at v6.3 81 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_USB_H 3#define __LINUX_USB_H 4 5#include <linux/mod_devicetable.h> 6#include <linux/usb/ch9.h> 7 8#define USB_MAJOR 180 9#define USB_DEVICE_MAJOR 189 10 11 12#ifdef __KERNEL__ 13 14#include <linux/errno.h> /* for -ENODEV */ 15#include <linux/delay.h> /* for mdelay() */ 16#include <linux/interrupt.h> /* for in_interrupt() */ 17#include <linux/list.h> /* for struct list_head */ 18#include <linux/kref.h> /* for struct kref */ 19#include <linux/device.h> /* for struct device */ 20#include <linux/fs.h> /* for struct file_operations */ 21#include <linux/completion.h> /* for struct completion */ 22#include <linux/sched.h> /* for current && schedule_timeout */ 23#include <linux/mutex.h> /* for struct mutex */ 24#include <linux/pm_runtime.h> /* for runtime PM */ 25 26struct usb_device; 27struct usb_driver; 28struct wusb_dev; 29 30/*-------------------------------------------------------------------------*/ 31 32/* 33 * Host-side wrappers for standard USB descriptors ... these are parsed 34 * from the data provided by devices. Parsing turns them from a flat 35 * sequence of descriptors into a hierarchy: 36 * 37 * - devices have one (usually) or more configs; 38 * - configs have one (often) or more interfaces; 39 * - interfaces have one (usually) or more settings; 40 * - each interface setting has zero or (usually) more endpoints. 41 * - a SuperSpeed endpoint has a companion descriptor 42 * 43 * And there might be other descriptors mixed in with those. 44 * 45 * Devices may also have class-specific or vendor-specific descriptors. 46 */ 47 48struct ep_device; 49 50/** 51 * struct usb_host_endpoint - host-side endpoint descriptor and queue 52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 55 * @urb_list: urbs queued to this endpoint; maintained by usbcore 56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 57 * with one or more transfer descriptors (TDs) per urb 58 * @ep_dev: ep_device for sysfs info 59 * @extra: descriptors following this endpoint in the configuration 60 * @extralen: how many bytes of "extra" are valid 61 * @enabled: URBs may be submitted to this endpoint 62 * @streams: number of USB-3 streams allocated on the endpoint 63 * 64 * USB requests are always queued to a given endpoint, identified by a 65 * descriptor within an active interface in a given USB configuration. 66 */ 67struct usb_host_endpoint { 68 struct usb_endpoint_descriptor desc; 69 struct usb_ss_ep_comp_descriptor ss_ep_comp; 70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 71 struct list_head urb_list; 72 void *hcpriv; 73 struct ep_device *ep_dev; /* For sysfs info */ 74 75 unsigned char *extra; /* Extra descriptors */ 76 int extralen; 77 int enabled; 78 int streams; 79}; 80 81/* host-side wrapper for one interface setting's parsed descriptors */ 82struct usb_host_interface { 83 struct usb_interface_descriptor desc; 84 85 int extralen; 86 unsigned char *extra; /* Extra descriptors */ 87 88 /* array of desc.bNumEndpoints endpoints associated with this 89 * interface setting. these will be in no particular order. 90 */ 91 struct usb_host_endpoint *endpoint; 92 93 char *string; /* iInterface string, if present */ 94}; 95 96enum usb_interface_condition { 97 USB_INTERFACE_UNBOUND = 0, 98 USB_INTERFACE_BINDING, 99 USB_INTERFACE_BOUND, 100 USB_INTERFACE_UNBINDING, 101}; 102 103int __must_check 104usb_find_common_endpoints(struct usb_host_interface *alt, 105 struct usb_endpoint_descriptor **bulk_in, 106 struct usb_endpoint_descriptor **bulk_out, 107 struct usb_endpoint_descriptor **int_in, 108 struct usb_endpoint_descriptor **int_out); 109 110int __must_check 111usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 112 struct usb_endpoint_descriptor **bulk_in, 113 struct usb_endpoint_descriptor **bulk_out, 114 struct usb_endpoint_descriptor **int_in, 115 struct usb_endpoint_descriptor **int_out); 116 117static inline int __must_check 118usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 119 struct usb_endpoint_descriptor **bulk_in) 120{ 121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 122} 123 124static inline int __must_check 125usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 126 struct usb_endpoint_descriptor **bulk_out) 127{ 128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 129} 130 131static inline int __must_check 132usb_find_int_in_endpoint(struct usb_host_interface *alt, 133 struct usb_endpoint_descriptor **int_in) 134{ 135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 136} 137 138static inline int __must_check 139usb_find_int_out_endpoint(struct usb_host_interface *alt, 140 struct usb_endpoint_descriptor **int_out) 141{ 142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 143} 144 145static inline int __must_check 146usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 147 struct usb_endpoint_descriptor **bulk_in) 148{ 149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 150} 151 152static inline int __must_check 153usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 154 struct usb_endpoint_descriptor **bulk_out) 155{ 156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 157} 158 159static inline int __must_check 160usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 161 struct usb_endpoint_descriptor **int_in) 162{ 163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 164} 165 166static inline int __must_check 167usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 168 struct usb_endpoint_descriptor **int_out) 169{ 170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 171} 172 173/** 174 * struct usb_interface - what usb device drivers talk to 175 * @altsetting: array of interface structures, one for each alternate 176 * setting that may be selected. Each one includes a set of 177 * endpoint configurations. They will be in no particular order. 178 * @cur_altsetting: the current altsetting. 179 * @num_altsetting: number of altsettings defined. 180 * @intf_assoc: interface association descriptor 181 * @minor: the minor number assigned to this interface, if this 182 * interface is bound to a driver that uses the USB major number. 183 * If this interface does not use the USB major, this field should 184 * be unused. The driver should set this value in the probe() 185 * function of the driver, after it has been assigned a minor 186 * number from the USB core by calling usb_register_dev(). 187 * @condition: binding state of the interface: not bound, binding 188 * (in probe()), bound to a driver, or unbinding (in disconnect()) 189 * @sysfs_files_created: sysfs attributes exist 190 * @ep_devs_created: endpoint child pseudo-devices exist 191 * @unregistering: flag set when the interface is being unregistered 192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 193 * capability during autosuspend. 194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 195 * has been deferred. 196 * @needs_binding: flag set when the driver should be re-probed or unbound 197 * following a reset or suspend operation it doesn't support. 198 * @authorized: This allows to (de)authorize individual interfaces instead 199 * a whole device in contrast to the device authorization. 200 * @dev: driver model's view of this device 201 * @usb_dev: if an interface is bound to the USB major, this will point 202 * to the sysfs representation for that device. 203 * @reset_ws: Used for scheduling resets from atomic context. 204 * @resetting_device: USB core reset the device, so use alt setting 0 as 205 * current; needs bandwidth alloc after reset. 206 * 207 * USB device drivers attach to interfaces on a physical device. Each 208 * interface encapsulates a single high level function, such as feeding 209 * an audio stream to a speaker or reporting a change in a volume control. 210 * Many USB devices only have one interface. The protocol used to talk to 211 * an interface's endpoints can be defined in a usb "class" specification, 212 * or by a product's vendor. The (default) control endpoint is part of 213 * every interface, but is never listed among the interface's descriptors. 214 * 215 * The driver that is bound to the interface can use standard driver model 216 * calls such as dev_get_drvdata() on the dev member of this structure. 217 * 218 * Each interface may have alternate settings. The initial configuration 219 * of a device sets altsetting 0, but the device driver can change 220 * that setting using usb_set_interface(). Alternate settings are often 221 * used to control the use of periodic endpoints, such as by having 222 * different endpoints use different amounts of reserved USB bandwidth. 223 * All standards-conformant USB devices that use isochronous endpoints 224 * will use them in non-default settings. 225 * 226 * The USB specification says that alternate setting numbers must run from 227 * 0 to one less than the total number of alternate settings. But some 228 * devices manage to mess this up, and the structures aren't necessarily 229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 230 * look up an alternate setting in the altsetting array based on its number. 231 */ 232struct usb_interface { 233 /* array of alternate settings for this interface, 234 * stored in no particular order */ 235 struct usb_host_interface *altsetting; 236 237 struct usb_host_interface *cur_altsetting; /* the currently 238 * active alternate setting */ 239 unsigned num_altsetting; /* number of alternate settings */ 240 241 /* If there is an interface association descriptor then it will list 242 * the associated interfaces */ 243 struct usb_interface_assoc_descriptor *intf_assoc; 244 245 int minor; /* minor number this interface is 246 * bound to */ 247 enum usb_interface_condition condition; /* state of binding */ 248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 249 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 250 unsigned unregistering:1; /* unregistration is in progress */ 251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 253 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 255 unsigned authorized:1; /* used for interface authorization */ 256 257 struct device dev; /* interface specific device info */ 258 struct device *usb_dev; 259 struct work_struct reset_ws; /* for resets in atomic context */ 260}; 261 262#define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev) 263 264static inline void *usb_get_intfdata(struct usb_interface *intf) 265{ 266 return dev_get_drvdata(&intf->dev); 267} 268 269/** 270 * usb_set_intfdata() - associate driver-specific data with an interface 271 * @intf: USB interface 272 * @data: driver data 273 * 274 * Drivers can use this function in their probe() callbacks to associate 275 * driver-specific data with an interface. 