);
596#endif
597
598 return false;
599}
600
601#ifdef CONFIG_SLUB_DEBUG
602static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
603static DEFINE_SPINLOCK(object_map_lock);
604
605static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
606 struct slab *slab)
607{
608 void *addr = slab_address(slab);
609 void *p;
610
611 bitmap_zero(obj_map, slab->objects);
612
613 for (p = slab->freelist; p; p = get_freepointer(s, p))
614 set_bit(__obj_to_index(s, addr, p), obj_map);
615}
616
617#if IS_ENABLED(CONFIG_KUNIT)
618static bool slab_add_kunit_errors(void)
619{
620 struct kunit_resource *resource;
621
622 if (!kunit_get_current_test())
623 return false;
624
625 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
626 if (!resource)
627 return false;
628
629 (*(int *)resource->data)++;
630 kunit_put_resource(resource);
631 return true;
632}
633#else
634static inline bool slab_add_kunit_errors(void) { return false; }
635#endif
636
637static inline unsigned int size_from_object(struct kmem_cache *s)
638{
639 if (s->flags & SLAB_RED_ZONE)
640 return s->size - s->red_left_pad;
641
642 return s->size;
643}
644
645static inline void *restore_red_left(struct kmem_cache *s, void *p)
646{
647 if (s->flags & SLAB_RED_ZONE)
648 p -= s->red_left_pad;
649
650 return p;
651}
652
653/*
654 * Debug settings:
655 */
656#if defined(CONFIG_SLUB_DEBUG_ON)
657static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
658#else
659static slab_flags_t slub_debug;
660#endif
661
662static char *slub_debug_string;
663static int disable_higher_order_debug;
664
665/*
666 * slub is about to manipulate internal object metadata. This memory lies
667 * outside the range of the allocated object, so accessing it would normally
668 * be reported by kasan as a bounds error. metadata_access_enable() is used
669 * to tell kasan that these accesses are OK.
670 */
671static inline void metadata_access_enable(void)
672{
673 kasan_disable_current();
674}
675
676static inline void metadata_access_disable(void)
677{
678 kasan_enable_current();
679}
680
681/*
682 * Object debugging
683 */
684
685/* Verify that a pointer has an address that is valid within a slab page */
686static inline int check_valid_pointer(struct kmem_cache *s,
687 struct slab *slab, void *object)
688{
689 void *base;
690
691 if (!object)
692 return 1;
693
694 base = slab_address(slab);
695 object = kasan_reset_tag(object);
696 object = restore_red_left(s, object);
697 if (object < base || object >= base + slab->objects * s->size ||
698 (object - base) % s->size) {
699 return 0;
700 }
701
702 return 1;
703}
704
705static void print_section(char *level, char *text, u8 *addr,
706 unsigned int length)
707{
708 metadata_access_enable();
709 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
710 16, 1, kasan_reset_tag((void *)addr), length, 1);
711 metadata_access_disable();
712}
713
714/*
715 * See comment in calculate_sizes().
716 */
717static inline bool freeptr_outside_object(struct kmem_cache *s)
718{
719 return s->offset >= s->inuse;
720}
721
722/*
723 * Return offset of the end of info block which is inuse + free pointer if
724 * not overlapping with object.
725 */
726static inline unsigned int get_info_end(struct kmem_cache *s)
727{
728 if (freeptr_outside_object(s))
729 return s->inuse + sizeof(void *);
730 else
731 return s->inuse;
732}
733
734static struct track *get_track(struct kmem_cache *s, void *object,
735 enum track_item alloc)
736{
737 struct track *p;
738
739 p = object + get_info_end(s);
740
741 return kasan_reset_tag(p + alloc);
742}
743
744#ifdef CONFIG_STACKDEPOT
745static noinline depot_stack_handle_t set_track_prepare(void)
746{
747 depot_stack_handle_t handle;
748 unsigned long entries[TRACK_ADDRS_COUNT];
749 unsigned int nr_entries;
750
751 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
752 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
753
754 return handle;
755}
756#else
757static inline depot_stack_handle_t set_track_prepare(void)
758{
759 return 0;
760}
761#endif
762
763static void set_track_update(struct kmem_cache *s, void *object,
764 enum track_item alloc, unsigned long addr,
765 depot_stack_handle_t handle)
766{
767 struct track *p = get_track(s, object, alloc);
768
769#ifdef CONFIG_STACKDEPOT
770 p->handle = handle;
771#endif
772 p->addr = addr;
773 p->cpu = smp_processor_id();
774 p->pid = current->pid;
775 p->when = jiffies;
776}
777
778static __always_inline void set_track(struct kmem_cache *s, void *object,
779 enum track_item alloc, unsigned long addr)
780{
781 depot_stack_handle_t handle = set_track_prepare();
782
783 set_track_update(s, object, alloc, addr, handle);
784}
785
786static void init_tracking(struct kmem_cache *s, void *object)
787{
788 struct track *p;
789
790 if (!(s->flags & SLAB_STORE_USER))
791 return;
792
793 p = get_track(s, object, TRACK_ALLOC);
794 memset(p, 0, 2*sizeof(struct track));
795}
796
797static void print_track(const char *s, struct track *t, unsigned long pr_time)
798{
799 depot_stack_handle_t handle __maybe_unused;
800
801 if (!t->addr)
802 return;
803
804 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
805 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
806#ifdef CONFIG_STACKDEPOT
807 handle = READ_ONCE(t->handle);
808 if (handle)
809 stack_depot_print(handle);
810 else
811 pr_err("object allocation/free stack trace missing\n");
812#endif
813}
814
815void print_tracking(struct kmem_cache *s, void *object)
816{
817 unsigned long pr_time = jiffies;
818 if (!(s->flags & SLAB_STORE_USER))
819 return;
820
821 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
822 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
823}
824
825static void print_slab_info(const struct slab *slab)
826{
827 struct folio *folio = (struct folio *)slab_folio(slab);
828
829 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
830 slab, slab->objects, slab->inuse, slab->freelist,
831 folio_flags(folio, 0));
832}
833
834/*
835 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
836 * family will round up the real request size to these fixed ones, so
837 * there could be an extra area than what is requested. Save the original
838 * request size in the meta data area, for better debug and sanity check.
839 */
840static inline void set_orig_size(struct kmem_cache *s,
841 void *object, unsigned int orig_size)
842{
843 void *p = kasan_reset_tag(object);
844
845 if (!slub_debug_orig_size(s))
846 return;
847
848#ifdef CONFIG_KASAN_GENERIC
849 /*
850 * KASAN could save its free meta data in object's data area at
851 * offset 0, if the size is larger than 'orig_size', it will
852 * overlap the data redzone in [orig_size+1, object_size], and
853 * the check should be skipped.
854 */
855 if (kasan_metadata_size(s, true) > orig_size)
856 orig_size = s->object_size;
857#endif
858
859 p += get_info_end(s);
860 p += sizeof(struct track) * 2;
861
862 *(unsigned int *)p = orig_size;
863}
864
865static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
866{
867 void *p = kasan_reset_tag(object);
868
869 if (!slub_debug_orig_size(s))
870 return s->object_size;
871
872 p += get_info_end(s);
873 p += sizeof(struct track) * 2;
874
875 return *(unsigned int *)p;
876}
877
878void skip_orig_size_check(struct kmem_cache *s, const void *object)
879{
880 set_orig_size(s, (void *)object, s->object_size);
881}
882
883static void slab_bug(struct kmem_cache *s, char *fmt, ...)
884{
885 struct va_format vaf;
886 va_list args;
887
888 va_start(args, fmt);
889 vaf.fmt = fmt;
890 vaf.va = &args;
891 pr_err("=============================================================================\n");
892 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
893 pr_err("-----------------------------------------------------------------------------\n\n");
894 va_end(args);
895}
896
897__printf(2, 3)
898static void slab_fix(struct kmem_cache *s, char *fmt, ...)
899{
900 struct va_format vaf;
901 va_list args;
902
903 if (slab_add_kunit_errors())
904 return;
905
906 va_start(args, fmt);
907 vaf.fmt = fmt;
908 vaf.va = &args;
909 pr_err("FIX %s: %pV\n", s->name, &vaf);
910 va_end(args);
911}
912
913static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
914{
915 unsigned int off; /* Offset of last byte */
916 u8 *addr = slab_address(slab);
917
918 print_tracking(s, p);
919
920 print_slab_info(slab);
921
922 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
923 p, p - addr, get_freepointer(s, p));
924
925 if (s->flags & SLAB_RED_ZONE)
926 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
927 s->red_left_pad);
928 else if (p > addr + 16)
929 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
930
931 print_section(KERN_ERR, "Object ", p,
932 min_t(unsigned int, s->object_size, PAGE_SIZE));
933 if (s->flags & SLAB_RED_ZONE)
934 print_section(KERN_ERR, "Redzone ", p + s->object_size,
935 s->inuse - s->object_size);
936
937 off = get_info_end(s);
938
939 if (s->flags & SLAB_STORE_USER)
940 off += 2 * sizeof(struct track);
941
942 if (slub_debug_orig_size(s))
943 off += sizeof(unsigned int);
944
945 off += kasan_metadata_size(s, false);
946
947 if (off != size_from_object(s))
948 /* Beginning of the filler is the free pointer */
949 print_section(KERN_ERR, "Padding ", p + off,
950 size_from_object(s) - off);
951
952 dump_stack();
953}
954
955static void object_err(struct kmem_cache *s, struct slab *slab,
956 u8 *object, char *reason)
957{
958 if (slab_add_kunit_errors())
959 return;
960
961 slab_bug(s, "%s", reason);
962 print_trailer(s, slab, object);
963 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
964}
965
966static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
967 void **freelist, void *nextfree)
968{
969 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
970 !check_valid_pointer(s, slab, nextfree) && freelist) {
971 object_err(s, slab, *freelist, "Freechain corrupt");
972 *freelist = NULL;
973 slab_fix(s, "Isolate corrupted freechain");
974 return true;
975 }
976
977 return false;
978}
979
980static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
981 const char *fmt, ...)
982{
983 va_list args;
984 char buf[100];
985
986 if (slab_add_kunit_errors())
987 return;
988
989 va_start(args, fmt);
990 vsnprintf(buf, sizeof(buf), fmt, args);
991 va_end(args);
992 slab_bug(s, "%s", buf);
993 print_slab_info(slab);
994 dump_stack();
995 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
996}
997
998static void init_object(struct kmem_cache *s, void *object, u8 val)
999{
1000 u8 *p = kasan_reset_tag(object);
1001 unsigned int poison_size = s->object_size;
1002
1003 if (s->flags & SLAB_RED_ZONE) {
1004 memset(p - s->red_left_pad, val, s->red_left_pad);
1005
1006 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1007 /*
1008 * Redzone the extra allocated space by kmalloc than
1009 * requested, and the poison size will be limited to
1010 * the original request size accordingly.
1011 */
1012 poison_size = get_orig_size(s, object);
1013 }
1014 }
1015
1016 if (s->flags & __OBJECT_POISON) {
1017 memset(p, POISON_FREE, poison_size - 1);
1018 p[poison_size - 1] = POISON_END;
1019 }
1020
1021 if (s->flags & SLAB_RED_ZONE)
1022 memset(p + poison_size, val, s->inuse - poison_size);
1023}
1024
1025static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1026 void *from, void *to)
1027{
1028 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1029 memset(from, data, to - from);
1030}
1031
1032static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1033 u8 *object, char *what,
1034 u8 *start, unsigned int value, unsigned int bytes)
1035{
1036 u8 *fault;
1037 u8 *end;
1038 u8 *addr = slab_address(slab);
1039
1040 metadata_access_enable();
1041 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1042 metadata_access_disable();
1043 if (!fault)
1044 return 1;
1045
1046 end = start + bytes;
1047 while (end > fault && end[-1] == value)
1048 end--;
1049
1050 if (slab_add_kunit_errors())
1051 goto skip_bug_print;
1052
1053 slab_bug(s, "%s overwritten", what);
1054 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1055 fault, end - 1, fault - addr,
1056 fault[0], value);
1057 print_trailer(s, slab, object);
1058 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1059
1060skip_bug_print:
1061 restore_bytes(s, what, value, fault, end);
1062 return 0;
1063}
1064
1065/*
1066 * Object layout:
1067 *
1068 * object address
1069 * Bytes of the object to be managed.
1070 * If the freepointer may overlay the object then the free
1071 * pointer is at the middle of the object.
1072 *
1073 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1074 * 0xa5 (POISON_END)
1075 *
1076 * object + s->object_size
1077 * Padding to reach word boundary. This is also used for Redzoning.
1078 * Padding is extended by another word if Redzoning is enabled and
1079 * object_size == inuse.
1080 *
1081 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1082 * 0xcc (RED_ACTIVE) for objects in use.
1083 *
1084 * object + s->inuse
1085 * Meta data starts here.
1086 *
1087 * A. Free pointer (if we cannot overwrite object on free)
1088 * B. Tracking data for SLAB_STORE_USER
1089 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1090 * D. Padding to reach required alignment boundary or at minimum
1091 * one word if debugging is on to be able to detect writes
1092 * before the word boundary.
1093 *
1094 * Padding is done using 0x5a (POISON_INUSE)
1095 *
1096 * object + s->size
1097 * Nothing is used beyond s->size.
1098 *
1099 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1100 * ignored. And therefore no slab options that rely on these boundaries
1101 * may be used with merged slabcaches.
1102 */
1103
1104static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1105{
1106 unsigned long off = get_info_end(s); /* The end of info */
1107
1108 if (s->flags & SLAB_STORE_USER) {
1109 /* We also have user information there */
1110 off += 2 * sizeof(struct track);
1111
1112 if (s->flags & SLAB_KMALLOC)
1113 off += sizeof(unsigned int);
1114 }
1115
1116 off += kasan_metadata_size(s, false);
1117
1118 if (size_from_object(s) == off)
1119 return 1;
1120
1121 return check_bytes_and_report(s, slab, p, "Object padding",
1122 p + off, POISON_INUSE, size_from_object(s) - off);
1123}
1124
1125/* Check the pad bytes at the end of a slab page */
1126static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1127{
1128 u8 *start;
1129 u8 *fault;
1130 u8 *end;
1131 u8 *pad;
1132 int length;
1133 int remainder;
1134
1135 if (!(s->flags & SLAB_POISON))
1136 return;
1137
1138 start = slab_address(slab);
1139 length = slab_size(slab);
1140 end = start + length;
1141 remainder = length % s->size;
1142 if (!remainder)
1143 return;
1144
1145 pad = end - remainder;
1146 metadata_access_enable();
1147 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1148 metadata_access_disable();
1149 if (!fault)
1150 return;
1151 while (end > fault && end[-1] == POISON_INUSE)
1152 end--;
1153
1154 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1155 fault, end - 1, fault - start);
1156 print_section(KERN_ERR, "Padding ", pad, remainder);
1157
1158 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1159}
1160
1161static int check_object(struct kmem_cache *s, struct slab *slab,
1162 void *object, u8 val)
1163{
1164 u8 *p = object;
1165 u8 *endobject = object + s->object_size;
1166 unsigned int orig_size;
1167
1168 if (s->flags & SLAB_RED_ZONE) {
1169 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1170 object - s->red_left_pad, val, s->red_left_pad))
1171 return 0;
1172
1173 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1174 endobject, val, s->inuse - s->object_size))
1175 return 0;
1176
1177 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1178 orig_size = get_orig_size(s, object);
1179
1180 if (s->object_size > orig_size &&
1181 !check_bytes_and_report(s, slab, object,
1182 "kmalloc Redzone", p + orig_size,
1183 val, s->object_size - orig_size)) {
1184 return 0;
1185 }
1186 }
1187 } else {
1188 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1189 check_bytes_and_report(s, slab, p, "Alignment padding",
1190 endobject, POISON_INUSE,
1191 s->inuse - s->object_size);
1192 }
1193 }
1194
1195 if (s->flags & SLAB_POISON) {
1196 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1197 (!check_bytes_and_report(s, slab, p, "Poison", p,
1198 POISON_FREE, s->object_size - 1) ||
1199 !check_bytes_and_report(s, slab, p, "End Poison",
1200 p + s->object_size - 1, POISON_END, 1)))
1201 return 0;
1202 /*
1203 * check_pad_bytes cleans up on its own.
1204 */
1205 check_pad_bytes(s, slab, p);
1206 }
1207
1208 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1209 /*
1210 * Object and freepointer overlap. Cannot check
1211 * freepointer while object is allocated.
1212 */
1213 return 1;
1214
1215 /* Check free pointer validity */
1216 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1217 object_err(s, slab, p, "Freepointer corrupt");
1218 /*
1219 * No choice but to zap it and thus lose the remainder
1220 * of the free objects in this slab. May cause
1221 * another error because the object count is now wrong.
1222 */
1223 set_freepointer(s, p, NULL);
1224 return 0;
1225 }
1226 return 1;
1227}
1228
1229static int check_slab(struct kmem_cache *s, struct slab *slab)
1230{
1231 int maxobj;
1232
1233 if (!folio_test_slab(slab_folio(slab))) {
1234 slab_err(s, slab, "Not a valid slab page");
1235 return 0;
1236 }
1237
1238 maxobj = order_objects(slab_order(slab), s->size);
1239 if (slab->objects > maxobj) {
1240 slab_err(s, slab, "objects %u > max %u",
1241 slab->objects, maxobj);
1242 return 0;
1243 }
1244 if (slab->inuse > slab->objects) {
1245 slab_err(s, slab, "inuse %u > max %u",
1246 slab->inuse, slab->objects);
1247 return 0;
1248 }
1249 /* Slab_pad_check fixes things up after itself */
1250 slab_pad_check(s, slab);
1251 return 1;
1252}
1253
1254/*
1255 * Determine if a certain object in a slab is on the freelist. Must hold the
1256 * slab lock to guarantee that the chains are in a consistent state.
1257 */
1258static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1259{
1260 int nr = 0;
1261 void *fp;
1262 void *object = NULL;
1263 int max_objects;
1264
1265 fp = slab->freelist;
1266 while (fp && nr <= slab->objects) {
1267 if (fp == search)
1268 return 1;
1269 if (!check_valid_pointer(s, slab, fp)) {
1270 if (object) {
1271 object_err(s, slab, object,
1272 "Freechain corrupt");
1273 set_freepointer(s, object, NULL);
1274 } else {
1275 slab_err(s, slab, "Freepointer corrupt");
1276 slab->freelist = NULL;
1277 slab->inuse = slab->objects;
1278 slab_fix(s, "Freelist cleared");
1279 return 0;
1280 }
1281 break;
1282 }
1283 object = fp;
1284 fp = get_freepointer(s, object);
1285 nr++;
1286 }
1287
1288 max_objects = order_objects(slab_order(slab), s->size);
1289 if (max_objects > MAX_OBJS_PER_PAGE)
1290 max_objects = MAX_OBJS_PER_PAGE;
1291
1292 if (slab->objects != max_objects) {
1293 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1294 slab->objects, max_objects);
1295 slab->objects = max_objects;
1296 slab_fix(s, "Number of objects adjusted");
1297 }
1298 if (slab->inuse != slab->objects - nr) {
1299 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1300 slab->inuse, slab->objects - nr);
1301 slab->inuse = slab->objects - nr;
1302 slab_fix(s, "Object count adjusted");
1303 }
1304 return search == NULL;
1305}
1306
1307static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1308 int alloc)
1309{
1310 if (s->flags & SLAB_TRACE) {
1311 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1312 s->name,
1313 alloc ? "alloc" : "free",
1314 object, slab->inuse,
1315 slab->freelist);
1316
1317 if (!alloc)
1318 print_section(KERN_INFO, "Object ", (void *)object,
1319 s->object_size);
1320
1321 dump_stack();
1322 }
1323}
1324
1325/*
1326 * Tracking of fully allocated slabs for debugging purposes.
1327 */
1328static void add_full(struct kmem_cache *s,
1329 struct kmem_cache_node *n, struct slab *slab)
1330{
1331 if (!(s->flags & SLAB_STORE_USER))
1332 return;
1333
1334 lockdep_assert_held(&n->list_lock);
1335 list_add(&slab->slab_list, &n->full);
1336}
1337
1338static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1339{
1340 if (!(s->flags & SLAB_STORE_USER))
1341 return;
1342
1343 lockdep_assert_held(&n->list_lock);
1344 list_del(&slab->slab_list);
1345}
1346
1347/* Tracking of the number of slabs for debugging purposes */
1348static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1349{
1350 struct kmem_cache_node *n = get_node(s, node);
1351
1352 return atomic_long_read(&n->nr_slabs);
1353}
1354
1355static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1356{
1357 return atomic_long_read(&n->nr_slabs);
1358}
1359
1360static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1361{
1362 struct kmem_cache_node *n = get_node(s, node);
1363
1364 /*
1365 * May be called early in order to allocate a slab for the
1366 * kmem_cache_node structure. Solve the chicken-egg
1367 * dilemma by deferring the increment of the count during
1368 * bootstrap (see early_kmem_cache_node_alloc).
