Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33#include <linux/migrate.h>
34#include <linux/nospec.h>
35#include <linux/delayacct.h>
36#include <linux/memory.h>
37
38#include <asm/page.h>
39#include <asm/pgalloc.h>
40#include <asm/tlb.h>
41
42#include <linux/io.h>
43#include <linux/hugetlb.h>
44#include <linux/hugetlb_cgroup.h>
45#include <linux/node.h>
46#include <linux/page_owner.h>
47#include "internal.h"
48#include "hugetlb_vmemmap.h"
49
50int hugetlb_max_hstate __read_mostly;
51unsigned int default_hstate_idx;
52struct hstate hstates[HUGE_MAX_HSTATE];
53
54#ifdef CONFIG_CMA
55static struct cma *hugetlb_cma[MAX_NUMNODES];
56static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58{
59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60 1 << order);
61}
62#else
63static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64{
65 return false;
66}
67#endif
68static unsigned long hugetlb_cma_size __initdata;
69
70__initdata LIST_HEAD(huge_boot_pages);
71
72/* for command line parsing */
73static struct hstate * __initdata parsed_hstate;
74static unsigned long __initdata default_hstate_max_huge_pages;
75static bool __initdata parsed_valid_hugepagesz = true;
76static bool __initdata parsed_default_hugepagesz;
77static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79/*
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
82 */
83DEFINE_SPINLOCK(hugetlb_lock);
84
85/*
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
88 */
89static int num_fault_mutexes;
90struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92/* Forward declaration */
93static int hugetlb_acct_memory(struct hstate *h, long delta);
94static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 unsigned long start, unsigned long end);
99
100static inline bool subpool_is_free(struct hugepage_subpool *spool)
101{
102 if (spool->count)
103 return false;
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
108
109 return true;
110}
111
112static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 unsigned long irq_flags)
114{
115 spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117 /* If no pages are used, and no other handles to the subpool
118 * remain, give up any reservations based on minimum size and
119 * free the subpool */
120 if (subpool_is_free(spool)) {
121 if (spool->min_hpages != -1)
122 hugetlb_acct_memory(spool->hstate,
123 -spool->min_hpages);
124 kfree(spool);
125 }
126}
127
128struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 long min_hpages)
130{
131 struct hugepage_subpool *spool;
132
133 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134 if (!spool)
135 return NULL;
136
137 spin_lock_init(&spool->lock);
138 spool->count = 1;
139 spool->max_hpages = max_hpages;
140 spool->hstate = h;
141 spool->min_hpages = min_hpages;
142
143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144 kfree(spool);
145 return NULL;
146 }
147 spool->rsv_hpages = min_hpages;
148
149 return spool;
150}
151
152void hugepage_put_subpool(struct hugepage_subpool *spool)
153{
154 unsigned long flags;
155
156 spin_lock_irqsave(&spool->lock, flags);
157 BUG_ON(!spool->count);
158 spool->count--;
159 unlock_or_release_subpool(spool, flags);
160}
161
162/*
163 * Subpool accounting for allocating and reserving pages.
164 * Return -ENOMEM if there are not enough resources to satisfy the
165 * request. Otherwise, return the number of pages by which the
166 * global pools must be adjusted (upward). The returned value may
167 * only be different than the passed value (delta) in the case where
168 * a subpool minimum size must be maintained.
169 */
170static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171 long delta)
172{
173 long ret = delta;
174
175 if (!spool)
176 return ret;
177
178 spin_lock_irq(&spool->lock);
179
180 if (spool->max_hpages != -1) { /* maximum size accounting */
181 if ((spool->used_hpages + delta) <= spool->max_hpages)
182 spool->used_hpages += delta;
183 else {
184 ret = -ENOMEM;
185 goto unlock_ret;
186 }
187 }
188
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 if (delta > spool->rsv_hpages) {
192 /*
193 * Asking for more reserves than those already taken on
194 * behalf of subpool. Return difference.
195 */
196 ret = delta - spool->rsv_hpages;
197 spool->rsv_hpages = 0;
198 } else {
199 ret = 0; /* reserves already accounted for */
200 spool->rsv_hpages -= delta;
201 }
202 }
203
204unlock_ret:
205 spin_unlock_irq(&spool->lock);
206 return ret;
207}
208
209/*
210 * Subpool accounting for freeing and unreserving pages.
211 * Return the number of global page reservations that must be dropped.
212 * The return value may only be different than the passed value (delta)
213 * in the case where a subpool minimum size must be maintained.
214 */
215static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216 long delta)
217{
218 long ret = delta;
219 unsigned long flags;
220
221 if (!spool)
222 return delta;
223
224 spin_lock_irqsave(&spool->lock, flags);
225
226 if (spool->max_hpages != -1) /* maximum size accounting */
227 spool->used_hpages -= delta;
228
229 /* minimum size accounting */
230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 if (spool->rsv_hpages + delta <= spool->min_hpages)
232 ret = 0;
233 else
234 ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236 spool->rsv_hpages += delta;
237 if (spool->rsv_hpages > spool->min_hpages)
238 spool->rsv_hpages = spool->min_hpages;
239 }
240
241 /*
242 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 * quota reference, free it now.
244 */
245 unlock_or_release_subpool(spool, flags);
246
247 return ret;
248}
249
250static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251{
252 return HUGETLBFS_SB(inode->i_sb)->spool;
253}
254
255static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256{
257 return subpool_inode(file_inode(vma->vm_file));
258}
259
260/*
261 * hugetlb vma_lock helper routines
262 */
263void hugetlb_vma_lock_read(struct vm_area_struct *vma)
264{
265 if (__vma_shareable_lock(vma)) {
266 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
267
268 down_read(&vma_lock->rw_sema);
269 }
270}
271
272void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
273{
274 if (__vma_shareable_lock(vma)) {
275 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
276
277 up_read(&vma_lock->rw_sema);
278 }
279}
280
281void hugetlb_vma_lock_write(struct vm_area_struct *vma)
282{
283 if (__vma_shareable_lock(vma)) {
284 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285
286 down_write(&vma_lock->rw_sema);
287 }
288}
289
290void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
291{
292 if (__vma_shareable_lock(vma)) {
293 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
294
295 up_write(&vma_lock->rw_sema);
296 }
297}
298
299int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
300{
301 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
302
303 if (!__vma_shareable_lock(vma))
304 return 1;
305
306 return down_write_trylock(&vma_lock->rw_sema);
307}
308
309void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
310{
311 if (__vma_shareable_lock(vma)) {
312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313
314 lockdep_assert_held(&vma_lock->rw_sema);
315 }
316}
317
318void hugetlb_vma_lock_release(struct kref *kref)
319{
320 struct hugetlb_vma_lock *vma_lock = container_of(kref,
321 struct hugetlb_vma_lock, refs);
322
323 kfree(vma_lock);
324}
325
326static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
327{
328 struct vm_area_struct *vma = vma_lock->vma;
329
330 /*
331 * vma_lock structure may or not be released as a result of put,
332 * it certainly will no longer be attached to vma so clear pointer.
333 * Semaphore synchronizes access to vma_lock->vma field.
334 */
335 vma_lock->vma = NULL;
336 vma->vm_private_data = NULL;
337 up_write(&vma_lock->rw_sema);
338 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
339}
340
341static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
342{
343 if (__vma_shareable_lock(vma)) {
344 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
345
346 __hugetlb_vma_unlock_write_put(vma_lock);
347 }
348}
349
350static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
351{
352 /*
353 * Only present in sharable vmas.
354 */
355 if (!vma || !__vma_shareable_lock(vma))
356 return;
357
358 if (vma->vm_private_data) {
359 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
360
361 down_write(&vma_lock->rw_sema);
362 __hugetlb_vma_unlock_write_put(vma_lock);
363 }
364}
365
366static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
367{
368 struct hugetlb_vma_lock *vma_lock;
369
370 /* Only establish in (flags) sharable vmas */
371 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
372 return;
373
374 /* Should never get here with non-NULL vm_private_data */
375 if (vma->vm_private_data)
376 return;
377
378 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
379 if (!vma_lock) {
380 /*
381 * If we can not allocate structure, then vma can not
382 * participate in pmd sharing. This is only a possible
383 * performance enhancement and memory saving issue.
384 * However, the lock is also used to synchronize page
385 * faults with truncation. If the lock is not present,
386 * unlikely races could leave pages in a file past i_size
387 * until the file is removed. Warn in the unlikely case of
388 * allocation failure.
389 */
390 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
391 return;
392 }
393
394 kref_init(&vma_lock->refs);
395 init_rwsem(&vma_lock->rw_sema);
396 vma_lock->vma = vma;
397 vma->vm_private_data = vma_lock;
398}
399
400/* Helper that removes a struct file_region from the resv_map cache and returns
401 * it for use.
402 */
403static struct file_region *
404get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
405{
406 struct file_region *nrg;
407
408 VM_BUG_ON(resv->region_cache_count <= 0);
409
410 resv->region_cache_count--;
411 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412 list_del(&nrg->link);
413
414 nrg->from = from;
415 nrg->to = to;
416
417 return nrg;
418}
419
420static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421 struct file_region *rg)
422{
423#ifdef CONFIG_CGROUP_HUGETLB
424 nrg->reservation_counter = rg->reservation_counter;
425 nrg->css = rg->css;
426 if (rg->css)
427 css_get(rg->css);
428#endif
429}
430
431/* Helper that records hugetlb_cgroup uncharge info. */
432static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
433 struct hstate *h,
434 struct resv_map *resv,
435 struct file_region *nrg)
436{
437#ifdef CONFIG_CGROUP_HUGETLB
438 if (h_cg) {
439 nrg->reservation_counter =
440 &h_cg->rsvd_hugepage[hstate_index(h)];
441 nrg->css = &h_cg->css;
442 /*
443 * The caller will hold exactly one h_cg->css reference for the
444 * whole contiguous reservation region. But this area might be
445 * scattered when there are already some file_regions reside in
446 * it. As a result, many file_regions may share only one css
447 * reference. In order to ensure that one file_region must hold
448 * exactly one h_cg->css reference, we should do css_get for
449 * each file_region and leave the reference held by caller
450 * untouched.
451 */
452 css_get(&h_cg->css);
453 if (!resv->pages_per_hpage)
454 resv->pages_per_hpage = pages_per_huge_page(h);
455 /* pages_per_hpage should be the same for all entries in
456 * a resv_map.
457 */
458 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
459 } else {
460 nrg->reservation_counter = NULL;
461 nrg->css = NULL;
462 }
463#endif
464}
465
466static void put_uncharge_info(struct file_region *rg)
467{
468#ifdef CONFIG_CGROUP_HUGETLB
469 if (rg->css)
470 css_put(rg->css);
471#endif
472}
473
474static bool has_same_uncharge_info(struct file_region *rg,
475 struct file_region *org)
476{
477#ifdef CONFIG_CGROUP_HUGETLB
478 return rg->reservation_counter == org->reservation_counter &&
479 rg->css == org->css;
480
481#else
482 return true;
483#endif
484}
485
486static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
487{
488 struct file_region *nrg, *prg;
489
490 prg = list_prev_entry(rg, link);
491 if (&prg->link != &resv->regions && prg->to == rg->from &&
492 has_same_uncharge_info(prg, rg)) {
493 prg->to = rg->to;
494
495 list_del(&rg->link);
496 put_uncharge_info(rg);
497 kfree(rg);
498
499 rg = prg;
500 }
501
502 nrg = list_next_entry(rg, link);
503 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504 has_same_uncharge_info(nrg, rg)) {
505 nrg->from = rg->from;
506
507 list_del(&rg->link);
508 put_uncharge_info(rg);
509 kfree(rg);
510 }
511}
512
513static inline long
514hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515 long to, struct hstate *h, struct hugetlb_cgroup *cg,
516 long *regions_needed)
517{
518 struct file_region *nrg;
519
520 if (!regions_needed) {
521 nrg = get_file_region_entry_from_cache(map, from, to);
522 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523 list_add(&nrg->link, rg);
524 coalesce_file_region(map, nrg);
525 } else
526 *regions_needed += 1;
527
528 return to - from;
529}
530
531/*
532 * Must be called with resv->lock held.
533 *
534 * Calling this with regions_needed != NULL will count the number of pages
535 * to be added but will not modify the linked list. And regions_needed will
536 * indicate the number of file_regions needed in the cache to carry out to add
537 * the regions for this range.
538 */
539static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540 struct hugetlb_cgroup *h_cg,
541 struct hstate *h, long *regions_needed)
542{
543 long add = 0;
544 struct list_head *head = &resv->regions;
545 long last_accounted_offset = f;
546 struct file_region *iter, *trg = NULL;
547 struct list_head *rg = NULL;
548
549 if (regions_needed)
550 *regions_needed = 0;
551
552 /* In this loop, we essentially handle an entry for the range
553 * [last_accounted_offset, iter->from), at every iteration, with some
554 * bounds checking.
555 */
556 list_for_each_entry_safe(iter, trg, head, link) {
557 /* Skip irrelevant regions that start before our range. */
558 if (iter->from < f) {
559 /* If this region ends after the last accounted offset,
560 * then we need to update last_accounted_offset.
561 */
562 if (iter->to > last_accounted_offset)
563 last_accounted_offset = iter->to;
564 continue;
565 }
566
567 /* When we find a region that starts beyond our range, we've
568 * finished.
569 */
570 if (iter->from >= t) {
571 rg = iter->link.prev;
572 break;
573 }
574
575 /* Add an entry for last_accounted_offset -> iter->from, and
576 * update last_accounted_offset.
577 */
578 if (iter->from > last_accounted_offset)
579 add += hugetlb_resv_map_add(resv, iter->link.prev,
580 last_accounted_offset,
581 iter->from, h, h_cg,
582 regions_needed);
583
584 last_accounted_offset = iter->to;
585 }
586
587 /* Handle the case where our range extends beyond
588 * last_accounted_offset.
589 */
590 if (!rg)
591 rg = head->prev;
592 if (last_accounted_offset < t)
593 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594 t, h, h_cg, regions_needed);
595
596 return add;
597}
598
599/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
600 */
601static int allocate_file_region_entries(struct resv_map *resv,
602 int regions_needed)
603 __must_hold(&resv->lock)
604{
605 LIST_HEAD(allocated_regions);
606 int to_allocate = 0, i = 0;
607 struct file_region *trg = NULL, *rg = NULL;
608
609 VM_BUG_ON(regions_needed < 0);
610
611 /*
612 * Check for sufficient descriptors in the cache to accommodate
613 * the number of in progress add operations plus regions_needed.
614 *
615 * This is a while loop because when we drop the lock, some other call
616 * to region_add or region_del may have consumed some region_entries,
617 * so we keep looping here until we finally have enough entries for
618 * (adds_in_progress + regions_needed).
619 */
620 while (resv->region_cache_count <
621 (resv->adds_in_progress + regions_needed)) {
622 to_allocate = resv->adds_in_progress + regions_needed -
623 resv->region_cache_count;
624
625 /* At this point, we should have enough entries in the cache
626 * for all the existing adds_in_progress. We should only be
627 * needing to allocate for regions_needed.
628 */
629 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
630
631 spin_unlock(&resv->lock);
632 for (i = 0; i < to_allocate; i++) {
633 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
634 if (!trg)
635 goto out_of_memory;
636 list_add(&trg->link, &allocated_regions);
637 }
638
639 spin_lock(&resv->lock);
640
641 list_splice(&allocated_regions, &resv->region_cache);
642 resv->region_cache_count += to_allocate;
643 }
644
645 return 0;
646
647out_of_memory:
648 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
649 list_del(&rg->link);
650 kfree(rg);
651 }
652 return -ENOMEM;
653}
654
655/*
656 * Add the huge page range represented by [f, t) to the reserve
657 * map. Regions will be taken from the cache to fill in this range.
658 * Sufficient regions should exist in the cache due to the previous
659 * call to region_chg with the same range, but in some cases the cache will not
660 * have sufficient entries due to races with other code doing region_add or
661 * region_del. The extra needed entries will be allocated.
662 *
663 * regions_needed is the out value provided by a previous call to region_chg.
664 *
665 * Return the number of new huge pages added to the map. This number is greater
666 * than or equal to zero. If file_region entries needed to be allocated for
667 * this operation and we were not able to allocate, it returns -ENOMEM.
668 * region_add of regions of length 1 never allocate file_regions and cannot
669 * fail; region_chg will always allocate at least 1 entry and a region_add for
670 * 1 page will only require at most 1 entry.
671 */
672static long region_add(struct resv_map *resv, long f, long t,
673 long in_regions_needed, struct hstate *h,
674 struct hugetlb_cgroup *h_cg)
675{
676 long add = 0, actual_regions_needed = 0;
677
678 spin_lock(&resv->lock);
679retry:
680
681 /* Count how many regions are actually needed to execute this add. */
682 add_reservation_in_range(resv, f, t, NULL, NULL,
683 &actual_regions_needed);
684
685 /*
686 * Check for sufficient descriptors in the cache to accommodate
687 * this add operation. Note that actual_regions_needed may be greater
688 * than in_regions_needed, as the resv_map may have been modified since
689 * the region_chg call. In this case, we need to make sure that we
690 * allocate extra entries, such that we have enough for all the
691 * existing adds_in_progress, plus the excess needed for this
692 * operation.
693 */
694 if (actual_regions_needed > in_regions_needed &&
695 resv->region_cache_count <
696 resv->adds_in_progress +
697 (actual_regions_needed - in_regions_needed)) {
698 /* region_add operation of range 1 should never need to
699 * allocate file_region entries.
700 */
701 VM_BUG_ON(t - f <= 1);
702
703 if (allocate_file_region_entries(
704 resv, actual_regions_needed - in_regions_needed)) {
705 return -ENOMEM;
706 }
707
708 goto retry;
709 }
710
711 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
712
713 resv->adds_in_progress -= in_regions_needed;
714
715 spin_unlock(&resv->lock);
716 return add;
717}
718
719/*
720 * Examine the existing reserve map and determine how many
721 * huge pages in the specified range [f, t) are NOT currently
722 * represented. This routine is called before a subsequent
723 * call to region_add that will actually modify the reserve
724 * map to add the specified range [f, t). region_chg does
725 * not change the number of huge pages represented by the
726 * map. A number of new file_region structures is added to the cache as a
727 * placeholder, for the subsequent region_add call to use. At least 1
728 * file_region structure is added.
729 *
730 * out_regions_needed is the number of regions added to the
731 * resv->adds_in_progress. This value needs to be provided to a follow up call
732 * to region_add or region_abort for proper accounting.
733 *
734 * Returns the number of huge pages that need to be added to the existing
735 * reservation map for the range [f, t). This number is greater or equal to
736 * zero. -ENOMEM is returned if a new file_region structure or cache entry
737 * is needed and can not be allocated.
738 */
739static long region_chg(struct resv_map *resv, long f, long t,
740 long *out_regions_needed)
741{
742 long chg = 0;
743
744 spin_lock(&resv->lock);
745
746 /* Count how many hugepages in this range are NOT represented. */
747 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
748 out_regions_needed);
749
750 if (*out_regions_needed == 0)
751 *out_regions_needed = 1;
752
753 if (allocate_file_region_entries(resv, *out_regions_needed))
754 return -ENOMEM;
755
756 resv->adds_in_progress += *out_regions_needed;
757
758 spin_unlock(&resv->lock);
759 return chg;
760}
761
762/*
763 * Abort the in progress add operation. The adds_in_progress field
764 * of the resv_map keeps track of the operations in progress between
765 * calls to region_chg and region_add. Operations are sometimes
766 * aborted after the call to region_chg. In such cases, region_abort
767 * is called to decrement the adds_in_progress counter. regions_needed
768 * is the value returned by the region_chg call, it is used to decrement
769 * the adds_in_progress counter.
770 *
771 * NOTE: The range arguments [f, t) are not needed or used in this
772 * routine. They are kept to make reading the calling code easier as
773 * arguments will match the associated region_chg call.
774 */
775static void region_abort(struct resv_map *resv, long f, long t,
776 long regions_needed)
777{
778 spin_lock(&resv->lock);
779 VM_BUG_ON(!resv->region_cache_count);
780 resv->adds_in_progress -= regions_needed;
781 spin_unlock(&resv->lock);
782}
783
784/*
785 * Delete the specified range [f, t) from the reserve map. If the
786 * t parameter is LONG_MAX, this indicates that ALL regions after f
787 * should be deleted. Locate the regions which intersect [f, t)
788 * and either trim, delete or split the existing regions.
789 *
790 * Returns the number of huge pages deleted from the reserve map.
791 * In the normal case, the return value is zero or more. In the
792 * case where a region must be split, a new region descriptor must
793 * be allocated. If the allocation fails, -ENOMEM will be returned.
794 * NOTE: If the parameter t == LONG_MAX, then we will never split
795 * a region and possibly return -ENOMEM. Callers specifying
796 * t == LONG_MAX do not need to check for -ENOMEM error.
797 */
798static long region_del(struct resv_map *resv, long f, long t)
799{
800 struct list_head *head = &resv->regions;
801 struct file_region *rg, *trg;
802 struct file_region *nrg = NULL;
803 long del = 0;
804
805retry:
806 spin_lock(&resv->lock);
807 list_for_each_entry_safe(rg, trg, head, link) {
808 /*
809 * Skip regions before the range to be deleted. file_region
810 * ranges are normally of the form [from, to). However, there
811 * may be a "placeholder" entry in the map which is of the form
812 * (from, to) with from == to. Check for placeholder entries
813 * at the beginning of the range to be deleted.
814 */
815 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
816 continue;
817
818 if (rg->from >= t)
819 break;
820
821 if (f > rg->from && t < rg->to) { /* Must split region */
822 /*
823 * Check for an entry in the cache before dropping
824 * lock and attempting allocation.
825 */
826 if (!nrg &&
827 resv->region_cache_count > resv->adds_in_progress) {
828 nrg = list_first_entry(&resv->region_cache,
829 struct file_region,
830 link);
831 list_del(&nrg->link);
832 resv->region_cache_count--;
833 }
834
835 if (!nrg) {
836 spin_unlock(&resv->lock);
837 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
838 if (!nrg)
839 return -ENOMEM;
840 goto retry;
841 }
842
843 del += t - f;
844 hugetlb_cgroup_uncharge_file_region(
845 resv, rg, t - f, false);
846
847 /* New entry for end of split region */
848 nrg->from = t;
849 nrg->to = rg->to;
850
851 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
852
853 INIT_LIST_HEAD(&nrg->link);
854
855 /* Original entry is trimmed */
856 rg->to = f;
857
858 list_add(&nrg->link, &rg->link);
859 nrg = NULL;
860 break;
861 }
862
863 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864 del += rg->to - rg->from;
865 hugetlb_cgroup_uncharge_file_region(resv, rg,
866 rg->to - rg->from, true);
867 list_del(&rg->link);
868 kfree(rg);
869 continue;
870 }
871
872 if (f <= rg->from) { /* Trim beginning of region */
873 hugetlb_cgroup_uncharge_file_region(resv, rg,
874 t - rg->from, false);
875
876 del += t - rg->from;
877 rg->from = t;
878 } else { /* Trim end of region */
879 hugetlb_cgroup_uncharge_file_region(resv, rg,
880 rg->to - f, false);
881
882 del += rg->to - f;
883 rg->to = f;
884 }
885 }
886
887 spin_unlock(&resv->lock);
888 kfree(nrg);
889 return del;
890}
891
892/*
893 * A rare out of memory error was encountered which prevented removal of
894 * the reserve map region for a page. The huge page itself was free'ed
895 * and removed from the page cache. This routine will adjust the subpool
896 * usage count, and the global reserve count if needed. By incrementing
897 * these counts, the reserve map entry which could not be deleted will
898 * appear as a "reserved" entry instead of simply dangling with incorrect
899 * counts.
900 */
901void hugetlb_fix_reserve_counts(struct inode *inode)
902{
903 struct hugepage_subpool *spool = subpool_inode(inode);
904 long rsv_adjust;
905 bool reserved = false;
906
907 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908 if (rsv_adjust > 0) {
909 struct hstate *h = hstate_inode(inode);
910
911 if (!hugetlb_acct_memory(h, 1))
912 reserved = true;
913 } else if (!rsv_adjust) {
914 reserved = true;
915 }
916
917 if (!reserved)
918 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
919}
920
921/*
922 * Count and return the number of huge pages in the reserve map
923 * that intersect with the range [f, t).
924 */
925static long region_count(struct resv_map *resv, long f, long t)
926{
927 struct list_head *head = &resv->regions;
928 struct file_region *rg;
929 long chg = 0;
930
931 spin_lock(&resv->lock);
932 /* Locate each segment we overlap with, and count that overlap. */
933 list_for_each_entry(rg, head, link) {
934 long seg_from;
935 long seg_to;
936
937 if (rg->to <= f)
938 continue;
939 if (rg->from >= t)
940 break;
941
942 seg_from = max(rg->from, f);
943 seg_to = min(rg->to, t);
944
945 chg += seg_to - seg_from;
946 }
947 spin_unlock(&resv->lock);
948
949 return chg;
950}
951
952/*
953 * Convert the address within this vma to the page offset within
954 * the mapping, in pagecache page units; huge pages here.
955 */
956static pgoff_t vma_hugecache_offset(struct hstate *h,
957 struct vm_area_struct *vma, unsigned long address)
958{
959 return ((address - vma->vm_start) >> huge_page_shift(h)) +
960 (vma->vm_pgoff >> huge_page_order(h));
961}
962
963pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964 unsigned long address)
965{
966 return vma_hugecache_offset(hstate_vma(vma), vma, address);
967}
968EXPORT_SYMBOL_GPL(linear_hugepage_index);
969
970/*
971 * Return the size of the pages allocated when backing a VMA. In the majority
972 * cases this will be same size as used by the page table entries.
973 */
974unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
975{
976 if (vma->vm_ops && vma->vm_ops->pagesize)
977 return vma->vm_ops->pagesize(vma);
978 return PAGE_SIZE;
979}
980EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
981
982/*
983 * Return the page size being used by the MMU to back a VMA. In the majority
984 * of cases, the page size used by the kernel matches the MMU size. On
985 * architectures where it differs, an architecture-specific 'strong'
986 * version of this symbol is required.
987 */
988__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
989{
990 return vma_kernel_pagesize(vma);
991}
992
993/*
994 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
995 * bits of the reservation map pointer, which are always clear due to
996 * alignment.
997 */
998#define HPAGE_RESV_OWNER (1UL << 0)
999#define HPAGE_RESV_UNMAPPED (1UL << 1)
1000#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1001
1002/*
1003 * These helpers are used to track how many pages are reserved for
1004 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005 * is guaranteed to have their future faults succeed.
1006 *
1007 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008 * the reserve counters are updated with the hugetlb_lock held. It is safe
1009 * to reset the VMA at fork() time as it is not in use yet and there is no
1010 * chance of the global counters getting corrupted as a result of the values.
1011 *
1012 * The private mapping reservation is represented in a subtly different
1013 * manner to a shared mapping. A shared mapping has a region map associated
1014 * with the underlying file, this region map represents the backing file
1015 * pages which have ever had a reservation assigned which this persists even
1016 * after the page is instantiated. A private mapping has a region map
1017 * associated with the original mmap which is attached to all VMAs which
1018 * reference it, this region map represents those offsets which have consumed
1019 * reservation ie. where pages have been instantiated.
1020 */
1021static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1022{
1023 return (unsigned long)vma->vm_private_data;
1024}
1025
1026static void set_vma_private_data(struct vm_area_struct *vma,
1027 unsigned long value)
1028{
1029 vma->vm_private_data = (void *)value;
1030}
1031
1032static void
1033resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034 struct hugetlb_cgroup *h_cg,
1035 struct hstate *h)
1036{
1037#ifdef CONFIG_CGROUP_HUGETLB
1038 if (!h_cg || !h) {
1039 resv_map->reservation_counter = NULL;
1040 resv_map->pages_per_hpage = 0;
1041 resv_map->css = NULL;
1042 } else {
1043 resv_map->reservation_counter =
1044 &h_cg->rsvd_hugepage[hstate_index(h)];
1045 resv_map->pages_per_hpage = pages_per_huge_page(h);
1046 resv_map->css = &h_cg->css;
1047 }
1048#endif
1049}
1050
1051struct resv_map *resv_map_alloc(void)
1052{
1053 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1055
1056 if (!resv_map || !rg) {
1057 kfree(resv_map);
1058 kfree(rg);
1059 return NULL;
1060 }
1061
1062 kref_init(&resv_map->refs);
1063 spin_lock_init(&resv_map->lock);
1064 INIT_LIST_HEAD(&resv_map->regions);
1065
1066 resv_map->adds_in_progress = 0;
1067 /*
1068 * Initialize these to 0. On shared mappings, 0's here indicate these
1069 * fields don't do cgroup accounting. On private mappings, these will be
1070 * re-initialized to the proper values, to indicate that hugetlb cgroup
1071 * reservations are to be un-charged from here.