276 * 277 * Note that there is generally no need to clear the driver-data pointer even 278 * if some drivers do so for historical or implementation-specific reasons. 279 */ 280static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 281{ 282 dev_set_drvdata(&intf->dev, data); 283} 284 285struct usb_interface *usb_get_intf(struct usb_interface *intf); 286void usb_put_intf(struct usb_interface *intf); 287 288/* Hard limit */ 289#define USB_MAXENDPOINTS 30 290/* this maximum is arbitrary */ 291#define USB_MAXINTERFACES 32 292#define USB_MAXIADS (USB_MAXINTERFACES/2) 293 294/* 295 * USB Resume Timer: Every Host controller driver should drive the resume 296 * signalling on the bus for the amount of time defined by this macro. 297 * 298 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 299 * 300 * Note that the USB Specification states we should drive resume for *at least* 301 * 20 ms, but it doesn't give an upper bound. This creates two possible 302 * situations which we want to avoid: 303 * 304 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 305 * us to fail USB Electrical Tests, thus failing Certification 306 * 307 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 308 * and while we can argue that's against the USB Specification, we don't have 309 * control over which devices a certification laboratory will be using for 310 * certification. If CertLab uses a device which was tested against Windows and 311 * that happens to have relaxed resume signalling rules, we might fall into 312 * situations where we fail interoperability and electrical tests. 313 * 314 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 315 * should cope with both LPJ calibration errors and devices not following every 316 * detail of the USB Specification. 317 */ 318#define USB_RESUME_TIMEOUT 40 /* ms */ 319 320/** 321 * struct usb_interface_cache - long-term representation of a device interface 322 * @num_altsetting: number of altsettings defined. 323 * @ref: reference counter. 324 * @altsetting: variable-length array of interface structures, one for 325 * each alternate setting that may be selected. Each one includes a 326 * set of endpoint configurations. They will be in no particular order. 327 * 328 * These structures persist for the lifetime of a usb_device, unlike 329 * struct usb_interface (which persists only as long as its configuration 330 * is installed). The altsetting arrays can be accessed through these 331 * structures at any time, permitting comparison of configurations and 332 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 333 */ 334struct usb_interface_cache { 335 unsigned num_altsetting; /* number of alternate settings */ 336 struct kref ref; /* reference counter */ 337 338 /* variable-length array of alternate settings for this interface, 339 * stored in no particular order */ 340 struct usb_host_interface altsetting[]; 341}; 342#define ref_to_usb_interface_cache(r) \ 343 container_of(r, struct usb_interface_cache, ref) 344#define altsetting_to_usb_interface_cache(a) \ 345 container_of(a, struct usb_interface_cache, altsetting[0]) 346 347/** 348 * struct usb_host_config - representation of a device's configuration 349 * @desc: the device's configuration descriptor. 350 * @string: pointer to the cached version of the iConfiguration string, if 351 * present for this configuration. 352 * @intf_assoc: list of any interface association descriptors in this config 353 * @interface: array of pointers to usb_interface structures, one for each 354 * interface in the configuration. The number of interfaces is stored 355 * in desc.bNumInterfaces. These pointers are valid only while the 356 * configuration is active. 357 * @intf_cache: array of pointers to usb_interface_cache structures, one 358 * for each interface in the configuration. These structures exist 359 * for the entire life of the device. 360 * @extra: pointer to buffer containing all extra descriptors associated 361 * with this configuration (those preceding the first interface 362 * descriptor). 363 * @extralen: length of the extra descriptors buffer. 364 * 365 * USB devices may have multiple configurations, but only one can be active 366 * at any time. Each encapsulates a different operational environment; 367 * for example, a dual-speed device would have separate configurations for 368 * full-speed and high-speed operation. The number of configurations 369 * available is stored in the device descriptor as bNumConfigurations. 370 * 371 * A configuration can contain multiple interfaces. Each corresponds to 372 * a different function of the USB device, and all are available whenever 373 * the configuration is active. The USB standard says that interfaces 374 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 375 * of devices get this wrong. In addition, the interface array is not 376 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 377 * look up an interface entry based on its number. 378 * 379 * Device drivers should not attempt to activate configurations. The choice 380 * of which configuration to install is a policy decision based on such 381 * considerations as available power, functionality provided, and the user's 382 * desires (expressed through userspace tools). However, drivers can call 383 * usb_reset_configuration() to reinitialize the current configuration and 384 * all its interfaces. 385 */ 386struct usb_host_config { 387 struct usb_config_descriptor desc; 388 389 char *string; /* iConfiguration string, if present */ 390 391 /* List of any Interface Association Descriptors in this 392 * configuration. */ 393 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 394 395 /* the interfaces associated with this configuration, 396 * stored in no particular order */ 397 struct usb_interface *interface[USB_MAXINTERFACES]; 398 399 /* Interface information available even when this is not the 400 * active configuration */ 401 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 402 403 unsigned char *extra; /* Extra descriptors */ 404 int extralen; 405}; 406 407/* USB2.0 and USB3.0 device BOS descriptor set */ 408struct usb_host_bos { 409 struct usb_bos_descriptor *desc; 410 411 /* wireless cap descriptor is handled by wusb */ 412 struct usb_ext_cap_descriptor *ext_cap; 413 struct usb_ss_cap_descriptor *ss_cap; 414 struct usb_ssp_cap_descriptor *ssp_cap; 415 struct usb_ss_container_id_descriptor *ss_id; 416 struct usb_ptm_cap_descriptor *ptm_cap; 417}; 418 419int __usb_get_extra_descriptor(char *buffer, unsigned size, 420 unsigned char type, void **ptr, size_t min); 421#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 422 __usb_get_extra_descriptor((ifpoint)->extra, \ 423 (ifpoint)->extralen, \ 424 type, (void **)ptr, sizeof(**(ptr))) 425 426/* ----------------------------------------------------------------------- */ 427 428/* USB device number allocation bitmap */ 429struct usb_devmap { 430 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 431}; 432 433/* 434 * Allocated per bus (tree of devices) we have: 435 */ 436struct usb_bus { 437 struct device *controller; /* host side hardware */ 438 struct device *sysdev; /* as seen from firmware or bus */ 439 int busnum; /* Bus number (in order of reg) */ 440 const char *bus_name; /* stable id (PCI slot_name etc) */ 441 u8 uses_pio_for_control; /* 442 * Does the host controller use PIO 443 * for control transfers? 444 */ 445 u8 otg_port; /* 0, or number of OTG/HNP port */ 446 unsigned is_b_host:1; /* true during some HNP roleswitches */ 447 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 448 unsigned no_stop_on_short:1; /* 449 * Quirk: some controllers don't stop 450 * the ep queue on a short transfer 451 * with the URB_SHORT_NOT_OK flag set. 452 */ 453 unsigned no_sg_constraint:1; /* no sg constraint */ 454 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 455 456 int devnum_next; /* Next open device number in 457 * round-robin allocation */ 458 struct mutex devnum_next_mutex; /* devnum_next mutex */ 459 460 struct usb_devmap devmap; /* device address allocation map */ 461 struct usb_device *root_hub; /* Root hub */ 462 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 463 464 int bandwidth_allocated; /* on this bus: how much of the time 465 * reserved for periodic (intr/iso) 466 * requests is used, on average? 467 * Units: microseconds/frame. 468 * Limits: Full/low speed reserve 90%, 469 * while high speed reserves 80%. 470 */ 471 int bandwidth_int_reqs; /* number of Interrupt requests */ 472 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 473 474 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 475 476#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 477 struct mon_bus *mon_bus; /* non-null when associated */ 478 int monitored; /* non-zero when monitored */ 479#endif 480}; 481 482struct usb_dev_state; 483 484/* ----------------------------------------------------------------------- */ 485 486struct usb_tt; 487 488enum usb_port_connect_type { 489 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 490 USB_PORT_CONNECT_TYPE_HOT_PLUG, 491 USB_PORT_CONNECT_TYPE_HARD_WIRED, 492 USB_PORT_NOT_USED, 493}; 494 495/* 496 * USB port quirks. 497 */ 498 499/* For the given port, prefer the old (faster) enumeration scheme. */ 500#define USB_PORT_QUIRK_OLD_SCHEME BIT(0) 501 502/* Decrease TRSTRCY to 10ms during device enumeration. */ 503#define USB_PORT_QUIRK_FAST_ENUM BIT(1) 504 505/* 506 * USB 2.0 Link Power Management (LPM) parameters. 507 */ 508struct usb2_lpm_parameters { 509 /* Best effort service latency indicate how long the host will drive 510 * resume on an exit from L1. 511 */ 512 unsigned int besl; 513 514 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 515 * When the timer counts to zero, the parent hub will initiate a LPM 516 * transition to L1. 517 */ 518 int timeout; 519}; 520 521/* 522 * USB 3.0 Link Power Management (LPM) parameters. 523 * 524 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 525 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 526 * All three are stored in nanoseconds. 