1369 */
1370 if (likely(n)) {
1371 atomic_long_inc(&n->nr_slabs);
1372 atomic_long_add(objects, &n->total_objects);
1373 }
1374}
1375static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1376{
1377 struct kmem_cache_node *n = get_node(s, node);
1378
1379 atomic_long_dec(&n->nr_slabs);
1380 atomic_long_sub(objects, &n->total_objects);
1381}
1382
1383/* Object debug checks for alloc/free paths */
1384static void setup_object_debug(struct kmem_cache *s, void *object)
1385{
1386 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1387 return;
1388
1389 init_object(s, object, SLUB_RED_INACTIVE);
1390 init_tracking(s, object);
1391}
1392
1393static
1394void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1395{
1396 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1397 return;
1398
1399 metadata_access_enable();
1400 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1401 metadata_access_disable();
1402}
1403
1404static inline int alloc_consistency_checks(struct kmem_cache *s,
1405 struct slab *slab, void *object)
1406{
1407 if (!check_slab(s, slab))
1408 return 0;
1409
1410 if (!check_valid_pointer(s, slab, object)) {
1411 object_err(s, slab, object, "Freelist Pointer check fails");
1412 return 0;
1413 }
1414
1415 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1416 return 0;
1417
1418 return 1;
1419}
1420
1421static noinline bool alloc_debug_processing(struct kmem_cache *s,
1422 struct slab *slab, void *object, int orig_size)
1423{
1424 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1425 if (!alloc_consistency_checks(s, slab, object))
1426 goto bad;
1427 }
1428
1429 /* Success. Perform special debug activities for allocs */
1430 trace(s, slab, object, 1);
1431 set_orig_size(s, object, orig_size);
1432 init_object(s, object, SLUB_RED_ACTIVE);
1433 return true;
1434
1435bad:
1436 if (folio_test_slab(slab_folio(slab))) {
1437 /*
1438 * If this is a slab page then lets do the best we can
1439 * to avoid issues in the future. Marking all objects
1440 * as used avoids touching the remaining objects.
1441 */
1442 slab_fix(s, "Marking all objects used");
1443 slab->inuse = slab->objects;
1444 slab->freelist = NULL;
1445 }
1446 return false;
1447}
1448
1449static inline int free_consistency_checks(struct kmem_cache *s,
1450 struct slab *slab, void *object, unsigned long addr)
1451{
1452 if (!check_valid_pointer(s, slab, object)) {
1453 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1454 return 0;
1455 }
1456
1457 if (on_freelist(s, slab, object)) {
1458 object_err(s, slab, object, "Object already free");
1459 return 0;
1460 }
1461
1462 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1463 return 0;
1464
1465 if (unlikely(s != slab->slab_cache)) {
1466 if (!folio_test_slab(slab_folio(slab))) {
1467 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1468 object);
1469 } else if (!slab->slab_cache) {
1470 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1471 object);
1472 dump_stack();
1473 } else
1474 object_err(s, slab, object,
1475 "page slab pointer corrupt.");
1476 return 0;
1477 }
1478 return 1;
1479}
1480
1481/*
1482 * Parse a block of slub_debug options. Blocks are delimited by ';'
1483 *
1484 * @str: start of block
1485 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1486 * @slabs: return start of list of slabs, or NULL when there's no list
1487 * @init: assume this is initial parsing and not per-kmem-create parsing
1488 *
1489 * returns the start of next block if there's any, or NULL
1490 */
1491static char *
1492parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1493{
1494 bool higher_order_disable = false;
1495
1496 /* Skip any completely empty blocks */
1497 while (*str && *str == ';')
1498 str++;
1499
1500 if (*str == ',') {
1501 /*
1502 * No options but restriction on slabs. This means full
1503 * debugging for slabs matching a pattern.
1504 */
1505 *flags = DEBUG_DEFAULT_FLAGS;
1506 goto check_slabs;
1507 }
1508 *flags = 0;
1509
1510 /* Determine which debug features should be switched on */
1511 for (; *str && *str != ',' && *str != ';'; str++) {
1512 switch (tolower(*str)) {
1513 case '-':
1514 *flags = 0;
1515 break;
1516 case 'f':
1517 *flags |= SLAB_CONSISTENCY_CHECKS;
1518 break;
1519 case 'z':
1520 *flags |= SLAB_RED_ZONE;
1521 break;
1522 case 'p':
1523 *flags |= SLAB_POISON;
1524 break;
1525 case 'u':
1526 *flags |= SLAB_STORE_USER;
1527 break;
1528 case 't':
1529 *flags |= SLAB_TRACE;
1530 break;
1531 case 'a':
1532 *flags |= SLAB_FAILSLAB;
1533 break;
1534 case 'o':
1535 /*
1536 * Avoid enabling debugging on caches if its minimum
1537 * order would increase as a result.
1538 */
1539 higher_order_disable = true;
1540 break;
1541 default:
1542 if (init)
1543 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1544 }
1545 }
1546check_slabs:
1547 if (*str == ',')
1548 *slabs = ++str;
1549 else
1550 *slabs = NULL;
1551
1552 /* Skip over the slab list */
1553 while (*str && *str != ';')
1554 str++;
1555
1556 /* Skip any completely empty blocks */
1557 while (*str && *str == ';')
1558 str++;
1559
1560 if (init && higher_order_disable)
1561 disable_higher_order_debug = 1;
1562
1563 if (*str)
1564 return str;
1565 else
1566 return NULL;
1567}
1568
1569static int __init setup_slub_debug(char *str)
1570{
1571 slab_flags_t flags;
1572 slab_flags_t global_flags;
1573 char *saved_str;
1574 char *slab_list;
1575 bool global_slub_debug_changed = false;
1576 bool slab_list_specified = false;
1577
1578 global_flags = DEBUG_DEFAULT_FLAGS;
1579 if (*str++ != '=' || !*str)
1580 /*
1581 * No options specified. Switch on full debugging.
1582 */
1583 goto out;
1584
1585 saved_str = str;
1586 while (str) {
1587 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1588
1589 if (!slab_list) {
1590 global_flags = flags;
1591 global_slub_debug_changed = true;
1592 } else {
1593 slab_list_specified = true;
1594 if (flags & SLAB_STORE_USER)
1595 stack_depot_request_early_init();
1596 }
1597 }
1598
1599 /*
1600 * For backwards compatibility, a single list of flags with list of
1601 * slabs means debugging is only changed for those slabs, so the global
1602 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1603 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1604 * long as there is no option specifying flags without a slab list.
1605 */
1606 if (slab_list_specified) {
1607 if (!global_slub_debug_changed)
1608 global_flags = slub_debug;
1609 slub_debug_string = saved_str;
1610 }
1611out:
1612 slub_debug = global_flags;
1613 if (slub_debug & SLAB_STORE_USER)
1614 stack_depot_request_early_init();
1615 if (slub_debug != 0 || slub_debug_string)
1616 static_branch_enable(&slub_debug_enabled);
1617 else
1618 static_branch_disable(&slub_debug_enabled);
1619 if ((static_branch_unlikely(&init_on_alloc) ||
1620 static_branch_unlikely(&init_on_free)) &&
1621 (slub_debug & SLAB_POISON))
1622 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1623 return 1;
1624}
1625
1626__setup("slub_debug", setup_slub_debug);
1627
1628/*
1629 * kmem_cache_flags - apply debugging options to the cache
1630 * @object_size: the size of an object without meta data
1631 * @flags: flags to set
1632 * @name: name of the cache
1633 *
1634 * Debug option(s) are applied to @flags. In addition to the debug
1635 * option(s), if a slab name (or multiple) is specified i.e.
1636 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1637 * then only the select slabs will receive the debug option(s).
1638 */
1639slab_flags_t kmem_cache_flags(unsigned int object_size,
1640 slab_flags_t flags, const char *name)
1641{
1642 char *iter;
1643 size_t len;
1644 char *next_block;
1645 slab_flags_t block_flags;
1646 slab_flags_t slub_debug_local = slub_debug;
1647
1648 if (flags & SLAB_NO_USER_FLAGS)
1649 return flags;
1650
1651 /*
1652 * If the slab cache is for debugging (e.g. kmemleak) then
1653 * don't store user (stack trace) information by default,
1654 * but let the user enable it via the command line below.
1655 */
1656 if (flags & SLAB_NOLEAKTRACE)
1657 slub_debug_local &= ~SLAB_STORE_USER;
1658
1659 len = strlen(name);
1660 next_block = slub_debug_string;
1661 /* Go through all blocks of debug options, see if any matches our slab's name */
1662 while (next_block) {
1663 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1664 if (!iter)
1665 continue;
1666 /* Found a block that has a slab list, search it */
1667 while (*iter) {
1668 char *end, *glob;
1669 size_t cmplen;
1670
1671 end = strchrnul(iter, ',');
1672 if (next_block && next_block < end)
1673 end = next_block - 1;
1674
1675 glob = strnchr(iter, end - iter, '*');
1676 if (glob)
1677 cmplen = glob - iter;
1678 else
1679 cmplen = max_t(size_t, len, (end - iter));
1680
1681 if (!strncmp(name, iter, cmplen)) {
1682 flags |= block_flags;
1683 return flags;
1684 }
1685
1686 if (!*end || *end == ';')
1687 break;
1688 iter = end + 1;
1689 }
1690 }
1691
1692 return flags | slub_debug_local;
1693}
1694#else /* !CONFIG_SLUB_DEBUG */
1695static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1696static inline
1697void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1698
1699static inline bool alloc_debug_processing(struct kmem_cache *s,
1700 struct slab *slab, void *object, int orig_size) { return true; }
1701
1702static inline bool free_debug_processing(struct kmem_cache *s,
1703 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1704 unsigned long addr, depot_stack_handle_t handle) { return true; }
1705
1706static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1707static inline int check_object(struct kmem_cache *s, struct slab *slab,
1708 void *object, u8 val) { return 1; }
1709static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1710static inline void set_track(struct kmem_cache *s, void *object,
1711 enum track_item alloc, unsigned long addr) {}
1712static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1713 struct slab *slab) {}
1714static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1715 struct slab *slab) {}
1716slab_flags_t kmem_cache_flags(unsigned int object_size,
1717 slab_flags_t flags, const char *name)
1718{
1719 return flags;
1720}
1721#define slub_debug 0
1722
1723#define disable_higher_order_debug 0
1724
1725static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1726 { return 0; }
1727static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1728 { return 0; }
1729static inline void inc_slabs_node(struct kmem_cache *s, int node,
1730 int objects) {}
1731static inline void dec_slabs_node(struct kmem_cache *s, int node,
1732 int objects) {}
1733
1734#ifndef CONFIG_SLUB_TINY
1735static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1736 void **freelist, void *nextfree)
1737{
1738 return false;
1739}
1740#endif
1741#endif /* CONFIG_SLUB_DEBUG */
1742
1743/*
1744 * Hooks for other subsystems that check memory allocations. In a typical
1745 * production configuration these hooks all should produce no code at all.
1746 */
1747static __always_inline bool slab_free_hook(struct kmem_cache *s,
1748 void *x, bool init)
1749{
1750 kmemleak_free_recursive(x, s->flags);
1751 kmsan_slab_free(s, x);
1752
1753 debug_check_no_locks_freed(x, s->object_size);
1754
1755 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1756 debug_check_no_obj_freed(x, s->object_size);
1757
1758 /* Use KCSAN to help debug racy use-after-free. */
1759 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1760 __kcsan_check_access(x, s->object_size,
1761 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1762
1763 /*
1764 * As memory initialization might be integrated into KASAN,
1765 * kasan_slab_free and initialization memset's must be
1766 * kept together to avoid discrepancies in behavior.
1767 *
1768 * The initialization memset's clear the object and the metadata,
1769 * but don't touch the SLAB redzone.
1770 */
1771 if (init) {
1772 int rsize;
1773
1774 if (!kasan_has_integrated_init())
1775 memset(kasan_reset_tag(x), 0, s->object_size);
1776 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1777 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1778 s->size - s->inuse - rsize);
1779 }
1780 /* KASAN might put x into memory quarantine, delaying its reuse. */
1781 return kasan_slab_free(s, x, init);
1782}
1783
1784static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1785 void **head, void **tail,
1786 int *cnt)
1787{
1788
1789 void *object;
1790 void *next = *head;
1791 void *old_tail = *tail ? *tail : *head;
1792
1793 if (is_kfence_address(next)) {
1794 slab_free_hook(s, next, false);
1795 return true;
1796 }
1797
1798 /* Head and tail of the reconstructed freelist */
1799 *head = NULL;
1800 *tail = NULL;
1801
1802 do {
1803 object = next;
1804 next = get_freepointer(s, object);
1805
1806 /* If object's reuse doesn't have to be delayed */
1807 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1808 /* Move object to the new freelist */
1809 set_freepointer(s, object, *head);
1810 *head = object;
1811 if (!*tail)
1812 *tail = object;
1813 } else {
1814 /*
1815 * Adjust the reconstructed freelist depth
1816 * accordingly if object's reuse is delayed.
1817 */
1818 --(*cnt);
1819 }
1820 } while (object != old_tail);
1821
1822 if (*head == *tail)
1823 *tail = NULL;
1824
1825 return *head != NULL;
1826}
1827
1828static void *setup_object(struct kmem_cache *s, void *object)
1829{
1830 setup_object_debug(s, object);
1831 object = kasan_init_slab_obj(s, object);
1832 if (unlikely(s->ctor)) {
1833 kasan_unpoison_object_data(s, object);
1834 s->ctor(object);
1835 kasan_poison_object_data(s, object);
1836 }
1837 return object;
1838}
1839
1840/*
1841 * Slab allocation and freeing
1842 */
1843static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1844 struct kmem_cache_order_objects oo)
1845{
1846 struct folio *folio;
1847 struct slab *slab;
1848 unsigned int order = oo_order(oo);
1849
1850 if (node == NUMA_NO_NODE)
1851 folio = (struct folio *)alloc_pages(flags, order);
1852 else
1853 folio = (struct folio *)__alloc_pages_node(node, flags, order);
1854
1855 if (!folio)
1856 return NULL;
1857
1858 slab = folio_slab(folio);
1859 __folio_set_slab(folio);
1860 /* Make the flag visible before any changes to folio->mapping */
1861 smp_wmb();
1862 if (folio_is_pfmemalloc(folio))
1863 slab_set_pfmemalloc(slab);
1864
1865 return slab;
1866}
1867
1868#ifdef CONFIG_SLAB_FREELIST_RANDOM
1869/* Pre-initialize the random sequence cache */
1870static int init_cache_random_seq(struct kmem_cache *s)
1871{
1872 unsigned int count = oo_objects(s->oo);
1873 int err;
1874
1875 /* Bailout if already initialised */
1876 if (s->random_seq)
1877 return 0;
1878
1879 err = cache_random_seq_create(s, count, GFP_KERNEL);
1880 if (err) {
1881 pr_err("SLUB: Unable to initialize free list for %s\n",
1882 s->name);
1883 return err;
1884 }
1885
1886 /* Transform to an offset on the set of pages */
1887 if (s->random_seq) {
1888 unsigned int i;
1889
1890 for (i = 0; i < count; i++)
1891 s->random_seq[i] *= s->size;
1892 }
1893 return 0;
1894}
1895
1896/* Initialize each random sequence freelist per cache */
1897static void __init init_freelist_randomization(void)
1898{
1899 struct kmem_cache *s;
1900
1901 mutex_lock(&slab_mutex);
1902
1903 list_for_each_entry(s, &slab_caches, list)
1904 init_cache_random_seq(s);
1905
1906 mutex_unlock(&slab_mutex);
1907}
1908
1909/* Get the next entry on the pre-computed freelist randomized */
1910static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1911 unsigned long *pos, void *start,
1912 unsigned long page_limit,
1913 unsigned long freelist_count)
1914{
1915 unsigned int idx;
1916
1917 /*
1918 * If the target page allocation failed, the number of objects on the
1919 * page might be smaller than the usual size defined by the cache.
1920 */
1921 do {
1922 idx = s->random_seq[*pos];
1923 *pos += 1;
1924 if (*pos >= freelist_count)
1925 *pos = 0;
1926 } while (unlikely(idx >= page_limit));
1927
1928 return (char *)start + idx;
1929}
1930
1931/* Shuffle the single linked freelist based on a random pre-computed sequence */
1932static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1933{
1934 void *start;
1935 void *cur;
1936 void *next;
1937 unsigned long idx, pos, page_limit, freelist_count;
1938
1939 if (slab->objects < 2 || !s->random_seq)
1940 return false;
1941
1942 freelist_count = oo_objects(s->oo);
1943 pos = get_random_u32_below(freelist_count);
1944
1945 page_limit = slab->objects * s->size;
1946 start = fixup_red_left(s, slab_address(slab));
1947
1948 /* First entry is used as the base of the freelist */
1949 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1950 freelist_count);
1951 cur = setup_object(s, cur);
1952 slab->freelist = cur;
1953
1954 for (idx = 1; idx < slab->objects; idx++) {
1955 next = next_freelist_entry(s, slab, &pos, start, page_limit,
1956 freelist_count);
1957 next = setup_object(s, next);
1958 set_freepointer(s, cur, next);
1959 cur = next;
1960 }
1961 set_freepointer(s, cur, NULL);
1962
1963 return true;
1964}
1965#else
1966static inline int init_cache_random_seq(struct kmem_cache *s)
1967{
1968 return 0;
1969}
1970static inline void init_freelist_randomization(void) { }
1971static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1972{
1973 return false;
1974}
1975#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1976
1977static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1978{
1979 struct slab *slab;
1980 struct kmem_cache_order_objects oo = s->oo;
1981 gfp_t alloc_gfp;
1982 void *start, *p, *next;
1983 int idx;
1984 bool shuffle;
1985
1986 flags &= gfp_allowed_mask;
1987
1988 flags |= s->allocflags;
1989
1990 /*
1991 * Let the initial higher-order allocation fail under memory pressure
1992 * so we fall-back to the minimum order allocation.
1993 */
1994 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1995 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1996 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1997
1998 slab = alloc_slab_page(alloc_gfp, node, oo);
1999 if (unlikely(!slab)) {
2000 oo = s->min;
2001 alloc_gfp = flags;
2002 /*
2003 * Allocation may have failed due to fragmentation.
2004 * Try a lower order alloc if possible
2005 */
2006 slab = alloc_slab_page(alloc_gfp, node, oo);
2007 if (unlikely(!slab))
2008 return NULL;
2009 stat(s, ORDER_FALLBACK);
2010 }
2011
2012 slab->objects = oo_objects(oo);
2013 slab->inuse = 0;
2014 slab->frozen = 0;
2015
2016 account_slab(slab, oo_order(oo), s, flags);
2017
2018 slab->slab_cache = s;
2019
2020 kasan_poison_slab(slab);
2021
2022 start = slab_address(slab);
2023
2024 setup_slab_debug(s, slab, start);
2025
2026 shuffle = shuffle_freelist(s, slab);
2027
2028 if (!shuffle) {
2029 start = fixup_red_left(s, start);
2030 start = setup_object(s, start);
2031 slab->freelist = start;
2032 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2033 next = p + s->size;
2034 next = setup_object(s, next);
2035 set_freepointer(s, p, next);
2036 p = next;
2037 }
2038 set_freepointer(s, p, NULL);
2039 }
2040
2041 return slab;
2042}
2043
2044static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2045{
2046 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2047 flags = kmalloc_fix_flags(flags);
2048
2049 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2050
2051 return allocate_slab(s,
2052 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2053}
2054
2055static void __free_slab(struct kmem_cache *s, struct slab *slab)
2056{
2057 struct folio *folio = slab_folio(slab);
2058 int order = folio_order(folio);
2059 int pages = 1 << order;
2060
2061 __slab_clear_pfmemalloc(slab);
2062 folio->mapping = NULL;
2063 /* Make the mapping reset visible before clearing the flag */
2064 smp_wmb();
2065 __folio_clear_slab(folio);
2066 if (current->reclaim_state)
2067 current->reclaim_state->reclaimed_slab += pages;
2068 unaccount_slab(slab, order, s);
2069 __free_pages(&folio->page, order);
2070}
2071
2072static void rcu_free_slab(struct rcu_head *h)
2073{
2074 struct slab *slab = container_of(h, struct slab, rcu_head);
2075
2076 __free_slab(slab->slab_cache, slab);
2077}
2078
2079static void free_slab(struct kmem_cache *s, struct slab *slab)
2080{
2081 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2082 void *p;
2083
2084 slab_pad_check(s, slab);
2085 for_each_object(p, s, slab_address(slab), slab->objects)
2086 check_object(s, slab, p, SLUB_RED_INACTIVE);
2087 }
2088
2089 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2090 call_rcu(&slab->rcu_head, rcu_free_slab);
2091 else
2092 __free_slab(s, slab);
2093}
2094
2095static void discard_slab(struct kmem_cache *s, struct slab *slab)
2096{
2097 dec_slabs_node(s, slab_nid(slab), slab->objects);
2098 free_slab(s, slab);
2099}
2100
2101/*
2102 * Management of partially allocated slabs.
