at v6.3 26 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 4 * 5 * (C) SGI 2006, Christoph Lameter 6 * Cleaned up and restructured to ease the addition of alternative 7 * implementations of SLAB allocators. 8 * (C) Linux Foundation 2008-2013 9 * Unified interface for all slab allocators 10 */ 11 12#ifndef _LINUX_SLAB_H 13#define _LINUX_SLAB_H 14 15#include <linux/gfp.h> 16#include <linux/overflow.h> 17#include <linux/types.h> 18#include <linux/workqueue.h> 19#include <linux/percpu-refcount.h> 20 21 22/* 23 * Flags to pass to kmem_cache_create(). 24 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 25 */ 26/* DEBUG: Perform (expensive) checks on alloc/free */ 27#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U) 28/* DEBUG: Red zone objs in a cache */ 29#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U) 30/* DEBUG: Poison objects */ 31#define SLAB_POISON ((slab_flags_t __force)0x00000800U) 32/* Indicate a kmalloc slab */ 33#define SLAB_KMALLOC ((slab_flags_t __force)0x00001000U) 34/* Align objs on cache lines */ 35#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U) 36/* Use GFP_DMA memory */ 37#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U) 38/* Use GFP_DMA32 memory */ 39#define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U) 40/* DEBUG: Store the last owner for bug hunting */ 41#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U) 42/* Panic if kmem_cache_create() fails */ 43#define SLAB_PANIC ((slab_flags_t __force)0x00040000U) 44/* 45 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! 46 * 47 * This delays freeing the SLAB page by a grace period, it does _NOT_ 48 * delay object freeing. This means that if you do kmem_cache_free() 49 * that memory location is free to be reused at any time. Thus it may 50 * be possible to see another object there in the same RCU grace period. 51 * 52 * This feature only ensures the memory location backing the object 53 * stays valid, the trick to using this is relying on an independent 54 * object validation pass. Something like: 55 * 56 * rcu_read_lock() 57 * again: 58 * obj = lockless_lookup(key); 59 * if (obj) { 60 * if (!try_get_ref(obj)) // might fail for free objects 61 * goto again; 62 * 63 * if (obj->key != key) { // not the object we expected 64 * put_ref(obj); 65 * goto again; 66 * } 67 * } 68 * rcu_read_unlock(); 69 * 70 * This is useful if we need to approach a kernel structure obliquely, 71 * from its address obtained without the usual locking. We can lock 72 * the structure to stabilize it and check it's still at the given address, 73 * only if we can be sure that the memory has not been meanwhile reused 74 * for some other kind of object (which our subsystem's lock might corrupt). 75 * 76 * rcu_read_lock before reading the address, then rcu_read_unlock after 77 * taking the spinlock within the structure expected at that address. 78 * 79 * Note that it is not possible to acquire a lock within a structure 80 * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference 81 * as described above. The reason is that SLAB_TYPESAFE_BY_RCU pages 82 * are not zeroed before being given to the slab, which means that any 83 * locks must be initialized after each and every kmem_struct_alloc(). 84 * Alternatively, make the ctor passed to kmem_cache_create() initialize 85 * the locks at page-allocation time, as is done in __i915_request_ctor(), 86 * sighand_ctor(), and anon_vma_ctor(). Such a ctor permits readers 87 * to safely acquire those ctor-initialized locks under rcu_read_lock() 88 * protection. 89 * 90 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. 91 */ 92/* Defer freeing slabs to RCU */ 93#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U) 94/* Spread some memory over cpuset */ 95#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U) 96/* Trace allocations and frees */ 97#define SLAB_TRACE ((slab_flags_t __force)0x00200000U) 98 99/* Flag to prevent checks on free */ 100#ifdef CONFIG_DEBUG_OBJECTS 101# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U) 102#else 103# define SLAB_DEBUG_OBJECTS 0 104#endif 105 106/* Avoid kmemleak tracing */ 107#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U) 108 109/* Fault injection mark */ 110#ifdef CONFIG_FAILSLAB 111# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U) 112#else 113# define SLAB_FAILSLAB 0 114#endif 115/* Account to memcg */ 116#ifdef CONFIG_MEMCG_KMEM 117# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U) 118#else 119# define SLAB_ACCOUNT 0 120#endif 121 122#ifdef CONFIG_KASAN_GENERIC 123#define SLAB_KASAN ((slab_flags_t __force)0x08000000U) 124#else 125#define SLAB_KASAN 0 126#endif 127 128/* 129 * Ignore user specified debugging flags. 