527 */ 528struct usb3_lpm_parameters { 529 /* 530 * Maximum exit latency (MEL) for the host to send a packet to the 531 * device (either a Ping for isoc endpoints, or a data packet for 532 * interrupt endpoints), the hubs to decode the packet, and for all hubs 533 * in the path to transition the links to U0. 534 */ 535 unsigned int mel; 536 /* 537 * Maximum exit latency for a device-initiated LPM transition to bring 538 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 539 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 540 */ 541 unsigned int pel; 542 543 /* 544 * The System Exit Latency (SEL) includes PEL, and three other 545 * latencies. After a device initiates a U0 transition, it will take 546 * some time from when the device sends the ERDY to when it will finally 547 * receive the data packet. Basically, SEL should be the worse-case 548 * latency from when a device starts initiating a U0 transition to when 549 * it will get data. 550 */ 551 unsigned int sel; 552 /* 553 * The idle timeout value that is currently programmed into the parent 554 * hub for this device. When the timer counts to zero, the parent hub 555 * will initiate an LPM transition to either U1 or U2. 556 */ 557 int timeout; 558}; 559 560/** 561 * struct usb_device - kernel's representation of a USB device 562 * @devnum: device number; address on a USB bus 563 * @devpath: device ID string for use in messages (e.g., /port/...) 564 * @route: tree topology hex string for use with xHCI 565 * @state: device state: configured, not attached, etc. 566 * @speed: device speed: high/full/low (or error) 567 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support 568 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support 569 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count 570 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 571 * @ttport: device port on that tt hub 572 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 573 * @parent: our hub, unless we're the root 574 * @bus: bus we're part of 575 * @ep0: endpoint 0 data (default control pipe) 576 * @dev: generic device interface 577 * @descriptor: USB device descriptor 578 * @bos: USB device BOS descriptor set 579 * @config: all of the device's configs 580 * @actconfig: the active configuration 581 * @ep_in: array of IN endpoints 582 * @ep_out: array of OUT endpoints 583 * @rawdescriptors: raw descriptors for each config 584 * @bus_mA: Current available from the bus 585 * @portnum: parent port number (origin 1) 586 * @level: number of USB hub ancestors 587 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum 588 * @can_submit: URBs may be submitted 589 * @persist_enabled: USB_PERSIST enabled for this device 590 * @reset_in_progress: the device is being reset 591 * @have_langid: whether string_langid is valid 592 * @authorized: policy has said we can use it; 593 * (user space) policy determines if we authorize this device to be 594 * used or not. By default, wired USB devices are authorized. 595 * WUSB devices are not, until we authorize them from user space. 596 * FIXME -- complete doc 597 * @authenticated: Crypto authentication passed 598 * @wusb: device is Wireless USB 599 * @lpm_capable: device supports LPM 600 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range 601 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 602 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 603 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 604 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 605 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 606 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 607 * @string_langid: language ID for strings 608 * @product: iProduct string, if present (static) 609 * @manufacturer: iManufacturer string, if present (static) 610 * @serial: iSerialNumber string, if present (static) 611 * @filelist: usbfs files that are open to this device 612 * @maxchild: number of ports if hub 613 * @quirks: quirks of the whole device 614 * @urbnum: number of URBs submitted for the whole device 615 * @active_duration: total time device is not suspended 616 * @connect_time: time device was first connected 617 * @do_remote_wakeup: remote wakeup should be enabled 618 * @reset_resume: needs reset instead of resume 619 * @port_is_suspended: the upstream port is suspended (L2 or U3) 620 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 621 * specific data for the device. 622 * @slot_id: Slot ID assigned by xHCI 623 * @removable: Device can be physically removed from this port 624 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 625 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 626 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 627 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 628 * to keep track of the number of functions that require USB 3.0 Link Power 629 * Management to be disabled for this usb_device. This count should only 630 * be manipulated by those functions, with the bandwidth_mutex is held. 631 * @hub_delay: cached value consisting of: 632 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns) 633 * Will be used as wValue for SetIsochDelay requests. 634 * @use_generic_driver: ask driver core to reprobe using the generic driver. 635 * 636 * Notes: 637 * Usbcore drivers should not set usbdev->state directly. Instead use 638 * usb_set_device_state(). 639 */ 640struct usb_device { 641 int devnum; 642 char devpath[16]; 643 u32 route; 644 enum usb_device_state state; 645 enum usb_device_speed speed; 646 unsigned int rx_lanes; 647 unsigned int tx_lanes; 648 enum usb_ssp_rate ssp_rate; 649 650 struct usb_tt *tt; 651 int ttport; 652 653 unsigned int toggle[2]; 654 655 struct usb_device *parent; 656 struct usb_bus *bus; 657 struct usb_host_endpoint ep0; 658 659 struct device dev; 660 661 struct usb_device_descriptor descriptor; 662 struct usb_host_bos *bos; 663 struct usb_host_config *config; 664 665 struct usb_host_config *actconfig; 666 struct usb_host_endpoint *ep_in[16]; 667 struct usb_host_endpoint *ep_out[16]; 668 669 char **rawdescriptors; 670 671 unsigned short bus_mA; 672 u8 portnum; 673 u8 level; 674 u8 devaddr; 675 676 unsigned can_submit:1; 677 unsigned persist_enabled:1; 678 unsigned reset_in_progress:1; 679 unsigned have_langid:1; 680 unsigned authorized:1; 681 unsigned authenticated:1; 682 unsigned wusb:1; 683 unsigned lpm_capable:1; 684 unsigned lpm_devinit_allow:1; 685 unsigned usb2_hw_lpm_capable:1; 686 unsigned usb2_hw_lpm_besl_capable:1; 687 unsigned usb2_hw_lpm_enabled:1; 688 unsigned usb2_hw_lpm_allowed:1; 689 unsigned usb3_lpm_u1_enabled:1; 690 unsigned usb3_lpm_u2_enabled:1; 691 int string_langid; 692 693 /* static strings from the device */ 694 char *product; 695 char *manufacturer; 696 char *serial; 697 698 struct list_head filelist; 699 700 int maxchild; 701 702 u32 quirks; 703 atomic_t urbnum; 704 705 unsigned long active_duration; 706 707#ifdef CONFIG_PM 708 unsigned long connect_time; 709 710 unsigned do_remote_wakeup:1; 711 unsigned reset_resume:1; 712 unsigned port_is_suspended:1; 713#endif 714 struct wusb_dev *wusb_dev; 715 int slot_id; 716 struct usb2_lpm_parameters l1_params; 717 struct usb3_lpm_parameters u1_params; 718 struct usb3_lpm_parameters u2_params; 719 unsigned lpm_disable_count; 720 721 u16 hub_delay; 722 unsigned use_generic_driver:1; 723}; 724 725#define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev) 726 727static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf) 728{ 729 return to_usb_device(intf->dev.parent); 730} 731static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf) 732{ 733 return to_usb_device((const struct device *)intf->dev.parent); 734} 735 736#define interface_to_usbdev(intf) \ 737 _Generic((intf), \ 738 const struct usb_interface *: __intf_to_usbdev_const, \ 739 struct usb_interface *: __intf_to_usbdev)(intf) 740 741extern struct usb_device *usb_get_dev(struct usb_device *dev); 742extern void usb_put_dev(struct usb_device *dev); 743extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 744 int port1); 745 746/** 747 * usb_hub_for_each_child - iterate over all child devices on the hub 748 * @hdev: USB device belonging to the usb hub 749 * @port1: portnum associated with child device 750 * @child: child device pointer 751 */ 752#define usb_hub_for_each_child(hdev, port1, child) \ 753 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 754 port1 <= hdev->maxchild; \ 755 child = usb_hub_find_child(hdev, ++port1)) \ 756 if (!child) continue; else 757 758/* USB device locking */ 759#define usb_lock_device(udev) device_lock(&(udev)->dev) 760#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 761#define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 762#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 763extern int usb_lock_device_for_reset(struct usb_device *udev, 764 const struct usb_interface *iface); 765 766/* USB port reset for device reinitialization */ 767extern int usb_reset_device(struct usb_device *dev); 768extern void usb_queue_reset_device(struct usb_interface *dev); 769 770extern struct device *usb_intf_get_dma_device(struct usb_interface *intf); 771 772#ifdef CONFIG_ACPI 773extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 774 bool enable); 775extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 776extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index); 777#else 778static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 779 bool enable) { return 0; } 780static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 781 { return true; } 782static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index) 783 { return 0; } 784#endif 785 786/* USB autosuspend and autoresume */ 787#ifdef CONFIG_PM 788extern void usb_enable_autosuspend(struct usb_device *udev); 789extern void usb_disable_autosuspend(struct usb_device *udev); 790 791extern int usb_autopm_get_interface(struct usb_interface *intf); 792extern void usb_autopm_put_interface(struct usb_interface *intf); 793extern int usb_autopm_get_interface_async(struct usb_interface *intf); 794extern void usb_autopm_put_interface_async(struct usb_interface *intf); 795extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 796extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 797 798static inline void usb_mark_last_busy(struct usb_device *udev) 799{ 800 pm_runtime_mark_last_busy(&udev->dev); 801} 802 803#else 804 805static inline int usb_enable_autosuspend(struct usb_device *udev) 806{ return 0; } 807static inline int usb_disable_autosuspend(struct usb_device *udev) 808{ return 0; } 809 810static