2103 */
2104static inline void
2105__add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2106{
2107 n->nr_partial++;
2108 if (tail == DEACTIVATE_TO_TAIL)
2109 list_add_tail(&slab->slab_list, &n->partial);
2110 else
2111 list_add(&slab->slab_list, &n->partial);
2112}
2113
2114static inline void add_partial(struct kmem_cache_node *n,
2115 struct slab *slab, int tail)
2116{
2117 lockdep_assert_held(&n->list_lock);
2118 __add_partial(n, slab, tail);
2119}
2120
2121static inline void remove_partial(struct kmem_cache_node *n,
2122 struct slab *slab)
2123{
2124 lockdep_assert_held(&n->list_lock);
2125 list_del(&slab->slab_list);
2126 n->nr_partial--;
2127}
2128
2129/*
2130 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2131 * slab from the n->partial list. Remove only a single object from the slab, do
2132 * the alloc_debug_processing() checks and leave the slab on the list, or move
2133 * it to full list if it was the last free object.
2134 */
2135static void *alloc_single_from_partial(struct kmem_cache *s,
2136 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2137{
2138 void *object;
2139
2140 lockdep_assert_held(&n->list_lock);
2141
2142 object = slab->freelist;
2143 slab->freelist = get_freepointer(s, object);
2144 slab->inuse++;
2145
2146 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2147 remove_partial(n, slab);
2148 return NULL;
2149 }
2150
2151 if (slab->inuse == slab->objects) {
2152 remove_partial(n, slab);
2153 add_full(s, n, slab);
2154 }
2155
2156 return object;
2157}
2158
2159/*
2160 * Called only for kmem_cache_debug() caches to allocate from a freshly
2161 * allocated slab. Allocate a single object instead of whole freelist
2162 * and put the slab to the partial (or full) list.
2163 */
2164static void *alloc_single_from_new_slab(struct kmem_cache *s,
2165 struct slab *slab, int orig_size)
2166{
2167 int nid = slab_nid(slab);
2168 struct kmem_cache_node *n = get_node(s, nid);
2169 unsigned long flags;
2170 void *object;
2171
2172
2173 object = slab->freelist;
2174 slab->freelist = get_freepointer(s, object);
2175 slab->inuse = 1;
2176
2177 if (!alloc_debug_processing(s, slab, object, orig_size))
2178 /*
2179 * It's not really expected that this would fail on a
2180 * freshly allocated slab, but a concurrent memory
2181 * corruption in theory could cause that.
2182 */
2183 return NULL;
2184
2185 spin_lock_irqsave(&n->list_lock, flags);
2186
2187 if (slab->inuse == slab->objects)
2188 add_full(s, n, slab);
2189 else
2190 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2191
2192 inc_slabs_node(s, nid, slab->objects);
2193 spin_unlock_irqrestore(&n->list_lock, flags);
2194
2195 return object;
2196}
2197
2198/*
2199 * Remove slab from the partial list, freeze it and
2200 * return the pointer to the freelist.
2201 *
2202 * Returns a list of objects or NULL if it fails.
2203 */
2204static inline void *acquire_slab(struct kmem_cache *s,
2205 struct kmem_cache_node *n, struct slab *slab,
2206 int mode)
2207{
2208 void *freelist;
2209 unsigned long counters;
2210 struct slab new;
2211
2212 lockdep_assert_held(&n->list_lock);
2213
2214 /*
2215 * Zap the freelist and set the frozen bit.
2216 * The old freelist is the list of objects for the
2217 * per cpu allocation list.
2218 */
2219 freelist = slab->freelist;
2220 counters = slab->counters;
2221 new.counters = counters;
2222 if (mode) {
2223 new.inuse = slab->objects;
2224 new.freelist = NULL;
2225 } else {
2226 new.freelist = freelist;
2227 }
2228
2229 VM_BUG_ON(new.frozen);
2230 new.frozen = 1;
2231
2232 if (!__cmpxchg_double_slab(s, slab,
2233 freelist, counters,
2234 new.freelist, new.counters,
2235 "acquire_slab"))
2236 return NULL;
2237
2238 remove_partial(n, slab);
2239 WARN_ON(!freelist);
2240 return freelist;
2241}
2242
2243#ifdef CONFIG_SLUB_CPU_PARTIAL
2244static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2245#else
2246static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2247 int drain) { }
2248#endif
2249static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2250
2251/*
2252 * Try to allocate a partial slab from a specific node.
2253 */
2254static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2255 struct partial_context *pc)
2256{
2257 struct slab *slab, *slab2;
2258 void *object = NULL;
2259 unsigned long flags;
2260 unsigned int partial_slabs = 0;
2261
2262 /*
2263 * Racy check. If we mistakenly see no partial slabs then we
2264 * just allocate an empty slab. If we mistakenly try to get a
2265 * partial slab and there is none available then get_partial()
2266 * will return NULL.
2267 */
2268 if (!n || !n->nr_partial)
2269 return NULL;
2270
2271 spin_lock_irqsave(&n->list_lock, flags);
2272 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2273 void *t;
2274
2275 if (!pfmemalloc_match(slab, pc->flags))
2276 continue;
2277
2278 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2279 object = alloc_single_from_partial(s, n, slab,
2280 pc->orig_size);
2281 if (object)
2282 break;
2283 continue;
2284 }
2285
2286 t = acquire_slab(s, n, slab, object == NULL);
2287 if (!t)
2288 break;
2289
2290 if (!object) {
2291 *pc->slab = slab;
2292 stat(s, ALLOC_FROM_PARTIAL);
2293 object = t;
2294 } else {
2295 put_cpu_partial(s, slab, 0);
2296 stat(s, CPU_PARTIAL_NODE);
2297 partial_slabs++;
2298 }
2299#ifdef CONFIG_SLUB_CPU_PARTIAL
2300 if (!kmem_cache_has_cpu_partial(s)
2301 || partial_slabs > s->cpu_partial_slabs / 2)
2302 break;
2303#else
2304 break;
2305#endif
2306
2307 }
2308 spin_unlock_irqrestore(&n->list_lock, flags);
2309 return object;
2310}
2311
2312/*
2313 * Get a slab from somewhere. Search in increasing NUMA distances.
2314 */
2315static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2316{
2317#ifdef CONFIG_NUMA
2318 struct zonelist *zonelist;
2319 struct zoneref *z;
2320 struct zone *zone;
2321 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2322 void *object;
2323 unsigned int cpuset_mems_cookie;
2324
2325 /*
2326 * The defrag ratio allows a configuration of the tradeoffs between
2327 * inter node defragmentation and node local allocations. A lower
2328 * defrag_ratio increases the tendency to do local allocations
2329 * instead of attempting to obtain partial slabs from other nodes.
2330 *
2331 * If the defrag_ratio is set to 0 then kmalloc() always
2332 * returns node local objects. If the ratio is higher then kmalloc()
2333 * may return off node objects because partial slabs are obtained
2334 * from other nodes and filled up.
2335 *
2336 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2337 * (which makes defrag_ratio = 1000) then every (well almost)
2338 * allocation will first attempt to defrag slab caches on other nodes.
2339 * This means scanning over all nodes to look for partial slabs which
2340 * may be expensive if we do it every time we are trying to find a slab
2341 * with available objects.
2342 */
2343 if (!s->remote_node_defrag_ratio ||
2344 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2345 return NULL;
2346
2347 do {
2348 cpuset_mems_cookie = read_mems_allowed_begin();
2349 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2350 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2351 struct kmem_cache_node *n;
2352
2353 n = get_node(s, zone_to_nid(zone));
2354
2355 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2356 n->nr_partial > s->min_partial) {
2357 object = get_partial_node(s, n, pc);
2358 if (object) {
2359 /*
2360 * Don't check read_mems_allowed_retry()
2361 * here - if mems_allowed was updated in
2362 * parallel, that was a harmless race
2363 * between allocation and the cpuset
2364 * update
2365 */
2366 return object;
2367 }
2368 }
2369 }
2370 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2371#endif /* CONFIG_NUMA */
2372 return NULL;
2373}
2374
2375/*
2376 * Get a partial slab, lock it and return it.
2377 */
2378static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2379{
2380 void *object;
2381 int searchnode = node;
2382
2383 if (node == NUMA_NO_NODE)
2384 searchnode = numa_mem_id();
2385
2386 object = get_partial_node(s, get_node(s, searchnode), pc);
2387 if (object || node != NUMA_NO_NODE)
2388 return object;
2389
2390 return get_any_partial(s, pc);
2391}
2392
2393#ifndef CONFIG_SLUB_TINY
2394
2395#ifdef CONFIG_PREEMPTION
2396/*
2397 * Calculate the next globally unique transaction for disambiguation
2398 * during cmpxchg. The transactions start with the cpu number and are then
2399 * incremented by CONFIG_NR_CPUS.
2400 */
2401#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2402#else
2403/*
2404 * No preemption supported therefore also no need to check for
2405 * different cpus.
2406 */
2407#define TID_STEP 1
2408#endif /* CONFIG_PREEMPTION */
2409
2410static inline unsigned long next_tid(unsigned long tid)
2411{
2412 return tid + TID_STEP;
2413}
2414
2415#ifdef SLUB_DEBUG_CMPXCHG
2416static inline unsigned int tid_to_cpu(unsigned long tid)
2417{
2418 return tid % TID_STEP;
2419}
2420
2421static inline unsigned long tid_to_event(unsigned long tid)
2422{
2423 return tid / TID_STEP;
2424}
2425#endif
2426
2427static inline unsigned int init_tid(int cpu)
2428{
2429 return cpu;
2430}
2431
2432static inline void note_cmpxchg_failure(const char *n,
2433 const struct kmem_cache *s, unsigned long tid)
2434{
2435#ifdef SLUB_DEBUG_CMPXCHG
2436 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2437
2438 pr_info("%s %s: cmpxchg redo ", n, s->name);
2439
2440#ifdef CONFIG_PREEMPTION
2441 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2442 pr_warn("due to cpu change %d -> %d\n",
2443 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2444 else
2445#endif
2446 if (tid_to_event(tid) != tid_to_event(actual_tid))
2447 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2448 tid_to_event(tid), tid_to_event(actual_tid));
2449 else
2450 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2451 actual_tid, tid, next_tid(tid));
2452#endif
2453 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2454}
2455
2456static void init_kmem_cache_cpus(struct kmem_cache *s)
2457{
2458 int cpu;
2459 struct kmem_cache_cpu *c;
2460
2461 for_each_possible_cpu(cpu) {
2462 c = per_cpu_ptr(s->cpu_slab, cpu);
2463 local_lock_init(&c->lock);
2464 c->tid = init_tid(cpu);
2465 }
2466}
2467
2468/*
2469 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2470 * unfreezes the slabs and puts it on the proper list.
2471 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2472 * by the caller.
2473 */
2474static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2475 void *freelist)
2476{
2477 enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2478 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2479 int free_delta = 0;
2480 enum slab_modes mode = M_NONE;
2481 void *nextfree, *freelist_iter, *freelist_tail;
2482 int tail = DEACTIVATE_TO_HEAD;
2483 unsigned long flags = 0;
2484 struct slab new;
2485 struct slab old;
2486
2487 if (slab->freelist) {
2488 stat(s, DEACTIVATE_REMOTE_FREES);
2489 tail = DEACTIVATE_TO_TAIL;
2490 }
2491
2492 /*
2493 * Stage one: Count the objects on cpu's freelist as free_delta and
2494 * remember the last object in freelist_tail for later splicing.
2495 */
2496 freelist_tail = NULL;
2497 freelist_iter = freelist;
2498 while (freelist_iter) {
2499 nextfree = get_freepointer(s, freelist_iter);
2500
2501 /*
2502 * If 'nextfree' is invalid, it is possible that the object at
2503 * 'freelist_iter' is already corrupted. So isolate all objects
2504 * starting at 'freelist_iter' by skipping them.
2505 */
2506 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2507 break;
2508
2509 freelist_tail = freelist_iter;
2510 free_delta++;
2511
2512 freelist_iter = nextfree;
2513 }
2514
2515 /*
2516 * Stage two: Unfreeze the slab while splicing the per-cpu
2517 * freelist to the head of slab's freelist.
2518 *
2519 * Ensure that the slab is unfrozen while the list presence
2520 * reflects the actual number of objects during unfreeze.
2521 *
2522 * We first perform cmpxchg holding lock and insert to list
2523 * when it succeed. If there is mismatch then the slab is not
2524 * unfrozen and number of objects in the slab may have changed.
2525 * Then release lock and retry cmpxchg again.
2526 */
2527redo:
2528
2529 old.freelist = READ_ONCE(slab->freelist);
2530 old.counters = READ_ONCE(slab->counters);
2531 VM_BUG_ON(!old.frozen);
2532
2533 /* Determine target state of the slab */
2534 new.counters = old.counters;
2535 if (freelist_tail) {
2536 new.inuse -= free_delta;
2537 set_freepointer(s, freelist_tail, old.freelist);
2538 new.freelist = freelist;
2539 } else
2540 new.freelist = old.freelist;
2541
2542 new.frozen = 0;
2543
2544 if (!new.inuse && n->nr_partial >= s->min_partial) {
2545 mode = M_FREE;
2546 } else if (new.freelist) {
2547 mode = M_PARTIAL;
2548 /*
2549 * Taking the spinlock removes the possibility that
2550 * acquire_slab() will see a slab that is frozen
2551 */
2552 spin_lock_irqsave(&n->list_lock, flags);
2553 } else {
2554 mode = M_FULL_NOLIST;
2555 }
2556
2557
2558 if (!cmpxchg_double_slab(s, slab,
2559 old.freelist, old.counters,
2560 new.freelist, new.counters,
2561 "unfreezing slab")) {
2562 if (mode == M_PARTIAL)
2563 spin_unlock_irqrestore(&n->list_lock, flags);
2564 goto redo;
2565 }
2566
2567
2568 if (mode == M_PARTIAL) {
2569 add_partial(n, slab, tail);
2570 spin_unlock_irqrestore(&n->list_lock, flags);
2571 stat(s, tail);
2572 } else if (mode == M_FREE) {
2573 stat(s, DEACTIVATE_EMPTY);
2574 discard_slab(s, slab);
2575 stat(s, FREE_SLAB);
2576 } else if (mode == M_FULL_NOLIST) {
2577 stat(s, DEACTIVATE_FULL);
2578 }
2579}
2580
2581#ifdef CONFIG_SLUB_CPU_PARTIAL
2582static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2583{
2584 struct kmem_cache_node *n = NULL, *n2 = NULL;
2585 struct slab *slab, *slab_to_discard = NULL;
2586 unsigned long flags = 0;
2587
2588 while (partial_slab) {
2589 struct slab new;
2590 struct slab old;
2591
2592 slab = partial_slab;
2593 partial_slab = slab->next;
2594
2595 n2 = get_node(s, slab_nid(slab));
2596 if (n != n2) {
2597 if (n)
2598 spin_unlock_irqrestore(&n->list_lock, flags);
2599
2600 n = n2;
2601 spin_lock_irqsave(&n->list_lock, flags);
2602 }
2603
2604 do {
2605
2606 old.freelist = slab->freelist;
2607 old.counters = slab->counters;
2608 VM_BUG_ON(!old.frozen);
2609
2610 new.counters = old.counters;
2611 new.freelist = old.freelist;
2612
2613 new.frozen = 0;
2614
2615 } while (!__cmpxchg_double_slab(s, slab,
2616 old.freelist, old.counters,
2617 new.freelist, new.counters,
2618 "unfreezing slab"));
2619
2620 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2621 slab->next = slab_to_discard;
2622 slab_to_discard = slab;
2623 } else {
2624 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2625 stat(s, FREE_ADD_PARTIAL);
2626 }
2627 }
2628
2629 if (n)
2630 spin_unlock_irqrestore(&n->list_lock, flags);
2631
2632 while (slab_to_discard) {
2633 slab = slab_to_discard;
2634 slab_to_discard = slab_to_discard->next;
2635
2636 stat(s, DEACTIVATE_EMPTY);
2637 discard_slab(s, slab);
2638 stat(s, FREE_SLAB);
2639 }
2640}
2641
2642/*
2643 * Unfreeze all the cpu partial slabs.
2644 */
2645static void unfreeze_partials(struct kmem_cache *s)
2646{
2647 struct slab *partial_slab;
2648 unsigned long flags;
2649
2650 local_lock_irqsave(&s->cpu_slab->lock, flags);
2651 partial_slab = this_cpu_read(s->cpu_slab->partial);
2652 this_cpu_write(s->cpu_slab->partial, NULL);
2653 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2654
2655 if (partial_slab)
2656 __unfreeze_partials(s, partial_slab);
2657}
2658
2659static void unfreeze_partials_cpu(struct kmem_cache *s,
2660 struct kmem_cache_cpu *c)
2661{
2662 struct slab *partial_slab;
2663
2664 partial_slab = slub_percpu_partial(c);
2665 c->partial = NULL;
2666
2667 if (partial_slab)
2668 __unfreeze_partials(s, partial_slab);
2669}
2670
2671/*
2672 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2673 * partial slab slot if available.
2674 *
2675 * If we did not find a slot then simply move all the partials to the
2676 * per node partial list.
2677 */
2678static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2679{
2680 struct slab *oldslab;
2681 struct slab *slab_to_unfreeze = NULL;
2682 unsigned long flags;
2683 int slabs = 0;
2684
2685 local_lock_irqsave(&s->cpu_slab->lock, flags);
2686
2687 oldslab = this_cpu_read(s->cpu_slab->partial);
2688
2689 if (oldslab) {
2690 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2691 /*
2692 * Partial array is full. Move the existing set to the
2693 * per node partial list. Postpone the actual unfreezing
2694 * outside of the critical section.
2695 */
2696 slab_to_unfreeze = oldslab;
2697 oldslab = NULL;
2698 } else {
2699 slabs = oldslab->slabs;
2700 }
2701 }
2702
2703 slabs++;
2704
2705 slab->slabs = slabs;
2706 slab->next = oldslab;
2707
2708 this_cpu_write(s->cpu_slab->partial, slab);
2709
2710 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2711
2712 if (slab_to_unfreeze) {
2713 __unfreeze_partials(s, slab_to_unfreeze);
2714 stat(s, CPU_PARTIAL_DRAIN);
2715 }
2716}
2717
2718#else /* CONFIG_SLUB_CPU_PARTIAL */
2719
2720static inline void unfreeze_partials(struct kmem_cache *s) { }
2721static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2722 struct kmem_cache_cpu *c) { }
2723
2724#endif /* CONFIG_SLUB_CPU_PARTIAL */
2725
2726static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2727{
2728 unsigned long flags;
2729 struct slab *slab;
2730 void *freelist;
2731
2732 local_lock_irqsave(&s->cpu_slab->lock, flags);
2733
2734 slab = c->slab;
2735 freelist = c->freelist;
2736
2737 c->slab = NULL;
2738 c->freelist = NULL;
2739 c->tid = next_tid(c->tid);
2740
2741 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2742
2743 if (slab) {
2744 deactivate_slab(s, slab, freelist);
2745 stat(s, CPUSLAB_FLUSH);
2746 }
2747}
2748
2749static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2750{
2751 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2752 void *freelist = c->freelist;
2753 struct slab *slab = c->slab;
2754
2755 c->slab = NULL;
2756 c->freelist = NULL;
2757 c->tid = next_tid(c->tid);
2758
2759 if (slab) {
2760 deactivate_slab(s, slab, freelist);
2761 stat(s, CPUSLAB_FLUSH);
2762 }
2763
2764 unfreeze_partials_cpu(s, c);
2765}
2766
2767struct slub_flush_work {
2768 struct work_struct work;
2769 struct kmem_cache *s;
2770 bool skip;
2771};
2772
2773/*
2774 * Flush cpu slab.
2775 *
2776 * Called from CPU work handler with migration disabled.
2777 */
2778static void flush_cpu_slab(struct work_struct *w)
2779{
2780 struct kmem_cache *s;
2781 struct kmem_cache_cpu *c;
2782 struct slub_flush_work *sfw;
2783
2784 sfw = container_of(w, struct slub_flush_work, work);
2785
2786 s = sfw->s;
2787 c = this_cpu_ptr(s->cpu_slab);
2788
2789 if (c->slab)
2790 flush_slab(s, c);
2791
2792 unfreeze_partials(s);
2793}
2794
2795static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2796{
2797 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2798
2799 return c->slab || slub_percpu_partial(c);
2800}
2801
2802static DEFINE_MUTEX(flush_lock);
2803static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2804
2805static void flush_all_cpus_locked(struct kmem_cache *s)
2806{
2807 struct slub_flush_work *sfw;
2808 unsigned int cpu;
2809
2810 lockdep_assert_cpus_held();
2811 mutex_lock(&flush_lock);
2812
2813 for_each_online_cpu(cpu) {
2814 sfw = &per_cpu(slub_flush, cpu);
2815 if (!has_cpu_slab(cpu, s)) {
2816 sfw->skip = true;
2817 continue;
2818 }
2819 INIT_WORK(&sfw->work, flush_cpu_slab);
2820 sfw->skip = false;
2821 sfw->s = s;
2822 queue_work_on(cpu, flushwq, &sfw->work);
2823 }
2824
2825 for_each_online_cpu(cpu) {
2826 sfw = &per_cpu(slub_flush, cpu);
2827 if (sfw->skip)
2828 continue;
2829 flush_work(&sfw->work);
2830 }
2831
2832 mutex_unlock(&flush_lock);
2833}
2834
2835static void flush_all(struct kmem_cache *s)
2836{
2837 cpus_read_lock();
2838 flush_all_cpus_locked(s);
2839 cpus_read_unlock();
2840}
2841
2842/*
2843 * Use the cpu notifier to insure that the cpu slabs are flushed when
2844 * necessary.
