at v6.3 147 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <gw4pts@gw4pts.ampr.org> 7 * Florian La Roche, <rzsfl@rz.uni-sb.de> 8 */ 9 10#ifndef _LINUX_SKBUFF_H 11#define _LINUX_SKBUFF_H 12 13#include <linux/kernel.h> 14#include <linux/compiler.h> 15#include <linux/time.h> 16#include <linux/bug.h> 17#include <linux/bvec.h> 18#include <linux/cache.h> 19#include <linux/rbtree.h> 20#include <linux/socket.h> 21#include <linux/refcount.h> 22 23#include <linux/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <net/checksum.h> 27#include <linux/rcupdate.h> 28#include <linux/dma-mapping.h> 29#include <linux/netdev_features.h> 30#include <net/flow_dissector.h> 31#include <linux/in6.h> 32#include <linux/if_packet.h> 33#include <linux/llist.h> 34#include <net/flow.h> 35#include <net/page_pool.h> 36#if IS_ENABLED(CONFIG_NF_CONNTRACK) 37#include <linux/netfilter/nf_conntrack_common.h> 38#endif 39#include <net/net_debug.h> 40#include <net/dropreason.h> 41 42/** 43 * DOC: skb checksums 44 * 45 * The interface for checksum offload between the stack and networking drivers 46 * is as follows... 47 * 48 * IP checksum related features 49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 50 * 51 * Drivers advertise checksum offload capabilities in the features of a device. 52 * From the stack's point of view these are capabilities offered by the driver. 53 * A driver typically only advertises features that it is capable of offloading 54 * to its device. 55 * 56 * .. flat-table:: Checksum related device features 57 * :widths: 1 10 58 * 59 * * - %NETIF_F_HW_CSUM 60 * - The driver (or its device) is able to compute one 61 * IP (one's complement) checksum for any combination 62 * of protocols or protocol layering. The checksum is 63 * computed and set in a packet per the CHECKSUM_PARTIAL 64 * interface (see below). 65 * 66 * * - %NETIF_F_IP_CSUM 67 * - Driver (device) is only able to checksum plain 68 * TCP or UDP packets over IPv4. These are specifically 69 * unencapsulated packets of the form IPv4|TCP or 70 * IPv4|UDP where the Protocol field in the IPv4 header 71 * is TCP or UDP. The IPv4 header may contain IP options. 72 * This feature cannot be set in features for a device 73 * with NETIF_F_HW_CSUM also set. This feature is being 74 * DEPRECATED (see below). 75 * 76 * * - %NETIF_F_IPV6_CSUM 77 * - Driver (device) is only able to checksum plain 78 * TCP or UDP packets over IPv6. These are specifically 79 * unencapsulated packets of the form IPv6|TCP or 80 * IPv6|UDP where the Next Header field in the IPv6 81 * header is either TCP or UDP. IPv6 extension headers 82 * are not supported with this feature. This feature 83 * cannot be set in features for a device with 84 * NETIF_F_HW_CSUM also set. This feature is being 85 * DEPRECATED (see below). 86 * 87 * * - %NETIF_F_RXCSUM 88 * - Driver (device) performs receive checksum offload. 89 * This flag is only used to disable the RX checksum 90 * feature for a device. The stack will accept receive 91 * checksum indication in packets received on a device 92 * regardless of whether NETIF_F_RXCSUM is set. 93 * 94 * Checksumming of received packets by device 95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 96 * 97 * Indication of checksum verification is set in &sk_buff.ip_summed. 98 * Possible values are: 99 * 100 * - %CHECKSUM_NONE 101 * 102 * Device did not checksum this packet e.g. due to lack of capabilities. 103 * The packet contains full (though not verified) checksum in packet but 104 * not in skb->csum. Thus, skb->csum is undefined in this case. 105 * 106 * - %CHECKSUM_UNNECESSARY 107 * 108 * The hardware you're dealing with doesn't calculate the full checksum 109 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums 110 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY 111 * if their checksums are okay. &sk_buff.csum is still undefined in this case 112 * though. A driver or device must never modify the checksum field in the 113 * packet even if checksum is verified. 114 * 115 * %CHECKSUM_UNNECESSARY is applicable to following protocols: 116 * 117 * - TCP: IPv6 and IPv4. 118 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 119 * zero UDP checksum for either IPv4 or IPv6, the networking stack 120 * may perform further validation in this case. 121 * - GRE: only if the checksum is present in the header. 122 * - SCTP: indicates the CRC in SCTP header has been validated. 123 * - FCOE: indicates the CRC in FC frame has been validated. 124 * 125 * &sk_buff.csum_level indicates the number of consecutive checksums found in 126 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY. 127 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 128 * and a device is able to verify the checksums for UDP (possibly zero), 129 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to 130 * two. If the device were only able to verify the UDP checksum and not 131 * GRE, either because it doesn't support GRE checksum or because GRE 132 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 133 * not considered in this case). 134 * 135 * - %CHECKSUM_COMPLETE 136 * 137 * This is the most generic way. The device supplied checksum of the _whole_ 138 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the 139 * hardware doesn't need to parse L3/L4 headers to implement this. 140 * 141 * Notes: 142 * 143 * - Even if device supports only some protocols, but is able to produce 144 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 145 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 146 * 147 * - %CHECKSUM_PARTIAL 148 * 149 * A checksum is set up to be offloaded to a device as described in the 150 * output description for CHECKSUM_PARTIAL. This may occur on a packet 151 * received directly from another Linux OS, e.g., a virtualized Linux kernel 152 * on the same host, or it may be set in the input path in GRO or remote 153 * checksum offload. For the purposes of checksum verification, the checksum 154 * referred to by skb->csum_start + skb->csum_offset and any preceding 155 * checksums in the packet are considered verified. Any checksums in the 156 * packet that are after the checksum being offloaded are not considered to 157 * be verified. 158 * 159 * Checksumming on transmit for non-GSO 160 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 161 * 162 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet. 163 * Values are: 164 * 165 * - %CHECKSUM_PARTIAL 166 * 167 * The driver is required to checksum the packet as seen by hard_start_xmit() 168 * from &sk_buff.csum_start up to the end, and to record/write the checksum at 169 * offset &sk_buff.csum_start + &sk_buff.csum_offset. 170 * A driver may verify that the 171 * csum_start and csum_offset values are valid values given the length and 172 * offset of the packet, but it should not attempt to validate that the 173 * checksum refers to a legitimate transport layer checksum -- it is the 174 * purview of the stack to validate that csum_start and csum_offset are set 175 * correctly. 176 * 177 * When the stack requests checksum offload for a packet, the driver MUST 178 * ensure that the checksum is set correctly. A driver can either offload the 179 * checksum calculation to the device, or call skb_checksum_help (in the case 180 * that the device does not support offload for a particular checksum). 181 * 182 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of 183 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate 184 * checksum offload capability. 185 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based 186 * on network device checksumming capabilities: if a packet does not match 187 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of 188 * &sk_buff.csum_not_inet, see :ref:`crc`) 189 * is called to resolve the checksum. 190 * 191 * - %CHECKSUM_NONE 192 * 193 * The skb was already checksummed by the protocol, or a checksum is not 194 * required. 195 * 196 * - %CHECKSUM_UNNECESSARY 197 * 198 * This has the same meaning as CHECKSUM_NONE for checksum offload on 199 * output. 200 * 201 * - %CHECKSUM_COMPLETE 202 * 203 * Not used in checksum output. If a driver observes a packet with this value 204 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set. 205 * 206 * .. _crc: 207 * 208 * Non-IP checksum (CRC) offloads 209 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 210 * 211 * .. flat-table:: 212 * :widths: 1 10 213 * 214 * * - %NETIF_F_SCTP_CRC 215 * - This feature indicates that a device is capable of 216 * offloading the SCTP CRC in a packet. To perform this offload the stack 217 * will set csum_start and csum_offset accordingly, set ip_summed to 218 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication 219 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c. 220 * A driver that supports both IP checksum offload and SCTP CRC32c offload 221 * must verify which offload is configured for a packet by testing the 222 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to 223 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 224 * 225 * * - %NETIF_F_FCOE_CRC 226 * - This feature indicates that a device is capable of offloading the FCOE 227 * CRC in a packet. To perform this offload the stack will set ip_summed 228 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset 229 * accordingly. Note that there is no indication in the skbuff that the 230 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 231 * both IP checksum offload and FCOE CRC offload must verify which offload 232 * is configured for a packet, presumably by inspecting packet headers. 233 * 234 * Checksumming on output with GSO 235 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 236 * 237 * In the case of a GSO packet (skb_is_gso() is true), checksum offload 238 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 239 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as 240 * part of the GSO operation is implied. If a checksum is being offloaded 241 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and 242 * csum_offset are set to refer to the outermost checksum being offloaded 243 * (two offloaded checksums are possible with UDP encapsulation). 244 */ 245 246/* Don't change this without changing skb_csum_unnecessary! */ 247#define CHECKSUM_NONE 0 248#define CHECKSUM_UNNECESSARY 1 249#define CHECKSUM_COMPLETE 2 250#define CHECKSUM_PARTIAL 3 251 252/* Maximum value in skb->csum_level */ 253#define SKB_MAX_CSUM_LEVEL 3 254 255#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 256#define SKB_WITH_OVERHEAD(X) \ 257 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 258 259/* For X bytes available in skb->head, what is the minimal 260 * allocation needed, knowing struct skb_shared_info needs 261 * to be aligned. 262 */ 263#define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \ 264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 265 266#define SKB_MAX_ORDER(X, ORDER) \ 267 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 268#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 269#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 270 271/* return minimum truesize of one skb containing X bytes of data */ 272#define SKB_TRUESIZE(X) ((X) + \ 273 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 274 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 275 276struct ahash_request; 277struct net_device; 278struct scatterlist; 279struct pipe_inode_info; 280struct iov_iter; 281struct napi_struct; 282struct bpf_prog; 283union bpf_attr; 284struct skb_ext; 285struct ts_config; 286 287#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 288struct nf_bridge_info { 289 enum { 290 BRNF_PROTO_UNCHANGED, 291 BRNF_PROTO_8021Q, 292 BRNF_PROTO_PPPOE 293 } orig_proto:8; 294 u8 pkt_otherhost:1; 295 u8 in_prerouting:1; 296 u8 bridged_dnat:1; 297 u8 sabotage_in_done:1; 298 __u16 frag_max_size; 299 struct net_device *physindev; 300 301 /* always valid & non-NULL from FORWARD on, for physdev match */ 302 struct net_device *physoutdev; 303 union { 304 /* prerouting: detect dnat in orig/reply direction */ 305 __be32 ipv4_daddr; 306 struct in6_addr ipv6_daddr; 307 308 /* after prerouting + nat detected: store original source 309 * mac since neigh resolution overwrites it, only used while 310 * skb is out in neigh layer. 311 */ 312 char neigh_header[8]; 313 }; 314}; 315#endif 316 317#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 318/* Chain in tc_skb_ext will be used to share the tc chain with 319 * ovs recirc_id. It will be set to the current chain by tc 320 * and read by ovs to recirc_id. 321 */ 322struct tc_skb_ext { 323 union { 324 u64 act_miss_cookie; 325 __u32 chain; 326 }; 327 __u16 mru; 328 __u16 zone; 329 u8 post_ct:1; 330 u8 post_ct_snat:1; 331 u8 post_ct_dnat:1; 332 u8 act_miss:1; /* Set if act_miss_cookie is used */ 333}; 334#endif 335 336struct sk_buff_head { 337 /* These two members must be first to match sk_buff. */ 338 struct_group_tagged(sk_buff_list, list, 339 struct sk_buff *next; 340 struct sk_buff *prev; 341 ); 342 343 __u32 qlen; 344 spinlock_t lock; 345}; 346 347struct sk_buff; 348 349/* To allow 64K frame to be packed as single skb without frag_list we 350 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 351 * buffers which do not start on a page boundary. 352 * 353 * Since GRO uses frags we allocate at least 16 regardless of page 354 * size. 355 */ 356#if (65536/PAGE_SIZE + 1) < 16 357#define MAX_SKB_FRAGS 16UL 358#else 359#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 360#endif 361extern int sysctl_max_skb_frags; 362 363/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 364 * segment using its current segmentation instead. 365 */ 366#define GSO_BY_FRAGS 0xFFFF 367 368typedef struct bio_vec skb_frag_t; 369 370/** 371 * skb_frag_size() - Returns the size of a skb fragment 372 * @frag: skb fragment 373 */ 374static inline unsigned int skb_frag_size(const skb_frag_t *frag) 375{ 376 return frag->bv_len; 377} 378 379/** 380 * skb_frag_size_set() - Sets the size of a skb fragment 381 * @frag: skb fragment 382 * @size: size of fragment 383 */ 384static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 385{ 386 frag->bv_len = size; 387} 388 389/** 390 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 391 * @frag: skb fragment 392 * @delta: value to add 393 */ 394static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 395{ 396 frag->bv_len += delta; 397} 398 399/** 400 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 401 * @frag: skb fragment 402 * @delta: value to subtract 403 */ 404static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 405{ 406 frag->bv_len -= delta; 407} 408 409/** 410 * skb_frag_must_loop - Test if %p is a high memory page 411 * @p: fragment's page 412 */ 413static inline bool skb_frag_must_loop(struct page *p) 414{ 415#if defined(CONFIG_HIGHMEM) 416 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 417 return true; 418#endif 419 return false; 420} 421 422/** 423 * skb_frag_foreach_page - loop over pages in a fragment 424 * 425 * @f: skb frag to operate on 426 * @f_off: offset from start of f->bv_page 427 * @f_len: length from f_off to loop over 428 * @p: (temp var) current page 429 * @p_off: (temp var) offset from start of current page, 430 * non-zero only on first page. 431 * @p_len: (temp var) length in current page, 432 * < PAGE_SIZE only on first and last page. 433 * @copied: (temp var) length so far, excluding current p_len. 434 * 435 * A fragment can hold a compound page, in which case per-page 436 * operations, notably kmap_atomic, must be called for each 437 * regular page. 438 */ 439#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 440 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 441 p_off = (f_off) & (PAGE_SIZE - 1), \ 442 p_len = skb_frag_must_loop(p) ? \ 443 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 444 copied = 0; \ 445 copied < f_len; \ 446 copied += p_len, p++, p_off = 0, \ 447 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 448 449#define HAVE_HW_TIME_STAMP 450 451/** 452 * struct skb_shared_hwtstamps - hardware time stamps 453 * @hwtstamp: hardware time stamp transformed into duration 454 * since arbitrary point in time 455 * @netdev_data: address/cookie of network device driver used as 456 * reference to actual hardware time stamp 457 * 458 * Software time stamps generated by ktime_get_real() are stored in 459 * skb->tstamp. 460 * 461 * hwtstamps can only be compared against other hwtstamps from 462 * the same device. 463 * 464 * This structure is attached to packets as part of the 465 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 466 */ 467struct skb_shared_hwtstamps { 468 union { 469 ktime_t hwtstamp; 470 void *netdev_data; 471 }; 472}; 473 474/* Definitions for tx_flags in struct skb_shared_info */ 475enum { 476 /* generate hardware time stamp */ 477 SKBTX_HW_TSTAMP = 1 << 0, 478 479 /* generate software time stamp when queueing packet to NIC */ 480 SKBTX_SW_TSTAMP = 1 << 1, 481 482 /* device driver is going to provide hardware time stamp */ 483 SKBTX_IN_PROGRESS = 1 << 2, 484 485 /* generate hardware time stamp based on cycles if supported */ 486 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3, 487 488 /* generate wifi status information (where possible) */ 489 SKBTX_WIFI_STATUS = 1 << 4, 490 491 /* determine hardware time stamp based on time or cycles */ 492 SKBTX_HW_TSTAMP_NETDEV = 1 << 5, 493 494 /* generate software time stamp when entering packet scheduling */ 495 SKBTX_SCHED_TSTAMP = 1 << 6, 496}; 497 498#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 499 SKBTX_SCHED_TSTAMP) 500#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \ 501 SKBTX_HW_TSTAMP_USE_CYCLES | \ 502 SKBTX_ANY_SW_TSTAMP) 503 504/* Definitions for flags in struct skb_shared_info */ 505enum { 506 /* use zcopy routines */ 507 SKBFL_ZEROCOPY_ENABLE = BIT(0), 508 509 /* This indicates at least one fragment might be overwritten 510 * (as in vmsplice(), sendfile() ...) 511 * If we need to compute a TX checksum, we'll need to copy 512 * all frags to avoid possible bad checksum 513 */ 514 SKBFL_SHARED_FRAG = BIT(1), 515 516 /* segment contains only zerocopy data and should not be 517 * charged to the kernel memory. 518 */ 519 SKBFL_PURE_ZEROCOPY = BIT(2), 520 521 SKBFL_DONT_ORPHAN = BIT(3), 522 523 /* page references are managed by the ubuf_info, so it's safe to 524 * use frags only up until ubuf_info is released 525 */ 526 SKBFL_MANAGED_FRAG_REFS = BIT(4), 527}; 528 529#define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 530#define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \ 531 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS) 532 533/* 534 * The callback notifies userspace to release buffers when skb DMA is done in 535 * lower device, the skb last reference should be 0 when calling this. 536 * The zerocopy_success argument is true if zero copy transmit occurred, 537 * false on data copy or out of memory error caused by data copy attempt. 538 * The ctx field is used to track device context. 539 * The desc field is used to track userspace buffer index. 