130 * Intended for caches created for self-tests so they have only flags 131 * specified in the code and other flags are ignored. 132 */ 133#define SLAB_NO_USER_FLAGS ((slab_flags_t __force)0x10000000U) 134 135#ifdef CONFIG_KFENCE 136#define SLAB_SKIP_KFENCE ((slab_flags_t __force)0x20000000U) 137#else 138#define SLAB_SKIP_KFENCE 0 139#endif 140 141/* The following flags affect the page allocator grouping pages by mobility */ 142/* Objects are reclaimable */ 143#ifndef CONFIG_SLUB_TINY 144#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U) 145#else 146#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0) 147#endif 148#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 149 150/* 151 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 152 * 153 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 154 * 155 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 156 * Both make kfree a no-op. 157 */ 158#define ZERO_SIZE_PTR ((void *)16) 159 160#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 161 (unsigned long)ZERO_SIZE_PTR) 162 163#include <linux/kasan.h> 164 165struct list_lru; 166struct mem_cgroup; 167/* 168 * struct kmem_cache related prototypes 169 */ 170void __init kmem_cache_init(void); 171bool slab_is_available(void); 172 173struct kmem_cache *kmem_cache_create(const char *name, unsigned int size, 174 unsigned int align, slab_flags_t flags, 175 void (*ctor)(void *)); 176struct kmem_cache *kmem_cache_create_usercopy(const char *name, 177 unsigned int size, unsigned int align, 178 slab_flags_t flags, 179 unsigned int useroffset, unsigned int usersize, 180 void (*ctor)(void *)); 181void kmem_cache_destroy(struct kmem_cache *s); 182int kmem_cache_shrink(struct kmem_cache *s); 183 184/* 185 * Please use this macro to create slab caches. Simply specify the 186 * name of the structure and maybe some flags that are listed above. 187 * 188 * The alignment of the struct determines object alignment. If you 189 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 190 * then the objects will be properly aligned in SMP configurations. 191 */ 192#define KMEM_CACHE(__struct, __flags) \ 193 kmem_cache_create(#__struct, sizeof(struct __struct), \ 194 __alignof__(struct __struct), (__flags), NULL) 195 196/* 197 * To whitelist a single field for copying to/from usercopy, use this 198 * macro instead for KMEM_CACHE() above. 199 */ 200#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ 201 kmem_cache_create_usercopy(#__struct, \ 202 sizeof(struct __struct), \ 203 __alignof__(struct __struct), (__flags), \ 204 offsetof(struct __struct, __field), \ 205 sizeof_field(struct __struct, __field), NULL) 206 207/* 208 * Common kmalloc functions provided by all allocators 209 */ 210void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __realloc_size(2); 211void kfree(const void *objp); 212void kfree_sensitive(const void *objp); 213size_t __ksize(const void *objp); 214 215/** 216 * ksize - Report actual allocation size of associated object 217 * 218 * @objp: Pointer returned from a prior kmalloc()-family allocation. 219 * 220 * This should not be used for writing beyond the originally requested 221 * allocation size. Either use krealloc() or round up the allocation size 222 * with kmalloc_size_roundup() prior to allocation. If this is used to 223 * access beyond the originally requested allocation size, UBSAN_BOUNDS 224 * and/or FORTIFY_SOURCE may trip, since they only know about the 225 * originally allocated size via the __alloc_size attribute. 226 */ 227size_t ksize(const void *objp); 228 229#ifdef CONFIG_PRINTK 230bool kmem_valid_obj(void *object); 231void kmem_dump_obj(void *object); 232#endif 233 234/* 235 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 236 * alignment larger than the alignment of a 64-bit integer. 237 * Setting ARCH_DMA_MINALIGN in arch headers allows that. 238 */ 239#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 240#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 241#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 242#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 243#else 244#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 245#endif 246 247/* 248 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 249 * Intended for arches that get misalignment faults even for 64 bit integer 250 * aligned buffers. 