2845 */
2846static int slub_cpu_dead(unsigned int cpu)
2847{
2848 struct kmem_cache *s;
2849
2850 mutex_lock(&slab_mutex);
2851 list_for_each_entry(s, &slab_caches, list)
2852 __flush_cpu_slab(s, cpu);
2853 mutex_unlock(&slab_mutex);
2854 return 0;
2855}
2856
2857#else /* CONFIG_SLUB_TINY */
2858static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2859static inline void flush_all(struct kmem_cache *s) { }
2860static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2861static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2862#endif /* CONFIG_SLUB_TINY */
2863
2864/*
2865 * Check if the objects in a per cpu structure fit numa
2866 * locality expectations.
2867 */
2868static inline int node_match(struct slab *slab, int node)
2869{
2870#ifdef CONFIG_NUMA
2871 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2872 return 0;
2873#endif
2874 return 1;
2875}
2876
2877#ifdef CONFIG_SLUB_DEBUG
2878static int count_free(struct slab *slab)
2879{
2880 return slab->objects - slab->inuse;
2881}
2882
2883static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2884{
2885 return atomic_long_read(&n->total_objects);
2886}
2887
2888/* Supports checking bulk free of a constructed freelist */
2889static inline bool free_debug_processing(struct kmem_cache *s,
2890 struct slab *slab, void *head, void *tail, int *bulk_cnt,
2891 unsigned long addr, depot_stack_handle_t handle)
2892{
2893 bool checks_ok = false;
2894 void *object = head;
2895 int cnt = 0;
2896
2897 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2898 if (!check_slab(s, slab))
2899 goto out;
2900 }
2901
2902 if (slab->inuse < *bulk_cnt) {
2903 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2904 slab->inuse, *bulk_cnt);
2905 goto out;
2906 }
2907
2908next_object:
2909
2910 if (++cnt > *bulk_cnt)
2911 goto out_cnt;
2912
2913 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2914 if (!free_consistency_checks(s, slab, object, addr))
2915 goto out;
2916 }
2917
2918 if (s->flags & SLAB_STORE_USER)
2919 set_track_update(s, object, TRACK_FREE, addr, handle);
2920 trace(s, slab, object, 0);
2921 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2922 init_object(s, object, SLUB_RED_INACTIVE);
2923
2924 /* Reached end of constructed freelist yet? */
2925 if (object != tail) {
2926 object = get_freepointer(s, object);
2927 goto next_object;
2928 }
2929 checks_ok = true;
2930
2931out_cnt:
2932 if (cnt != *bulk_cnt) {
2933 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2934 *bulk_cnt, cnt);
2935 *bulk_cnt = cnt;
2936 }
2937
2938out:
2939
2940 if (!checks_ok)
2941 slab_fix(s, "Object at 0x%p not freed", object);
2942
2943 return checks_ok;
2944}
2945#endif /* CONFIG_SLUB_DEBUG */
2946
2947#if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
2948static unsigned long count_partial(struct kmem_cache_node *n,
2949 int (*get_count)(struct slab *))
2950{
2951 unsigned long flags;
2952 unsigned long x = 0;
2953 struct slab *slab;
2954
2955 spin_lock_irqsave(&n->list_lock, flags);
2956 list_for_each_entry(slab, &n->partial, slab_list)
2957 x += get_count(slab);
2958 spin_unlock_irqrestore(&n->list_lock, flags);
2959 return x;
2960}
2961#endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2962
2963#ifdef CONFIG_SLUB_DEBUG
2964static noinline void
2965slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2966{
2967 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2968 DEFAULT_RATELIMIT_BURST);
2969 int node;
2970 struct kmem_cache_node *n;
2971
2972 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2973 return;
2974
2975 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2976 nid, gfpflags, &gfpflags);
2977 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2978 s->name, s->object_size, s->size, oo_order(s->oo),
2979 oo_order(s->min));
2980
2981 if (oo_order(s->min) > get_order(s->object_size))
2982 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2983 s->name);
2984
2985 for_each_kmem_cache_node(s, node, n) {
2986 unsigned long nr_slabs;
2987 unsigned long nr_objs;
2988 unsigned long nr_free;
2989
2990 nr_free = count_partial(n, count_free);
2991 nr_slabs = node_nr_slabs(n);
2992 nr_objs = node_nr_objs(n);
2993
2994 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2995 node, nr_slabs, nr_objs, nr_free);
2996 }
2997}
2998#else /* CONFIG_SLUB_DEBUG */
2999static inline void
3000slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3001#endif
3002
3003static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3004{
3005 if (unlikely(slab_test_pfmemalloc(slab)))
3006 return gfp_pfmemalloc_allowed(gfpflags);
3007
3008 return true;
3009}
3010
3011#ifndef CONFIG_SLUB_TINY
3012/*
3013 * Check the slab->freelist and either transfer the freelist to the
3014 * per cpu freelist or deactivate the slab.
3015 *
3016 * The slab is still frozen if the return value is not NULL.
3017 *
3018 * If this function returns NULL then the slab has been unfrozen.
3019 */
3020static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3021{
3022 struct slab new;
3023 unsigned long counters;
3024 void *freelist;
3025
3026 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3027
3028 do {
3029 freelist = slab->freelist;
3030 counters = slab->counters;
3031
3032 new.counters = counters;
3033 VM_BUG_ON(!new.frozen);
3034
3035 new.inuse = slab->objects;
3036 new.frozen = freelist != NULL;
3037
3038 } while (!__cmpxchg_double_slab(s, slab,
3039 freelist, counters,
3040 NULL, new.counters,
3041 "get_freelist"));
3042
3043 return freelist;
3044}
3045
3046/*
3047 * Slow path. The lockless freelist is empty or we need to perform
3048 * debugging duties.
3049 *
3050 * Processing is still very fast if new objects have been freed to the
3051 * regular freelist. In that case we simply take over the regular freelist
3052 * as the lockless freelist and zap the regular freelist.
3053 *
3054 * If that is not working then we fall back to the partial lists. We take the
3055 * first element of the freelist as the object to allocate now and move the
3056 * rest of the freelist to the lockless freelist.
3057 *
3058 * And if we were unable to get a new slab from the partial slab lists then
3059 * we need to allocate a new slab. This is the slowest path since it involves
3060 * a call to the page allocator and the setup of a new slab.
3061 *
3062 * Version of __slab_alloc to use when we know that preemption is
3063 * already disabled (which is the case for bulk allocation).
3064 */
3065static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3066 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3067{
3068 void *freelist;
3069 struct slab *slab;
3070 unsigned long flags;
3071 struct partial_context pc;
3072
3073 stat(s, ALLOC_SLOWPATH);
3074
3075reread_slab:
3076
3077 slab = READ_ONCE(c->slab);
3078 if (!slab) {
3079 /*
3080 * if the node is not online or has no normal memory, just
3081 * ignore the node constraint
3082 */
3083 if (unlikely(node != NUMA_NO_NODE &&
3084 !node_isset(node, slab_nodes)))
3085 node = NUMA_NO_NODE;
3086 goto new_slab;
3087 }
3088redo:
3089
3090 if (unlikely(!node_match(slab, node))) {
3091 /*
3092 * same as above but node_match() being false already
3093 * implies node != NUMA_NO_NODE
3094 */
3095 if (!node_isset(node, slab_nodes)) {
3096 node = NUMA_NO_NODE;
3097 } else {
3098 stat(s, ALLOC_NODE_MISMATCH);
3099 goto deactivate_slab;
3100 }
3101 }
3102
3103 /*
3104 * By rights, we should be searching for a slab page that was
3105 * PFMEMALLOC but right now, we are losing the pfmemalloc
3106 * information when the page leaves the per-cpu allocator
3107 */
3108 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3109 goto deactivate_slab;
3110
3111 /* must check again c->slab in case we got preempted and it changed */
3112 local_lock_irqsave(&s->cpu_slab->lock, flags);
3113 if (unlikely(slab != c->slab)) {
3114 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3115 goto reread_slab;
3116 }
3117 freelist = c->freelist;
3118 if (freelist)
3119 goto load_freelist;
3120
3121 freelist = get_freelist(s, slab);
3122
3123 if (!freelist) {
3124 c->slab = NULL;
3125 c->tid = next_tid(c->tid);
3126 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3127 stat(s, DEACTIVATE_BYPASS);
3128 goto new_slab;
3129 }
3130
3131 stat(s, ALLOC_REFILL);
3132
3133load_freelist:
3134
3135 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3136
3137 /*
3138 * freelist is pointing to the list of objects to be used.
3139 * slab is pointing to the slab from which the objects are obtained.
3140 * That slab must be frozen for per cpu allocations to work.
3141 */
3142 VM_BUG_ON(!c->slab->frozen);
3143 c->freelist = get_freepointer(s, freelist);
3144 c->tid = next_tid(c->tid);
3145 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3146 return freelist;
3147
3148deactivate_slab:
3149
3150 local_lock_irqsave(&s->cpu_slab->lock, flags);
3151 if (slab != c->slab) {
3152 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3153 goto reread_slab;
3154 }
3155 freelist = c->freelist;
3156 c->slab = NULL;
3157 c->freelist = NULL;
3158 c->tid = next_tid(c->tid);
3159 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3160 deactivate_slab(s, slab, freelist);
3161
3162new_slab:
3163
3164 if (slub_percpu_partial(c)) {
3165 local_lock_irqsave(&s->cpu_slab->lock, flags);
3166 if (unlikely(c->slab)) {
3167 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3168 goto reread_slab;
3169 }
3170 if (unlikely(!slub_percpu_partial(c))) {
3171 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3172 /* we were preempted and partial list got empty */
3173 goto new_objects;
3174 }
3175
3176 slab = c->slab = slub_percpu_partial(c);
3177 slub_set_percpu_partial(c, slab);
3178 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3179 stat(s, CPU_PARTIAL_ALLOC);
3180 goto redo;
3181 }
3182
3183new_objects:
3184
3185 pc.flags = gfpflags;
3186 pc.slab = &slab;
3187 pc.orig_size = orig_size;
3188 freelist = get_partial(s, node, &pc);
3189 if (freelist)
3190 goto check_new_slab;
3191
3192 slub_put_cpu_ptr(s->cpu_slab);
3193 slab = new_slab(s, gfpflags, node);
3194 c = slub_get_cpu_ptr(s->cpu_slab);
3195
3196 if (unlikely(!slab)) {
3197 slab_out_of_memory(s, gfpflags, node);
3198 return NULL;
3199 }
3200
3201 stat(s, ALLOC_SLAB);
3202
3203 if (kmem_cache_debug(s)) {
3204 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3205
3206 if (unlikely(!freelist))
3207 goto new_objects;
3208
3209 if (s->flags & SLAB_STORE_USER)
3210 set_track(s, freelist, TRACK_ALLOC, addr);
3211
3212 return freelist;
3213 }
3214
3215 /*
3216 * No other reference to the slab yet so we can
3217 * muck around with it freely without cmpxchg
3218 */
3219 freelist = slab->freelist;
3220 slab->freelist = NULL;
3221 slab->inuse = slab->objects;
3222 slab->frozen = 1;
3223
3224 inc_slabs_node(s, slab_nid(slab), slab->objects);
3225
3226check_new_slab:
3227
3228 if (kmem_cache_debug(s)) {
3229 /*
3230 * For debug caches here we had to go through
3231 * alloc_single_from_partial() so just store the tracking info
3232 * and return the object
3233 */
3234 if (s->flags & SLAB_STORE_USER)
3235 set_track(s, freelist, TRACK_ALLOC, addr);
3236
3237 return freelist;
3238 }
3239
3240 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3241 /*
3242 * For !pfmemalloc_match() case we don't load freelist so that
3243 * we don't make further mismatched allocations easier.
3244 */
3245 deactivate_slab(s, slab, get_freepointer(s, freelist));
3246 return freelist;
3247 }
3248
3249retry_load_slab:
3250
3251 local_lock_irqsave(&s->cpu_slab->lock, flags);
3252 if (unlikely(c->slab)) {
3253 void *flush_freelist = c->freelist;
3254 struct slab *flush_slab = c->slab;
3255
3256 c->slab = NULL;
3257 c->freelist = NULL;
3258 c->tid = next_tid(c->tid);
3259
3260 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3261
3262 deactivate_slab(s, flush_slab, flush_freelist);
3263
3264 stat(s, CPUSLAB_FLUSH);
3265
3266 goto retry_load_slab;
3267 }
3268 c->slab = slab;
3269
3270 goto load_freelist;
3271}
3272
3273/*
3274 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3275 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3276 * pointer.
3277 */
3278static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3279 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3280{
3281 void *p;
3282
3283#ifdef CONFIG_PREEMPT_COUNT
3284 /*
3285 * We may have been preempted and rescheduled on a different
3286 * cpu before disabling preemption. Need to reload cpu area
3287 * pointer.
3288 */
3289 c = slub_get_cpu_ptr(s->cpu_slab);
3290#endif
3291
3292 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3293#ifdef CONFIG_PREEMPT_COUNT
3294 slub_put_cpu_ptr(s->cpu_slab);
3295#endif
3296 return p;
3297}
3298
3299static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3300 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3301{
3302 struct kmem_cache_cpu *c;
3303 struct slab *slab;
3304 unsigned long tid;
3305 void *object;
3306
3307redo:
3308 /*
3309 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3310 * enabled. We may switch back and forth between cpus while
3311 * reading from one cpu area. That does not matter as long
3312 * as we end up on the original cpu again when doing the cmpxchg.
3313 *
3314 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3315 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3316 * the tid. If we are preempted and switched to another cpu between the
3317 * two reads, it's OK as the two are still associated with the same cpu
3318 * and cmpxchg later will validate the cpu.
3319 */
3320 c = raw_cpu_ptr(s->cpu_slab);
3321 tid = READ_ONCE(c->tid);
3322
3323 /*
3324 * Irqless object alloc/free algorithm used here depends on sequence
3325 * of fetching cpu_slab's data. tid should be fetched before anything
3326 * on c to guarantee that object and slab associated with previous tid
3327 * won't be used with current tid. If we fetch tid first, object and
3328 * slab could be one associated with next tid and our alloc/free
3329 * request will be failed. In this case, we will retry. So, no problem.
3330 */
3331 barrier();
3332
3333 /*
3334 * The transaction ids are globally unique per cpu and per operation on
3335 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3336 * occurs on the right processor and that there was no operation on the
3337 * linked list in between.
3338 */
3339
3340 object = c->freelist;
3341 slab = c->slab;
3342
3343 if (!USE_LOCKLESS_FAST_PATH() ||
3344 unlikely(!object || !slab || !node_match(slab, node))) {
3345 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3346 } else {
3347 void *next_object = get_freepointer_safe(s, object);
3348
3349 /*
3350 * The cmpxchg will only match if there was no additional
3351 * operation and if we are on the right processor.
3352 *
3353 * The cmpxchg does the following atomically (without lock
3354 * semantics!)
3355 * 1. Relocate first pointer to the current per cpu area.
3356 * 2. Verify that tid and freelist have not been changed
3357 * 3. If they were not changed replace tid and freelist
3358 *
3359 * Since this is without lock semantics the protection is only
3360 * against code executing on this cpu *not* from access by
3361 * other cpus.
3362 */
3363 if (unlikely(!this_cpu_cmpxchg_double(
3364 s->cpu_slab->freelist, s->cpu_slab->tid,
3365 object, tid,
3366 next_object, next_tid(tid)))) {
3367
3368 note_cmpxchg_failure("slab_alloc", s, tid);
3369 goto redo;
3370 }
3371 prefetch_freepointer(s, next_object);
3372 stat(s, ALLOC_FASTPATH);
3373 }
3374
3375 return object;
3376}
3377#else /* CONFIG_SLUB_TINY */
3378static void *__slab_alloc_node(struct kmem_cache *s,
3379 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3380{
3381 struct partial_context pc;
3382 struct slab *slab;
3383 void *object;
3384
3385 pc.flags = gfpflags;
3386 pc.slab = &slab;
3387 pc.orig_size = orig_size;
3388 object = get_partial(s, node, &pc);
3389
3390 if (object)
3391 return object;
3392
3393 slab = new_slab(s, gfpflags, node);
3394 if (unlikely(!slab)) {
3395 slab_out_of_memory(s, gfpflags, node);
3396 return NULL;
3397 }
3398
3399 object = alloc_single_from_new_slab(s, slab, orig_size);
3400
3401 return object;
3402}
3403#endif /* CONFIG_SLUB_TINY */
3404
3405/*
3406 * If the object has been wiped upon free, make sure it's fully initialized by
3407 * zeroing out freelist pointer.
3408 */
3409static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3410 void *obj)
3411{
3412 if (unlikely(slab_want_init_on_free(s)) && obj)
3413 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3414 0, sizeof(void *));
3415}
3416
3417/*
3418 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3419 * have the fastpath folded into their functions. So no function call
3420 * overhead for requests that can be satisfied on the fastpath.
3421 *
3422 * The fastpath works by first checking if the lockless freelist can be used.
3423 * If not then __slab_alloc is called for slow processing.
3424 *
3425 * Otherwise we can simply pick the next object from the lockless free list.
3426 */
3427static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3428 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3429{
3430 void *object;
3431 struct obj_cgroup *objcg = NULL;
3432 bool init = false;
3433
3434 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3435 if (!s)
3436 return NULL;
3437
3438 object = kfence_alloc(s, orig_size, gfpflags);
3439 if (unlikely(object))
3440 goto out;
3441
3442 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3443
3444 maybe_wipe_obj_freeptr(s, object);
3445 init = slab_want_init_on_alloc(gfpflags, s);
3446
3447out:
3448 /*
3449 * When init equals 'true', like for kzalloc() family, only
3450 * @orig_size bytes might be zeroed instead of s->object_size
3451 */
3452 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3453
3454 return object;
3455}
3456
3457static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3458 gfp_t gfpflags, unsigned long addr, size_t orig_size)
3459{
3460 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3461}
3462
3463static __fastpath_inline
3464void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3465 gfp_t gfpflags)
3466{
3467 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3468
3469 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3470
3471 return ret;
3472}
3473
3474void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3475{
3476 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3477}
3478EXPORT_SYMBOL(kmem_cache_alloc);
3479
3480void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3481 gfp_t gfpflags)
3482{
3483 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3484}
3485EXPORT_SYMBOL(kmem_cache_alloc_lru);
3486
3487void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3488 int node, size_t orig_size,
3489 unsigned long caller)
3490{
3491 return slab_alloc_node(s, NULL, gfpflags, node,
3492 caller, orig_size);
3493}
3494
3495void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3496{
3497 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3498
3499 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3500
3501 return ret;
3502}
3503EXPORT_SYMBOL(kmem_cache_alloc_node);
3504
3505static noinline void free_to_partial_list(
3506 struct kmem_cache *s, struct slab *slab,
3507 void *head, void *tail, int bulk_cnt,
3508 unsigned long addr)
3509{
3510 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3511 struct slab *slab_free = NULL;
3512 int cnt = bulk_cnt;
3513 unsigned long flags;
3514 depot_stack_handle_t handle = 0;
3515
3516 if (s->flags & SLAB_STORE_USER)
3517 handle = set_track_prepare();
3518
3519 spin_lock_irqsave(&n->list_lock, flags);
3520
3521 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3522 void *prior = slab->freelist;
3523
3524 /* Perform the actual freeing while we still hold the locks */
3525 slab->inuse -= cnt;
3526 set_freepointer(s, tail, prior);
3527 slab->freelist = head;
3528
3529 /*
3530 * If the slab is empty, and node's partial list is full,
3531 * it should be discarded anyway no matter it's on full or
3532 * partial list.
3533 */
3534 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3535 slab_free = slab;
3536
3537 if (!prior) {
3538 /* was on full list */
3539 remove_full(s, n, slab);
3540 if (!slab_free) {
3541 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3542 stat(s, FREE_ADD_PARTIAL);
3543 }
3544 } else if (slab_free) {
3545 remove_partial(n, slab);
3546 stat(s, FREE_REMOVE_PARTIAL);
3547 }
3548 }
3549
3550 if (slab_free) {
3551 /*
3552 * Update the counters while still holding n->list_lock to
3553 * prevent spurious validation warnings
3554 */
3555 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3556 }
3557
3558 spin_unlock_irqrestore(&n->list_lock, flags);
3559
3560 if (slab_free) {
3561 stat(s, FREE_SLAB);
3562 free_slab(s, slab_free);
3563 }
3564}
3565
3566/*
3567 * Slow path handling. This may still be called frequently since objects
3568 * have a longer lifetime than the cpu slabs in most processing loads.
3569 *
3570 * So we still attempt to reduce cache line usage. Just take the slab
3571 * lock and free the item. If there is no additional partial slab
3572 * handling required then we can return immediately.