540 */ 541struct ubuf_info { 542 void (*callback)(struct sk_buff *, struct ubuf_info *, 543 bool zerocopy_success); 544 refcount_t refcnt; 545 u8 flags; 546}; 547 548struct ubuf_info_msgzc { 549 struct ubuf_info ubuf; 550 551 union { 552 struct { 553 unsigned long desc; 554 void *ctx; 555 }; 556 struct { 557 u32 id; 558 u16 len; 559 u16 zerocopy:1; 560 u32 bytelen; 561 }; 562 }; 563 564 struct mmpin { 565 struct user_struct *user; 566 unsigned int num_pg; 567 } mmp; 568}; 569 570#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 571#define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \ 572 ubuf) 573 574int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 575void mm_unaccount_pinned_pages(struct mmpin *mmp); 576 577/* This data is invariant across clones and lives at 578 * the end of the header data, ie. at skb->end. 579 */ 580struct skb_shared_info { 581 __u8 flags; 582 __u8 meta_len; 583 __u8 nr_frags; 584 __u8 tx_flags; 585 unsigned short gso_size; 586 /* Warning: this field is not always filled in (UFO)! */ 587 unsigned short gso_segs; 588 struct sk_buff *frag_list; 589 struct skb_shared_hwtstamps hwtstamps; 590 unsigned int gso_type; 591 u32 tskey; 592 593 /* 594 * Warning : all fields before dataref are cleared in __alloc_skb() 595 */ 596 atomic_t dataref; 597 unsigned int xdp_frags_size; 598 599 /* Intermediate layers must ensure that destructor_arg 600 * remains valid until skb destructor */ 601 void * destructor_arg; 602 603 /* must be last field, see pskb_expand_head() */ 604 skb_frag_t frags[MAX_SKB_FRAGS]; 605}; 606 607/** 608 * DOC: dataref and headerless skbs 609 * 610 * Transport layers send out clones of payload skbs they hold for 611 * retransmissions. To allow lower layers of the stack to prepend their headers 612 * we split &skb_shared_info.dataref into two halves. 613 * The lower 16 bits count the overall number of references. 614 * The higher 16 bits indicate how many of the references are payload-only. 615 * skb_header_cloned() checks if skb is allowed to add / write the headers. 616 * 617 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr 618 * (via __skb_header_release()). Any clone created from marked skb will get 619 * &sk_buff.hdr_len populated with the available headroom. 620 * If there's the only clone in existence it's able to modify the headroom 621 * at will. The sequence of calls inside the transport layer is:: 622 * 623 * <alloc skb> 624 * skb_reserve() 625 * __skb_header_release() 626 * skb_clone() 627 * // send the clone down the stack 628 * 629 * This is not a very generic construct and it depends on the transport layers 630 * doing the right thing. In practice there's usually only one payload-only skb. 631 * Having multiple payload-only skbs with different lengths of hdr_len is not 632 * possible. The payload-only skbs should never leave their owner. 633 */ 634#define SKB_DATAREF_SHIFT 16 635#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 636 637 638enum { 639 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 640 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 641 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 642}; 643 644enum { 645 SKB_GSO_TCPV4 = 1 << 0, 646 647 /* This indicates the skb is from an untrusted source. */ 648 SKB_GSO_DODGY = 1 << 1, 649 650 /* This indicates the tcp segment has CWR set. */ 651 SKB_GSO_TCP_ECN = 1 << 2, 652 653 SKB_GSO_TCP_FIXEDID = 1 << 3, 654 655 SKB_GSO_TCPV6 = 1 << 4, 656 657 SKB_GSO_FCOE = 1 << 5, 658 659 SKB_GSO_GRE = 1 << 6, 660 661 SKB_GSO_GRE_CSUM = 1 << 7, 662 663 SKB_GSO_IPXIP4 = 1 << 8, 664 665 SKB_GSO_IPXIP6 = 1 << 9, 666 667 SKB_GSO_UDP_TUNNEL = 1 << 10, 668 669 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 670 671 SKB_GSO_PARTIAL = 1 << 12, 672 673 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 674 675 SKB_GSO_SCTP = 1 << 14, 676 677 SKB_GSO_ESP = 1 << 15, 678 679 SKB_GSO_UDP = 1 << 16, 680 681 SKB_GSO_UDP_L4 = 1 << 17, 682 683 SKB_GSO_FRAGLIST = 1 << 18, 684}; 685 686#if BITS_PER_LONG > 32 687#define NET_SKBUFF_DATA_USES_OFFSET 1 688#endif 689 690#ifdef NET_SKBUFF_DATA_USES_OFFSET 691typedef unsigned int sk_buff_data_t; 692#else 693typedef unsigned char *sk_buff_data_t; 694#endif 695 696/** 697 * DOC: Basic sk_buff geometry 698 * 699 * struct sk_buff itself is a metadata structure and does not hold any packet 700 * data. All the data is held in associated buffers. 701 * 702 * &sk_buff.head points to the main "head" buffer. The head buffer is divided 703 * into two parts: 704 * 705 * - data buffer, containing headers and sometimes payload; 706 * this is the part of the skb operated on by the common helpers 707 * such as skb_put() or skb_pull(); 708 * - shared info (struct skb_shared_info) which holds an array of pointers 709 * to read-only data in the (page, offset, length) format. 710 * 711 * Optionally &skb_shared_info.frag_list may point to another skb. 712 * 713 * Basic diagram may look like this:: 714 * 715 * --------------- 716 * | sk_buff | 717 * --------------- 718 * ,--------------------------- + head 719 * / ,----------------- + data 720 * / / ,----------- + tail 721 * | | | , + end 722 * | | | | 723 * v v v v 724 * ----------------------------------------------- 725 * | headroom | data | tailroom | skb_shared_info | 726 * ----------------------------------------------- 727 * + [page frag] 728 * + [page frag] 729 * + [page frag] 730 * + [page frag] --------- 731 * + frag_list --> | sk_buff | 732 * --------- 733 * 734 */ 735 736/** 737 * struct sk_buff - socket buffer 738 * @next: Next buffer in list 739 * @prev: Previous buffer in list 740 * @tstamp: Time we arrived/left 741 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 742 * for retransmit timer 743 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 744 * @list: queue head 745 * @ll_node: anchor in an llist (eg socket defer_list) 746 * @sk: Socket we are owned by 747 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 748 * fragmentation management 749 * @dev: Device we arrived on/are leaving by 750 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 751 * @cb: Control buffer. Free for use by every layer. Put private vars here 752 * @_skb_refdst: destination entry (with norefcount bit) 753 * @sp: the security path, used for xfrm 754 * @len: Length of actual data 755 * @data_len: Data length 756 * @mac_len: Length of link layer header 757 * @hdr_len: writable header length of cloned skb 758 * @csum: Checksum (must include start/offset pair) 759 * @csum_start: Offset from skb->head where checksumming should start 760 * @csum_offset: Offset from csum_start where checksum should be stored 761 * @priority: Packet queueing priority 762 * @ignore_df: allow local fragmentation 763 * @cloned: Head may be cloned (check refcnt to be sure) 764 * @ip_summed: Driver fed us an IP checksum 765 * @nohdr: Payload reference only, must not modify header 766 * @pkt_type: Packet class 767 * @fclone: skbuff clone status 768 * @ipvs_property: skbuff is owned by ipvs 769 * @inner_protocol_type: whether the inner protocol is 770 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 771 * @remcsum_offload: remote checksum offload is enabled 772 * @offload_fwd_mark: Packet was L2-forwarded in hardware 773 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 774 * @tc_skip_classify: do not classify packet. set by IFB device 775 * @tc_at_ingress: used within tc_classify to distinguish in/egress 776 * @redirected: packet was redirected by packet classifier 777 * @from_ingress: packet was redirected from the ingress path 778 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h 779 * @peeked: this packet has been seen already, so stats have been 780 * done for it, don't do them again 781 * @nf_trace: netfilter packet trace flag 782 * @protocol: Packet protocol from driver 783 * @destructor: Destruct function 784 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 785 * @_sk_redir: socket redirection information for skmsg 786 * @_nfct: Associated connection, if any (with nfctinfo bits) 787 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 788 * @skb_iif: ifindex of device we arrived on 789 * @tc_index: Traffic control index 790 * @hash: the packet hash 791 * @queue_mapping: Queue mapping for multiqueue devices 792 * @head_frag: skb was allocated from page fragments, 793 * not allocated by kmalloc() or vmalloc(). 794 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 795 * @pp_recycle: mark the packet for recycling instead of freeing (implies 796 * page_pool support on driver) 797 * @active_extensions: active extensions (skb_ext_id types) 798 * @ndisc_nodetype: router type (from link layer) 799 * @ooo_okay: allow the mapping of a socket to a queue to be changed 800 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 801 * ports. 802 * @sw_hash: indicates hash was computed in software stack 803 * @wifi_acked_valid: wifi_acked was set 804 * @wifi_acked: whether frame was acked on wifi or not 805 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 806 * @encapsulation: indicates the inner headers in the skbuff are valid 807 * @encap_hdr_csum: software checksum is needed 808 * @csum_valid: checksum is already valid 809 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 810 * @csum_complete_sw: checksum was completed by software 811 * @csum_level: indicates the number of consecutive checksums found in 812 * the packet minus one that have been verified as 813 * CHECKSUM_UNNECESSARY (max 3) 814 * @scm_io_uring: SKB holds io_uring registered files 815 * @dst_pending_confirm: need to confirm neighbour 816 * @decrypted: Decrypted SKB 817 * @slow_gro: state present at GRO time, slower prepare step required 818 * @mono_delivery_time: When set, skb->tstamp has the 819 * delivery_time in mono clock base (i.e. EDT). Otherwise, the 820 * skb->tstamp has the (rcv) timestamp at ingress and 821 * delivery_time at egress. 822 * @napi_id: id of the NAPI struct this skb came from 823 * @sender_cpu: (aka @napi_id) source CPU in XPS 824 * @alloc_cpu: CPU which did the skb allocation. 825 * @secmark: security marking 826 * @mark: Generic packet mark 827 * @reserved_tailroom: (aka @mark) number of bytes of free space available 828 * at the tail of an sk_buff 829 * @vlan_all: vlan fields (proto & tci) 830 * @vlan_proto: vlan encapsulation protocol 831 * @vlan_tci: vlan tag control information 832 * @inner_protocol: Protocol (encapsulation) 833 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 834 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 835 * @inner_transport_header: Inner transport layer header (encapsulation) 836 * @inner_network_header: Network layer header (encapsulation) 837 * @inner_mac_header: Link layer header (encapsulation) 838 * @transport_header: Transport layer header 839 * @network_header: Network layer header 840 * @mac_header: Link layer header 841 * @kcov_handle: KCOV remote handle for remote coverage collection 842 * @tail: Tail pointer 843 * @end: End pointer 844 * @head: Head of buffer 845 * @data: Data head pointer 846 * @truesize: Buffer size 847 * @users: User count - see {datagram,tcp}.c 848 * @extensions: allocated extensions, valid if active_extensions is nonzero 849 */ 850 851struct sk_buff { 852 union { 853 struct { 854 /* These two members must be first to match sk_buff_head. */ 855 struct sk_buff *next; 856 struct sk_buff *prev; 857 858 union { 859 struct net_device *dev; 860 /* Some protocols might use this space to store information, 861 * while device pointer would be NULL. 862 * UDP receive path is one user. 863 */ 864 unsigned long dev_scratch; 865 }; 866 }; 867 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 868 struct list_head list; 869 struct llist_node ll_node; 870 }; 871 872 union { 873 struct sock *sk; 874 int ip_defrag_offset; 875 }; 876 877 union { 878 ktime_t tstamp; 879 u64 skb_mstamp_ns; /* earliest departure time */ 880 }; 881 /* 882 * This is the control buffer. It is free to use for every 883 * layer. Please put your private variables there. If you 884 * want to keep them across layers you have to do a skb_clone() 885 * first. This is owned by whoever has the skb queued ATM. 886 */ 887 char cb[48] __aligned(8); 888 889 union { 890 struct { 891 unsigned long _skb_refdst; 892 void (*destructor)(struct sk_buff *skb); 893 }; 894 struct list_head tcp_tsorted_anchor; 895#ifdef CONFIG_NET_SOCK_MSG 896 unsigned long _sk_redir; 897#endif 898 }; 899 900#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 901 unsigned long _nfct; 902#endif 903 unsigned int len, 904 data_len; 905 __u16 mac_len, 906 hdr_len; 907 908 /* Following fields are _not_ copied in __copy_skb_header() 909 * Note that queue_mapping is here mostly to fill a hole. 910 */ 911 __u16 queue_mapping; 912 913/* if you move cloned around you also must adapt those constants */ 914#ifdef __BIG_ENDIAN_BITFIELD 915#define CLONED_MASK (1 << 7) 916#else 917#define CLONED_MASK 1 918#endif 919#define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset) 920 921 /* private: */ 922 __u8 __cloned_offset[0]; 923 /* public: */ 924 __u8 cloned:1, 925 nohdr:1, 926 fclone:2, 927 peeked:1, 928 head_frag:1, 929 pfmemalloc:1, 930 pp_recycle:1; /* page_pool recycle indicator */ 931#ifdef CONFIG_SKB_EXTENSIONS 932 __u8 active_extensions; 933#endif 934 935 /* Fields enclosed in headers group are copied 936 * using a single memcpy() in __copy_skb_header() 937 */ 938 struct_group(headers, 939 940 /* private: */ 941 __u8 __pkt_type_offset[0]; 942 /* public: */ 943 __u8 pkt_type:3; /* see PKT_TYPE_MAX */ 944 __u8 ignore_df:1; 945 __u8 nf_trace:1; 946 __u8 ip_summed:2; 947 __u8 ooo_okay:1; 948 949 __u8 l4_hash:1; 950 __u8 sw_hash:1; 951 __u8 wifi_acked_valid:1; 952 __u8 wifi_acked:1; 953 __u8 no_fcs:1; 954 /* Indicates the inner headers are valid in the skbuff. */ 955 __u8 encapsulation:1; 956 __u8 encap_hdr_csum:1; 957 __u8 csum_valid:1; 958 959 /* private: */ 960 __u8 __pkt_vlan_present_offset[0]; 961 /* public: */ 962 __u8 remcsum_offload:1; 963 __u8 csum_complete_sw:1; 964 __u8 csum_level:2; 965 __u8 dst_pending_confirm:1; 966 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */ 967#ifdef CONFIG_NET_CLS_ACT 968 __u8 tc_skip_classify:1; 969 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */ 970#endif 971#ifdef CONFIG_IPV6_NDISC_NODETYPE 972 __u8 ndisc_nodetype:2; 973#endif 974 975 __u8 ipvs_property:1; 976 __u8 inner_protocol_type:1; 977#ifdef CONFIG_NET_SWITCHDEV 978 __u8 offload_fwd_mark:1; 979 __u8 offload_l3_fwd_mark:1; 980#endif 981 __u8 redirected:1; 982#ifdef CONFIG_NET_REDIRECT 983 __u8 from_ingress:1; 984#endif 985#ifdef CONFIG_NETFILTER_SKIP_EGRESS 986 __u8 nf_skip_egress:1; 987#endif 988#ifdef CONFIG_TLS_DEVICE 989 __u8 decrypted:1; 990#endif 991 __u8 slow_gro:1; 992 __u8 csum_not_inet:1; 993 __u8 scm_io_uring:1; 994 995#ifdef CONFIG_NET_SCHED 996 __u16 tc_index; /* traffic control index */ 997#endif 998 999 union { 1000 __wsum csum; 1001 struct { 1002 __u16 csum_start; 1003 __u16 csum_offset; 1004 }; 1005 }; 1006 __u32 priority; 1007 int skb_iif; 1008 __u32 hash; 1009 union { 1010 u32 vlan_all; 1011 struct { 1012 __be16 vlan_proto; 1013 __u16 vlan_tci; 1014 }; 1015 }; 1016#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 1017 union { 1018 unsigned int napi_id; 1019 unsigned int sender_cpu; 1020 }; 1021#endif 1022 u16 alloc_cpu; 1023#ifdef CONFIG_NETWORK_SECMARK 1024 __u32 secmark; 1025#endif 1026 1027 union { 1028 __u32 mark; 1029 __u32 reserved_tailroom; 1030 }; 1031 1032 union { 1033 __be16 inner_protocol; 1034 __u8 inner_ipproto; 1035 }; 1036 1037 __u16 inner_transport_header; 1038 __u16 inner_network_header; 1039 __u16 inner_mac_header; 1040 1041 __be16 protocol; 1042 __u16 transport_header; 1043 __u16 network_header; 1044 __u16 mac_header; 1045 1046#ifdef CONFIG_KCOV 1047 u64 kcov_handle; 1048#endif 1049 1050 ); /* end headers group */ 1051 1052 /* These elements must be at the end, see alloc_skb() for details. */ 1053 sk_buff_data_t tail; 1054 sk_buff_data_t end; 1055 unsigned char *head, 1056 *data; 1057 unsigned int truesize; 1058 refcount_t users; 1059 1060#ifdef CONFIG_SKB_EXTENSIONS 1061 /* only useable after checking ->active_extensions != 0 */ 1062 struct skb_ext *extensions; 1063#endif 1064}; 1065 1066/* if you move pkt_type around you also must adapt those constants */ 1067#ifdef __BIG_ENDIAN_BITFIELD 1068#define PKT_TYPE_MAX (7 << 5) 1069#else 1070#define PKT_TYPE_MAX 7 1071#endif 1072#define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset) 1073 1074/* if you move tc_at_ingress or mono_delivery_time 1075 * around, you also must adapt these constants. 1076 */ 1077#ifdef __BIG_ENDIAN_BITFIELD 1078#define TC_AT_INGRESS_MASK (1 << 0) 1079#define SKB_MONO_DELIVERY_TIME_MASK (1 << 2) 1080#else 1081#define TC_AT_INGRESS_MASK (1 << 7) 1082#define SKB_MONO_DELIVERY_TIME_MASK (1 << 5) 1083#endif 1084#define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset) 1085 1086#ifdef __KERNEL__ 1087/* 1088 * Handling routines are only of interest to the kernel 1089 */ 1090 1091#define SKB_ALLOC_FCLONE 0x01 1092#define SKB_ALLOC_RX 0x02 1093#define SKB_ALLOC_NAPI 0x04 1094 1095/** 1096 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 1097 * @skb: buffer 1098 */ 1099static inline bool skb_pfmemalloc(const struct sk_buff *skb) 1100{ 1101 return unlikely(skb->pfmemalloc); 1102} 1103 1104/* 1105 * skb might have a dst pointer attached, refcounted or not. 1106 * _skb_refdst low order bit is set if refcount was _not_ taken 1107 */ 1108#define SKB_DST_NOREF 1UL 1109#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 1110 1111/** 1112 * skb_dst - returns skb dst_entry 1113 * @skb: buffer 1114 * 1115 * Returns skb dst_entry, regardless of reference taken or not. 1116 */ 1117static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 1118{ 1119 /* If refdst was not refcounted, check we still are in a 1120 * rcu_read_lock section 1121 */ 1122 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 1123 !rcu_read_lock_held() && 1124 !rcu_read_lock_bh_held()); 1125 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 1126} 1127 1128/** 1129 * skb_dst_set - sets skb dst 1130 * @skb: buffer 1131 * @dst: dst entry 1132 * 1133 * Sets skb dst, assuming a reference was taken on dst and should 1134 * be released by skb_dst_drop() 1135 */ 1136static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 1137{ 1138 skb->slow_gro |= !!dst; 1139 skb->_skb_refdst = (unsigned long)dst; 1140} 1141 1142/** 1143 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 1144 * @skb: buffer 1145 * @dst: dst entry 1146 * 1147 * Sets skb dst, assuming a reference was not taken on dst. 1148 * If dst entry is cached, we do not take reference and dst_release 1149 * will be avoided by refdst_drop. If dst entry is not cached, we take 1150 * reference, so that last dst_release can destroy the dst immediately. 