Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10#ifndef _LINUX_SKBUFF_H
11#define _LINUX_SKBUFF_H
12
13#include <linux/kernel.h>
14#include <linux/compiler.h>
15#include <linux/time.h>
16#include <linux/bug.h>
17#include <linux/bvec.h>
18#include <linux/cache.h>
19#include <linux/rbtree.h>
20#include <linux/socket.h>
21#include <linux/refcount.h>
22
23#include <linux/atomic.h>
24#include <asm/types.h>
25#include <linux/spinlock.h>
26#include <net/checksum.h>
27#include <linux/rcupdate.h>
28#include <linux/dma-mapping.h>
29#include <linux/netdev_features.h>
30#include <net/flow_dissector.h>
31#include <linux/in6.h>
32#include <linux/if_packet.h>
33#include <linux/llist.h>
34#include <net/flow.h>
35#include <net/page_pool.h>
36#if IS_ENABLED(CONFIG_NF_CONNTRACK)
37#include <linux/netfilter/nf_conntrack_common.h>
38#endif
39#include <net/net_debug.h>
40#include <net/dropreason.h>
41
42/**
43 * DOC: skb checksums
44 *
45 * The interface for checksum offload between the stack and networking drivers
46 * is as follows...
47 *
48 * IP checksum related features
49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50 *
51 * Drivers advertise checksum offload capabilities in the features of a device.
52 * From the stack's point of view these are capabilities offered by the driver.
53 * A driver typically only advertises features that it is capable of offloading
54 * to its device.
55 *
56 * .. flat-table:: Checksum related device features
57 * :widths: 1 10
58 *
59 * * - %NETIF_F_HW_CSUM
60 * - The driver (or its device) is able to compute one
61 * IP (one's complement) checksum for any combination
62 * of protocols or protocol layering. The checksum is
63 * computed and set in a packet per the CHECKSUM_PARTIAL
64 * interface (see below).
65 *
66 * * - %NETIF_F_IP_CSUM
67 * - Driver (device) is only able to checksum plain
68 * TCP or UDP packets over IPv4. These are specifically
69 * unencapsulated packets of the form IPv4|TCP or
70 * IPv4|UDP where the Protocol field in the IPv4 header
71 * is TCP or UDP. The IPv4 header may contain IP options.
72 * This feature cannot be set in features for a device
73 * with NETIF_F_HW_CSUM also set. This feature is being
74 * DEPRECATED (see below).
75 *
76 * * - %NETIF_F_IPV6_CSUM
77 * - Driver (device) is only able to checksum plain
78 * TCP or UDP packets over IPv6. These are specifically
79 * unencapsulated packets of the form IPv6|TCP or
80 * IPv6|UDP where the Next Header field in the IPv6
81 * header is either TCP or UDP. IPv6 extension headers
82 * are not supported with this feature. This feature
83 * cannot be set in features for a device with
84 * NETIF_F_HW_CSUM also set. This feature is being
85 * DEPRECATED (see below).
86 *
87 * * - %NETIF_F_RXCSUM
88 * - Driver (device) performs receive checksum offload.
89 * This flag is only used to disable the RX checksum
90 * feature for a device. The stack will accept receive
91 * checksum indication in packets received on a device
92 * regardless of whether NETIF_F_RXCSUM is set.
93 *
94 * Checksumming of received packets by device
95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96 *
97 * Indication of checksum verification is set in &sk_buff.ip_summed.
98 * Possible values are:
99 *
100 * - %CHECKSUM_NONE
101 *
102 * Device did not checksum this packet e.g. due to lack of capabilities.
103 * The packet contains full (though not verified) checksum in packet but
104 * not in skb->csum. Thus, skb->csum is undefined in this case.
105 *
106 * - %CHECKSUM_UNNECESSARY
107 *
108 * The hardware you're dealing with doesn't calculate the full checksum
109 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111 * if their checksums are okay. &sk_buff.csum is still undefined in this case
112 * though. A driver or device must never modify the checksum field in the
113 * packet even if checksum is verified.
114 *
115 * %CHECKSUM_UNNECESSARY is applicable to following protocols:
116 *
117 * - TCP: IPv6 and IPv4.
118 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119 * zero UDP checksum for either IPv4 or IPv6, the networking stack
120 * may perform further validation in this case.
121 * - GRE: only if the checksum is present in the header.
122 * - SCTP: indicates the CRC in SCTP header has been validated.
123 * - FCOE: indicates the CRC in FC frame has been validated.
124 *
125 * &sk_buff.csum_level indicates the number of consecutive checksums found in
126 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128 * and a device is able to verify the checksums for UDP (possibly zero),
129 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130 * two. If the device were only able to verify the UDP checksum and not
131 * GRE, either because it doesn't support GRE checksum or because GRE
132 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133 * not considered in this case).
134 *
135 * - %CHECKSUM_COMPLETE
136 *
137 * This is the most generic way. The device supplied checksum of the _whole_
138 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139 * hardware doesn't need to parse L3/L4 headers to implement this.
140 *
141 * Notes:
142 *
143 * - Even if device supports only some protocols, but is able to produce
144 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146 *
147 * - %CHECKSUM_PARTIAL
148 *
149 * A checksum is set up to be offloaded to a device as described in the
150 * output description for CHECKSUM_PARTIAL. This may occur on a packet
151 * received directly from another Linux OS, e.g., a virtualized Linux kernel
152 * on the same host, or it may be set in the input path in GRO or remote
153 * checksum offload. For the purposes of checksum verification, the checksum
154 * referred to by skb->csum_start + skb->csum_offset and any preceding
155 * checksums in the packet are considered verified. Any checksums in the
156 * packet that are after the checksum being offloaded are not considered to
157 * be verified.
158 *
159 * Checksumming on transmit for non-GSO
160 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161 *
162 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163 * Values are:
164 *
165 * - %CHECKSUM_PARTIAL
166 *
167 * The driver is required to checksum the packet as seen by hard_start_xmit()
168 * from &sk_buff.csum_start up to the end, and to record/write the checksum at
169 * offset &sk_buff.csum_start + &sk_buff.csum_offset.
170 * A driver may verify that the
171 * csum_start and csum_offset values are valid values given the length and
172 * offset of the packet, but it should not attempt to validate that the
173 * checksum refers to a legitimate transport layer checksum -- it is the
174 * purview of the stack to validate that csum_start and csum_offset are set
175 * correctly.
176 *
177 * When the stack requests checksum offload for a packet, the driver MUST
178 * ensure that the checksum is set correctly. A driver can either offload the
179 * checksum calculation to the device, or call skb_checksum_help (in the case
180 * that the device does not support offload for a particular checksum).
181 *
182 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184 * checksum offload capability.
185 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186 * on network device checksumming capabilities: if a packet does not match
187 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188 * &sk_buff.csum_not_inet, see :ref:`crc`)
189 * is called to resolve the checksum.
190 *
191 * - %CHECKSUM_NONE
192 *
193 * The skb was already checksummed by the protocol, or a checksum is not
194 * required.
195 *
196 * - %CHECKSUM_UNNECESSARY
197 *
198 * This has the same meaning as CHECKSUM_NONE for checksum offload on
199 * output.
200 *
201 * - %CHECKSUM_COMPLETE
202 *
203 * Not used in checksum output. If a driver observes a packet with this value
204 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205 *
206 * .. _crc:
207 *
208 * Non-IP checksum (CRC) offloads
209 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210 *
211 * .. flat-table::
212 * :widths: 1 10
213 *
214 * * - %NETIF_F_SCTP_CRC
215 * - This feature indicates that a device is capable of
216 * offloading the SCTP CRC in a packet. To perform this offload the stack
217 * will set csum_start and csum_offset accordingly, set ip_summed to
218 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220 * A driver that supports both IP checksum offload and SCTP CRC32c offload
221 * must verify which offload is configured for a packet by testing the
222 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224 *
225 * * - %NETIF_F_FCOE_CRC
226 * - This feature indicates that a device is capable of offloading the FCOE
227 * CRC in a packet. To perform this offload the stack will set ip_summed
228 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229 * accordingly. Note that there is no indication in the skbuff that the
230 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231 * both IP checksum offload and FCOE CRC offload must verify which offload
232 * is configured for a packet, presumably by inspecting packet headers.
233 *
234 * Checksumming on output with GSO
235 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236 *
237 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240 * part of the GSO operation is implied. If a checksum is being offloaded
241 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242 * csum_offset are set to refer to the outermost checksum being offloaded
243 * (two offloaded checksums are possible with UDP encapsulation).
244 */
245
246/* Don't change this without changing skb_csum_unnecessary! */
247#define CHECKSUM_NONE 0
248#define CHECKSUM_UNNECESSARY 1
249#define CHECKSUM_COMPLETE 2
250#define CHECKSUM_PARTIAL 3
251
252/* Maximum value in skb->csum_level */
253#define SKB_MAX_CSUM_LEVEL 3
254
255#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
256#define SKB_WITH_OVERHEAD(X) \
257 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258
259/* For X bytes available in skb->head, what is the minimal
260 * allocation needed, knowing struct skb_shared_info needs
261 * to be aligned.