3573 */
3574static void __slab_free(struct kmem_cache *s, struct slab *slab,
3575 void *head, void *tail, int cnt,
3576 unsigned long addr)
3577
3578{
3579 void *prior;
3580 int was_frozen;
3581 struct slab new;
3582 unsigned long counters;
3583 struct kmem_cache_node *n = NULL;
3584 unsigned long flags;
3585
3586 stat(s, FREE_SLOWPATH);
3587
3588 if (kfence_free(head))
3589 return;
3590
3591 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3592 free_to_partial_list(s, slab, head, tail, cnt, addr);
3593 return;
3594 }
3595
3596 do {
3597 if (unlikely(n)) {
3598 spin_unlock_irqrestore(&n->list_lock, flags);
3599 n = NULL;
3600 }
3601 prior = slab->freelist;
3602 counters = slab->counters;
3603 set_freepointer(s, tail, prior);
3604 new.counters = counters;
3605 was_frozen = new.frozen;
3606 new.inuse -= cnt;
3607 if ((!new.inuse || !prior) && !was_frozen) {
3608
3609 if (kmem_cache_has_cpu_partial(s) && !prior) {
3610
3611 /*
3612 * Slab was on no list before and will be
3613 * partially empty
3614 * We can defer the list move and instead
3615 * freeze it.
3616 */
3617 new.frozen = 1;
3618
3619 } else { /* Needs to be taken off a list */
3620
3621 n = get_node(s, slab_nid(slab));
3622 /*
3623 * Speculatively acquire the list_lock.
3624 * If the cmpxchg does not succeed then we may
3625 * drop the list_lock without any processing.
3626 *
3627 * Otherwise the list_lock will synchronize with
3628 * other processors updating the list of slabs.
3629 */
3630 spin_lock_irqsave(&n->list_lock, flags);
3631
3632 }
3633 }
3634
3635 } while (!cmpxchg_double_slab(s, slab,
3636 prior, counters,
3637 head, new.counters,
3638 "__slab_free"));
3639
3640 if (likely(!n)) {
3641
3642 if (likely(was_frozen)) {
3643 /*
3644 * The list lock was not taken therefore no list
3645 * activity can be necessary.
3646 */
3647 stat(s, FREE_FROZEN);
3648 } else if (new.frozen) {
3649 /*
3650 * If we just froze the slab then put it onto the
3651 * per cpu partial list.
3652 */
3653 put_cpu_partial(s, slab, 1);
3654 stat(s, CPU_PARTIAL_FREE);
3655 }
3656
3657 return;
3658 }
3659
3660 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3661 goto slab_empty;
3662
3663 /*
3664 * Objects left in the slab. If it was not on the partial list before
3665 * then add it.
3666 */
3667 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3668 remove_full(s, n, slab);
3669 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3670 stat(s, FREE_ADD_PARTIAL);
3671 }
3672 spin_unlock_irqrestore(&n->list_lock, flags);
3673 return;
3674
3675slab_empty:
3676 if (prior) {
3677 /*
3678 * Slab on the partial list.
3679 */
3680 remove_partial(n, slab);
3681 stat(s, FREE_REMOVE_PARTIAL);
3682 } else {
3683 /* Slab must be on the full list */
3684 remove_full(s, n, slab);
3685 }
3686
3687 spin_unlock_irqrestore(&n->list_lock, flags);
3688 stat(s, FREE_SLAB);
3689 discard_slab(s, slab);
3690}
3691
3692#ifndef CONFIG_SLUB_TINY
3693/*
3694 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3695 * can perform fastpath freeing without additional function calls.
3696 *
3697 * The fastpath is only possible if we are freeing to the current cpu slab
3698 * of this processor. This typically the case if we have just allocated
3699 * the item before.
3700 *
3701 * If fastpath is not possible then fall back to __slab_free where we deal
3702 * with all sorts of special processing.
3703 *
3704 * Bulk free of a freelist with several objects (all pointing to the
3705 * same slab) possible by specifying head and tail ptr, plus objects
3706 * count (cnt). Bulk free indicated by tail pointer being set.
3707 */
3708static __always_inline void do_slab_free(struct kmem_cache *s,
3709 struct slab *slab, void *head, void *tail,
3710 int cnt, unsigned long addr)
3711{
3712 void *tail_obj = tail ? : head;
3713 struct kmem_cache_cpu *c;
3714 unsigned long tid;
3715 void **freelist;
3716
3717redo:
3718 /*
3719 * Determine the currently cpus per cpu slab.
3720 * The cpu may change afterward. However that does not matter since
3721 * data is retrieved via this pointer. If we are on the same cpu
3722 * during the cmpxchg then the free will succeed.
3723 */
3724 c = raw_cpu_ptr(s->cpu_slab);
3725 tid = READ_ONCE(c->tid);
3726
3727 /* Same with comment on barrier() in slab_alloc_node() */
3728 barrier();
3729
3730 if (unlikely(slab != c->slab)) {
3731 __slab_free(s, slab, head, tail_obj, cnt, addr);
3732 return;
3733 }
3734
3735 if (USE_LOCKLESS_FAST_PATH()) {
3736 freelist = READ_ONCE(c->freelist);
3737
3738 set_freepointer(s, tail_obj, freelist);
3739
3740 if (unlikely(!this_cpu_cmpxchg_double(
3741 s->cpu_slab->freelist, s->cpu_slab->tid,
3742 freelist, tid,
3743 head, next_tid(tid)))) {
3744
3745 note_cmpxchg_failure("slab_free", s, tid);
3746 goto redo;
3747 }
3748 } else {
3749 /* Update the free list under the local lock */
3750 local_lock(&s->cpu_slab->lock);
3751 c = this_cpu_ptr(s->cpu_slab);
3752 if (unlikely(slab != c->slab)) {
3753 local_unlock(&s->cpu_slab->lock);
3754 goto redo;
3755 }
3756 tid = c->tid;
3757 freelist = c->freelist;
3758
3759 set_freepointer(s, tail_obj, freelist);
3760 c->freelist = head;
3761 c->tid = next_tid(tid);
3762
3763 local_unlock(&s->cpu_slab->lock);
3764 }
3765 stat(s, FREE_FASTPATH);
3766}
3767#else /* CONFIG_SLUB_TINY */
3768static void do_slab_free(struct kmem_cache *s,
3769 struct slab *slab, void *head, void *tail,
3770 int cnt, unsigned long addr)
3771{
3772 void *tail_obj = tail ? : head;
3773
3774 __slab_free(s, slab, head, tail_obj, cnt, addr);
3775}
3776#endif /* CONFIG_SLUB_TINY */
3777
3778static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3779 void *head, void *tail, void **p, int cnt,
3780 unsigned long addr)
3781{
3782 memcg_slab_free_hook(s, slab, p, cnt);
3783 /*
3784 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3785 * to remove objects, whose reuse must be delayed.
3786 */
3787 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3788 do_slab_free(s, slab, head, tail, cnt, addr);
3789}
3790
3791#ifdef CONFIG_KASAN_GENERIC
3792void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3793{
3794 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3795}
3796#endif
3797
3798void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3799{
3800 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3801}
3802
3803void kmem_cache_free(struct kmem_cache *s, void *x)
3804{
3805 s = cache_from_obj(s, x);
3806 if (!s)
3807 return;
3808 trace_kmem_cache_free(_RET_IP_, x, s);
3809 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3810}
3811EXPORT_SYMBOL(kmem_cache_free);
3812
3813struct detached_freelist {
3814 struct slab *slab;
3815 void *tail;
3816 void *freelist;
3817 int cnt;
3818 struct kmem_cache *s;
3819};
3820
3821/*
3822 * This function progressively scans the array with free objects (with
3823 * a limited look ahead) and extract objects belonging to the same
3824 * slab. It builds a detached freelist directly within the given
3825 * slab/objects. This can happen without any need for
3826 * synchronization, because the objects are owned by running process.
3827 * The freelist is build up as a single linked list in the objects.
3828 * The idea is, that this detached freelist can then be bulk
3829 * transferred to the real freelist(s), but only requiring a single
3830 * synchronization primitive. Look ahead in the array is limited due
3831 * to performance reasons.
3832 */
3833static inline
3834int build_detached_freelist(struct kmem_cache *s, size_t size,
3835 void **p, struct detached_freelist *df)
3836{
3837 int lookahead = 3;
3838 void *object;
3839 struct folio *folio;
3840 size_t same;
3841
3842 object = p[--size];
3843 folio = virt_to_folio(object);
3844 if (!s) {
3845 /* Handle kalloc'ed objects */
3846 if (unlikely(!folio_test_slab(folio))) {
3847 free_large_kmalloc(folio, object);
3848 df->slab = NULL;
3849 return size;
3850 }
3851 /* Derive kmem_cache from object */
3852 df->slab = folio_slab(folio);
3853 df->s = df->slab->slab_cache;
3854 } else {
3855 df->slab = folio_slab(folio);
3856 df->s = cache_from_obj(s, object); /* Support for memcg */
3857 }
3858
3859 /* Start new detached freelist */
3860 df->tail = object;
3861 df->freelist = object;
3862 df->cnt = 1;
3863
3864 if (is_kfence_address(object))
3865 return size;
3866
3867 set_freepointer(df->s, object, NULL);
3868
3869 same = size;
3870 while (size) {
3871 object = p[--size];
3872 /* df->slab is always set at this point */
3873 if (df->slab == virt_to_slab(object)) {
3874 /* Opportunity build freelist */
3875 set_freepointer(df->s, object, df->freelist);
3876 df->freelist = object;
3877 df->cnt++;
3878 same--;
3879 if (size != same)
3880 swap(p[size], p[same]);
3881 continue;
3882 }
3883
3884 /* Limit look ahead search */
3885 if (!--lookahead)
3886 break;
3887 }
3888
3889 return same;
3890}
3891
3892/* Note that interrupts must be enabled when calling this function. */
3893void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3894{
3895 if (!size)
3896 return;
3897
3898 do {
3899 struct detached_freelist df;
3900
3901 size = build_detached_freelist(s, size, p, &df);
3902 if (!df.slab)
3903 continue;
3904
3905 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3906 _RET_IP_);
3907 } while (likely(size));
3908}
3909EXPORT_SYMBOL(kmem_cache_free_bulk);
3910
3911#ifndef CONFIG_SLUB_TINY
3912static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3913 size_t size, void **p, struct obj_cgroup *objcg)
3914{
3915 struct kmem_cache_cpu *c;
3916 unsigned long irqflags;
3917 int i;
3918
3919 /*
3920 * Drain objects in the per cpu slab, while disabling local
3921 * IRQs, which protects against PREEMPT and interrupts
3922 * handlers invoking normal fastpath.
3923 */
3924 c = slub_get_cpu_ptr(s->cpu_slab);
3925 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3926
3927 for (i = 0; i < size; i++) {
3928 void *object = kfence_alloc(s, s->object_size, flags);
3929
3930 if (unlikely(object)) {
3931 p[i] = object;
3932 continue;
3933 }
3934
3935 object = c->freelist;
3936 if (unlikely(!object)) {
3937 /*
3938 * We may have removed an object from c->freelist using
3939 * the fastpath in the previous iteration; in that case,
3940 * c->tid has not been bumped yet.
3941 * Since ___slab_alloc() may reenable interrupts while
3942 * allocating memory, we should bump c->tid now.
3943 */
3944 c->tid = next_tid(c->tid);
3945
3946 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3947
3948 /*
3949 * Invoking slow path likely have side-effect
3950 * of re-populating per CPU c->freelist
3951 */
3952 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3953 _RET_IP_, c, s->object_size);
3954 if (unlikely(!p[i]))
3955 goto error;
3956
3957 c = this_cpu_ptr(s->cpu_slab);
3958 maybe_wipe_obj_freeptr(s, p[i]);
3959
3960 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3961
3962 continue; /* goto for-loop */
3963 }
3964 c->freelist = get_freepointer(s, object);
3965 p[i] = object;
3966 maybe_wipe_obj_freeptr(s, p[i]);
3967 }
3968 c->tid = next_tid(c->tid);
3969 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3970 slub_put_cpu_ptr(s->cpu_slab);
3971
3972 return i;
3973
3974error:
3975 slub_put_cpu_ptr(s->cpu_slab);
3976 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3977 kmem_cache_free_bulk(s, i, p);
3978 return 0;
3979
3980}
3981#else /* CONFIG_SLUB_TINY */
3982static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3983 size_t size, void **p, struct obj_cgroup *objcg)
3984{
3985 int i;
3986
3987 for (i = 0; i < size; i++) {
3988 void *object = kfence_alloc(s, s->object_size, flags);
3989
3990 if (unlikely(object)) {
3991 p[i] = object;
3992 continue;
3993 }
3994
3995 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
3996 _RET_IP_, s->object_size);
3997 if (unlikely(!p[i]))
3998 goto error;
3999
4000 maybe_wipe_obj_freeptr(s, p[i]);
4001 }
4002
4003 return i;
4004
4005error:
4006 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4007 kmem_cache_free_bulk(s, i, p);
4008 return 0;
4009}
4010#endif /* CONFIG_SLUB_TINY */
4011
4012/* Note that interrupts must be enabled when calling this function. */
4013int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4014 void **p)
4015{
4016 int i;
4017 struct obj_cgroup *objcg = NULL;
4018
4019 if (!size)
4020 return 0;
4021
4022 /* memcg and kmem_cache debug support */
4023 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4024 if (unlikely(!s))
4025 return 0;
4026
4027 i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4028
4029 /*
4030 * memcg and kmem_cache debug support and memory initialization.
4031 * Done outside of the IRQ disabled fastpath loop.
4032 */
4033 if (i != 0)
4034 slab_post_alloc_hook(s, objcg, flags, size, p,
4035 slab_want_init_on_alloc(flags, s), s->object_size);
4036 return i;
4037}
4038EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4039
4040
4041/*
4042 * Object placement in a slab is made very easy because we always start at
4043 * offset 0. If we tune the size of the object to the alignment then we can
4044 * get the required alignment by putting one properly sized object after
4045 * another.
4046 *
4047 * Notice that the allocation order determines the sizes of the per cpu
4048 * caches. Each processor has always one slab available for allocations.
4049 * Increasing the allocation order reduces the number of times that slabs
4050 * must be moved on and off the partial lists and is therefore a factor in
4051 * locking overhead.
4052 */
4053
4054/*
4055 * Minimum / Maximum order of slab pages. This influences locking overhead
4056 * and slab fragmentation. A higher order reduces the number of partial slabs
4057 * and increases the number of allocations possible without having to
4058 * take the list_lock.
4059 */
4060static unsigned int slub_min_order;
4061static unsigned int slub_max_order =
4062 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4063static unsigned int slub_min_objects;
4064
4065/*
4066 * Calculate the order of allocation given an slab object size.
4067 *
4068 * The order of allocation has significant impact on performance and other
4069 * system components. Generally order 0 allocations should be preferred since
4070 * order 0 does not cause fragmentation in the page allocator. Larger objects
4071 * be problematic to put into order 0 slabs because there may be too much
4072 * unused space left. We go to a higher order if more than 1/16th of the slab
4073 * would be wasted.
4074 *
4075 * In order to reach satisfactory performance we must ensure that a minimum
4076 * number of objects is in one slab. Otherwise we may generate too much
4077 * activity on the partial lists which requires taking the list_lock. This is
4078 * less a concern for large slabs though which are rarely used.
4079 *
4080 * slub_max_order specifies the order where we begin to stop considering the
4081 * number of objects in a slab as critical. If we reach slub_max_order then
4082 * we try to keep the page order as low as possible. So we accept more waste
4083 * of space in favor of a small page order.
4084 *
4085 * Higher order allocations also allow the placement of more objects in a
4086 * slab and thereby reduce object handling overhead. If the user has
4087 * requested a higher minimum order then we start with that one instead of
4088 * the smallest order which will fit the object.
4089 */
4090static inline unsigned int calc_slab_order(unsigned int size,
4091 unsigned int min_objects, unsigned int max_order,
4092 unsigned int fract_leftover)
4093{
4094 unsigned int min_order = slub_min_order;
4095 unsigned int order;
4096
4097 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4098 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4099
4100 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4101 order <= max_order; order++) {
4102
4103 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4104 unsigned int rem;
4105
4106 rem = slab_size % size;
4107
4108 if (rem <= slab_size / fract_leftover)
4109 break;
4110 }
4111
4112 return order;
4113}
4114
4115static inline int calculate_order(unsigned int size)
4116{
4117 unsigned int order;
4118 unsigned int min_objects;
4119 unsigned int max_objects;
4120 unsigned int nr_cpus;
4121
4122 /*
4123 * Attempt to find best configuration for a slab. This
4124 * works by first attempting to generate a layout with
4125 * the best configuration and backing off gradually.
4126 *
4127 * First we increase the acceptable waste in a slab. Then
4128 * we reduce the minimum objects required in a slab.
4129 */
4130 min_objects = slub_min_objects;
4131 if (!min_objects) {
4132 /*
4133 * Some architectures will only update present cpus when
4134 * onlining them, so don't trust the number if it's just 1. But
4135 * we also don't want to use nr_cpu_ids always, as on some other
4136 * architectures, there can be many possible cpus, but never
4137 * onlined. Here we compromise between trying to avoid too high
4138 * order on systems that appear larger than they are, and too
4139 * low order on systems that appear smaller than they are.
4140 */
4141 nr_cpus = num_present_cpus();
4142 if (nr_cpus <= 1)
4143 nr_cpus = nr_cpu_ids;
4144 min_objects = 4 * (fls(nr_cpus) + 1);
4145 }
4146 max_objects = order_objects(slub_max_order, size);
4147 min_objects = min(min_objects, max_objects);
4148
4149 while (min_objects > 1) {
4150 unsigned int fraction;
4151
4152 fraction = 16;
4153 while (fraction >= 4) {
4154 order = calc_slab_order(size, min_objects,
4155 slub_max_order, fraction);
4156 if (order <= slub_max_order)
4157 return order;
4158 fraction /= 2;
4159 }
4160 min_objects--;
4161 }
4162
4163 /*
4164 * We were unable to place multiple objects in a slab. Now
4165 * lets see if we can place a single object there.
4166 */
4167 order = calc_slab_order(size, 1, slub_max_order, 1);
4168 if (order <= slub_max_order)
4169 return order;
4170
4171 /*
4172 * Doh this slab cannot be placed using slub_max_order.
4173 */
4174 order = calc_slab_order(size, 1, MAX_ORDER, 1);
4175 if (order < MAX_ORDER)
4176 return order;
4177 return -ENOSYS;
4178}
4179
4180static void
4181init_kmem_cache_node(struct kmem_cache_node *n)
4182{
4183 n->nr_partial = 0;
4184 spin_lock_init(&n->list_lock);
4185 INIT_LIST_HEAD(&n->partial);
4186#ifdef CONFIG_SLUB_DEBUG
4187 atomic_long_set(&n->nr_slabs, 0);
4188 atomic_long_set(&n->total_objects, 0);
4189 INIT_LIST_HEAD(&n->full);
4190#endif
4191}
4192
4193#ifndef CONFIG_SLUB_TINY
4194static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4195{
4196 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4197 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4198 sizeof(struct kmem_cache_cpu));
4199
4200 /*
4201 * Must align to double word boundary for the double cmpxchg
4202 * instructions to work; see __pcpu_double_call_return_bool().
4203 */
4204 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4205 2 * sizeof(void *));
4206
4207 if (!s->cpu_slab)
4208 return 0;
4209
4210 init_kmem_cache_cpus(s);
4211
4212 return 1;
4213}
4214#else
4215static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4216{
4217 return 1;
4218}
4219#endif /* CONFIG_SLUB_TINY */
4220
4221static struct kmem_cache *kmem_cache_node;
4222
4223/*
4224 * No kmalloc_node yet so do it by hand. We know that this is the first
4225 * slab on the node for this slabcache. There are no concurrent accesses
4226 * possible.
4227 *
4228 * Note that this function only works on the kmem_cache_node
4229 * when allocating for the kmem_cache_node. This is used for bootstrapping
4230 * memory on a fresh node that has no slab structures yet.
4231 */
4232static void early_kmem_cache_node_alloc(int node)
4233{
4234 struct slab *slab;
4235 struct kmem_cache_node *n;
4236
4237 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4238
4239 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4240
4241 BUG_ON(!slab);
4242 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4243 if (slab_nid(slab) != node) {
4244 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4245 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4246 }
4247
4248 n = slab->freelist;
4249 BUG_ON(!n);
4250#ifdef CONFIG_SLUB_DEBUG
4251 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4252 init_tracking(kmem_cache_node, n);
4253#endif
4254 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4255 slab->freelist = get_freepointer(kmem_cache_node, n);
4256 slab->inuse = 1;
4257 kmem_cache_node->node[node] = n;
4258 init_kmem_cache_node(n);
4259 inc_slabs_node(kmem_cache_node, node, slab->objects);
4260
4261 /*
4262 * No locks need to be taken here as it has just been
4263 * initialized and there is no concurrent access.