1072 */
1073 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1074
1075 INIT_LIST_HEAD(&resv_map->region_cache);
1076 list_add(&rg->link, &resv_map->region_cache);
1077 resv_map->region_cache_count = 1;
1078
1079 return resv_map;
1080}
1081
1082void resv_map_release(struct kref *ref)
1083{
1084 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085 struct list_head *head = &resv_map->region_cache;
1086 struct file_region *rg, *trg;
1087
1088 /* Clear out any active regions before we release the map. */
1089 region_del(resv_map, 0, LONG_MAX);
1090
1091 /* ... and any entries left in the cache */
1092 list_for_each_entry_safe(rg, trg, head, link) {
1093 list_del(&rg->link);
1094 kfree(rg);
1095 }
1096
1097 VM_BUG_ON(resv_map->adds_in_progress);
1098
1099 kfree(resv_map);
1100}
1101
1102static inline struct resv_map *inode_resv_map(struct inode *inode)
1103{
1104 /*
1105 * At inode evict time, i_mapping may not point to the original
1106 * address space within the inode. This original address space
1107 * contains the pointer to the resv_map. So, always use the
1108 * address space embedded within the inode.
1109 * The VERY common case is inode->mapping == &inode->i_data but,
1110 * this may not be true for device special inodes.
1111 */
1112 return (struct resv_map *)(&inode->i_data)->private_data;
1113}
1114
1115static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1116{
1117 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118 if (vma->vm_flags & VM_MAYSHARE) {
1119 struct address_space *mapping = vma->vm_file->f_mapping;
1120 struct inode *inode = mapping->host;
1121
1122 return inode_resv_map(inode);
1123
1124 } else {
1125 return (struct resv_map *)(get_vma_private_data(vma) &
1126 ~HPAGE_RESV_MASK);
1127 }
1128}
1129
1130static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1131{
1132 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1134
1135 set_vma_private_data(vma, (get_vma_private_data(vma) &
1136 HPAGE_RESV_MASK) | (unsigned long)map);
1137}
1138
1139static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1140{
1141 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1143
1144 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1145}
1146
1147static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1148{
1149 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150
1151 return (get_vma_private_data(vma) & flag) != 0;
1152}
1153
1154void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1155{
1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 /*
1158 * Clear vm_private_data
1159 * - For shared mappings this is a per-vma semaphore that may be
1160 * allocated in a subsequent call to hugetlb_vm_op_open.
1161 * Before clearing, make sure pointer is not associated with vma
1162 * as this will leak the structure. This is the case when called
1163 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164 * been called to allocate a new structure.
1165 * - For MAP_PRIVATE mappings, this is the reserve map which does
1166 * not apply to children. Faults generated by the children are
1167 * not guaranteed to succeed, even if read-only.
1168 */
1169 if (vma->vm_flags & VM_MAYSHARE) {
1170 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1171
1172 if (vma_lock && vma_lock->vma != vma)
1173 vma->vm_private_data = NULL;
1174 } else
1175 vma->vm_private_data = NULL;
1176}
1177
1178/*
1179 * Reset and decrement one ref on hugepage private reservation.
1180 * Called with mm->mmap_lock writer semaphore held.
1181 * This function should be only used by move_vma() and operate on
1182 * same sized vma. It should never come here with last ref on the
1183 * reservation.
1184 */
1185void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1186{
1187 /*
1188 * Clear the old hugetlb private page reservation.
1189 * It has already been transferred to new_vma.
1190 *
1191 * During a mremap() operation of a hugetlb vma we call move_vma()
1192 * which copies vma into new_vma and unmaps vma. After the copy
1193 * operation both new_vma and vma share a reference to the resv_map
1194 * struct, and at that point vma is about to be unmapped. We don't
1195 * want to return the reservation to the pool at unmap of vma because
1196 * the reservation still lives on in new_vma, so simply decrement the
1197 * ref here and remove the resv_map reference from this vma.
1198 */
1199 struct resv_map *reservations = vma_resv_map(vma);
1200
1201 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203 kref_put(&reservations->refs, resv_map_release);
1204 }
1205
1206 hugetlb_dup_vma_private(vma);
1207}
1208
1209/* Returns true if the VMA has associated reserve pages */
1210static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1211{
1212 if (vma->vm_flags & VM_NORESERVE) {
1213 /*
1214 * This address is already reserved by other process(chg == 0),
1215 * so, we should decrement reserved count. Without decrementing,
1216 * reserve count remains after releasing inode, because this
1217 * allocated page will go into page cache and is regarded as
1218 * coming from reserved pool in releasing step. Currently, we
1219 * don't have any other solution to deal with this situation
1220 * properly, so add work-around here.
1221 */
1222 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1223 return true;
1224 else
1225 return false;
1226 }
1227
1228 /* Shared mappings always use reserves */
1229 if (vma->vm_flags & VM_MAYSHARE) {
1230 /*
1231 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1232 * be a region map for all pages. The only situation where
1233 * there is no region map is if a hole was punched via
1234 * fallocate. In this case, there really are no reserves to
1235 * use. This situation is indicated if chg != 0.
1236 */
1237 if (chg)
1238 return false;
1239 else
1240 return true;
1241 }
1242
1243 /*
1244 * Only the process that called mmap() has reserves for
1245 * private mappings.
1246 */
1247 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1248 /*
1249 * Like the shared case above, a hole punch or truncate
1250 * could have been performed on the private mapping.
1251 * Examine the value of chg to determine if reserves
1252 * actually exist or were previously consumed.
1253 * Very Subtle - The value of chg comes from a previous
1254 * call to vma_needs_reserves(). The reserve map for
1255 * private mappings has different (opposite) semantics
1256 * than that of shared mappings. vma_needs_reserves()
1257 * has already taken this difference in semantics into
1258 * account. Therefore, the meaning of chg is the same
1259 * as in the shared case above. Code could easily be
1260 * combined, but keeping it separate draws attention to
1261 * subtle differences.
1262 */
1263 if (chg)
1264 return false;
1265 else
1266 return true;
1267 }
1268
1269 return false;
1270}
1271
1272static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1273{
1274 int nid = folio_nid(folio);
1275
1276 lockdep_assert_held(&hugetlb_lock);
1277 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1278
1279 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280 h->free_huge_pages++;
1281 h->free_huge_pages_node[nid]++;
1282 folio_set_hugetlb_freed(folio);
1283}
1284
1285static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1286 int nid)
1287{
1288 struct folio *folio;
1289 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1290
1291 lockdep_assert_held(&hugetlb_lock);
1292 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1293 if (pin && !folio_is_longterm_pinnable(folio))
1294 continue;
1295
1296 if (folio_test_hwpoison(folio))
1297 continue;
1298
1299 list_move(&folio->lru, &h->hugepage_activelist);
1300 folio_ref_unfreeze(folio, 1);
1301 folio_clear_hugetlb_freed(folio);
1302 h->free_huge_pages--;
1303 h->free_huge_pages_node[nid]--;
1304 return folio;
1305 }
1306
1307 return NULL;
1308}
1309
1310static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1311 int nid, nodemask_t *nmask)
1312{
1313 unsigned int cpuset_mems_cookie;
1314 struct zonelist *zonelist;
1315 struct zone *zone;
1316 struct zoneref *z;
1317 int node = NUMA_NO_NODE;
1318
1319 zonelist = node_zonelist(nid, gfp_mask);
1320
1321retry_cpuset:
1322 cpuset_mems_cookie = read_mems_allowed_begin();
1323 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1324 struct folio *folio;
1325
1326 if (!cpuset_zone_allowed(zone, gfp_mask))
1327 continue;
1328 /*
1329 * no need to ask again on the same node. Pool is node rather than
1330 * zone aware
1331 */
1332 if (zone_to_nid(zone) == node)
1333 continue;
1334 node = zone_to_nid(zone);
1335
1336 folio = dequeue_hugetlb_folio_node_exact(h, node);
1337 if (folio)
1338 return folio;
1339 }
1340 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1341 goto retry_cpuset;
1342
1343 return NULL;
1344}
1345
1346static unsigned long available_huge_pages(struct hstate *h)
1347{
1348 return h->free_huge_pages - h->resv_huge_pages;
1349}
1350
1351static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1352 struct vm_area_struct *vma,
1353 unsigned long address, int avoid_reserve,
1354 long chg)
1355{
1356 struct folio *folio = NULL;
1357 struct mempolicy *mpol;
1358 gfp_t gfp_mask;
1359 nodemask_t *nodemask;
1360 int nid;
1361
1362 /*
1363 * A child process with MAP_PRIVATE mappings created by their parent
1364 * have no page reserves. This check ensures that reservations are
1365 * not "stolen". The child may still get SIGKILLed
1366 */
1367 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1368 goto err;
1369
1370 /* If reserves cannot be used, ensure enough pages are in the pool */
1371 if (avoid_reserve && !available_huge_pages(h))
1372 goto err;
1373
1374 gfp_mask = htlb_alloc_mask(h);
1375 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1376
1377 if (mpol_is_preferred_many(mpol)) {
1378 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1379 nid, nodemask);
1380
1381 /* Fallback to all nodes if page==NULL */
1382 nodemask = NULL;
1383 }
1384
1385 if (!folio)
1386 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1387 nid, nodemask);
1388
1389 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1390 folio_set_hugetlb_restore_reserve(folio);
1391 h->resv_huge_pages--;
1392 }
1393
1394 mpol_cond_put(mpol);
1395 return folio;
1396
1397err:
1398 return NULL;
1399}
1400
1401/*
1402 * common helper functions for hstate_next_node_to_{alloc|free}.
1403 * We may have allocated or freed a huge page based on a different
1404 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1405 * be outside of *nodes_allowed. Ensure that we use an allowed
1406 * node for alloc or free.
1407 */
1408static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1409{
1410 nid = next_node_in(nid, *nodes_allowed);
1411 VM_BUG_ON(nid >= MAX_NUMNODES);
1412
1413 return nid;
1414}
1415
1416static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1417{
1418 if (!node_isset(nid, *nodes_allowed))
1419 nid = next_node_allowed(nid, nodes_allowed);
1420 return nid;
1421}
1422
1423/*
1424 * returns the previously saved node ["this node"] from which to
1425 * allocate a persistent huge page for the pool and advance the
1426 * next node from which to allocate, handling wrap at end of node
1427 * mask.
1428 */
1429static int hstate_next_node_to_alloc(struct hstate *h,
1430 nodemask_t *nodes_allowed)
1431{
1432 int nid;
1433
1434 VM_BUG_ON(!nodes_allowed);
1435
1436 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1437 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1438
1439 return nid;
1440}
1441
1442/*
1443 * helper for remove_pool_huge_page() - return the previously saved
1444 * node ["this node"] from which to free a huge page. Advance the
1445 * next node id whether or not we find a free huge page to free so
1446 * that the next attempt to free addresses the next node.
1447 */
1448static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1449{
1450 int nid;
1451
1452 VM_BUG_ON(!nodes_allowed);
1453
1454 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1455 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1456
1457 return nid;
1458}
1459
1460#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1461 for (nr_nodes = nodes_weight(*mask); \
1462 nr_nodes > 0 && \
1463 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1464 nr_nodes--)
1465
1466#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1467 for (nr_nodes = nodes_weight(*mask); \
1468 nr_nodes > 0 && \
1469 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1470 nr_nodes--)
1471
1472/* used to demote non-gigantic_huge pages as well */
1473static void __destroy_compound_gigantic_folio(struct folio *folio,
1474 unsigned int order, bool demote)
1475{
1476 int i;
1477 int nr_pages = 1 << order;
1478 struct page *p;
1479
1480 atomic_set(&folio->_entire_mapcount, 0);
1481 atomic_set(&folio->_nr_pages_mapped, 0);
1482 atomic_set(&folio->_pincount, 0);
1483
1484 for (i = 1; i < nr_pages; i++) {
1485 p = folio_page(folio, i);
1486 p->mapping = NULL;
1487 clear_compound_head(p);
1488 if (!demote)
1489 set_page_refcounted(p);
1490 }
1491
1492 folio_set_order(folio, 0);
1493 __folio_clear_head(folio);
1494}
1495
1496static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1497 unsigned int order)
1498{
1499 __destroy_compound_gigantic_folio(folio, order, true);
1500}
1501
1502#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1503static void destroy_compound_gigantic_folio(struct folio *folio,
1504 unsigned int order)
1505{
1506 __destroy_compound_gigantic_folio(folio, order, false);
1507}
1508
1509static void free_gigantic_folio(struct folio *folio, unsigned int order)
1510{
1511 /*
1512 * If the page isn't allocated using the cma allocator,
1513 * cma_release() returns false.
1514 */
1515#ifdef CONFIG_CMA
1516 int nid = folio_nid(folio);
1517
1518 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1519 return;
1520#endif
1521
1522 free_contig_range(folio_pfn(folio), 1 << order);
1523}
1524
1525#ifdef CONFIG_CONTIG_ALLOC
1526static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1527 int nid, nodemask_t *nodemask)
1528{
1529 struct page *page;
1530 unsigned long nr_pages = pages_per_huge_page(h);
1531 if (nid == NUMA_NO_NODE)
1532 nid = numa_mem_id();
1533
1534#ifdef CONFIG_CMA
1535 {
1536 int node;
1537
1538 if (hugetlb_cma[nid]) {
1539 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1540 huge_page_order(h), true);
1541 if (page)
1542 return page_folio(page);
1543 }
1544
1545 if (!(gfp_mask & __GFP_THISNODE)) {
1546 for_each_node_mask(node, *nodemask) {
1547 if (node == nid || !hugetlb_cma[node])
1548 continue;
1549
1550 page = cma_alloc(hugetlb_cma[node], nr_pages,
1551 huge_page_order(h), true);
1552 if (page)
1553 return page_folio(page);
1554 }
1555 }
1556 }
1557#endif
1558
1559 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1560 return page ? page_folio(page) : NULL;
1561}
1562
1563#else /* !CONFIG_CONTIG_ALLOC */
1564static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565 int nid, nodemask_t *nodemask)
1566{
1567 return NULL;
1568}
1569#endif /* CONFIG_CONTIG_ALLOC */
1570
1571#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1572static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1573 int nid, nodemask_t *nodemask)
1574{
1575 return NULL;
1576}
1577static inline void free_gigantic_folio(struct folio *folio,
1578 unsigned int order) { }
1579static inline void destroy_compound_gigantic_folio(struct folio *folio,
1580 unsigned int order) { }
1581#endif
1582
1583/*
1584 * Remove hugetlb folio from lists, and update dtor so that the folio appears
1585 * as just a compound page.
1586 *
1587 * A reference is held on the folio, except in the case of demote.
1588 *
1589 * Must be called with hugetlb lock held.
1590 */
1591static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1592 bool adjust_surplus,
1593 bool demote)
1594{
1595 int nid = folio_nid(folio);
1596
1597 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1598 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1599
1600 lockdep_assert_held(&hugetlb_lock);
1601 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1602 return;
1603
1604 list_del(&folio->lru);
1605
1606 if (folio_test_hugetlb_freed(folio)) {
1607 h->free_huge_pages--;
1608 h->free_huge_pages_node[nid]--;
1609 }
1610 if (adjust_surplus) {
1611 h->surplus_huge_pages--;
1612 h->surplus_huge_pages_node[nid]--;
1613 }
1614
1615 /*
1616 * Very subtle
1617 *
1618 * For non-gigantic pages set the destructor to the normal compound
1619 * page dtor. This is needed in case someone takes an additional
1620 * temporary ref to the page, and freeing is delayed until they drop
1621 * their reference.
1622 *
1623 * For gigantic pages set the destructor to the null dtor. This
1624 * destructor will never be called. Before freeing the gigantic
1625 * page destroy_compound_gigantic_folio will turn the folio into a
1626 * simple group of pages. After this the destructor does not
1627 * apply.
1628 *
1629 * This handles the case where more than one ref is held when and
1630 * after update_and_free_hugetlb_folio is called.
1631 *
1632 * In the case of demote we do not ref count the page as it will soon
1633 * be turned into a page of smaller size.
1634 */
1635 if (!demote)
1636 folio_ref_unfreeze(folio, 1);
1637 if (hstate_is_gigantic(h))
1638 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1639 else
1640 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1641
1642 h->nr_huge_pages--;
1643 h->nr_huge_pages_node[nid]--;
1644}
1645
1646static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647 bool adjust_surplus)
1648{
1649 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1650}
1651
1652static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1653 bool adjust_surplus)
1654{
1655 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1656}
1657
1658static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1659 bool adjust_surplus)
1660{
1661 int zeroed;
1662 int nid = folio_nid(folio);
1663
1664 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1665
1666 lockdep_assert_held(&hugetlb_lock);
1667
1668 INIT_LIST_HEAD(&folio->lru);
1669 h->nr_huge_pages++;
1670 h->nr_huge_pages_node[nid]++;
1671
1672 if (adjust_surplus) {
1673 h->surplus_huge_pages++;
1674 h->surplus_huge_pages_node[nid]++;
1675 }
1676
1677 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1678 folio_change_private(folio, NULL);
1679 /*
1680 * We have to set hugetlb_vmemmap_optimized again as above
1681 * folio_change_private(folio, NULL) cleared it.
1682 */
1683 folio_set_hugetlb_vmemmap_optimized(folio);
1684
1685 /*
1686 * This folio is about to be managed by the hugetlb allocator and
1687 * should have no users. Drop our reference, and check for others
1688 * just in case.
1689 */
1690 zeroed = folio_put_testzero(folio);
1691 if (unlikely(!zeroed))
1692 /*
1693 * It is VERY unlikely soneone else has taken a ref on
1694 * the page. In this case, we simply return as the
1695 * hugetlb destructor (free_huge_page) will be called
1696 * when this other ref is dropped.
1697 */
1698 return;
1699
1700 arch_clear_hugepage_flags(&folio->page);
1701 enqueue_hugetlb_folio(h, folio);
1702}
1703
1704static void __update_and_free_hugetlb_folio(struct hstate *h,
1705 struct folio *folio)
1706{
1707 int i;
1708 struct page *subpage;
1709
1710 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1711 return;
1712
1713 /*
1714 * If we don't know which subpages are hwpoisoned, we can't free
1715 * the hugepage, so it's leaked intentionally.
1716 */
1717 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1718 return;
1719
1720 if (hugetlb_vmemmap_restore(h, &folio->page)) {
1721 spin_lock_irq(&hugetlb_lock);
1722 /*
1723 * If we cannot allocate vmemmap pages, just refuse to free the
1724 * page and put the page back on the hugetlb free list and treat
1725 * as a surplus page.
1726 */
1727 add_hugetlb_folio(h, folio, true);
1728 spin_unlock_irq(&hugetlb_lock);
1729 return;
1730 }
1731
1732 /*
1733 * Move PageHWPoison flag from head page to the raw error pages,
1734 * which makes any healthy subpages reusable.
1735 */
1736 if (unlikely(folio_test_hwpoison(folio)))
1737 folio_clear_hugetlb_hwpoison(folio);
1738
1739 for (i = 0; i < pages_per_huge_page(h); i++) {
1740 subpage = folio_page(folio, i);
1741 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1742 1 << PG_referenced | 1 << PG_dirty |
1743 1 << PG_active | 1 << PG_private |
1744 1 << PG_writeback);
1745 }
1746
1747 /*
1748 * Non-gigantic pages demoted from CMA allocated gigantic pages
1749 * need to be given back to CMA in free_gigantic_folio.
1750 */
1751 if (hstate_is_gigantic(h) ||
1752 hugetlb_cma_folio(folio, huge_page_order(h))) {
1753 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1754 free_gigantic_folio(folio, huge_page_order(h));
1755 } else {
1756 __free_pages(&folio->page, huge_page_order(h));
1757 }
1758}
1759
1760/*
1761 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1762 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1763 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1764 * the vmemmap pages.
1765 *
1766 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1767 * freed and frees them one-by-one. As the page->mapping pointer is going
1768 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1769 * structure of a lockless linked list of huge pages to be freed.
1770 */
1771static LLIST_HEAD(hpage_freelist);
1772
1773static void free_hpage_workfn(struct work_struct *work)
1774{
1775 struct llist_node *node;
1776
1777 node = llist_del_all(&hpage_freelist);
1778
1779 while (node) {
1780 struct page *page;
1781 struct hstate *h;
1782
1783 page = container_of((struct address_space **)node,
1784 struct page, mapping);
1785 node = node->next;
1786 page->mapping = NULL;
1787 /*
1788 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1789 * is going to trigger because a previous call to
1790 * remove_hugetlb_folio() will call folio_set_compound_dtor
1791 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1792 * directly.
1793 */
1794 h = size_to_hstate(page_size(page));
1795
1796 __update_and_free_hugetlb_folio(h, page_folio(page));
1797
1798 cond_resched();
1799 }
1800}
1801static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1802
1803static inline void flush_free_hpage_work(struct hstate *h)
1804{
1805 if (hugetlb_vmemmap_optimizable(h))
1806 flush_work(&free_hpage_work);
1807}
1808
1809static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1810 bool atomic)
1811{
1812 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1813 __update_and_free_hugetlb_folio(h, folio);
1814 return;
1815 }
1816
1817 /*
1818 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1819 *
1820 * Only call schedule_work() if hpage_freelist is previously
1821 * empty. Otherwise, schedule_work() had been called but the workfn
1822 * hasn't retrieved the list yet.
1823 */
1824 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1825 schedule_work(&free_hpage_work);
1826}
1827
1828static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1829{
1830 struct page *page, *t_page;
1831 struct folio *folio;
1832
1833 list_for_each_entry_safe(page, t_page, list, lru) {
1834 folio = page_folio(page);
1835 update_and_free_hugetlb_folio(h, folio, false);
1836 cond_resched();
1837 }
1838}
1839
1840struct hstate *size_to_hstate(unsigned long size)
1841{
1842 struct hstate *h;
1843
1844 for_each_hstate(h) {
1845 if (huge_page_size(h) == size)
1846 return h;
1847 }
1848 return NULL;
1849}
1850
1851void free_huge_page(struct page *page)
1852{
1853 /*
1854 * Can't pass hstate in here because it is called from the
1855 * compound page destructor.
1856 */
1857 struct folio *folio = page_folio(page);
1858 struct hstate *h = folio_hstate(folio);
1859 int nid = folio_nid(folio);
1860 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1861 bool restore_reserve;
1862 unsigned long flags;
1863
1864 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1865 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1866
1867 hugetlb_set_folio_subpool(folio, NULL);
1868 if (folio_test_anon(folio))
1869 __ClearPageAnonExclusive(&folio->page);
1870 folio->mapping = NULL;
1871 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1872 folio_clear_hugetlb_restore_reserve(folio);
1873
1874 /*
1875 * If HPageRestoreReserve was set on page, page allocation consumed a
1876 * reservation. If the page was associated with a subpool, there
1877 * would have been a page reserved in the subpool before allocation
1878 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1879 * reservation, do not call hugepage_subpool_put_pages() as this will
1880 * remove the reserved page from the subpool.
1881 */
1882 if (!restore_reserve) {
1883 /*
1884 * A return code of zero implies that the subpool will be
1885 * under its minimum size if the reservation is not restored
1886 * after page is free. Therefore, force restore_reserve
1887 * operation.
1888 */
1889 if (hugepage_subpool_put_pages(spool, 1) == 0)
1890 restore_reserve = true;
1891 }
1892
1893 spin_lock_irqsave(&hugetlb_lock, flags);
1894 folio_clear_hugetlb_migratable(folio);
1895 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1896 pages_per_huge_page(h), folio);
1897 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1898 pages_per_huge_page(h), folio);
1899 if (restore_reserve)
1900 h->resv_huge_pages++;
1901
1902 if (folio_test_hugetlb_temporary(folio)) {
1903 remove_hugetlb_folio(h, folio, false);
1904 spin_unlock_irqrestore(&hugetlb_lock, flags);
1905 update_and_free_hugetlb_folio(h, folio, true);
1906 } else if (h->surplus_huge_pages_node[nid]) {
1907 /* remove the page from active list */
1908 remove_hugetlb_folio(h, folio, true);
1909 spin_unlock_irqrestore(&hugetlb_lock, flags);
1910 update_and_free_hugetlb_folio(h, folio, true);
1911 } else {
1912 arch_clear_hugepage_flags(page);
1913 enqueue_hugetlb_folio(h, folio);
1914 spin_unlock_irqrestore(&hugetlb_lock, flags);
1915 }
1916}
1917
1918/*
1919 * Must be called with the hugetlb lock held
1920 */
1921static void __prep_account_new_huge_page(struct hstate *h, int nid)
1922{
1923 lockdep_assert_held(&hugetlb_lock);
1924 h->nr_huge_pages++;
1925 h->nr_huge_pages_node[nid]++;
1926}
1927
1928static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1929{
1930 hugetlb_vmemmap_optimize(h, &folio->page);
1931 INIT_LIST_HEAD(&folio->lru);
1932 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1933 hugetlb_set_folio_subpool(folio, NULL);
1934 set_hugetlb_cgroup(folio, NULL);
1935 set_hugetlb_cgroup_rsvd(folio, NULL);
1936}
1937
1938static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1939{
1940 __prep_new_hugetlb_folio(h, folio);
1941 spin_lock_irq(&hugetlb_lock);
1942 __prep_account_new_huge_page(h, nid);
1943 spin_unlock_irq(&hugetlb_lock);
1944}
1945
1946static bool __prep_compound_gigantic_folio(struct folio *folio,
1947 unsigned int order, bool demote)
1948{
1949 int i, j;
1950 int nr_pages = 1 << order;
1951 struct page *p;
1952
1953 __folio_clear_reserved(folio);
1954 __folio_set_head(folio);
1955 /* we rely on prep_new_hugetlb_folio to set the destructor */
1956 folio_set_order(folio, order);
1957 for (i = 0; i < nr_pages; i++) {
1958 p = folio_page(folio, i);
1959
1960 /*
1961 * For gigantic hugepages allocated through bootmem at
1962 * boot, it's safer to be consistent with the not-gigantic
1963 * hugepages and clear the PG_reserved bit from all tail pages
1964 * too. Otherwise drivers using get_user_pages() to access tail
1965 * pages may get the reference counting wrong if they see
1966 * PG_reserved set on a tail page (despite the head page not
1967 * having PG_reserved set). Enforcing this consistency between
1968 * head and tail pages allows drivers to optimize away a check
1969 * on the head page when they need know if put_page() is needed
1970 * after get_user_pages().
1971 */
1972 if (i != 0) /* head page cleared above */
1973 __ClearPageReserved(p);
1974 /*
1975 * Subtle and very unlikely
1976 *
1977 * Gigantic 'page allocators' such as memblock or cma will
1978 * return a set of pages with each page ref counted. We need
1979 * to turn this set of pages into a compound page with tail
1980 * page ref counts set to zero. Code such as speculative page
1981 * cache adding could take a ref on a 'to be' tail page.
1982 * We need to respect any increased ref count, and only set
1983 * the ref count to zero if count is currently 1. If count
1984 * is not 1, we return an error. An error return indicates
1985 * the set of pages can not be converted to a gigantic page.
1986 * The caller who allocated the pages should then discard the
1987 * pages using the appropriate free interface.
1988 *
1989 * In the case of demote, the ref count will be zero.