262 */
263#define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265
266#define SKB_MAX_ORDER(X, ORDER) \
267 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
269#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
270
271/* return minimum truesize of one skb containing X bytes of data */
272#define SKB_TRUESIZE(X) ((X) + \
273 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
274 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275
276struct ahash_request;
277struct net_device;
278struct scatterlist;
279struct pipe_inode_info;
280struct iov_iter;
281struct napi_struct;
282struct bpf_prog;
283union bpf_attr;
284struct skb_ext;
285struct ts_config;
286
287#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288struct nf_bridge_info {
289 enum {
290 BRNF_PROTO_UNCHANGED,
291 BRNF_PROTO_8021Q,
292 BRNF_PROTO_PPPOE
293 } orig_proto:8;
294 u8 pkt_otherhost:1;
295 u8 in_prerouting:1;
296 u8 bridged_dnat:1;
297 u8 sabotage_in_done:1;
298 __u16 frag_max_size;
299 struct net_device *physindev;
300
301 /* always valid & non-NULL from FORWARD on, for physdev match */
302 struct net_device *physoutdev;
303 union {
304 /* prerouting: detect dnat in orig/reply direction */
305 __be32 ipv4_daddr;
306 struct in6_addr ipv6_daddr;
307
308 /* after prerouting + nat detected: store original source
309 * mac since neigh resolution overwrites it, only used while
310 * skb is out in neigh layer.
311 */
312 char neigh_header[8];
313 };
314};
315#endif
316
317#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318/* Chain in tc_skb_ext will be used to share the tc chain with
319 * ovs recirc_id. It will be set to the current chain by tc
320 * and read by ovs to recirc_id.
321 */
322struct tc_skb_ext {
323 union {
324 u64 act_miss_cookie;
325 __u32 chain;
326 };
327 __u16 mru;
328 __u16 zone;
329 u8 post_ct:1;
330 u8 post_ct_snat:1;
331 u8 post_ct_dnat:1;
332 u8 act_miss:1; /* Set if act_miss_cookie is used */
333};
334#endif
335
336struct sk_buff_head {
337 /* These two members must be first to match sk_buff. */
338 struct_group_tagged(sk_buff_list, list,
339 struct sk_buff *next;
340 struct sk_buff *prev;
341 );
342
343 __u32 qlen;
344 spinlock_t lock;
345};
346
347struct sk_buff;
348
349/* To allow 64K frame to be packed as single skb without frag_list we
350 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
351 * buffers which do not start on a page boundary.
352 *
353 * Since GRO uses frags we allocate at least 16 regardless of page
354 * size.
355 */
356#if (65536/PAGE_SIZE + 1) < 16
357#define MAX_SKB_FRAGS 16UL
358#else
359#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
360#endif
361extern int sysctl_max_skb_frags;
362
363/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
364 * segment using its current segmentation instead.
365 */
366#define GSO_BY_FRAGS 0xFFFF
367
368typedef struct bio_vec skb_frag_t;
369
370/**
371 * skb_frag_size() - Returns the size of a skb fragment
372 * @frag: skb fragment
373 */
374static inline unsigned int skb_frag_size(const skb_frag_t *frag)
375{
376 return frag->bv_len;
377}
378
379/**
380 * skb_frag_size_set() - Sets the size of a skb fragment
381 * @frag: skb fragment
382 * @size: size of fragment
383 */
384static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
385{
386 frag->bv_len = size;
387}
388
389/**
390 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
391 * @frag: skb fragment
392 * @delta: value to add
393 */
394static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
395{
396 frag->bv_len += delta;
397}
398
399/**
400 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
401 * @frag: skb fragment
402 * @delta: value to subtract
403 */
404static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
405{
406 frag->bv_len -= delta;
407}
408
409/**
410 * skb_frag_must_loop - Test if %p is a high memory page
411 * @p: fragment's page
412 */
413static inline bool skb_frag_must_loop(struct page *p)
414{
415#if defined(CONFIG_HIGHMEM)
416 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
417 return true;
418#endif
419 return false;
420}
421
422/**
423 * skb_frag_foreach_page - loop over pages in a fragment
424 *
425 * @f: skb frag to operate on
426 * @f_off: offset from start of f->bv_page
427 * @f_len: length from f_off to loop over
428 * @p: (temp var) current page
429 * @p_off: (temp var) offset from start of current page,
430 * non-zero only on first page.
431 * @p_len: (temp var) length in current page,
432 * < PAGE_SIZE only on first and last page.
433 * @copied: (temp var) length so far, excluding current p_len.
434 *
435 * A fragment can hold a compound page, in which case per-page
436 * operations, notably kmap_atomic, must be called for each
437 * regular page.
438 */
439#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
440 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
441 p_off = (f_off) & (PAGE_SIZE - 1), \
442 p_len = skb_frag_must_loop(p) ? \
443 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
444 copied = 0; \
445 copied < f_len; \
446 copied += p_len, p++, p_off = 0, \
447 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
448
449#define HAVE_HW_TIME_STAMP
450
451/**
452 * struct skb_shared_hwtstamps - hardware time stamps
453 * @hwtstamp: hardware time stamp transformed into duration
454 * since arbitrary point in time
455 * @netdev_data: address/cookie of network device driver used as
456 * reference to actual hardware time stamp
457 *
458 * Software time stamps generated by ktime_get_real() are stored in
459 * skb->tstamp.
460 *
461 * hwtstamps can only be compared against other hwtstamps from
462 * the same device.
463 *
464 * This structure is attached to packets as part of the
465 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
466 */
467struct skb_shared_hwtstamps {
468 union {
469 ktime_t hwtstamp;
470 void *netdev_data;
471 };
472};
473
474/* Definitions for tx_flags in struct skb_shared_info */
475enum {
476 /* generate hardware time stamp */
477 SKBTX_HW_TSTAMP = 1 << 0,
478
479 /* generate software time stamp when queueing packet to NIC */
480 SKBTX_SW_TSTAMP = 1 << 1,
481
482 /* device driver is going to provide hardware time stamp */
483 SKBTX_IN_PROGRESS = 1 << 2,
484
485 /* generate hardware time stamp based on cycles if supported */
486 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
487
488 /* generate wifi status information (where possible) */
489 SKBTX_WIFI_STATUS = 1 << 4,
490
491 /* determine hardware time stamp based on time or cycles */
492 SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
493
494 /* generate software time stamp when entering packet scheduling */
495 SKBTX_SCHED_TSTAMP = 1 << 6,
496};
497
498#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
499 SKBTX_SCHED_TSTAMP)
500#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \
501 SKBTX_HW_TSTAMP_USE_CYCLES | \
502 SKBTX_ANY_SW_TSTAMP)
503
504/* Definitions for flags in struct skb_shared_info */
505enum {
506 /* use zcopy routines */
507 SKBFL_ZEROCOPY_ENABLE = BIT(0),
508
509 /* This indicates at least one fragment might be overwritten
510 * (as in vmsplice(), sendfile() ...)
511 * If we need to compute a TX checksum, we'll need to copy
512 * all frags to avoid possible bad checksum
513 */
514 SKBFL_SHARED_FRAG = BIT(1),
515
516 /* segment contains only zerocopy data and should not be
517 * charged to the kernel memory.
518 */
519 SKBFL_PURE_ZEROCOPY = BIT(2),
520
521 SKBFL_DONT_ORPHAN = BIT(3),
522
523 /* page references are managed by the ubuf_info, so it's safe to
524 * use frags only up until ubuf_info is released
525 */
526 SKBFL_MANAGED_FRAG_REFS = BIT(4),
527};
528
529#define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
530#define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
531 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
532
533/*
534 * The callback notifies userspace to release buffers when skb DMA is done in
535 * lower device, the skb last reference should be 0 when calling this.
536 * The zerocopy_success argument is true if zero copy transmit occurred,
537 * false on data copy or out of memory error caused by data copy attempt.
538 * The ctx field is used to track device context.
539 * The desc field is used to track userspace buffer index.
540 */
541struct ubuf_info {
542 void (*callback)(struct sk_buff *, struct ubuf_info *,
543 bool zerocopy_success);
544 refcount_t refcnt;
545 u8 flags;
546};
547
548struct ubuf_info_msgzc {
549 struct ubuf_info ubuf;
550
551 union {
552 struct {
553 unsigned long desc;
554 void *ctx;
555 };
556 struct {
557 u32 id;
558 u16 len;
559 u16 zerocopy:1;
560 u32 bytelen;
561 };
562 };
563
564 struct mmpin {
565 struct user_struct *user;
566 unsigned int num_pg;
567 } mmp;
568};
569
570#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
571#define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \
572 ubuf)
573
574int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
575void mm_unaccount_pinned_pages(struct mmpin *mmp);
576
577/* This data is invariant across clones and lives at
578 * the end of the header data, ie. at skb->end.
579 */
580struct skb_shared_info {
581 __u8 flags;
582 __u8 meta_len;
583 __u8 nr_frags;
584 __u8 tx_flags;
585 unsigned short gso_size;
586 /* Warning: this field is not always filled in (UFO)! */
587 unsigned short gso_segs;
588 struct sk_buff *frag_list;
589 struct skb_shared_hwtstamps hwtstamps;
590 unsigned int gso_type;
591 u32 tskey;
592
593 /*
594 * Warning : all fields before dataref are cleared in __alloc_skb()
595 */
596 atomic_t dataref;
597 unsigned int xdp_frags_size;
598
599 /* Intermediate layers must ensure that destructor_arg
600 * remains valid until skb destructor */
601 void * destructor_arg;
602
603 /* must be last field, see pskb_expand_head() */
604 skb_frag_t frags[MAX_SKB_FRAGS];
605};
606
607/**
608 * DOC: dataref and headerless skbs
609 *
610 * Transport layers send out clones of payload skbs they hold for
611 * retransmissions. To allow lower layers of the stack to prepend their headers
612 * we split &skb_shared_info.dataref into two halves.