1151 */ 1152static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1153{ 1154 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1155 skb->slow_gro |= !!dst; 1156 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1157} 1158 1159/** 1160 * skb_dst_is_noref - Test if skb dst isn't refcounted 1161 * @skb: buffer 1162 */ 1163static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1164{ 1165 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1166} 1167 1168/** 1169 * skb_rtable - Returns the skb &rtable 1170 * @skb: buffer 1171 */ 1172static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1173{ 1174 return (struct rtable *)skb_dst(skb); 1175} 1176 1177/* For mangling skb->pkt_type from user space side from applications 1178 * such as nft, tc, etc, we only allow a conservative subset of 1179 * possible pkt_types to be set. 1180*/ 1181static inline bool skb_pkt_type_ok(u32 ptype) 1182{ 1183 return ptype <= PACKET_OTHERHOST; 1184} 1185 1186/** 1187 * skb_napi_id - Returns the skb's NAPI id 1188 * @skb: buffer 1189 */ 1190static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1191{ 1192#ifdef CONFIG_NET_RX_BUSY_POLL 1193 return skb->napi_id; 1194#else 1195 return 0; 1196#endif 1197} 1198 1199/** 1200 * skb_unref - decrement the skb's reference count 1201 * @skb: buffer 1202 * 1203 * Returns true if we can free the skb. 1204 */ 1205static inline bool skb_unref(struct sk_buff *skb) 1206{ 1207 if (unlikely(!skb)) 1208 return false; 1209 if (likely(refcount_read(&skb->users) == 1)) 1210 smp_rmb(); 1211 else if (likely(!refcount_dec_and_test(&skb->users))) 1212 return false; 1213 1214 return true; 1215} 1216 1217void __fix_address 1218kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason); 1219 1220/** 1221 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason 1222 * @skb: buffer to free 1223 */ 1224static inline void kfree_skb(struct sk_buff *skb) 1225{ 1226 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1227} 1228 1229void skb_release_head_state(struct sk_buff *skb); 1230void kfree_skb_list_reason(struct sk_buff *segs, 1231 enum skb_drop_reason reason); 1232void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1233void skb_tx_error(struct sk_buff *skb); 1234 1235static inline void kfree_skb_list(struct sk_buff *segs) 1236{ 1237 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED); 1238} 1239 1240#ifdef CONFIG_TRACEPOINTS 1241void consume_skb(struct sk_buff *skb); 1242#else 1243static inline void consume_skb(struct sk_buff *skb) 1244{ 1245 return kfree_skb(skb); 1246} 1247#endif 1248 1249void __consume_stateless_skb(struct sk_buff *skb); 1250void __kfree_skb(struct sk_buff *skb); 1251extern struct kmem_cache *skbuff_cache; 1252 1253void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1254bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1255 bool *fragstolen, int *delta_truesize); 1256 1257struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1258 int node); 1259struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1260struct sk_buff *build_skb(void *data, unsigned int frag_size); 1261struct sk_buff *build_skb_around(struct sk_buff *skb, 1262 void *data, unsigned int frag_size); 1263void skb_attempt_defer_free(struct sk_buff *skb); 1264 1265struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1266struct sk_buff *slab_build_skb(void *data); 1267 1268/** 1269 * alloc_skb - allocate a network buffer 1270 * @size: size to allocate 1271 * @priority: allocation mask 1272 * 1273 * This function is a convenient wrapper around __alloc_skb(). 1274 */ 1275static inline struct sk_buff *alloc_skb(unsigned int size, 1276 gfp_t priority) 1277{ 1278 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1279} 1280 1281struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1282 unsigned long data_len, 1283 int max_page_order, 1284 int *errcode, 1285 gfp_t gfp_mask); 1286struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1287 1288/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1289struct sk_buff_fclones { 1290 struct sk_buff skb1; 1291 1292 struct sk_buff skb2; 1293 1294 refcount_t fclone_ref; 1295}; 1296 1297/** 1298 * skb_fclone_busy - check if fclone is busy 1299 * @sk: socket 1300 * @skb: buffer 1301 * 1302 * Returns true if skb is a fast clone, and its clone is not freed. 1303 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1304 * so we also check that this didnt happen. 1305 */ 1306static inline bool skb_fclone_busy(const struct sock *sk, 1307 const struct sk_buff *skb) 1308{ 1309 const struct sk_buff_fclones *fclones; 1310 1311 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1312 1313 return skb->fclone == SKB_FCLONE_ORIG && 1314 refcount_read(&fclones->fclone_ref) > 1 && 1315 READ_ONCE(fclones->skb2.sk) == sk; 1316} 1317 1318/** 1319 * alloc_skb_fclone - allocate a network buffer from fclone cache 1320 * @size: size to allocate 1321 * @priority: allocation mask 1322 * 1323 * This function is a convenient wrapper around __alloc_skb(). 1324 */ 1325static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1326 gfp_t priority) 1327{ 1328 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1329} 1330 1331struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1332void skb_headers_offset_update(struct sk_buff *skb, int off); 1333int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1334struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1335void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1336struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1337struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1338 gfp_t gfp_mask, bool fclone); 1339static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1340 gfp_t gfp_mask) 1341{ 1342 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1343} 1344 1345int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1346struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1347 unsigned int headroom); 1348struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom); 1349struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1350 int newtailroom, gfp_t priority); 1351int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1352 int offset, int len); 1353int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1354 int offset, int len); 1355int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1356int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1357 1358/** 1359 * skb_pad - zero pad the tail of an skb 1360 * @skb: buffer to pad 1361 * @pad: space to pad 1362 * 1363 * Ensure that a buffer is followed by a padding area that is zero 1364 * filled. Used by network drivers which may DMA or transfer data 1365 * beyond the buffer end onto the wire. 1366 * 1367 * May return error in out of memory cases. The skb is freed on error. 1368 */ 1369static inline int skb_pad(struct sk_buff *skb, int pad) 1370{ 1371 return __skb_pad(skb, pad, true); 1372} 1373#define dev_kfree_skb(a) consume_skb(a) 1374 1375int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1376 int offset, size_t size); 1377 1378struct skb_seq_state { 1379 __u32 lower_offset; 1380 __u32 upper_offset; 1381 __u32 frag_idx; 1382 __u32 stepped_offset; 1383 struct sk_buff *root_skb; 1384 struct sk_buff *cur_skb; 1385 __u8 *frag_data; 1386 __u32 frag_off; 1387}; 1388 1389void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1390 unsigned int to, struct skb_seq_state *st); 1391unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1392 struct skb_seq_state *st); 1393void skb_abort_seq_read(struct skb_seq_state *st); 1394 1395unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1396 unsigned int to, struct ts_config *config); 1397 1398/* 1399 * Packet hash types specify the type of hash in skb_set_hash. 1400 * 1401 * Hash types refer to the protocol layer addresses which are used to 1402 * construct a packet's hash. The hashes are used to differentiate or identify 1403 * flows of the protocol layer for the hash type. Hash types are either 1404 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1405 * 1406 * Properties of hashes: 1407 * 1408 * 1) Two packets in different flows have different hash values 1409 * 2) Two packets in the same flow should have the same hash value 1410 * 1411 * A hash at a higher layer is considered to be more specific. A driver should 1412 * set the most specific hash possible. 1413 * 1414 * A driver cannot indicate a more specific hash than the layer at which a hash 1415 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1416 * 1417 * A driver may indicate a hash level which is less specific than the 1418 * actual layer the hash was computed on. For instance, a hash computed 1419 * at L4 may be considered an L3 hash. This should only be done if the 1420 * driver can't unambiguously determine that the HW computed the hash at 1421 * the higher layer. Note that the "should" in the second property above 1422 * permits this. 1423 */ 1424enum pkt_hash_types { 1425 PKT_HASH_TYPE_NONE, /* Undefined type */ 1426 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1427 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1428 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1429}; 1430 1431static inline void skb_clear_hash(struct sk_buff *skb) 1432{ 1433 skb->hash = 0; 1434 skb->sw_hash = 0; 1435 skb->l4_hash = 0; 1436} 1437 1438static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1439{ 1440 if (!skb->l4_hash) 1441 skb_clear_hash(skb); 1442} 1443 1444static inline void 1445__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1446{ 1447 skb->l4_hash = is_l4; 1448 skb->sw_hash = is_sw; 1449 skb->hash = hash; 1450} 1451 1452static inline void 1453skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1454{ 1455 /* Used by drivers to set hash from HW */ 1456 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1457} 1458 1459static inline void 1460__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1461{ 1462 __skb_set_hash(skb, hash, true, is_l4); 1463} 1464 1465void __skb_get_hash(struct sk_buff *skb); 1466u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1467u32 skb_get_poff(const struct sk_buff *skb); 1468u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1469 const struct flow_keys_basic *keys, int hlen); 1470__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1471 const void *data, int hlen_proto); 1472 1473static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1474 int thoff, u8 ip_proto) 1475{ 1476 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1477} 1478 1479void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1480 const struct flow_dissector_key *key, 1481 unsigned int key_count); 1482 1483struct bpf_flow_dissector; 1484u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1485 __be16 proto, int nhoff, int hlen, unsigned int flags); 1486 1487bool __skb_flow_dissect(const struct net *net, 1488 const struct sk_buff *skb, 1489 struct flow_dissector *flow_dissector, 1490 void *target_container, const void *data, 1491 __be16 proto, int nhoff, int hlen, unsigned int flags); 1492 1493static inline bool skb_flow_dissect(const struct sk_buff *skb, 1494 struct flow_dissector *flow_dissector, 1495 void *target_container, unsigned int flags) 1496{ 1497 return __skb_flow_dissect(NULL, skb, flow_dissector, 1498 target_container, NULL, 0, 0, 0, flags); 1499} 1500 1501static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1502 struct flow_keys *flow, 1503 unsigned int flags) 1504{ 1505 memset(flow, 0, sizeof(*flow)); 1506 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1507 flow, NULL, 0, 0, 0, flags); 1508} 1509 1510static inline bool 1511skb_flow_dissect_flow_keys_basic(const struct net *net, 1512 const struct sk_buff *skb, 1513 struct flow_keys_basic *flow, 1514 const void *data, __be16 proto, 1515 int nhoff, int hlen, unsigned int flags) 1516{ 1517 memset(flow, 0, sizeof(*flow)); 1518 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1519 data, proto, nhoff, hlen, flags); 1520} 1521 1522void skb_flow_dissect_meta(const struct sk_buff *skb, 1523 struct flow_dissector *flow_dissector, 1524 void *target_container); 1525 1526/* Gets a skb connection tracking info, ctinfo map should be a 1527 * map of mapsize to translate enum ip_conntrack_info states 1528 * to user states. 1529 */ 1530void 1531skb_flow_dissect_ct(const struct sk_buff *skb, 1532 struct flow_dissector *flow_dissector, 1533 void *target_container, 1534 u16 *ctinfo_map, size_t mapsize, 1535 bool post_ct, u16 zone); 1536void 1537skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1538 struct flow_dissector *flow_dissector, 1539 void *target_container); 1540 1541void skb_flow_dissect_hash(const struct sk_buff *skb, 1542 struct flow_dissector *flow_dissector, 1543 void *target_container); 1544 1545static inline __u32 skb_get_hash(struct sk_buff *skb) 1546{ 1547 if (!skb->l4_hash && !skb->sw_hash) 1548 __skb_get_hash(skb); 1549 1550 return skb->hash; 1551} 1552 1553static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1554{ 1555 if (!skb->l4_hash && !skb->sw_hash) { 1556 struct flow_keys keys; 1557 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1558 1559 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1560 } 1561 1562 return skb->hash; 1563} 1564 1565__u32 skb_get_hash_perturb(const struct sk_buff *skb, 1566 const siphash_key_t *perturb); 1567 1568static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1569{ 1570 return skb->hash; 1571} 1572 1573static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1574{ 1575 to->hash = from->hash; 1576 to->sw_hash = from->sw_hash; 1577 to->l4_hash = from->l4_hash; 1578}; 1579 1580static inline void skb_copy_decrypted(struct sk_buff *to, 1581 const struct sk_buff *from) 1582{ 1583#ifdef CONFIG_TLS_DEVICE 1584 to->decrypted = from->decrypted; 1585#endif 1586} 1587 1588#ifdef NET_SKBUFF_DATA_USES_OFFSET 1589static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1590{ 1591 return skb->head + skb->end; 1592} 1593 1594static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1595{ 1596 return skb->end; 1597} 1598 1599static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1600{ 1601 skb->end = offset; 1602} 1603#else 1604static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1605{ 1606 return skb->end; 1607} 1608 1609static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1610{ 1611 return skb->end - skb->head; 1612} 1613 1614static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset) 1615{ 1616 skb->end = skb->head + offset; 1617} 1618#endif 1619 1620struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1621 struct ubuf_info *uarg); 1622 1623void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 1624 1625void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 1626 bool success); 1627 1628int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk, 1629 struct sk_buff *skb, struct iov_iter *from, 1630 size_t length); 1631 1632static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb, 1633 struct msghdr *msg, int len) 1634{ 1635 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len); 1636} 1637 1638int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1639 struct msghdr *msg, int len, 1640 struct ubuf_info *uarg); 1641 1642/* Internal */ 1643#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1644 1645static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1646{ 1647 return &skb_shinfo(skb)->hwtstamps; 1648} 1649 1650static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1651{ 1652 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1653 1654 return is_zcopy ? skb_uarg(skb) : NULL; 1655} 1656 1657static inline bool skb_zcopy_pure(const struct sk_buff *skb) 1658{ 1659 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY; 1660} 1661 1662static inline bool skb_zcopy_managed(const struct sk_buff *skb) 1663{ 1664 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS; 1665} 1666 1667static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1, 1668 const struct sk_buff *skb2) 1669{ 1670 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2); 1671} 1672 1673static inline void net_zcopy_get(struct ubuf_info *uarg) 1674{ 1675 refcount_inc(&uarg->refcnt); 1676} 1677 1678static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1679{ 1680 skb_shinfo(skb)->destructor_arg = uarg; 1681 skb_shinfo(skb)->flags |= uarg->flags; 1682} 1683 1684static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1685 bool *have_ref) 1686{ 1687 if (skb && uarg && !skb_zcopy(skb)) { 1688 if (unlikely(have_ref && *have_ref)) 1689 *have_ref = false; 1690 else 1691 net_zcopy_get(uarg); 1692 skb_zcopy_init(skb, uarg); 1693 } 1694} 1695 1696static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1697{ 1698 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1699 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1700} 1701 1702static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1703{ 1704 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1705} 1706 1707static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1708{ 1709 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1710} 1711 1712static inline void net_zcopy_put(struct ubuf_info *uarg) 1713{ 1714 if (uarg) 1715 uarg->callback(NULL, uarg, true); 1716} 1717 1718static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1719{ 1720 if (uarg) { 1721 if (uarg->callback == msg_zerocopy_callback) 1722 msg_zerocopy_put_abort(uarg, have_uref); 1723 else if (have_uref) 1724 net_zcopy_put(uarg); 1725 } 1726} 1727 1728/* Release a reference on a zerocopy structure */ 1729static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1730{ 1731 struct ubuf_info *uarg = skb_zcopy(skb); 1732 1733 if (uarg) { 1734 if (!skb_zcopy_is_nouarg(skb)) 1735 uarg->callback(skb, uarg, zerocopy_success); 1736 1737 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY; 1738 } 1739} 1740 1741void __skb_zcopy_downgrade_managed(struct sk_buff *skb); 1742 1743static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb) 1744{ 1745 if (unlikely(skb_zcopy_managed(skb))) 1746 __skb_zcopy_downgrade_managed(skb); 1747} 1748 1749static inline void skb_mark_not_on_list(struct sk_buff *skb) 1750{ 1751 skb->next = NULL; 1752} 1753 1754static inline void skb_poison_list(struct sk_buff *skb) 1755{ 1756#ifdef CONFIG_DEBUG_NET 1757 skb->next = SKB_LIST_POISON_NEXT; 1758#endif 1759} 1760 1761/* Iterate through singly-linked GSO fragments of an skb. */ 1762#define skb_list_walk_safe(first, skb, next_skb) \ 1763 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1764 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1765 1766static inline void skb_list_del_init(struct sk_buff *skb) 1767{ 1768 __list_del_entry(&skb->list); 1769 skb_mark_not_on_list(skb); 1770} 1771 1772/** 1773 * skb_queue_empty - check if a queue is empty 1774 * @list: queue head 1775 * 1776 * Returns true if the queue is empty, false otherwise. 1777 */ 1778static inline int skb_queue_empty(const struct sk_buff_head *list) 1779{ 1780 return list->next == (const struct sk_buff *) list; 1781} 1782 1783/** 1784 * skb_queue_empty_lockless - check if a queue is empty 1785 * @list: queue head 1786 * 1787 * Returns true if the queue is empty, false otherwise. 1788 * This variant can be used in lockless contexts. 1789 */ 1790static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1791{ 1792 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1793} 1794 1795 1796/** 1797 * skb_queue_is_last - check if skb is the last entry in the queue 1798 * @list: queue head 1799 * @skb: buffer 1800 * 1801 * Returns true if @skb is the last buffer on the list. 1802 */ 1803static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1804 const struct sk_buff *skb) 1805{ 1806 return skb->next == (const struct sk_buff *) list; 1807} 1808 1809/** 1810 * skb_queue_is_first - check if skb is the first entry in the queue 1811 * @list: queue head 1812 * @skb: buffer 1813 * 1814 * Returns true if @skb is the first buffer on the list. 1815 */ 1816static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1817 const struct sk_buff *skb) 1818{ 1819 return skb->prev == (const struct sk_buff *) list; 1820} 1821 1822/** 1823 * skb_queue_next - return the next packet in the queue 1824 * @list: queue head 1825 * @skb: current buffer 1826 * 1827 * Return the next packet in @list after @skb. It is only valid to 1828 * call this if skb_queue_is_last() evaluates to false. 1829 */ 1830static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1831 const struct sk_buff *skb) 1832{ 1833 /* This BUG_ON may seem severe, but if we just return then we 1834 * are going to dereference garbage. 1835 */ 1836 BUG_ON(skb_queue_is_last(list, skb)); 1837 return skb->next; 1838} 1839 1840/** 1841 * skb_queue_prev - return the prev packet in the queue 1842 * @list: queue head 1843 * @skb: current buffer 1844 * 1845 * Return the prev packet in @list before @skb. It is only valid to 1846 * call this if skb_queue_is_first() evaluates to false. 