1990 */
1991 if (!demote) {
1992 if (!page_ref_freeze(p, 1)) {
1993 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1994 goto out_error;
1995 }
1996 } else {
1997 VM_BUG_ON_PAGE(page_count(p), p);
1998 }
1999 if (i != 0)
2000 set_compound_head(p, &folio->page);
2001 }
2002 atomic_set(&folio->_entire_mapcount, -1);
2003 atomic_set(&folio->_nr_pages_mapped, 0);
2004 atomic_set(&folio->_pincount, 0);
2005 return true;
2006
2007out_error:
2008 /* undo page modifications made above */
2009 for (j = 0; j < i; j++) {
2010 p = folio_page(folio, j);
2011 if (j != 0)
2012 clear_compound_head(p);
2013 set_page_refcounted(p);
2014 }
2015 /* need to clear PG_reserved on remaining tail pages */
2016 for (; j < nr_pages; j++) {
2017 p = folio_page(folio, j);
2018 __ClearPageReserved(p);
2019 }
2020 folio_set_order(folio, 0);
2021 __folio_clear_head(folio);
2022 return false;
2023}
2024
2025static bool prep_compound_gigantic_folio(struct folio *folio,
2026 unsigned int order)
2027{
2028 return __prep_compound_gigantic_folio(folio, order, false);
2029}
2030
2031static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2032 unsigned int order)
2033{
2034 return __prep_compound_gigantic_folio(folio, order, true);
2035}
2036
2037/*
2038 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2039 * transparent huge pages. See the PageTransHuge() documentation for more
2040 * details.
2041 */
2042int PageHuge(struct page *page)
2043{
2044 struct folio *folio;
2045
2046 if (!PageCompound(page))
2047 return 0;
2048 folio = page_folio(page);
2049 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2050}
2051EXPORT_SYMBOL_GPL(PageHuge);
2052
2053/*
2054 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2055 * normal or transparent huge pages.
2056 */
2057int PageHeadHuge(struct page *page_head)
2058{
2059 struct folio *folio = (struct folio *)page_head;
2060 if (!folio_test_large(folio))
2061 return 0;
2062
2063 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2064}
2065EXPORT_SYMBOL_GPL(PageHeadHuge);
2066
2067/*
2068 * Find and lock address space (mapping) in write mode.
2069 *
2070 * Upon entry, the page is locked which means that page_mapping() is
2071 * stable. Due to locking order, we can only trylock_write. If we can
2072 * not get the lock, simply return NULL to caller.
2073 */
2074struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2075{
2076 struct address_space *mapping = page_mapping(hpage);
2077
2078 if (!mapping)
2079 return mapping;
2080
2081 if (i_mmap_trylock_write(mapping))
2082 return mapping;
2083
2084 return NULL;
2085}
2086
2087pgoff_t hugetlb_basepage_index(struct page *page)
2088{
2089 struct page *page_head = compound_head(page);
2090 pgoff_t index = page_index(page_head);
2091 unsigned long compound_idx;
2092
2093 if (compound_order(page_head) >= MAX_ORDER)
2094 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2095 else
2096 compound_idx = page - page_head;
2097
2098 return (index << compound_order(page_head)) + compound_idx;
2099}
2100
2101static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2102 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2103 nodemask_t *node_alloc_noretry)
2104{
2105 int order = huge_page_order(h);
2106 struct page *page;
2107 bool alloc_try_hard = true;
2108 bool retry = true;
2109
2110 /*
2111 * By default we always try hard to allocate the page with
2112 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2113 * a loop (to adjust global huge page counts) and previous allocation
2114 * failed, do not continue to try hard on the same node. Use the
2115 * node_alloc_noretry bitmap to manage this state information.
2116 */
2117 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2118 alloc_try_hard = false;
2119 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2120 if (alloc_try_hard)
2121 gfp_mask |= __GFP_RETRY_MAYFAIL;
2122 if (nid == NUMA_NO_NODE)
2123 nid = numa_mem_id();
2124retry:
2125 page = __alloc_pages(gfp_mask, order, nid, nmask);
2126
2127 /* Freeze head page */
2128 if (page && !page_ref_freeze(page, 1)) {
2129 __free_pages(page, order);
2130 if (retry) { /* retry once */
2131 retry = false;
2132 goto retry;
2133 }
2134 /* WOW! twice in a row. */
2135 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2136 page = NULL;
2137 }
2138
2139 /*
2140 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2141 * indicates an overall state change. Clear bit so that we resume
2142 * normal 'try hard' allocations.
2143 */
2144 if (node_alloc_noretry && page && !alloc_try_hard)
2145 node_clear(nid, *node_alloc_noretry);
2146
2147 /*
2148 * If we tried hard to get a page but failed, set bit so that
2149 * subsequent attempts will not try as hard until there is an
2150 * overall state change.
2151 */
2152 if (node_alloc_noretry && !page && alloc_try_hard)
2153 node_set(nid, *node_alloc_noretry);
2154
2155 if (!page) {
2156 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2157 return NULL;
2158 }
2159
2160 __count_vm_event(HTLB_BUDDY_PGALLOC);
2161 return page_folio(page);
2162}
2163
2164/*
2165 * Common helper to allocate a fresh hugetlb page. All specific allocators
2166 * should use this function to get new hugetlb pages
2167 *
2168 * Note that returned page is 'frozen': ref count of head page and all tail
2169 * pages is zero.
2170 */
2171static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2172 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2173 nodemask_t *node_alloc_noretry)
2174{
2175 struct folio *folio;
2176 bool retry = false;
2177
2178retry:
2179 if (hstate_is_gigantic(h))
2180 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2181 else
2182 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2183 nid, nmask, node_alloc_noretry);
2184 if (!folio)
2185 return NULL;
2186 if (hstate_is_gigantic(h)) {
2187 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2188 /*
2189 * Rare failure to convert pages to compound page.
2190 * Free pages and try again - ONCE!
2191 */
2192 free_gigantic_folio(folio, huge_page_order(h));
2193 if (!retry) {
2194 retry = true;
2195 goto retry;
2196 }
2197 return NULL;
2198 }
2199 }
2200 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2201
2202 return folio;
2203}
2204
2205/*
2206 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2207 * manner.
2208 */
2209static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2210 nodemask_t *node_alloc_noretry)
2211{
2212 struct folio *folio;
2213 int nr_nodes, node;
2214 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2215
2216 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2217 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2218 nodes_allowed, node_alloc_noretry);
2219 if (folio) {
2220 free_huge_page(&folio->page); /* free it into the hugepage allocator */
2221 return 1;
2222 }
2223 }
2224
2225 return 0;
2226}
2227
2228/*
2229 * Remove huge page from pool from next node to free. Attempt to keep
2230 * persistent huge pages more or less balanced over allowed nodes.
2231 * This routine only 'removes' the hugetlb page. The caller must make
2232 * an additional call to free the page to low level allocators.
2233 * Called with hugetlb_lock locked.
2234 */
2235static struct page *remove_pool_huge_page(struct hstate *h,
2236 nodemask_t *nodes_allowed,
2237 bool acct_surplus)
2238{
2239 int nr_nodes, node;
2240 struct page *page = NULL;
2241 struct folio *folio;
2242
2243 lockdep_assert_held(&hugetlb_lock);
2244 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2245 /*
2246 * If we're returning unused surplus pages, only examine
2247 * nodes with surplus pages.
2248 */
2249 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2250 !list_empty(&h->hugepage_freelists[node])) {
2251 page = list_entry(h->hugepage_freelists[node].next,
2252 struct page, lru);
2253 folio = page_folio(page);
2254 remove_hugetlb_folio(h, folio, acct_surplus);
2255 break;
2256 }
2257 }
2258
2259 return page;
2260}
2261
2262/*
2263 * Dissolve a given free hugepage into free buddy pages. This function does
2264 * nothing for in-use hugepages and non-hugepages.
2265 * This function returns values like below:
2266 *
2267 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2268 * when the system is under memory pressure and the feature of
2269 * freeing unused vmemmap pages associated with each hugetlb page
2270 * is enabled.
2271 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2272 * (allocated or reserved.)
2273 * 0: successfully dissolved free hugepages or the page is not a
2274 * hugepage (considered as already dissolved)
2275 */
2276int dissolve_free_huge_page(struct page *page)
2277{
2278 int rc = -EBUSY;
2279 struct folio *folio = page_folio(page);
2280
2281retry:
2282 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2283 if (!folio_test_hugetlb(folio))
2284 return 0;
2285
2286 spin_lock_irq(&hugetlb_lock);
2287 if (!folio_test_hugetlb(folio)) {
2288 rc = 0;
2289 goto out;
2290 }
2291
2292 if (!folio_ref_count(folio)) {
2293 struct hstate *h = folio_hstate(folio);
2294 if (!available_huge_pages(h))
2295 goto out;
2296
2297 /*
2298 * We should make sure that the page is already on the free list
2299 * when it is dissolved.
2300 */
2301 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2302 spin_unlock_irq(&hugetlb_lock);
2303 cond_resched();
2304
2305 /*
2306 * Theoretically, we should return -EBUSY when we
2307 * encounter this race. In fact, we have a chance
2308 * to successfully dissolve the page if we do a
2309 * retry. Because the race window is quite small.
2310 * If we seize this opportunity, it is an optimization
2311 * for increasing the success rate of dissolving page.
2312 */
2313 goto retry;
2314 }
2315
2316 remove_hugetlb_folio(h, folio, false);
2317 h->max_huge_pages--;
2318 spin_unlock_irq(&hugetlb_lock);
2319
2320 /*
2321 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2322 * before freeing the page. update_and_free_hugtlb_folio will fail to
2323 * free the page if it can not allocate required vmemmap. We
2324 * need to adjust max_huge_pages if the page is not freed.
2325 * Attempt to allocate vmemmmap here so that we can take
2326 * appropriate action on failure.
2327 */
2328 rc = hugetlb_vmemmap_restore(h, &folio->page);
2329 if (!rc) {
2330 update_and_free_hugetlb_folio(h, folio, false);
2331 } else {
2332 spin_lock_irq(&hugetlb_lock);
2333 add_hugetlb_folio(h, folio, false);
2334 h->max_huge_pages++;
2335 spin_unlock_irq(&hugetlb_lock);
2336 }
2337
2338 return rc;
2339 }
2340out:
2341 spin_unlock_irq(&hugetlb_lock);
2342 return rc;
2343}
2344
2345/*
2346 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2347 * make specified memory blocks removable from the system.
2348 * Note that this will dissolve a free gigantic hugepage completely, if any
2349 * part of it lies within the given range.
2350 * Also note that if dissolve_free_huge_page() returns with an error, all
2351 * free hugepages that were dissolved before that error are lost.
2352 */
2353int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2354{
2355 unsigned long pfn;
2356 struct page *page;
2357 int rc = 0;
2358 unsigned int order;
2359 struct hstate *h;
2360
2361 if (!hugepages_supported())
2362 return rc;
2363
2364 order = huge_page_order(&default_hstate);
2365 for_each_hstate(h)
2366 order = min(order, huge_page_order(h));
2367
2368 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2369 page = pfn_to_page(pfn);
2370 rc = dissolve_free_huge_page(page);
2371 if (rc)
2372 break;
2373 }
2374
2375 return rc;
2376}
2377
2378/*
2379 * Allocates a fresh surplus page from the page allocator.
2380 */
2381static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2382 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2383{
2384 struct folio *folio = NULL;
2385
2386 if (hstate_is_gigantic(h))
2387 return NULL;
2388
2389 spin_lock_irq(&hugetlb_lock);
2390 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2391 goto out_unlock;
2392 spin_unlock_irq(&hugetlb_lock);
2393
2394 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2395 if (!folio)
2396 return NULL;
2397
2398 spin_lock_irq(&hugetlb_lock);
2399 /*
2400 * We could have raced with the pool size change.
2401 * Double check that and simply deallocate the new page
2402 * if we would end up overcommiting the surpluses. Abuse
2403 * temporary page to workaround the nasty free_huge_page
2404 * codeflow
2405 */
2406 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2407 folio_set_hugetlb_temporary(folio);
2408 spin_unlock_irq(&hugetlb_lock);
2409 free_huge_page(&folio->page);
2410 return NULL;
2411 }
2412
2413 h->surplus_huge_pages++;
2414 h->surplus_huge_pages_node[folio_nid(folio)]++;
2415
2416out_unlock:
2417 spin_unlock_irq(&hugetlb_lock);
2418
2419 return folio;
2420}
2421
2422static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2423 int nid, nodemask_t *nmask)
2424{
2425 struct folio *folio;
2426
2427 if (hstate_is_gigantic(h))
2428 return NULL;
2429
2430 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2431 if (!folio)
2432 return NULL;
2433
2434 /* fresh huge pages are frozen */
2435 folio_ref_unfreeze(folio, 1);
2436 /*
2437 * We do not account these pages as surplus because they are only
2438 * temporary and will be released properly on the last reference
2439 */
2440 folio_set_hugetlb_temporary(folio);
2441
2442 return folio;
2443}
2444
2445/*
2446 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2447 */
2448static
2449struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2450 struct vm_area_struct *vma, unsigned long addr)
2451{
2452 struct folio *folio = NULL;
2453 struct mempolicy *mpol;
2454 gfp_t gfp_mask = htlb_alloc_mask(h);
2455 int nid;
2456 nodemask_t *nodemask;
2457
2458 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2459 if (mpol_is_preferred_many(mpol)) {
2460 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2461
2462 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2463 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2464
2465 /* Fallback to all nodes if page==NULL */
2466 nodemask = NULL;
2467 }
2468
2469 if (!folio)
2470 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2471 mpol_cond_put(mpol);
2472 return folio;
2473}
2474
2475/* folio migration callback function */
2476struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2477 nodemask_t *nmask, gfp_t gfp_mask)
2478{
2479 spin_lock_irq(&hugetlb_lock);
2480 if (available_huge_pages(h)) {
2481 struct folio *folio;
2482
2483 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2484 preferred_nid, nmask);
2485 if (folio) {
2486 spin_unlock_irq(&hugetlb_lock);
2487 return folio;
2488 }
2489 }
2490 spin_unlock_irq(&hugetlb_lock);
2491
2492 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2493}
2494
2495/* mempolicy aware migration callback */
2496struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2497 unsigned long address)
2498{
2499 struct mempolicy *mpol;
2500 nodemask_t *nodemask;
2501 struct folio *folio;
2502 gfp_t gfp_mask;
2503 int node;
2504
2505 gfp_mask = htlb_alloc_mask(h);
2506 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2507 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2508 mpol_cond_put(mpol);
2509
2510 return folio;
2511}
2512
2513/*
2514 * Increase the hugetlb pool such that it can accommodate a reservation
2515 * of size 'delta'.
2516 */
2517static int gather_surplus_pages(struct hstate *h, long delta)
2518 __must_hold(&hugetlb_lock)
2519{
2520 LIST_HEAD(surplus_list);
2521 struct folio *folio;
2522 struct page *page, *tmp;
2523 int ret;
2524 long i;
2525 long needed, allocated;
2526 bool alloc_ok = true;
2527
2528 lockdep_assert_held(&hugetlb_lock);
2529 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2530 if (needed <= 0) {
2531 h->resv_huge_pages += delta;
2532 return 0;
2533 }
2534
2535 allocated = 0;
2536
2537 ret = -ENOMEM;
2538retry:
2539 spin_unlock_irq(&hugetlb_lock);
2540 for (i = 0; i < needed; i++) {
2541 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2542 NUMA_NO_NODE, NULL);
2543 if (!folio) {
2544 alloc_ok = false;
2545 break;
2546 }
2547 list_add(&folio->lru, &surplus_list);
2548 cond_resched();
2549 }
2550 allocated += i;
2551
2552 /*
2553 * After retaking hugetlb_lock, we need to recalculate 'needed'
2554 * because either resv_huge_pages or free_huge_pages may have changed.
2555 */
2556 spin_lock_irq(&hugetlb_lock);
2557 needed = (h->resv_huge_pages + delta) -
2558 (h->free_huge_pages + allocated);
2559 if (needed > 0) {
2560 if (alloc_ok)
2561 goto retry;
2562 /*
2563 * We were not able to allocate enough pages to
2564 * satisfy the entire reservation so we free what
2565 * we've allocated so far.
2566 */
2567 goto free;
2568 }
2569 /*
2570 * The surplus_list now contains _at_least_ the number of extra pages
2571 * needed to accommodate the reservation. Add the appropriate number
2572 * of pages to the hugetlb pool and free the extras back to the buddy
2573 * allocator. Commit the entire reservation here to prevent another
2574 * process from stealing the pages as they are added to the pool but
2575 * before they are reserved.
2576 */
2577 needed += allocated;
2578 h->resv_huge_pages += delta;
2579 ret = 0;
2580
2581 /* Free the needed pages to the hugetlb pool */
2582 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2583 if ((--needed) < 0)
2584 break;
2585 /* Add the page to the hugetlb allocator */
2586 enqueue_hugetlb_folio(h, page_folio(page));
2587 }
2588free:
2589 spin_unlock_irq(&hugetlb_lock);
2590
2591 /*
2592 * Free unnecessary surplus pages to the buddy allocator.
2593 * Pages have no ref count, call free_huge_page directly.
2594 */
2595 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2596 free_huge_page(page);
2597 spin_lock_irq(&hugetlb_lock);
2598
2599 return ret;
2600}
2601
2602/*
2603 * This routine has two main purposes:
2604 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2605 * in unused_resv_pages. This corresponds to the prior adjustments made
2606 * to the associated reservation map.
2607 * 2) Free any unused surplus pages that may have been allocated to satisfy
2608 * the reservation. As many as unused_resv_pages may be freed.
2609 */
2610static void return_unused_surplus_pages(struct hstate *h,
2611 unsigned long unused_resv_pages)
2612{
2613 unsigned long nr_pages;
2614 struct page *page;
2615 LIST_HEAD(page_list);
2616
2617 lockdep_assert_held(&hugetlb_lock);
2618 /* Uncommit the reservation */
2619 h->resv_huge_pages -= unused_resv_pages;
2620
2621 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2622 goto out;
2623
2624 /*
2625 * Part (or even all) of the reservation could have been backed
2626 * by pre-allocated pages. Only free surplus pages.
2627 */
2628 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2629
2630 /*
2631 * We want to release as many surplus pages as possible, spread
2632 * evenly across all nodes with memory. Iterate across these nodes
2633 * until we can no longer free unreserved surplus pages. This occurs
2634 * when the nodes with surplus pages have no free pages.
2635 * remove_pool_huge_page() will balance the freed pages across the
2636 * on-line nodes with memory and will handle the hstate accounting.
2637 */
2638 while (nr_pages--) {
2639 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2640 if (!page)
2641 goto out;
2642
2643 list_add(&page->lru, &page_list);
2644 }
2645
2646out:
2647 spin_unlock_irq(&hugetlb_lock);
2648 update_and_free_pages_bulk(h, &page_list);
2649 spin_lock_irq(&hugetlb_lock);
2650}
2651
2652
2653/*
2654 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2655 * are used by the huge page allocation routines to manage reservations.
2656 *
2657 * vma_needs_reservation is called to determine if the huge page at addr
2658 * within the vma has an associated reservation. If a reservation is
2659 * needed, the value 1 is returned. The caller is then responsible for
2660 * managing the global reservation and subpool usage counts. After
2661 * the huge page has been allocated, vma_commit_reservation is called
2662 * to add the page to the reservation map. If the page allocation fails,
2663 * the reservation must be ended instead of committed. vma_end_reservation
2664 * is called in such cases.
2665 *
2666 * In the normal case, vma_commit_reservation returns the same value
2667 * as the preceding vma_needs_reservation call. The only time this
2668 * is not the case is if a reserve map was changed between calls. It
2669 * is the responsibility of the caller to notice the difference and
2670 * take appropriate action.
2671 *
2672 * vma_add_reservation is used in error paths where a reservation must
2673 * be restored when a newly allocated huge page must be freed. It is
2674 * to be called after calling vma_needs_reservation to determine if a
2675 * reservation exists.
2676 *
2677 * vma_del_reservation is used in error paths where an entry in the reserve
2678 * map was created during huge page allocation and must be removed. It is to
2679 * be called after calling vma_needs_reservation to determine if a reservation
2680 * exists.
2681 */
2682enum vma_resv_mode {
2683 VMA_NEEDS_RESV,
2684 VMA_COMMIT_RESV,
2685 VMA_END_RESV,
2686 VMA_ADD_RESV,
2687 VMA_DEL_RESV,
2688};
2689static long __vma_reservation_common(struct hstate *h,
2690 struct vm_area_struct *vma, unsigned long addr,
2691 enum vma_resv_mode mode)
2692{
2693 struct resv_map *resv;
2694 pgoff_t idx;
2695 long ret;
2696 long dummy_out_regions_needed;
2697
2698 resv = vma_resv_map(vma);
2699 if (!resv)
2700 return 1;
2701
2702 idx = vma_hugecache_offset(h, vma, addr);
2703 switch (mode) {
2704 case VMA_NEEDS_RESV:
2705 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2706 /* We assume that vma_reservation_* routines always operate on
2707 * 1 page, and that adding to resv map a 1 page entry can only
2708 * ever require 1 region.
2709 */
2710 VM_BUG_ON(dummy_out_regions_needed != 1);
2711 break;
2712 case VMA_COMMIT_RESV:
2713 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2714 /* region_add calls of range 1 should never fail. */
2715 VM_BUG_ON(ret < 0);
2716 break;
2717 case VMA_END_RESV:
2718 region_abort(resv, idx, idx + 1, 1);
2719 ret = 0;
2720 break;
2721 case VMA_ADD_RESV:
2722 if (vma->vm_flags & VM_MAYSHARE) {
2723 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2724 /* region_add calls of range 1 should never fail. */
2725 VM_BUG_ON(ret < 0);
2726 } else {
2727 region_abort(resv, idx, idx + 1, 1);
2728 ret = region_del(resv, idx, idx + 1);
2729 }
2730 break;
2731 case VMA_DEL_RESV:
2732 if (vma->vm_flags & VM_MAYSHARE) {
2733 region_abort(resv, idx, idx + 1, 1);
2734 ret = region_del(resv, idx, idx + 1);
2735 } else {
2736 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2737 /* region_add calls of range 1 should never fail. */
2738 VM_BUG_ON(ret < 0);
2739 }
2740 break;
2741 default:
2742 BUG();
2743 }
2744
2745 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2746 return ret;
2747 /*
2748 * We know private mapping must have HPAGE_RESV_OWNER set.
2749 *
2750 * In most cases, reserves always exist for private mappings.
2751 * However, a file associated with mapping could have been
2752 * hole punched or truncated after reserves were consumed.
2753 * As subsequent fault on such a range will not use reserves.
2754 * Subtle - The reserve map for private mappings has the
2755 * opposite meaning than that of shared mappings. If NO
2756 * entry is in the reserve map, it means a reservation exists.
2757 * If an entry exists in the reserve map, it means the
2758 * reservation has already been consumed. As a result, the
2759 * return value of this routine is the opposite of the
2760 * value returned from reserve map manipulation routines above.
2761 */
2762 if (ret > 0)
2763 return 0;
2764 if (ret == 0)
2765 return 1;
2766 return ret;
2767}
2768
2769static long vma_needs_reservation(struct hstate *h,
2770 struct vm_area_struct *vma, unsigned long addr)
2771{
2772 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2773}
2774
2775static long vma_commit_reservation(struct hstate *h,
2776 struct vm_area_struct *vma, unsigned long addr)
2777{
2778 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2779}
2780
2781static void vma_end_reservation(struct hstate *h,
2782 struct vm_area_struct *vma, unsigned long addr)
2783{
2784 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2785}
2786
2787static long vma_add_reservation(struct hstate *h,
2788 struct vm_area_struct *vma, unsigned long addr)
2789{
2790 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2791}
2792
2793static long vma_del_reservation(struct hstate *h,
2794 struct vm_area_struct *vma, unsigned long addr)
2795{
2796 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2797}
2798
2799/*
2800 * This routine is called to restore reservation information on error paths.
2801 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2802 * and the hugetlb mutex should remain held when calling this routine.
2803 *
2804 * It handles two specific cases:
2805 * 1) A reservation was in place and the folio consumed the reservation.
2806 * hugetlb_restore_reserve is set in the folio.
2807 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2808 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2809 *
2810 * In case 1, free_huge_page later in the error path will increment the
2811 * global reserve count. But, free_huge_page does not have enough context
2812 * to adjust the reservation map. This case deals primarily with private
2813 * mappings. Adjust the reserve map here to be consistent with global
2814 * reserve count adjustments to be made by free_huge_page. Make sure the
2815 * reserve map indicates there is a reservation present.
2816 *
2817 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2818 */
2819void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2820 unsigned long address, struct folio *folio)
2821{
2822 long rc = vma_needs_reservation(h, vma, address);
2823
2824 if (folio_test_hugetlb_restore_reserve(folio)) {
2825 if (unlikely(rc < 0))
2826 /*
2827 * Rare out of memory condition in reserve map
2828 * manipulation. Clear hugetlb_restore_reserve so
2829 * that global reserve count will not be incremented
2830 * by free_huge_page. This will make it appear
2831 * as though the reservation for this folio was
2832 * consumed. This may prevent the task from
2833 * faulting in the folio at a later time. This
2834 * is better than inconsistent global huge page
2835 * accounting of reserve counts.
2836 */
2837 folio_clear_hugetlb_restore_reserve(folio);
2838 else if (rc)
2839 (void)vma_add_reservation(h, vma, address);
2840 else
2841 vma_end_reservation(h, vma, address);
2842 } else {
2843 if (!rc) {
2844 /*
2845 * This indicates there is an entry in the reserve map
2846 * not added by alloc_hugetlb_folio. We know it was added
2847 * before the alloc_hugetlb_folio call, otherwise
2848 * hugetlb_restore_reserve would be set on the folio.
2849 * Remove the entry so that a subsequent allocation
2850 * does not consume a reservation.
2851 */
2852 rc = vma_del_reservation(h, vma, address);
2853 if (rc < 0)
2854 /*
2855 * VERY rare out of memory condition. Since
2856 * we can not delete the entry, set
2857 * hugetlb_restore_reserve so that the reserve
2858 * count will be incremented when the folio
2859 * is freed. This reserve will be consumed
2860 * on a subsequent allocation.
2861 */
2862 folio_set_hugetlb_restore_reserve(folio);
2863 } else if (rc < 0) {
2864 /*
2865 * Rare out of memory condition from
2866 * vma_needs_reservation call. Memory allocation is
2867 * only attempted if a new entry is needed. Therefore,
2868 * this implies there is not an entry in the
2869 * reserve map.
2870 *
2871 * For shared mappings, no entry in the map indicates
2872 * no reservation. We are done.
2873 */
2874 if (!(vma->vm_flags & VM_MAYSHARE))
2875 /*
2876 * For private mappings, no entry indicates
2877 * a reservation is present. Since we can
2878 * not add an entry, set hugetlb_restore_reserve
2879 * on the folio so reserve count will be
2880 * incremented when freed. This reserve will
2881 * be consumed on a subsequent allocation.
2882 */
2883 folio_set_hugetlb_restore_reserve(folio);
2884 } else
2885 /*
2886 * No reservation present, do nothing
2887 */
2888 vma_end_reservation(h, vma, address);
2889 }
2890}
2891
2892/*
2893 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2894 * the old one
2895 * @h: struct hstate old page belongs to
2896 * @old_folio: Old folio to dissolve
2897 * @list: List to isolate the page in case we need to
2898 * Returns 0 on success, otherwise negated error.
2899 */
2900static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2901 struct folio *old_folio, struct list_head *list)
2902{
2903 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2904 int nid = folio_nid(old_folio);
2905 struct folio *new_folio;
2906 int ret = 0;
2907
2908 /*
2909 * Before dissolving the folio, we need to allocate a new one for the
2910 * pool to remain stable. Here, we allocate the folio and 'prep' it
2911 * by doing everything but actually updating counters and adding to
2912 * the pool. This simplifies and let us do most of the processing
2913 * under the lock.
2914 */
2915 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2916 if (!new_folio)
2917 return -ENOMEM;
2918 __prep_new_hugetlb_folio(h, new_folio);
2919
2920retry:
2921 spin_lock_irq(&hugetlb_lock);
2922 if (!folio_test_hugetlb(old_folio)) {
2923 /*
2924 * Freed from under us. Drop new_folio too.
2925 */
2926 goto free_new;
2927 } else if (folio_ref_count(old_folio)) {
2928 bool isolated;
2929
2930 /*
2931 * Someone has grabbed the folio, try to isolate it here.
2932 * Fail with -EBUSY if not possible.
2933 */
2934 spin_unlock_irq(&hugetlb_lock);
2935 isolated = isolate_hugetlb(old_folio, list);
2936 ret = isolated ? 0 : -EBUSY;
2937 spin_lock_irq(&hugetlb_lock);
2938 goto free_new;
2939 } else if (!folio_test_hugetlb_freed(old_folio)) {
2940 /*
2941 * Folio's refcount is 0 but it has not been enqueued in the
2942 * freelist yet. Race window is small, so we can succeed here if
2943 * we retry.