613 * The lower 16 bits count the overall number of references.
614 * The higher 16 bits indicate how many of the references are payload-only.
615 * skb_header_cloned() checks if skb is allowed to add / write the headers.
616 *
617 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
618 * (via __skb_header_release()). Any clone created from marked skb will get
619 * &sk_buff.hdr_len populated with the available headroom.
620 * If there's the only clone in existence it's able to modify the headroom
621 * at will. The sequence of calls inside the transport layer is::
622 *
623 * <alloc skb>
624 * skb_reserve()
625 * __skb_header_release()
626 * skb_clone()
627 * // send the clone down the stack
628 *
629 * This is not a very generic construct and it depends on the transport layers
630 * doing the right thing. In practice there's usually only one payload-only skb.
631 * Having multiple payload-only skbs with different lengths of hdr_len is not
632 * possible. The payload-only skbs should never leave their owner.
633 */
634#define SKB_DATAREF_SHIFT 16
635#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
636
637
638enum {
639 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
640 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
641 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
642};
643
644enum {
645 SKB_GSO_TCPV4 = 1 << 0,
646
647 /* This indicates the skb is from an untrusted source. */
648 SKB_GSO_DODGY = 1 << 1,
649
650 /* This indicates the tcp segment has CWR set. */
651 SKB_GSO_TCP_ECN = 1 << 2,
652
653 SKB_GSO_TCP_FIXEDID = 1 << 3,
654
655 SKB_GSO_TCPV6 = 1 << 4,
656
657 SKB_GSO_FCOE = 1 << 5,
658
659 SKB_GSO_GRE = 1 << 6,
660
661 SKB_GSO_GRE_CSUM = 1 << 7,
662
663 SKB_GSO_IPXIP4 = 1 << 8,
664
665 SKB_GSO_IPXIP6 = 1 << 9,
666
667 SKB_GSO_UDP_TUNNEL = 1 << 10,
668
669 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
670
671 SKB_GSO_PARTIAL = 1 << 12,
672
673 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
674
675 SKB_GSO_SCTP = 1 << 14,
676
677 SKB_GSO_ESP = 1 << 15,
678
679 SKB_GSO_UDP = 1 << 16,
680
681 SKB_GSO_UDP_L4 = 1 << 17,
682
683 SKB_GSO_FRAGLIST = 1 << 18,
684};
685
686#if BITS_PER_LONG > 32
687#define NET_SKBUFF_DATA_USES_OFFSET 1
688#endif
689
690#ifdef NET_SKBUFF_DATA_USES_OFFSET
691typedef unsigned int sk_buff_data_t;
692#else
693typedef unsigned char *sk_buff_data_t;
694#endif
695
696/**
697 * DOC: Basic sk_buff geometry
698 *
699 * struct sk_buff itself is a metadata structure and does not hold any packet
700 * data. All the data is held in associated buffers.
701 *
702 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
703 * into two parts:
704 *
705 * - data buffer, containing headers and sometimes payload;
706 * this is the part of the skb operated on by the common helpers
707 * such as skb_put() or skb_pull();
708 * - shared info (struct skb_shared_info) which holds an array of pointers
709 * to read-only data in the (page, offset, length) format.
710 *
711 * Optionally &skb_shared_info.frag_list may point to another skb.
712 *
713 * Basic diagram may look like this::
714 *
715 * ---------------
716 * | sk_buff |
717 * ---------------
718 * ,--------------------------- + head
719 * / ,----------------- + data
720 * / / ,----------- + tail
721 * | | | , + end
722 * | | | |
723 * v v v v
724 * -----------------------------------------------
725 * | headroom | data | tailroom | skb_shared_info |
726 * -----------------------------------------------
727 * + [page frag]
728 * + [page frag]
729 * + [page frag]
730 * + [page frag] ---------
731 * + frag_list --> | sk_buff |
732 * ---------
733 *
734 */
735
736/**
737 * struct sk_buff - socket buffer
738 * @next: Next buffer in list
739 * @prev: Previous buffer in list
740 * @tstamp: Time we arrived/left
741 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
742 * for retransmit timer
743 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
744 * @list: queue head
745 * @ll_node: anchor in an llist (eg socket defer_list)
746 * @sk: Socket we are owned by
747 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
748 * fragmentation management
749 * @dev: Device we arrived on/are leaving by
750 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
751 * @cb: Control buffer. Free for use by every layer. Put private vars here
752 * @_skb_refdst: destination entry (with norefcount bit)
753 * @sp: the security path, used for xfrm
754 * @len: Length of actual data
755 * @data_len: Data length
756 * @mac_len: Length of link layer header
757 * @hdr_len: writable header length of cloned skb
758 * @csum: Checksum (must include start/offset pair)
759 * @csum_start: Offset from skb->head where checksumming should start
760 * @csum_offset: Offset from csum_start where checksum should be stored
761 * @priority: Packet queueing priority
762 * @ignore_df: allow local fragmentation
763 * @cloned: Head may be cloned (check refcnt to be sure)
764 * @ip_summed: Driver fed us an IP checksum
765 * @nohdr: Payload reference only, must not modify header
766 * @pkt_type: Packet class
767 * @fclone: skbuff clone status
768 * @ipvs_property: skbuff is owned by ipvs
769 * @inner_protocol_type: whether the inner protocol is
770 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
771 * @remcsum_offload: remote checksum offload is enabled
772 * @offload_fwd_mark: Packet was L2-forwarded in hardware
773 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
774 * @tc_skip_classify: do not classify packet. set by IFB device
775 * @tc_at_ingress: used within tc_classify to distinguish in/egress
776 * @redirected: packet was redirected by packet classifier
777 * @from_ingress: packet was redirected from the ingress path
778 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
779 * @peeked: this packet has been seen already, so stats have been
780 * done for it, don't do them again
781 * @nf_trace: netfilter packet trace flag
782 * @protocol: Packet protocol from driver
783 * @destructor: Destruct function
784 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
785 * @_sk_redir: socket redirection information for skmsg
786 * @_nfct: Associated connection, if any (with nfctinfo bits)
787 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
788 * @skb_iif: ifindex of device we arrived on
789 * @tc_index: Traffic control index
790 * @hash: the packet hash
791 * @queue_mapping: Queue mapping for multiqueue devices
792 * @head_frag: skb was allocated from page fragments,
793 * not allocated by kmalloc() or vmalloc().
794 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
795 * @pp_recycle: mark the packet for recycling instead of freeing (implies
796 * page_pool support on driver)
797 * @active_extensions: active extensions (skb_ext_id types)
798 * @ndisc_nodetype: router type (from link layer)
799 * @ooo_okay: allow the mapping of a socket to a queue to be changed
800 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
801 * ports.
802 * @sw_hash: indicates hash was computed in software stack
803 * @wifi_acked_valid: wifi_acked was set
804 * @wifi_acked: whether frame was acked on wifi or not
805 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
806 * @encapsulation: indicates the inner headers in the skbuff are valid
807 * @encap_hdr_csum: software checksum is needed
808 * @csum_valid: checksum is already valid
809 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
810 * @csum_complete_sw: checksum was completed by software
811 * @csum_level: indicates the number of consecutive checksums found in
812 * the packet minus one that have been verified as
813 * CHECKSUM_UNNECESSARY (max 3)
814 * @scm_io_uring: SKB holds io_uring registered files
815 * @dst_pending_confirm: need to confirm neighbour
816 * @decrypted: Decrypted SKB
817 * @slow_gro: state present at GRO time, slower prepare step required
818 * @mono_delivery_time: When set, skb->tstamp has the
819 * delivery_time in mono clock base (i.e. EDT). Otherwise, the
820 * skb->tstamp has the (rcv) timestamp at ingress and
821 * delivery_time at egress.
822 * @napi_id: id of the NAPI struct this skb came from
823 * @sender_cpu: (aka @napi_id) source CPU in XPS
824 * @alloc_cpu: CPU which did the skb allocation.
825 * @secmark: security marking
826 * @mark: Generic packet mark
827 * @reserved_tailroom: (aka @mark) number of bytes of free space available
828 * at the tail of an sk_buff
829 * @vlan_all: vlan fields (proto & tci)
830 * @vlan_proto: vlan encapsulation protocol
831 * @vlan_tci: vlan tag control information
832 * @inner_protocol: Protocol (encapsulation)
833 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
834 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
835 * @inner_transport_header: Inner transport layer header (encapsulation)
836 * @inner_network_header: Network layer header (encapsulation)
837 * @inner_mac_header: Link layer header (encapsulation)
838 * @transport_header: Transport layer header
839 * @network_header: Network layer header
840 * @mac_header: Link layer header
841 * @kcov_handle: KCOV remote handle for remote coverage collection
842 * @tail: Tail pointer
843 * @end: End pointer
844 * @head: Head of buffer
845 * @data: Data head pointer
846 * @truesize: Buffer size
847 * @users: User count - see {datagram,tcp}.c
848 * @extensions: allocated extensions, valid if active_extensions is nonzero
849 */
850
851struct sk_buff {
852 union {
853 struct {
854 /* These two members must be first to match sk_buff_head. */
855 struct sk_buff *next;
856 struct sk_buff *prev;
857
858 union {
859 struct net_device *dev;
860 /* Some protocols might use this space to store information,
861 * while device pointer would be NULL.