1847 */ 1848static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1849 const struct sk_buff *skb) 1850{ 1851 /* This BUG_ON may seem severe, but if we just return then we 1852 * are going to dereference garbage. 1853 */ 1854 BUG_ON(skb_queue_is_first(list, skb)); 1855 return skb->prev; 1856} 1857 1858/** 1859 * skb_get - reference buffer 1860 * @skb: buffer to reference 1861 * 1862 * Makes another reference to a socket buffer and returns a pointer 1863 * to the buffer. 1864 */ 1865static inline struct sk_buff *skb_get(struct sk_buff *skb) 1866{ 1867 refcount_inc(&skb->users); 1868 return skb; 1869} 1870 1871/* 1872 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1873 */ 1874 1875/** 1876 * skb_cloned - is the buffer a clone 1877 * @skb: buffer to check 1878 * 1879 * Returns true if the buffer was generated with skb_clone() and is 1880 * one of multiple shared copies of the buffer. Cloned buffers are 1881 * shared data so must not be written to under normal circumstances. 1882 */ 1883static inline int skb_cloned(const struct sk_buff *skb) 1884{ 1885 return skb->cloned && 1886 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1887} 1888 1889static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1890{ 1891 might_sleep_if(gfpflags_allow_blocking(pri)); 1892 1893 if (skb_cloned(skb)) 1894 return pskb_expand_head(skb, 0, 0, pri); 1895 1896 return 0; 1897} 1898 1899/* This variant of skb_unclone() makes sure skb->truesize 1900 * and skb_end_offset() are not changed, whenever a new skb->head is needed. 1901 * 1902 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X)) 1903 * when various debugging features are in place. 1904 */ 1905int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri); 1906static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 1907{ 1908 might_sleep_if(gfpflags_allow_blocking(pri)); 1909 1910 if (skb_cloned(skb)) 1911 return __skb_unclone_keeptruesize(skb, pri); 1912 return 0; 1913} 1914 1915/** 1916 * skb_header_cloned - is the header a clone 1917 * @skb: buffer to check 1918 * 1919 * Returns true if modifying the header part of the buffer requires 1920 * the data to be copied. 1921 */ 1922static inline int skb_header_cloned(const struct sk_buff *skb) 1923{ 1924 int dataref; 1925 1926 if (!skb->cloned) 1927 return 0; 1928 1929 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1930 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1931 return dataref != 1; 1932} 1933 1934static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1935{ 1936 might_sleep_if(gfpflags_allow_blocking(pri)); 1937 1938 if (skb_header_cloned(skb)) 1939 return pskb_expand_head(skb, 0, 0, pri); 1940 1941 return 0; 1942} 1943 1944/** 1945 * __skb_header_release() - allow clones to use the headroom 1946 * @skb: buffer to operate on 1947 * 1948 * See "DOC: dataref and headerless skbs". 1949 */ 1950static inline void __skb_header_release(struct sk_buff *skb) 1951{ 1952 skb->nohdr = 1; 1953 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1954} 1955 1956 1957/** 1958 * skb_shared - is the buffer shared 1959 * @skb: buffer to check 1960 * 1961 * Returns true if more than one person has a reference to this 1962 * buffer. 1963 */ 1964static inline int skb_shared(const struct sk_buff *skb) 1965{ 1966 return refcount_read(&skb->users) != 1; 1967} 1968 1969/** 1970 * skb_share_check - check if buffer is shared and if so clone it 1971 * @skb: buffer to check 1972 * @pri: priority for memory allocation 1973 * 1974 * If the buffer is shared the buffer is cloned and the old copy 1975 * drops a reference. A new clone with a single reference is returned. 1976 * If the buffer is not shared the original buffer is returned. When 1977 * being called from interrupt status or with spinlocks held pri must 1978 * be GFP_ATOMIC. 1979 * 1980 * NULL is returned on a memory allocation failure. 1981 */ 1982static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1983{ 1984 might_sleep_if(gfpflags_allow_blocking(pri)); 1985 if (skb_shared(skb)) { 1986 struct sk_buff *nskb = skb_clone(skb, pri); 1987 1988 if (likely(nskb)) 1989 consume_skb(skb); 1990 else 1991 kfree_skb(skb); 1992 skb = nskb; 1993 } 1994 return skb; 1995} 1996 1997/* 1998 * Copy shared buffers into a new sk_buff. We effectively do COW on 1999 * packets to handle cases where we have a local reader and forward 2000 * and a couple of other messy ones. The normal one is tcpdumping 2001 * a packet thats being forwarded. 2002 */ 2003 2004/** 2005 * skb_unshare - make a copy of a shared buffer 2006 * @skb: buffer to check 2007 * @pri: priority for memory allocation 2008 * 2009 * If the socket buffer is a clone then this function creates a new 2010 * copy of the data, drops a reference count on the old copy and returns 2011 * the new copy with the reference count at 1. If the buffer is not a clone 2012 * the original buffer is returned. When called with a spinlock held or 2013 * from interrupt state @pri must be %GFP_ATOMIC 2014 * 2015 * %NULL is returned on a memory allocation failure. 2016 */ 2017static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 2018 gfp_t pri) 2019{ 2020 might_sleep_if(gfpflags_allow_blocking(pri)); 2021 if (skb_cloned(skb)) { 2022 struct sk_buff *nskb = skb_copy(skb, pri); 2023 2024 /* Free our shared copy */ 2025 if (likely(nskb)) 2026 consume_skb(skb); 2027 else 2028 kfree_skb(skb); 2029 skb = nskb; 2030 } 2031 return skb; 2032} 2033 2034/** 2035 * skb_peek - peek at the head of an &sk_buff_head 2036 * @list_: list to peek at 2037 * 2038 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2039 * be careful with this one. A peek leaves the buffer on the 2040 * list and someone else may run off with it. You must hold 2041 * the appropriate locks or have a private queue to do this. 2042 * 2043 * Returns %NULL for an empty list or a pointer to the head element. 2044 * The reference count is not incremented and the reference is therefore 2045 * volatile. Use with caution. 2046 */ 2047static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 2048{ 2049 struct sk_buff *skb = list_->next; 2050 2051 if (skb == (struct sk_buff *)list_) 2052 skb = NULL; 2053 return skb; 2054} 2055 2056/** 2057 * __skb_peek - peek at the head of a non-empty &sk_buff_head 2058 * @list_: list to peek at 2059 * 2060 * Like skb_peek(), but the caller knows that the list is not empty. 2061 */ 2062static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 2063{ 2064 return list_->next; 2065} 2066 2067/** 2068 * skb_peek_next - peek skb following the given one from a queue 2069 * @skb: skb to start from 2070 * @list_: list to peek at 2071 * 2072 * Returns %NULL when the end of the list is met or a pointer to the 2073 * next element. The reference count is not incremented and the 2074 * reference is therefore volatile. Use with caution. 2075 */ 2076static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 2077 const struct sk_buff_head *list_) 2078{ 2079 struct sk_buff *next = skb->next; 2080 2081 if (next == (struct sk_buff *)list_) 2082 next = NULL; 2083 return next; 2084} 2085 2086/** 2087 * skb_peek_tail - peek at the tail of an &sk_buff_head 2088 * @list_: list to peek at 2089 * 2090 * Peek an &sk_buff. Unlike most other operations you _MUST_ 2091 * be careful with this one. A peek leaves the buffer on the 2092 * list and someone else may run off with it. You must hold 2093 * the appropriate locks or have a private queue to do this. 2094 * 2095 * Returns %NULL for an empty list or a pointer to the tail element. 2096 * The reference count is not incremented and the reference is therefore 2097 * volatile. Use with caution. 2098 */ 2099static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 2100{ 2101 struct sk_buff *skb = READ_ONCE(list_->prev); 2102 2103 if (skb == (struct sk_buff *)list_) 2104 skb = NULL; 2105 return skb; 2106 2107} 2108 2109/** 2110 * skb_queue_len - get queue length 2111 * @list_: list to measure 2112 * 2113 * Return the length of an &sk_buff queue. 2114 */ 2115static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 2116{ 2117 return list_->qlen; 2118} 2119 2120/** 2121 * skb_queue_len_lockless - get queue length 2122 * @list_: list to measure 2123 * 2124 * Return the length of an &sk_buff queue. 2125 * This variant can be used in lockless contexts. 2126 */ 2127static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 2128{ 2129 return READ_ONCE(list_->qlen); 2130} 2131 2132/** 2133 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 2134 * @list: queue to initialize 2135 * 2136 * This initializes only the list and queue length aspects of 2137 * an sk_buff_head object. This allows to initialize the list 2138 * aspects of an sk_buff_head without reinitializing things like 2139 * the spinlock. It can also be used for on-stack sk_buff_head 2140 * objects where the spinlock is known to not be used. 2141 */ 2142static inline void __skb_queue_head_init(struct sk_buff_head *list) 2143{ 2144 list->prev = list->next = (struct sk_buff *)list; 2145 list->qlen = 0; 2146} 2147 2148/* 2149 * This function creates a split out lock class for each invocation; 2150 * this is needed for now since a whole lot of users of the skb-queue 2151 * infrastructure in drivers have different locking usage (in hardirq) 2152 * than the networking core (in softirq only). In the long run either the 2153 * network layer or drivers should need annotation to consolidate the 2154 * main types of usage into 3 classes. 2155 */ 2156static inline void skb_queue_head_init(struct sk_buff_head *list) 2157{ 2158 spin_lock_init(&list->lock); 2159 __skb_queue_head_init(list); 2160} 2161 2162static inline void skb_queue_head_init_class(struct sk_buff_head *list, 2163 struct lock_class_key *class) 2164{ 2165 skb_queue_head_init(list); 2166 lockdep_set_class(&list->lock, class); 2167} 2168 2169/* 2170 * Insert an sk_buff on a list. 2171 * 2172 * The "__skb_xxxx()" functions are the non-atomic ones that 2173 * can only be called with interrupts disabled. 2174 */ 2175static inline void __skb_insert(struct sk_buff *newsk, 2176 struct sk_buff *prev, struct sk_buff *next, 2177 struct sk_buff_head *list) 2178{ 2179 /* See skb_queue_empty_lockless() and skb_peek_tail() 2180 * for the opposite READ_ONCE() 2181 */ 2182 WRITE_ONCE(newsk->next, next); 2183 WRITE_ONCE(newsk->prev, prev); 2184 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk); 2185 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk); 2186 WRITE_ONCE(list->qlen, list->qlen + 1); 2187} 2188 2189static inline void __skb_queue_splice(const struct sk_buff_head *list, 2190 struct sk_buff *prev, 2191 struct sk_buff *next) 2192{ 2193 struct sk_buff *first = list->next; 2194 struct sk_buff *last = list->prev; 2195 2196 WRITE_ONCE(first->prev, prev); 2197 WRITE_ONCE(prev->next, first); 2198 2199 WRITE_ONCE(last->next, next); 2200 WRITE_ONCE(next->prev, last); 2201} 2202 2203/** 2204 * skb_queue_splice - join two skb lists, this is designed for stacks 2205 * @list: the new list to add 2206 * @head: the place to add it in the first list 2207 */ 2208static inline void skb_queue_splice(const struct sk_buff_head *list, 2209 struct sk_buff_head *head) 2210{ 2211 if (!skb_queue_empty(list)) { 2212 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2213 head->qlen += list->qlen; 2214 } 2215} 2216 2217/** 2218 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 2219 * @list: the new list to add 2220 * @head: the place to add it in the first list 2221 * 2222 * The list at @list is reinitialised 2223 */ 2224static inline void skb_queue_splice_init(struct sk_buff_head *list, 2225 struct sk_buff_head *head) 2226{ 2227 if (!skb_queue_empty(list)) { 2228 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 2229 head->qlen += list->qlen; 2230 __skb_queue_head_init(list); 2231 } 2232} 2233 2234/** 2235 * skb_queue_splice_tail - join two skb lists, each list being a queue 2236 * @list: the new list to add 2237 * @head: the place to add it in the first list 2238 */ 2239static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 2240 struct sk_buff_head *head) 2241{ 2242 if (!skb_queue_empty(list)) { 2243 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2244 head->qlen += list->qlen; 2245 } 2246} 2247 2248/** 2249 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2250 * @list: the new list to add 2251 * @head: the place to add it in the first list 2252 * 2253 * Each of the lists is a queue. 2254 * The list at @list is reinitialised 2255 */ 2256static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2257 struct sk_buff_head *head) 2258{ 2259 if (!skb_queue_empty(list)) { 2260 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2261 head->qlen += list->qlen; 2262 __skb_queue_head_init(list); 2263 } 2264} 2265 2266/** 2267 * __skb_queue_after - queue a buffer at the list head 2268 * @list: list to use 2269 * @prev: place after this buffer 2270 * @newsk: buffer to queue 2271 * 2272 * Queue a buffer int the middle of a list. This function takes no locks 2273 * and you must therefore hold required locks before calling it. 2274 * 2275 * A buffer cannot be placed on two lists at the same time. 2276 */ 2277static inline void __skb_queue_after(struct sk_buff_head *list, 2278 struct sk_buff *prev, 2279 struct sk_buff *newsk) 2280{ 2281 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list); 2282} 2283 2284void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2285 struct sk_buff_head *list); 2286 2287static inline void __skb_queue_before(struct sk_buff_head *list, 2288 struct sk_buff *next, 2289 struct sk_buff *newsk) 2290{ 2291 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list); 2292} 2293 2294/** 2295 * __skb_queue_head - queue a buffer at the list head 2296 * @list: list to use 2297 * @newsk: buffer to queue 2298 * 2299 * Queue a buffer at the start of a list. This function takes no locks 2300 * and you must therefore hold required locks before calling it. 2301 * 2302 * A buffer cannot be placed on two lists at the same time. 2303 */ 2304static inline void __skb_queue_head(struct sk_buff_head *list, 2305 struct sk_buff *newsk) 2306{ 2307 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2308} 2309void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2310 2311/** 2312 * __skb_queue_tail - queue a buffer at the list tail 2313 * @list: list to use 2314 * @newsk: buffer to queue 2315 * 2316 * Queue a buffer at the end of a list. This function takes no locks 2317 * and you must therefore hold required locks before calling it. 2318 * 2319 * A buffer cannot be placed on two lists at the same time. 2320 */ 2321static inline void __skb_queue_tail(struct sk_buff_head *list, 2322 struct sk_buff *newsk) 2323{ 2324 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2325} 2326void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2327 2328/* 2329 * remove sk_buff from list. _Must_ be called atomically, and with 2330 * the list known.. 2331 */ 2332void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2333static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2334{ 2335 struct sk_buff *next, *prev; 2336 2337 WRITE_ONCE(list->qlen, list->qlen - 1); 2338 next = skb->next; 2339 prev = skb->prev; 2340 skb->next = skb->prev = NULL; 2341 WRITE_ONCE(next->prev, prev); 2342 WRITE_ONCE(prev->next, next); 2343} 2344 2345/** 2346 * __skb_dequeue - remove from the head of the queue 2347 * @list: list to dequeue from 2348 * 2349 * Remove the head of the list. This function does not take any locks 2350 * so must be used with appropriate locks held only. The head item is 2351 * returned or %NULL if the list is empty. 2352 */ 2353static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2354{ 2355 struct sk_buff *skb = skb_peek(list); 2356 if (skb) 2357 __skb_unlink(skb, list); 2358 return skb; 2359} 2360struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2361 2362/** 2363 * __skb_dequeue_tail - remove from the tail of the queue 2364 * @list: list to dequeue from 2365 * 2366 * Remove the tail of the list. This function does not take any locks 2367 * so must be used with appropriate locks held only. The tail item is 2368 * returned or %NULL if the list is empty. 2369 */ 2370static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2371{ 2372 struct sk_buff *skb = skb_peek_tail(list); 2373 if (skb) 2374 __skb_unlink(skb, list); 2375 return skb; 2376} 2377struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2378 2379 2380static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2381{ 2382 return skb->data_len; 2383} 2384 2385static inline unsigned int skb_headlen(const struct sk_buff *skb) 2386{ 2387 return skb->len - skb->data_len; 2388} 2389 2390static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2391{ 2392 unsigned int i, len = 0; 2393 2394 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2395 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2396 return len; 2397} 2398 2399static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2400{ 2401 return skb_headlen(skb) + __skb_pagelen(skb); 2402} 2403 2404static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo, 2405 int i, struct page *page, 2406 int off, int size) 2407{ 2408 skb_frag_t *frag = &shinfo->frags[i]; 2409 2410 /* 2411 * Propagate page pfmemalloc to the skb if we can. The problem is 2412 * that not all callers have unique ownership of the page but rely 2413 * on page_is_pfmemalloc doing the right thing(tm). 2414 */ 2415 frag->bv_page = page; 2416 frag->bv_offset = off; 2417 skb_frag_size_set(frag, size); 2418} 2419 2420/** 2421 * skb_len_add - adds a number to len fields of skb 2422 * @skb: buffer to add len to 2423 * @delta: number of bytes to add 2424 */ 2425static inline void skb_len_add(struct sk_buff *skb, int delta) 2426{ 2427 skb->len += delta; 2428 skb->data_len += delta; 2429 skb->truesize += delta; 2430} 2431 2432/** 2433 * __skb_fill_page_desc - initialise a paged fragment in an skb 2434 * @skb: buffer containing fragment to be initialised 2435 * @i: paged fragment index to initialise 2436 * @page: the page to use for this fragment 2437 * @off: the offset to the data with @page 2438 * @size: the length of the data 2439 * 2440 * Initialises the @i'th fragment of @skb to point to &size bytes at 2441 * offset @off within @page. 2442 * 2443 * Does not take any additional reference on the fragment. 2444 */ 2445static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2446 struct page *page, int off, int size) 2447{ 2448 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size); 2449 page = compound_head(page); 2450 if (page_is_pfmemalloc(page)) 2451 skb->pfmemalloc = true; 2452} 2453 2454/** 2455 * skb_fill_page_desc - initialise a paged fragment in an skb 2456 * @skb: buffer containing fragment to be initialised 2457 * @i: paged fragment index to initialise 2458 * @page: the page to use for this fragment 2459 * @off: the offset to the data with @page 2460 * @size: the length of the data 2461 * 2462 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2463 * @skb to point to @size bytes at offset @off within @page. In 2464 * addition updates @skb such that @i is the last fragment. 2465 * 2466 * Does not take any additional reference on the fragment. 