2944 */
2945 spin_unlock_irq(&hugetlb_lock);
2946 cond_resched();
2947 goto retry;
2948 } else {
2949 /*
2950 * Ok, old_folio is still a genuine free hugepage. Remove it from
2951 * the freelist and decrease the counters. These will be
2952 * incremented again when calling __prep_account_new_huge_page()
2953 * and enqueue_hugetlb_folio() for new_folio. The counters will
2954 * remain stable since this happens under the lock.
2955 */
2956 remove_hugetlb_folio(h, old_folio, false);
2957
2958 /*
2959 * Ref count on new_folio is already zero as it was dropped
2960 * earlier. It can be directly added to the pool free list.
2961 */
2962 __prep_account_new_huge_page(h, nid);
2963 enqueue_hugetlb_folio(h, new_folio);
2964
2965 /*
2966 * Folio has been replaced, we can safely free the old one.
2967 */
2968 spin_unlock_irq(&hugetlb_lock);
2969 update_and_free_hugetlb_folio(h, old_folio, false);
2970 }
2971
2972 return ret;
2973
2974free_new:
2975 spin_unlock_irq(&hugetlb_lock);
2976 /* Folio has a zero ref count, but needs a ref to be freed */
2977 folio_ref_unfreeze(new_folio, 1);
2978 update_and_free_hugetlb_folio(h, new_folio, false);
2979
2980 return ret;
2981}
2982
2983int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2984{
2985 struct hstate *h;
2986 struct folio *folio = page_folio(page);
2987 int ret = -EBUSY;
2988
2989 /*
2990 * The page might have been dissolved from under our feet, so make sure
2991 * to carefully check the state under the lock.
2992 * Return success when racing as if we dissolved the page ourselves.
2993 */
2994 spin_lock_irq(&hugetlb_lock);
2995 if (folio_test_hugetlb(folio)) {
2996 h = folio_hstate(folio);
2997 } else {
2998 spin_unlock_irq(&hugetlb_lock);
2999 return 0;
3000 }
3001 spin_unlock_irq(&hugetlb_lock);
3002
3003 /*
3004 * Fence off gigantic pages as there is a cyclic dependency between
3005 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3006 * of bailing out right away without further retrying.
3007 */
3008 if (hstate_is_gigantic(h))
3009 return -ENOMEM;
3010
3011 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3012 ret = 0;
3013 else if (!folio_ref_count(folio))
3014 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3015
3016 return ret;
3017}
3018
3019struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3020 unsigned long addr, int avoid_reserve)
3021{
3022 struct hugepage_subpool *spool = subpool_vma(vma);
3023 struct hstate *h = hstate_vma(vma);
3024 struct folio *folio;
3025 long map_chg, map_commit;
3026 long gbl_chg;
3027 int ret, idx;
3028 struct hugetlb_cgroup *h_cg = NULL;
3029 bool deferred_reserve;
3030
3031 idx = hstate_index(h);
3032 /*
3033 * Examine the region/reserve map to determine if the process
3034 * has a reservation for the page to be allocated. A return
3035 * code of zero indicates a reservation exists (no change).
3036 */
3037 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3038 if (map_chg < 0)
3039 return ERR_PTR(-ENOMEM);
3040
3041 /*
3042 * Processes that did not create the mapping will have no
3043 * reserves as indicated by the region/reserve map. Check
3044 * that the allocation will not exceed the subpool limit.
3045 * Allocations for MAP_NORESERVE mappings also need to be
3046 * checked against any subpool limit.
3047 */
3048 if (map_chg || avoid_reserve) {
3049 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3050 if (gbl_chg < 0) {
3051 vma_end_reservation(h, vma, addr);
3052 return ERR_PTR(-ENOSPC);
3053 }
3054
3055 /*
3056 * Even though there was no reservation in the region/reserve
3057 * map, there could be reservations associated with the
3058 * subpool that can be used. This would be indicated if the
3059 * return value of hugepage_subpool_get_pages() is zero.
3060 * However, if avoid_reserve is specified we still avoid even
3061 * the subpool reservations.
3062 */
3063 if (avoid_reserve)
3064 gbl_chg = 1;
3065 }
3066
3067 /* If this allocation is not consuming a reservation, charge it now.
3068 */
3069 deferred_reserve = map_chg || avoid_reserve;
3070 if (deferred_reserve) {
3071 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3072 idx, pages_per_huge_page(h), &h_cg);
3073 if (ret)
3074 goto out_subpool_put;
3075 }
3076
3077 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3078 if (ret)
3079 goto out_uncharge_cgroup_reservation;
3080
3081 spin_lock_irq(&hugetlb_lock);
3082 /*
3083 * glb_chg is passed to indicate whether or not a page must be taken
3084 * from the global free pool (global change). gbl_chg == 0 indicates
3085 * a reservation exists for the allocation.
3086 */
3087 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3088 if (!folio) {
3089 spin_unlock_irq(&hugetlb_lock);
3090 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3091 if (!folio)
3092 goto out_uncharge_cgroup;
3093 spin_lock_irq(&hugetlb_lock);
3094 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3095 folio_set_hugetlb_restore_reserve(folio);
3096 h->resv_huge_pages--;
3097 }
3098 list_add(&folio->lru, &h->hugepage_activelist);
3099 folio_ref_unfreeze(folio, 1);
3100 /* Fall through */
3101 }
3102
3103 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3104 /* If allocation is not consuming a reservation, also store the
3105 * hugetlb_cgroup pointer on the page.
3106 */
3107 if (deferred_reserve) {
3108 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3109 h_cg, folio);
3110 }
3111
3112 spin_unlock_irq(&hugetlb_lock);
3113
3114 hugetlb_set_folio_subpool(folio, spool);
3115
3116 map_commit = vma_commit_reservation(h, vma, addr);
3117 if (unlikely(map_chg > map_commit)) {
3118 /*
3119 * The page was added to the reservation map between
3120 * vma_needs_reservation and vma_commit_reservation.
3121 * This indicates a race with hugetlb_reserve_pages.
3122 * Adjust for the subpool count incremented above AND
3123 * in hugetlb_reserve_pages for the same page. Also,
3124 * the reservation count added in hugetlb_reserve_pages
3125 * no longer applies.
3126 */
3127 long rsv_adjust;
3128
3129 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3130 hugetlb_acct_memory(h, -rsv_adjust);
3131 if (deferred_reserve)
3132 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3133 pages_per_huge_page(h), folio);
3134 }
3135 return folio;
3136
3137out_uncharge_cgroup:
3138 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3139out_uncharge_cgroup_reservation:
3140 if (deferred_reserve)
3141 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3142 h_cg);
3143out_subpool_put:
3144 if (map_chg || avoid_reserve)
3145 hugepage_subpool_put_pages(spool, 1);
3146 vma_end_reservation(h, vma, addr);
3147 return ERR_PTR(-ENOSPC);
3148}
3149
3150int alloc_bootmem_huge_page(struct hstate *h, int nid)
3151 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3152int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3153{
3154 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3155 int nr_nodes, node;
3156
3157 /* do node specific alloc */
3158 if (nid != NUMA_NO_NODE) {
3159 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3160 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3161 if (!m)
3162 return 0;
3163 goto found;
3164 }
3165 /* allocate from next node when distributing huge pages */
3166 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3167 m = memblock_alloc_try_nid_raw(
3168 huge_page_size(h), huge_page_size(h),
3169 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3170 /*
3171 * Use the beginning of the huge page to store the
3172 * huge_bootmem_page struct (until gather_bootmem
3173 * puts them into the mem_map).
3174 */
3175 if (!m)
3176 return 0;
3177 goto found;
3178 }
3179
3180found:
3181 /* Put them into a private list first because mem_map is not up yet */
3182 INIT_LIST_HEAD(&m->list);
3183 list_add(&m->list, &huge_boot_pages);
3184 m->hstate = h;
3185 return 1;
3186}
3187
3188/*
3189 * Put bootmem huge pages into the standard lists after mem_map is up.
3190 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3191 */
3192static void __init gather_bootmem_prealloc(void)
3193{
3194 struct huge_bootmem_page *m;
3195
3196 list_for_each_entry(m, &huge_boot_pages, list) {
3197 struct page *page = virt_to_page(m);
3198 struct folio *folio = page_folio(page);
3199 struct hstate *h = m->hstate;
3200
3201 VM_BUG_ON(!hstate_is_gigantic(h));
3202 WARN_ON(folio_ref_count(folio) != 1);
3203 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3204 WARN_ON(folio_test_reserved(folio));
3205 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3206 free_huge_page(page); /* add to the hugepage allocator */
3207 } else {
3208 /* VERY unlikely inflated ref count on a tail page */
3209 free_gigantic_folio(folio, huge_page_order(h));
3210 }
3211
3212 /*
3213 * We need to restore the 'stolen' pages to totalram_pages
3214 * in order to fix confusing memory reports from free(1) and
3215 * other side-effects, like CommitLimit going negative.
3216 */
3217 adjust_managed_page_count(page, pages_per_huge_page(h));
3218 cond_resched();
3219 }
3220}
3221static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3222{
3223 unsigned long i;
3224 char buf[32];
3225
3226 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3227 if (hstate_is_gigantic(h)) {
3228 if (!alloc_bootmem_huge_page(h, nid))
3229 break;
3230 } else {
3231 struct folio *folio;
3232 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3233
3234 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3235 &node_states[N_MEMORY], NULL);
3236 if (!folio)
3237 break;
3238 free_huge_page(&folio->page); /* free it into the hugepage allocator */
3239 }
3240 cond_resched();
3241 }
3242 if (i == h->max_huge_pages_node[nid])
3243 return;
3244
3245 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3246 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3247 h->max_huge_pages_node[nid], buf, nid, i);
3248 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3249 h->max_huge_pages_node[nid] = i;
3250}
3251
3252static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3253{
3254 unsigned long i;
3255 nodemask_t *node_alloc_noretry;
3256 bool node_specific_alloc = false;
3257
3258 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3259 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3260 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3261 return;
3262 }
3263
3264 /* do node specific alloc */
3265 for_each_online_node(i) {
3266 if (h->max_huge_pages_node[i] > 0) {
3267 hugetlb_hstate_alloc_pages_onenode(h, i);
3268 node_specific_alloc = true;
3269 }
3270 }
3271
3272 if (node_specific_alloc)
3273 return;
3274
3275 /* below will do all node balanced alloc */
3276 if (!hstate_is_gigantic(h)) {
3277 /*
3278 * Bit mask controlling how hard we retry per-node allocations.
3279 * Ignore errors as lower level routines can deal with
3280 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3281 * time, we are likely in bigger trouble.
3282 */
3283 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3284 GFP_KERNEL);
3285 } else {
3286 /* allocations done at boot time */
3287 node_alloc_noretry = NULL;
3288 }
3289
3290 /* bit mask controlling how hard we retry per-node allocations */
3291 if (node_alloc_noretry)
3292 nodes_clear(*node_alloc_noretry);
3293
3294 for (i = 0; i < h->max_huge_pages; ++i) {
3295 if (hstate_is_gigantic(h)) {
3296 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3297 break;
3298 } else if (!alloc_pool_huge_page(h,
3299 &node_states[N_MEMORY],
3300 node_alloc_noretry))
3301 break;
3302 cond_resched();
3303 }
3304 if (i < h->max_huge_pages) {
3305 char buf[32];
3306
3307 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3308 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3309 h->max_huge_pages, buf, i);
3310 h->max_huge_pages = i;
3311 }
3312 kfree(node_alloc_noretry);
3313}
3314
3315static void __init hugetlb_init_hstates(void)
3316{
3317 struct hstate *h, *h2;
3318
3319 for_each_hstate(h) {
3320 /* oversize hugepages were init'ed in early boot */
3321 if (!hstate_is_gigantic(h))
3322 hugetlb_hstate_alloc_pages(h);
3323
3324 /*
3325 * Set demote order for each hstate. Note that
3326 * h->demote_order is initially 0.
3327 * - We can not demote gigantic pages if runtime freeing
3328 * is not supported, so skip this.
3329 * - If CMA allocation is possible, we can not demote
3330 * HUGETLB_PAGE_ORDER or smaller size pages.
3331 */
3332 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3333 continue;
3334 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3335 continue;
3336 for_each_hstate(h2) {
3337 if (h2 == h)
3338 continue;
3339 if (h2->order < h->order &&
3340 h2->order > h->demote_order)
3341 h->demote_order = h2->order;
3342 }
3343 }
3344}
3345
3346static void __init report_hugepages(void)
3347{
3348 struct hstate *h;
3349
3350 for_each_hstate(h) {
3351 char buf[32];
3352
3353 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3354 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3355 buf, h->free_huge_pages);
3356 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3357 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3358 }
3359}
3360
3361#ifdef CONFIG_HIGHMEM
3362static void try_to_free_low(struct hstate *h, unsigned long count,
3363 nodemask_t *nodes_allowed)
3364{
3365 int i;
3366 LIST_HEAD(page_list);
3367
3368 lockdep_assert_held(&hugetlb_lock);
3369 if (hstate_is_gigantic(h))
3370 return;
3371
3372 /*
3373 * Collect pages to be freed on a list, and free after dropping lock
3374 */
3375 for_each_node_mask(i, *nodes_allowed) {
3376 struct page *page, *next;
3377 struct list_head *freel = &h->hugepage_freelists[i];
3378 list_for_each_entry_safe(page, next, freel, lru) {
3379 if (count >= h->nr_huge_pages)
3380 goto out;
3381 if (PageHighMem(page))
3382 continue;
3383 remove_hugetlb_folio(h, page_folio(page), false);
3384 list_add(&page->lru, &page_list);
3385 }
3386 }
3387
3388out:
3389 spin_unlock_irq(&hugetlb_lock);
3390 update_and_free_pages_bulk(h, &page_list);
3391 spin_lock_irq(&hugetlb_lock);
3392}
3393#else
3394static inline void try_to_free_low(struct hstate *h, unsigned long count,
3395 nodemask_t *nodes_allowed)
3396{
3397}
3398#endif
3399
3400/*
3401 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3402 * balanced by operating on them in a round-robin fashion.
3403 * Returns 1 if an adjustment was made.
3404 */
3405static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3406 int delta)
3407{
3408 int nr_nodes, node;
3409
3410 lockdep_assert_held(&hugetlb_lock);
3411 VM_BUG_ON(delta != -1 && delta != 1);
3412
3413 if (delta < 0) {
3414 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3415 if (h->surplus_huge_pages_node[node])
3416 goto found;
3417 }
3418 } else {
3419 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3420 if (h->surplus_huge_pages_node[node] <
3421 h->nr_huge_pages_node[node])
3422 goto found;
3423 }
3424 }
3425 return 0;
3426
3427found:
3428 h->surplus_huge_pages += delta;
3429 h->surplus_huge_pages_node[node] += delta;
3430 return 1;
3431}
3432
3433#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3434static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3435 nodemask_t *nodes_allowed)
3436{
3437 unsigned long min_count, ret;
3438 struct page *page;
3439 LIST_HEAD(page_list);
3440 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3441
3442 /*
3443 * Bit mask controlling how hard we retry per-node allocations.
3444 * If we can not allocate the bit mask, do not attempt to allocate
3445 * the requested huge pages.
3446 */
3447 if (node_alloc_noretry)
3448 nodes_clear(*node_alloc_noretry);
3449 else
3450 return -ENOMEM;
3451
3452 /*
3453 * resize_lock mutex prevents concurrent adjustments to number of
3454 * pages in hstate via the proc/sysfs interfaces.
3455 */
3456 mutex_lock(&h->resize_lock);
3457 flush_free_hpage_work(h);
3458 spin_lock_irq(&hugetlb_lock);
3459
3460 /*
3461 * Check for a node specific request.
3462 * Changing node specific huge page count may require a corresponding
3463 * change to the global count. In any case, the passed node mask
3464 * (nodes_allowed) will restrict alloc/free to the specified node.
3465 */
3466 if (nid != NUMA_NO_NODE) {
3467 unsigned long old_count = count;
3468
3469 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3470 /*
3471 * User may have specified a large count value which caused the
3472 * above calculation to overflow. In this case, they wanted
3473 * to allocate as many huge pages as possible. Set count to
3474 * largest possible value to align with their intention.
3475 */
3476 if (count < old_count)
3477 count = ULONG_MAX;
3478 }
3479
3480 /*
3481 * Gigantic pages runtime allocation depend on the capability for large
3482 * page range allocation.
3483 * If the system does not provide this feature, return an error when
3484 * the user tries to allocate gigantic pages but let the user free the
3485 * boottime allocated gigantic pages.
3486 */
3487 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3488 if (count > persistent_huge_pages(h)) {
3489 spin_unlock_irq(&hugetlb_lock);
3490 mutex_unlock(&h->resize_lock);
3491 NODEMASK_FREE(node_alloc_noretry);
3492 return -EINVAL;
3493 }
3494 /* Fall through to decrease pool */
3495 }
3496
3497 /*
3498 * Increase the pool size
3499 * First take pages out of surplus state. Then make up the
3500 * remaining difference by allocating fresh huge pages.
3501 *
3502 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3503 * to convert a surplus huge page to a normal huge page. That is
3504 * not critical, though, it just means the overall size of the
3505 * pool might be one hugepage larger than it needs to be, but
3506 * within all the constraints specified by the sysctls.
3507 */
3508 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3509 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3510 break;
3511 }
3512
3513 while (count > persistent_huge_pages(h)) {
3514 /*
3515 * If this allocation races such that we no longer need the
3516 * page, free_huge_page will handle it by freeing the page
3517 * and reducing the surplus.
3518 */
3519 spin_unlock_irq(&hugetlb_lock);
3520
3521 /* yield cpu to avoid soft lockup */
3522 cond_resched();
3523
3524 ret = alloc_pool_huge_page(h, nodes_allowed,
3525 node_alloc_noretry);
3526 spin_lock_irq(&hugetlb_lock);
3527 if (!ret)
3528 goto out;
3529
3530 /* Bail for signals. Probably ctrl-c from user */
3531 if (signal_pending(current))
3532 goto out;
3533 }
3534
3535 /*
3536 * Decrease the pool size
3537 * First return free pages to the buddy allocator (being careful
3538 * to keep enough around to satisfy reservations). Then place
3539 * pages into surplus state as needed so the pool will shrink
3540 * to the desired size as pages become free.
3541 *
3542 * By placing pages into the surplus state independent of the
3543 * overcommit value, we are allowing the surplus pool size to
3544 * exceed overcommit. There are few sane options here. Since
3545 * alloc_surplus_hugetlb_folio() is checking the global counter,
3546 * though, we'll note that we're not allowed to exceed surplus
3547 * and won't grow the pool anywhere else. Not until one of the
3548 * sysctls are changed, or the surplus pages go out of use.
3549 */
3550 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3551 min_count = max(count, min_count);
3552 try_to_free_low(h, min_count, nodes_allowed);
3553
3554 /*
3555 * Collect pages to be removed on list without dropping lock
3556 */
3557 while (min_count < persistent_huge_pages(h)) {
3558 page = remove_pool_huge_page(h, nodes_allowed, 0);
3559 if (!page)
3560 break;
3561
3562 list_add(&page->lru, &page_list);
3563 }
3564 /* free the pages after dropping lock */
3565 spin_unlock_irq(&hugetlb_lock);
3566 update_and_free_pages_bulk(h, &page_list);
3567 flush_free_hpage_work(h);
3568 spin_lock_irq(&hugetlb_lock);
3569
3570 while (count < persistent_huge_pages(h)) {
3571 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3572 break;
3573 }
3574out:
3575 h->max_huge_pages = persistent_huge_pages(h);
3576 spin_unlock_irq(&hugetlb_lock);
3577 mutex_unlock(&h->resize_lock);
3578
3579 NODEMASK_FREE(node_alloc_noretry);
3580
3581 return 0;
3582}
3583
3584static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3585{
3586 int i, nid = folio_nid(folio);
3587 struct hstate *target_hstate;
3588 struct page *subpage;
3589 struct folio *inner_folio;
3590 int rc = 0;
3591
3592 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3593
3594 remove_hugetlb_folio_for_demote(h, folio, false);
3595 spin_unlock_irq(&hugetlb_lock);
3596
3597 rc = hugetlb_vmemmap_restore(h, &folio->page);
3598 if (rc) {
3599 /* Allocation of vmemmmap failed, we can not demote folio */
3600 spin_lock_irq(&hugetlb_lock);
3601 folio_ref_unfreeze(folio, 1);
3602 add_hugetlb_folio(h, folio, false);
3603 return rc;
3604 }
3605
3606 /*
3607 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3608 * sizes as it will not ref count folios.
3609 */
3610 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3611
3612 /*
3613 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3614 * Without the mutex, pages added to target hstate could be marked
3615 * as surplus.
3616 *
3617 * Note that we already hold h->resize_lock. To prevent deadlock,
3618 * use the convention of always taking larger size hstate mutex first.
3619 */
3620 mutex_lock(&target_hstate->resize_lock);
3621 for (i = 0; i < pages_per_huge_page(h);
3622 i += pages_per_huge_page(target_hstate)) {
3623 subpage = folio_page(folio, i);
3624 inner_folio = page_folio(subpage);
3625 if (hstate_is_gigantic(target_hstate))
3626 prep_compound_gigantic_folio_for_demote(inner_folio,
3627 target_hstate->order);
3628 else
3629 prep_compound_page(subpage, target_hstate->order);
3630 folio_change_private(inner_folio, NULL);
3631 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3632 free_huge_page(subpage);
3633 }
3634 mutex_unlock(&target_hstate->resize_lock);
3635
3636 spin_lock_irq(&hugetlb_lock);
3637
3638 /*
3639 * Not absolutely necessary, but for consistency update max_huge_pages
3640 * based on pool changes for the demoted page.
3641 */
3642 h->max_huge_pages--;
3643 target_hstate->max_huge_pages +=
3644 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3645
3646 return rc;
3647}
3648
3649static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3650 __must_hold(&hugetlb_lock)
3651{
3652 int nr_nodes, node;
3653 struct folio *folio;
3654
3655 lockdep_assert_held(&hugetlb_lock);
3656
3657 /* We should never get here if no demote order */
3658 if (!h->demote_order) {
3659 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3660 return -EINVAL; /* internal error */
3661 }
3662
3663 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3664 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3665 if (folio_test_hwpoison(folio))
3666 continue;
3667 return demote_free_hugetlb_folio(h, folio);
3668 }
3669 }
3670
3671 /*
3672 * Only way to get here is if all pages on free lists are poisoned.
3673 * Return -EBUSY so that caller will not retry.
3674 */
3675 return -EBUSY;
3676}
3677
3678#define HSTATE_ATTR_RO(_name) \
3679 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3680
3681#define HSTATE_ATTR_WO(_name) \
3682 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3683
3684#define HSTATE_ATTR(_name) \
3685 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3686
3687static struct kobject *hugepages_kobj;
3688static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3689
3690static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3691
3692static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3693{
3694 int i;
3695
3696 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3697 if (hstate_kobjs[i] == kobj) {
3698 if (nidp)
3699 *nidp = NUMA_NO_NODE;
3700 return &hstates[i];
3701 }
3702
3703 return kobj_to_node_hstate(kobj, nidp);
3704}
3705
3706static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3707 struct kobj_attribute *attr, char *buf)
3708{
3709 struct hstate *h;
3710 unsigned long nr_huge_pages;
3711 int nid;
3712
3713 h = kobj_to_hstate(kobj, &nid);
3714 if (nid == NUMA_NO_NODE)
3715 nr_huge_pages = h->nr_huge_pages;
3716 else
3717 nr_huge_pages = h->nr_huge_pages_node[nid];
3718
3719 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3720}
3721
3722static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3723 struct hstate *h, int nid,
3724 unsigned long count, size_t len)
3725{
3726 int err;
3727 nodemask_t nodes_allowed, *n_mask;
3728
3729 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3730 return -EINVAL;
3731
3732 if (nid == NUMA_NO_NODE) {
3733 /*
3734 * global hstate attribute
3735 */
3736 if (!(obey_mempolicy &&
3737 init_nodemask_of_mempolicy(&nodes_allowed)))
3738 n_mask = &node_states[N_MEMORY];
3739 else
3740 n_mask = &nodes_allowed;
3741 } else {
3742 /*
3743 * Node specific request. count adjustment happens in
3744 * set_max_huge_pages() after acquiring hugetlb_lock.
3745 */
3746 init_nodemask_of_node(&nodes_allowed, nid);
3747 n_mask = &nodes_allowed;
3748 }
3749
3750 err = set_max_huge_pages(h, count, nid, n_mask);
3751
3752 return err ? err : len;
3753}
3754
3755static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3756 struct kobject *kobj, const char *buf,
3757 size_t len)
3758{
3759 struct hstate *h;
3760 unsigned long count;
3761 int nid;
3762 int err;
3763
3764 err = kstrtoul(buf, 10, &count);
3765 if (err)
3766 return err;
3767
3768 h = kobj_to_hstate(kobj, &nid);
3769 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3770}
3771
3772static ssize_t nr_hugepages_show(struct kobject *kobj,
3773 struct kobj_attribute *attr, char *buf)
3774{
3775 return nr_hugepages_show_common(kobj, attr, buf);
3776}
3777
3778static ssize_t nr_hugepages_store(struct kobject *kobj,
3779 struct kobj_attribute *attr, const char *buf, size_t len)
3780{
3781 return nr_hugepages_store_common(false, kobj, buf, len);
3782}
3783HSTATE_ATTR(nr_hugepages);
3784
3785#ifdef CONFIG_NUMA
3786
3787/*
3788 * hstate attribute for optionally mempolicy-based constraint on persistent
3789 * huge page alloc/free.
3790 */
3791static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3792 struct kobj_attribute *attr,
3793 char *buf)
3794{
3795 return nr_hugepages_show_common(kobj, attr, buf);
3796}
3797
3798static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3799 struct kobj_attribute *attr, const char *buf, size_t len)
3800{
3801 return nr_hugepages_store_common(true, kobj, buf, len);
3802}
3803HSTATE_ATTR(nr_hugepages_mempolicy);
3804#endif
3805
3806
3807static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3808 struct kobj_attribute *attr, char *buf)
3809{
3810 struct hstate *h = kobj_to_hstate(kobj, NULL);
3811 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3812}
3813
3814static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3815 struct kobj_attribute *attr, const char *buf, size_t count)
3816{
3817 int err;
3818 unsigned long input;
3819 struct hstate *h = kobj_to_hstate(kobj, NULL);
3820
3821 if (hstate_is_gigantic(h))
3822 return -EINVAL;
3823
3824 err = kstrtoul(buf, 10, &input);
3825 if (err)
3826 return err;
3827
3828 spin_lock_irq(&hugetlb_lock);
3829 h->nr_overcommit_huge_pages = input;
3830 spin_unlock_irq(&hugetlb_lock);
3831
3832 return count;
3833}
3834HSTATE_ATTR(nr_overcommit_hugepages);
3835
3836static ssize_t free_hugepages_show(struct kobject *kobj,
3837 struct kobj_attribute *attr, char *buf)
3838{
3839 struct hstate *h;
3840 unsigned long free_huge_pages;
3841 int nid;
3842
3843 h = kobj_to_hstate(kobj, &nid);
3844 if (nid == NUMA_NO_NODE)
3845 free_huge_pages = h->free_huge_pages;
3846 else
3847 free_huge_pages = h->free_huge_pages_node[nid];
3848
3849 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3850}
3851HSTATE_ATTR_RO(free_hugepages);
3852
3853static ssize_t resv_hugepages_show(struct kobject *kobj,
3854 struct kobj_attribute *attr, char *buf)
3855{
3856 struct hstate *h = kobj_to_hstate(kobj, NULL);
3857 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3858}
3859HSTATE_ATTR_RO(resv_hugepages);
3860
3861static ssize_t surplus_hugepages_show(struct kobject *kobj,
3862 struct kobj_attribute *attr, char *buf)
3863{
3864 struct hstate *h;
3865 unsigned long surplus_huge_pages;
3866 int nid;
3867
3868 h = kobj_to_hstate(kobj, &nid);
3869 if (nid == NUMA_NO_NODE)
3870 surplus_huge_pages = h->surplus_huge_pages;
3871 else
3872 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3873
3874 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3875}
3876HSTATE_ATTR_RO(surplus_hugepages);
3877
3878static ssize_t demote_store(struct kobject *kobj,
3879 struct kobj_attribute *attr, const char *buf, size_t len)
3880{
3881 unsigned long nr_demote;
3882 unsigned long nr_available;
3883 nodemask_t nodes_allowed, *n_mask;
3884 struct hstate *h;
3885 int err;
3886 int nid;
3887
3888 err = kstrtoul(buf, 10, &nr_demote);
3889 if (err)
3890 return err;
3891 h = kobj_to_hstate(kobj, &nid);
3892
3893 if (nid != NUMA_NO_NODE) {
3894 init_nodemask_of_node(&nodes_allowed, nid);
3895 n_mask = &nodes_allowed;
3896 } else {
3897 n_mask = &node_states[N_MEMORY];
3898 }
3899
3900 /* Synchronize with other sysfs operations modifying huge pages */
3901 mutex_lock(&h->resize_lock);
3902 spin_lock_irq(&hugetlb_lock);
3903
3904 while (nr_demote) {
3905 /*
3906 * Check for available pages to demote each time thorough the
3907 * loop as demote_pool_huge_page will drop hugetlb_lock.