862 * UDP receive path is one user.
863 */
864 unsigned long dev_scratch;
865 };
866 };
867 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
868 struct list_head list;
869 struct llist_node ll_node;
870 };
871
872 union {
873 struct sock *sk;
874 int ip_defrag_offset;
875 };
876
877 union {
878 ktime_t tstamp;
879 u64 skb_mstamp_ns; /* earliest departure time */
880 };
881 /*
882 * This is the control buffer. It is free to use for every
883 * layer. Please put your private variables there. If you
884 * want to keep them across layers you have to do a skb_clone()
885 * first. This is owned by whoever has the skb queued ATM.
886 */
887 char cb[48] __aligned(8);
888
889 union {
890 struct {
891 unsigned long _skb_refdst;
892 void (*destructor)(struct sk_buff *skb);
893 };
894 struct list_head tcp_tsorted_anchor;
895#ifdef CONFIG_NET_SOCK_MSG
896 unsigned long _sk_redir;
897#endif
898 };
899
900#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
901 unsigned long _nfct;
902#endif
903 unsigned int len,
904 data_len;
905 __u16 mac_len,
906 hdr_len;
907
908 /* Following fields are _not_ copied in __copy_skb_header()
909 * Note that queue_mapping is here mostly to fill a hole.
910 */
911 __u16 queue_mapping;
912
913/* if you move cloned around you also must adapt those constants */
914#ifdef __BIG_ENDIAN_BITFIELD
915#define CLONED_MASK (1 << 7)
916#else
917#define CLONED_MASK 1
918#endif
919#define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
920
921 /* private: */
922 __u8 __cloned_offset[0];
923 /* public: */
924 __u8 cloned:1,
925 nohdr:1,
926 fclone:2,
927 peeked:1,
928 head_frag:1,
929 pfmemalloc:1,
930 pp_recycle:1; /* page_pool recycle indicator */
931#ifdef CONFIG_SKB_EXTENSIONS
932 __u8 active_extensions;
933#endif
934
935 /* Fields enclosed in headers group are copied
936 * using a single memcpy() in __copy_skb_header()
937 */
938 struct_group(headers,
939
940 /* private: */
941 __u8 __pkt_type_offset[0];
942 /* public: */
943 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
944 __u8 ignore_df:1;
945 __u8 nf_trace:1;
946 __u8 ip_summed:2;
947 __u8 ooo_okay:1;
948
949 __u8 l4_hash:1;
950 __u8 sw_hash:1;
951 __u8 wifi_acked_valid:1;
952 __u8 wifi_acked:1;
953 __u8 no_fcs:1;
954 /* Indicates the inner headers are valid in the skbuff. */
955 __u8 encapsulation:1;
956 __u8 encap_hdr_csum:1;
957 __u8 csum_valid:1;
958
959 /* private: */
960 __u8 __pkt_vlan_present_offset[0];
961 /* public: */
962 __u8 remcsum_offload:1;
963 __u8 csum_complete_sw:1;
964 __u8 csum_level:2;
965 __u8 dst_pending_confirm:1;
966 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */
967#ifdef CONFIG_NET_CLS_ACT
968 __u8 tc_skip_classify:1;
969 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */
970#endif
971#ifdef CONFIG_IPV6_NDISC_NODETYPE
972 __u8 ndisc_nodetype:2;
973#endif
974
975 __u8 ipvs_property:1;
976 __u8 inner_protocol_type:1;
977#ifdef CONFIG_NET_SWITCHDEV
978 __u8 offload_fwd_mark:1;
979 __u8 offload_l3_fwd_mark:1;
980#endif
981 __u8 redirected:1;
982#ifdef CONFIG_NET_REDIRECT
983 __u8 from_ingress:1;
984#endif
985#ifdef CONFIG_NETFILTER_SKIP_EGRESS
986 __u8 nf_skip_egress:1;
987#endif
988#ifdef CONFIG_TLS_DEVICE
989 __u8 decrypted:1;
990#endif
991 __u8 slow_gro:1;
992 __u8 csum_not_inet:1;
993 __u8 scm_io_uring:1;
994
995#ifdef CONFIG_NET_SCHED
996 __u16 tc_index; /* traffic control index */
997#endif
998
999 union {
1000 __wsum csum;
1001 struct {
1002 __u16 csum_start;
1003 __u16 csum_offset;
1004 };
1005 };
1006 __u32 priority;
1007 int skb_iif;
1008 __u32 hash;
1009 union {
1010 u32 vlan_all;
1011 struct {
1012 __be16 vlan_proto;
1013 __u16 vlan_tci;
1014 };
1015 };
1016#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1017 union {
1018 unsigned int napi_id;
1019 unsigned int sender_cpu;
1020 };
1021#endif
1022 u16 alloc_cpu;
1023#ifdef CONFIG_NETWORK_SECMARK
1024 __u32 secmark;
1025#endif
1026
1027 union {
1028 __u32 mark;
1029 __u32 reserved_tailroom;
1030 };
1031
1032 union {
1033 __be16 inner_protocol;
1034 __u8 inner_ipproto;
1035 };
1036
1037 __u16 inner_transport_header;
1038 __u16 inner_network_header;
1039 __u16 inner_mac_header;
1040
1041 __be16 protocol;
1042 __u16 transport_header;
1043 __u16 network_header;
1044 __u16 mac_header;
1045
1046#ifdef CONFIG_KCOV
1047 u64 kcov_handle;
1048#endif
1049
1050 ); /* end headers group */
1051
1052 /* These elements must be at the end, see alloc_skb() for details. */
1053 sk_buff_data_t tail;
1054 sk_buff_data_t end;
1055 unsigned char *head,
1056 *data;
1057 unsigned int truesize;
1058 refcount_t users;
1059
1060#ifdef CONFIG_SKB_EXTENSIONS
1061 /* only useable after checking ->active_extensions != 0 */
1062 struct skb_ext *extensions;
1063#endif
1064};
1065
1066/* if you move pkt_type around you also must adapt those constants */
1067#ifdef __BIG_ENDIAN_BITFIELD
1068#define PKT_TYPE_MAX (7 << 5)
1069#else
1070#define PKT_TYPE_MAX 7
1071#endif
1072#define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
1073
1074/* if you move tc_at_ingress or mono_delivery_time
1075 * around, you also must adapt these constants.
1076 */
1077#ifdef __BIG_ENDIAN_BITFIELD
1078#define TC_AT_INGRESS_MASK (1 << 0)
1079#define SKB_MONO_DELIVERY_TIME_MASK (1 << 2)
1080#else
1081#define TC_AT_INGRESS_MASK (1 << 7)
1082#define SKB_MONO_DELIVERY_TIME_MASK (1 << 5)
1083#endif
1084#define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset)
1085
1086#ifdef __KERNEL__
1087/*
1088 * Handling routines are only of interest to the kernel
1089 */
1090
1091#define SKB_ALLOC_FCLONE 0x01
1092#define SKB_ALLOC_RX 0x02
1093#define SKB_ALLOC_NAPI 0x04
1094
1095/**
1096 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1097 * @skb: buffer
1098 */
1099static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1100{
1101 return unlikely(skb->pfmemalloc);
1102}
1103
1104/*
1105 * skb might have a dst pointer attached, refcounted or not.
1106 * _skb_refdst low order bit is set if refcount was _not_ taken
1107 */
1108#define SKB_DST_NOREF 1UL
1109#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1110
1111/**
1112 * skb_dst - returns skb dst_entry
1113 * @skb: buffer
1114 *
1115 * Returns skb dst_entry, regardless of reference taken or not.
1116 */
1117static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1118{
1119 /* If refdst was not refcounted, check we still are in a
1120 * rcu_read_lock section
1121 */
1122 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1123 !rcu_read_lock_held() &&
1124 !rcu_read_lock_bh_held());
1125 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1126}
1127
1128/**
1129 * skb_dst_set - sets skb dst
1130 * @skb: buffer
1131 * @dst: dst entry
1132 *
1133 * Sets skb dst, assuming a reference was taken on dst and should
1134 * be released by skb_dst_drop()
1135 */
1136static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1137{
1138 skb->slow_gro |= !!dst;
1139 skb->_skb_refdst = (unsigned long)dst;
1140}
1141
1142/**
1143 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1144 * @skb: buffer
1145 * @dst: dst entry
1146 *
1147 * Sets skb dst, assuming a reference was not taken on dst.
1148 * If dst entry is cached, we do not take reference and dst_release
1149 * will be avoided by refdst_drop. If dst entry is not cached, we take
1150 * reference, so that last dst_release can destroy the dst immediately.