inline int usb_autopm_get_interface(struct usb_interface *intf) 811{ return 0; } 812static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 813{ return 0; } 814 815static inline void usb_autopm_put_interface(struct usb_interface *intf) 816{ } 817static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 818{ } 819static inline void usb_autopm_get_interface_no_resume( 820 struct usb_interface *intf) 821{ } 822static inline void usb_autopm_put_interface_no_suspend( 823 struct usb_interface *intf) 824{ } 825static inline void usb_mark_last_busy(struct usb_device *udev) 826{ } 827#endif 828 829extern int usb_disable_lpm(struct usb_device *udev); 830extern void usb_enable_lpm(struct usb_device *udev); 831/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 832extern int usb_unlocked_disable_lpm(struct usb_device *udev); 833extern void usb_unlocked_enable_lpm(struct usb_device *udev); 834 835extern int usb_disable_ltm(struct usb_device *udev); 836extern void usb_enable_ltm(struct usb_device *udev); 837 838static inline bool usb_device_supports_ltm(struct usb_device *udev) 839{ 840 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 841 return false; 842 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 843} 844 845static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 846{ 847 return udev && udev->bus && udev->bus->no_sg_constraint; 848} 849 850 851/*-------------------------------------------------------------------------*/ 852 853/* for drivers using iso endpoints */ 854extern int usb_get_current_frame_number(struct usb_device *usb_dev); 855 856/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 857extern int usb_alloc_streams(struct usb_interface *interface, 858 struct usb_host_endpoint **eps, unsigned int num_eps, 859 unsigned int num_streams, gfp_t mem_flags); 860 861/* Reverts a group of bulk endpoints back to not using stream IDs. */ 862extern int usb_free_streams(struct usb_interface *interface, 863 struct usb_host_endpoint **eps, unsigned int num_eps, 864 gfp_t mem_flags); 865 866/* used these for multi-interface device registration */ 867extern int usb_driver_claim_interface(struct usb_driver *driver, 868 struct usb_interface *iface, void *data); 869 870/** 871 * usb_interface_claimed - returns true iff an interface is claimed 872 * @iface: the interface being checked 873 * 874 * Return: %true (nonzero) iff the interface is claimed, else %false 875 * (zero). 876 * 877 * Note: 878 * Callers must own the driver model's usb bus readlock. So driver 879 * probe() entries don't need extra locking, but other call contexts 880 * may need to explicitly claim that lock. 881 * 882 */ 883static inline int usb_interface_claimed(struct usb_interface *iface) 884{ 885 return (iface->dev.driver != NULL); 886} 887 888extern void usb_driver_release_interface(struct usb_driver *driver, 889 struct usb_interface *iface); 890const struct usb_device_id *usb_match_id(struct usb_interface *interface, 891 const struct usb_device_id *id); 892extern int usb_match_one_id(struct usb_interface *interface, 893 const struct usb_device_id *id); 894 895extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 896extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 897 int minor); 898extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 899 unsigned ifnum); 900extern struct usb_host_interface *usb_altnum_to_altsetting( 901 const struct usb_interface *intf, unsigned int altnum); 902extern struct usb_host_interface *usb_find_alt_setting( 903 struct usb_host_config *config, 904 unsigned int iface_num, 905 unsigned int alt_num); 906 907/* port claiming functions */ 908int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 909 struct usb_dev_state *owner); 910int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 911 struct usb_dev_state *owner); 912 913/** 914 * usb_make_path - returns stable device path in the usb tree 915 * @dev: the device whose path is being constructed 916 * @buf: where to put the string 917 * @size: how big is "buf"? 918 * 919 * Return: Length of the string (> 0) or negative if size was too small. 920 * 921 * Note: 922 * This identifier is intended to be "stable", reflecting physical paths in 923 * hardware such as physical bus addresses for host controllers or ports on 924 * USB hubs. That makes it stay the same until systems are physically 925 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 926 * controllers. Adding and removing devices, including virtual root hubs 927 * in host controller driver modules, does not change these path identifiers; 928 * neither does rebooting or re-enumerating. These are more useful identifiers 929 * than changeable ("unstable") ones like bus numbers or device addresses. 930 * 931 * With a partial exception for devices connected to USB 2.0 root hubs, these 932 * identifiers are also predictable. So long as the device tree isn't changed, 933 * plugging any USB device into a given hub port always gives it the same path. 934 * Because of the use of "companion" controllers, devices connected to ports on 935 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 936 * high speed, and a different one if they are full or low speed. 937 */ 938static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 939{ 940 int actual; 941 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 942 dev->devpath); 943 return (actual >= (int)size) ? -1 : actual; 944} 945 946/*-------------------------------------------------------------------------*/ 947 948#define USB_DEVICE_ID_MATCH_DEVICE \ 949 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 950#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 951 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 952#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 953 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 954#define USB_DEVICE_ID_MATCH_DEV_INFO \ 955 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 956 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 957 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 958#define USB_DEVICE_ID_MATCH_INT_INFO \ 959 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 960 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 961 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 962 963/** 964 * USB_DEVICE - macro used to describe a specific usb device 965 * @vend: the 16 bit USB Vendor ID 966 * @prod: the 16 bit USB Product ID 967 * 968 * This macro is used to create a struct usb_device_id that matches a 969 * specific device. 970 */ 971#define USB_DEVICE(vend, prod) \ 972 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 973 .idVendor = (vend), \ 974 .idProduct = (prod) 975/** 976 * USB_DEVICE_VER - describe a specific usb device with a version range 977 * @vend: the 16 bit USB Vendor ID 978 * @prod: the 16 bit USB Product ID 979 * @lo: the bcdDevice_lo value 980 * @hi: the bcdDevice_hi value 981 * 982 * This macro is used to create a struct usb_device_id that matches a 983 * specific device, with a version range. 984 */ 985#define USB_DEVICE_VER(vend, prod, lo, hi) \ 986 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 987 .idVendor = (vend), \ 988 .idProduct = (prod), \ 989 .bcdDevice_lo = (lo), \ 990 .bcdDevice_hi = (hi) 991 992/** 993 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 994 * @vend: the 16 bit USB Vendor ID 995 * @prod: the 16 bit USB Product ID 996 * @cl: bInterfaceClass value 997 * 998 * This macro is used to create a struct usb_device_id that matches a 999 * specific interface class of devices. 1000 */ 1001#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 1002 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1003 USB_DEVICE_ID_MATCH_INT_CLASS, \ 1004 .idVendor = (vend), \ 1005 .idProduct = (prod), \ 1006 .bInterfaceClass = (cl) 1007 1008/** 1009 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 1010 * @vend: the 16 bit USB Vendor ID 1011 * @prod: the 16 bit USB Product ID 1012 * @pr: bInterfaceProtocol value 1013 * 1014 * This macro is used to create a struct usb_device_id that matches a 1015 * specific interface protocol of devices. 1016 */ 1017#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 1018 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1019 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 1020 .idVendor = (vend), \ 1021 .idProduct = (prod), \ 1022 .bInterfaceProtocol = (pr) 1023 1024/** 1025 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 1026 * @vend: the 16 bit USB Vendor ID 1027 * @prod: the 16 bit USB Product ID 1028 * @num: bInterfaceNumber value 1029 * 1030 * This macro is used to create a struct usb_device_id that matches a 1031 * specific interface number of devices. 1032 */ 1033#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 1034 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1035 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 1036 .idVendor = (vend), \ 1037 .idProduct = (prod), \ 1038 .bInterfaceNumber = (num) 1039 1040/** 1041 * USB_DEVICE_INFO - macro used to describe a class of usb devices 1042 * @cl: bDeviceClass value 1043 * @sc: bDeviceSubClass value 1044 * @pr: bDeviceProtocol value 1045 * 1046 * This macro is used to create a struct usb_device_id that matches a 1047 * specific class of devices. 1048 */ 1049#define USB_DEVICE_INFO(cl, sc, pr) \ 1050 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1051 .bDeviceClass = (cl), \ 1052 .bDeviceSubClass = (sc), \ 1053 .bDeviceProtocol = (pr) 1054 1055/** 1056 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1057 * @cl: bInterfaceClass value 1058 * @sc: bInterfaceSubClass value 1059 * @pr: bInterfaceProtocol value 1060 * 1061 * This macro is used to create a struct usb_device_id that matches a 1062 * specific class of interfaces. 1063 */ 1064#define USB_INTERFACE_INFO(cl, sc, pr) \ 1065 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1066 .bInterfaceClass = (cl), \ 1067 .bInterfaceSubClass = (sc), \ 1068 .bInterfaceProtocol = (pr) 1069 1070/** 1071 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1072 * @vend: the 16 bit USB Vendor ID 1073 * @prod: the 16 bit USB Product ID 1074 * @cl: bInterfaceClass value 1075 * @sc: bInterfaceSubClass value 1076 * @pr: bInterfaceProtocol value 1077 * 1078 * This macro is used to create a struct usb_device_id that matches a 1079 * specific device with a specific class of interfaces. 