251 */ 252#ifndef ARCH_SLAB_MINALIGN 253#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 254#endif 255 256/* 257 * Arches can define this function if they want to decide the minimum slab 258 * alignment at runtime. The value returned by the function must be a power 259 * of two and >= ARCH_SLAB_MINALIGN. 260 */ 261#ifndef arch_slab_minalign 262static inline unsigned int arch_slab_minalign(void) 263{ 264 return ARCH_SLAB_MINALIGN; 265} 266#endif 267 268/* 269 * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN. 270 * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN 271 * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment. 272 */ 273#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 274#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 275#define __assume_page_alignment __assume_aligned(PAGE_SIZE) 276 277/* 278 * Kmalloc array related definitions 279 */ 280 281#ifdef CONFIG_SLAB 282/* 283 * SLAB and SLUB directly allocates requests fitting in to an order-1 page 284 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 285 */ 286#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 287#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 288#ifndef KMALLOC_SHIFT_LOW 289#define KMALLOC_SHIFT_LOW 5 290#endif 291#endif 292 293#ifdef CONFIG_SLUB 294#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 295#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 296#ifndef KMALLOC_SHIFT_LOW 297#define KMALLOC_SHIFT_LOW 3 298#endif 299#endif 300 301#ifdef CONFIG_SLOB 302/* 303 * SLOB passes all requests larger than one page to the page allocator. 304 * No kmalloc array is necessary since objects of different sizes can 305 * be allocated from the same page. 306 */ 307#define KMALLOC_SHIFT_HIGH PAGE_SHIFT 308#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 309#ifndef KMALLOC_SHIFT_LOW 310#define KMALLOC_SHIFT_LOW 3 311#endif 312#endif 313 314/* Maximum allocatable size */ 315#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 316/* Maximum size for which we actually use a slab cache */ 317#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 318/* Maximum order allocatable via the slab allocator */ 319#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 320 321/* 322 * Kmalloc subsystem. 323 */ 324#ifndef KMALLOC_MIN_SIZE 325#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 326#endif 327 328/* 329 * This restriction comes from byte sized index implementation. 330 * Page size is normally 2^12 bytes and, in this case, if we want to use 331 * byte sized index which can represent 2^8 entries, the size of the object 332 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 333 * If minimum size of kmalloc is less than 16, we use it as minimum object 334 * size and give up to use byte sized index. 335 */ 336#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 337 (KMALLOC_MIN_SIZE) : 16) 338 339/* 340 * Whenever changing this, take care of that kmalloc_type() and 341 * create_kmalloc_caches() still work as intended. 342 * 343 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP 344 * is for accounted but unreclaimable and non-dma objects. All the other 345 * kmem caches can have both accounted and unaccounted objects. 346 */ 347enum kmalloc_cache_type { 348 KMALLOC_NORMAL = 0, 349#ifndef CONFIG_ZONE_DMA 350 KMALLOC_DMA = KMALLOC_NORMAL, 351#endif 352#ifndef CONFIG_MEMCG_KMEM 353 KMALLOC_CGROUP = KMALLOC_NORMAL, 354#endif 355#ifdef CONFIG_SLUB_TINY 356 KMALLOC_RECLAIM = KMALLOC_NORMAL, 357#else 358 KMALLOC_RECLAIM, 359#endif 360#ifdef CONFIG_ZONE_DMA 361 KMALLOC_DMA, 362#endif 363#ifdef CONFIG_MEMCG_KMEM 364 KMALLOC_CGROUP, 365#endif 366 NR_KMALLOC_TYPES 367}; 368 369#ifndef CONFIG_SLOB 370extern struct kmem_cache * 371kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1]; 372 373/* 374 * Define gfp bits that should not be set for KMALLOC_NORMAL. 375 */ 376#define KMALLOC_NOT_NORMAL_BITS \ 377 (__GFP_RECLAIMABLE | \ 378 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \ 379 (IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0)) 380 381static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags) 382{ 383 /* 384 * The most common case is KMALLOC_NORMAL, so test for it 385 * with a single branch for all the relevant flags. 