1151 */
1152static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1153{
1154 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1155 skb->slow_gro |= !!dst;
1156 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1157}
1158
1159/**
1160 * skb_dst_is_noref - Test if skb dst isn't refcounted
1161 * @skb: buffer
1162 */
1163static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1164{
1165 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1166}
1167
1168/**
1169 * skb_rtable - Returns the skb &rtable
1170 * @skb: buffer
1171 */
1172static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1173{
1174 return (struct rtable *)skb_dst(skb);
1175}
1176
1177/* For mangling skb->pkt_type from user space side from applications
1178 * such as nft, tc, etc, we only allow a conservative subset of
1179 * possible pkt_types to be set.
1180*/
1181static inline bool skb_pkt_type_ok(u32 ptype)
1182{
1183 return ptype <= PACKET_OTHERHOST;
1184}
1185
1186/**
1187 * skb_napi_id - Returns the skb's NAPI id
1188 * @skb: buffer
1189 */
1190static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1191{
1192#ifdef CONFIG_NET_RX_BUSY_POLL
1193 return skb->napi_id;
1194#else
1195 return 0;
1196#endif
1197}
1198
1199/**
1200 * skb_unref - decrement the skb's reference count
1201 * @skb: buffer
1202 *
1203 * Returns true if we can free the skb.
1204 */
1205static inline bool skb_unref(struct sk_buff *skb)
1206{
1207 if (unlikely(!skb))
1208 return false;
1209 if (likely(refcount_read(&skb->users) == 1))
1210 smp_rmb();
1211 else if (likely(!refcount_dec_and_test(&skb->users)))
1212 return false;
1213
1214 return true;
1215}
1216
1217void __fix_address
1218kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1219
1220/**
1221 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1222 * @skb: buffer to free
1223 */
1224static inline void kfree_skb(struct sk_buff *skb)
1225{
1226 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1227}
1228
1229void skb_release_head_state(struct sk_buff *skb);
1230void kfree_skb_list_reason(struct sk_buff *segs,
1231 enum skb_drop_reason reason);
1232void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1233void skb_tx_error(struct sk_buff *skb);
1234
1235static inline void kfree_skb_list(struct sk_buff *segs)
1236{
1237 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1238}
1239
1240#ifdef CONFIG_TRACEPOINTS
1241void consume_skb(struct sk_buff *skb);
1242#else
1243static inline void consume_skb(struct sk_buff *skb)
1244{
1245 return kfree_skb(skb);
1246}
1247#endif
1248
1249void __consume_stateless_skb(struct sk_buff *skb);
1250void __kfree_skb(struct sk_buff *skb);
1251extern struct kmem_cache *skbuff_cache;
1252
1253void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1254bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1255 bool *fragstolen, int *delta_truesize);
1256
1257struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1258 int node);
1259struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1260struct sk_buff *build_skb(void *data, unsigned int frag_size);
1261struct sk_buff *build_skb_around(struct sk_buff *skb,
1262 void *data, unsigned int frag_size);
1263void skb_attempt_defer_free(struct sk_buff *skb);
1264
1265struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1266struct sk_buff *slab_build_skb(void *data);
1267
1268/**
1269 * alloc_skb - allocate a network buffer
1270 * @size: size to allocate
1271 * @priority: allocation mask
1272 *
1273 * This function is a convenient wrapper around __alloc_skb().
1274 */
1275static inline struct sk_buff *alloc_skb(unsigned int size,
1276 gfp_t priority)
1277{
1278 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1279}
1280
1281struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1282 unsigned long data_len,
1283 int max_page_order,
1284 int *errcode,
1285 gfp_t gfp_mask);
1286struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1287
1288/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1289struct sk_buff_fclones {
1290 struct sk_buff skb1;
1291
1292 struct sk_buff skb2;
1293
1294 refcount_t fclone_ref;
1295};
1296
1297/**
1298 * skb_fclone_busy - check if fclone is busy
1299 * @sk: socket
1300 * @skb: buffer
1301 *
1302 * Returns true if skb is a fast clone, and its clone is not freed.
1303 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1304 * so we also check that this didnt happen.
1305 */
1306static inline bool skb_fclone_busy(const struct sock *sk,
1307 const struct sk_buff *skb)
1308{
1309 const struct sk_buff_fclones *fclones;
1310
1311 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1312
1313 return skb->fclone == SKB_FCLONE_ORIG &&
1314 refcount_read(&fclones->fclone_ref) > 1 &&
1315 READ_ONCE(fclones->skb2.sk) == sk;
1316}
1317
1318/**
1319 * alloc_skb_fclone - allocate a network buffer from fclone cache
1320 * @size: size to allocate
1321 * @priority: allocation mask
1322 *
1323 * This function is a convenient wrapper around __alloc_skb().
1324 */
1325static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1326 gfp_t priority)
1327{
1328 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1329}
1330
1331struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1332void skb_headers_offset_update(struct sk_buff *skb, int off);
1333int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1334struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1335void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1336struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1337struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1338 gfp_t gfp_mask, bool fclone);
1339static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1340 gfp_t gfp_mask)
1341{
1342 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1343}
1344
1345int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1346struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1347 unsigned int headroom);
1348struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1349struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1350 int newtailroom, gfp_t priority);
1351int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1352 int offset, int len);
1353int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1354 int offset, int len);
1355int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1356int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1357
1358/**
1359 * skb_pad - zero pad the tail of an skb
1360 * @skb: buffer to pad
1361 * @pad: space to pad
1362 *
1363 * Ensure that a buffer is followed by a padding area that is zero
1364 * filled. Used by network drivers which may DMA or transfer data
1365 * beyond the buffer end onto the wire.
1366 *
1367 * May return error in out of memory cases. The skb is freed on error.
1368 */
1369static inline int skb_pad(struct sk_buff *skb, int pad)
1370{
1371 return __skb_pad(skb, pad, true);
1372}
1373#define dev_kfree_skb(a) consume_skb(a)
1374
1375int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1376 int offset, size_t size);
1377
1378struct skb_seq_state {
1379 __u32 lower_offset;
1380 __u32 upper_offset;
1381 __u32 frag_idx;
1382 __u32 stepped_offset;
1383 struct sk_buff *root_skb;
1384 struct sk_buff *cur_skb;
1385 __u8 *frag_data;
1386 __u32 frag_off;
1387};
1388
1389void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1390 unsigned int to, struct skb_seq_state *st);
1391unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1392 struct skb_seq_state *st);
1393void skb_abort_seq_read(struct skb_seq_state *st);
1394
1395unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1396 unsigned int to, struct ts_config *config);
1397
1398/*
1399 * Packet hash types specify the type of hash in skb_set_hash.
1400 *
1401 * Hash types refer to the protocol layer addresses which are used to
1402 * construct a packet's hash. The hashes are used to differentiate or identify
1403 * flows of the protocol layer for the hash type. Hash types are either
1404 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1405 *
1406 * Properties of hashes:
1407 *
1408 * 1) Two packets in different flows have different hash values
1409 * 2) Two packets in the same flow should have the same hash value
1410 *
1411 * A hash at a higher layer is considered to be more specific. A driver should
1412 * set the most specific hash possible.
1413 *
1414 * A driver cannot indicate a more specific hash than the layer at which a hash
1415 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1416 *
1417 * A driver may indicate a hash level which is less specific than the
1418 * actual layer the hash was computed on. For instance, a hash computed
1419 * at L4 may be considered an L3 hash. This should only be done if the
1420 * driver can't unambiguously determine that the HW computed the hash at
1421 * the higher layer. Note that the "should" in the second property above
1422 * permits this.
1423 */
1424enum pkt_hash_types {
1425 PKT_HASH_TYPE_NONE, /* Undefined type */
1426 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1427 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1428 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1429};
1430
1431static inline void skb_clear_hash(struct sk_buff *skb)
1432{
1433 skb->hash = 0;
1434 skb->sw_hash = 0;
1435 skb->l4_hash = 0;
1436}
1437
1438static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1439{
1440 if (!skb->l4_hash)
1441 skb_clear_hash(skb);
1442}
1443
1444static inline void
1445__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1446{
1447 skb->l4_hash = is_l4;
1448 skb->sw_hash = is_sw;
1449 skb->hash = hash;
1450}
1451
1452static inline void
1453skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1454{
1455 /* Used by drivers to set hash from HW */
1456 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1457}
1458
1459static inline void
1460__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1461{
1462 __skb_set_hash(skb, hash, true, is_l4);
1463}
1464
1465void __skb_get_hash(struct sk_buff *skb);
1466u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1467u32 skb_get_poff(const struct sk_buff *skb);
1468u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1469 const struct flow_keys_basic *keys, int hlen);
1470__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1471 const void *data, int hlen_proto);
1472
1473static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1474 int thoff, u8 ip_proto)
1475{
1476 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1477}
1478
1479void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1480 const struct flow_dissector_key *key,
1481 unsigned int key_count);
1482
1483struct bpf_flow_dissector;
1484u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1485 __be16 proto, int nhoff, int hlen, unsigned int flags);
1486
1487bool __skb_flow_dissect(const struct net *net,
1488 const struct sk_buff *skb,
1489 struct flow_dissector *flow_dissector,
1490 void *target_container, const void *data,
1491 __be16 proto, int nhoff, int hlen, unsigned int flags);
1492
1493static inline bool skb_flow_dissect(const struct sk_buff *skb,
1494 struct flow_dissector *flow_dissector,
1495 void *target_container, unsigned int flags)
1496{
1497 return __skb_flow_dissect(NULL, skb, flow_dissector,
1498 target_container, NULL, 0, 0, 0, flags);
1499}
1500
1501static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1502 struct flow_keys *flow,
1503 unsigned int flags)
1504{
1505 memset(flow, 0, sizeof(*flow));
1506 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1507 flow, NULL, 0, 0, 0, flags);
1508}
1509
1510static inline bool
1511skb_flow_dissect_flow_keys_basic(const struct net *net,
1512 const struct sk_buff *skb,
1513 struct flow_keys_basic *flow,
1514 const void *data, __be16 proto,
1515 int nhoff, int hlen, unsigned int flags)
1516{
1517 memset(flow, 0, sizeof(*flow));
1518 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1519 data, proto, nhoff, hlen, flags);
1520}
1521
1522void skb_flow_dissect_meta(const struct sk_buff *skb,
1523 struct flow_dissector *flow_dissector,
1524 void *target_container);
1525
1526/* Gets a skb connection tracking info, ctinfo map should be a
1527 * map of mapsize to translate enum ip_conntrack_info states
1528 * to user states.