2467 */ 2468static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2469 struct page *page, int off, int size) 2470{ 2471 __skb_fill_page_desc(skb, i, page, off, size); 2472 skb_shinfo(skb)->nr_frags = i + 1; 2473} 2474 2475/** 2476 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb 2477 * @skb: buffer containing fragment to be initialised 2478 * @i: paged fragment index to initialise 2479 * @page: the page to use for this fragment 2480 * @off: the offset to the data with @page 2481 * @size: the length of the data 2482 * 2483 * Variant of skb_fill_page_desc() which does not deal with 2484 * pfmemalloc, if page is not owned by us. 2485 */ 2486static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i, 2487 struct page *page, int off, 2488 int size) 2489{ 2490 struct skb_shared_info *shinfo = skb_shinfo(skb); 2491 2492 __skb_fill_page_desc_noacc(shinfo, i, page, off, size); 2493 shinfo->nr_frags = i + 1; 2494} 2495 2496void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2497 int size, unsigned int truesize); 2498 2499void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2500 unsigned int truesize); 2501 2502#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2503 2504#ifdef NET_SKBUFF_DATA_USES_OFFSET 2505static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2506{ 2507 return skb->head + skb->tail; 2508} 2509 2510static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2511{ 2512 skb->tail = skb->data - skb->head; 2513} 2514 2515static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2516{ 2517 skb_reset_tail_pointer(skb); 2518 skb->tail += offset; 2519} 2520 2521#else /* NET_SKBUFF_DATA_USES_OFFSET */ 2522static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2523{ 2524 return skb->tail; 2525} 2526 2527static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2528{ 2529 skb->tail = skb->data; 2530} 2531 2532static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2533{ 2534 skb->tail = skb->data + offset; 2535} 2536 2537#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2538 2539static inline void skb_assert_len(struct sk_buff *skb) 2540{ 2541#ifdef CONFIG_DEBUG_NET 2542 if (WARN_ONCE(!skb->len, "%s\n", __func__)) 2543 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 2544#endif /* CONFIG_DEBUG_NET */ 2545} 2546 2547/* 2548 * Add data to an sk_buff 2549 */ 2550void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2551void *skb_put(struct sk_buff *skb, unsigned int len); 2552static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2553{ 2554 void *tmp = skb_tail_pointer(skb); 2555 SKB_LINEAR_ASSERT(skb); 2556 skb->tail += len; 2557 skb->len += len; 2558 return tmp; 2559} 2560 2561static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2562{ 2563 void *tmp = __skb_put(skb, len); 2564 2565 memset(tmp, 0, len); 2566 return tmp; 2567} 2568 2569static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2570 unsigned int len) 2571{ 2572 void *tmp = __skb_put(skb, len); 2573 2574 memcpy(tmp, data, len); 2575 return tmp; 2576} 2577 2578static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2579{ 2580 *(u8 *)__skb_put(skb, 1) = val; 2581} 2582 2583static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2584{ 2585 void *tmp = skb_put(skb, len); 2586 2587 memset(tmp, 0, len); 2588 2589 return tmp; 2590} 2591 2592static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2593 unsigned int len) 2594{ 2595 void *tmp = skb_put(skb, len); 2596 2597 memcpy(tmp, data, len); 2598 2599 return tmp; 2600} 2601 2602static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2603{ 2604 *(u8 *)skb_put(skb, 1) = val; 2605} 2606 2607void *skb_push(struct sk_buff *skb, unsigned int len); 2608static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2609{ 2610 skb->data -= len; 2611 skb->len += len; 2612 return skb->data; 2613} 2614 2615void *skb_pull(struct sk_buff *skb, unsigned int len); 2616static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2617{ 2618 skb->len -= len; 2619 if (unlikely(skb->len < skb->data_len)) { 2620#if defined(CONFIG_DEBUG_NET) 2621 skb->len += len; 2622 pr_err("__skb_pull(len=%u)\n", len); 2623 skb_dump(KERN_ERR, skb, false); 2624#endif 2625 BUG(); 2626 } 2627 return skb->data += len; 2628} 2629 2630static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2631{ 2632 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2633} 2634 2635void *skb_pull_data(struct sk_buff *skb, size_t len); 2636 2637void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2638 2639static inline enum skb_drop_reason 2640pskb_may_pull_reason(struct sk_buff *skb, unsigned int len) 2641{ 2642 if (likely(len <= skb_headlen(skb))) 2643 return SKB_NOT_DROPPED_YET; 2644 2645 if (unlikely(len > skb->len)) 2646 return SKB_DROP_REASON_PKT_TOO_SMALL; 2647 2648 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb)))) 2649 return SKB_DROP_REASON_NOMEM; 2650 2651 return SKB_NOT_DROPPED_YET; 2652} 2653 2654static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2655{ 2656 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET; 2657} 2658 2659static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2660{ 2661 if (!pskb_may_pull(skb, len)) 2662 return NULL; 2663 2664 skb->len -= len; 2665 return skb->data += len; 2666} 2667 2668void skb_condense(struct sk_buff *skb); 2669 2670/** 2671 * skb_headroom - bytes at buffer head 2672 * @skb: buffer to check 2673 * 2674 * Return the number of bytes of free space at the head of an &sk_buff. 2675 */ 2676static inline unsigned int skb_headroom(const struct sk_buff *skb) 2677{ 2678 return skb->data - skb->head; 2679} 2680 2681/** 2682 * skb_tailroom - bytes at buffer end 2683 * @skb: buffer to check 2684 * 2685 * Return the number of bytes of free space at the tail of an sk_buff 2686 */ 2687static inline int skb_tailroom(const struct sk_buff *skb) 2688{ 2689 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2690} 2691 2692/** 2693 * skb_availroom - bytes at buffer end 2694 * @skb: buffer to check 2695 * 2696 * Return the number of bytes of free space at the tail of an sk_buff 2697 * allocated by sk_stream_alloc() 2698 */ 2699static inline int skb_availroom(const struct sk_buff *skb) 2700{ 2701 if (skb_is_nonlinear(skb)) 2702 return 0; 2703 2704 return skb->end - skb->tail - skb->reserved_tailroom; 2705} 2706 2707/** 2708 * skb_reserve - adjust headroom 2709 * @skb: buffer to alter 2710 * @len: bytes to move 2711 * 2712 * Increase the headroom of an empty &sk_buff by reducing the tail 2713 * room. This is only allowed for an empty buffer. 2714 */ 2715static inline void skb_reserve(struct sk_buff *skb, int len) 2716{ 2717 skb->data += len; 2718 skb->tail += len; 2719} 2720 2721/** 2722 * skb_tailroom_reserve - adjust reserved_tailroom 2723 * @skb: buffer to alter 2724 * @mtu: maximum amount of headlen permitted 2725 * @needed_tailroom: minimum amount of reserved_tailroom 2726 * 2727 * Set reserved_tailroom so that headlen can be as large as possible but 2728 * not larger than mtu and tailroom cannot be smaller than 2729 * needed_tailroom. 2730 * The required headroom should already have been reserved before using 2731 * this function. 2732 */ 2733static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2734 unsigned int needed_tailroom) 2735{ 2736 SKB_LINEAR_ASSERT(skb); 2737 if (mtu < skb_tailroom(skb) - needed_tailroom) 2738 /* use at most mtu */ 2739 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2740 else 2741 /* use up to all available space */ 2742 skb->reserved_tailroom = needed_tailroom; 2743} 2744 2745#define ENCAP_TYPE_ETHER 0 2746#define ENCAP_TYPE_IPPROTO 1 2747 2748static inline void skb_set_inner_protocol(struct sk_buff *skb, 2749 __be16 protocol) 2750{ 2751 skb->inner_protocol = protocol; 2752 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2753} 2754 2755static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2756 __u8 ipproto) 2757{ 2758 skb->inner_ipproto = ipproto; 2759 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2760} 2761 2762static inline void skb_reset_inner_headers(struct sk_buff *skb) 2763{ 2764 skb->inner_mac_header = skb->mac_header; 2765 skb->inner_network_header = skb->network_header; 2766 skb->inner_transport_header = skb->transport_header; 2767} 2768 2769static inline void skb_reset_mac_len(struct sk_buff *skb) 2770{ 2771 skb->mac_len = skb->network_header - skb->mac_header; 2772} 2773 2774static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2775 *skb) 2776{ 2777 return skb->head + skb->inner_transport_header; 2778} 2779 2780static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2781{ 2782 return skb_inner_transport_header(skb) - skb->data; 2783} 2784 2785static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2786{ 2787 skb->inner_transport_header = skb->data - skb->head; 2788} 2789 2790static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2791 const int offset) 2792{ 2793 skb_reset_inner_transport_header(skb); 2794 skb->inner_transport_header += offset; 2795} 2796 2797static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2798{ 2799 return skb->head + skb->inner_network_header; 2800} 2801 2802static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2803{ 2804 skb->inner_network_header = skb->data - skb->head; 2805} 2806 2807static inline void skb_set_inner_network_header(struct sk_buff *skb, 2808 const int offset) 2809{ 2810 skb_reset_inner_network_header(skb); 2811 skb->inner_network_header += offset; 2812} 2813 2814static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2815{ 2816 return skb->head + skb->inner_mac_header; 2817} 2818 2819static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2820{ 2821 skb->inner_mac_header = skb->data - skb->head; 2822} 2823 2824static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2825 const int offset) 2826{ 2827 skb_reset_inner_mac_header(skb); 2828 skb->inner_mac_header += offset; 2829} 2830static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2831{ 2832 return skb->transport_header != (typeof(skb->transport_header))~0U; 2833} 2834 2835static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2836{ 2837 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb)); 2838 return skb->head + skb->transport_header; 2839} 2840 2841static inline void skb_reset_transport_header(struct sk_buff *skb) 2842{ 2843 skb->transport_header = skb->data - skb->head; 2844} 2845 2846static inline void skb_set_transport_header(struct sk_buff *skb, 2847 const int offset) 2848{ 2849 skb_reset_transport_header(skb); 2850 skb->transport_header += offset; 2851} 2852 2853static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2854{ 2855 return skb->head + skb->network_header; 2856} 2857 2858static inline void skb_reset_network_header(struct sk_buff *skb) 2859{ 2860 skb->network_header = skb->data - skb->head; 2861} 2862 2863static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2864{ 2865 skb_reset_network_header(skb); 2866 skb->network_header += offset; 2867} 2868 2869static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2870{ 2871 return skb->mac_header != (typeof(skb->mac_header))~0U; 2872} 2873 2874static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2875{ 2876 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2877 return skb->head + skb->mac_header; 2878} 2879 2880static inline int skb_mac_offset(const struct sk_buff *skb) 2881{ 2882 return skb_mac_header(skb) - skb->data; 2883} 2884 2885static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2886{ 2887 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb)); 2888 return skb->network_header - skb->mac_header; 2889} 2890 2891static inline void skb_unset_mac_header(struct sk_buff *skb) 2892{ 2893 skb->mac_header = (typeof(skb->mac_header))~0U; 2894} 2895 2896static inline void skb_reset_mac_header(struct sk_buff *skb) 2897{ 2898 skb->mac_header = skb->data - skb->head; 2899} 2900 2901static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2902{ 2903 skb_reset_mac_header(skb); 2904 skb->mac_header += offset; 2905} 2906 2907static inline void skb_pop_mac_header(struct sk_buff *skb) 2908{ 2909 skb->mac_header = skb->network_header; 2910} 2911 2912static inline void skb_probe_transport_header(struct sk_buff *skb) 2913{ 2914 struct flow_keys_basic keys; 2915 2916 if (skb_transport_header_was_set(skb)) 2917 return; 2918 2919 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2920 NULL, 0, 0, 0, 0)) 2921 skb_set_transport_header(skb, keys.control.thoff); 2922} 2923 2924static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2925{ 2926 if (skb_mac_header_was_set(skb)) { 2927 const unsigned char *old_mac = skb_mac_header(skb); 2928 2929 skb_set_mac_header(skb, -skb->mac_len); 2930 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2931 } 2932} 2933 2934static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2935{ 2936 return skb->csum_start - skb_headroom(skb); 2937} 2938 2939static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2940{ 2941 return skb->head + skb->csum_start; 2942} 2943 2944static inline int skb_transport_offset(const struct sk_buff *skb) 2945{ 2946 return skb_transport_header(skb) - skb->data; 2947} 2948 2949static inline u32 skb_network_header_len(const struct sk_buff *skb) 2950{ 2951 return skb->transport_header - skb->network_header; 2952} 2953 2954static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2955{ 2956 return skb->inner_transport_header - skb->inner_network_header; 2957} 2958 2959static inline int skb_network_offset(const struct sk_buff *skb) 2960{ 2961 return skb_network_header(skb) - skb->data; 2962} 2963 2964static inline int skb_inner_network_offset(const struct sk_buff *skb) 2965{ 2966 return skb_inner_network_header(skb) - skb->data; 2967} 2968 2969static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2970{ 2971 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2972} 2973 2974/* 2975 * CPUs often take a performance hit when accessing unaligned memory 2976 * locations. The actual performance hit varies, it can be small if the 2977 * hardware handles it or large if we have to take an exception and fix it 2978 * in software. 2979 * 2980 * Since an ethernet header is 14 bytes network drivers often end up with 2981 * the IP header at an unaligned offset. The IP header can be aligned by 2982 * shifting the start of the packet by 2 bytes. Drivers should do this 2983 * with: 2984 * 2985 * skb_reserve(skb, NET_IP_ALIGN); 2986 * 2987 * The downside to this alignment of the IP header is that the DMA is now 2988 * unaligned. On some architectures the cost of an unaligned DMA is high 2989 * and this cost outweighs the gains made by aligning the IP header. 2990 * 2991 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2992 * to be overridden. 2993 */ 2994#ifndef NET_IP_ALIGN 2995#define NET_IP_ALIGN 2 2996#endif 2997 2998/* 2999 * The networking layer reserves some headroom in skb data (via 3000 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 3001 * the header has to grow. In the default case, if the header has to grow 3002 * 32 bytes or less we avoid the reallocation. 3003 * 3004 * Unfortunately this headroom changes the DMA alignment of the resulting 3005 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 3006 * on some architectures. An architecture can override this value, 3007 * perhaps setting it to a cacheline in size (since that will maintain 3008 * cacheline alignment of the DMA). It must be a power of 2. 3009 * 3010 * Various parts of the networking layer expect at least 32 bytes of 3011 * headroom, you should not reduce this. 3012 * 3013 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 3014 * to reduce average number of cache lines per packet. 3015 * get_rps_cpu() for example only access one 64 bytes aligned block : 3016 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 3017 */ 3018#ifndef NET_SKB_PAD 3019#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 3020#endif 3021 3022int ___pskb_trim(struct sk_buff *skb, unsigned int len); 3023 3024static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 3025{ 3026 if (WARN_ON(skb_is_nonlinear(skb))) 3027 return; 3028 skb->len = len; 3029 skb_set_tail_pointer(skb, len); 3030} 3031 3032static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 3033{ 3034 __skb_set_length(skb, len); 3035} 3036 3037void skb_trim(struct sk_buff *skb, unsigned int len); 3038 3039static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 3040{ 3041 if (skb->data_len) 3042 return ___pskb_trim(skb, len); 3043 __skb_trim(skb, len); 3044 return 0; 3045} 3046 3047static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 3048{ 3049 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 3050} 3051 3052/** 3053 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 3054 * @skb: buffer to alter 3055 * @len: new length 3056 * 3057 * This is identical to pskb_trim except that the caller knows that 3058 * the skb is not cloned so we should never get an error due to out- 3059 * of-memory. 3060 */ 3061static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 3062{ 3063 int err = pskb_trim(skb, len); 3064 BUG_ON(err); 3065} 3066 3067static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 3068{ 3069 unsigned int diff = len - skb->len; 3070 3071 if (skb_tailroom(skb) < diff) { 3072 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 3073 GFP_ATOMIC); 3074 if (ret) 3075 return ret; 3076 } 3077 __skb_set_length(skb, len); 3078 return 0; 3079} 3080 3081/** 3082 * skb_orphan - orphan a buffer 3083 * @skb: buffer to orphan 3084 * 3085 * If a buffer currently has an owner then we call the owner's 3086 * destructor function and make the @skb unowned. The buffer continues 3087 * to exist but is no longer charged to its former owner. 3088 */ 3089static inline void skb_orphan(struct sk_buff *skb) 3090{ 3091 if (skb->destructor) { 3092 skb->destructor(skb); 3093 skb->destructor = NULL; 3094 skb->sk = NULL; 3095 } else { 3096 BUG_ON(skb->sk); 3097 } 3098} 3099 3100/** 3101 * skb_orphan_frags - orphan the frags contained in a buffer 3102 * @skb: buffer to orphan frags from 3103 * @gfp_mask: allocation mask for replacement pages 3104 * 3105 * For each frag in the SKB which needs a destructor (i.e. has an 3106 * owner) create a copy of that frag and release the original 3107 * page by calling the destructor. 3108 */ 3109static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 3110{ 3111 if (likely(!skb_zcopy(skb))) 3112 return 0; 3113 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN) 3114 return 0; 3115 return skb_copy_ubufs(skb, gfp_mask); 3116} 3117 3118/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 3119static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 3120{ 3121 if (likely(!skb_zcopy(skb))) 3122 return 0; 3123 return skb_copy_ubufs(skb, gfp_mask); 3124} 3125 3126/** 3127 * __skb_queue_purge - empty a list 3128 * @list: list to empty 3129 * 3130 * Delete all buffers on an &sk_buff list. Each buffer is removed from 3131 * the list and one reference dropped. This function does not take the 3132 * list lock and the caller must hold the relevant locks to use it. 3133 */ 3134static inline void __skb_queue_purge(struct sk_buff_head *list) 3135{ 3136 struct sk_buff *skb; 3137 while ((skb = __skb_dequeue(list)) != NULL) 3138 kfree_skb(skb); 3139} 3140void skb_queue_purge(struct sk_buff_head *list); 3141 3142unsigned int skb_rbtree_purge(struct rb_root *root); 3143 3144void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3145 3146/** 3147 * netdev_alloc_frag - allocate a page fragment 3148 * @fragsz: fragment size 3149 * 3150 * Allocates a frag from a page for receive buffer. 3151 * Uses GFP_ATOMIC allocations. 