1080 * 1081 * This is especially useful when explicitly matching devices that have 1082 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1083 */ 1084#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1085 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1086 | USB_DEVICE_ID_MATCH_DEVICE, \ 1087 .idVendor = (vend), \ 1088 .idProduct = (prod), \ 1089 .bInterfaceClass = (cl), \ 1090 .bInterfaceSubClass = (sc), \ 1091 .bInterfaceProtocol = (pr) 1092 1093/** 1094 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1095 * @vend: the 16 bit USB Vendor ID 1096 * @cl: bInterfaceClass value 1097 * @sc: bInterfaceSubClass value 1098 * @pr: bInterfaceProtocol value 1099 * 1100 * This macro is used to create a struct usb_device_id that matches a 1101 * specific vendor with a specific class of interfaces. 1102 * 1103 * This is especially useful when explicitly matching devices that have 1104 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1105 */ 1106#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1107 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1108 | USB_DEVICE_ID_MATCH_VENDOR, \ 1109 .idVendor = (vend), \ 1110 .bInterfaceClass = (cl), \ 1111 .bInterfaceSubClass = (sc), \ 1112 .bInterfaceProtocol = (pr) 1113 1114/* ----------------------------------------------------------------------- */ 1115 1116/* Stuff for dynamic usb ids */ 1117struct usb_dynids { 1118 spinlock_t lock; 1119 struct list_head list; 1120}; 1121 1122struct usb_dynid { 1123 struct list_head node; 1124 struct usb_device_id id; 1125}; 1126 1127extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1128 const struct usb_device_id *id_table, 1129 struct device_driver *driver, 1130 const char *buf, size_t count); 1131 1132extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1133 1134/** 1135 * struct usbdrv_wrap - wrapper for driver-model structure 1136 * @driver: The driver-model core driver structure. 1137 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1138 */ 1139struct usbdrv_wrap { 1140 struct device_driver driver; 1141 int for_devices; 1142}; 1143 1144/** 1145 * struct usb_driver - identifies USB interface driver to usbcore 1146 * @name: The driver name should be unique among USB drivers, 1147 * and should normally be the same as the module name. 1148 * @probe: Called to see if the driver is willing to manage a particular 1149 * interface on a device. If it is, probe returns zero and uses 1150 * usb_set_intfdata() to associate driver-specific data with the 1151 * interface. It may also use usb_set_interface() to specify the 1152 * appropriate altsetting. If unwilling to manage the interface, 1153 * return -ENODEV, if genuine IO errors occurred, an appropriate 1154 * negative errno value. 1155 * @disconnect: Called when the interface is no longer accessible, usually 1156 * because its device has been (or is being) disconnected or the 1157 * driver module is being unloaded. 1158 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1159 * the "usbfs" filesystem. This lets devices provide ways to 1160 * expose information to user space regardless of where they 1161 * do (or don't) show up otherwise in the filesystem. 1162 * @suspend: Called when the device is going to be suspended by the 1163 * system either from system sleep or runtime suspend context. The 1164 * return value will be ignored in system sleep context, so do NOT 1165 * try to continue using the device if suspend fails in this case. 1166 * Instead, let the resume or reset-resume routine recover from 1167 * the failure. 1168 * @resume: Called when the device is being resumed by the system. 1169 * @reset_resume: Called when the suspended device has been reset instead 1170 * of being resumed. 1171 * @pre_reset: Called by usb_reset_device() when the device is about to be 1172 * reset. This routine must not return until the driver has no active 1173 * URBs for the device, and no more URBs may be submitted until the 1174 * post_reset method is called. 1175 * @post_reset: Called by usb_reset_device() after the device 1176 * has been reset 1177 * @id_table: USB drivers use ID table to support hotplugging. 1178 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1179 * or your driver's probe function will never get called. 1180 * @dev_groups: Attributes attached to the device that will be created once it 1181 * is bound to the driver. 1182 * @dynids: used internally to hold the list of dynamically added device 1183 * ids for this driver. 1184 * @drvwrap: Driver-model core structure wrapper. 1185 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1186 * added to this driver by preventing the sysfs file from being created. 1187 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1188 * for interfaces bound to this driver. 1189 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1190 * endpoints before calling the driver's disconnect method. 1191 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1192 * to initiate lower power link state transitions when an idle timeout 1193 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1194 * 1195 * USB interface drivers must provide a name, probe() and disconnect() 1196 * methods, and an id_table. Other driver fields are optional. 1197 * 1198 * The id_table is used in hotplugging. It holds a set of descriptors, 1199 * and specialized data may be associated with each entry. That table 1200 * is used by both user and kernel mode hotplugging support. 1201 * 1202 * The probe() and disconnect() methods are called in a context where 1203 * they can sleep, but they should avoid abusing the privilege. Most 1204 * work to connect to a device should be done when the device is opened, 1205 * and undone at the last close. The disconnect code needs to address 1206 * concurrency issues with respect to open() and close() methods, as 1207 * well as forcing all pending I/O requests to complete (by unlinking 1208 * them as necessary, and blocking until the unlinks complete). 1209 */ 1210struct usb_driver { 1211 const char *name; 1212 1213 int (*probe) (struct usb_interface *intf, 1214 const struct usb_device_id *id); 1215 1216 void (*disconnect) (struct usb_interface *intf); 1217 1218 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1219 void *buf); 1220 1221 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1222 int (*resume) (struct usb_interface *intf); 1223 int (*reset_resume)(struct usb_interface *intf); 1224 1225 int (*pre_reset)(struct usb_interface *intf); 1226 int (*post_reset)(struct usb_interface *intf); 1227 1228 const struct usb_device_id *id_table; 1229 const struct attribute_group **dev_groups; 1230 1231 struct usb_dynids dynids; 1232 struct usbdrv_wrap drvwrap; 1233 unsigned int no_dynamic_id:1; 1234 unsigned int supports_autosuspend:1; 1235 unsigned int disable_hub_initiated_lpm:1; 1236 unsigned int soft_unbind:1; 1237}; 1238#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1239 1240/** 1241 * struct usb_device_driver - identifies USB device driver to usbcore 1242 * @name: The driver name should be unique among USB drivers, 1243 * and should normally be the same as the module name. 1244 * @match: If set, used for better device/driver matching. 1245 * @probe: Called to see if the driver is willing to manage a particular 1246 * device. If it is, probe returns zero and uses dev_set_drvdata() 1247 * to associate driver-specific data with the device. If unwilling 1248 * to manage the device, return a negative errno value. 1249 * @disconnect: Called when the device is no longer accessible, usually 1250 * because it has been (or is being) disconnected or the driver's 1251 * module is being unloaded. 1252 * @suspend: Called when the device is going to be suspended by the system. 1253 * @resume: Called when the device is being resumed by the system. 1254 * @dev_groups: Attributes attached to the device that will be created once it 1255 * is bound to the driver. 1256 * @drvwrap: Driver-model core structure wrapper. 1257 * @id_table: used with @match() to select better matching driver at 1258 * probe() time. 1259 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1260 * for devices bound to this driver. 1261 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect, 1262 * resume and suspend functions will be called in addition to the driver's 1263 * own, so this part of the setup does not need to be replicated. 1264 * 1265 * USB drivers must provide all the fields listed above except drvwrap, 1266 * match, and id_table. 1267 */ 1268struct usb_device_driver { 1269 const char *name; 1270 1271 bool (*match) (struct usb_device *udev); 1272 int (*probe) (struct usb_device *udev); 1273 void (*disconnect) (struct usb_device *udev); 1274 1275 int (*suspend) (struct usb_device *udev, pm_message_t message); 1276 int (*resume) (struct usb_device *udev, pm_message_t message); 1277 const struct attribute_group **dev_groups; 1278 struct usbdrv_wrap drvwrap; 1279 const struct usb_device_id *id_table; 1280 unsigned int supports_autosuspend:1; 1281 unsigned int generic_subclass:1; 1282}; 1283#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1284 drvwrap.driver) 1285 1286/** 1287 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1288 * @name: the usb class device name for this driver. Will show up in sysfs. 1289 * @devnode: Callback to provide a naming hint for a possible 1290 * device node to create. 1291 * @fops: pointer to the struct file_operations of this driver. 1292 * @minor_base: the start of the minor range for this driver. 