4264 */
4265 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
4266}
4267
4268static void free_kmem_cache_nodes(struct kmem_cache *s)
4269{
4270 int node;
4271 struct kmem_cache_node *n;
4272
4273 for_each_kmem_cache_node(s, node, n) {
4274 s->node[node] = NULL;
4275 kmem_cache_free(kmem_cache_node, n);
4276 }
4277}
4278
4279void __kmem_cache_release(struct kmem_cache *s)
4280{
4281 cache_random_seq_destroy(s);
4282#ifndef CONFIG_SLUB_TINY
4283 free_percpu(s->cpu_slab);
4284#endif
4285 free_kmem_cache_nodes(s);
4286}
4287
4288static int init_kmem_cache_nodes(struct kmem_cache *s)
4289{
4290 int node;
4291
4292 for_each_node_mask(node, slab_nodes) {
4293 struct kmem_cache_node *n;
4294
4295 if (slab_state == DOWN) {
4296 early_kmem_cache_node_alloc(node);
4297 continue;
4298 }
4299 n = kmem_cache_alloc_node(kmem_cache_node,
4300 GFP_KERNEL, node);
4301
4302 if (!n) {
4303 free_kmem_cache_nodes(s);
4304 return 0;
4305 }
4306
4307 init_kmem_cache_node(n);
4308 s->node[node] = n;
4309 }
4310 return 1;
4311}
4312
4313static void set_cpu_partial(struct kmem_cache *s)
4314{
4315#ifdef CONFIG_SLUB_CPU_PARTIAL
4316 unsigned int nr_objects;
4317
4318 /*
4319 * cpu_partial determined the maximum number of objects kept in the
4320 * per cpu partial lists of a processor.
4321 *
4322 * Per cpu partial lists mainly contain slabs that just have one
4323 * object freed. If they are used for allocation then they can be
4324 * filled up again with minimal effort. The slab will never hit the
4325 * per node partial lists and therefore no locking will be required.
4326 *
4327 * For backwards compatibility reasons, this is determined as number
4328 * of objects, even though we now limit maximum number of pages, see
4329 * slub_set_cpu_partial()
4330 */
4331 if (!kmem_cache_has_cpu_partial(s))
4332 nr_objects = 0;
4333 else if (s->size >= PAGE_SIZE)
4334 nr_objects = 6;
4335 else if (s->size >= 1024)
4336 nr_objects = 24;
4337 else if (s->size >= 256)
4338 nr_objects = 52;
4339 else
4340 nr_objects = 120;
4341
4342 slub_set_cpu_partial(s, nr_objects);
4343#endif
4344}
4345
4346/*
4347 * calculate_sizes() determines the order and the distribution of data within
4348 * a slab object.
4349 */
4350static int calculate_sizes(struct kmem_cache *s)
4351{
4352 slab_flags_t flags = s->flags;
4353 unsigned int size = s->object_size;
4354 unsigned int order;
4355
4356 /*
4357 * Round up object size to the next word boundary. We can only
4358 * place the free pointer at word boundaries and this determines
4359 * the possible location of the free pointer.
4360 */
4361 size = ALIGN(size, sizeof(void *));
4362
4363#ifdef CONFIG_SLUB_DEBUG
4364 /*
4365 * Determine if we can poison the object itself. If the user of
4366 * the slab may touch the object after free or before allocation
4367 * then we should never poison the object itself.
4368 */
4369 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4370 !s->ctor)
4371 s->flags |= __OBJECT_POISON;
4372 else
4373 s->flags &= ~__OBJECT_POISON;
4374
4375
4376 /*
4377 * If we are Redzoning then check if there is some space between the
4378 * end of the object and the free pointer. If not then add an
4379 * additional word to have some bytes to store Redzone information.
4380 */
4381 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4382 size += sizeof(void *);
4383#endif
4384
4385 /*
4386 * With that we have determined the number of bytes in actual use
4387 * by the object and redzoning.
4388 */
4389 s->inuse = size;
4390
4391 if (slub_debug_orig_size(s) ||
4392 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4393 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4394 s->ctor) {
4395 /*
4396 * Relocate free pointer after the object if it is not
4397 * permitted to overwrite the first word of the object on
4398 * kmem_cache_free.
4399 *
4400 * This is the case if we do RCU, have a constructor or
4401 * destructor, are poisoning the objects, or are
4402 * redzoning an object smaller than sizeof(void *).
4403 *
4404 * The assumption that s->offset >= s->inuse means free
4405 * pointer is outside of the object is used in the
4406 * freeptr_outside_object() function. If that is no
4407 * longer true, the function needs to be modified.
4408 */
4409 s->offset = size;
4410 size += sizeof(void *);
4411 } else {
4412 /*
4413 * Store freelist pointer near middle of object to keep
4414 * it away from the edges of the object to avoid small
4415 * sized over/underflows from neighboring allocations.
4416 */
4417 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4418 }
4419
4420#ifdef CONFIG_SLUB_DEBUG
4421 if (flags & SLAB_STORE_USER) {
4422 /*
4423 * Need to store information about allocs and frees after
4424 * the object.
4425 */
4426 size += 2 * sizeof(struct track);
4427
4428 /* Save the original kmalloc request size */
4429 if (flags & SLAB_KMALLOC)
4430 size += sizeof(unsigned int);
4431 }
4432#endif
4433
4434 kasan_cache_create(s, &size, &s->flags);
4435#ifdef CONFIG_SLUB_DEBUG
4436 if (flags & SLAB_RED_ZONE) {
4437 /*
4438 * Add some empty padding so that we can catch
4439 * overwrites from earlier objects rather than let
4440 * tracking information or the free pointer be
4441 * corrupted if a user writes before the start
4442 * of the object.
4443 */
4444 size += sizeof(void *);
4445
4446 s->red_left_pad = sizeof(void *);
4447 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4448 size += s->red_left_pad;
4449 }
4450#endif
4451
4452 /*
4453 * SLUB stores one object immediately after another beginning from
4454 * offset 0. In order to align the objects we have to simply size
4455 * each object to conform to the alignment.
4456 */
4457 size = ALIGN(size, s->align);
4458 s->size = size;
4459 s->reciprocal_size = reciprocal_value(size);
4460 order = calculate_order(size);
4461
4462 if ((int)order < 0)
4463 return 0;
4464
4465 s->allocflags = 0;
4466 if (order)
4467 s->allocflags |= __GFP_COMP;
4468
4469 if (s->flags & SLAB_CACHE_DMA)
4470 s->allocflags |= GFP_DMA;
4471
4472 if (s->flags & SLAB_CACHE_DMA32)
4473 s->allocflags |= GFP_DMA32;
4474
4475 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4476 s->allocflags |= __GFP_RECLAIMABLE;
4477
4478 /*
4479 * Determine the number of objects per slab
4480 */
4481 s->oo = oo_make(order, size);
4482 s->min = oo_make(get_order(size), size);
4483
4484 return !!oo_objects(s->oo);
4485}
4486
4487static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4488{
4489 s->flags = kmem_cache_flags(s->size, flags, s->name);
4490#ifdef CONFIG_SLAB_FREELIST_HARDENED
4491 s->random = get_random_long();
4492#endif
4493
4494 if (!calculate_sizes(s))
4495 goto error;
4496 if (disable_higher_order_debug) {
4497 /*
4498 * Disable debugging flags that store metadata if the min slab
4499 * order increased.
4500 */
4501 if (get_order(s->size) > get_order(s->object_size)) {
4502 s->flags &= ~DEBUG_METADATA_FLAGS;
4503 s->offset = 0;
4504 if (!calculate_sizes(s))
4505 goto error;
4506 }
4507 }
4508
4509#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4510 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4511 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4512 /* Enable fast mode */
4513 s->flags |= __CMPXCHG_DOUBLE;
4514#endif
4515
4516 /*
4517 * The larger the object size is, the more slabs we want on the partial
4518 * list to avoid pounding the page allocator excessively.
4519 */
4520 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4521 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4522
4523 set_cpu_partial(s);
4524
4525#ifdef CONFIG_NUMA
4526 s->remote_node_defrag_ratio = 1000;
4527#endif
4528
4529 /* Initialize the pre-computed randomized freelist if slab is up */
4530 if (slab_state >= UP) {
4531 if (init_cache_random_seq(s))
4532 goto error;
4533 }
4534
4535 if (!init_kmem_cache_nodes(s))
4536 goto error;
4537
4538 if (alloc_kmem_cache_cpus(s))
4539 return 0;
4540
4541error:
4542 __kmem_cache_release(s);
4543 return -EINVAL;
4544}
4545
4546static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4547 const char *text)
4548{
4549#ifdef CONFIG_SLUB_DEBUG
4550 void *addr = slab_address(slab);
4551 void *p;
4552
4553 slab_err(s, slab, text, s->name);
4554
4555 spin_lock(&object_map_lock);
4556 __fill_map(object_map, s, slab);
4557
4558 for_each_object(p, s, addr, slab->objects) {
4559
4560 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4561 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4562 print_tracking(s, p);
4563 }
4564 }
4565 spin_unlock(&object_map_lock);
4566#endif
4567}
4568
4569/*
4570 * Attempt to free all partial slabs on a node.
4571 * This is called from __kmem_cache_shutdown(). We must take list_lock
4572 * because sysfs file might still access partial list after the shutdowning.
4573 */
4574static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4575{
4576 LIST_HEAD(discard);
4577 struct slab *slab, *h;
4578
4579 BUG_ON(irqs_disabled());
4580 spin_lock_irq(&n->list_lock);
4581 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4582 if (!slab->inuse) {
4583 remove_partial(n, slab);
4584 list_add(&slab->slab_list, &discard);
4585 } else {
4586 list_slab_objects(s, slab,
4587 "Objects remaining in %s on __kmem_cache_shutdown()");
4588 }
4589 }
4590 spin_unlock_irq(&n->list_lock);
4591
4592 list_for_each_entry_safe(slab, h, &discard, slab_list)
4593 discard_slab(s, slab);
4594}
4595
4596bool __kmem_cache_empty(struct kmem_cache *s)
4597{
4598 int node;
4599 struct kmem_cache_node *n;
4600
4601 for_each_kmem_cache_node(s, node, n)
4602 if (n->nr_partial || slabs_node(s, node))
4603 return false;
4604 return true;
4605}
4606
4607/*
4608 * Release all resources used by a slab cache.
4609 */
4610int __kmem_cache_shutdown(struct kmem_cache *s)
4611{
4612 int node;
4613 struct kmem_cache_node *n;
4614
4615 flush_all_cpus_locked(s);
4616 /* Attempt to free all objects */
4617 for_each_kmem_cache_node(s, node, n) {
4618 free_partial(s, n);
4619 if (n->nr_partial || slabs_node(s, node))
4620 return 1;
4621 }
4622 return 0;
4623}
4624
4625#ifdef CONFIG_PRINTK
4626void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4627{
4628 void *base;
4629 int __maybe_unused i;
4630 unsigned int objnr;
4631 void *objp;
4632 void *objp0;
4633 struct kmem_cache *s = slab->slab_cache;
4634 struct track __maybe_unused *trackp;
4635
4636 kpp->kp_ptr = object;
4637 kpp->kp_slab = slab;
4638 kpp->kp_slab_cache = s;
4639 base = slab_address(slab);
4640 objp0 = kasan_reset_tag(object);
4641#ifdef CONFIG_SLUB_DEBUG
4642 objp = restore_red_left(s, objp0);
4643#else
4644 objp = objp0;
4645#endif
4646 objnr = obj_to_index(s, slab, objp);
4647 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4648 objp = base + s->size * objnr;
4649 kpp->kp_objp = objp;
4650 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4651 || (objp - base) % s->size) ||
4652 !(s->flags & SLAB_STORE_USER))
4653 return;
4654#ifdef CONFIG_SLUB_DEBUG
4655 objp = fixup_red_left(s, objp);
4656 trackp = get_track(s, objp, TRACK_ALLOC);
4657 kpp->kp_ret = (void *)trackp->addr;
4658#ifdef CONFIG_STACKDEPOT
4659 {
4660 depot_stack_handle_t handle;
4661 unsigned long *entries;
4662 unsigned int nr_entries;
4663
4664 handle = READ_ONCE(trackp->handle);
4665 if (handle) {
4666 nr_entries = stack_depot_fetch(handle, &entries);
4667 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4668 kpp->kp_stack[i] = (void *)entries[i];
4669 }
4670
4671 trackp = get_track(s, objp, TRACK_FREE);
4672 handle = READ_ONCE(trackp->handle);
4673 if (handle) {
4674 nr_entries = stack_depot_fetch(handle, &entries);
4675 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4676 kpp->kp_free_stack[i] = (void *)entries[i];
4677 }
4678 }
4679#endif
4680#endif
4681}
4682#endif
4683
4684/********************************************************************
4685 * Kmalloc subsystem
4686 *******************************************************************/
4687
4688static int __init setup_slub_min_order(char *str)
4689{
4690 get_option(&str, (int *)&slub_min_order);
4691
4692 return 1;
4693}
4694
4695__setup("slub_min_order=", setup_slub_min_order);
4696
4697static int __init setup_slub_max_order(char *str)
4698{
4699 get_option(&str, (int *)&slub_max_order);
4700 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4701
4702 return 1;
4703}
4704
4705__setup("slub_max_order=", setup_slub_max_order);
4706
4707static int __init setup_slub_min_objects(char *str)
4708{
4709 get_option(&str, (int *)&slub_min_objects);
4710
4711 return 1;
4712}
4713
4714__setup("slub_min_objects=", setup_slub_min_objects);
4715
4716#ifdef CONFIG_HARDENED_USERCOPY
4717/*
4718 * Rejects incorrectly sized objects and objects that are to be copied
4719 * to/from userspace but do not fall entirely within the containing slab
4720 * cache's usercopy region.
4721 *
4722 * Returns NULL if check passes, otherwise const char * to name of cache
4723 * to indicate an error.
4724 */
4725void __check_heap_object(const void *ptr, unsigned long n,
4726 const struct slab *slab, bool to_user)
4727{
4728 struct kmem_cache *s;
4729 unsigned int offset;
4730 bool is_kfence = is_kfence_address(ptr);
4731
4732 ptr = kasan_reset_tag(ptr);
4733
4734 /* Find object and usable object size. */
4735 s = slab->slab_cache;
4736
4737 /* Reject impossible pointers. */
4738 if (ptr < slab_address(slab))
4739 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4740 to_user, 0, n);
4741
4742 /* Find offset within object. */
4743 if (is_kfence)
4744 offset = ptr - kfence_object_start(ptr);
4745 else
4746 offset = (ptr - slab_address(slab)) % s->size;
4747
4748 /* Adjust for redzone and reject if within the redzone. */
4749 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4750 if (offset < s->red_left_pad)
4751 usercopy_abort("SLUB object in left red zone",
4752 s->name, to_user, offset, n);
4753 offset -= s->red_left_pad;
4754 }
4755
4756 /* Allow address range falling entirely within usercopy region. */
4757 if (offset >= s->useroffset &&
4758 offset - s->useroffset <= s->usersize &&
4759 n <= s->useroffset - offset + s->usersize)
4760 return;
4761
4762 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4763}
4764#endif /* CONFIG_HARDENED_USERCOPY */
4765
4766#define SHRINK_PROMOTE_MAX 32
4767
4768/*
4769 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4770 * up most to the head of the partial lists. New allocations will then
4771 * fill those up and thus they can be removed from the partial lists.
4772 *
4773 * The slabs with the least items are placed last. This results in them
4774 * being allocated from last increasing the chance that the last objects
4775 * are freed in them.
4776 */
4777static int __kmem_cache_do_shrink(struct kmem_cache *s)
4778{
4779 int node;
4780 int i;
4781 struct kmem_cache_node *n;
4782 struct slab *slab;
4783 struct slab *t;
4784 struct list_head discard;
4785 struct list_head promote[SHRINK_PROMOTE_MAX];
4786 unsigned long flags;
4787 int ret = 0;
4788
4789 for_each_kmem_cache_node(s, node, n) {
4790 INIT_LIST_HEAD(&discard);
4791 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4792 INIT_LIST_HEAD(promote + i);
4793
4794 spin_lock_irqsave(&n->list_lock, flags);
4795
4796 /*
4797 * Build lists of slabs to discard or promote.
4798 *
4799 * Note that concurrent frees may occur while we hold the
4800 * list_lock. slab->inuse here is the upper limit.
4801 */
4802 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4803 int free = slab->objects - slab->inuse;
4804
4805 /* Do not reread slab->inuse */
4806 barrier();
4807
4808 /* We do not keep full slabs on the list */
4809 BUG_ON(free <= 0);
4810
4811 if (free == slab->objects) {
4812 list_move(&slab->slab_list, &discard);
4813 n->nr_partial--;
4814 dec_slabs_node(s, node, slab->objects);
4815 } else if (free <= SHRINK_PROMOTE_MAX)
4816 list_move(&slab->slab_list, promote + free - 1);
4817 }
4818
4819 /*
4820 * Promote the slabs filled up most to the head of the
4821 * partial list.
4822 */
4823 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4824 list_splice(promote + i, &n->partial);
4825
4826 spin_unlock_irqrestore(&n->list_lock, flags);
4827
4828 /* Release empty slabs */
4829 list_for_each_entry_safe(slab, t, &discard, slab_list)
4830 free_slab(s, slab);
4831
4832 if (slabs_node(s, node))
4833 ret = 1;
4834 }
4835
4836 return ret;
4837}
4838
4839int __kmem_cache_shrink(struct kmem_cache *s)
4840{
4841 flush_all(s);
4842 return __kmem_cache_do_shrink(s);
4843}
4844
4845static int slab_mem_going_offline_callback(void *arg)
4846{
4847 struct kmem_cache *s;
4848
4849 mutex_lock(&slab_mutex);
4850 list_for_each_entry(s, &slab_caches, list) {
4851 flush_all_cpus_locked(s);
4852 __kmem_cache_do_shrink(s);
4853 }
4854 mutex_unlock(&slab_mutex);
4855
4856 return 0;
4857}
4858
4859static void slab_mem_offline_callback(void *arg)
4860{
4861 struct memory_notify *marg = arg;
4862 int offline_node;
4863
4864 offline_node = marg->status_change_nid_normal;
4865
4866 /*
4867 * If the node still has available memory. we need kmem_cache_node
4868 * for it yet.
4869 */
4870 if (offline_node < 0)
4871 return;
4872
4873 mutex_lock(&slab_mutex);
4874 node_clear(offline_node, slab_nodes);
4875 /*
4876 * We no longer free kmem_cache_node structures here, as it would be
4877 * racy with all get_node() users, and infeasible to protect them with
4878 * slab_mutex.
4879 */
4880 mutex_unlock(&slab_mutex);
4881}
4882
4883static int slab_mem_going_online_callback(void *arg)
4884{
4885 struct kmem_cache_node *n;
4886 struct kmem_cache *s;
4887 struct memory_notify *marg = arg;
4888 int nid = marg->status_change_nid_normal;
4889 int ret = 0;
4890
4891 /*
4892 * If the node's memory is already available, then kmem_cache_node is
4893 * already created. Nothing to do.
4894 */
4895 if (nid < 0)
4896 return 0;
4897
4898 /*
4899 * We are bringing a node online. No memory is available yet. We must
4900 * allocate a kmem_cache_node structure in order to bring the node
4901 * online.
4902 */
4903 mutex_lock(&slab_mutex);
4904 list_for_each_entry(s, &slab_caches, list) {
4905 /*
4906 * The structure may already exist if the node was previously
4907 * onlined and offlined.
4908 */
4909 if (get_node(s, nid))
4910 continue;
4911 /*
4912 * XXX: kmem_cache_alloc_node will fallback to other nodes
4913 * since memory is not yet available from the node that
4914 * is brought up.
4915 */
4916 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4917 if (!n) {
4918 ret = -ENOMEM;
4919 goto out;
4920 }
4921 init_kmem_cache_node(n);
4922 s->node[nid] = n;
4923 }
4924 /*
4925 * Any cache created after this point will also have kmem_cache_node
4926 * initialized for the new node.
4927 */
4928 node_set(nid, slab_nodes);
4929out:
4930 mutex_unlock(&slab_mutex);
4931 return ret;
4932}
4933
4934static int slab_memory_callback(struct notifier_block *self,
4935 unsigned long action, void *arg)
4936{
4937 int ret = 0;
4938
4939 switch (action) {
4940 case MEM_GOING_ONLINE:
4941 ret = slab_mem_going_online_callback(arg);
4942 break;
4943 case MEM_GOING_OFFLINE:
4944 ret = slab_mem_going_offline_callback(arg);
4945 break;
4946 case MEM_OFFLINE:
4947 case MEM_CANCEL_ONLINE:
4948 slab_mem_offline_callback(arg);
4949 break;
4950 case MEM_ONLINE:
4951 case MEM_CANCEL_OFFLINE:
4952 break;
4953 }
4954 if (ret)
4955 ret = notifier_from_errno(ret);
4956 else
4957 ret = NOTIFY_OK;
4958 return ret;
4959}
4960
4961/********************************************************************
4962 * Basic setup of slabs
4963 *******************************************************************/
4964
4965/*
4966 * Used for early kmem_cache structures that were allocated using
4967 * the page allocator. Allocate them properly then fix up the pointers
4968 * that may be pointing to the wrong kmem_cache structure.
4969 */
4970
4971static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4972{
4973 int node;
4974 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4975 struct kmem_cache_node *n;
4976
4977 memcpy(s, static_cache, kmem_cache->object_size);
4978
4979 /*
4980 * This runs very early, and only the boot processor is supposed to be
4981 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4982 * IPIs around.