1529 */
1530void
1531skb_flow_dissect_ct(const struct sk_buff *skb,
1532 struct flow_dissector *flow_dissector,
1533 void *target_container,
1534 u16 *ctinfo_map, size_t mapsize,
1535 bool post_ct, u16 zone);
1536void
1537skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1538 struct flow_dissector *flow_dissector,
1539 void *target_container);
1540
1541void skb_flow_dissect_hash(const struct sk_buff *skb,
1542 struct flow_dissector *flow_dissector,
1543 void *target_container);
1544
1545static inline __u32 skb_get_hash(struct sk_buff *skb)
1546{
1547 if (!skb->l4_hash && !skb->sw_hash)
1548 __skb_get_hash(skb);
1549
1550 return skb->hash;
1551}
1552
1553static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1554{
1555 if (!skb->l4_hash && !skb->sw_hash) {
1556 struct flow_keys keys;
1557 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1558
1559 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1560 }
1561
1562 return skb->hash;
1563}
1564
1565__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1566 const siphash_key_t *perturb);
1567
1568static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1569{
1570 return skb->hash;
1571}
1572
1573static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1574{
1575 to->hash = from->hash;
1576 to->sw_hash = from->sw_hash;
1577 to->l4_hash = from->l4_hash;
1578};
1579
1580static inline void skb_copy_decrypted(struct sk_buff *to,
1581 const struct sk_buff *from)
1582{
1583#ifdef CONFIG_TLS_DEVICE
1584 to->decrypted = from->decrypted;
1585#endif
1586}
1587
1588#ifdef NET_SKBUFF_DATA_USES_OFFSET
1589static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1590{
1591 return skb->head + skb->end;
1592}
1593
1594static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1595{
1596 return skb->end;
1597}
1598
1599static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1600{
1601 skb->end = offset;
1602}
1603#else
1604static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1605{
1606 return skb->end;
1607}
1608
1609static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1610{
1611 return skb->end - skb->head;
1612}
1613
1614static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1615{
1616 skb->end = skb->head + offset;
1617}
1618#endif
1619
1620struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1621 struct ubuf_info *uarg);
1622
1623void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1624
1625void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1626 bool success);
1627
1628int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1629 struct sk_buff *skb, struct iov_iter *from,
1630 size_t length);
1631
1632static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1633 struct msghdr *msg, int len)
1634{
1635 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1636}
1637
1638int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1639 struct msghdr *msg, int len,
1640 struct ubuf_info *uarg);
1641
1642/* Internal */
1643#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1644
1645static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1646{
1647 return &skb_shinfo(skb)->hwtstamps;
1648}
1649
1650static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1651{
1652 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1653
1654 return is_zcopy ? skb_uarg(skb) : NULL;
1655}
1656
1657static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1658{
1659 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1660}
1661
1662static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1663{
1664 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1665}
1666
1667static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1668 const struct sk_buff *skb2)
1669{
1670 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1671}
1672
1673static inline void net_zcopy_get(struct ubuf_info *uarg)
1674{
1675 refcount_inc(&uarg->refcnt);
1676}
1677
1678static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1679{
1680 skb_shinfo(skb)->destructor_arg = uarg;
1681 skb_shinfo(skb)->flags |= uarg->flags;
1682}
1683
1684static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1685 bool *have_ref)
1686{
1687 if (skb && uarg && !skb_zcopy(skb)) {
1688 if (unlikely(have_ref && *have_ref))
1689 *have_ref = false;
1690 else
1691 net_zcopy_get(uarg);
1692 skb_zcopy_init(skb, uarg);
1693 }
1694}
1695
1696static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1697{
1698 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1699 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1700}
1701
1702static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1703{
1704 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1705}
1706
1707static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1708{
1709 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1710}
1711
1712static inline void net_zcopy_put(struct ubuf_info *uarg)
1713{
1714 if (uarg)
1715 uarg->callback(NULL, uarg, true);
1716}
1717
1718static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1719{
1720 if (uarg) {
1721 if (uarg->callback == msg_zerocopy_callback)
1722 msg_zerocopy_put_abort(uarg, have_uref);
1723 else if (have_uref)
1724 net_zcopy_put(uarg);
1725 }
1726}
1727
1728/* Release a reference on a zerocopy structure */
1729static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1730{
1731 struct ubuf_info *uarg = skb_zcopy(skb);
1732
1733 if (uarg) {
1734 if (!skb_zcopy_is_nouarg(skb))
1735 uarg->callback(skb, uarg, zerocopy_success);
1736
1737 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1738 }
1739}
1740
1741void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1742
1743static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1744{
1745 if (unlikely(skb_zcopy_managed(skb)))
1746 __skb_zcopy_downgrade_managed(skb);
1747}
1748
1749static inline void skb_mark_not_on_list(struct sk_buff *skb)
1750{
1751 skb->next = NULL;
1752}
1753
1754static inline void skb_poison_list(struct sk_buff *skb)
1755{
1756#ifdef CONFIG_DEBUG_NET
1757 skb->next = SKB_LIST_POISON_NEXT;
1758#endif
1759}
1760
1761/* Iterate through singly-linked GSO fragments of an skb. */
1762#define skb_list_walk_safe(first, skb, next_skb) \
1763 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1764 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1765
1766static inline void skb_list_del_init(struct sk_buff *skb)
1767{
1768 __list_del_entry(&skb->list);
1769 skb_mark_not_on_list(skb);
1770}
1771
1772/**
1773 * skb_queue_empty - check if a queue is empty
1774 * @list: queue head
1775 *
1776 * Returns true if the queue is empty, false otherwise.
1777 */
1778static inline int skb_queue_empty(const struct sk_buff_head *list)
1779{
1780 return list->next == (const struct sk_buff *) list;
1781}
1782
1783/**
1784 * skb_queue_empty_lockless - check if a queue is empty
1785 * @list: queue head
1786 *
1787 * Returns true if the queue is empty, false otherwise.
1788 * This variant can be used in lockless contexts.
1789 */
1790static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1791{
1792 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1793}
1794
1795
1796/**
1797 * skb_queue_is_last - check if skb is the last entry in the queue
1798 * @list: queue head
1799 * @skb: buffer
1800 *
1801 * Returns true if @skb is the last buffer on the list.
1802 */
1803static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1804 const struct sk_buff *skb)
1805{
1806 return skb->next == (const struct sk_buff *) list;
1807}
1808
1809/**
1810 * skb_queue_is_first - check if skb is the first entry in the queue
1811 * @list: queue head
1812 * @skb: buffer
1813 *
1814 * Returns true if @skb is the first buffer on the list.
1815 */
1816static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1817 const struct sk_buff *skb)
1818{
1819 return skb->prev == (const struct sk_buff *) list;
1820}
1821
1822/**
1823 * skb_queue_next - return the next packet in the queue
1824 * @list: queue head
1825 * @skb: current buffer
1826 *
1827 * Return the next packet in @list after @skb. It is only valid to
1828 * call this if skb_queue_is_last() evaluates to false.
1829 */
1830static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1831 const struct sk_buff *skb)
1832{
1833 /* This BUG_ON may seem severe, but if we just return then we
1834 * are going to dereference garbage.
1835 */
1836 BUG_ON(skb_queue_is_last(list, skb));
1837 return skb->next;
1838}
1839
1840/**
1841 * skb_queue_prev - return the prev packet in the queue
1842 * @list: queue head
1843 * @skb: current buffer
1844 *
1845 * Return the prev packet in @list before @skb. It is only valid to
1846 * call this if skb_queue_is_first() evaluates to false.
1847 */
1848static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1849 const struct sk_buff *skb)
1850{
1851 /* This BUG_ON may seem severe, but if we just return then we
1852 * are going to dereference garbage.
1853 */
1854 BUG_ON(skb_queue_is_first(list, skb));
1855 return skb->prev;
1856}
1857
1858/**
1859 * skb_get - reference buffer
1860 * @skb: buffer to reference
1861 *
1862 * Makes another reference to a socket buffer and returns a pointer
1863 * to the buffer.