3152 */ 3153static inline void *netdev_alloc_frag(unsigned int fragsz) 3154{ 3155 return __netdev_alloc_frag_align(fragsz, ~0u); 3156} 3157 3158static inline void *netdev_alloc_frag_align(unsigned int fragsz, 3159 unsigned int align) 3160{ 3161 WARN_ON_ONCE(!is_power_of_2(align)); 3162 return __netdev_alloc_frag_align(fragsz, -align); 3163} 3164 3165struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 3166 gfp_t gfp_mask); 3167 3168/** 3169 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 3170 * @dev: network device to receive on 3171 * @length: length to allocate 3172 * 3173 * Allocate a new &sk_buff and assign it a usage count of one. The 3174 * buffer has unspecified headroom built in. Users should allocate 3175 * the headroom they think they need without accounting for the 3176 * built in space. The built in space is used for optimisations. 3177 * 3178 * %NULL is returned if there is no free memory. Although this function 3179 * allocates memory it can be called from an interrupt. 3180 */ 3181static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 3182 unsigned int length) 3183{ 3184 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 3185} 3186 3187/* legacy helper around __netdev_alloc_skb() */ 3188static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 3189 gfp_t gfp_mask) 3190{ 3191 return __netdev_alloc_skb(NULL, length, gfp_mask); 3192} 3193 3194/* legacy helper around netdev_alloc_skb() */ 3195static inline struct sk_buff *dev_alloc_skb(unsigned int length) 3196{ 3197 return netdev_alloc_skb(NULL, length); 3198} 3199 3200 3201static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 3202 unsigned int length, gfp_t gfp) 3203{ 3204 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 3205 3206 if (NET_IP_ALIGN && skb) 3207 skb_reserve(skb, NET_IP_ALIGN); 3208 return skb; 3209} 3210 3211static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 3212 unsigned int length) 3213{ 3214 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 3215} 3216 3217static inline void skb_free_frag(void *addr) 3218{ 3219 page_frag_free(addr); 3220} 3221 3222void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 3223 3224static inline void *napi_alloc_frag(unsigned int fragsz) 3225{ 3226 return __napi_alloc_frag_align(fragsz, ~0u); 3227} 3228 3229static inline void *napi_alloc_frag_align(unsigned int fragsz, 3230 unsigned int align) 3231{ 3232 WARN_ON_ONCE(!is_power_of_2(align)); 3233 return __napi_alloc_frag_align(fragsz, -align); 3234} 3235 3236struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 3237 unsigned int length, gfp_t gfp_mask); 3238static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 3239 unsigned int length) 3240{ 3241 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 3242} 3243void napi_consume_skb(struct sk_buff *skb, int budget); 3244 3245void napi_skb_free_stolen_head(struct sk_buff *skb); 3246void __kfree_skb_defer(struct sk_buff *skb); 3247 3248/** 3249 * __dev_alloc_pages - allocate page for network Rx 3250 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3251 * @order: size of the allocation 3252 * 3253 * Allocate a new page. 3254 * 3255 * %NULL is returned if there is no free memory. 3256*/ 3257static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 3258 unsigned int order) 3259{ 3260 /* This piece of code contains several assumptions. 3261 * 1. This is for device Rx, therefor a cold page is preferred. 3262 * 2. The expectation is the user wants a compound page. 3263 * 3. If requesting a order 0 page it will not be compound 3264 * due to the check to see if order has a value in prep_new_page 3265 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 3266 * code in gfp_to_alloc_flags that should be enforcing this. 3267 */ 3268 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 3269 3270 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 3271} 3272 3273static inline struct page *dev_alloc_pages(unsigned int order) 3274{ 3275 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 3276} 3277 3278/** 3279 * __dev_alloc_page - allocate a page for network Rx 3280 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 3281 * 3282 * Allocate a new page. 3283 * 3284 * %NULL is returned if there is no free memory. 3285 */ 3286static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 3287{ 3288 return __dev_alloc_pages(gfp_mask, 0); 3289} 3290 3291static inline struct page *dev_alloc_page(void) 3292{ 3293 return dev_alloc_pages(0); 3294} 3295 3296/** 3297 * dev_page_is_reusable - check whether a page can be reused for network Rx 3298 * @page: the page to test 3299 * 3300 * A page shouldn't be considered for reusing/recycling if it was allocated 3301 * under memory pressure or at a distant memory node. 3302 * 3303 * Returns false if this page should be returned to page allocator, true 3304 * otherwise. 3305 */ 3306static inline bool dev_page_is_reusable(const struct page *page) 3307{ 3308 return likely(page_to_nid(page) == numa_mem_id() && 3309 !page_is_pfmemalloc(page)); 3310} 3311 3312/** 3313 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3314 * @page: The page that was allocated from skb_alloc_page 3315 * @skb: The skb that may need pfmemalloc set 3316 */ 3317static inline void skb_propagate_pfmemalloc(const struct page *page, 3318 struct sk_buff *skb) 3319{ 3320 if (page_is_pfmemalloc(page)) 3321 skb->pfmemalloc = true; 3322} 3323 3324/** 3325 * skb_frag_off() - Returns the offset of a skb fragment 3326 * @frag: the paged fragment 3327 */ 3328static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3329{ 3330 return frag->bv_offset; 3331} 3332 3333/** 3334 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3335 * @frag: skb fragment 3336 * @delta: value to add 3337 */ 3338static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3339{ 3340 frag->bv_offset += delta; 3341} 3342 3343/** 3344 * skb_frag_off_set() - Sets the offset of a skb fragment 3345 * @frag: skb fragment 3346 * @offset: offset of fragment 3347 */ 3348static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3349{ 3350 frag->bv_offset = offset; 3351} 3352 3353/** 3354 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3355 * @fragto: skb fragment where offset is set 3356 * @fragfrom: skb fragment offset is copied from 3357 */ 3358static inline void skb_frag_off_copy(skb_frag_t *fragto, 3359 const skb_frag_t *fragfrom) 3360{ 3361 fragto->bv_offset = fragfrom->bv_offset; 3362} 3363 3364/** 3365 * skb_frag_page - retrieve the page referred to by a paged fragment 3366 * @frag: the paged fragment 3367 * 3368 * Returns the &struct page associated with @frag. 3369 */ 3370static inline struct page *skb_frag_page(const skb_frag_t *frag) 3371{ 3372 return frag->bv_page; 3373} 3374 3375/** 3376 * __skb_frag_ref - take an addition reference on a paged fragment. 3377 * @frag: the paged fragment 3378 * 3379 * Takes an additional reference on the paged fragment @frag. 3380 */ 3381static inline void __skb_frag_ref(skb_frag_t *frag) 3382{ 3383 get_page(skb_frag_page(frag)); 3384} 3385 3386/** 3387 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3388 * @skb: the buffer 3389 * @f: the fragment offset. 3390 * 3391 * Takes an additional reference on the @f'th paged fragment of @skb. 3392 */ 3393static inline void skb_frag_ref(struct sk_buff *skb, int f) 3394{ 3395 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3396} 3397 3398/** 3399 * __skb_frag_unref - release a reference on a paged fragment. 3400 * @frag: the paged fragment 3401 * @recycle: recycle the page if allocated via page_pool 3402 * 3403 * Releases a reference on the paged fragment @frag 3404 * or recycles the page via the page_pool API. 3405 */ 3406static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3407{ 3408 struct page *page = skb_frag_page(frag); 3409 3410#ifdef CONFIG_PAGE_POOL 3411 if (recycle && page_pool_return_skb_page(page)) 3412 return; 3413#endif 3414 put_page(page); 3415} 3416 3417/** 3418 * skb_frag_unref - release a reference on a paged fragment of an skb. 3419 * @skb: the buffer 3420 * @f: the fragment offset 3421 * 3422 * Releases a reference on the @f'th paged fragment of @skb. 3423 */ 3424static inline void skb_frag_unref(struct sk_buff *skb, int f) 3425{ 3426 struct skb_shared_info *shinfo = skb_shinfo(skb); 3427 3428 if (!skb_zcopy_managed(skb)) 3429 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle); 3430} 3431 3432/** 3433 * skb_frag_address - gets the address of the data contained in a paged fragment 3434 * @frag: the paged fragment buffer 3435 * 3436 * Returns the address of the data within @frag. The page must already 3437 * be mapped. 3438 */ 3439static inline void *skb_frag_address(const skb_frag_t *frag) 3440{ 3441 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3442} 3443 3444/** 3445 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3446 * @frag: the paged fragment buffer 3447 * 3448 * Returns the address of the data within @frag. Checks that the page 3449 * is mapped and returns %NULL otherwise. 3450 */ 3451static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3452{ 3453 void *ptr = page_address(skb_frag_page(frag)); 3454 if (unlikely(!ptr)) 3455 return NULL; 3456 3457 return ptr + skb_frag_off(frag); 3458} 3459 3460/** 3461 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3462 * @fragto: skb fragment where page is set 3463 * @fragfrom: skb fragment page is copied from 3464 */ 3465static inline void skb_frag_page_copy(skb_frag_t *fragto, 3466 const skb_frag_t *fragfrom) 3467{ 3468 fragto->bv_page = fragfrom->bv_page; 3469} 3470 3471/** 3472 * __skb_frag_set_page - sets the page contained in a paged fragment 3473 * @frag: the paged fragment 3474 * @page: the page to set 3475 * 3476 * Sets the fragment @frag to contain @page. 3477 */ 3478static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3479{ 3480 frag->bv_page = page; 3481} 3482 3483/** 3484 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3485 * @skb: the buffer 3486 * @f: the fragment offset 3487 * @page: the page to set 3488 * 3489 * Sets the @f'th fragment of @skb to contain @page. 3490 */ 3491static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3492 struct page *page) 3493{ 3494 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3495} 3496 3497bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3498 3499/** 3500 * skb_frag_dma_map - maps a paged fragment via the DMA API 3501 * @dev: the device to map the fragment to 3502 * @frag: the paged fragment to map 3503 * @offset: the offset within the fragment (starting at the 3504 * fragment's own offset) 3505 * @size: the number of bytes to map 3506 * @dir: the direction of the mapping (``PCI_DMA_*``) 3507 * 3508 * Maps the page associated with @frag to @device. 3509 */ 3510static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3511 const skb_frag_t *frag, 3512 size_t offset, size_t size, 3513 enum dma_data_direction dir) 3514{ 3515 return dma_map_page(dev, skb_frag_page(frag), 3516 skb_frag_off(frag) + offset, size, dir); 3517} 3518 3519static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3520 gfp_t gfp_mask) 3521{ 3522 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3523} 3524 3525 3526static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3527 gfp_t gfp_mask) 3528{ 3529 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3530} 3531 3532 3533/** 3534 * skb_clone_writable - is the header of a clone writable 3535 * @skb: buffer to check 3536 * @len: length up to which to write 3537 * 3538 * Returns true if modifying the header part of the cloned buffer 3539 * does not requires the data to be copied. 3540 */ 3541static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3542{ 3543 return !skb_header_cloned(skb) && 3544 skb_headroom(skb) + len <= skb->hdr_len; 3545} 3546 3547static inline int skb_try_make_writable(struct sk_buff *skb, 3548 unsigned int write_len) 3549{ 3550 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3551 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3552} 3553 3554static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3555 int cloned) 3556{ 3557 int delta = 0; 3558 3559 if (headroom > skb_headroom(skb)) 3560 delta = headroom - skb_headroom(skb); 3561 3562 if (delta || cloned) 3563 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3564 GFP_ATOMIC); 3565 return 0; 3566} 3567 3568/** 3569 * skb_cow - copy header of skb when it is required 3570 * @skb: buffer to cow 3571 * @headroom: needed headroom 3572 * 3573 * If the skb passed lacks sufficient headroom or its data part 3574 * is shared, data is reallocated. If reallocation fails, an error 3575 * is returned and original skb is not changed. 3576 * 3577 * The result is skb with writable area skb->head...skb->tail 3578 * and at least @headroom of space at head. 3579 */ 3580static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3581{ 3582 return __skb_cow(skb, headroom, skb_cloned(skb)); 3583} 3584 3585/** 3586 * skb_cow_head - skb_cow but only making the head writable 3587 * @skb: buffer to cow 3588 * @headroom: needed headroom 3589 * 3590 * This function is identical to skb_cow except that we replace the 3591 * skb_cloned check by skb_header_cloned. It should be used when 3592 * you only need to push on some header and do not need to modify 3593 * the data. 3594 */ 3595static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3596{ 3597 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3598} 3599 3600/** 3601 * skb_padto - pad an skbuff up to a minimal size 3602 * @skb: buffer to pad 3603 * @len: minimal length 3604 * 3605 * Pads up a buffer to ensure the trailing bytes exist and are 3606 * blanked. If the buffer already contains sufficient data it 3607 * is untouched. Otherwise it is extended. Returns zero on 3608 * success. The skb is freed on error. 3609 */ 3610static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3611{ 3612 unsigned int size = skb->len; 3613 if (likely(size >= len)) 3614 return 0; 3615 return skb_pad(skb, len - size); 3616} 3617 3618/** 3619 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3620 * @skb: buffer to pad 3621 * @len: minimal length 3622 * @free_on_error: free buffer on error 3623 * 3624 * Pads up a buffer to ensure the trailing bytes exist and are 3625 * blanked. If the buffer already contains sufficient data it 3626 * is untouched. Otherwise it is extended. Returns zero on 3627 * success. The skb is freed on error if @free_on_error is true. 3628 */ 3629static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3630 unsigned int len, 3631 bool free_on_error) 3632{ 3633 unsigned int size = skb->len; 3634 3635 if (unlikely(size < len)) { 3636 len -= size; 3637 if (__skb_pad(skb, len, free_on_error)) 3638 return -ENOMEM; 3639 __skb_put(skb, len); 3640 } 3641 return 0; 3642} 3643 3644/** 3645 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3646 * @skb: buffer to pad 3647 * @len: minimal length 3648 * 3649 * Pads up a buffer to ensure the trailing bytes exist and are 3650 * blanked. If the buffer already contains sufficient data it 3651 * is untouched. Otherwise it is extended. Returns zero on 3652 * success. The skb is freed on error. 3653 */ 3654static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3655{ 3656 return __skb_put_padto(skb, len, true); 3657} 3658 3659static inline int skb_add_data(struct sk_buff *skb, 3660 struct iov_iter *from, int copy) 3661{ 3662 const int off = skb->len; 3663 3664 if (skb->ip_summed == CHECKSUM_NONE) { 3665 __wsum csum = 0; 3666 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3667 &csum, from)) { 3668 skb->csum = csum_block_add(skb->csum, csum, off); 3669 return 0; 3670 } 3671 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3672 return 0; 3673 3674 __skb_trim(skb, off); 3675 return -EFAULT; 3676} 3677 3678static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3679 const struct page *page, int off) 3680{ 3681 if (skb_zcopy(skb)) 3682 return false; 3683 if (i) { 3684 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3685 3686 return page == skb_frag_page(frag) && 3687 off == skb_frag_off(frag) + skb_frag_size(frag); 3688 } 3689 return false; 3690} 3691 3692static inline int __skb_linearize(struct sk_buff *skb) 3693{ 3694 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3695} 3696 3697/** 3698 * skb_linearize - convert paged skb to linear one 3699 * @skb: buffer to linarize 3700 * 3701 * If there is no free memory -ENOMEM is returned, otherwise zero 3702 * is returned and the old skb data released. 3703 */ 3704static inline int skb_linearize(struct sk_buff *skb) 3705{ 3706 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3707} 3708 3709/** 3710 * skb_has_shared_frag - can any frag be overwritten 3711 * @skb: buffer to test 3712 * 3713 * Return true if the skb has at least one frag that might be modified 3714 * by an external entity (as in vmsplice()/sendfile()) 3715 */ 3716static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3717{ 3718 return skb_is_nonlinear(skb) && 3719 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3720} 3721 3722/** 3723 * skb_linearize_cow - make sure skb is linear and writable 3724 * @skb: buffer to process 3725 * 3726 * If there is no free memory -ENOMEM is returned, otherwise zero 3727 * is returned and the old skb data released. 3728 */ 3729static inline int skb_linearize_cow(struct sk_buff *skb) 3730{ 3731 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3732 __skb_linearize(skb) : 0; 3733} 3734 3735static __always_inline void 3736__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3737 unsigned int off) 3738{ 3739 if (skb->ip_summed == CHECKSUM_COMPLETE) 3740 skb->csum = csum_block_sub(skb->csum, 3741 csum_partial(start, len, 0), off); 3742 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3743 skb_checksum_start_offset(skb) < 0) 3744 skb->ip_summed = CHECKSUM_NONE; 3745} 3746 3747/** 3748 * skb_postpull_rcsum - update checksum for received skb after pull 3749 * @skb: buffer to update 3750 * @start: start of data before pull 3751 * @len: length of data pulled 3752 * 3753 * After doing a pull on a received packet, you need to call this to 3754 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3755 * CHECKSUM_NONE so that it can be recomputed from scratch. 3756 */ 3757static inline void skb_postpull_rcsum(struct sk_buff *skb, 3758 const void *start, unsigned int len) 3759{ 3760 if (skb->ip_summed == CHECKSUM_COMPLETE) 3761 skb->csum = wsum_negate(csum_partial(start, len, 3762 wsum_negate(skb->csum))); 3763 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3764 skb_checksum_start_offset(skb) < 0) 3765 skb->ip_summed = CHECKSUM_NONE; 3766} 3767 3768static __always_inline void 3769__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3770 unsigned int off) 3771{ 3772 if (skb->ip_summed == CHECKSUM_COMPLETE) 3773 skb->csum = csum_block_add(skb->csum, 3774 csum_partial(start, len, 0), off); 3775} 3776 3777/** 3778 * skb_postpush_rcsum - update checksum for received skb after push 3779 * @skb: buffer to update 3780 * @start: start of data after push 3781 * @len: length of data pushed 3782 * 3783 * After doing a push on a received packet, you need to call this to 3784 * update the CHECKSUM_COMPLETE checksum. 