4983 */
4984 __flush_cpu_slab(s, smp_processor_id());
4985 for_each_kmem_cache_node(s, node, n) {
4986 struct slab *p;
4987
4988 list_for_each_entry(p, &n->partial, slab_list)
4989 p->slab_cache = s;
4990
4991#ifdef CONFIG_SLUB_DEBUG
4992 list_for_each_entry(p, &n->full, slab_list)
4993 p->slab_cache = s;
4994#endif
4995 }
4996 list_add(&s->list, &slab_caches);
4997 return s;
4998}
4999
5000void __init kmem_cache_init(void)
5001{
5002 static __initdata struct kmem_cache boot_kmem_cache,
5003 boot_kmem_cache_node;
5004 int node;
5005
5006 if (debug_guardpage_minorder())
5007 slub_max_order = 0;
5008
5009 /* Print slub debugging pointers without hashing */
5010 if (__slub_debug_enabled())
5011 no_hash_pointers_enable(NULL);
5012
5013 kmem_cache_node = &boot_kmem_cache_node;
5014 kmem_cache = &boot_kmem_cache;
5015
5016 /*
5017 * Initialize the nodemask for which we will allocate per node
5018 * structures. Here we don't need taking slab_mutex yet.
5019 */
5020 for_each_node_state(node, N_NORMAL_MEMORY)
5021 node_set(node, slab_nodes);
5022
5023 create_boot_cache(kmem_cache_node, "kmem_cache_node",
5024 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5025
5026 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5027
5028 /* Able to allocate the per node structures */
5029 slab_state = PARTIAL;
5030
5031 create_boot_cache(kmem_cache, "kmem_cache",
5032 offsetof(struct kmem_cache, node) +
5033 nr_node_ids * sizeof(struct kmem_cache_node *),
5034 SLAB_HWCACHE_ALIGN, 0, 0);
5035
5036 kmem_cache = bootstrap(&boot_kmem_cache);
5037 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5038
5039 /* Now we can use the kmem_cache to allocate kmalloc slabs */
5040 setup_kmalloc_cache_index_table();
5041 create_kmalloc_caches(0);
5042
5043 /* Setup random freelists for each cache */
5044 init_freelist_randomization();
5045
5046 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5047 slub_cpu_dead);
5048
5049 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5050 cache_line_size(),
5051 slub_min_order, slub_max_order, slub_min_objects,
5052 nr_cpu_ids, nr_node_ids);
5053}
5054
5055void __init kmem_cache_init_late(void)
5056{
5057#ifndef CONFIG_SLUB_TINY
5058 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5059 WARN_ON(!flushwq);
5060#endif
5061}
5062
5063struct kmem_cache *
5064__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5065 slab_flags_t flags, void (*ctor)(void *))
5066{
5067 struct kmem_cache *s;
5068
5069 s = find_mergeable(size, align, flags, name, ctor);
5070 if (s) {
5071 if (sysfs_slab_alias(s, name))
5072 return NULL;
5073
5074 s->refcount++;
5075
5076 /*
5077 * Adjust the object sizes so that we clear
5078 * the complete object on kzalloc.
5079 */
5080 s->object_size = max(s->object_size, size);
5081 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5082 }
5083
5084 return s;
5085}
5086
5087int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5088{
5089 int err;
5090
5091 err = kmem_cache_open(s, flags);
5092 if (err)
5093 return err;
5094
5095 /* Mutex is not taken during early boot */
5096 if (slab_state <= UP)
5097 return 0;
5098
5099 err = sysfs_slab_add(s);
5100 if (err) {
5101 __kmem_cache_release(s);
5102 return err;
5103 }
5104
5105 if (s->flags & SLAB_STORE_USER)
5106 debugfs_slab_add(s);
5107
5108 return 0;
5109}
5110
5111#ifdef SLAB_SUPPORTS_SYSFS
5112static int count_inuse(struct slab *slab)
5113{
5114 return slab->inuse;
5115}
5116
5117static int count_total(struct slab *slab)
5118{
5119 return slab->objects;
5120}
5121#endif
5122
5123#ifdef CONFIG_SLUB_DEBUG
5124static void validate_slab(struct kmem_cache *s, struct slab *slab,
5125 unsigned long *obj_map)
5126{
5127 void *p;
5128 void *addr = slab_address(slab);
5129
5130 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5131 return;
5132
5133 /* Now we know that a valid freelist exists */
5134 __fill_map(obj_map, s, slab);
5135 for_each_object(p, s, addr, slab->objects) {
5136 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5137 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5138
5139 if (!check_object(s, slab, p, val))
5140 break;
5141 }
5142}
5143
5144static int validate_slab_node(struct kmem_cache *s,
5145 struct kmem_cache_node *n, unsigned long *obj_map)
5146{
5147 unsigned long count = 0;
5148 struct slab *slab;
5149 unsigned long flags;
5150
5151 spin_lock_irqsave(&n->list_lock, flags);
5152
5153 list_for_each_entry(slab, &n->partial, slab_list) {
5154 validate_slab(s, slab, obj_map);
5155 count++;
5156 }
5157 if (count != n->nr_partial) {
5158 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5159 s->name, count, n->nr_partial);
5160 slab_add_kunit_errors();
5161 }
5162
5163 if (!(s->flags & SLAB_STORE_USER))
5164 goto out;
5165
5166 list_for_each_entry(slab, &n->full, slab_list) {
5167 validate_slab(s, slab, obj_map);
5168 count++;
5169 }
5170 if (count != atomic_long_read(&n->nr_slabs)) {
5171 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5172 s->name, count, atomic_long_read(&n->nr_slabs));
5173 slab_add_kunit_errors();
5174 }
5175
5176out:
5177 spin_unlock_irqrestore(&n->list_lock, flags);
5178 return count;
5179}
5180
5181long validate_slab_cache(struct kmem_cache *s)
5182{
5183 int node;
5184 unsigned long count = 0;
5185 struct kmem_cache_node *n;
5186 unsigned long *obj_map;
5187
5188 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5189 if (!obj_map)
5190 return -ENOMEM;
5191
5192 flush_all(s);
5193 for_each_kmem_cache_node(s, node, n)
5194 count += validate_slab_node(s, n, obj_map);
5195
5196 bitmap_free(obj_map);
5197
5198 return count;
5199}
5200EXPORT_SYMBOL(validate_slab_cache);
5201
5202#ifdef CONFIG_DEBUG_FS
5203/*
5204 * Generate lists of code addresses where slabcache objects are allocated
5205 * and freed.
5206 */
5207
5208struct location {
5209 depot_stack_handle_t handle;
5210 unsigned long count;
5211 unsigned long addr;
5212 unsigned long waste;
5213 long long sum_time;
5214 long min_time;
5215 long max_time;
5216 long min_pid;
5217 long max_pid;
5218 DECLARE_BITMAP(cpus, NR_CPUS);
5219 nodemask_t nodes;
5220};
5221
5222struct loc_track {
5223 unsigned long max;
5224 unsigned long count;
5225 struct location *loc;
5226 loff_t idx;
5227};
5228
5229static struct dentry *slab_debugfs_root;
5230
5231static void free_loc_track(struct loc_track *t)
5232{
5233 if (t->max)
5234 free_pages((unsigned long)t->loc,
5235 get_order(sizeof(struct location) * t->max));
5236}
5237
5238static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5239{
5240 struct location *l;
5241 int order;
5242
5243 order = get_order(sizeof(struct location) * max);
5244
5245 l = (void *)__get_free_pages(flags, order);
5246 if (!l)
5247 return 0;
5248
5249 if (t->count) {
5250 memcpy(l, t->loc, sizeof(struct location) * t->count);
5251 free_loc_track(t);
5252 }
5253 t->max = max;
5254 t->loc = l;
5255 return 1;
5256}
5257
5258static int add_location(struct loc_track *t, struct kmem_cache *s,
5259 const struct track *track,
5260 unsigned int orig_size)
5261{
5262 long start, end, pos;
5263 struct location *l;
5264 unsigned long caddr, chandle, cwaste;
5265 unsigned long age = jiffies - track->when;
5266 depot_stack_handle_t handle = 0;
5267 unsigned int waste = s->object_size - orig_size;
5268
5269#ifdef CONFIG_STACKDEPOT
5270 handle = READ_ONCE(track->handle);
5271#endif
5272 start = -1;
5273 end = t->count;
5274
5275 for ( ; ; ) {
5276 pos = start + (end - start + 1) / 2;
5277
5278 /*
5279 * There is nothing at "end". If we end up there
5280 * we need to add something to before end.
5281 */
5282 if (pos == end)
5283 break;
5284
5285 l = &t->loc[pos];
5286 caddr = l->addr;
5287 chandle = l->handle;
5288 cwaste = l->waste;
5289 if ((track->addr == caddr) && (handle == chandle) &&
5290 (waste == cwaste)) {
5291
5292 l->count++;
5293 if (track->when) {
5294 l->sum_time += age;
5295 if (age < l->min_time)
5296 l->min_time = age;
5297 if (age > l->max_time)
5298 l->max_time = age;
5299
5300 if (track->pid < l->min_pid)
5301 l->min_pid = track->pid;
5302 if (track->pid > l->max_pid)
5303 l->max_pid = track->pid;
5304
5305 cpumask_set_cpu(track->cpu,
5306 to_cpumask(l->cpus));
5307 }
5308 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5309 return 1;
5310 }
5311
5312 if (track->addr < caddr)
5313 end = pos;
5314 else if (track->addr == caddr && handle < chandle)
5315 end = pos;
5316 else if (track->addr == caddr && handle == chandle &&
5317 waste < cwaste)
5318 end = pos;
5319 else
5320 start = pos;
5321 }
5322
5323 /*
5324 * Not found. Insert new tracking element.
5325 */
5326 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5327 return 0;
5328
5329 l = t->loc + pos;
5330 if (pos < t->count)
5331 memmove(l + 1, l,
5332 (t->count - pos) * sizeof(struct location));
5333 t->count++;
5334 l->count = 1;
5335 l->addr = track->addr;
5336 l->sum_time = age;
5337 l->min_time = age;
5338 l->max_time = age;
5339 l->min_pid = track->pid;
5340 l->max_pid = track->pid;
5341 l->handle = handle;
5342 l->waste = waste;
5343 cpumask_clear(to_cpumask(l->cpus));
5344 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5345 nodes_clear(l->nodes);
5346 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5347 return 1;
5348}
5349
5350static void process_slab(struct loc_track *t, struct kmem_cache *s,
5351 struct slab *slab, enum track_item alloc,
5352 unsigned long *obj_map)
5353{
5354 void *addr = slab_address(slab);
5355 bool is_alloc = (alloc == TRACK_ALLOC);
5356 void *p;
5357
5358 __fill_map(obj_map, s, slab);
5359
5360 for_each_object(p, s, addr, slab->objects)
5361 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5362 add_location(t, s, get_track(s, p, alloc),
5363 is_alloc ? get_orig_size(s, p) :
5364 s->object_size);
5365}
5366#endif /* CONFIG_DEBUG_FS */
5367#endif /* CONFIG_SLUB_DEBUG */
5368
5369#ifdef SLAB_SUPPORTS_SYSFS
5370enum slab_stat_type {
5371 SL_ALL, /* All slabs */
5372 SL_PARTIAL, /* Only partially allocated slabs */
5373 SL_CPU, /* Only slabs used for cpu caches */
5374 SL_OBJECTS, /* Determine allocated objects not slabs */
5375 SL_TOTAL /* Determine object capacity not slabs */
5376};
5377
5378#define SO_ALL (1 << SL_ALL)
5379#define SO_PARTIAL (1 << SL_PARTIAL)
5380#define SO_CPU (1 << SL_CPU)
5381#define SO_OBJECTS (1 << SL_OBJECTS)
5382#define SO_TOTAL (1 << SL_TOTAL)
5383
5384static ssize_t show_slab_objects(struct kmem_cache *s,
5385 char *buf, unsigned long flags)
5386{
5387 unsigned long total = 0;
5388 int node;
5389 int x;
5390 unsigned long *nodes;
5391 int len = 0;
5392
5393 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5394 if (!nodes)
5395 return -ENOMEM;
5396
5397 if (flags & SO_CPU) {
5398 int cpu;
5399
5400 for_each_possible_cpu(cpu) {
5401 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5402 cpu);
5403 int node;
5404 struct slab *slab;
5405
5406 slab = READ_ONCE(c->slab);
5407 if (!slab)
5408 continue;
5409
5410 node = slab_nid(slab);
5411 if (flags & SO_TOTAL)
5412 x = slab->objects;
5413 else if (flags & SO_OBJECTS)
5414 x = slab->inuse;
5415 else
5416 x = 1;
5417
5418 total += x;
5419 nodes[node] += x;
5420
5421#ifdef CONFIG_SLUB_CPU_PARTIAL
5422 slab = slub_percpu_partial_read_once(c);
5423 if (slab) {
5424 node = slab_nid(slab);
5425 if (flags & SO_TOTAL)
5426 WARN_ON_ONCE(1);
5427 else if (flags & SO_OBJECTS)
5428 WARN_ON_ONCE(1);
5429 else
5430 x = slab->slabs;
5431 total += x;
5432 nodes[node] += x;
5433 }
5434#endif
5435 }
5436 }
5437
5438 /*
5439 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5440 * already held which will conflict with an existing lock order:
5441 *
5442 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5443 *
5444 * We don't really need mem_hotplug_lock (to hold off
5445 * slab_mem_going_offline_callback) here because slab's memory hot
5446 * unplug code doesn't destroy the kmem_cache->node[] data.
5447 */
5448
5449#ifdef CONFIG_SLUB_DEBUG
5450 if (flags & SO_ALL) {
5451 struct kmem_cache_node *n;
5452
5453 for_each_kmem_cache_node(s, node, n) {
5454
5455 if (flags & SO_TOTAL)
5456 x = atomic_long_read(&n->total_objects);
5457 else if (flags & SO_OBJECTS)
5458 x = atomic_long_read(&n->total_objects) -
5459 count_partial(n, count_free);
5460 else
5461 x = atomic_long_read(&n->nr_slabs);
5462 total += x;
5463 nodes[node] += x;
5464 }
5465
5466 } else
5467#endif
5468 if (flags & SO_PARTIAL) {
5469 struct kmem_cache_node *n;
5470
5471 for_each_kmem_cache_node(s, node, n) {
5472 if (flags & SO_TOTAL)
5473 x = count_partial(n, count_total);
5474 else if (flags & SO_OBJECTS)
5475 x = count_partial(n, count_inuse);
5476 else
5477 x = n->nr_partial;
5478 total += x;
5479 nodes[node] += x;
5480 }
5481 }
5482
5483 len += sysfs_emit_at(buf, len, "%lu", total);
5484#ifdef CONFIG_NUMA
5485 for (node = 0; node < nr_node_ids; node++) {
5486 if (nodes[node])
5487 len += sysfs_emit_at(buf, len, " N%d=%lu",
5488 node, nodes[node]);
5489 }
5490#endif
5491 len += sysfs_emit_at(buf, len, "\n");
5492 kfree(nodes);
5493
5494 return len;
5495}
5496
5497#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5498#define to_slab(n) container_of(n, struct kmem_cache, kobj)
5499
5500struct slab_attribute {
5501 struct attribute attr;
5502 ssize_t (*show)(struct kmem_cache *s, char *buf);
5503 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5504};
5505
5506#define SLAB_ATTR_RO(_name) \
5507 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5508
5509#define SLAB_ATTR(_name) \
5510 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5511
5512static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5513{
5514 return sysfs_emit(buf, "%u\n", s->size);
5515}
5516SLAB_ATTR_RO(slab_size);
5517
5518static ssize_t align_show(struct kmem_cache *s, char *buf)
5519{
5520 return sysfs_emit(buf, "%u\n", s->align);
5521}
5522SLAB_ATTR_RO(align);
5523
5524static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5525{
5526 return sysfs_emit(buf, "%u\n", s->object_size);
5527}
5528SLAB_ATTR_RO(object_size);
5529
5530static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5531{
5532 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5533}
5534SLAB_ATTR_RO(objs_per_slab);
5535
5536static ssize_t order_show(struct kmem_cache *s, char *buf)
5537{
5538 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5539}
5540SLAB_ATTR_RO(order);
5541
5542static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5543{
5544 return sysfs_emit(buf, "%lu\n", s->min_partial);
5545}
5546
5547static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5548 size_t length)
5549{
5550 unsigned long min;
5551 int err;
5552
5553 err = kstrtoul(buf, 10, &min);
5554 if (err)
5555 return err;
5556
5557 s->min_partial = min;
5558 return length;
5559}
5560SLAB_ATTR(min_partial);
5561
5562static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5563{
5564 unsigned int nr_partial = 0;
5565#ifdef CONFIG_SLUB_CPU_PARTIAL
5566 nr_partial = s->cpu_partial;
5567#endif
5568
5569 return sysfs_emit(buf, "%u\n", nr_partial);
5570}
5571
5572static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5573 size_t length)
5574{
5575 unsigned int objects;
5576 int err;
5577
5578 err = kstrtouint(buf, 10, &objects);
5579 if (err)
5580 return err;
5581 if (objects && !kmem_cache_has_cpu_partial(s))
5582 return -EINVAL;
5583
5584 slub_set_cpu_partial(s, objects);
5585 flush_all(s);
5586 return length;
5587}
5588SLAB_ATTR(cpu_partial);
5589
5590static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5591{
5592 if (!s->ctor)
5593 return 0;
5594 return sysfs_emit(buf, "%pS\n", s->ctor);
5595}
5596SLAB_ATTR_RO(ctor);
5597
5598static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5599{
5600 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5601}
5602SLAB_ATTR_RO(aliases);
5603
5604static ssize_t partial_show(struct kmem_cache *s, char *buf)
5605{
5606 return show_slab_objects(s, buf, SO_PARTIAL);
5607}
5608SLAB_ATTR_RO(partial);
5609
5610static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5611{
5612 return show_slab_objects(s, buf, SO_CPU);
5613}
5614SLAB_ATTR_RO(cpu_slabs);
5615
5616static ssize_t objects_show(struct kmem_cache *s, char *buf)
5617{
5618 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5619}
5620SLAB_ATTR_RO(objects);
5621
5622static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5623{
5624 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5625}
5626SLAB_ATTR_RO(objects_partial);
5627
5628static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5629{
5630 int objects = 0;
5631 int slabs = 0;
5632 int cpu __maybe_unused;
5633 int len = 0;
5634
5635#ifdef CONFIG_SLUB_CPU_PARTIAL
5636 for_each_online_cpu(cpu) {
5637 struct slab *slab;
5638
5639 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5640
5641 if (slab)
5642 slabs += slab->slabs;
5643 }
5644#endif
5645
5646 /* Approximate half-full slabs, see slub_set_cpu_partial() */
5647 objects = (slabs * oo_objects(s->oo)) / 2;
5648 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5649
5650#if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5651 for_each_online_cpu(cpu) {
5652 struct slab *slab;
5653
5654 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5655 if (slab) {
5656 slabs = READ_ONCE(slab->slabs);
5657 objects = (slabs * oo_objects(s->oo)) / 2;
5658 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5659 cpu, objects, slabs);
5660 }
5661 }
5662#endif
5663 len += sysfs_emit_at(buf, len, "\n");
5664
5665 return len;
5666}
5667SLAB_ATTR_RO(slabs_cpu_partial);
5668
5669static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5670{
5671 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5672}
5673SLAB_ATTR_RO(reclaim_account);
5674
5675static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5676{
5677 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5678}
5679SLAB_ATTR_RO(hwcache_align);
5680
5681#ifdef CONFIG_ZONE_DMA
5682static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5683{
5684 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5685}
5686SLAB_ATTR_RO(cache_dma);
5687#endif
5688
5689#ifdef CONFIG_HARDENED_USERCOPY
5690static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5691{
5692 return sysfs_emit(buf, "%u\n", s->usersize);
5693}
5694SLAB_ATTR_RO(usersize);
5695#endif
5696
5697static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5698{
5699 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5700}
5701SLAB_ATTR_RO(destroy_by_rcu);
5702
5703#ifdef CONFIG_SLUB_DEBUG
5704static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5705{
5706 return show_slab_objects(s, buf, SO_ALL);
5707}
5708SLAB_ATTR_RO(slabs);
5709
5710static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5711{
5712 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5713}
5714SLAB_ATTR_RO(total_objects);
5715
5716static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5717{
5718 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5719}
5720SLAB_ATTR_RO(sanity_checks);
5721
5722static ssize_t trace_show(struct kmem_cache *s, char *buf)
5723{
5724 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5725}
5726SLAB_ATTR_RO(trace);
5727
5728static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5729{
5730 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5731}
5732
5733SLAB_ATTR_RO(red_zone);
5734
5735static ssize_t poison_show(struct kmem_cache *s, char *buf)
5736{
5737 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5738}
5739
5740SLAB_ATTR_RO(poison);
5741
5742static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5743{
5744 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5745}
5746
5747SLAB_ATTR_RO(store_user);