1864 */
1865static inline struct sk_buff *skb_get(struct sk_buff *skb)
1866{
1867 refcount_inc(&skb->users);
1868 return skb;
1869}
1870
1871/*
1872 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1873 */
1874
1875/**
1876 * skb_cloned - is the buffer a clone
1877 * @skb: buffer to check
1878 *
1879 * Returns true if the buffer was generated with skb_clone() and is
1880 * one of multiple shared copies of the buffer. Cloned buffers are
1881 * shared data so must not be written to under normal circumstances.
1882 */
1883static inline int skb_cloned(const struct sk_buff *skb)
1884{
1885 return skb->cloned &&
1886 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1887}
1888
1889static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1890{
1891 might_sleep_if(gfpflags_allow_blocking(pri));
1892
1893 if (skb_cloned(skb))
1894 return pskb_expand_head(skb, 0, 0, pri);
1895
1896 return 0;
1897}
1898
1899/* This variant of skb_unclone() makes sure skb->truesize
1900 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1901 *
1902 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1903 * when various debugging features are in place.
1904 */
1905int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1906static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1907{
1908 might_sleep_if(gfpflags_allow_blocking(pri));
1909
1910 if (skb_cloned(skb))
1911 return __skb_unclone_keeptruesize(skb, pri);
1912 return 0;
1913}
1914
1915/**
1916 * skb_header_cloned - is the header a clone
1917 * @skb: buffer to check
1918 *
1919 * Returns true if modifying the header part of the buffer requires
1920 * the data to be copied.
1921 */
1922static inline int skb_header_cloned(const struct sk_buff *skb)
1923{
1924 int dataref;
1925
1926 if (!skb->cloned)
1927 return 0;
1928
1929 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1930 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1931 return dataref != 1;
1932}
1933
1934static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1935{
1936 might_sleep_if(gfpflags_allow_blocking(pri));
1937
1938 if (skb_header_cloned(skb))
1939 return pskb_expand_head(skb, 0, 0, pri);
1940
1941 return 0;
1942}
1943
1944/**
1945 * __skb_header_release() - allow clones to use the headroom
1946 * @skb: buffer to operate on
1947 *
1948 * See "DOC: dataref and headerless skbs".
1949 */
1950static inline void __skb_header_release(struct sk_buff *skb)
1951{
1952 skb->nohdr = 1;
1953 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1954}
1955
1956
1957/**
1958 * skb_shared - is the buffer shared
1959 * @skb: buffer to check
1960 *
1961 * Returns true if more than one person has a reference to this
1962 * buffer.
1963 */
1964static inline int skb_shared(const struct sk_buff *skb)
1965{
1966 return refcount_read(&skb->users) != 1;
1967}
1968
1969/**
1970 * skb_share_check - check if buffer is shared and if so clone it
1971 * @skb: buffer to check
1972 * @pri: priority for memory allocation
1973 *
1974 * If the buffer is shared the buffer is cloned and the old copy
1975 * drops a reference. A new clone with a single reference is returned.
1976 * If the buffer is not shared the original buffer is returned. When
1977 * being called from interrupt status or with spinlocks held pri must
1978 * be GFP_ATOMIC.
1979 *
1980 * NULL is returned on a memory allocation failure.
1981 */
1982static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1983{
1984 might_sleep_if(gfpflags_allow_blocking(pri));
1985 if (skb_shared(skb)) {
1986 struct sk_buff *nskb = skb_clone(skb, pri);
1987
1988 if (likely(nskb))
1989 consume_skb(skb);
1990 else
1991 kfree_skb(skb);
1992 skb = nskb;
1993 }
1994 return skb;
1995}
1996
1997/*
1998 * Copy shared buffers into a new sk_buff. We effectively do COW on
1999 * packets to handle cases where we have a local reader and forward
2000 * and a couple of other messy ones. The normal one is tcpdumping
2001 * a packet thats being forwarded.
2002 */
2003
2004/**
2005 * skb_unshare - make a copy of a shared buffer
2006 * @skb: buffer to check
2007 * @pri: priority for memory allocation
2008 *
2009 * If the socket buffer is a clone then this function creates a new
2010 * copy of the data, drops a reference count on the old copy and returns
2011 * the new copy with the reference count at 1. If the buffer is not a clone
2012 * the original buffer is returned. When called with a spinlock held or
2013 * from interrupt state @pri must be %GFP_ATOMIC
2014 *
2015 * %NULL is returned on a memory allocation failure.
2016 */
2017static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2018 gfp_t pri)
2019{
2020 might_sleep_if(gfpflags_allow_blocking(pri));
2021 if (skb_cloned(skb)) {
2022 struct sk_buff *nskb = skb_copy(skb, pri);
2023
2024 /* Free our shared copy */
2025 if (likely(nskb))
2026 consume_skb(skb);
2027 else
2028 kfree_skb(skb);
2029 skb = nskb;
2030 }
2031 return skb;
2032}
2033
2034/**
2035 * skb_peek - peek at the head of an &sk_buff_head
2036 * @list_: list to peek at
2037 *
2038 * Peek an &sk_buff. Unlike most other operations you _MUST_
2039 * be careful with this one. A peek leaves the buffer on the
2040 * list and someone else may run off with it. You must hold
2041 * the appropriate locks or have a private queue to do this.
2042 *
2043 * Returns %NULL for an empty list or a pointer to the head element.
2044 * The reference count is not incremented and the reference is therefore
2045 * volatile. Use with caution.
2046 */
2047static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2048{
2049 struct sk_buff *skb = list_->next;
2050
2051 if (skb == (struct sk_buff *)list_)
2052 skb = NULL;
2053 return skb;
2054}
2055
2056/**
2057 * __skb_peek - peek at the head of a non-empty &sk_buff_head
2058 * @list_: list to peek at
2059 *
2060 * Like skb_peek(), but the caller knows that the list is not empty.
2061 */
2062static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2063{
2064 return list_->next;
2065}
2066
2067/**
2068 * skb_peek_next - peek skb following the given one from a queue
2069 * @skb: skb to start from
2070 * @list_: list to peek at
2071 *
2072 * Returns %NULL when the end of the list is met or a pointer to the
2073 * next element. The reference count is not incremented and the
2074 * reference is therefore volatile. Use with caution.
2075 */
2076static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2077 const struct sk_buff_head *list_)
2078{
2079 struct sk_buff *next = skb->next;
2080
2081 if (next == (struct sk_buff *)list_)
2082 next = NULL;
2083 return next;
2084}
2085
2086/**
2087 * skb_peek_tail - peek at the tail of an &sk_buff_head
2088 * @list_: list to peek at
2089 *
2090 * Peek an &sk_buff. Unlike most other operations you _MUST_
2091 * be careful with this one. A peek leaves the buffer on the
2092 * list and someone else may run off with it. You must hold
2093 * the appropriate locks or have a private queue to do this.
2094 *
2095 * Returns %NULL for an empty list or a pointer to the tail element.
2096 * The reference count is not incremented and the reference is therefore
2097 * volatile. Use with caution.
2098 */
2099static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2100{
2101 struct sk_buff *skb = READ_ONCE(list_->prev);
2102
2103 if (skb == (struct sk_buff *)list_)
2104 skb = NULL;
2105 return skb;
2106
2107}
2108
2109/**
2110 * skb_queue_len - get queue length
2111 * @list_: list to measure
2112 *
2113 * Return the length of an &sk_buff queue.
2114 */
2115static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2116{
2117 return list_->qlen;
2118}
2119
2120/**
2121 * skb_queue_len_lockless - get queue length
2122 * @list_: list to measure
2123 *
2124 * Return the length of an &sk_buff queue.
2125 * This variant can be used in lockless contexts.
2126 */
2127static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2128{
2129 return READ_ONCE(list_->qlen);
2130}
2131
2132/**
2133 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2134 * @list: queue to initialize
2135 *
2136 * This initializes only the list and queue length aspects of
2137 * an sk_buff_head object. This allows to initialize the list
2138 * aspects of an sk_buff_head without reinitializing things like
2139 * the spinlock. It can also be used for on-stack sk_buff_head
2140 * objects where the spinlock is known to not be used.
2141 */
2142static inline void __skb_queue_head_init(struct sk_buff_head *list)
2143{
2144 list->prev = list->next = (struct sk_buff *)list;
2145 list->qlen = 0;
2146}
2147
2148/*
2149 * This function creates a split out lock class for each invocation;
2150 * this is needed for now since a whole lot of users of the skb-queue
2151 * infrastructure in drivers have different locking usage (in hardirq)
2152 * than the networking core (in softirq only). In the long run either the
2153 * network layer or drivers should need annotation to consolidate the
2154 * main types of usage into 3 classes.
2155 */
2156static inline void skb_queue_head_init(struct sk_buff_head *list)
2157{
2158 spin_lock_init(&list->lock);
2159 __skb_queue_head_init(list);
2160}
2161
2162static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2163 struct lock_class_key *class)
2164{
2165 skb_queue_head_init(list);
2166 lockdep_set_class(&list->lock, class);
2167}
2168
2169/*
2170 * Insert an sk_buff on a list.
2171 *
2172 * The "__skb_xxxx()" functions are the non-atomic ones that
2173 * can only be called with interrupts disabled.