3908 */
3909 if (nid != NUMA_NO_NODE)
3910 nr_available = h->free_huge_pages_node[nid];
3911 else
3912 nr_available = h->free_huge_pages;
3913 nr_available -= h->resv_huge_pages;
3914 if (!nr_available)
3915 break;
3916
3917 err = demote_pool_huge_page(h, n_mask);
3918 if (err)
3919 break;
3920
3921 nr_demote--;
3922 }
3923
3924 spin_unlock_irq(&hugetlb_lock);
3925 mutex_unlock(&h->resize_lock);
3926
3927 if (err)
3928 return err;
3929 return len;
3930}
3931HSTATE_ATTR_WO(demote);
3932
3933static ssize_t demote_size_show(struct kobject *kobj,
3934 struct kobj_attribute *attr, char *buf)
3935{
3936 struct hstate *h = kobj_to_hstate(kobj, NULL);
3937 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3938
3939 return sysfs_emit(buf, "%lukB\n", demote_size);
3940}
3941
3942static ssize_t demote_size_store(struct kobject *kobj,
3943 struct kobj_attribute *attr,
3944 const char *buf, size_t count)
3945{
3946 struct hstate *h, *demote_hstate;
3947 unsigned long demote_size;
3948 unsigned int demote_order;
3949
3950 demote_size = (unsigned long)memparse(buf, NULL);
3951
3952 demote_hstate = size_to_hstate(demote_size);
3953 if (!demote_hstate)
3954 return -EINVAL;
3955 demote_order = demote_hstate->order;
3956 if (demote_order < HUGETLB_PAGE_ORDER)
3957 return -EINVAL;
3958
3959 /* demote order must be smaller than hstate order */
3960 h = kobj_to_hstate(kobj, NULL);
3961 if (demote_order >= h->order)
3962 return -EINVAL;
3963
3964 /* resize_lock synchronizes access to demote size and writes */
3965 mutex_lock(&h->resize_lock);
3966 h->demote_order = demote_order;
3967 mutex_unlock(&h->resize_lock);
3968
3969 return count;
3970}
3971HSTATE_ATTR(demote_size);
3972
3973static struct attribute *hstate_attrs[] = {
3974 &nr_hugepages_attr.attr,
3975 &nr_overcommit_hugepages_attr.attr,
3976 &free_hugepages_attr.attr,
3977 &resv_hugepages_attr.attr,
3978 &surplus_hugepages_attr.attr,
3979#ifdef CONFIG_NUMA
3980 &nr_hugepages_mempolicy_attr.attr,
3981#endif
3982 NULL,
3983};
3984
3985static const struct attribute_group hstate_attr_group = {
3986 .attrs = hstate_attrs,
3987};
3988
3989static struct attribute *hstate_demote_attrs[] = {
3990 &demote_size_attr.attr,
3991 &demote_attr.attr,
3992 NULL,
3993};
3994
3995static const struct attribute_group hstate_demote_attr_group = {
3996 .attrs = hstate_demote_attrs,
3997};
3998
3999static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4000 struct kobject **hstate_kobjs,
4001 const struct attribute_group *hstate_attr_group)
4002{
4003 int retval;
4004 int hi = hstate_index(h);
4005
4006 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4007 if (!hstate_kobjs[hi])
4008 return -ENOMEM;
4009
4010 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4011 if (retval) {
4012 kobject_put(hstate_kobjs[hi]);
4013 hstate_kobjs[hi] = NULL;
4014 return retval;
4015 }
4016
4017 if (h->demote_order) {
4018 retval = sysfs_create_group(hstate_kobjs[hi],
4019 &hstate_demote_attr_group);
4020 if (retval) {
4021 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4022 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4023 kobject_put(hstate_kobjs[hi]);
4024 hstate_kobjs[hi] = NULL;
4025 return retval;
4026 }
4027 }
4028
4029 return 0;
4030}
4031
4032#ifdef CONFIG_NUMA
4033static bool hugetlb_sysfs_initialized __ro_after_init;
4034
4035/*
4036 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4037 * with node devices in node_devices[] using a parallel array. The array
4038 * index of a node device or _hstate == node id.
4039 * This is here to avoid any static dependency of the node device driver, in
4040 * the base kernel, on the hugetlb module.
4041 */
4042struct node_hstate {
4043 struct kobject *hugepages_kobj;
4044 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4045};
4046static struct node_hstate node_hstates[MAX_NUMNODES];
4047
4048/*
4049 * A subset of global hstate attributes for node devices
4050 */
4051static struct attribute *per_node_hstate_attrs[] = {
4052 &nr_hugepages_attr.attr,
4053 &free_hugepages_attr.attr,
4054 &surplus_hugepages_attr.attr,
4055 NULL,
4056};
4057
4058static const struct attribute_group per_node_hstate_attr_group = {
4059 .attrs = per_node_hstate_attrs,
4060};
4061
4062/*
4063 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4064 * Returns node id via non-NULL nidp.
4065 */
4066static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4067{
4068 int nid;
4069
4070 for (nid = 0; nid < nr_node_ids; nid++) {
4071 struct node_hstate *nhs = &node_hstates[nid];
4072 int i;
4073 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4074 if (nhs->hstate_kobjs[i] == kobj) {
4075 if (nidp)
4076 *nidp = nid;
4077 return &hstates[i];
4078 }
4079 }
4080
4081 BUG();
4082 return NULL;
4083}
4084
4085/*
4086 * Unregister hstate attributes from a single node device.
4087 * No-op if no hstate attributes attached.
4088 */
4089void hugetlb_unregister_node(struct node *node)
4090{
4091 struct hstate *h;
4092 struct node_hstate *nhs = &node_hstates[node->dev.id];
4093
4094 if (!nhs->hugepages_kobj)
4095 return; /* no hstate attributes */
4096
4097 for_each_hstate(h) {
4098 int idx = hstate_index(h);
4099 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4100
4101 if (!hstate_kobj)
4102 continue;
4103 if (h->demote_order)
4104 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4105 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4106 kobject_put(hstate_kobj);
4107 nhs->hstate_kobjs[idx] = NULL;
4108 }
4109
4110 kobject_put(nhs->hugepages_kobj);
4111 nhs->hugepages_kobj = NULL;
4112}
4113
4114
4115/*
4116 * Register hstate attributes for a single node device.
4117 * No-op if attributes already registered.
4118 */
4119void hugetlb_register_node(struct node *node)
4120{
4121 struct hstate *h;
4122 struct node_hstate *nhs = &node_hstates[node->dev.id];
4123 int err;
4124
4125 if (!hugetlb_sysfs_initialized)
4126 return;
4127
4128 if (nhs->hugepages_kobj)
4129 return; /* already allocated */
4130
4131 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4132 &node->dev.kobj);
4133 if (!nhs->hugepages_kobj)
4134 return;
4135
4136 for_each_hstate(h) {
4137 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4138 nhs->hstate_kobjs,
4139 &per_node_hstate_attr_group);
4140 if (err) {
4141 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4142 h->name, node->dev.id);
4143 hugetlb_unregister_node(node);
4144 break;
4145 }
4146 }
4147}
4148
4149/*
4150 * hugetlb init time: register hstate attributes for all registered node
4151 * devices of nodes that have memory. All on-line nodes should have
4152 * registered their associated device by this time.
4153 */
4154static void __init hugetlb_register_all_nodes(void)
4155{
4156 int nid;
4157
4158 for_each_online_node(nid)
4159 hugetlb_register_node(node_devices[nid]);
4160}
4161#else /* !CONFIG_NUMA */
4162
4163static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4164{
4165 BUG();
4166 if (nidp)
4167 *nidp = -1;
4168 return NULL;
4169}
4170
4171static void hugetlb_register_all_nodes(void) { }
4172
4173#endif
4174
4175#ifdef CONFIG_CMA
4176static void __init hugetlb_cma_check(void);
4177#else
4178static inline __init void hugetlb_cma_check(void)
4179{
4180}
4181#endif
4182
4183static void __init hugetlb_sysfs_init(void)
4184{
4185 struct hstate *h;
4186 int err;
4187
4188 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4189 if (!hugepages_kobj)
4190 return;
4191
4192 for_each_hstate(h) {
4193 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4194 hstate_kobjs, &hstate_attr_group);
4195 if (err)
4196 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4197 }
4198
4199#ifdef CONFIG_NUMA
4200 hugetlb_sysfs_initialized = true;
4201#endif
4202 hugetlb_register_all_nodes();
4203}
4204
4205static int __init hugetlb_init(void)
4206{
4207 int i;
4208
4209 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4210 __NR_HPAGEFLAGS);
4211
4212 if (!hugepages_supported()) {
4213 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4214 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4215 return 0;
4216 }
4217
4218 /*
4219 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4220 * architectures depend on setup being done here.
4221 */
4222 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4223 if (!parsed_default_hugepagesz) {
4224 /*
4225 * If we did not parse a default huge page size, set
4226 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4227 * number of huge pages for this default size was implicitly
4228 * specified, set that here as well.
4229 * Note that the implicit setting will overwrite an explicit
4230 * setting. A warning will be printed in this case.
4231 */
4232 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4233 if (default_hstate_max_huge_pages) {
4234 if (default_hstate.max_huge_pages) {
4235 char buf[32];
4236
4237 string_get_size(huge_page_size(&default_hstate),
4238 1, STRING_UNITS_2, buf, 32);
4239 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4240 default_hstate.max_huge_pages, buf);
4241 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4242 default_hstate_max_huge_pages);
4243 }
4244 default_hstate.max_huge_pages =
4245 default_hstate_max_huge_pages;
4246
4247 for_each_online_node(i)
4248 default_hstate.max_huge_pages_node[i] =
4249 default_hugepages_in_node[i];
4250 }
4251 }
4252
4253 hugetlb_cma_check();
4254 hugetlb_init_hstates();
4255 gather_bootmem_prealloc();
4256 report_hugepages();
4257
4258 hugetlb_sysfs_init();
4259 hugetlb_cgroup_file_init();
4260
4261#ifdef CONFIG_SMP
4262 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4263#else
4264 num_fault_mutexes = 1;
4265#endif
4266 hugetlb_fault_mutex_table =
4267 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4268 GFP_KERNEL);
4269 BUG_ON(!hugetlb_fault_mutex_table);
4270
4271 for (i = 0; i < num_fault_mutexes; i++)
4272 mutex_init(&hugetlb_fault_mutex_table[i]);
4273 return 0;
4274}
4275subsys_initcall(hugetlb_init);
4276
4277/* Overwritten by architectures with more huge page sizes */
4278bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4279{
4280 return size == HPAGE_SIZE;
4281}
4282
4283void __init hugetlb_add_hstate(unsigned int order)
4284{
4285 struct hstate *h;
4286 unsigned long i;
4287
4288 if (size_to_hstate(PAGE_SIZE << order)) {
4289 return;
4290 }
4291 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4292 BUG_ON(order == 0);
4293 h = &hstates[hugetlb_max_hstate++];
4294 mutex_init(&h->resize_lock);
4295 h->order = order;
4296 h->mask = ~(huge_page_size(h) - 1);
4297 for (i = 0; i < MAX_NUMNODES; ++i)
4298 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4299 INIT_LIST_HEAD(&h->hugepage_activelist);
4300 h->next_nid_to_alloc = first_memory_node;
4301 h->next_nid_to_free = first_memory_node;
4302 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4303 huge_page_size(h)/SZ_1K);
4304
4305 parsed_hstate = h;
4306}
4307
4308bool __init __weak hugetlb_node_alloc_supported(void)
4309{
4310 return true;
4311}
4312
4313static void __init hugepages_clear_pages_in_node(void)
4314{
4315 if (!hugetlb_max_hstate) {
4316 default_hstate_max_huge_pages = 0;
4317 memset(default_hugepages_in_node, 0,
4318 sizeof(default_hugepages_in_node));
4319 } else {
4320 parsed_hstate->max_huge_pages = 0;
4321 memset(parsed_hstate->max_huge_pages_node, 0,
4322 sizeof(parsed_hstate->max_huge_pages_node));
4323 }
4324}
4325
4326/*
4327 * hugepages command line processing
4328 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4329 * specification. If not, ignore the hugepages value. hugepages can also
4330 * be the first huge page command line option in which case it implicitly
4331 * specifies the number of huge pages for the default size.
4332 */
4333static int __init hugepages_setup(char *s)
4334{
4335 unsigned long *mhp;
4336 static unsigned long *last_mhp;
4337 int node = NUMA_NO_NODE;
4338 int count;
4339 unsigned long tmp;
4340 char *p = s;
4341
4342 if (!parsed_valid_hugepagesz) {
4343 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4344 parsed_valid_hugepagesz = true;
4345 return 1;
4346 }
4347
4348 /*
4349 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4350 * yet, so this hugepages= parameter goes to the "default hstate".
4351 * Otherwise, it goes with the previously parsed hugepagesz or
4352 * default_hugepagesz.
4353 */
4354 else if (!hugetlb_max_hstate)
4355 mhp = &default_hstate_max_huge_pages;
4356 else
4357 mhp = &parsed_hstate->max_huge_pages;
4358
4359 if (mhp == last_mhp) {
4360 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4361 return 1;
4362 }
4363
4364 while (*p) {
4365 count = 0;
4366 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4367 goto invalid;
4368 /* Parameter is node format */
4369 if (p[count] == ':') {
4370 if (!hugetlb_node_alloc_supported()) {
4371 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4372 return 1;
4373 }
4374 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4375 goto invalid;
4376 node = array_index_nospec(tmp, MAX_NUMNODES);
4377 p += count + 1;
4378 /* Parse hugepages */
4379 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4380 goto invalid;
4381 if (!hugetlb_max_hstate)
4382 default_hugepages_in_node[node] = tmp;
4383 else
4384 parsed_hstate->max_huge_pages_node[node] = tmp;
4385 *mhp += tmp;
4386 /* Go to parse next node*/
4387 if (p[count] == ',')
4388 p += count + 1;
4389 else
4390 break;
4391 } else {
4392 if (p != s)
4393 goto invalid;
4394 *mhp = tmp;
4395 break;
4396 }
4397 }
4398
4399 /*
4400 * Global state is always initialized later in hugetlb_init.
4401 * But we need to allocate gigantic hstates here early to still
4402 * use the bootmem allocator.
4403 */
4404 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4405 hugetlb_hstate_alloc_pages(parsed_hstate);
4406
4407 last_mhp = mhp;
4408
4409 return 1;
4410
4411invalid:
4412 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4413 hugepages_clear_pages_in_node();
4414 return 1;
4415}
4416__setup("hugepages=", hugepages_setup);
4417
4418/*
4419 * hugepagesz command line processing
4420 * A specific huge page size can only be specified once with hugepagesz.
4421 * hugepagesz is followed by hugepages on the command line. The global
4422 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4423 * hugepagesz argument was valid.
4424 */
4425static int __init hugepagesz_setup(char *s)
4426{
4427 unsigned long size;
4428 struct hstate *h;
4429
4430 parsed_valid_hugepagesz = false;
4431 size = (unsigned long)memparse(s, NULL);
4432
4433 if (!arch_hugetlb_valid_size(size)) {
4434 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4435 return 1;
4436 }
4437
4438 h = size_to_hstate(size);
4439 if (h) {
4440 /*
4441 * hstate for this size already exists. This is normally
4442 * an error, but is allowed if the existing hstate is the
4443 * default hstate. More specifically, it is only allowed if
4444 * the number of huge pages for the default hstate was not
4445 * previously specified.
4446 */
4447 if (!parsed_default_hugepagesz || h != &default_hstate ||
4448 default_hstate.max_huge_pages) {
4449 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4450 return 1;
4451 }
4452
4453 /*
4454 * No need to call hugetlb_add_hstate() as hstate already
4455 * exists. But, do set parsed_hstate so that a following
4456 * hugepages= parameter will be applied to this hstate.
4457 */
4458 parsed_hstate = h;
4459 parsed_valid_hugepagesz = true;
4460 return 1;
4461 }
4462
4463 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4464 parsed_valid_hugepagesz = true;
4465 return 1;
4466}
4467__setup("hugepagesz=", hugepagesz_setup);
4468
4469/*
4470 * default_hugepagesz command line input
4471 * Only one instance of default_hugepagesz allowed on command line.
4472 */
4473static int __init default_hugepagesz_setup(char *s)
4474{
4475 unsigned long size;
4476 int i;
4477
4478 parsed_valid_hugepagesz = false;
4479 if (parsed_default_hugepagesz) {
4480 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4481 return 1;
4482 }
4483
4484 size = (unsigned long)memparse(s, NULL);
4485
4486 if (!arch_hugetlb_valid_size(size)) {
4487 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4488 return 1;
4489 }
4490
4491 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4492 parsed_valid_hugepagesz = true;
4493 parsed_default_hugepagesz = true;
4494 default_hstate_idx = hstate_index(size_to_hstate(size));
4495
4496 /*
4497 * The number of default huge pages (for this size) could have been
4498 * specified as the first hugetlb parameter: hugepages=X. If so,
4499 * then default_hstate_max_huge_pages is set. If the default huge
4500 * page size is gigantic (>= MAX_ORDER), then the pages must be
4501 * allocated here from bootmem allocator.
4502 */
4503 if (default_hstate_max_huge_pages) {
4504 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4505 for_each_online_node(i)
4506 default_hstate.max_huge_pages_node[i] =
4507 default_hugepages_in_node[i];
4508 if (hstate_is_gigantic(&default_hstate))
4509 hugetlb_hstate_alloc_pages(&default_hstate);
4510 default_hstate_max_huge_pages = 0;
4511 }
4512
4513 return 1;
4514}
4515__setup("default_hugepagesz=", default_hugepagesz_setup);
4516
4517static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4518{
4519#ifdef CONFIG_NUMA
4520 struct mempolicy *mpol = get_task_policy(current);
4521
4522 /*
4523 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4524 * (from policy_nodemask) specifically for hugetlb case
4525 */
4526 if (mpol->mode == MPOL_BIND &&
4527 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4528 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4529 return &mpol->nodes;
4530#endif
4531 return NULL;
4532}
4533
4534static unsigned int allowed_mems_nr(struct hstate *h)
4535{
4536 int node;
4537 unsigned int nr = 0;
4538 nodemask_t *mbind_nodemask;
4539 unsigned int *array = h->free_huge_pages_node;
4540 gfp_t gfp_mask = htlb_alloc_mask(h);
4541
4542 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4543 for_each_node_mask(node, cpuset_current_mems_allowed) {
4544 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4545 nr += array[node];
4546 }
4547
4548 return nr;
4549}
4550
4551#ifdef CONFIG_SYSCTL
4552static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4553 void *buffer, size_t *length,
4554 loff_t *ppos, unsigned long *out)
4555{
4556 struct ctl_table dup_table;
4557
4558 /*
4559 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4560 * can duplicate the @table and alter the duplicate of it.
4561 */
4562 dup_table = *table;
4563 dup_table.data = out;
4564
4565 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4566}
4567
4568static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4569 struct ctl_table *table, int write,
4570 void *buffer, size_t *length, loff_t *ppos)
4571{
4572 struct hstate *h = &default_hstate;
4573 unsigned long tmp = h->max_huge_pages;
4574 int ret;
4575
4576 if (!hugepages_supported())
4577 return -EOPNOTSUPP;
4578
4579 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4580 &tmp);
4581 if (ret)
4582 goto out;
4583
4584 if (write)
4585 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4586 NUMA_NO_NODE, tmp, *length);
4587out:
4588 return ret;
4589}
4590
4591int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4592 void *buffer, size_t *length, loff_t *ppos)
4593{
4594
4595 return hugetlb_sysctl_handler_common(false, table, write,
4596 buffer, length, ppos);
4597}
4598
4599#ifdef CONFIG_NUMA
4600int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4601 void *buffer, size_t *length, loff_t *ppos)
4602{
4603 return hugetlb_sysctl_handler_common(true, table, write,
4604 buffer, length, ppos);
4605}
4606#endif /* CONFIG_NUMA */
4607
4608int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4609 void *buffer, size_t *length, loff_t *ppos)
4610{
4611 struct hstate *h = &default_hstate;
4612 unsigned long tmp;
4613 int ret;
4614
4615 if (!hugepages_supported())
4616 return -EOPNOTSUPP;
4617
4618 tmp = h->nr_overcommit_huge_pages;
4619
4620 if (write && hstate_is_gigantic(h))
4621 return -EINVAL;
4622
4623 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4624 &tmp);
4625 if (ret)
4626 goto out;
4627
4628 if (write) {
4629 spin_lock_irq(&hugetlb_lock);
4630 h->nr_overcommit_huge_pages = tmp;
4631 spin_unlock_irq(&hugetlb_lock);
4632 }
4633out:
4634 return ret;
4635}
4636
4637#endif /* CONFIG_SYSCTL */
4638
4639void hugetlb_report_meminfo(struct seq_file *m)
4640{
4641 struct hstate *h;
4642 unsigned long total = 0;
4643
4644 if (!hugepages_supported())
4645 return;
4646
4647 for_each_hstate(h) {
4648 unsigned long count = h->nr_huge_pages;
4649
4650 total += huge_page_size(h) * count;
4651
4652 if (h == &default_hstate)
4653 seq_printf(m,
4654 "HugePages_Total: %5lu\n"
4655 "HugePages_Free: %5lu\n"
4656 "HugePages_Rsvd: %5lu\n"
4657 "HugePages_Surp: %5lu\n"
4658 "Hugepagesize: %8lu kB\n",
4659 count,
4660 h->free_huge_pages,
4661 h->resv_huge_pages,
4662 h->surplus_huge_pages,
4663 huge_page_size(h) / SZ_1K);
4664 }
4665
4666 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4667}
4668
4669int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4670{
4671 struct hstate *h = &default_hstate;
4672
4673 if (!hugepages_supported())
4674 return 0;
4675
4676 return sysfs_emit_at(buf, len,
4677 "Node %d HugePages_Total: %5u\n"
4678 "Node %d HugePages_Free: %5u\n"
4679 "Node %d HugePages_Surp: %5u\n",
4680 nid, h->nr_huge_pages_node[nid],
4681 nid, h->free_huge_pages_node[nid],
4682 nid, h->surplus_huge_pages_node[nid]);
4683}
4684
4685void hugetlb_show_meminfo_node(int nid)
4686{
4687 struct hstate *h;
4688
4689 if (!hugepages_supported())
4690 return;
4691
4692 for_each_hstate(h)
4693 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4694 nid,
4695 h->nr_huge_pages_node[nid],
4696 h->free_huge_pages_node[nid],
4697 h->surplus_huge_pages_node[nid],
4698 huge_page_size(h) / SZ_1K);
4699}
4700
4701void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4702{
4703 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4704 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4705}
4706
4707/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4708unsigned long hugetlb_total_pages(void)
4709{
4710 struct hstate *h;
4711 unsigned long nr_total_pages = 0;
4712
4713 for_each_hstate(h)
4714 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4715 return nr_total_pages;
4716}
4717
4718static int hugetlb_acct_memory(struct hstate *h, long delta)
4719{
4720 int ret = -ENOMEM;
4721
4722 if (!delta)
4723 return 0;
4724
4725 spin_lock_irq(&hugetlb_lock);
4726 /*
4727 * When cpuset is configured, it breaks the strict hugetlb page
4728 * reservation as the accounting is done on a global variable. Such
4729 * reservation is completely rubbish in the presence of cpuset because
4730 * the reservation is not checked against page availability for the
4731 * current cpuset. Application can still potentially OOM'ed by kernel
4732 * with lack of free htlb page in cpuset that the task is in.
4733 * Attempt to enforce strict accounting with cpuset is almost
4734 * impossible (or too ugly) because cpuset is too fluid that
4735 * task or memory node can be dynamically moved between cpusets.
4736 *
4737 * The change of semantics for shared hugetlb mapping with cpuset is
4738 * undesirable. However, in order to preserve some of the semantics,
4739 * we fall back to check against current free page availability as
4740 * a best attempt and hopefully to minimize the impact of changing
4741 * semantics that cpuset has.
4742 *
4743 * Apart from cpuset, we also have memory policy mechanism that
4744 * also determines from which node the kernel will allocate memory
4745 * in a NUMA system. So similar to cpuset, we also should consider
4746 * the memory policy of the current task. Similar to the description
4747 * above.
4748 */
4749 if (delta > 0) {
4750 if (gather_surplus_pages(h, delta) < 0)
4751 goto out;
4752
4753 if (delta > allowed_mems_nr(h)) {
4754 return_unused_surplus_pages(h, delta);
4755 goto out;
4756 }
4757 }
4758
4759 ret = 0;
4760 if (delta < 0)
4761 return_unused_surplus_pages(h, (unsigned long) -delta);
4762
4763out:
4764 spin_unlock_irq(&hugetlb_lock);
4765 return ret;
4766}
4767
4768static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4769{
4770 struct resv_map *resv = vma_resv_map(vma);
4771
4772 /*
4773 * HPAGE_RESV_OWNER indicates a private mapping.
4774 * This new VMA should share its siblings reservation map if present.
4775 * The VMA will only ever have a valid reservation map pointer where
4776 * it is being copied for another still existing VMA. As that VMA
4777 * has a reference to the reservation map it cannot disappear until
4778 * after this open call completes. It is therefore safe to take a
4779 * new reference here without additional locking.
4780 */
4781 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4782 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4783 kref_get(&resv->refs);
4784 }
4785
4786 /*
4787 * vma_lock structure for sharable mappings is vma specific.
4788 * Clear old pointer (if copied via vm_area_dup) and allocate
4789 * new structure. Before clearing, make sure vma_lock is not
4790 * for this vma.
4791 */
4792 if (vma->vm_flags & VM_MAYSHARE) {
4793 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4794
4795 if (vma_lock) {
4796 if (vma_lock->vma != vma) {
4797 vma->vm_private_data = NULL;
4798 hugetlb_vma_lock_alloc(vma);
4799 } else
4800 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4801 } else
4802 hugetlb_vma_lock_alloc(vma);
4803 }
4804}
4805
4806static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4807{
4808 struct hstate *h = hstate_vma(vma);
4809 struct resv_map *resv;
4810 struct hugepage_subpool *spool = subpool_vma(vma);
4811 unsigned long reserve, start, end;
4812 long gbl_reserve;
4813
4814 hugetlb_vma_lock_free(vma);
4815
4816 resv = vma_resv_map(vma);
4817 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4818 return;
4819
4820 start = vma_hugecache_offset(h, vma, vma->vm_start);
4821 end = vma_hugecache_offset(h, vma, vma->vm_end);
4822
4823 reserve = (end - start) - region_count(resv, start, end);
4824 hugetlb_cgroup_uncharge_counter(resv, start, end);
4825 if (reserve) {
4826 /*
4827 * Decrement reserve counts. The global reserve count may be
4828 * adjusted if the subpool has a minimum size.
4829 */
4830 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4831 hugetlb_acct_memory(h, -gbl_reserve);
4832 }
4833
4834 kref_put(&resv->refs, resv_map_release);
4835}
4836
4837static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4838{
4839 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4840 return -EINVAL;
4841
4842 /*
4843 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4844 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4845 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4846 */
4847 if (addr & ~PUD_MASK) {
4848 /*
4849 * hugetlb_vm_op_split is called right before we attempt to
4850 * split the VMA. We will need to unshare PMDs in the old and
4851 * new VMAs, so let's unshare before we split.