5748
5749static ssize_t validate_show(struct kmem_cache *s, char *buf)
5750{
5751 return 0;
5752}
5753
5754static ssize_t validate_store(struct kmem_cache *s,
5755 const char *buf, size_t length)
5756{
5757 int ret = -EINVAL;
5758
5759 if (buf[0] == '1' && kmem_cache_debug(s)) {
5760 ret = validate_slab_cache(s);
5761 if (ret >= 0)
5762 ret = length;
5763 }
5764 return ret;
5765}
5766SLAB_ATTR(validate);
5767
5768#endif /* CONFIG_SLUB_DEBUG */
5769
5770#ifdef CONFIG_FAILSLAB
5771static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5772{
5773 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5774}
5775
5776static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5777 size_t length)
5778{
5779 if (s->refcount > 1)
5780 return -EINVAL;
5781
5782 if (buf[0] == '1')
5783 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5784 else
5785 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5786
5787 return length;
5788}
5789SLAB_ATTR(failslab);
5790#endif
5791
5792static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5793{
5794 return 0;
5795}
5796
5797static ssize_t shrink_store(struct kmem_cache *s,
5798 const char *buf, size_t length)
5799{
5800 if (buf[0] == '1')
5801 kmem_cache_shrink(s);
5802 else
5803 return -EINVAL;
5804 return length;
5805}
5806SLAB_ATTR(shrink);
5807
5808#ifdef CONFIG_NUMA
5809static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5810{
5811 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5812}
5813
5814static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5815 const char *buf, size_t length)
5816{
5817 unsigned int ratio;
5818 int err;
5819
5820 err = kstrtouint(buf, 10, &ratio);
5821 if (err)
5822 return err;
5823 if (ratio > 100)
5824 return -ERANGE;
5825
5826 s->remote_node_defrag_ratio = ratio * 10;
5827
5828 return length;
5829}
5830SLAB_ATTR(remote_node_defrag_ratio);
5831#endif
5832
5833#ifdef CONFIG_SLUB_STATS
5834static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5835{
5836 unsigned long sum = 0;
5837 int cpu;
5838 int len = 0;
5839 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5840
5841 if (!data)
5842 return -ENOMEM;
5843
5844 for_each_online_cpu(cpu) {
5845 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5846
5847 data[cpu] = x;
5848 sum += x;
5849 }
5850
5851 len += sysfs_emit_at(buf, len, "%lu", sum);
5852
5853#ifdef CONFIG_SMP
5854 for_each_online_cpu(cpu) {
5855 if (data[cpu])
5856 len += sysfs_emit_at(buf, len, " C%d=%u",
5857 cpu, data[cpu]);
5858 }
5859#endif
5860 kfree(data);
5861 len += sysfs_emit_at(buf, len, "\n");
5862
5863 return len;
5864}
5865
5866static void clear_stat(struct kmem_cache *s, enum stat_item si)
5867{
5868 int cpu;
5869
5870 for_each_online_cpu(cpu)
5871 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5872}
5873
5874#define STAT_ATTR(si, text) \
5875static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5876{ \
5877 return show_stat(s, buf, si); \
5878} \
5879static ssize_t text##_store(struct kmem_cache *s, \
5880 const char *buf, size_t length) \
5881{ \
5882 if (buf[0] != '0') \
5883 return -EINVAL; \
5884 clear_stat(s, si); \
5885 return length; \
5886} \
5887SLAB_ATTR(text); \
5888
5889STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5890STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5891STAT_ATTR(FREE_FASTPATH, free_fastpath);
5892STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5893STAT_ATTR(FREE_FROZEN, free_frozen);
5894STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5895STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5896STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5897STAT_ATTR(ALLOC_SLAB, alloc_slab);
5898STAT_ATTR(ALLOC_REFILL, alloc_refill);
5899STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5900STAT_ATTR(FREE_SLAB, free_slab);
5901STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5902STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5903STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5904STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5905STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5906STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5907STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5908STAT_ATTR(ORDER_FALLBACK, order_fallback);
5909STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5910STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5911STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5912STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5913STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5914STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5915#endif /* CONFIG_SLUB_STATS */
5916
5917#ifdef CONFIG_KFENCE
5918static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5919{
5920 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5921}
5922
5923static ssize_t skip_kfence_store(struct kmem_cache *s,
5924 const char *buf, size_t length)
5925{
5926 int ret = length;
5927
5928 if (buf[0] == '0')
5929 s->flags &= ~SLAB_SKIP_KFENCE;
5930 else if (buf[0] == '1')
5931 s->flags |= SLAB_SKIP_KFENCE;
5932 else
5933 ret = -EINVAL;
5934
5935 return ret;
5936}
5937SLAB_ATTR(skip_kfence);
5938#endif
5939
5940static struct attribute *slab_attrs[] = {
5941 &slab_size_attr.attr,
5942 &object_size_attr.attr,
5943 &objs_per_slab_attr.attr,
5944 &order_attr.attr,
5945 &min_partial_attr.attr,
5946 &cpu_partial_attr.attr,
5947 &objects_attr.attr,
5948 &objects_partial_attr.attr,
5949 &partial_attr.attr,
5950 &cpu_slabs_attr.attr,
5951 &ctor_attr.attr,
5952 &aliases_attr.attr,
5953 &align_attr.attr,
5954 &hwcache_align_attr.attr,
5955 &reclaim_account_attr.attr,
5956 &destroy_by_rcu_attr.attr,
5957 &shrink_attr.attr,
5958 &slabs_cpu_partial_attr.attr,
5959#ifdef CONFIG_SLUB_DEBUG
5960 &total_objects_attr.attr,
5961 &slabs_attr.attr,
5962 &sanity_checks_attr.attr,
5963 &trace_attr.attr,
5964 &red_zone_attr.attr,
5965 &poison_attr.attr,
5966 &store_user_attr.attr,
5967 &validate_attr.attr,
5968#endif
5969#ifdef CONFIG_ZONE_DMA
5970 &cache_dma_attr.attr,
5971#endif
5972#ifdef CONFIG_NUMA
5973 &remote_node_defrag_ratio_attr.attr,
5974#endif
5975#ifdef CONFIG_SLUB_STATS
5976 &alloc_fastpath_attr.attr,
5977 &alloc_slowpath_attr.attr,
5978 &free_fastpath_attr.attr,
5979 &free_slowpath_attr.attr,
5980 &free_frozen_attr.attr,
5981 &free_add_partial_attr.attr,
5982 &free_remove_partial_attr.attr,
5983 &alloc_from_partial_attr.attr,
5984 &alloc_slab_attr.attr,
5985 &alloc_refill_attr.attr,
5986 &alloc_node_mismatch_attr.attr,
5987 &free_slab_attr.attr,
5988 &cpuslab_flush_attr.attr,
5989 &deactivate_full_attr.attr,
5990 &deactivate_empty_attr.attr,
5991 &deactivate_to_head_attr.attr,
5992 &deactivate_to_tail_attr.attr,
5993 &deactivate_remote_frees_attr.attr,
5994 &deactivate_bypass_attr.attr,
5995 &order_fallback_attr.attr,
5996 &cmpxchg_double_fail_attr.attr,
5997 &cmpxchg_double_cpu_fail_attr.attr,
5998 &cpu_partial_alloc_attr.attr,
5999 &cpu_partial_free_attr.attr,
6000 &cpu_partial_node_attr.attr,
6001 &cpu_partial_drain_attr.attr,
6002#endif
6003#ifdef CONFIG_FAILSLAB
6004 &failslab_attr.attr,
6005#endif
6006#ifdef CONFIG_HARDENED_USERCOPY
6007 &usersize_attr.attr,
6008#endif
6009#ifdef CONFIG_KFENCE
6010 &skip_kfence_attr.attr,
6011#endif
6012
6013 NULL
6014};
6015
6016static const struct attribute_group slab_attr_group = {
6017 .attrs = slab_attrs,
6018};
6019
6020static ssize_t slab_attr_show(struct kobject *kobj,
6021 struct attribute *attr,
6022 char *buf)
6023{
6024 struct slab_attribute *attribute;
6025 struct kmem_cache *s;
6026
6027 attribute = to_slab_attr(attr);
6028 s = to_slab(kobj);
6029
6030 if (!attribute->show)
6031 return -EIO;
6032
6033 return attribute->show(s, buf);
6034}
6035
6036static ssize_t slab_attr_store(struct kobject *kobj,
6037 struct attribute *attr,
6038 const char *buf, size_t len)
6039{
6040 struct slab_attribute *attribute;
6041 struct kmem_cache *s;
6042
6043 attribute = to_slab_attr(attr);
6044 s = to_slab(kobj);
6045
6046 if (!attribute->store)
6047 return -EIO;
6048
6049 return attribute->store(s, buf, len);
6050}
6051
6052static void kmem_cache_release(struct kobject *k)
6053{
6054 slab_kmem_cache_release(to_slab(k));
6055}
6056
6057static const struct sysfs_ops slab_sysfs_ops = {
6058 .show = slab_attr_show,
6059 .store = slab_attr_store,
6060};
6061
6062static struct kobj_type slab_ktype = {
6063 .sysfs_ops = &slab_sysfs_ops,
6064 .release = kmem_cache_release,
6065};
6066
6067static struct kset *slab_kset;
6068
6069static inline struct kset *cache_kset(struct kmem_cache *s)
6070{
6071 return slab_kset;
6072}
6073
6074#define ID_STR_LENGTH 32
6075
6076/* Create a unique string id for a slab cache:
6077 *
6078 * Format :[flags-]size
6079 */
6080static char *create_unique_id(struct kmem_cache *s)
6081{
6082 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6083 char *p = name;
6084
6085 if (!name)
6086 return ERR_PTR(-ENOMEM);
6087
6088 *p++ = ':';
6089 /*
6090 * First flags affecting slabcache operations. We will only
6091 * get here for aliasable slabs so we do not need to support
6092 * too many flags. The flags here must cover all flags that
6093 * are matched during merging to guarantee that the id is
6094 * unique.
6095 */
6096 if (s->flags & SLAB_CACHE_DMA)
6097 *p++ = 'd';
6098 if (s->flags & SLAB_CACHE_DMA32)
6099 *p++ = 'D';
6100 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6101 *p++ = 'a';
6102 if (s->flags & SLAB_CONSISTENCY_CHECKS)
6103 *p++ = 'F';
6104 if (s->flags & SLAB_ACCOUNT)
6105 *p++ = 'A';
6106 if (p != name + 1)
6107 *p++ = '-';
6108 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6109
6110 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6111 kfree(name);
6112 return ERR_PTR(-EINVAL);
6113 }
6114 kmsan_unpoison_memory(name, p - name);
6115 return name;
6116}
6117
6118static int sysfs_slab_add(struct kmem_cache *s)
6119{
6120 int err;
6121 const char *name;
6122 struct kset *kset = cache_kset(s);
6123 int unmergeable = slab_unmergeable(s);
6124
6125 if (!unmergeable && disable_higher_order_debug &&
6126 (slub_debug & DEBUG_METADATA_FLAGS))
6127 unmergeable = 1;
6128
6129 if (unmergeable) {
6130 /*
6131 * Slabcache can never be merged so we can use the name proper.
6132 * This is typically the case for debug situations. In that
6133 * case we can catch duplicate names easily.
6134 */
6135 sysfs_remove_link(&slab_kset->kobj, s->name);
6136 name = s->name;
6137 } else {
6138 /*
6139 * Create a unique name for the slab as a target
6140 * for the symlinks.
6141 */
6142 name = create_unique_id(s);
6143 if (IS_ERR(name))
6144 return PTR_ERR(name);
6145 }
6146
6147 s->kobj.kset = kset;
6148 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6149 if (err)
6150 goto out;
6151
6152 err = sysfs_create_group(&s->kobj, &slab_attr_group);
6153 if (err)
6154 goto out_del_kobj;
6155
6156 if (!unmergeable) {
6157 /* Setup first alias */
6158 sysfs_slab_alias(s, s->name);
6159 }
6160out:
6161 if (!unmergeable)
6162 kfree(name);
6163 return err;
6164out_del_kobj:
6165 kobject_del(&s->kobj);
6166 goto out;
6167}
6168
6169void sysfs_slab_unlink(struct kmem_cache *s)
6170{
6171 if (slab_state >= FULL)
6172 kobject_del(&s->kobj);
6173}
6174
6175void sysfs_slab_release(struct kmem_cache *s)
6176{
6177 if (slab_state >= FULL)
6178 kobject_put(&s->kobj);
6179}
6180
6181/*
6182 * Need to buffer aliases during bootup until sysfs becomes
6183 * available lest we lose that information.
6184 */
6185struct saved_alias {
6186 struct kmem_cache *s;
6187 const char *name;
6188 struct saved_alias *next;
6189};
6190
6191static struct saved_alias *alias_list;
6192
6193static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6194{
6195 struct saved_alias *al;
6196
6197 if (slab_state == FULL) {
6198 /*
6199 * If we have a leftover link then remove it.
6200 */
6201 sysfs_remove_link(&slab_kset->kobj, name);
6202 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6203 }
6204
6205 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6206 if (!al)
6207 return -ENOMEM;
6208
6209 al->s = s;
6210 al->name = name;
6211 al->next = alias_list;
6212 alias_list = al;
6213 kmsan_unpoison_memory(al, sizeof(*al));
6214 return 0;
6215}
6216
6217static int __init slab_sysfs_init(void)
6218{
6219 struct kmem_cache *s;
6220 int err;
6221
6222 mutex_lock(&slab_mutex);
6223
6224 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6225 if (!slab_kset) {
6226 mutex_unlock(&slab_mutex);
6227 pr_err("Cannot register slab subsystem.\n");
6228 return -ENOSYS;
6229 }
6230
6231 slab_state = FULL;
6232
6233 list_for_each_entry(s, &slab_caches, list) {
6234 err = sysfs_slab_add(s);
6235 if (err)
6236 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6237 s->name);
6238 }
6239
6240 while (alias_list) {
6241 struct saved_alias *al = alias_list;
6242
6243 alias_list = alias_list->next;
6244 err = sysfs_slab_alias(al->s, al->name);
6245 if (err)
6246 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6247 al->name);
6248 kfree(al);
6249 }
6250
6251 mutex_unlock(&slab_mutex);
6252 return 0;
6253}
6254late_initcall(slab_sysfs_init);
6255#endif /* SLAB_SUPPORTS_SYSFS */
6256
6257#if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6258static int slab_debugfs_show(struct seq_file *seq, void *v)
6259{
6260 struct loc_track *t = seq->private;
6261 struct location *l;
6262 unsigned long idx;
6263
6264 idx = (unsigned long) t->idx;
6265 if (idx < t->count) {
6266 l = &t->loc[idx];
6267
6268 seq_printf(seq, "%7ld ", l->count);
6269
6270 if (l->addr)
6271 seq_printf(seq, "%pS", (void *)l->addr);
6272 else
6273 seq_puts(seq, "<not-available>");
6274
6275 if (l->waste)
6276 seq_printf(seq, " waste=%lu/%lu",
6277 l->count * l->waste, l->waste);
6278
6279 if (l->sum_time != l->min_time) {
6280 seq_printf(seq, " age=%ld/%llu/%ld",
6281 l->min_time, div_u64(l->sum_time, l->count),
6282 l->max_time);
6283 } else
6284 seq_printf(seq, " age=%ld", l->min_time);
6285
6286 if (l->min_pid != l->max_pid)
6287 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6288 else
6289 seq_printf(seq, " pid=%ld",
6290 l->min_pid);
6291
6292 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6293 seq_printf(seq, " cpus=%*pbl",
6294 cpumask_pr_args(to_cpumask(l->cpus)));
6295
6296 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6297 seq_printf(seq, " nodes=%*pbl",
6298 nodemask_pr_args(&l->nodes));
6299
6300#ifdef CONFIG_STACKDEPOT
6301 {
6302 depot_stack_handle_t handle;
6303 unsigned long *entries;
6304 unsigned int nr_entries, j;
6305
6306 handle = READ_ONCE(l->handle);
6307 if (handle) {
6308 nr_entries = stack_depot_fetch(handle, &entries);
6309 seq_puts(seq, "\n");
6310 for (j = 0; j < nr_entries; j++)
6311 seq_printf(seq, " %pS\n", (void *)entries[j]);
6312 }
6313 }
6314#endif
6315 seq_puts(seq, "\n");
6316 }
6317
6318 if (!idx && !t->count)
6319 seq_puts(seq, "No data\n");
6320
6321 return 0;
6322}
6323
6324static void slab_debugfs_stop(struct seq_file *seq, void *v)
6325{
6326}
6327
6328static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6329{
6330 struct loc_track *t = seq->private;
6331
6332 t->idx = ++(*ppos);
6333 if (*ppos <= t->count)
6334 return ppos;
6335
6336 return NULL;
6337}
6338
6339static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6340{
6341 struct location *loc1 = (struct location *)a;
6342 struct location *loc2 = (struct location *)b;
6343
6344 if (loc1->count > loc2->count)
6345 return -1;
6346 else
6347 return 1;
6348}
6349
6350static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6351{
6352 struct loc_track *t = seq->private;
6353
6354 t->idx = *ppos;
6355 return ppos;
6356}
6357
6358static const struct seq_operations slab_debugfs_sops = {
6359 .start = slab_debugfs_start,
6360 .next = slab_debugfs_next,
6361 .stop = slab_debugfs_stop,
6362 .show = slab_debugfs_show,
6363};
6364
6365static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6366{
6367
6368 struct kmem_cache_node *n;
6369 enum track_item alloc;
6370 int node;
6371 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6372 sizeof(struct loc_track));
6373 struct kmem_cache *s = file_inode(filep)->i_private;
6374 unsigned long *obj_map;
6375
6376 if (!t)
6377 return -ENOMEM;
6378
6379 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6380 if (!obj_map) {
6381 seq_release_private(inode, filep);
6382 return -ENOMEM;
6383 }
6384
6385 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6386 alloc = TRACK_ALLOC;
6387 else
6388 alloc = TRACK_FREE;
6389
6390 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6391 bitmap_free(obj_map);
6392 seq_release_private(inode, filep);
6393 return -ENOMEM;
6394 }
6395
6396 for_each_kmem_cache_node(s, node, n) {
6397 unsigned long flags;
6398 struct slab *slab;
6399
6400 if (!atomic_long_read(&n->nr_slabs))
6401 continue;
6402
6403 spin_lock_irqsave(&n->list_lock, flags);
6404 list_for_each_entry(slab, &n->partial, slab_list)
6405 process_slab(t, s, slab, alloc, obj_map);
6406 list_for_each_entry(slab, &n->full, slab_list)
6407 process_slab(t, s, slab, alloc, obj_map);
6408 spin_unlock_irqrestore(&n->list_lock, flags);
6409 }
6410
6411 /* Sort locations by count */
6412 sort_r(t->loc, t->count, sizeof(struct location),
6413 cmp_loc_by_count, NULL, NULL);
6414
6415 bitmap_free(obj_map);
6416 return 0;
6417}
6418
6419static int slab_debug_trace_release(struct inode *inode, struct file *file)
6420{
6421 struct seq_file *seq = file->private_data;
6422 struct loc_track *t = seq->private;
6423
6424 free_loc_track(t);
6425 return seq_release_private(inode, file);
6426}
6427
6428static const struct file_operations slab_debugfs_fops = {
6429 .open = slab_debug_trace_open,
6430 .read = seq_read,
6431 .llseek = seq_lseek,
6432 .release = slab_debug_trace_release,
6433};
6434
6435static void debugfs_slab_add(struct kmem_cache *s)
6436{
6437 struct dentry *slab_cache_dir;
6438
6439 if (unlikely(!slab_debugfs_root))
6440 return;
6441
6442 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6443
6444 debugfs_create_file("alloc_traces", 0400,
6445 slab_cache_dir, s, &slab_debugfs_fops);
6446
6447 debugfs_create_file("free_traces", 0400,
6448 slab_cache_dir, s, &slab_debugfs_fops);
6449}
6450
6451void debugfs_slab_release(struct kmem_cache *s)
6452{
6453 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6454}
6455
6456static int __init slab_debugfs_init(void)
6457{
6458 struct kmem_cache *s;
6459
6460 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6461
6462 list_for_each_entry(s, &slab_caches, list)
6463 if (s->flags & SLAB_STORE_USER)
6464 debugfs_slab_add(s);
6465
6466 return 0;
6467
6468}
6469__initcall(slab_debugfs_init);
6470#endif
6471/*
6472 * The /proc/slabinfo ABI
6473 */
6474#ifdef CONFIG_SLUB_DEBUG
6475void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6476{
6477 unsigned long nr_slabs = 0;
6478 unsigned long nr_objs = 0;
6479 unsigned long nr_free = 0;
6480 int node;
6481 struct kmem_cache_node *n;
6482
6483 for_each_kmem_cache_node(s, node, n) {
6484 nr_slabs += node_nr_slabs(n);
6485 nr_objs += node_nr_objs(n);
6486 nr_free += count_partial(n, count_free);
6487 }
6488
6489 sinfo->active_objs = nr_objs - nr_free;
6490 sinfo->num_objs = nr_objs;
6491 sinfo->active_slabs = nr_slabs;
6492 sinfo->num_slabs = nr_slabs;
6493 sinfo->objects_per_slab = oo_objects(s->oo);
6494 sinfo->cache_order = oo_order(s->oo);
6495}
6496
6497void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6498{
6499}
6500
6501ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6502 size_t count, loff_t *ppos)
6503{
6504 return -EIO;
6505}
6506#endif /* CONFIG_SLUB_DEBUG */