3785 */ 3786static inline void skb_postpush_rcsum(struct sk_buff *skb, 3787 const void *start, unsigned int len) 3788{ 3789 __skb_postpush_rcsum(skb, start, len, 0); 3790} 3791 3792void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3793 3794/** 3795 * skb_push_rcsum - push skb and update receive checksum 3796 * @skb: buffer to update 3797 * @len: length of data pulled 3798 * 3799 * This function performs an skb_push on the packet and updates 3800 * the CHECKSUM_COMPLETE checksum. It should be used on 3801 * receive path processing instead of skb_push unless you know 3802 * that the checksum difference is zero (e.g., a valid IP header) 3803 * or you are setting ip_summed to CHECKSUM_NONE. 3804 */ 3805static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3806{ 3807 skb_push(skb, len); 3808 skb_postpush_rcsum(skb, skb->data, len); 3809 return skb->data; 3810} 3811 3812int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3813/** 3814 * pskb_trim_rcsum - trim received skb and update checksum 3815 * @skb: buffer to trim 3816 * @len: new length 3817 * 3818 * This is exactly the same as pskb_trim except that it ensures the 3819 * checksum of received packets are still valid after the operation. 3820 * It can change skb pointers. 3821 */ 3822 3823static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3824{ 3825 if (likely(len >= skb->len)) 3826 return 0; 3827 return pskb_trim_rcsum_slow(skb, len); 3828} 3829 3830static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3831{ 3832 if (skb->ip_summed == CHECKSUM_COMPLETE) 3833 skb->ip_summed = CHECKSUM_NONE; 3834 __skb_trim(skb, len); 3835 return 0; 3836} 3837 3838static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3839{ 3840 if (skb->ip_summed == CHECKSUM_COMPLETE) 3841 skb->ip_summed = CHECKSUM_NONE; 3842 return __skb_grow(skb, len); 3843} 3844 3845#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3846#define skb_rb_first(root) rb_to_skb(rb_first(root)) 3847#define skb_rb_last(root) rb_to_skb(rb_last(root)) 3848#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3849#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3850 3851#define skb_queue_walk(queue, skb) \ 3852 for (skb = (queue)->next; \ 3853 skb != (struct sk_buff *)(queue); \ 3854 skb = skb->next) 3855 3856#define skb_queue_walk_safe(queue, skb, tmp) \ 3857 for (skb = (queue)->next, tmp = skb->next; \ 3858 skb != (struct sk_buff *)(queue); \ 3859 skb = tmp, tmp = skb->next) 3860 3861#define skb_queue_walk_from(queue, skb) \ 3862 for (; skb != (struct sk_buff *)(queue); \ 3863 skb = skb->next) 3864 3865#define skb_rbtree_walk(skb, root) \ 3866 for (skb = skb_rb_first(root); skb != NULL; \ 3867 skb = skb_rb_next(skb)) 3868 3869#define skb_rbtree_walk_from(skb) \ 3870 for (; skb != NULL; \ 3871 skb = skb_rb_next(skb)) 3872 3873#define skb_rbtree_walk_from_safe(skb, tmp) \ 3874 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3875 skb = tmp) 3876 3877#define skb_queue_walk_from_safe(queue, skb, tmp) \ 3878 for (tmp = skb->next; \ 3879 skb != (struct sk_buff *)(queue); \ 3880 skb = tmp, tmp = skb->next) 3881 3882#define skb_queue_reverse_walk(queue, skb) \ 3883 for (skb = (queue)->prev; \ 3884 skb != (struct sk_buff *)(queue); \ 3885 skb = skb->prev) 3886 3887#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3888 for (skb = (queue)->prev, tmp = skb->prev; \ 3889 skb != (struct sk_buff *)(queue); \ 3890 skb = tmp, tmp = skb->prev) 3891 3892#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3893 for (tmp = skb->prev; \ 3894 skb != (struct sk_buff *)(queue); \ 3895 skb = tmp, tmp = skb->prev) 3896 3897static inline bool skb_has_frag_list(const struct sk_buff *skb) 3898{ 3899 return skb_shinfo(skb)->frag_list != NULL; 3900} 3901 3902static inline void skb_frag_list_init(struct sk_buff *skb) 3903{ 3904 skb_shinfo(skb)->frag_list = NULL; 3905} 3906 3907#define skb_walk_frags(skb, iter) \ 3908 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3909 3910 3911int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3912 int *err, long *timeo_p, 3913 const struct sk_buff *skb); 3914struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3915 struct sk_buff_head *queue, 3916 unsigned int flags, 3917 int *off, int *err, 3918 struct sk_buff **last); 3919struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3920 struct sk_buff_head *queue, 3921 unsigned int flags, int *off, int *err, 3922 struct sk_buff **last); 3923struct sk_buff *__skb_recv_datagram(struct sock *sk, 3924 struct sk_buff_head *sk_queue, 3925 unsigned int flags, int *off, int *err); 3926struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err); 3927__poll_t datagram_poll(struct file *file, struct socket *sock, 3928 struct poll_table_struct *wait); 3929int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3930 struct iov_iter *to, int size); 3931static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3932 struct msghdr *msg, int size) 3933{ 3934 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3935} 3936int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3937 struct msghdr *msg); 3938int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3939 struct iov_iter *to, int len, 3940 struct ahash_request *hash); 3941int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3942 struct iov_iter *from, int len); 3943int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3944void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3945void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3946static inline void skb_free_datagram_locked(struct sock *sk, 3947 struct sk_buff *skb) 3948{ 3949 __skb_free_datagram_locked(sk, skb, 0); 3950} 3951int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3952int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3953int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3954__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3955 int len); 3956int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3957 struct pipe_inode_info *pipe, unsigned int len, 3958 unsigned int flags); 3959int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3960 int len); 3961int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3962void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3963unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3964int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3965 int len, int hlen); 3966void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3967int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3968void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3969bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3970bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3971struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3972struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3973 unsigned int offset); 3974struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3975int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len); 3976int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3977int skb_vlan_pop(struct sk_buff *skb); 3978int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3979int skb_eth_pop(struct sk_buff *skb); 3980int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 3981 const unsigned char *src); 3982int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3983 int mac_len, bool ethernet); 3984int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3985 bool ethernet); 3986int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3987int skb_mpls_dec_ttl(struct sk_buff *skb); 3988struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3989 gfp_t gfp); 3990 3991static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3992{ 3993 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3994} 3995 3996static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3997{ 3998 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3999} 4000 4001struct skb_checksum_ops { 4002 __wsum (*update)(const void *mem, int len, __wsum wsum); 4003 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 4004}; 4005 4006extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 4007 4008__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 4009 __wsum csum, const struct skb_checksum_ops *ops); 4010__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 4011 __wsum csum); 4012 4013static inline void * __must_check 4014__skb_header_pointer(const struct sk_buff *skb, int offset, int len, 4015 const void *data, int hlen, void *buffer) 4016{ 4017 if (likely(hlen - offset >= len)) 4018 return (void *)data + offset; 4019 4020 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 4021 return NULL; 4022 4023 return buffer; 4024} 4025 4026static inline void * __must_check 4027skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 4028{ 4029 return __skb_header_pointer(skb, offset, len, skb->data, 4030 skb_headlen(skb), buffer); 4031} 4032 4033/** 4034 * skb_needs_linearize - check if we need to linearize a given skb 4035 * depending on the given device features. 4036 * @skb: socket buffer to check 4037 * @features: net device features 4038 * 4039 * Returns true if either: 4040 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 4041 * 2. skb is fragmented and the device does not support SG. 4042 */ 4043static inline bool skb_needs_linearize(struct sk_buff *skb, 4044 netdev_features_t features) 4045{ 4046 return skb_is_nonlinear(skb) && 4047 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 4048 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 4049} 4050 4051static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 4052 void *to, 4053 const unsigned int len) 4054{ 4055 memcpy(to, skb->data, len); 4056} 4057 4058static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 4059 const int offset, void *to, 4060 const unsigned int len) 4061{ 4062 memcpy(to, skb->data + offset, len); 4063} 4064 4065static inline void skb_copy_to_linear_data(struct sk_buff *skb, 4066 const void *from, 4067 const unsigned int len) 4068{ 4069 memcpy(skb->data, from, len); 4070} 4071 4072static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 4073 const int offset, 4074 const void *from, 4075 const unsigned int len) 4076{ 4077 memcpy(skb->data + offset, from, len); 4078} 4079 4080void skb_init(void); 4081 4082static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 4083{ 4084 return skb->tstamp; 4085} 4086 4087/** 4088 * skb_get_timestamp - get timestamp from a skb 4089 * @skb: skb to get stamp from 4090 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 4091 * 4092 * Timestamps are stored in the skb as offsets to a base timestamp. 4093 * This function converts the offset back to a struct timeval and stores 4094 * it in stamp. 4095 */ 4096static inline void skb_get_timestamp(const struct sk_buff *skb, 4097 struct __kernel_old_timeval *stamp) 4098{ 4099 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 4100} 4101 4102static inline void skb_get_new_timestamp(const struct sk_buff *skb, 4103 struct __kernel_sock_timeval *stamp) 4104{ 4105 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4106 4107 stamp->tv_sec = ts.tv_sec; 4108 stamp->tv_usec = ts.tv_nsec / 1000; 4109} 4110 4111static inline void skb_get_timestampns(const struct sk_buff *skb, 4112 struct __kernel_old_timespec *stamp) 4113{ 4114 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4115 4116 stamp->tv_sec = ts.tv_sec; 4117 stamp->tv_nsec = ts.tv_nsec; 4118} 4119 4120static inline void skb_get_new_timestampns(const struct sk_buff *skb, 4121 struct __kernel_timespec *stamp) 4122{ 4123 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 4124 4125 stamp->tv_sec = ts.tv_sec; 4126 stamp->tv_nsec = ts.tv_nsec; 4127} 4128 4129static inline void __net_timestamp(struct sk_buff *skb) 4130{ 4131 skb->tstamp = ktime_get_real(); 4132 skb->mono_delivery_time = 0; 4133} 4134 4135static inline ktime_t net_timedelta(ktime_t t) 4136{ 4137 return ktime_sub(ktime_get_real(), t); 4138} 4139 4140static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt, 4141 bool mono) 4142{ 4143 skb->tstamp = kt; 4144 skb->mono_delivery_time = kt && mono; 4145} 4146 4147DECLARE_STATIC_KEY_FALSE(netstamp_needed_key); 4148 4149/* It is used in the ingress path to clear the delivery_time. 4150 * If needed, set the skb->tstamp to the (rcv) timestamp. 4151 */ 4152static inline void skb_clear_delivery_time(struct sk_buff *skb) 4153{ 4154 if (skb->mono_delivery_time) { 4155 skb->mono_delivery_time = 0; 4156 if (static_branch_unlikely(&netstamp_needed_key)) 4157 skb->tstamp = ktime_get_real(); 4158 else 4159 skb->tstamp = 0; 4160 } 4161} 4162 4163static inline void skb_clear_tstamp(struct sk_buff *skb) 4164{ 4165 if (skb->mono_delivery_time) 4166 return; 4167 4168 skb->tstamp = 0; 4169} 4170 4171static inline ktime_t skb_tstamp(const struct sk_buff *skb) 4172{ 4173 if (skb->mono_delivery_time) 4174 return 0; 4175 4176 return skb->tstamp; 4177} 4178 4179static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond) 4180{ 4181 if (!skb->mono_delivery_time && skb->tstamp) 4182 return skb->tstamp; 4183 4184 if (static_branch_unlikely(&netstamp_needed_key) || cond) 4185 return ktime_get_real(); 4186 4187 return 0; 4188} 4189 4190static inline u8 skb_metadata_len(const struct sk_buff *skb) 4191{ 4192 return skb_shinfo(skb)->meta_len; 4193} 4194 4195static inline void *skb_metadata_end(const struct sk_buff *skb) 4196{ 4197 return skb_mac_header(skb); 4198} 4199 4200static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 4201 const struct sk_buff *skb_b, 4202 u8 meta_len) 4203{ 4204 const void *a = skb_metadata_end(skb_a); 4205 const void *b = skb_metadata_end(skb_b); 4206 /* Using more efficient varaiant than plain call to memcmp(). */ 4207#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 4208 u64 diffs = 0; 4209 4210 switch (meta_len) { 4211#define __it(x, op) (x -= sizeof(u##op)) 4212#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 4213 case 32: diffs |= __it_diff(a, b, 64); 4214 fallthrough; 4215 case 24: diffs |= __it_diff(a, b, 64); 4216 fallthrough; 4217 case 16: diffs |= __it_diff(a, b, 64); 4218 fallthrough; 4219 case 8: diffs |= __it_diff(a, b, 64); 4220 break; 4221 case 28: diffs |= __it_diff(a, b, 64); 4222 fallthrough; 4223 case 20: diffs |= __it_diff(a, b, 64); 4224 fallthrough; 4225 case 12: diffs |= __it_diff(a, b, 64); 4226 fallthrough; 4227 case 4: diffs |= __it_diff(a, b, 32); 4228 break; 4229 } 4230 return diffs; 4231#else 4232 return memcmp(a - meta_len, b - meta_len, meta_len); 4233#endif 4234} 4235 4236static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 4237 const struct sk_buff *skb_b) 4238{ 4239 u8 len_a = skb_metadata_len(skb_a); 4240 u8 len_b = skb_metadata_len(skb_b); 4241 4242 if (!(len_a | len_b)) 4243 return false; 4244 4245 return len_a != len_b ? 4246 true : __skb_metadata_differs(skb_a, skb_b, len_a); 4247} 4248 4249static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 4250{ 4251 skb_shinfo(skb)->meta_len = meta_len; 4252} 4253 4254static inline void skb_metadata_clear(struct sk_buff *skb) 4255{ 4256 skb_metadata_set(skb, 0); 4257} 4258 4259struct sk_buff *skb_clone_sk(struct sk_buff *skb); 4260 4261#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 4262 4263void skb_clone_tx_timestamp(struct sk_buff *skb); 4264bool skb_defer_rx_timestamp(struct sk_buff *skb); 4265 4266#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 4267 4268static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 4269{ 4270} 4271 4272static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 4273{ 4274 return false; 4275} 4276 4277#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 4278 4279/** 4280 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 4281 * 4282 * PHY drivers may accept clones of transmitted packets for 4283 * timestamping via their phy_driver.txtstamp method. These drivers 4284 * must call this function to return the skb back to the stack with a 4285 * timestamp. 4286 * 4287 * @skb: clone of the original outgoing packet 4288 * @hwtstamps: hardware time stamps 4289 * 4290 */ 4291void skb_complete_tx_timestamp(struct sk_buff *skb, 4292 struct skb_shared_hwtstamps *hwtstamps); 4293 4294void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 4295 struct skb_shared_hwtstamps *hwtstamps, 4296 struct sock *sk, int tstype); 4297 4298/** 4299 * skb_tstamp_tx - queue clone of skb with send time stamps 4300 * @orig_skb: the original outgoing packet 4301 * @hwtstamps: hardware time stamps, may be NULL if not available 4302 * 4303 * If the skb has a socket associated, then this function clones the 4304 * skb (thus sharing the actual data and optional structures), stores 4305 * the optional hardware time stamping information (if non NULL) or 4306 * generates a software time stamp (otherwise), then queues the clone 4307 * to the error queue of the socket. Errors are silently ignored. 4308 */ 4309void skb_tstamp_tx(struct sk_buff *orig_skb, 4310 struct skb_shared_hwtstamps *hwtstamps); 4311 4312/** 4313 * skb_tx_timestamp() - Driver hook for transmit timestamping 4314 * 4315 * Ethernet MAC Drivers should call this function in their hard_xmit() 4316 * function immediately before giving the sk_buff to the MAC hardware. 4317 * 4318 * Specifically, one should make absolutely sure that this function is 4319 * called before TX completion of this packet can trigger. Otherwise 4320 * the packet could potentially already be freed. 4321 * 4322 * @skb: A socket buffer. 4323 */ 4324static inline void skb_tx_timestamp(struct sk_buff *skb) 4325{ 4326 skb_clone_tx_timestamp(skb); 4327 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 4328 skb_tstamp_tx(skb, NULL); 4329} 4330 4331/** 4332 * skb_complete_wifi_ack - deliver skb with wifi status 4333 * 4334 * @skb: the original outgoing packet 4335 * @acked: ack status 4336 * 4337 */ 4338void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 4339 4340__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 4341__sum16 __skb_checksum_complete(struct sk_buff *skb); 4342 4343static inline int skb_csum_unnecessary(const struct sk_buff *skb) 4344{ 4345 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 4346 skb->csum_valid || 4347 (skb->ip_summed == CHECKSUM_PARTIAL && 4348 skb_checksum_start_offset(skb) >= 0)); 4349} 4350 4351/** 4352 * skb_checksum_complete - Calculate checksum of an entire packet 4353 * @skb: packet to process 4354 * 4355 * This function calculates the checksum over the entire packet plus 4356 * the value of skb->csum. The latter can be used to supply the 4357 * checksum of a pseudo header as used by TCP/UDP. It returns the 4358 * checksum. 4359 * 4360 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 4361 * this function can be used to verify that checksum on received 4362 * packets. In that case the function should return zero if the 4363 * checksum is correct. In particular, this function will return zero 4364 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4365 * hardware has already verified the correctness of the checksum. 4366 */ 4367static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4368{ 4369 return skb_csum_unnecessary(skb) ? 4370 0 : __skb_checksum_complete(skb); 4371} 4372 4373static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4374{ 4375 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4376 if (skb->csum_level == 0) 4377 skb->ip_summed = CHECKSUM_NONE; 4378 else 4379 skb->csum_level--; 4380 } 4381} 4382 4383static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4384{ 4385 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4386 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4387 skb->csum_level++; 4388 } else if (skb->ip_summed == CHECKSUM_NONE) { 4389 skb->ip_summed = CHECKSUM_UNNECESSARY; 4390 skb->csum_level = 0; 4391 } 4392} 4393 4394static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4395{ 4396 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4397 skb->ip_summed = CHECKSUM_NONE; 4398 skb->csum_level = 0; 4399 } 4400} 4401 4402/* Check if we need to perform checksum complete validation. 4403 * 4404 * Returns true if checksum complete is needed, false otherwise 4405 * (either checksum is unnecessary or zero checksum is allowed). 