386 */ 387 if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0)) 388 return KMALLOC_NORMAL; 389 390 /* 391 * At least one of the flags has to be set. Their priorities in 392 * decreasing order are: 393 * 1) __GFP_DMA 394 * 2) __GFP_RECLAIMABLE 395 * 3) __GFP_ACCOUNT 396 */ 397 if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA)) 398 return KMALLOC_DMA; 399 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE)) 400 return KMALLOC_RECLAIM; 401 else 402 return KMALLOC_CGROUP; 403} 404 405/* 406 * Figure out which kmalloc slab an allocation of a certain size 407 * belongs to. 408 * 0 = zero alloc 409 * 1 = 65 .. 96 bytes 410 * 2 = 129 .. 192 bytes 411 * n = 2^(n-1)+1 .. 2^n 412 * 413 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized; 414 * typical usage is via kmalloc_index() and therefore evaluated at compile-time. 415 * Callers where !size_is_constant should only be test modules, where runtime 416 * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab(). 417 */ 418static __always_inline unsigned int __kmalloc_index(size_t size, 419 bool size_is_constant) 420{ 421 if (!size) 422 return 0; 423 424 if (size <= KMALLOC_MIN_SIZE) 425 return KMALLOC_SHIFT_LOW; 426 427 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 428 return 1; 429 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 430 return 2; 431 if (size <= 8) return 3; 432 if (size <= 16) return 4; 433 if (size <= 32) return 5; 434 if (size <= 64) return 6; 435 if (size <= 128) return 7; 436 if (size <= 256) return 8; 437 if (size <= 512) return 9; 438 if (size <= 1024) return 10; 439 if (size <= 2 * 1024) return 11; 440 if (size <= 4 * 1024) return 12; 441 if (size <= 8 * 1024) return 13; 442 if (size <= 16 * 1024) return 14; 443 if (size <= 32 * 1024) return 15; 444 if (size <= 64 * 1024) return 16; 445 if (size <= 128 * 1024) return 17; 446 if (size <= 256 * 1024) return 18; 447 if (size <= 512 * 1024) return 19; 448 if (size <= 1024 * 1024) return 20; 449 if (size <= 2 * 1024 * 1024) return 21; 450 451 if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant) 452 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()"); 453 else 454 BUG(); 455 456 /* Will never be reached. Needed because the compiler may complain */ 457 return -1; 458} 459static_assert(PAGE_SHIFT <= 20); 460#define kmalloc_index(s) __kmalloc_index(s, true) 461#endif /* !CONFIG_SLOB */ 462 463void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1); 464 465/** 466 * kmem_cache_alloc - Allocate an object 467 * @cachep: The cache to allocate from. 468 * @flags: See kmalloc(). 469 * 470 * Allocate an object from this cache. 471 * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags. 472 * 473 * Return: pointer to the new object or %NULL in case of error 474 */ 475void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) __assume_slab_alignment __malloc; 476void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 477 gfp_t gfpflags) __assume_slab_alignment __malloc; 478void kmem_cache_free(struct kmem_cache *s, void *objp); 479 480/* 481 * Bulk allocation and freeing operations. These are accelerated in an 482 * allocator specific way to avoid taking locks repeatedly or building 483 * metadata structures unnecessarily. 484 * 485 * Note that interrupts must be enabled when calling these functions. 486 */ 487void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p); 488int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p); 489 490/* 491 * Caller must not use kfree_bulk() on memory not originally allocated 492 * by kmalloc(), because the SLOB allocator cannot handle this. 493 */ 494static __always_inline void kfree_bulk(size_t size, void **p) 495{ 496 kmem_cache_free_bulk(NULL, size, p); 497} 498 499void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment 500 __alloc_size(1); 501void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment 502 __malloc; 503 504void *kmalloc_trace(struct kmem_cache *s, gfp_t flags, size_t size) 505 __assume_kmalloc_alignment __alloc_size(3); 506 507void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, 508 int node, size_t size) __assume_kmalloc_alignment 509 __alloc_size(4); 510void *kmalloc_large(size_t size, gfp_t flags) __assume_page_alignment 511 __alloc_size(1); 512 513void *kmalloc_large_node(size_t size, gfp_t flags, int node) __assume_page_alignment 514 __alloc_size(1); 515 516/** 517 * kmalloc - allocate kernel memory 518 * @size: how many bytes of memory are required. 