4852 */
4853 unsigned long floor = addr & PUD_MASK;
4854 unsigned long ceil = floor + PUD_SIZE;
4855
4856 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4857 hugetlb_unshare_pmds(vma, floor, ceil);
4858 }
4859
4860 return 0;
4861}
4862
4863static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4864{
4865 return huge_page_size(hstate_vma(vma));
4866}
4867
4868/*
4869 * We cannot handle pagefaults against hugetlb pages at all. They cause
4870 * handle_mm_fault() to try to instantiate regular-sized pages in the
4871 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4872 * this far.
4873 */
4874static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4875{
4876 BUG();
4877 return 0;
4878}
4879
4880/*
4881 * When a new function is introduced to vm_operations_struct and added
4882 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4883 * This is because under System V memory model, mappings created via
4884 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4885 * their original vm_ops are overwritten with shm_vm_ops.
4886 */
4887const struct vm_operations_struct hugetlb_vm_ops = {
4888 .fault = hugetlb_vm_op_fault,
4889 .open = hugetlb_vm_op_open,
4890 .close = hugetlb_vm_op_close,
4891 .may_split = hugetlb_vm_op_split,
4892 .pagesize = hugetlb_vm_op_pagesize,
4893};
4894
4895static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4896 int writable)
4897{
4898 pte_t entry;
4899 unsigned int shift = huge_page_shift(hstate_vma(vma));
4900
4901 if (writable) {
4902 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4903 vma->vm_page_prot)));
4904 } else {
4905 entry = huge_pte_wrprotect(mk_huge_pte(page,
4906 vma->vm_page_prot));
4907 }
4908 entry = pte_mkyoung(entry);
4909 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4910
4911 return entry;
4912}
4913
4914static void set_huge_ptep_writable(struct vm_area_struct *vma,
4915 unsigned long address, pte_t *ptep)
4916{
4917 pte_t entry;
4918
4919 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4920 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4921 update_mmu_cache(vma, address, ptep);
4922}
4923
4924bool is_hugetlb_entry_migration(pte_t pte)
4925{
4926 swp_entry_t swp;
4927
4928 if (huge_pte_none(pte) || pte_present(pte))
4929 return false;
4930 swp = pte_to_swp_entry(pte);
4931 if (is_migration_entry(swp))
4932 return true;
4933 else
4934 return false;
4935}
4936
4937static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4938{
4939 swp_entry_t swp;
4940
4941 if (huge_pte_none(pte) || pte_present(pte))
4942 return false;
4943 swp = pte_to_swp_entry(pte);
4944 if (is_hwpoison_entry(swp))
4945 return true;
4946 else
4947 return false;
4948}
4949
4950static void
4951hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4952 struct folio *new_folio)
4953{
4954 __folio_mark_uptodate(new_folio);
4955 hugepage_add_new_anon_rmap(new_folio, vma, addr);
4956 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, &new_folio->page, 1));
4957 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4958 folio_set_hugetlb_migratable(new_folio);
4959}
4960
4961int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4962 struct vm_area_struct *dst_vma,
4963 struct vm_area_struct *src_vma)
4964{
4965 pte_t *src_pte, *dst_pte, entry;
4966 struct page *ptepage;
4967 unsigned long addr;
4968 bool cow = is_cow_mapping(src_vma->vm_flags);
4969 struct hstate *h = hstate_vma(src_vma);
4970 unsigned long sz = huge_page_size(h);
4971 unsigned long npages = pages_per_huge_page(h);
4972 struct mmu_notifier_range range;
4973 unsigned long last_addr_mask;
4974 int ret = 0;
4975
4976 if (cow) {
4977 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
4978 src_vma->vm_start,
4979 src_vma->vm_end);
4980 mmu_notifier_invalidate_range_start(&range);
4981 mmap_assert_write_locked(src);
4982 raw_write_seqcount_begin(&src->write_protect_seq);
4983 } else {
4984 /*
4985 * For shared mappings the vma lock must be held before
4986 * calling hugetlb_walk() in the src vma. Otherwise, the
4987 * returned ptep could go away if part of a shared pmd and
4988 * another thread calls huge_pmd_unshare.
4989 */
4990 hugetlb_vma_lock_read(src_vma);
4991 }
4992
4993 last_addr_mask = hugetlb_mask_last_page(h);
4994 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4995 spinlock_t *src_ptl, *dst_ptl;
4996 src_pte = hugetlb_walk(src_vma, addr, sz);
4997 if (!src_pte) {
4998 addr |= last_addr_mask;
4999 continue;
5000 }
5001 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5002 if (!dst_pte) {
5003 ret = -ENOMEM;
5004 break;
5005 }
5006
5007 /*
5008 * If the pagetables are shared don't copy or take references.
5009 *
5010 * dst_pte == src_pte is the common case of src/dest sharing.
5011 * However, src could have 'unshared' and dst shares with
5012 * another vma. So page_count of ptep page is checked instead
5013 * to reliably determine whether pte is shared.
5014 */
5015 if (page_count(virt_to_page(dst_pte)) > 1) {
5016 addr |= last_addr_mask;
5017 continue;
5018 }
5019
5020 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5021 src_ptl = huge_pte_lockptr(h, src, src_pte);
5022 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5023 entry = huge_ptep_get(src_pte);
5024again:
5025 if (huge_pte_none(entry)) {
5026 /*
5027 * Skip if src entry none.
5028 */
5029 ;
5030 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5031 bool uffd_wp = huge_pte_uffd_wp(entry);
5032
5033 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5034 entry = huge_pte_clear_uffd_wp(entry);
5035 set_huge_pte_at(dst, addr, dst_pte, entry);
5036 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5037 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5038 bool uffd_wp = huge_pte_uffd_wp(entry);
5039
5040 if (!is_readable_migration_entry(swp_entry) && cow) {
5041 /*
5042 * COW mappings require pages in both
5043 * parent and child to be set to read.
5044 */
5045 swp_entry = make_readable_migration_entry(
5046 swp_offset(swp_entry));
5047 entry = swp_entry_to_pte(swp_entry);
5048 if (userfaultfd_wp(src_vma) && uffd_wp)
5049 entry = huge_pte_mkuffd_wp(entry);
5050 set_huge_pte_at(src, addr, src_pte, entry);
5051 }
5052 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5053 entry = huge_pte_clear_uffd_wp(entry);
5054 set_huge_pte_at(dst, addr, dst_pte, entry);
5055 } else if (unlikely(is_pte_marker(entry))) {
5056 /* No swap on hugetlb */
5057 WARN_ON_ONCE(
5058 is_swapin_error_entry(pte_to_swp_entry(entry)));
5059 /*
5060 * We copy the pte marker only if the dst vma has
5061 * uffd-wp enabled.
5062 */
5063 if (userfaultfd_wp(dst_vma))
5064 set_huge_pte_at(dst, addr, dst_pte, entry);
5065 } else {
5066 entry = huge_ptep_get(src_pte);
5067 ptepage = pte_page(entry);
5068 get_page(ptepage);
5069
5070 /*
5071 * Failing to duplicate the anon rmap is a rare case
5072 * where we see pinned hugetlb pages while they're
5073 * prone to COW. We need to do the COW earlier during
5074 * fork.
5075 *
5076 * When pre-allocating the page or copying data, we
5077 * need to be without the pgtable locks since we could
5078 * sleep during the process.
5079 */
5080 if (!PageAnon(ptepage)) {
5081 page_dup_file_rmap(ptepage, true);
5082 } else if (page_try_dup_anon_rmap(ptepage, true,
5083 src_vma)) {
5084 pte_t src_pte_old = entry;
5085 struct folio *new_folio;
5086
5087 spin_unlock(src_ptl);
5088 spin_unlock(dst_ptl);
5089 /* Do not use reserve as it's private owned */
5090 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5091 if (IS_ERR(new_folio)) {
5092 put_page(ptepage);
5093 ret = PTR_ERR(new_folio);
5094 break;
5095 }
5096 copy_user_huge_page(&new_folio->page, ptepage, addr, dst_vma,
5097 npages);
5098 put_page(ptepage);
5099
5100 /* Install the new hugetlb folio if src pte stable */
5101 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5102 src_ptl = huge_pte_lockptr(h, src, src_pte);
5103 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5104 entry = huge_ptep_get(src_pte);
5105 if (!pte_same(src_pte_old, entry)) {
5106 restore_reserve_on_error(h, dst_vma, addr,
5107 new_folio);
5108 folio_put(new_folio);
5109 /* huge_ptep of dst_pte won't change as in child */
5110 goto again;
5111 }
5112 hugetlb_install_folio(dst_vma, dst_pte, addr, new_folio);
5113 spin_unlock(src_ptl);
5114 spin_unlock(dst_ptl);
5115 continue;
5116 }
5117
5118 if (cow) {
5119 /*
5120 * No need to notify as we are downgrading page
5121 * table protection not changing it to point
5122 * to a new page.
5123 *
5124 * See Documentation/mm/mmu_notifier.rst
5125 */
5126 huge_ptep_set_wrprotect(src, addr, src_pte);
5127 entry = huge_pte_wrprotect(entry);
5128 }
5129
5130 set_huge_pte_at(dst, addr, dst_pte, entry);
5131 hugetlb_count_add(npages, dst);
5132 }
5133 spin_unlock(src_ptl);
5134 spin_unlock(dst_ptl);
5135 }
5136
5137 if (cow) {
5138 raw_write_seqcount_end(&src->write_protect_seq);
5139 mmu_notifier_invalidate_range_end(&range);
5140 } else {
5141 hugetlb_vma_unlock_read(src_vma);
5142 }
5143
5144 return ret;
5145}
5146
5147static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5148 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5149{
5150 struct hstate *h = hstate_vma(vma);
5151 struct mm_struct *mm = vma->vm_mm;
5152 spinlock_t *src_ptl, *dst_ptl;
5153 pte_t pte;
5154
5155 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5156 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5157
5158 /*
5159 * We don't have to worry about the ordering of src and dst ptlocks
5160 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5161 */
5162 if (src_ptl != dst_ptl)
5163 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5164
5165 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5166 set_huge_pte_at(mm, new_addr, dst_pte, pte);
5167
5168 if (src_ptl != dst_ptl)
5169 spin_unlock(src_ptl);
5170 spin_unlock(dst_ptl);
5171}
5172
5173int move_hugetlb_page_tables(struct vm_area_struct *vma,
5174 struct vm_area_struct *new_vma,
5175 unsigned long old_addr, unsigned long new_addr,
5176 unsigned long len)
5177{
5178 struct hstate *h = hstate_vma(vma);
5179 struct address_space *mapping = vma->vm_file->f_mapping;
5180 unsigned long sz = huge_page_size(h);
5181 struct mm_struct *mm = vma->vm_mm;
5182 unsigned long old_end = old_addr + len;
5183 unsigned long last_addr_mask;
5184 pte_t *src_pte, *dst_pte;
5185 struct mmu_notifier_range range;
5186 bool shared_pmd = false;
5187
5188 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5189 old_end);
5190 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5191 /*
5192 * In case of shared PMDs, we should cover the maximum possible
5193 * range.
5194 */
5195 flush_cache_range(vma, range.start, range.end);
5196
5197 mmu_notifier_invalidate_range_start(&range);
5198 last_addr_mask = hugetlb_mask_last_page(h);
5199 /* Prevent race with file truncation */
5200 hugetlb_vma_lock_write(vma);
5201 i_mmap_lock_write(mapping);
5202 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5203 src_pte = hugetlb_walk(vma, old_addr, sz);
5204 if (!src_pte) {
5205 old_addr |= last_addr_mask;
5206 new_addr |= last_addr_mask;
5207 continue;
5208 }
5209 if (huge_pte_none(huge_ptep_get(src_pte)))
5210 continue;
5211
5212 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5213 shared_pmd = true;
5214 old_addr |= last_addr_mask;
5215 new_addr |= last_addr_mask;
5216 continue;
5217 }
5218
5219 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5220 if (!dst_pte)
5221 break;
5222
5223 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5224 }
5225
5226 if (shared_pmd)
5227 flush_tlb_range(vma, range.start, range.end);
5228 else
5229 flush_tlb_range(vma, old_end - len, old_end);
5230 mmu_notifier_invalidate_range_end(&range);
5231 i_mmap_unlock_write(mapping);
5232 hugetlb_vma_unlock_write(vma);
5233
5234 return len + old_addr - old_end;
5235}
5236
5237static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5238 unsigned long start, unsigned long end,
5239 struct page *ref_page, zap_flags_t zap_flags)
5240{
5241 struct mm_struct *mm = vma->vm_mm;
5242 unsigned long address;
5243 pte_t *ptep;
5244 pte_t pte;
5245 spinlock_t *ptl;
5246 struct page *page;
5247 struct hstate *h = hstate_vma(vma);
5248 unsigned long sz = huge_page_size(h);
5249 unsigned long last_addr_mask;
5250 bool force_flush = false;
5251
5252 WARN_ON(!is_vm_hugetlb_page(vma));
5253 BUG_ON(start & ~huge_page_mask(h));
5254 BUG_ON(end & ~huge_page_mask(h));
5255
5256 /*
5257 * This is a hugetlb vma, all the pte entries should point
5258 * to huge page.
5259 */
5260 tlb_change_page_size(tlb, sz);
5261 tlb_start_vma(tlb, vma);
5262
5263 last_addr_mask = hugetlb_mask_last_page(h);
5264 address = start;
5265 for (; address < end; address += sz) {
5266 ptep = hugetlb_walk(vma, address, sz);
5267 if (!ptep) {
5268 address |= last_addr_mask;
5269 continue;
5270 }
5271
5272 ptl = huge_pte_lock(h, mm, ptep);
5273 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5274 spin_unlock(ptl);
5275 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5276 force_flush = true;
5277 address |= last_addr_mask;
5278 continue;
5279 }
5280
5281 pte = huge_ptep_get(ptep);
5282 if (huge_pte_none(pte)) {
5283 spin_unlock(ptl);
5284 continue;
5285 }
5286
5287 /*
5288 * Migrating hugepage or HWPoisoned hugepage is already
5289 * unmapped and its refcount is dropped, so just clear pte here.
5290 */
5291 if (unlikely(!pte_present(pte))) {
5292 /*
5293 * If the pte was wr-protected by uffd-wp in any of the
5294 * swap forms, meanwhile the caller does not want to
5295 * drop the uffd-wp bit in this zap, then replace the
5296 * pte with a marker.
5297 */
5298 if (pte_swp_uffd_wp_any(pte) &&
5299 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5300 set_huge_pte_at(mm, address, ptep,
5301 make_pte_marker(PTE_MARKER_UFFD_WP));
5302 else
5303 huge_pte_clear(mm, address, ptep, sz);
5304 spin_unlock(ptl);
5305 continue;
5306 }
5307
5308 page = pte_page(pte);
5309 /*
5310 * If a reference page is supplied, it is because a specific
5311 * page is being unmapped, not a range. Ensure the page we
5312 * are about to unmap is the actual page of interest.
5313 */
5314 if (ref_page) {
5315 if (page != ref_page) {
5316 spin_unlock(ptl);
5317 continue;
5318 }
5319 /*
5320 * Mark the VMA as having unmapped its page so that
5321 * future faults in this VMA will fail rather than
5322 * looking like data was lost
5323 */
5324 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5325 }
5326
5327 pte = huge_ptep_get_and_clear(mm, address, ptep);
5328 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5329 if (huge_pte_dirty(pte))
5330 set_page_dirty(page);
5331 /* Leave a uffd-wp pte marker if needed */
5332 if (huge_pte_uffd_wp(pte) &&
5333 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5334 set_huge_pte_at(mm, address, ptep,
5335 make_pte_marker(PTE_MARKER_UFFD_WP));
5336 hugetlb_count_sub(pages_per_huge_page(h), mm);
5337 page_remove_rmap(page, vma, true);
5338
5339 spin_unlock(ptl);
5340 tlb_remove_page_size(tlb, page, huge_page_size(h));
5341 /*
5342 * Bail out after unmapping reference page if supplied
5343 */
5344 if (ref_page)
5345 break;
5346 }
5347 tlb_end_vma(tlb, vma);
5348
5349 /*
5350 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5351 * could defer the flush until now, since by holding i_mmap_rwsem we
5352 * guaranteed that the last refernece would not be dropped. But we must
5353 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5354 * dropped and the last reference to the shared PMDs page might be
5355 * dropped as well.
5356 *
5357 * In theory we could defer the freeing of the PMD pages as well, but
5358 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5359 * detect sharing, so we cannot defer the release of the page either.
5360 * Instead, do flush now.
5361 */
5362 if (force_flush)
5363 tlb_flush_mmu_tlbonly(tlb);
5364}
5365
5366void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5367 struct vm_area_struct *vma, unsigned long start,
5368 unsigned long end, struct page *ref_page,
5369 zap_flags_t zap_flags)
5370{
5371 hugetlb_vma_lock_write(vma);
5372 i_mmap_lock_write(vma->vm_file->f_mapping);
5373
5374 /* mmu notification performed in caller */
5375 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5376
5377 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5378 /*
5379 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5380 * When the vma_lock is freed, this makes the vma ineligible
5381 * for pmd sharing. And, i_mmap_rwsem is required to set up
5382 * pmd sharing. This is important as page tables for this
5383 * unmapped range will be asynchrously deleted. If the page
5384 * tables are shared, there will be issues when accessed by
5385 * someone else.
5386 */
5387 __hugetlb_vma_unlock_write_free(vma);
5388 i_mmap_unlock_write(vma->vm_file->f_mapping);
5389 } else {
5390 i_mmap_unlock_write(vma->vm_file->f_mapping);
5391 hugetlb_vma_unlock_write(vma);
5392 }
5393}
5394
5395void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5396 unsigned long end, struct page *ref_page,
5397 zap_flags_t zap_flags)
5398{
5399 struct mmu_notifier_range range;
5400 struct mmu_gather tlb;
5401
5402 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5403 start, end);
5404 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5405 mmu_notifier_invalidate_range_start(&range);
5406 tlb_gather_mmu(&tlb, vma->vm_mm);
5407
5408 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5409
5410 mmu_notifier_invalidate_range_end(&range);
5411 tlb_finish_mmu(&tlb);
5412}
5413
5414/*
5415 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5416 * mapping it owns the reserve page for. The intention is to unmap the page
5417 * from other VMAs and let the children be SIGKILLed if they are faulting the
5418 * same region.
5419 */
5420static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5421 struct page *page, unsigned long address)
5422{
5423 struct hstate *h = hstate_vma(vma);
5424 struct vm_area_struct *iter_vma;
5425 struct address_space *mapping;
5426 pgoff_t pgoff;
5427
5428 /*
5429 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5430 * from page cache lookup which is in HPAGE_SIZE units.
5431 */
5432 address = address & huge_page_mask(h);
5433 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5434 vma->vm_pgoff;
5435 mapping = vma->vm_file->f_mapping;
5436
5437 /*
5438 * Take the mapping lock for the duration of the table walk. As
5439 * this mapping should be shared between all the VMAs,
5440 * __unmap_hugepage_range() is called as the lock is already held
5441 */
5442 i_mmap_lock_write(mapping);
5443 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5444 /* Do not unmap the current VMA */
5445 if (iter_vma == vma)
5446 continue;
5447
5448 /*
5449 * Shared VMAs have their own reserves and do not affect
5450 * MAP_PRIVATE accounting but it is possible that a shared
5451 * VMA is using the same page so check and skip such VMAs.
5452 */
5453 if (iter_vma->vm_flags & VM_MAYSHARE)
5454 continue;
5455
5456 /*
5457 * Unmap the page from other VMAs without their own reserves.
5458 * They get marked to be SIGKILLed if they fault in these
5459 * areas. This is because a future no-page fault on this VMA
5460 * could insert a zeroed page instead of the data existing
5461 * from the time of fork. This would look like data corruption
5462 */
5463 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5464 unmap_hugepage_range(iter_vma, address,
5465 address + huge_page_size(h), page, 0);
5466 }
5467 i_mmap_unlock_write(mapping);
5468}
5469
5470/*
5471 * hugetlb_wp() should be called with page lock of the original hugepage held.
5472 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5473 * cannot race with other handlers or page migration.
5474 * Keep the pte_same checks anyway to make transition from the mutex easier.
5475 */
5476static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5477 unsigned long address, pte_t *ptep, unsigned int flags,
5478 struct folio *pagecache_folio, spinlock_t *ptl)
5479{
5480 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5481 pte_t pte = huge_ptep_get(ptep);
5482 struct hstate *h = hstate_vma(vma);
5483 struct page *old_page;
5484 struct folio *new_folio;
5485 int outside_reserve = 0;
5486 vm_fault_t ret = 0;
5487 unsigned long haddr = address & huge_page_mask(h);
5488 struct mmu_notifier_range range;
5489
5490 /*
5491 * Never handle CoW for uffd-wp protected pages. It should be only
5492 * handled when the uffd-wp protection is removed.
5493 *
5494 * Note that only the CoW optimization path (in hugetlb_no_page())
5495 * can trigger this, because hugetlb_fault() will always resolve
5496 * uffd-wp bit first.
5497 */
5498 if (!unshare && huge_pte_uffd_wp(pte))
5499 return 0;
5500
5501 /*
5502 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5503 * PTE mapped R/O such as maybe_mkwrite() would do.
5504 */
5505 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5506 return VM_FAULT_SIGSEGV;
5507
5508 /* Let's take out MAP_SHARED mappings first. */
5509 if (vma->vm_flags & VM_MAYSHARE) {
5510 set_huge_ptep_writable(vma, haddr, ptep);
5511 return 0;
5512 }
5513
5514 old_page = pte_page(pte);
5515
5516 delayacct_wpcopy_start();
5517
5518retry_avoidcopy:
5519 /*
5520 * If no-one else is actually using this page, we're the exclusive
5521 * owner and can reuse this page.
5522 */
5523 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5524 if (!PageAnonExclusive(old_page))
5525 page_move_anon_rmap(old_page, vma);
5526 if (likely(!unshare))
5527 set_huge_ptep_writable(vma, haddr, ptep);
5528
5529 delayacct_wpcopy_end();
5530 return 0;
5531 }
5532 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5533 old_page);
5534
5535 /*
5536 * If the process that created a MAP_PRIVATE mapping is about to
5537 * perform a COW due to a shared page count, attempt to satisfy
5538 * the allocation without using the existing reserves. The pagecache
5539 * page is used to determine if the reserve at this address was
5540 * consumed or not. If reserves were used, a partial faulted mapping
5541 * at the time of fork() could consume its reserves on COW instead
5542 * of the full address range.
5543 */
5544 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5545 page_folio(old_page) != pagecache_folio)
5546 outside_reserve = 1;
5547
5548 get_page(old_page);
5549
5550 /*
5551 * Drop page table lock as buddy allocator may be called. It will
5552 * be acquired again before returning to the caller, as expected.
5553 */
5554 spin_unlock(ptl);
5555 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5556
5557 if (IS_ERR(new_folio)) {
5558 /*
5559 * If a process owning a MAP_PRIVATE mapping fails to COW,
5560 * it is due to references held by a child and an insufficient
5561 * huge page pool. To guarantee the original mappers
5562 * reliability, unmap the page from child processes. The child
5563 * may get SIGKILLed if it later faults.
5564 */
5565 if (outside_reserve) {
5566 struct address_space *mapping = vma->vm_file->f_mapping;
5567 pgoff_t idx;
5568 u32 hash;
5569
5570 put_page(old_page);
5571 /*
5572 * Drop hugetlb_fault_mutex and vma_lock before
5573 * unmapping. unmapping needs to hold vma_lock
5574 * in write mode. Dropping vma_lock in read mode
5575 * here is OK as COW mappings do not interact with
5576 * PMD sharing.
5577 *
5578 * Reacquire both after unmap operation.
5579 */
5580 idx = vma_hugecache_offset(h, vma, haddr);
5581 hash = hugetlb_fault_mutex_hash(mapping, idx);
5582 hugetlb_vma_unlock_read(vma);
5583 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5584
5585 unmap_ref_private(mm, vma, old_page, haddr);
5586
5587 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5588 hugetlb_vma_lock_read(vma);
5589 spin_lock(ptl);
5590 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5591 if (likely(ptep &&
5592 pte_same(huge_ptep_get(ptep), pte)))
5593 goto retry_avoidcopy;
5594 /*
5595 * race occurs while re-acquiring page table
5596 * lock, and our job is done.
5597 */
5598 delayacct_wpcopy_end();
5599 return 0;
5600 }
5601
5602 ret = vmf_error(PTR_ERR(new_folio));
5603 goto out_release_old;
5604 }
5605
5606 /*
5607 * When the original hugepage is shared one, it does not have
5608 * anon_vma prepared.
5609 */
5610 if (unlikely(anon_vma_prepare(vma))) {
5611 ret = VM_FAULT_OOM;
5612 goto out_release_all;
5613 }
5614
5615 copy_user_huge_page(&new_folio->page, old_page, address, vma,
5616 pages_per_huge_page(h));
5617 __folio_mark_uptodate(new_folio);
5618
5619 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5620 haddr + huge_page_size(h));
5621 mmu_notifier_invalidate_range_start(&range);
5622
5623 /*
5624 * Retake the page table lock to check for racing updates
5625 * before the page tables are altered
5626 */
5627 spin_lock(ptl);
5628 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5629 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5630 /* Break COW or unshare */
5631 huge_ptep_clear_flush(vma, haddr, ptep);
5632 mmu_notifier_invalidate_range(mm, range.start, range.end);
5633 page_remove_rmap(old_page, vma, true);
5634 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5635 set_huge_pte_at(mm, haddr, ptep,
5636 make_huge_pte(vma, &new_folio->page, !unshare));
5637 folio_set_hugetlb_migratable(new_folio);
5638 /* Make the old page be freed below */
5639 new_folio = page_folio(old_page);
5640 }
5641 spin_unlock(ptl);
5642 mmu_notifier_invalidate_range_end(&range);
5643out_release_all:
5644 /*
5645 * No restore in case of successful pagetable update (Break COW or
5646 * unshare)
5647 */
5648 if (new_folio != page_folio(old_page))
5649 restore_reserve_on_error(h, vma, haddr, new_folio);
5650 folio_put(new_folio);
5651out_release_old:
5652 put_page(old_page);
5653
5654 spin_lock(ptl); /* Caller expects lock to be held */
5655
5656 delayacct_wpcopy_end();
5657 return ret;
5658}
5659
5660/*
5661 * Return whether there is a pagecache page to back given address within VMA.
5662 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5663 */
5664static bool hugetlbfs_pagecache_present(struct hstate *h,
5665 struct vm_area_struct *vma, unsigned long address)
5666{
5667 struct address_space *mapping = vma->vm_file->f_mapping;
5668 pgoff_t idx = vma_hugecache_offset(h, vma, address);
5669 bool present;
5670
5671 rcu_read_lock();
5672 present = page_cache_next_miss(mapping, idx, 1) != idx;
5673 rcu_read_unlock();
5674
5675 return present;
5676}
5677
5678int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5679 pgoff_t idx)
5680{
5681 struct inode *inode = mapping->host;
5682 struct hstate *h = hstate_inode(inode);
5683 int err;
5684
5685 __folio_set_locked(folio);
5686 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5687
5688 if (unlikely(err)) {
5689 __folio_clear_locked(folio);
5690 return err;
5691 }
5692 folio_clear_hugetlb_restore_reserve(folio);
5693
5694 /*
5695 * mark folio dirty so that it will not be removed from cache/file
5696 * by non-hugetlbfs specific code paths.
5697 */
5698 folio_mark_dirty(folio);
5699
5700 spin_lock(&inode->i_lock);
5701 inode->i_blocks += blocks_per_huge_page(h);
5702 spin_unlock(&inode->i_lock);
5703 return 0;
5704}
5705
5706static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5707 struct address_space *mapping,
5708 pgoff_t idx,
5709 unsigned int flags,
5710 unsigned long haddr,
5711 unsigned long addr,
5712 unsigned long reason)
5713{
5714 u32 hash;
5715 struct vm_fault vmf = {
5716 .vma = vma,
5717 .address = haddr,
5718 .real_address = addr,
5719 .flags = flags,
5720
5721 /*
5722 * Hard to debug if it ends up being
5723 * used by a callee that assumes
5724 * something about the other
5725 * uninitialized fields... same as in
5726 * memory.c
5727 */
5728 };
5729
5730 /*
5731 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5732 * userfault. Also mmap_lock could be dropped due to handling
5733 * userfault, any vma operation should be careful from here.