1293 * 1294 * This structure is used for the usb_register_dev() and 1295 * usb_deregister_dev() functions, to consolidate a number of the 1296 * parameters used for them. 1297 */ 1298struct usb_class_driver { 1299 char *name; 1300 char *(*devnode)(const struct device *dev, umode_t *mode); 1301 const struct file_operations *fops; 1302 int minor_base; 1303}; 1304 1305/* 1306 * use these in module_init()/module_exit() 1307 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1308 */ 1309extern int usb_register_driver(struct usb_driver *, struct module *, 1310 const char *); 1311 1312/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1313#define usb_register(driver) \ 1314 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1315 1316extern void usb_deregister(struct usb_driver *); 1317 1318/** 1319 * module_usb_driver() - Helper macro for registering a USB driver 1320 * @__usb_driver: usb_driver struct 1321 * 1322 * Helper macro for USB drivers which do not do anything special in module 1323 * init/exit. This eliminates a lot of boilerplate. Each module may only 1324 * use this macro once, and calling it replaces module_init() and module_exit() 1325 */ 1326#define module_usb_driver(__usb_driver) \ 1327 module_driver(__usb_driver, usb_register, \ 1328 usb_deregister) 1329 1330extern int usb_register_device_driver(struct usb_device_driver *, 1331 struct module *); 1332extern void usb_deregister_device_driver(struct usb_device_driver *); 1333 1334extern int usb_register_dev(struct usb_interface *intf, 1335 struct usb_class_driver *class_driver); 1336extern void usb_deregister_dev(struct usb_interface *intf, 1337 struct usb_class_driver *class_driver); 1338 1339extern int usb_disabled(void); 1340 1341/* ----------------------------------------------------------------------- */ 1342 1343/* 1344 * URB support, for asynchronous request completions 1345 */ 1346 1347/* 1348 * urb->transfer_flags: 1349 * 1350 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1351 */ 1352#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1353#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1354 * slot in the schedule */ 1355#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1356#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1357#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1358 * needed */ 1359#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1360 1361/* The following flags are used internally by usbcore and HCDs */ 1362#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1363#define URB_DIR_OUT 0 1364#define URB_DIR_MASK URB_DIR_IN 1365 1366#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1367#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1368#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1369#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1370#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1371#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1372#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1373#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1374 1375struct usb_iso_packet_descriptor { 1376 unsigned int offset; 1377 unsigned int length; /* expected length */ 1378 unsigned int actual_length; 1379 int status; 1380}; 1381 1382struct urb; 1383 1384struct usb_anchor { 1385 struct list_head urb_list; 1386 wait_queue_head_t wait; 1387 spinlock_t lock; 1388 atomic_t suspend_wakeups; 1389 unsigned int poisoned:1; 1390}; 1391 1392static inline void init_usb_anchor(struct usb_anchor *anchor) 1393{ 1394 memset(anchor, 0, sizeof(*anchor)); 1395 INIT_LIST_HEAD(&anchor->urb_list); 1396 init_waitqueue_head(&anchor->wait); 1397 spin_lock_init(&anchor->lock); 1398} 1399 1400typedef void (*usb_complete_t)(struct urb *); 1401 1402/** 1403 * struct urb - USB Request Block 1404 * @urb_list: For use by current owner of the URB. 1405 * @anchor_list: membership in the list of an anchor 1406 * @anchor: to anchor URBs to a common mooring 1407 * @ep: Points to the endpoint's data structure. Will eventually 1408 * replace @pipe. 1409 * @pipe: Holds endpoint number, direction, type, and more. 1410 * Create these values with the eight macros available; 1411 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1412 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1413 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1414 * numbers range from zero to fifteen. Note that "in" endpoint two 1415 * is a different endpoint (and pipe) from "out" endpoint two. 1416 * The current configuration controls the existence, type, and 1417 * maximum packet size of any given endpoint. 1418 * @stream_id: the endpoint's stream ID for bulk streams 1419 * @dev: Identifies the USB device to perform the request. 1420 * @status: This is read in non-iso completion functions to get the 1421 * status of the particular request. ISO requests only use it 1422 * to tell whether the URB was unlinked; detailed status for 1423 * each frame is in the fields of the iso_frame-desc. 1424 * @transfer_flags: A variety of flags may be used to affect how URB 1425 * submission, unlinking, or operation are handled. Different 1426 * kinds of URB can use different flags. 1427 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1428 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1429 * (however, do not leave garbage in transfer_buffer even then). 1430 * This buffer must be suitable for DMA; allocate it with 1431 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1432 * of this buffer will be modified. This buffer is used for the data 1433 * stage of control transfers. 1434 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1435 * the device driver is saying that it provided this DMA address, 1436 * which the host controller driver should use in preference to the 1437 * transfer_buffer. 1438 * @sg: scatter gather buffer list, the buffer size of each element in 1439 * the list (except the last) must be divisible by the endpoint's 1440 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1441 * @num_mapped_sgs: (internal) number of mapped sg entries 1442 * @num_sgs: number of entries in the sg list 1443 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1444 * be broken up into chunks according to the current maximum packet 1445 * size for the endpoint, which is a function of the configuration 1446 * and is encoded in the pipe. When the length is zero, neither 1447 * transfer_buffer nor transfer_dma is used. 1448 * @actual_length: This is read in non-iso completion functions, and 1449 * it tells how many bytes (out of transfer_buffer_length) were 1450 * transferred. It will normally be the same as requested, unless 1451 * either an error was reported or a short read was performed. 1452 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1453 * short reads be reported as errors. 1454 * @setup_packet: Only used for control transfers, this points to eight bytes 1455 * of setup data. Control transfers always start by sending this data 1456 * to the device. Then transfer_buffer is read or written, if needed. 1457 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1458 * this field; setup_packet must point to a valid buffer. 1459 * @start_frame: Returns the initial frame for isochronous transfers. 1460 * @number_of_packets: Lists the number of ISO transfer buffers. 1461 * @interval: Specifies the polling interval for interrupt or isochronous 1462 * transfers. The units are frames (milliseconds) for full and low 1463 * speed devices, and microframes (1/8 millisecond) for highspeed 1464 * and SuperSpeed devices. 1465 * @error_count: Returns the number of ISO transfers that reported errors. 1466 * @context: For use in completion functions. This normally points to 1467 * request-specific driver context. 1468 * @complete: Completion handler. This URB is passed as the parameter to the 1469 * completion function. The completion function may then do what 1470 * it likes with the URB, including resubmitting or freeing it. 1471 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1472 * collect the transfer status for each buffer. 1473 * 1474 * This structure identifies USB transfer requests. URBs must be allocated by 1475 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1476 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1477 * are submitted using usb_submit_urb(), and pending requests may be canceled 1478 * using usb_unlink_urb() or usb_kill_urb(). 1479 * 1480 * Data Transfer Buffers: 1481 * 1482 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1483 * taken from the general page pool. That is provided by transfer_buffer 1484 * (control requests also use setup_packet), and host controller drivers 1485 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1486 * mapping operations can be expensive on some platforms (perhaps using a dma 1487 * bounce buffer or talking to an IOMMU), 1488 * although they're cheap on commodity x86 and ppc hardware. 1489 * 1490 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1491 * which tells the host controller driver that no such mapping is needed for 1492 * the transfer_buffer since 1493 * the device driver is DMA-aware. For example, a device driver might 1494 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1495 * When this transfer flag is provided, host controller drivers will 1496 * attempt to use the dma address found in the transfer_dma 1497 * field rather than determining a dma address themselves. 1498 * 1499 * Note that transfer_buffer must still be set if the controller 1500 * does not support DMA (as indicated by hcd_uses_dma()) and when talking 1501 * to root hub. If you have to transfer between highmem zone and the device 1502 * on such controller, create a bounce buffer or bail out with an error. 1503 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1504 * capable, assign NULL to it, so that usbmon knows not to use the value. 1505 * The setup_packet must always be set, so it cannot be located in highmem. 1506 * 1507 * Initialization: 1508 * 1509 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1510 * zero), and complete fields. All URBs must also initialize 1511 * transfer_buffer and transfer_buffer_length. They may provide the 1512 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1513 * to be treated as errors; that flag is invalid for write requests. 1514 * 1515 * Bulk URBs may 1516 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1517 * should always terminate with a short packet, even if it means adding an 1518 * extra zero length packet. 1519 * 1520 * Control URBs must provide a valid pointer in the setup_packet field. 1521 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1522 * beforehand. 1523 * 1524 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1525 * or, for highspeed devices, 125 microsecond units) 1526 * to poll for transfers. After the URB has been submitted, the interval 1527 * field reflects how the transfer was actually scheduled. 1528 * The polling interval may be more frequent than requested. 1529 * For example, some controllers have a maximum interval of 32 milliseconds, 1530 * while others support intervals of up to 1024 milliseconds. 1531 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1532 * endpoints, as well as high speed interrupt endpoints, the encoding of 1533 * the transfer interval in the endpoint descriptor is logarithmic. 1534 * Device drivers must convert that value to linear units themselves.) 