519 * @flags: describe the allocation context 520 * 521 * kmalloc is the normal method of allocating memory 522 * for objects smaller than page size in the kernel. 523 * 524 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN 525 * bytes. For @size of power of two bytes, the alignment is also guaranteed 526 * to be at least to the size. 527 * 528 * The @flags argument may be one of the GFP flags defined at 529 * include/linux/gfp.h and described at 530 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` 531 * 532 * The recommended usage of the @flags is described at 533 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>` 534 * 535 * Below is a brief outline of the most useful GFP flags 536 * 537 * %GFP_KERNEL 538 * Allocate normal kernel ram. May sleep. 539 * 540 * %GFP_NOWAIT 541 * Allocation will not sleep. 542 * 543 * %GFP_ATOMIC 544 * Allocation will not sleep. May use emergency pools. 545 * 546 * Also it is possible to set different flags by OR'ing 547 * in one or more of the following additional @flags: 548 * 549 * %__GFP_ZERO 550 * Zero the allocated memory before returning. Also see kzalloc(). 551 * 552 * %__GFP_HIGH 553 * This allocation has high priority and may use emergency pools. 554 * 555 * %__GFP_NOFAIL 556 * Indicate that this allocation is in no way allowed to fail 557 * (think twice before using). 558 * 559 * %__GFP_NORETRY 560 * If memory is not immediately available, 561 * then give up at once. 562 * 563 * %__GFP_NOWARN 564 * If allocation fails, don't issue any warnings. 565 * 566 * %__GFP_RETRY_MAYFAIL 567 * Try really hard to succeed the allocation but fail 568 * eventually. 569 */ 570#ifndef CONFIG_SLOB 571static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags) 572{ 573 if (__builtin_constant_p(size) && size) { 574 unsigned int index; 575 576 if (size > KMALLOC_MAX_CACHE_SIZE) 577 return kmalloc_large(size, flags); 578 579 index = kmalloc_index(size); 580 return kmalloc_trace( 581 kmalloc_caches[kmalloc_type(flags)][index], 582 flags, size); 583 } 584 return __kmalloc(size, flags); 585} 586#else 587static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags) 588{ 589 if (__builtin_constant_p(size) && size > KMALLOC_MAX_CACHE_SIZE) 590 return kmalloc_large(size, flags); 591 592 return __kmalloc(size, flags); 593} 594#endif 595 596#ifndef CONFIG_SLOB 597static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node) 598{ 599 if (__builtin_constant_p(size) && size) { 600 unsigned int index; 601 602 if (size > KMALLOC_MAX_CACHE_SIZE) 603 return kmalloc_large_node(size, flags, node); 604 605 index = kmalloc_index(size); 606 return kmalloc_node_trace( 607 kmalloc_caches[kmalloc_type(flags)][index], 608 flags, node, size); 609 } 610 return __kmalloc_node(size, flags, node); 611} 612#else 613static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node) 614{ 615 if (__builtin_constant_p(size) && size > KMALLOC_MAX_CACHE_SIZE) 616 return kmalloc_large_node(size, flags, node); 617 618 return __kmalloc_node(size, flags, node); 619} 620#endif 621 622/** 623 * kmalloc_array - allocate memory for an array. 624 * @n: number of elements. 625 * @size: element size. 626 * @flags: the type of memory to allocate (see kmalloc). 627 */ 628static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags) 629{ 630 size_t bytes; 631 632 if (unlikely(check_mul_overflow(n, size, &bytes))) 633 return NULL; 634 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 635 return kmalloc(bytes, flags); 636 return __kmalloc(bytes, flags); 637} 638 639/** 640 * krealloc_array - reallocate memory for an array. 641 * @p: pointer to the memory chunk to reallocate 642 * @new_n: new number of elements to alloc 643 * @new_size: new size of a single member of the array 644 * @flags: the type of memory to allocate (see kmalloc) 645 */ 646static inline __realloc_size(2, 3) void * __must_check krealloc_array(void *p, 647 size_t new_n, 648 size_t new_size, 649 gfp_t flags) 650{ 651 size_t bytes; 652 653 if (unlikely(check_mul_overflow(new_n, new_size, &bytes))) 654 return NULL; 655 656 return krealloc(p, bytes, flags); 657} 658 659/** 660 * kcalloc - allocate memory for an array. The memory is set to zero. 661 * @n: number of elements. 