4406 */ 4407static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4408 bool zero_okay, 4409 __sum16 check) 4410{ 4411 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4412 skb->csum_valid = 1; 4413 __skb_decr_checksum_unnecessary(skb); 4414 return false; 4415 } 4416 4417 return true; 4418} 4419 4420/* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4421 * in checksum_init. 4422 */ 4423#define CHECKSUM_BREAK 76 4424 4425/* Unset checksum-complete 4426 * 4427 * Unset checksum complete can be done when packet is being modified 4428 * (uncompressed for instance) and checksum-complete value is 4429 * invalidated. 4430 */ 4431static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4432{ 4433 if (skb->ip_summed == CHECKSUM_COMPLETE) 4434 skb->ip_summed = CHECKSUM_NONE; 4435} 4436 4437/* Validate (init) checksum based on checksum complete. 4438 * 4439 * Return values: 4440 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4441 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4442 * checksum is stored in skb->csum for use in __skb_checksum_complete 4443 * non-zero: value of invalid checksum 4444 * 4445 */ 4446static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4447 bool complete, 4448 __wsum psum) 4449{ 4450 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4451 if (!csum_fold(csum_add(psum, skb->csum))) { 4452 skb->csum_valid = 1; 4453 return 0; 4454 } 4455 } 4456 4457 skb->csum = psum; 4458 4459 if (complete || skb->len <= CHECKSUM_BREAK) { 4460 __sum16 csum; 4461 4462 csum = __skb_checksum_complete(skb); 4463 skb->csum_valid = !csum; 4464 return csum; 4465 } 4466 4467 return 0; 4468} 4469 4470static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4471{ 4472 return 0; 4473} 4474 4475/* Perform checksum validate (init). Note that this is a macro since we only 4476 * want to calculate the pseudo header which is an input function if necessary. 4477 * First we try to validate without any computation (checksum unnecessary) and 4478 * then calculate based on checksum complete calling the function to compute 4479 * pseudo header. 4480 * 4481 * Return values: 4482 * 0: checksum is validated or try to in skb_checksum_complete 4483 * non-zero: value of invalid checksum 4484 */ 4485#define __skb_checksum_validate(skb, proto, complete, \ 4486 zero_okay, check, compute_pseudo) \ 4487({ \ 4488 __sum16 __ret = 0; \ 4489 skb->csum_valid = 0; \ 4490 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4491 __ret = __skb_checksum_validate_complete(skb, \ 4492 complete, compute_pseudo(skb, proto)); \ 4493 __ret; \ 4494}) 4495 4496#define skb_checksum_init(skb, proto, compute_pseudo) \ 4497 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4498 4499#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4500 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4501 4502#define skb_checksum_validate(skb, proto, compute_pseudo) \ 4503 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4504 4505#define skb_checksum_validate_zero_check(skb, proto, check, \ 4506 compute_pseudo) \ 4507 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4508 4509#define skb_checksum_simple_validate(skb) \ 4510 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4511 4512static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4513{ 4514 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4515} 4516 4517static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4518{ 4519 skb->csum = ~pseudo; 4520 skb->ip_summed = CHECKSUM_COMPLETE; 4521} 4522 4523#define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4524do { \ 4525 if (__skb_checksum_convert_check(skb)) \ 4526 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4527} while (0) 4528 4529static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4530 u16 start, u16 offset) 4531{ 4532 skb->ip_summed = CHECKSUM_PARTIAL; 4533 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4534 skb->csum_offset = offset - start; 4535} 4536 4537/* Update skbuf and packet to reflect the remote checksum offload operation. 4538 * When called, ptr indicates the starting point for skb->csum when 4539 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4540 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4541 */ 4542static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4543 int start, int offset, bool nopartial) 4544{ 4545 __wsum delta; 4546 4547 if (!nopartial) { 4548 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4549 return; 4550 } 4551 4552 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4553 __skb_checksum_complete(skb); 4554 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4555 } 4556 4557 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4558 4559 /* Adjust skb->csum since we changed the packet */ 4560 skb->csum = csum_add(skb->csum, delta); 4561} 4562 4563static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4564{ 4565#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4566 return (void *)(skb->_nfct & NFCT_PTRMASK); 4567#else 4568 return NULL; 4569#endif 4570} 4571 4572static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4573{ 4574#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4575 return skb->_nfct; 4576#else 4577 return 0UL; 4578#endif 4579} 4580 4581static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4582{ 4583#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4584 skb->slow_gro |= !!nfct; 4585 skb->_nfct = nfct; 4586#endif 4587} 4588 4589#ifdef CONFIG_SKB_EXTENSIONS 4590enum skb_ext_id { 4591#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4592 SKB_EXT_BRIDGE_NF, 4593#endif 4594#ifdef CONFIG_XFRM 4595 SKB_EXT_SEC_PATH, 4596#endif 4597#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4598 TC_SKB_EXT, 4599#endif 4600#if IS_ENABLED(CONFIG_MPTCP) 4601 SKB_EXT_MPTCP, 4602#endif 4603#if IS_ENABLED(CONFIG_MCTP_FLOWS) 4604 SKB_EXT_MCTP, 4605#endif 4606 SKB_EXT_NUM, /* must be last */ 4607}; 4608 4609/** 4610 * struct skb_ext - sk_buff extensions 4611 * @refcnt: 1 on allocation, deallocated on 0 4612 * @offset: offset to add to @data to obtain extension address 4613 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4614 * @data: start of extension data, variable sized 4615 * 4616 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4617 * to use 'u8' types while allowing up to 2kb worth of extension data. 4618 */ 4619struct skb_ext { 4620 refcount_t refcnt; 4621 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4622 u8 chunks; /* same */ 4623 char data[] __aligned(8); 4624}; 4625 4626struct skb_ext *__skb_ext_alloc(gfp_t flags); 4627void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4628 struct skb_ext *ext); 4629void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4630void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4631void __skb_ext_put(struct skb_ext *ext); 4632 4633static inline void skb_ext_put(struct sk_buff *skb) 4634{ 4635 if (skb->active_extensions) 4636 __skb_ext_put(skb->extensions); 4637} 4638 4639static inline void __skb_ext_copy(struct sk_buff *dst, 4640 const struct sk_buff *src) 4641{ 4642 dst->active_extensions = src->active_extensions; 4643 4644 if (src->active_extensions) { 4645 struct skb_ext *ext = src->extensions; 4646 4647 refcount_inc(&ext->refcnt); 4648 dst->extensions = ext; 4649 } 4650} 4651 4652static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4653{ 4654 skb_ext_put(dst); 4655 __skb_ext_copy(dst, src); 4656} 4657 4658static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4659{ 4660 return !!ext->offset[i]; 4661} 4662 4663static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4664{ 4665 return skb->active_extensions & (1 << id); 4666} 4667 4668static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4669{ 4670 if (skb_ext_exist(skb, id)) 4671 __skb_ext_del(skb, id); 4672} 4673 4674static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4675{ 4676 if (skb_ext_exist(skb, id)) { 4677 struct skb_ext *ext = skb->extensions; 4678 4679 return (void *)ext + (ext->offset[id] << 3); 4680 } 4681 4682 return NULL; 4683} 4684 4685static inline void skb_ext_reset(struct sk_buff *skb) 4686{ 4687 if (unlikely(skb->active_extensions)) { 4688 __skb_ext_put(skb->extensions); 4689 skb->active_extensions = 0; 4690 } 4691} 4692 4693static inline bool skb_has_extensions(struct sk_buff *skb) 4694{ 4695 return unlikely(skb->active_extensions); 4696} 4697#else 4698static inline void skb_ext_put(struct sk_buff *skb) {} 4699static inline void skb_ext_reset(struct sk_buff *skb) {} 4700static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4701static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4702static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4703static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4704#endif /* CONFIG_SKB_EXTENSIONS */ 4705 4706static inline void nf_reset_ct(struct sk_buff *skb) 4707{ 4708#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4709 nf_conntrack_put(skb_nfct(skb)); 4710 skb->_nfct = 0; 4711#endif 4712} 4713 4714static inline void nf_reset_trace(struct sk_buff *skb) 4715{ 4716#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4717 skb->nf_trace = 0; 4718#endif 4719} 4720 4721static inline void ipvs_reset(struct sk_buff *skb) 4722{ 4723#if IS_ENABLED(CONFIG_IP_VS) 4724 skb->ipvs_property = 0; 4725#endif 4726} 4727 4728/* Note: This doesn't put any conntrack info in dst. */ 4729static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4730 bool copy) 4731{ 4732#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4733 dst->_nfct = src->_nfct; 4734 nf_conntrack_get(skb_nfct(src)); 4735#endif 4736#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES) 4737 if (copy) 4738 dst->nf_trace = src->nf_trace; 4739#endif 4740} 4741 4742static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4743{ 4744#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4745 nf_conntrack_put(skb_nfct(dst)); 4746#endif 4747 dst->slow_gro = src->slow_gro; 4748 __nf_copy(dst, src, true); 4749} 4750 4751#ifdef CONFIG_NETWORK_SECMARK 4752static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4753{ 4754 to->secmark = from->secmark; 4755} 4756 4757static inline void skb_init_secmark(struct sk_buff *skb) 4758{ 4759 skb->secmark = 0; 4760} 4761#else 4762static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4763{ } 4764 4765static inline void skb_init_secmark(struct sk_buff *skb) 4766{ } 4767#endif 4768 4769static inline int secpath_exists(const struct sk_buff *skb) 4770{ 4771#ifdef CONFIG_XFRM 4772 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4773#else 4774 return 0; 4775#endif 4776} 4777 4778static inline bool skb_irq_freeable(const struct sk_buff *skb) 4779{ 4780 return !skb->destructor && 4781 !secpath_exists(skb) && 4782 !skb_nfct(skb) && 4783 !skb->_skb_refdst && 4784 !skb_has_frag_list(skb); 4785} 4786 4787static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4788{ 4789 skb->queue_mapping = queue_mapping; 4790} 4791 4792static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4793{ 4794 return skb->queue_mapping; 4795} 4796 4797static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4798{ 4799 to->queue_mapping = from->queue_mapping; 4800} 4801 4802static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4803{ 4804 skb->queue_mapping = rx_queue + 1; 4805} 4806 4807static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4808{ 4809 return skb->queue_mapping - 1; 4810} 4811 4812static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4813{ 4814 return skb->queue_mapping != 0; 4815} 4816 4817static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4818{ 4819 skb->dst_pending_confirm = val; 4820} 4821 4822static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4823{ 4824 return skb->dst_pending_confirm != 0; 4825} 4826 4827static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4828{ 4829#ifdef CONFIG_XFRM 4830 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4831#else 4832 return NULL; 4833#endif 4834} 4835 4836/* Keeps track of mac header offset relative to skb->head. 4837 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4838 * For non-tunnel skb it points to skb_mac_header() and for 4839 * tunnel skb it points to outer mac header. 4840 * Keeps track of level of encapsulation of network headers. 4841 */ 4842struct skb_gso_cb { 4843 union { 4844 int mac_offset; 4845 int data_offset; 4846 }; 4847 int encap_level; 4848 __wsum csum; 4849 __u16 csum_start; 4850}; 4851#define SKB_GSO_CB_OFFSET 32 4852#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4853 4854static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4855{ 4856 return (skb_mac_header(inner_skb) - inner_skb->head) - 4857 SKB_GSO_CB(inner_skb)->mac_offset; 4858} 4859 4860static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4861{ 4862 int new_headroom, headroom; 4863 int ret; 4864 4865 headroom = skb_headroom(skb); 4866 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4867 if (ret) 4868 return ret; 4869 4870 new_headroom = skb_headroom(skb); 4871 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4872 return 0; 4873} 4874 4875static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4876{ 4877 /* Do not update partial checksums if remote checksum is enabled. */ 4878 if (skb->remcsum_offload) 4879 return; 4880 4881 SKB_GSO_CB(skb)->csum = res; 4882 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4883} 4884 4885/* Compute the checksum for a gso segment. First compute the checksum value 4886 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4887 * then add in skb->csum (checksum from csum_start to end of packet). 4888 * skb->csum and csum_start are then updated to reflect the checksum of the 4889 * resultant packet starting from the transport header-- the resultant checksum 4890 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4891 * header. 4892 */ 4893static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4894{ 4895 unsigned char *csum_start = skb_transport_header(skb); 4896 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4897 __wsum partial = SKB_GSO_CB(skb)->csum; 4898 4899 SKB_GSO_CB(skb)->csum = res; 4900 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4901 4902 return csum_fold(csum_partial(csum_start, plen, partial)); 4903} 4904 4905static inline bool skb_is_gso(const struct sk_buff *skb) 4906{ 4907 return skb_shinfo(skb)->gso_size; 4908} 4909 4910/* Note: Should be called only if skb_is_gso(skb) is true */ 4911static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4912{ 4913 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4914} 4915 4916/* Note: Should be called only if skb_is_gso(skb) is true */ 4917static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4918{ 4919 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4920} 4921 4922/* Note: Should be called only if skb_is_gso(skb) is true */ 4923static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4924{ 4925 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4926} 4927 4928static inline void skb_gso_reset(struct sk_buff *skb) 4929{ 4930 skb_shinfo(skb)->gso_size = 0; 4931 skb_shinfo(skb)->gso_segs = 0; 4932 skb_shinfo(skb)->gso_type = 0; 4933} 4934 4935static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4936 u16 increment) 4937{ 4938 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4939 return; 4940 shinfo->gso_size += increment; 4941} 4942 4943static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4944 u16 decrement) 4945{ 4946 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4947 return; 4948 shinfo->gso_size -= decrement; 4949} 4950 4951void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4952 4953static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4954{ 4955 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4956 * wanted then gso_type will be set. */ 4957 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4958 4959 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4960 unlikely(shinfo->gso_type == 0)) { 4961 __skb_warn_lro_forwarding(skb); 4962 return true; 4963 } 4964 return false; 4965} 4966 4967static inline void skb_forward_csum(struct sk_buff *skb) 4968{ 4969 /* Unfortunately we don't support this one. Any brave souls? */ 4970 if (skb->ip_summed == CHECKSUM_COMPLETE) 4971 skb->ip_summed = CHECKSUM_NONE; 4972} 4973 4974/** 4975 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4976 * @skb: skb to check 4977 * 4978 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4979 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4980 * use this helper, to document places where we make this assertion. 4981 */ 4982static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4983{ 4984 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE); 4985} 4986 4987bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4988 4989int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4990struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4991 unsigned int transport_len, 4992 __sum16(*skb_chkf)(struct sk_buff *skb)); 4993 4994/** 4995 * skb_head_is_locked - Determine if the skb->head is locked down 4996 * @skb: skb to check 4997 * 4998 * The head on skbs build around a head frag can be removed if they are 4999 * not cloned. This function returns true if the skb head is locked down 5000 * due to either being allocated via kmalloc, or by being a clone with 5001 * multiple references to the head. 5002 */ 5003static inline bool skb_head_is_locked(const struct sk_buff *skb) 5004{ 5005 return !skb->head_frag || skb_cloned(skb); 5006} 5007 5008/* Local Checksum Offload. 5009 * Compute outer checksum based on the assumption that the 5010 * inner checksum will be offloaded later. 5011 * See Documentation/networking/checksum-offloads.rst for 5012 * explanation of how this works. 5013 * Fill in outer checksum adjustment (e.g. with sum of outer 5014 * pseudo-header) before calling. 5015 * Also ensure that inner checksum is in linear data area. 5016 */ 5017static inline __wsum lco_csum(struct sk_buff *skb) 5018{ 5019 unsigned char *csum_start = skb_checksum_start(skb); 5020 unsigned char *l4_hdr = skb_transport_header(skb); 5021 __wsum partial; 5022 5023 /* Start with complement of inner checksum adjustment */ 5024 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 5025 skb->csum_offset)); 5026 5027 /* Add in checksum of our headers (incl. outer checksum 5028 * adjustment filled in by caller) and return result. 5029 */ 5030 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 5031} 5032 5033static inline bool skb_is_redirected(const struct sk_buff *skb) 5034{ 5035 return skb->redirected; 5036} 5037 5038static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 5039{ 5040 skb->redirected = 1; 5041#ifdef CONFIG_NET_REDIRECT 5042 skb->from_ingress = from_ingress; 5043 if (skb->from_ingress) 5044 skb_clear_tstamp(skb); 5045#endif 5046} 5047 5048static inline void skb_reset_redirect(struct sk_buff *skb) 5049{ 5050 skb->redirected = 0; 5051} 5052 5053static inline bool skb_csum_is_sctp(struct sk_buff *skb) 5054{ 5055 return skb->csum_not_inet; 5056} 5057 5058static inline void skb_set_kcov_handle(struct sk_buff *skb, 5059 const u64 kcov_handle) 5060{ 5061#ifdef CONFIG_KCOV 5062 skb->kcov_handle = kcov_handle; 5063#endif 5064} 5065 5066static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 5067{ 5068#ifdef CONFIG_KCOV 5069 return skb->kcov_handle; 5070#else 5071 return 0; 5072#endif 5073} 5074 5075#ifdef CONFIG_PAGE_POOL 5076static inline void skb_mark_for_recycle(struct sk_buff *skb) 5077{ 5078 skb->pp_recycle = 1; 5079} 5080#endif 5081 5082#endif /* __KERNEL__ */ 5083#endif /* _LINUX_SKBUFF_H */