1535 * 1536 * If an isochronous endpoint queue isn't already running, the host 1537 * controller will schedule a new URB to start as soon as bandwidth 1538 * utilization allows. If the queue is running then a new URB will be 1539 * scheduled to start in the first transfer slot following the end of the 1540 * preceding URB, if that slot has not already expired. If the slot has 1541 * expired (which can happen when IRQ delivery is delayed for a long time), 1542 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1543 * is clear then the URB will be scheduled to start in the expired slot, 1544 * implying that some of its packets will not be transferred; if the flag 1545 * is set then the URB will be scheduled in the first unexpired slot, 1546 * breaking the queue's synchronization. Upon URB completion, the 1547 * start_frame field will be set to the (micro)frame number in which the 1548 * transfer was scheduled. Ranges for frame counter values are HC-specific 1549 * and can go from as low as 256 to as high as 65536 frames. 1550 * 1551 * Isochronous URBs have a different data transfer model, in part because 1552 * the quality of service is only "best effort". Callers provide specially 1553 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1554 * at the end. Each such packet is an individual ISO transfer. Isochronous 1555 * URBs are normally queued, submitted by drivers to arrange that 1556 * transfers are at least double buffered, and then explicitly resubmitted 1557 * in completion handlers, so 1558 * that data (such as audio or video) streams at as constant a rate as the 1559 * host controller scheduler can support. 1560 * 1561 * Completion Callbacks: 1562 * 1563 * The completion callback is made in_interrupt(), and one of the first 1564 * things that a completion handler should do is check the status field. 1565 * The status field is provided for all URBs. It is used to report 1566 * unlinked URBs, and status for all non-ISO transfers. It should not 1567 * be examined before the URB is returned to the completion handler. 1568 * 1569 * The context field is normally used to link URBs back to the relevant 1570 * driver or request state. 1571 * 1572 * When the completion callback is invoked for non-isochronous URBs, the 1573 * actual_length field tells how many bytes were transferred. This field 1574 * is updated even when the URB terminated with an error or was unlinked. 1575 * 1576 * ISO transfer status is reported in the status and actual_length fields 1577 * of the iso_frame_desc array, and the number of errors is reported in 1578 * error_count. Completion callbacks for ISO transfers will normally 1579 * (re)submit URBs to ensure a constant transfer rate. 1580 * 1581 * Note that even fields marked "public" should not be touched by the driver 1582 * when the urb is owned by the hcd, that is, since the call to 1583 * usb_submit_urb() till the entry into the completion routine. 1584 */ 1585struct urb { 1586 /* private: usb core and host controller only fields in the urb */ 1587 struct kref kref; /* reference count of the URB */ 1588 int unlinked; /* unlink error code */ 1589 void *hcpriv; /* private data for host controller */ 1590 atomic_t use_count; /* concurrent submissions counter */ 1591 atomic_t reject; /* submissions will fail */ 1592 1593 /* public: documented fields in the urb that can be used by drivers */ 1594 struct list_head urb_list; /* list head for use by the urb's 1595 * current owner */ 1596 struct list_head anchor_list; /* the URB may be anchored */ 1597 struct usb_anchor *anchor; 1598 struct usb_device *dev; /* (in) pointer to associated device */ 1599 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1600 unsigned int pipe; /* (in) pipe information */ 1601 unsigned int stream_id; /* (in) stream ID */ 1602 int status; /* (return) non-ISO status */ 1603 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1604 void *transfer_buffer; /* (in) associated data buffer */ 1605 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1606 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1607 int num_mapped_sgs; /* (internal) mapped sg entries */ 1608 int num_sgs; /* (in) number of entries in the sg list */ 1609 u32 transfer_buffer_length; /* (in) data buffer length */ 1610 u32 actual_length; /* (return) actual transfer length */ 1611 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1612 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1613 int start_frame; /* (modify) start frame (ISO) */ 1614 int number_of_packets; /* (in) number of ISO packets */ 1615 int interval; /* (modify) transfer interval 1616 * (INT/ISO) */ 1617 int error_count; /* (return) number of ISO errors */ 1618 void *context; /* (in) context for completion */ 1619 usb_complete_t complete; /* (in) completion routine */ 1620 struct usb_iso_packet_descriptor iso_frame_desc[]; 1621 /* (in) ISO ONLY */ 1622}; 1623 1624/* ----------------------------------------------------------------------- */ 1625 1626/** 1627 * usb_fill_control_urb - initializes a control urb 1628 * @urb: pointer to the urb to initialize. 1629 * @dev: pointer to the struct usb_device for this urb. 1630 * @pipe: the endpoint pipe 1631 * @setup_packet: pointer to the setup_packet buffer. The buffer must be 1632 * suitable for DMA. 1633 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1634 * suitable for DMA. 1635 * @buffer_length: length of the transfer buffer 1636 * @complete_fn: pointer to the usb_complete_t function 1637 * @context: what to set the urb context to. 1638 * 1639 * Initializes a control urb with the proper information needed to submit 1640 * it to a device. 1641 * 1642 * The transfer buffer and the setup_packet buffer will most likely be filled 1643 * or read via DMA. The simplest way to get a buffer that can be DMAed to is 1644 * allocating it via kmalloc() or equivalent, even for very small buffers. 1645 * If the buffers are embedded in a bigger structure, there is a risk that 1646 * the buffer itself, the previous fields and/or the next fields are corrupted 1647 * due to cache incoherencies; or slowed down if they are evicted from the 1648 * cache. For more information, check &struct urb. 1649 * 1650 */ 1651static inline void usb_fill_control_urb(struct urb *urb, 1652 struct usb_device *dev, 1653 unsigned int pipe, 1654 unsigned char *setup_packet, 1655 void *transfer_buffer, 1656 int buffer_length, 1657 usb_complete_t complete_fn, 1658 void *context) 1659{ 1660 urb->dev = dev; 1661 urb->pipe = pipe; 1662 urb->setup_packet = setup_packet; 1663 urb->transfer_buffer = transfer_buffer; 1664 urb->transfer_buffer_length = buffer_length; 1665 urb->complete = complete_fn; 1666 urb->context = context; 1667} 1668 1669/** 1670 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1671 * @urb: pointer to the urb to initialize. 1672 * @dev: pointer to the struct usb_device for this urb. 1673 * @pipe: the endpoint pipe 1674 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1675 * suitable for DMA. 1676 * @buffer_length: length of the transfer buffer 1677 * @complete_fn: pointer to the usb_complete_t function 1678 * @context: what to set the urb context to. 1679 * 1680 * Initializes a bulk urb with the proper information needed to submit it 1681 * to a device. 1682 * 1683 * Refer to usb_fill_control_urb() for a description of the requirements for 1684 * transfer_buffer. 1685 */ 1686static inline void usb_fill_bulk_urb(struct urb *urb, 1687 struct usb_device *dev, 1688 unsigned int pipe, 1689 void *transfer_buffer, 1690 int buffer_length, 1691 usb_complete_t complete_fn, 1692 void *context) 1693{ 1694 urb->dev = dev; 1695 urb->pipe = pipe; 1696 urb->transfer_buffer = transfer_buffer; 1697 urb->transfer_buffer_length = buffer_length; 1698 urb->complete = complete_fn; 1699 urb->context = context; 1700} 1701 1702/** 1703 * usb_fill_int_urb - macro to help initialize a interrupt urb 1704 * @urb: pointer to the urb to initialize. 1705 * @dev: pointer to the struct usb_device for this urb. 1706 * @pipe: the endpoint pipe 1707 * @transfer_buffer: pointer to the transfer buffer. The buffer must be 1708 * suitable for DMA. 1709 * @buffer_length: length of the transfer buffer 1710 * @complete_fn: pointer to the usb_complete_t function 1711 * @context: what to set the urb context to. 1712 * @interval: what to set the urb interval to, encoded like 1713 * the endpoint descriptor's bInterval value. 1714 * 1715 * Initializes a interrupt urb with the proper information needed to submit 1716 * it to a device. 1717 * 1718 * Refer to usb_fill_control_urb() for a description of the requirements for 1719 * transfer_buffer. 1720 * 1721 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1722 * encoding of the endpoint interval, and express polling intervals in 1723 * microframes (eight per millisecond) rather than in frames (one per 1724 * millisecond). 1725 * 1726 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1727 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1728 * through to the host controller, rather than being translated into microframe 1729 * units. 1730 */ 1731static inline void usb_fill_int_urb(struct urb *urb, 1732 struct usb_device *dev, 1733 unsigned int pipe, 1734 void *transfer_buffer, 1735 int buffer_length, 1736 usb_complete_t complete_fn, 1737 void *context, 1738 int interval) 1739{ 1740 urb->dev = dev; 1741 urb->pipe = pipe; 1742 urb->transfer_buffer = transfer_buffer; 1743 urb->transfer_buffer_length = buffer_length; 1744 urb->complete = complete_fn; 1745 urb->context = context; 1746 1747 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1748 /* make sure interval is within allowed range */ 1749 interval = clamp(interval, 1, 16); 1750 1751 urb->interval = 1 << (interval - 1); 1752 } else { 1753 urb->interval = interval; 1754 } 1755 1756 urb->start_frame = -1; 1757} 1758 1759extern void usb_init_urb(struct urb *urb); 1760extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1761extern void usb_free_urb(struct urb *urb); 1762#define usb_put_urb usb_free_urb 1763extern struct urb *usb_get_urb(struct urb *urb); 1764extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1765extern int usb_unlink_urb(struct urb *urb); 1766extern void usb_kill_urb(struct urb *urb); 1767extern void usb_poison_urb(struct urb *urb); 1768extern void usb_unpoison_urb(struct urb *urb); 1769extern void usb_block_urb(struct urb *urb); 1770extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1771extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1772extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1773extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1774extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1775extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1776extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1777extern void usb_unanchor_urb(struct urb *urb); 1778extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1779 unsigned int timeout); 1780extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1781extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1782extern int usb_anchor_empty(struct usb_anchor *anchor); 1783 1784#define usb_unblock_urb usb_unpoison_urb 1785 1786/** 1787 * usb_urb_dir_in - check if an URB describes an IN transfer 1788 * @urb: URB to be checked 1789 * 1790 * Return: 1 if @urb describes an IN transfer (device-to-host), 1791 * otherwise 0. 