5734 */
5735 hugetlb_vma_unlock_read(vma);
5736 hash = hugetlb_fault_mutex_hash(mapping, idx);
5737 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5738 return handle_userfault(&vmf, reason);
5739}
5740
5741/*
5742 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5743 * false if pte changed or is changing.
5744 */
5745static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5746 pte_t *ptep, pte_t old_pte)
5747{
5748 spinlock_t *ptl;
5749 bool same;
5750
5751 ptl = huge_pte_lock(h, mm, ptep);
5752 same = pte_same(huge_ptep_get(ptep), old_pte);
5753 spin_unlock(ptl);
5754
5755 return same;
5756}
5757
5758static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5759 struct vm_area_struct *vma,
5760 struct address_space *mapping, pgoff_t idx,
5761 unsigned long address, pte_t *ptep,
5762 pte_t old_pte, unsigned int flags)
5763{
5764 struct hstate *h = hstate_vma(vma);
5765 vm_fault_t ret = VM_FAULT_SIGBUS;
5766 int anon_rmap = 0;
5767 unsigned long size;
5768 struct folio *folio;
5769 pte_t new_pte;
5770 spinlock_t *ptl;
5771 unsigned long haddr = address & huge_page_mask(h);
5772 bool new_folio, new_pagecache_folio = false;
5773 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5774
5775 /*
5776 * Currently, we are forced to kill the process in the event the
5777 * original mapper has unmapped pages from the child due to a failed
5778 * COW/unsharing. Warn that such a situation has occurred as it may not
5779 * be obvious.
5780 */
5781 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5782 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5783 current->pid);
5784 goto out;
5785 }
5786
5787 /*
5788 * Use page lock to guard against racing truncation
5789 * before we get page_table_lock.
5790 */
5791 new_folio = false;
5792 folio = filemap_lock_folio(mapping, idx);
5793 if (!folio) {
5794 size = i_size_read(mapping->host) >> huge_page_shift(h);
5795 if (idx >= size)
5796 goto out;
5797 /* Check for page in userfault range */
5798 if (userfaultfd_missing(vma)) {
5799 /*
5800 * Since hugetlb_no_page() was examining pte
5801 * without pgtable lock, we need to re-test under
5802 * lock because the pte may not be stable and could
5803 * have changed from under us. Try to detect
5804 * either changed or during-changing ptes and retry
5805 * properly when needed.
5806 *
5807 * Note that userfaultfd is actually fine with
5808 * false positives (e.g. caused by pte changed),
5809 * but not wrong logical events (e.g. caused by
5810 * reading a pte during changing). The latter can
5811 * confuse the userspace, so the strictness is very
5812 * much preferred. E.g., MISSING event should
5813 * never happen on the page after UFFDIO_COPY has
5814 * correctly installed the page and returned.
5815 */
5816 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5817 ret = 0;
5818 goto out;
5819 }
5820
5821 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5822 haddr, address,
5823 VM_UFFD_MISSING);
5824 }
5825
5826 folio = alloc_hugetlb_folio(vma, haddr, 0);
5827 if (IS_ERR(folio)) {
5828 /*
5829 * Returning error will result in faulting task being
5830 * sent SIGBUS. The hugetlb fault mutex prevents two
5831 * tasks from racing to fault in the same page which
5832 * could result in false unable to allocate errors.
5833 * Page migration does not take the fault mutex, but
5834 * does a clear then write of pte's under page table
5835 * lock. Page fault code could race with migration,
5836 * notice the clear pte and try to allocate a page
5837 * here. Before returning error, get ptl and make
5838 * sure there really is no pte entry.
5839 */
5840 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5841 ret = vmf_error(PTR_ERR(folio));
5842 else
5843 ret = 0;
5844 goto out;
5845 }
5846 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5847 __folio_mark_uptodate(folio);
5848 new_folio = true;
5849
5850 if (vma->vm_flags & VM_MAYSHARE) {
5851 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5852 if (err) {
5853 /*
5854 * err can't be -EEXIST which implies someone
5855 * else consumed the reservation since hugetlb
5856 * fault mutex is held when add a hugetlb page
5857 * to the page cache. So it's safe to call
5858 * restore_reserve_on_error() here.
5859 */
5860 restore_reserve_on_error(h, vma, haddr, folio);
5861 folio_put(folio);
5862 goto out;
5863 }
5864 new_pagecache_folio = true;
5865 } else {
5866 folio_lock(folio);
5867 if (unlikely(anon_vma_prepare(vma))) {
5868 ret = VM_FAULT_OOM;
5869 goto backout_unlocked;
5870 }
5871 anon_rmap = 1;
5872 }
5873 } else {
5874 /*
5875 * If memory error occurs between mmap() and fault, some process
5876 * don't have hwpoisoned swap entry for errored virtual address.
5877 * So we need to block hugepage fault by PG_hwpoison bit check.
5878 */
5879 if (unlikely(folio_test_hwpoison(folio))) {
5880 ret = VM_FAULT_HWPOISON_LARGE |
5881 VM_FAULT_SET_HINDEX(hstate_index(h));
5882 goto backout_unlocked;
5883 }
5884
5885 /* Check for page in userfault range. */
5886 if (userfaultfd_minor(vma)) {
5887 folio_unlock(folio);
5888 folio_put(folio);
5889 /* See comment in userfaultfd_missing() block above */
5890 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5891 ret = 0;
5892 goto out;
5893 }
5894 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5895 haddr, address,
5896 VM_UFFD_MINOR);
5897 }
5898 }
5899
5900 /*
5901 * If we are going to COW a private mapping later, we examine the
5902 * pending reservations for this page now. This will ensure that
5903 * any allocations necessary to record that reservation occur outside
5904 * the spinlock.
5905 */
5906 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5907 if (vma_needs_reservation(h, vma, haddr) < 0) {
5908 ret = VM_FAULT_OOM;
5909 goto backout_unlocked;
5910 }
5911 /* Just decrements count, does not deallocate */
5912 vma_end_reservation(h, vma, haddr);
5913 }
5914
5915 ptl = huge_pte_lock(h, mm, ptep);
5916 ret = 0;
5917 /* If pte changed from under us, retry */
5918 if (!pte_same(huge_ptep_get(ptep), old_pte))
5919 goto backout;
5920
5921 if (anon_rmap)
5922 hugepage_add_new_anon_rmap(folio, vma, haddr);
5923 else
5924 page_dup_file_rmap(&folio->page, true);
5925 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5926 && (vma->vm_flags & VM_SHARED)));
5927 /*
5928 * If this pte was previously wr-protected, keep it wr-protected even
5929 * if populated.
5930 */
5931 if (unlikely(pte_marker_uffd_wp(old_pte)))
5932 new_pte = huge_pte_mkuffd_wp(new_pte);
5933 set_huge_pte_at(mm, haddr, ptep, new_pte);
5934
5935 hugetlb_count_add(pages_per_huge_page(h), mm);
5936 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5937 /* Optimization, do the COW without a second fault */
5938 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
5939 }
5940
5941 spin_unlock(ptl);
5942
5943 /*
5944 * Only set hugetlb_migratable in newly allocated pages. Existing pages
5945 * found in the pagecache may not have hugetlb_migratable if they have
5946 * been isolated for migration.
5947 */
5948 if (new_folio)
5949 folio_set_hugetlb_migratable(folio);
5950
5951 folio_unlock(folio);
5952out:
5953 hugetlb_vma_unlock_read(vma);
5954 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5955 return ret;
5956
5957backout:
5958 spin_unlock(ptl);
5959backout_unlocked:
5960 if (new_folio && !new_pagecache_folio)
5961 restore_reserve_on_error(h, vma, haddr, folio);
5962
5963 folio_unlock(folio);
5964 folio_put(folio);
5965 goto out;
5966}
5967
5968#ifdef CONFIG_SMP
5969u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5970{
5971 unsigned long key[2];
5972 u32 hash;
5973
5974 key[0] = (unsigned long) mapping;
5975 key[1] = idx;
5976
5977 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5978
5979 return hash & (num_fault_mutexes - 1);
5980}
5981#else
5982/*
5983 * For uniprocessor systems we always use a single mutex, so just
5984 * return 0 and avoid the hashing overhead.
5985 */
5986u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5987{
5988 return 0;
5989}
5990#endif
5991
5992vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5993 unsigned long address, unsigned int flags)
5994{
5995 pte_t *ptep, entry;
5996 spinlock_t *ptl;
5997 vm_fault_t ret;
5998 u32 hash;
5999 pgoff_t idx;
6000 struct page *page = NULL;
6001 struct folio *pagecache_folio = NULL;
6002 struct hstate *h = hstate_vma(vma);
6003 struct address_space *mapping;
6004 int need_wait_lock = 0;
6005 unsigned long haddr = address & huge_page_mask(h);
6006
6007 /*
6008 * Serialize hugepage allocation and instantiation, so that we don't
6009 * get spurious allocation failures if two CPUs race to instantiate
6010 * the same page in the page cache.
6011 */
6012 mapping = vma->vm_file->f_mapping;
6013 idx = vma_hugecache_offset(h, vma, haddr);
6014 hash = hugetlb_fault_mutex_hash(mapping, idx);
6015 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6016
6017 /*
6018 * Acquire vma lock before calling huge_pte_alloc and hold
6019 * until finished with ptep. This prevents huge_pmd_unshare from
6020 * being called elsewhere and making the ptep no longer valid.
6021 */
6022 hugetlb_vma_lock_read(vma);
6023 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6024 if (!ptep) {
6025 hugetlb_vma_unlock_read(vma);
6026 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6027 return VM_FAULT_OOM;
6028 }
6029
6030 entry = huge_ptep_get(ptep);
6031 /* PTE markers should be handled the same way as none pte */
6032 if (huge_pte_none_mostly(entry))
6033 /*
6034 * hugetlb_no_page will drop vma lock and hugetlb fault
6035 * mutex internally, which make us return immediately.
6036 */
6037 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6038 entry, flags);
6039
6040 ret = 0;
6041
6042 /*
6043 * entry could be a migration/hwpoison entry at this point, so this
6044 * check prevents the kernel from going below assuming that we have
6045 * an active hugepage in pagecache. This goto expects the 2nd page
6046 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6047 * properly handle it.
6048 */
6049 if (!pte_present(entry)) {
6050 if (unlikely(is_hugetlb_entry_migration(entry))) {
6051 /*
6052 * Release the hugetlb fault lock now, but retain
6053 * the vma lock, because it is needed to guard the
6054 * huge_pte_lockptr() later in
6055 * migration_entry_wait_huge(). The vma lock will
6056 * be released there.
6057 */
6058 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6059 migration_entry_wait_huge(vma, ptep);
6060 return 0;
6061 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6062 ret = VM_FAULT_HWPOISON_LARGE |
6063 VM_FAULT_SET_HINDEX(hstate_index(h));
6064 goto out_mutex;
6065 }
6066
6067 /*
6068 * If we are going to COW/unshare the mapping later, we examine the
6069 * pending reservations for this page now. This will ensure that any
6070 * allocations necessary to record that reservation occur outside the
6071 * spinlock. Also lookup the pagecache page now as it is used to
6072 * determine if a reservation has been consumed.
6073 */
6074 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6075 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6076 if (vma_needs_reservation(h, vma, haddr) < 0) {
6077 ret = VM_FAULT_OOM;
6078 goto out_mutex;
6079 }
6080 /* Just decrements count, does not deallocate */
6081 vma_end_reservation(h, vma, haddr);
6082
6083 pagecache_folio = filemap_lock_folio(mapping, idx);
6084 }
6085
6086 ptl = huge_pte_lock(h, mm, ptep);
6087
6088 /* Check for a racing update before calling hugetlb_wp() */
6089 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6090 goto out_ptl;
6091
6092 /* Handle userfault-wp first, before trying to lock more pages */
6093 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6094 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6095 struct vm_fault vmf = {
6096 .vma = vma,
6097 .address = haddr,
6098 .real_address = address,
6099 .flags = flags,
6100 };
6101
6102 spin_unlock(ptl);
6103 if (pagecache_folio) {
6104 folio_unlock(pagecache_folio);
6105 folio_put(pagecache_folio);
6106 }
6107 hugetlb_vma_unlock_read(vma);
6108 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6109 return handle_userfault(&vmf, VM_UFFD_WP);
6110 }
6111
6112 /*
6113 * hugetlb_wp() requires page locks of pte_page(entry) and
6114 * pagecache_folio, so here we need take the former one
6115 * when page != pagecache_folio or !pagecache_folio.
6116 */
6117 page = pte_page(entry);
6118 if (page_folio(page) != pagecache_folio)
6119 if (!trylock_page(page)) {
6120 need_wait_lock = 1;
6121 goto out_ptl;
6122 }
6123
6124 get_page(page);
6125
6126 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6127 if (!huge_pte_write(entry)) {
6128 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6129 pagecache_folio, ptl);
6130 goto out_put_page;
6131 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6132 entry = huge_pte_mkdirty(entry);
6133 }
6134 }
6135 entry = pte_mkyoung(entry);
6136 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6137 flags & FAULT_FLAG_WRITE))
6138 update_mmu_cache(vma, haddr, ptep);
6139out_put_page:
6140 if (page_folio(page) != pagecache_folio)
6141 unlock_page(page);
6142 put_page(page);
6143out_ptl:
6144 spin_unlock(ptl);
6145
6146 if (pagecache_folio) {
6147 folio_unlock(pagecache_folio);
6148 folio_put(pagecache_folio);
6149 }
6150out_mutex:
6151 hugetlb_vma_unlock_read(vma);
6152 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6153 /*
6154 * Generally it's safe to hold refcount during waiting page lock. But
6155 * here we just wait to defer the next page fault to avoid busy loop and
6156 * the page is not used after unlocked before returning from the current
6157 * page fault. So we are safe from accessing freed page, even if we wait
6158 * here without taking refcount.
6159 */
6160 if (need_wait_lock)
6161 wait_on_page_locked(page);
6162 return ret;
6163}
6164
6165#ifdef CONFIG_USERFAULTFD
6166/*
6167 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
6168 * modifications for huge pages.
6169 */
6170int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6171 pte_t *dst_pte,
6172 struct vm_area_struct *dst_vma,
6173 unsigned long dst_addr,
6174 unsigned long src_addr,
6175 enum mcopy_atomic_mode mode,
6176 struct page **pagep,
6177 bool wp_copy)
6178{
6179 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6180 struct hstate *h = hstate_vma(dst_vma);
6181 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6182 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6183 unsigned long size;
6184 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6185 pte_t _dst_pte;
6186 spinlock_t *ptl;
6187 int ret = -ENOMEM;
6188 struct folio *folio;
6189 int writable;
6190 bool folio_in_pagecache = false;
6191
6192 if (is_continue) {
6193 ret = -EFAULT;
6194 folio = filemap_lock_folio(mapping, idx);
6195 if (!folio)
6196 goto out;
6197 folio_in_pagecache = true;
6198 } else if (!*pagep) {
6199 /* If a page already exists, then it's UFFDIO_COPY for
6200 * a non-missing case. Return -EEXIST.
6201 */
6202 if (vm_shared &&
6203 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6204 ret = -EEXIST;
6205 goto out;
6206 }
6207
6208 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6209 if (IS_ERR(folio)) {
6210 ret = -ENOMEM;
6211 goto out;
6212 }
6213
6214 ret = copy_huge_page_from_user(&folio->page,
6215 (const void __user *) src_addr,
6216 pages_per_huge_page(h), false);
6217
6218 /* fallback to copy_from_user outside mmap_lock */
6219 if (unlikely(ret)) {
6220 ret = -ENOENT;
6221 /* Free the allocated folio which may have
6222 * consumed a reservation.
6223 */
6224 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6225 folio_put(folio);
6226
6227 /* Allocate a temporary folio to hold the copied
6228 * contents.
6229 */
6230 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6231 if (!folio) {
6232 ret = -ENOMEM;
6233 goto out;
6234 }
6235 *pagep = &folio->page;
6236 /* Set the outparam pagep and return to the caller to
6237 * copy the contents outside the lock. Don't free the
6238 * page.
6239 */
6240 goto out;
6241 }
6242 } else {
6243 if (vm_shared &&
6244 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6245 put_page(*pagep);
6246 ret = -EEXIST;
6247 *pagep = NULL;
6248 goto out;
6249 }
6250
6251 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6252 if (IS_ERR(folio)) {
6253 put_page(*pagep);
6254 ret = -ENOMEM;
6255 *pagep = NULL;
6256 goto out;
6257 }
6258 copy_user_huge_page(&folio->page, *pagep, dst_addr, dst_vma,
6259 pages_per_huge_page(h));
6260 put_page(*pagep);
6261 *pagep = NULL;
6262 }
6263
6264 /*
6265 * The memory barrier inside __folio_mark_uptodate makes sure that
6266 * preceding stores to the page contents become visible before
6267 * the set_pte_at() write.
6268 */
6269 __folio_mark_uptodate(folio);
6270
6271 /* Add shared, newly allocated pages to the page cache. */
6272 if (vm_shared && !is_continue) {
6273 size = i_size_read(mapping->host) >> huge_page_shift(h);
6274 ret = -EFAULT;
6275 if (idx >= size)
6276 goto out_release_nounlock;
6277
6278 /*
6279 * Serialization between remove_inode_hugepages() and
6280 * hugetlb_add_to_page_cache() below happens through the
6281 * hugetlb_fault_mutex_table that here must be hold by
6282 * the caller.
6283 */
6284 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6285 if (ret)
6286 goto out_release_nounlock;
6287 folio_in_pagecache = true;
6288 }
6289
6290 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6291
6292 ret = -EIO;
6293 if (folio_test_hwpoison(folio))
6294 goto out_release_unlock;
6295
6296 /*
6297 * We allow to overwrite a pte marker: consider when both MISSING|WP
6298 * registered, we firstly wr-protect a none pte which has no page cache
6299 * page backing it, then access the page.
6300 */
6301 ret = -EEXIST;
6302 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6303 goto out_release_unlock;
6304
6305 if (folio_in_pagecache)
6306 page_dup_file_rmap(&folio->page, true);
6307 else
6308 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6309
6310 /*
6311 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6312 * with wp flag set, don't set pte write bit.
6313 */
6314 if (wp_copy || (is_continue && !vm_shared))
6315 writable = 0;
6316 else
6317 writable = dst_vma->vm_flags & VM_WRITE;
6318
6319 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6320 /*
6321 * Always mark UFFDIO_COPY page dirty; note that this may not be
6322 * extremely important for hugetlbfs for now since swapping is not
6323 * supported, but we should still be clear in that this page cannot be
6324 * thrown away at will, even if write bit not set.
6325 */
6326 _dst_pte = huge_pte_mkdirty(_dst_pte);
6327 _dst_pte = pte_mkyoung(_dst_pte);
6328
6329 if (wp_copy)
6330 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6331
6332 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6333
6334 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6335
6336 /* No need to invalidate - it was non-present before */
6337 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6338
6339 spin_unlock(ptl);
6340 if (!is_continue)
6341 folio_set_hugetlb_migratable(folio);
6342 if (vm_shared || is_continue)
6343 folio_unlock(folio);
6344 ret = 0;
6345out:
6346 return ret;
6347out_release_unlock:
6348 spin_unlock(ptl);
6349 if (vm_shared || is_continue)
6350 folio_unlock(folio);
6351out_release_nounlock:
6352 if (!folio_in_pagecache)
6353 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6354 folio_put(folio);
6355 goto out;
6356}
6357#endif /* CONFIG_USERFAULTFD */
6358
6359static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6360 int refs, struct page **pages,
6361 struct vm_area_struct **vmas)
6362{
6363 int nr;
6364
6365 for (nr = 0; nr < refs; nr++) {
6366 if (likely(pages))
6367 pages[nr] = nth_page(page, nr);
6368 if (vmas)
6369 vmas[nr] = vma;
6370 }
6371}
6372
6373static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6374 unsigned int flags, pte_t *pte,
6375 bool *unshare)
6376{
6377 pte_t pteval = huge_ptep_get(pte);
6378
6379 *unshare = false;
6380 if (is_swap_pte(pteval))
6381 return true;
6382 if (huge_pte_write(pteval))
6383 return false;
6384 if (flags & FOLL_WRITE)
6385 return true;
6386 if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6387 *unshare = true;
6388 return true;
6389 }
6390 return false;
6391}
6392
6393struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6394 unsigned long address, unsigned int flags)
6395{
6396 struct hstate *h = hstate_vma(vma);
6397 struct mm_struct *mm = vma->vm_mm;
6398 unsigned long haddr = address & huge_page_mask(h);
6399 struct page *page = NULL;
6400 spinlock_t *ptl;
6401 pte_t *pte, entry;
6402
6403 /*
6404 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6405 * follow_hugetlb_page().
6406 */
6407 if (WARN_ON_ONCE(flags & FOLL_PIN))
6408 return NULL;
6409
6410 hugetlb_vma_lock_read(vma);
6411 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6412 if (!pte)
6413 goto out_unlock;
6414
6415 ptl = huge_pte_lock(h, mm, pte);
6416 entry = huge_ptep_get(pte);
6417 if (pte_present(entry)) {
6418 page = pte_page(entry) +
6419 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6420 /*
6421 * Note that page may be a sub-page, and with vmemmap
6422 * optimizations the page struct may be read only.
6423 * try_grab_page() will increase the ref count on the
6424 * head page, so this will be OK.
6425 *
6426 * try_grab_page() should always be able to get the page here,
6427 * because we hold the ptl lock and have verified pte_present().
6428 */
6429 if (try_grab_page(page, flags)) {
6430 page = NULL;
6431 goto out;
6432 }
6433 }
6434out:
6435 spin_unlock(ptl);
6436out_unlock:
6437 hugetlb_vma_unlock_read(vma);
6438 return page;
6439}
6440
6441long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6442 struct page **pages, struct vm_area_struct **vmas,
6443 unsigned long *position, unsigned long *nr_pages,
6444 long i, unsigned int flags, int *locked)
6445{
6446 unsigned long pfn_offset;
6447 unsigned long vaddr = *position;
6448 unsigned long remainder = *nr_pages;
6449 struct hstate *h = hstate_vma(vma);
6450 int err = -EFAULT, refs;
6451
6452 while (vaddr < vma->vm_end && remainder) {
6453 pte_t *pte;
6454 spinlock_t *ptl = NULL;
6455 bool unshare = false;
6456 int absent;
6457 struct page *page;
6458
6459 /*
6460 * If we have a pending SIGKILL, don't keep faulting pages and
6461 * potentially allocating memory.
6462 */
6463 if (fatal_signal_pending(current)) {
6464 remainder = 0;
6465 break;
6466 }
6467
6468 hugetlb_vma_lock_read(vma);
6469 /*
6470 * Some archs (sparc64, sh*) have multiple pte_ts to
6471 * each hugepage. We have to make sure we get the
6472 * first, for the page indexing below to work.
6473 *
6474 * Note that page table lock is not held when pte is null.
6475 */
6476 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6477 huge_page_size(h));
6478 if (pte)
6479 ptl = huge_pte_lock(h, mm, pte);
6480 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6481
6482 /*
6483 * When coredumping, it suits get_dump_page if we just return
6484 * an error where there's an empty slot with no huge pagecache
6485 * to back it. This way, we avoid allocating a hugepage, and
6486 * the sparse dumpfile avoids allocating disk blocks, but its
6487 * huge holes still show up with zeroes where they need to be.
6488 */
6489 if (absent && (flags & FOLL_DUMP) &&
6490 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6491 if (pte)
6492 spin_unlock(ptl);
6493 hugetlb_vma_unlock_read(vma);
6494 remainder = 0;
6495 break;
6496 }
6497
6498 /*
6499 * We need call hugetlb_fault for both hugepages under migration
6500 * (in which case hugetlb_fault waits for the migration,) and
6501 * hwpoisoned hugepages (in which case we need to prevent the
6502 * caller from accessing to them.) In order to do this, we use
6503 * here is_swap_pte instead of is_hugetlb_entry_migration and
6504 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6505 * both cases, and because we can't follow correct pages
6506 * directly from any kind of swap entries.
6507 */
6508 if (absent ||
6509 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6510 vm_fault_t ret;
6511 unsigned int fault_flags = 0;
6512
6513 if (pte)
6514 spin_unlock(ptl);
6515 hugetlb_vma_unlock_read(vma);
6516
6517 if (flags & FOLL_WRITE)
6518 fault_flags |= FAULT_FLAG_WRITE;
6519 else if (unshare)
6520 fault_flags |= FAULT_FLAG_UNSHARE;
6521 if (locked) {
6522 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6523 FAULT_FLAG_KILLABLE;
6524 if (flags & FOLL_INTERRUPTIBLE)
6525 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6526 }
6527 if (flags & FOLL_NOWAIT)
6528 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6529 FAULT_FLAG_RETRY_NOWAIT;
6530 if (flags & FOLL_TRIED) {
6531 /*
6532 * Note: FAULT_FLAG_ALLOW_RETRY and
6533 * FAULT_FLAG_TRIED can co-exist
6534 */
6535 fault_flags |= FAULT_FLAG_TRIED;
6536 }
6537 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6538 if (ret & VM_FAULT_ERROR) {
6539 err = vm_fault_to_errno(ret, flags);
6540 remainder = 0;
6541 break;
6542 }
6543 if (ret & VM_FAULT_RETRY) {
6544 if (locked &&
6545 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6546 *locked = 0;
6547 *nr_pages = 0;
6548 /*
6549 * VM_FAULT_RETRY must not return an
6550 * error, it will return zero
6551 * instead.
6552 *
6553 * No need to update "position" as the
6554 * caller will not check it after
6555 * *nr_pages is set to 0.
6556 */
6557 return i;
6558 }
6559 continue;
6560 }
6561
6562 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6563 page = pte_page(huge_ptep_get(pte));
6564
6565 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6566 !PageAnonExclusive(page), page);
6567
6568 /*
6569 * If subpage information not requested, update counters
6570 * and skip the same_page loop below.
6571 */
6572 if (!pages && !vmas && !pfn_offset &&
6573 (vaddr + huge_page_size(h) < vma->vm_end) &&
6574 (remainder >= pages_per_huge_page(h))) {
6575 vaddr += huge_page_size(h);
6576 remainder -= pages_per_huge_page(h);
6577 i += pages_per_huge_page(h);
6578 spin_unlock(ptl);
6579 hugetlb_vma_unlock_read(vma);
6580 continue;
6581 }
6582
6583 /* vaddr may not be aligned to PAGE_SIZE */
6584 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6585 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6586
6587 if (pages || vmas)
6588 record_subpages_vmas(nth_page(page, pfn_offset),
6589 vma, refs,
6590 likely(pages) ? pages + i : NULL,
6591 vmas ? vmas + i : NULL);
6592
6593 if (pages) {
6594 /*
6595 * try_grab_folio() should always succeed here,
6596 * because: a) we hold the ptl lock, and b) we've just
6597 * checked that the huge page is present in the page
6598 * tables. If the huge page is present, then the tail
6599 * pages must also be present. The ptl prevents the
6600 * head page and tail pages from being rearranged in
6601 * any way. As this is hugetlb, the pages will never
6602 * be p2pdma or not longterm pinable. So this page
6603 * must be available at this point, unless the page
6604 * refcount overflowed:
6605 */
6606 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6607 flags))) {
6608 spin_unlock(ptl);
6609 hugetlb_vma_unlock_read(vma);
6610 remainder = 0;
6611 err = -ENOMEM;
6612 break;
6613 }
6614 }
6615
6616 vaddr += (refs << PAGE_SHIFT);
6617 remainder -= refs;
6618 i += refs;
6619
6620 spin_unlock(ptl);
6621 hugetlb_vma_unlock_read(vma);
6622 }
6623 *nr_pages = remainder;
6624 /*
6625 * setting position is actually required only if remainder is
6626 * not zero but it's faster not to add a "if (remainder)"
6627 * branch.
6628 */
6629 *position = vaddr;
6630
6631 return i ? i : err;
6632}
6633
6634long hugetlb_change_protection(struct vm_area_struct *vma,
6635 unsigned long address, unsigned long end,
6636 pgprot_t newprot, unsigned long cp_flags)
6637{
6638 struct mm_struct *mm = vma->vm_mm;
6639 unsigned long start = address;
6640 pte_t *ptep;
6641 pte_t pte;
6642 struct hstate *h = hstate_vma(vma);
6643 long pages = 0, psize = huge_page_size(h);
6644 bool shared_pmd = false;
6645 struct mmu_notifier_range range;
6646 unsigned long last_addr_mask;
6647 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6648 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6649
6650 /*
6651 * In the case of shared PMDs, the area to flush could be beyond
6652 * start/end. Set range.start/range.end to cover the maximum possible
6653 * range if PMD sharing is possible.