662 * @size: element size. 663 * @flags: the type of memory to allocate (see kmalloc). 664 */ 665static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags) 666{ 667 return kmalloc_array(n, size, flags | __GFP_ZERO); 668} 669 670void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node, 671 unsigned long caller) __alloc_size(1); 672#define kmalloc_node_track_caller(size, flags, node) \ 673 __kmalloc_node_track_caller(size, flags, node, \ 674 _RET_IP_) 675 676/* 677 * kmalloc_track_caller is a special version of kmalloc that records the 678 * calling function of the routine calling it for slab leak tracking instead 679 * of just the calling function (confusing, eh?). 680 * It's useful when the call to kmalloc comes from a widely-used standard 681 * allocator where we care about the real place the memory allocation 682 * request comes from. 683 */ 684#define kmalloc_track_caller(size, flags) \ 685 __kmalloc_node_track_caller(size, flags, \ 686 NUMA_NO_NODE, _RET_IP_) 687 688static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags, 689 int node) 690{ 691 size_t bytes; 692 693 if (unlikely(check_mul_overflow(n, size, &bytes))) 694 return NULL; 695 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 696 return kmalloc_node(bytes, flags, node); 697 return __kmalloc_node(bytes, flags, node); 698} 699 700static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node) 701{ 702 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node); 703} 704 705/* 706 * Shortcuts 707 */ 708static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 709{ 710 return kmem_cache_alloc(k, flags | __GFP_ZERO); 711} 712 713/** 714 * kzalloc - allocate memory. The memory is set to zero. 715 * @size: how many bytes of memory are required. 716 * @flags: the type of memory to allocate (see kmalloc). 717 */ 718static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags) 719{ 720 return kmalloc(size, flags | __GFP_ZERO); 721} 722 723/** 724 * kzalloc_node - allocate zeroed memory from a particular memory node. 725 * @size: how many bytes of memory are required. 726 * @flags: the type of memory to allocate (see kmalloc). 727 * @node: memory node from which to allocate 728 */ 729static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node) 730{ 731 return kmalloc_node(size, flags | __GFP_ZERO, node); 732} 733 734extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1); 735static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags) 736{ 737 return kvmalloc_node(size, flags, NUMA_NO_NODE); 738} 739static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node) 740{ 741 return kvmalloc_node(size, flags | __GFP_ZERO, node); 742} 743static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags) 744{ 745 return kvmalloc(size, flags | __GFP_ZERO); 746} 747 748static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 749{ 750 size_t bytes; 751 752 if (unlikely(check_mul_overflow(n, size, &bytes))) 753 return NULL; 754 755 return kvmalloc(bytes, flags); 756} 757 758static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags) 759{ 760 return kvmalloc_array(n, size, flags | __GFP_ZERO); 761} 762 763extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) 764 __realloc_size(3); 765extern void kvfree(const void *addr); 766extern void kvfree_sensitive(const void *addr, size_t len); 767 768unsigned int kmem_cache_size(struct kmem_cache *s); 769 770/** 771 * kmalloc_size_roundup - Report allocation bucket size for the given size 772 * 773 * @size: Number of bytes to round up from. 774 * 775 * This returns the number of bytes that would be available in a kmalloc() 776 * allocation of @size bytes. For example, a 126 byte request would be 777 * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly 778 * for the general-purpose kmalloc()-based allocations, and is not for the 779 * pre-sized kmem_cache_alloc()-based allocations.) 780 * 781 * Use this to kmalloc() the full bucket size ahead of time instead of using 782 * ksize() to query the size after an allocation. 783 */ 784size_t kmalloc_size_roundup(size_t size); 785 786void __init kmem_cache_init_late(void); 787 788#if defined(CONFIG_SMP) && defined(CONFIG_SLAB) 789int slab_prepare_cpu(unsigned int cpu); 790int slab_dead_cpu(unsigned int cpu); 791#else 792#define slab_prepare_cpu NULL 793#define slab_dead_cpu NULL 794#endif 795 796#endif /* _LINUX_SLAB_H */