1792 */ 1793static inline int usb_urb_dir_in(struct urb *urb) 1794{ 1795 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1796} 1797 1798/** 1799 * usb_urb_dir_out - check if an URB describes an OUT transfer 1800 * @urb: URB to be checked 1801 * 1802 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1803 * otherwise 0. 1804 */ 1805static inline int usb_urb_dir_out(struct urb *urb) 1806{ 1807 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1808} 1809 1810int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe); 1811int usb_urb_ep_type_check(const struct urb *urb); 1812 1813void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1814 gfp_t mem_flags, dma_addr_t *dma); 1815void usb_free_coherent(struct usb_device *dev, size_t size, 1816 void *addr, dma_addr_t dma); 1817 1818#if 0 1819struct urb *usb_buffer_map(struct urb *urb); 1820void usb_buffer_dmasync(struct urb *urb); 1821void usb_buffer_unmap(struct urb *urb); 1822#endif 1823 1824struct scatterlist; 1825int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1826 struct scatterlist *sg, int nents); 1827#if 0 1828void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1829 struct scatterlist *sg, int n_hw_ents); 1830#endif 1831void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1832 struct scatterlist *sg, int n_hw_ents); 1833 1834/*-------------------------------------------------------------------* 1835 * SYNCHRONOUS CALL SUPPORT * 1836 *-------------------------------------------------------------------*/ 1837 1838extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1839 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1840 void *data, __u16 size, int timeout); 1841extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1842 void *data, int len, int *actual_length, int timeout); 1843extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1844 void *data, int len, int *actual_length, 1845 int timeout); 1846 1847/* wrappers around usb_control_msg() for the most common standard requests */ 1848int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 1849 __u8 requesttype, __u16 value, __u16 index, 1850 const void *data, __u16 size, int timeout, 1851 gfp_t memflags); 1852int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 1853 __u8 requesttype, __u16 value, __u16 index, 1854 void *data, __u16 size, int timeout, 1855 gfp_t memflags); 1856extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1857 unsigned char descindex, void *buf, int size); 1858extern int usb_get_status(struct usb_device *dev, 1859 int recip, int type, int target, void *data); 1860 1861static inline int usb_get_std_status(struct usb_device *dev, 1862 int recip, int target, void *data) 1863{ 1864 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target, 1865 data); 1866} 1867 1868static inline int usb_get_ptm_status(struct usb_device *dev, void *data) 1869{ 1870 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM, 1871 0, data); 1872} 1873 1874extern int usb_string(struct usb_device *dev, int index, 1875 char *buf, size_t size); 1876extern char *usb_cache_string(struct usb_device *udev, int index); 1877 1878/* wrappers that also update important state inside usbcore */ 1879extern int usb_clear_halt(struct usb_device *dev, int pipe); 1880extern int usb_reset_configuration(struct usb_device *dev); 1881extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1882extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1883 1884/* this request isn't really synchronous, but it belongs with the others */ 1885extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1886 1887/* choose and set configuration for device */ 1888extern int usb_choose_configuration(struct usb_device *udev); 1889extern int usb_set_configuration(struct usb_device *dev, int configuration); 1890 1891/* 1892 * timeouts, in milliseconds, used for sending/receiving control messages 1893 * they typically complete within a few frames (msec) after they're issued 1894 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1895 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1896 */ 1897#define USB_CTRL_GET_TIMEOUT 5000 1898#define USB_CTRL_SET_TIMEOUT 5000 1899 1900 1901/** 1902 * struct usb_sg_request - support for scatter/gather I/O 1903 * @status: zero indicates success, else negative errno 1904 * @bytes: counts bytes transferred. 1905 * 1906 * These requests are initialized using usb_sg_init(), and then are used 1907 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1908 * members of the request object aren't for driver access. 1909 * 1910 * The status and bytecount values are valid only after usb_sg_wait() 1911 * returns. If the status is zero, then the bytecount matches the total 1912 * from the request. 1913 * 1914 * After an error completion, drivers may need to clear a halt condition 1915 * on the endpoint. 1916 */ 1917struct usb_sg_request { 1918 int status; 1919 size_t bytes; 1920 1921 /* private: 1922 * members below are private to usbcore, 1923 * and are not provided for driver access! 1924 */ 1925 spinlock_t lock; 1926 1927 struct usb_device *dev; 1928 int pipe; 1929 1930 int entries; 1931 struct urb **urbs; 1932 1933 int count; 1934 struct completion complete; 1935}; 1936 1937int usb_sg_init( 1938 struct usb_sg_request *io, 1939 struct usb_device *dev, 1940 unsigned pipe, 1941 unsigned period, 1942 struct scatterlist *sg, 1943 int nents, 1944 size_t length, 1945 gfp_t mem_flags 1946); 1947void usb_sg_cancel(struct usb_sg_request *io); 1948void usb_sg_wait(struct usb_sg_request *io); 1949 1950 1951/* ----------------------------------------------------------------------- */ 1952 1953/* 1954 * For various legacy reasons, Linux has a small cookie that's paired with 1955 * a struct usb_device to identify an endpoint queue. Queue characteristics 1956 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1957 * an unsigned int encoded as: 1958 * 1959 * - direction: bit 7 (0 = Host-to-Device [Out], 1960 * 1 = Device-to-Host [In] ... 1961 * like endpoint bEndpointAddress) 1962 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1963 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1964 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1965 * 10 = control, 11 = bulk) 1966 * 1967 * Given the device address and endpoint descriptor, pipes are redundant. 1968 */ 1969 1970/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1971/* (yet ... they're the values used by usbfs) */ 1972#define PIPE_ISOCHRONOUS 0 1973#define PIPE_INTERRUPT 1 1974#define PIPE_CONTROL 2 1975#define PIPE_BULK 3 1976 1977#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1978#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1979 1980#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1981#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1982 1983#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1984#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1985#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1986#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1987#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1988 1989static inline unsigned int __create_pipe(struct usb_device *dev, 1990 unsigned int endpoint) 1991{ 1992 return (dev->devnum << 8) | (endpoint << 15); 1993} 1994 1995/* Create various pipes... */ 1996#define usb_sndctrlpipe(dev, endpoint) \ 1997 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1998#define usb_rcvctrlpipe(dev, endpoint) \ 1999 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2000#define usb_sndisocpipe(dev, endpoint) \ 2001 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 2002#define usb_rcvisocpipe(dev, endpoint) \ 2003 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2004#define usb_sndbulkpipe(dev, endpoint) \ 2005 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 2006#define usb_rcvbulkpipe(dev, endpoint) \ 2007 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2008#define usb_sndintpipe(dev, endpoint) \ 2009 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 2010#define usb_rcvintpipe(dev, endpoint) \ 2011 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 2012 2013static inline struct usb_host_endpoint * 2014usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 2015{ 2016 struct usb_host_endpoint **eps; 2017 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 2018 return eps[usb_pipeendpoint(pipe)]; 2019} 2020 2021static inline u16 usb_maxpacket(struct usb_device *udev, int pipe) 2022{ 2023 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe); 2024 2025 if (!ep) 2026 return 0; 2027 2028 /* NOTE: only 0x07ff bits are for packet size... */ 2029 return usb_endpoint_maxp(&ep->desc); 2030} 2031 2032/* translate USB error codes to codes user space understands */ 2033static inline int usb_translate_errors(int error_code) 2034{ 2035 switch (error_code) { 2036 case 0: 2037 case -ENOMEM: 2038 case -ENODEV: 2039 case -EOPNOTSUPP: 2040 return error_code; 2041 default: 2042 return -EIO; 2043 } 2044} 2045 2046/* Events from the usb core */ 2047#define USB_DEVICE_ADD 0x0001 2048#define USB_DEVICE_REMOVE 0x0002 2049#define USB_BUS_ADD 0x0003 2050#define USB_BUS_REMOVE 0x0004 2051extern void usb_register_notify(struct notifier_block *nb); 2052extern void usb_unregister_notify(struct notifier_block *nb); 2053 2054/* debugfs stuff */ 2055extern struct dentry *usb_debug_root; 2056 2057/* LED triggers */ 2058enum usb_led_event { 2059 USB_LED_EVENT_HOST = 0, 2060 USB_LED_EVENT_GADGET = 1, 2061}; 2062 2063#ifdef CONFIG_USB_LED_TRIG 2064extern void usb_led_activity(enum usb_led_event ev); 2065#else 2066static inline void usb_led_activity(enum usb_led_event ev) {} 2067#endif 2068 2069#endif /* __KERNEL__ */ 2070 2071#endif