6654 */
6655 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6656 0, mm, start, end);
6657 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6658
6659 BUG_ON(address >= end);
6660 flush_cache_range(vma, range.start, range.end);
6661
6662 mmu_notifier_invalidate_range_start(&range);
6663 hugetlb_vma_lock_write(vma);
6664 i_mmap_lock_write(vma->vm_file->f_mapping);
6665 last_addr_mask = hugetlb_mask_last_page(h);
6666 for (; address < end; address += psize) {
6667 spinlock_t *ptl;
6668 ptep = hugetlb_walk(vma, address, psize);
6669 if (!ptep) {
6670 if (!uffd_wp) {
6671 address |= last_addr_mask;
6672 continue;
6673 }
6674 /*
6675 * Userfaultfd wr-protect requires pgtable
6676 * pre-allocations to install pte markers.
6677 */
6678 ptep = huge_pte_alloc(mm, vma, address, psize);
6679 if (!ptep) {
6680 pages = -ENOMEM;
6681 break;
6682 }
6683 }
6684 ptl = huge_pte_lock(h, mm, ptep);
6685 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6686 /*
6687 * When uffd-wp is enabled on the vma, unshare
6688 * shouldn't happen at all. Warn about it if it
6689 * happened due to some reason.
6690 */
6691 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6692 pages++;
6693 spin_unlock(ptl);
6694 shared_pmd = true;
6695 address |= last_addr_mask;
6696 continue;
6697 }
6698 pte = huge_ptep_get(ptep);
6699 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6700 /* Nothing to do. */
6701 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6702 swp_entry_t entry = pte_to_swp_entry(pte);
6703 struct page *page = pfn_swap_entry_to_page(entry);
6704 pte_t newpte = pte;
6705
6706 if (is_writable_migration_entry(entry)) {
6707 if (PageAnon(page))
6708 entry = make_readable_exclusive_migration_entry(
6709 swp_offset(entry));
6710 else
6711 entry = make_readable_migration_entry(
6712 swp_offset(entry));
6713 newpte = swp_entry_to_pte(entry);
6714 pages++;
6715 }
6716
6717 if (uffd_wp)
6718 newpte = pte_swp_mkuffd_wp(newpte);
6719 else if (uffd_wp_resolve)
6720 newpte = pte_swp_clear_uffd_wp(newpte);
6721 if (!pte_same(pte, newpte))
6722 set_huge_pte_at(mm, address, ptep, newpte);
6723 } else if (unlikely(is_pte_marker(pte))) {
6724 /* No other markers apply for now. */
6725 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6726 if (uffd_wp_resolve)
6727 /* Safe to modify directly (non-present->none). */
6728 huge_pte_clear(mm, address, ptep, psize);
6729 } else if (!huge_pte_none(pte)) {
6730 pte_t old_pte;
6731 unsigned int shift = huge_page_shift(hstate_vma(vma));
6732
6733 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6734 pte = huge_pte_modify(old_pte, newprot);
6735 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6736 if (uffd_wp)
6737 pte = huge_pte_mkuffd_wp(pte);
6738 else if (uffd_wp_resolve)
6739 pte = huge_pte_clear_uffd_wp(pte);
6740 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6741 pages++;
6742 } else {
6743 /* None pte */
6744 if (unlikely(uffd_wp))
6745 /* Safe to modify directly (none->non-present). */
6746 set_huge_pte_at(mm, address, ptep,
6747 make_pte_marker(PTE_MARKER_UFFD_WP));
6748 }
6749 spin_unlock(ptl);
6750 }
6751 /*
6752 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6753 * may have cleared our pud entry and done put_page on the page table:
6754 * once we release i_mmap_rwsem, another task can do the final put_page
6755 * and that page table be reused and filled with junk. If we actually
6756 * did unshare a page of pmds, flush the range corresponding to the pud.
6757 */
6758 if (shared_pmd)
6759 flush_hugetlb_tlb_range(vma, range.start, range.end);
6760 else
6761 flush_hugetlb_tlb_range(vma, start, end);
6762 /*
6763 * No need to call mmu_notifier_invalidate_range() we are downgrading
6764 * page table protection not changing it to point to a new page.
6765 *
6766 * See Documentation/mm/mmu_notifier.rst
6767 */
6768 i_mmap_unlock_write(vma->vm_file->f_mapping);
6769 hugetlb_vma_unlock_write(vma);
6770 mmu_notifier_invalidate_range_end(&range);
6771
6772 return pages > 0 ? (pages << h->order) : pages;
6773}
6774
6775/* Return true if reservation was successful, false otherwise. */
6776bool hugetlb_reserve_pages(struct inode *inode,
6777 long from, long to,
6778 struct vm_area_struct *vma,
6779 vm_flags_t vm_flags)
6780{
6781 long chg = -1, add = -1;
6782 struct hstate *h = hstate_inode(inode);
6783 struct hugepage_subpool *spool = subpool_inode(inode);
6784 struct resv_map *resv_map;
6785 struct hugetlb_cgroup *h_cg = NULL;
6786 long gbl_reserve, regions_needed = 0;
6787
6788 /* This should never happen */
6789 if (from > to) {
6790 VM_WARN(1, "%s called with a negative range\n", __func__);
6791 return false;
6792 }
6793
6794 /*
6795 * vma specific semaphore used for pmd sharing and fault/truncation
6796 * synchronization
6797 */
6798 hugetlb_vma_lock_alloc(vma);
6799
6800 /*
6801 * Only apply hugepage reservation if asked. At fault time, an
6802 * attempt will be made for VM_NORESERVE to allocate a page
6803 * without using reserves
6804 */
6805 if (vm_flags & VM_NORESERVE)
6806 return true;
6807
6808 /*
6809 * Shared mappings base their reservation on the number of pages that
6810 * are already allocated on behalf of the file. Private mappings need
6811 * to reserve the full area even if read-only as mprotect() may be
6812 * called to make the mapping read-write. Assume !vma is a shm mapping
6813 */
6814 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6815 /*
6816 * resv_map can not be NULL as hugetlb_reserve_pages is only
6817 * called for inodes for which resv_maps were created (see
6818 * hugetlbfs_get_inode).
6819 */
6820 resv_map = inode_resv_map(inode);
6821
6822 chg = region_chg(resv_map, from, to, ®ions_needed);
6823 } else {
6824 /* Private mapping. */
6825 resv_map = resv_map_alloc();
6826 if (!resv_map)
6827 goto out_err;
6828
6829 chg = to - from;
6830
6831 set_vma_resv_map(vma, resv_map);
6832 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6833 }
6834
6835 if (chg < 0)
6836 goto out_err;
6837
6838 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6839 chg * pages_per_huge_page(h), &h_cg) < 0)
6840 goto out_err;
6841
6842 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6843 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6844 * of the resv_map.
6845 */
6846 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6847 }
6848
6849 /*
6850 * There must be enough pages in the subpool for the mapping. If
6851 * the subpool has a minimum size, there may be some global
6852 * reservations already in place (gbl_reserve).
6853 */
6854 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6855 if (gbl_reserve < 0)
6856 goto out_uncharge_cgroup;
6857
6858 /*
6859 * Check enough hugepages are available for the reservation.
6860 * Hand the pages back to the subpool if there are not
6861 */
6862 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6863 goto out_put_pages;
6864
6865 /*
6866 * Account for the reservations made. Shared mappings record regions
6867 * that have reservations as they are shared by multiple VMAs.
6868 * When the last VMA disappears, the region map says how much
6869 * the reservation was and the page cache tells how much of
6870 * the reservation was consumed. Private mappings are per-VMA and
6871 * only the consumed reservations are tracked. When the VMA
6872 * disappears, the original reservation is the VMA size and the
6873 * consumed reservations are stored in the map. Hence, nothing
6874 * else has to be done for private mappings here
6875 */
6876 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6877 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6878
6879 if (unlikely(add < 0)) {
6880 hugetlb_acct_memory(h, -gbl_reserve);
6881 goto out_put_pages;
6882 } else if (unlikely(chg > add)) {
6883 /*
6884 * pages in this range were added to the reserve
6885 * map between region_chg and region_add. This
6886 * indicates a race with alloc_hugetlb_folio. Adjust
6887 * the subpool and reserve counts modified above
6888 * based on the difference.
6889 */
6890 long rsv_adjust;
6891
6892 /*
6893 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6894 * reference to h_cg->css. See comment below for detail.
6895 */
6896 hugetlb_cgroup_uncharge_cgroup_rsvd(
6897 hstate_index(h),
6898 (chg - add) * pages_per_huge_page(h), h_cg);
6899
6900 rsv_adjust = hugepage_subpool_put_pages(spool,
6901 chg - add);
6902 hugetlb_acct_memory(h, -rsv_adjust);
6903 } else if (h_cg) {
6904 /*
6905 * The file_regions will hold their own reference to
6906 * h_cg->css. So we should release the reference held
6907 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6908 * done.
6909 */
6910 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6911 }
6912 }
6913 return true;
6914
6915out_put_pages:
6916 /* put back original number of pages, chg */
6917 (void)hugepage_subpool_put_pages(spool, chg);
6918out_uncharge_cgroup:
6919 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6920 chg * pages_per_huge_page(h), h_cg);
6921out_err:
6922 hugetlb_vma_lock_free(vma);
6923 if (!vma || vma->vm_flags & VM_MAYSHARE)
6924 /* Only call region_abort if the region_chg succeeded but the
6925 * region_add failed or didn't run.
6926 */
6927 if (chg >= 0 && add < 0)
6928 region_abort(resv_map, from, to, regions_needed);
6929 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6930 kref_put(&resv_map->refs, resv_map_release);
6931 return false;
6932}
6933
6934long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6935 long freed)
6936{
6937 struct hstate *h = hstate_inode(inode);
6938 struct resv_map *resv_map = inode_resv_map(inode);
6939 long chg = 0;
6940 struct hugepage_subpool *spool = subpool_inode(inode);
6941 long gbl_reserve;
6942
6943 /*
6944 * Since this routine can be called in the evict inode path for all
6945 * hugetlbfs inodes, resv_map could be NULL.
6946 */
6947 if (resv_map) {
6948 chg = region_del(resv_map, start, end);
6949 /*
6950 * region_del() can fail in the rare case where a region
6951 * must be split and another region descriptor can not be
6952 * allocated. If end == LONG_MAX, it will not fail.
6953 */
6954 if (chg < 0)
6955 return chg;
6956 }
6957
6958 spin_lock(&inode->i_lock);
6959 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6960 spin_unlock(&inode->i_lock);
6961
6962 /*
6963 * If the subpool has a minimum size, the number of global
6964 * reservations to be released may be adjusted.
6965 *
6966 * Note that !resv_map implies freed == 0. So (chg - freed)
6967 * won't go negative.
6968 */
6969 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6970 hugetlb_acct_memory(h, -gbl_reserve);
6971
6972 return 0;
6973}
6974
6975#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6976static unsigned long page_table_shareable(struct vm_area_struct *svma,
6977 struct vm_area_struct *vma,
6978 unsigned long addr, pgoff_t idx)
6979{
6980 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6981 svma->vm_start;
6982 unsigned long sbase = saddr & PUD_MASK;
6983 unsigned long s_end = sbase + PUD_SIZE;
6984
6985 /* Allow segments to share if only one is marked locked */
6986 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6987 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6988
6989 /*
6990 * match the virtual addresses, permission and the alignment of the
6991 * page table page.
6992 *
6993 * Also, vma_lock (vm_private_data) is required for sharing.
6994 */
6995 if (pmd_index(addr) != pmd_index(saddr) ||
6996 vm_flags != svm_flags ||
6997 !range_in_vma(svma, sbase, s_end) ||
6998 !svma->vm_private_data)
6999 return 0;
7000
7001 return saddr;
7002}
7003
7004bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7005{
7006 unsigned long start = addr & PUD_MASK;
7007 unsigned long end = start + PUD_SIZE;
7008
7009#ifdef CONFIG_USERFAULTFD
7010 if (uffd_disable_huge_pmd_share(vma))
7011 return false;
7012#endif
7013 /*
7014 * check on proper vm_flags and page table alignment
7015 */
7016 if (!(vma->vm_flags & VM_MAYSHARE))
7017 return false;
7018 if (!vma->vm_private_data) /* vma lock required for sharing */
7019 return false;
7020 if (!range_in_vma(vma, start, end))
7021 return false;
7022 return true;
7023}
7024
7025/*
7026 * Determine if start,end range within vma could be mapped by shared pmd.
7027 * If yes, adjust start and end to cover range associated with possible
7028 * shared pmd mappings.
7029 */
7030void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7031 unsigned long *start, unsigned long *end)
7032{
7033 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7034 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7035
7036 /*
7037 * vma needs to span at least one aligned PUD size, and the range
7038 * must be at least partially within in.
7039 */
7040 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7041 (*end <= v_start) || (*start >= v_end))
7042 return;
7043
7044 /* Extend the range to be PUD aligned for a worst case scenario */
7045 if (*start > v_start)
7046 *start = ALIGN_DOWN(*start, PUD_SIZE);
7047
7048 if (*end < v_end)
7049 *end = ALIGN(*end, PUD_SIZE);
7050}
7051
7052/*
7053 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7054 * and returns the corresponding pte. While this is not necessary for the
7055 * !shared pmd case because we can allocate the pmd later as well, it makes the
7056 * code much cleaner. pmd allocation is essential for the shared case because
7057 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7058 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7059 * bad pmd for sharing.
7060 */
7061pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7062 unsigned long addr, pud_t *pud)
7063{
7064 struct address_space *mapping = vma->vm_file->f_mapping;
7065 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7066 vma->vm_pgoff;
7067 struct vm_area_struct *svma;
7068 unsigned long saddr;
7069 pte_t *spte = NULL;
7070 pte_t *pte;
7071 spinlock_t *ptl;
7072
7073 i_mmap_lock_read(mapping);
7074 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7075 if (svma == vma)
7076 continue;
7077
7078 saddr = page_table_shareable(svma, vma, addr, idx);
7079 if (saddr) {
7080 spte = hugetlb_walk(svma, saddr,
7081 vma_mmu_pagesize(svma));
7082 if (spte) {
7083 get_page(virt_to_page(spte));
7084 break;
7085 }
7086 }
7087 }
7088
7089 if (!spte)
7090 goto out;
7091
7092 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7093 if (pud_none(*pud)) {
7094 pud_populate(mm, pud,
7095 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7096 mm_inc_nr_pmds(mm);
7097 } else {
7098 put_page(virt_to_page(spte));
7099 }
7100 spin_unlock(ptl);
7101out:
7102 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7103 i_mmap_unlock_read(mapping);
7104 return pte;
7105}
7106
7107/*
7108 * unmap huge page backed by shared pte.
7109 *
7110 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7111 * indicated by page_count > 1, unmap is achieved by clearing pud and
7112 * decrementing the ref count. If count == 1, the pte page is not shared.
7113 *
7114 * Called with page table lock held.
7115 *
7116 * returns: 1 successfully unmapped a shared pte page
7117 * 0 the underlying pte page is not shared, or it is the last user
7118 */
7119int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7120 unsigned long addr, pte_t *ptep)
7121{
7122 pgd_t *pgd = pgd_offset(mm, addr);
7123 p4d_t *p4d = p4d_offset(pgd, addr);
7124 pud_t *pud = pud_offset(p4d, addr);
7125
7126 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7127 hugetlb_vma_assert_locked(vma);
7128 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7129 if (page_count(virt_to_page(ptep)) == 1)
7130 return 0;
7131
7132 pud_clear(pud);
7133 put_page(virt_to_page(ptep));
7134 mm_dec_nr_pmds(mm);
7135 return 1;
7136}
7137
7138#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7139
7140pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7141 unsigned long addr, pud_t *pud)
7142{
7143 return NULL;
7144}
7145
7146int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7147 unsigned long addr, pte_t *ptep)
7148{
7149 return 0;
7150}
7151
7152void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7153 unsigned long *start, unsigned long *end)
7154{
7155}
7156
7157bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7158{
7159 return false;
7160}
7161#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7162
7163#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7164pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7165 unsigned long addr, unsigned long sz)
7166{
7167 pgd_t *pgd;
7168 p4d_t *p4d;
7169 pud_t *pud;
7170 pte_t *pte = NULL;
7171
7172 pgd = pgd_offset(mm, addr);
7173 p4d = p4d_alloc(mm, pgd, addr);
7174 if (!p4d)
7175 return NULL;
7176 pud = pud_alloc(mm, p4d, addr);
7177 if (pud) {
7178 if (sz == PUD_SIZE) {
7179 pte = (pte_t *)pud;
7180 } else {
7181 BUG_ON(sz != PMD_SIZE);
7182 if (want_pmd_share(vma, addr) && pud_none(*pud))
7183 pte = huge_pmd_share(mm, vma, addr, pud);
7184 else
7185 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7186 }
7187 }
7188 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7189
7190 return pte;
7191}
7192
7193/*
7194 * huge_pte_offset() - Walk the page table to resolve the hugepage
7195 * entry at address @addr
7196 *
7197 * Return: Pointer to page table entry (PUD or PMD) for
7198 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7199 * size @sz doesn't match the hugepage size at this level of the page
7200 * table.
7201 */
7202pte_t *huge_pte_offset(struct mm_struct *mm,
7203 unsigned long addr, unsigned long sz)
7204{
7205 pgd_t *pgd;
7206 p4d_t *p4d;
7207 pud_t *pud;
7208 pmd_t *pmd;
7209
7210 pgd = pgd_offset(mm, addr);
7211 if (!pgd_present(*pgd))
7212 return NULL;
7213 p4d = p4d_offset(pgd, addr);
7214 if (!p4d_present(*p4d))
7215 return NULL;
7216
7217 pud = pud_offset(p4d, addr);
7218 if (sz == PUD_SIZE)
7219 /* must be pud huge, non-present or none */
7220 return (pte_t *)pud;
7221 if (!pud_present(*pud))
7222 return NULL;
7223 /* must have a valid entry and size to go further */
7224
7225 pmd = pmd_offset(pud, addr);
7226 /* must be pmd huge, non-present or none */
7227 return (pte_t *)pmd;
7228}
7229
7230/*
7231 * Return a mask that can be used to update an address to the last huge
7232 * page in a page table page mapping size. Used to skip non-present
7233 * page table entries when linearly scanning address ranges. Architectures
7234 * with unique huge page to page table relationships can define their own
7235 * version of this routine.
7236 */
7237unsigned long hugetlb_mask_last_page(struct hstate *h)
7238{
7239 unsigned long hp_size = huge_page_size(h);
7240
7241 if (hp_size == PUD_SIZE)
7242 return P4D_SIZE - PUD_SIZE;
7243 else if (hp_size == PMD_SIZE)
7244 return PUD_SIZE - PMD_SIZE;
7245 else
7246 return 0UL;
7247}
7248
7249#else
7250
7251/* See description above. Architectures can provide their own version. */
7252__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7253{
7254#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7255 if (huge_page_size(h) == PMD_SIZE)
7256 return PUD_SIZE - PMD_SIZE;
7257#endif
7258 return 0UL;
7259}
7260
7261#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7262
7263/*
7264 * These functions are overwritable if your architecture needs its own
7265 * behavior.
7266 */
7267bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7268{
7269 bool ret = true;
7270
7271 spin_lock_irq(&hugetlb_lock);
7272 if (!folio_test_hugetlb(folio) ||
7273 !folio_test_hugetlb_migratable(folio) ||
7274 !folio_try_get(folio)) {
7275 ret = false;
7276 goto unlock;
7277 }
7278 folio_clear_hugetlb_migratable(folio);
7279 list_move_tail(&folio->lru, list);
7280unlock:
7281 spin_unlock_irq(&hugetlb_lock);
7282 return ret;
7283}
7284
7285int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7286{
7287 int ret = 0;
7288
7289 *hugetlb = false;
7290 spin_lock_irq(&hugetlb_lock);
7291 if (folio_test_hugetlb(folio)) {
7292 *hugetlb = true;
7293 if (folio_test_hugetlb_freed(folio))
7294 ret = 0;
7295 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7296 ret = folio_try_get(folio);
7297 else
7298 ret = -EBUSY;
7299 }
7300 spin_unlock_irq(&hugetlb_lock);
7301 return ret;
7302}
7303
7304int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7305 bool *migratable_cleared)
7306{
7307 int ret;
7308
7309 spin_lock_irq(&hugetlb_lock);
7310 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7311 spin_unlock_irq(&hugetlb_lock);
7312 return ret;
7313}
7314
7315void folio_putback_active_hugetlb(struct folio *folio)
7316{
7317 spin_lock_irq(&hugetlb_lock);
7318 folio_set_hugetlb_migratable(folio);
7319 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7320 spin_unlock_irq(&hugetlb_lock);
7321 folio_put(folio);
7322}
7323
7324void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7325{
7326 struct hstate *h = folio_hstate(old_folio);
7327
7328 hugetlb_cgroup_migrate(old_folio, new_folio);
7329 set_page_owner_migrate_reason(&new_folio->page, reason);
7330
7331 /*
7332 * transfer temporary state of the new hugetlb folio. This is
7333 * reverse to other transitions because the newpage is going to
7334 * be final while the old one will be freed so it takes over
7335 * the temporary status.
7336 *
7337 * Also note that we have to transfer the per-node surplus state
7338 * here as well otherwise the global surplus count will not match
7339 * the per-node's.
7340 */
7341 if (folio_test_hugetlb_temporary(new_folio)) {
7342 int old_nid = folio_nid(old_folio);
7343 int new_nid = folio_nid(new_folio);
7344
7345 folio_set_hugetlb_temporary(old_folio);
7346 folio_clear_hugetlb_temporary(new_folio);
7347
7348
7349 /*
7350 * There is no need to transfer the per-node surplus state
7351 * when we do not cross the node.
7352 */
7353 if (new_nid == old_nid)
7354 return;
7355 spin_lock_irq(&hugetlb_lock);
7356 if (h->surplus_huge_pages_node[old_nid]) {
7357 h->surplus_huge_pages_node[old_nid]--;
7358 h->surplus_huge_pages_node[new_nid]++;
7359 }
7360 spin_unlock_irq(&hugetlb_lock);
7361 }
7362}
7363
7364static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7365 unsigned long start,
7366 unsigned long end)
7367{
7368 struct hstate *h = hstate_vma(vma);
7369 unsigned long sz = huge_page_size(h);
7370 struct mm_struct *mm = vma->vm_mm;
7371 struct mmu_notifier_range range;
7372 unsigned long address;
7373 spinlock_t *ptl;
7374 pte_t *ptep;
7375
7376 if (!(vma->vm_flags & VM_MAYSHARE))
7377 return;
7378
7379 if (start >= end)
7380 return;
7381
7382 flush_cache_range(vma, start, end);
7383 /*
7384 * No need to call adjust_range_if_pmd_sharing_possible(), because
7385 * we have already done the PUD_SIZE alignment.
7386 */
7387 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7388 start, end);
7389 mmu_notifier_invalidate_range_start(&range);
7390 hugetlb_vma_lock_write(vma);
7391 i_mmap_lock_write(vma->vm_file->f_mapping);
7392 for (address = start; address < end; address += PUD_SIZE) {
7393 ptep = hugetlb_walk(vma, address, sz);
7394 if (!ptep)
7395 continue;
7396 ptl = huge_pte_lock(h, mm, ptep);
7397 huge_pmd_unshare(mm, vma, address, ptep);
7398 spin_unlock(ptl);
7399 }
7400 flush_hugetlb_tlb_range(vma, start, end);
7401 i_mmap_unlock_write(vma->vm_file->f_mapping);
7402 hugetlb_vma_unlock_write(vma);
7403 /*
7404 * No need to call mmu_notifier_invalidate_range(), see
7405 * Documentation/mm/mmu_notifier.rst.
7406 */
7407 mmu_notifier_invalidate_range_end(&range);
7408}
7409
7410/*
7411 * This function will unconditionally remove all the shared pmd pgtable entries
7412 * within the specific vma for a hugetlbfs memory range.
7413 */
7414void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7415{
7416 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7417 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7418}
7419
7420#ifdef CONFIG_CMA
7421static bool cma_reserve_called __initdata;
7422
7423static int __init cmdline_parse_hugetlb_cma(char *p)
7424{
7425 int nid, count = 0;
7426 unsigned long tmp;
7427 char *s = p;
7428
7429 while (*s) {
7430 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7431 break;
7432
7433 if (s[count] == ':') {
7434 if (tmp >= MAX_NUMNODES)
7435 break;
7436 nid = array_index_nospec(tmp, MAX_NUMNODES);
7437
7438 s += count + 1;
7439 tmp = memparse(s, &s);
7440 hugetlb_cma_size_in_node[nid] = tmp;
7441 hugetlb_cma_size += tmp;
7442
7443 /*
7444 * Skip the separator if have one, otherwise
7445 * break the parsing.
7446 */
7447 if (*s == ',')
7448 s++;
7449 else
7450 break;
7451 } else {
7452 hugetlb_cma_size = memparse(p, &p);
7453 break;
7454 }
7455 }
7456
7457 return 0;
7458}
7459
7460early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7461
7462void __init hugetlb_cma_reserve(int order)
7463{
7464 unsigned long size, reserved, per_node;
7465 bool node_specific_cma_alloc = false;
7466 int nid;
7467
7468 cma_reserve_called = true;
7469
7470 if (!hugetlb_cma_size)
7471 return;
7472
7473 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7474 if (hugetlb_cma_size_in_node[nid] == 0)
7475 continue;
7476
7477 if (!node_online(nid)) {
7478 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7479 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7480 hugetlb_cma_size_in_node[nid] = 0;
7481 continue;
7482 }
7483
7484 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7485 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7486 nid, (PAGE_SIZE << order) / SZ_1M);
7487 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7488 hugetlb_cma_size_in_node[nid] = 0;
7489 } else {
7490 node_specific_cma_alloc = true;
7491 }
7492 }
7493
7494 /* Validate the CMA size again in case some invalid nodes specified. */
7495 if (!hugetlb_cma_size)
7496 return;
7497
7498 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7499 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7500 (PAGE_SIZE << order) / SZ_1M);
7501 hugetlb_cma_size = 0;
7502 return;
7503 }
7504
7505 if (!node_specific_cma_alloc) {
7506 /*
7507 * If 3 GB area is requested on a machine with 4 numa nodes,
7508 * let's allocate 1 GB on first three nodes and ignore the last one.
7509 */
7510 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7511 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7512 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7513 }
7514
7515 reserved = 0;
7516 for_each_online_node(nid) {
7517 int res;
7518 char name[CMA_MAX_NAME];
7519
7520 if (node_specific_cma_alloc) {
7521 if (hugetlb_cma_size_in_node[nid] == 0)
7522 continue;
7523
7524 size = hugetlb_cma_size_in_node[nid];
7525 } else {
7526 size = min(per_node, hugetlb_cma_size - reserved);
7527 }
7528
7529 size = round_up(size, PAGE_SIZE << order);
7530
7531 snprintf(name, sizeof(name), "hugetlb%d", nid);
7532 /*
7533 * Note that 'order per bit' is based on smallest size that
7534 * may be returned to CMA allocator in the case of
7535 * huge page demotion.
7536 */
7537 res = cma_declare_contiguous_nid(0, size, 0,
7538 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7539 0, false, name,
7540 &hugetlb_cma[nid], nid);
7541 if (res) {
7542 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7543 res, nid);
7544 continue;
7545 }
7546
7547 reserved += size;
7548 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7549 size / SZ_1M, nid);
7550
7551 if (reserved >= hugetlb_cma_size)
7552 break;
7553 }
7554
7555 if (!reserved)
7556 /*
7557 * hugetlb_cma_size is used to determine if allocations from
7558 * cma are possible. Set to zero if no cma regions are set up.
7559 */
7560 hugetlb_cma_size = 0;
7561}
7562
7563static void __init hugetlb_cma_check(void)
7564{
7565 if (!hugetlb_cma_size || cma_reserve_called)
7566 return;
7567
7568 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7569}
7570
7571#endif /* CONFIG_CMA */