2174 */
2175static inline void __skb_insert(struct sk_buff *newsk,
2176 struct sk_buff *prev, struct sk_buff *next,
2177 struct sk_buff_head *list)
2178{
2179 /* See skb_queue_empty_lockless() and skb_peek_tail()
2180 * for the opposite READ_ONCE()
2181 */
2182 WRITE_ONCE(newsk->next, next);
2183 WRITE_ONCE(newsk->prev, prev);
2184 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2185 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2186 WRITE_ONCE(list->qlen, list->qlen + 1);
2187}
2188
2189static inline void __skb_queue_splice(const struct sk_buff_head *list,
2190 struct sk_buff *prev,
2191 struct sk_buff *next)
2192{
2193 struct sk_buff *first = list->next;
2194 struct sk_buff *last = list->prev;
2195
2196 WRITE_ONCE(first->prev, prev);
2197 WRITE_ONCE(prev->next, first);
2198
2199 WRITE_ONCE(last->next, next);
2200 WRITE_ONCE(next->prev, last);
2201}
2202
2203/**
2204 * skb_queue_splice - join two skb lists, this is designed for stacks
2205 * @list: the new list to add
2206 * @head: the place to add it in the first list
2207 */
2208static inline void skb_queue_splice(const struct sk_buff_head *list,
2209 struct sk_buff_head *head)
2210{
2211 if (!skb_queue_empty(list)) {
2212 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2213 head->qlen += list->qlen;
2214 }
2215}
2216
2217/**
2218 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2219 * @list: the new list to add
2220 * @head: the place to add it in the first list
2221 *
2222 * The list at @list is reinitialised
2223 */
2224static inline void skb_queue_splice_init(struct sk_buff_head *list,
2225 struct sk_buff_head *head)
2226{
2227 if (!skb_queue_empty(list)) {
2228 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2229 head->qlen += list->qlen;
2230 __skb_queue_head_init(list);
2231 }
2232}
2233
2234/**
2235 * skb_queue_splice_tail - join two skb lists, each list being a queue
2236 * @list: the new list to add
2237 * @head: the place to add it in the first list
2238 */
2239static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2240 struct sk_buff_head *head)
2241{
2242 if (!skb_queue_empty(list)) {
2243 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2244 head->qlen += list->qlen;
2245 }
2246}
2247
2248/**
2249 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2250 * @list: the new list to add
2251 * @head: the place to add it in the first list
2252 *
2253 * Each of the lists is a queue.
2254 * The list at @list is reinitialised
2255 */
2256static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2257 struct sk_buff_head *head)
2258{
2259 if (!skb_queue_empty(list)) {
2260 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2261 head->qlen += list->qlen;
2262 __skb_queue_head_init(list);
2263 }
2264}
2265
2266/**
2267 * __skb_queue_after - queue a buffer at the list head
2268 * @list: list to use
2269 * @prev: place after this buffer
2270 * @newsk: buffer to queue
2271 *
2272 * Queue a buffer int the middle of a list. This function takes no locks
2273 * and you must therefore hold required locks before calling it.
2274 *
2275 * A buffer cannot be placed on two lists at the same time.
2276 */
2277static inline void __skb_queue_after(struct sk_buff_head *list,
2278 struct sk_buff *prev,
2279 struct sk_buff *newsk)
2280{
2281 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2282}
2283
2284void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2285 struct sk_buff_head *list);
2286
2287static inline void __skb_queue_before(struct sk_buff_head *list,
2288 struct sk_buff *next,
2289 struct sk_buff *newsk)
2290{
2291 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2292}
2293
2294/**
2295 * __skb_queue_head - queue a buffer at the list head
2296 * @list: list to use
2297 * @newsk: buffer to queue
2298 *
2299 * Queue a buffer at the start of a list. This function takes no locks
2300 * and you must therefore hold required locks before calling it.
2301 *
2302 * A buffer cannot be placed on two lists at the same time.
2303 */
2304static inline void __skb_queue_head(struct sk_buff_head *list,
2305 struct sk_buff *newsk)
2306{
2307 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2308}
2309void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2310
2311/**
2312 * __skb_queue_tail - queue a buffer at the list tail
2313 * @list: list to use
2314 * @newsk: buffer to queue
2315 *
2316 * Queue a buffer at the end of a list. This function takes no locks
2317 * and you must therefore hold required locks before calling it.
2318 *
2319 * A buffer cannot be placed on two lists at the same time.
2320 */
2321static inline void __skb_queue_tail(struct sk_buff_head *list,
2322 struct sk_buff *newsk)
2323{
2324 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2325}
2326void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2327
2328/*
2329 * remove sk_buff from list. _Must_ be called atomically, and with
2330 * the list known..
2331 */
2332void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2333static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2334{
2335 struct sk_buff *next, *prev;
2336
2337 WRITE_ONCE(list->qlen, list->qlen - 1);
2338 next = skb->next;
2339 prev = skb->prev;
2340 skb->next = skb->prev = NULL;
2341 WRITE_ONCE(next->prev, prev);
2342 WRITE_ONCE(prev->next, next);
2343}
2344
2345/**
2346 * __skb_dequeue - remove from the head of the queue
2347 * @list: list to dequeue from
2348 *
2349 * Remove the head of the list. This function does not take any locks
2350 * so must be used with appropriate locks held only. The head item is
2351 * returned or %NULL if the list is empty.
2352 */
2353static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2354{
2355 struct sk_buff *skb = skb_peek(list);
2356 if (skb)
2357 __skb_unlink(skb, list);
2358 return skb;
2359}
2360struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2361
2362/**
2363 * __skb_dequeue_tail - remove from the tail of the queue
2364 * @list: list to dequeue from
2365 *
2366 * Remove the tail of the list. This function does not take any locks
2367 * so must be used with appropriate locks held only. The tail item is
2368 * returned or %NULL if the list is empty.
2369 */
2370static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2371{
2372 struct sk_buff *skb = skb_peek_tail(list);
2373 if (skb)
2374 __skb_unlink(skb, list);
2375 return skb;
2376}
2377struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2378
2379
2380static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2381{
2382 return skb->data_len;
2383}
2384
2385static inline unsigned int skb_headlen(const struct sk_buff *skb)
2386{
2387 return skb->len - skb->data_len;
2388}
2389
2390static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2391{
2392 unsigned int i, len = 0;
2393
2394 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2395 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2396 return len;
2397}
2398
2399static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2400{
2401 return skb_headlen(skb) + __skb_pagelen(skb);
2402}
2403
2404static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2405 int i, struct page *page,
2406 int off, int size)
2407{
2408 skb_frag_t *frag = &shinfo->frags[i];
2409
2410 /*
2411 * Propagate page pfmemalloc to the skb if we can. The problem is
2412 * that not all callers have unique ownership of the page but rely
2413 * on page_is_pfmemalloc doing the right thing(tm).
2414 */
2415 frag->bv_page = page;
2416 frag->bv_offset = off;
2417 skb_frag_size_set(frag, size);
2418}
2419
2420/**
2421 * skb_len_add - adds a number to len fields of skb
2422 * @skb: buffer to add len to
2423 * @delta: number of bytes to add
2424 */
2425static inline void skb_len_add(struct sk_buff *skb, int delta)
2426{
2427 skb->len += delta;
2428 skb->data_len += delta;
2429 skb->truesize += delta;
2430}
2431
2432/**
2433 * __skb_fill_page_desc - initialise a paged fragment in an skb
2434 * @skb: buffer containing fragment to be initialised
2435 * @i: paged fragment index to initialise
2436 * @page: the page to use for this fragment
2437 * @off: the offset to the data with @page
2438 * @size: the length of the data
2439 *
2440 * Initialises the @i'th fragment of @skb to point to &size bytes at
2441 * offset @off within @page.
2442 *
2443 * Does not take any additional reference on the fragment.
2444 */
2445static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2446 struct page *page, int off, int size)
2447{
2448 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2449 page = compound_head(page);
2450 if (page_is_pfmemalloc(page))
2451 skb->pfmemalloc = true;
2452}
2453
2454/**
2455 * skb_fill_page_desc - initialise a paged fragment in an skb
2456 * @skb: buffer containing fragment to be initialised
2457 * @i: paged fragment index to initialise
2458 * @page: the page to use for this fragment
2459 * @off: the offset to the data with @page
2460 * @size: the length of the data
2461 *
2462 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2463 * @skb to point to @size bytes at offset @off within @page. In
2464 * addition updates @skb such that @i is the last fragment.
2465 *
2466 * Does not take any additional reference on the fragment.
2467 */
2468static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2469 struct page *page, int off, int size)
2470{
2471 __skb_fill_page_desc(skb, i, page, off, size);
2472 skb_shinfo(skb)->nr_frags = i + 1;
2473}
2474
2475/**
2476 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2477 * @skb: buffer containing fragment to be initialised
2478 * @i: paged fragment index to initialise
2479 * @page: the page to use for this fragment
2480 * @off: the offset to the data with @page
2481 * @size: the length of the data
2482 *
2483 * Variant of skb_fill_page_desc() which does not deal with
2484 * pfmemalloc, if page is not owned by us.
2485 */
2486static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2487 struct page *page, int off,
2488 int size)
2489{
2490 struct skb_shared_info *shinfo = skb_shinfo(skb);
2491
2492 __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2493 shinfo->nr_frags = i + 1;
2494}
2495
2496void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2497 int size, unsigned int truesize);
2498
2499void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2500 unsigned int truesize);
2501
2502#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2503
2504#ifdef NET_SKBUFF_DATA_USES_OFFSET
2505static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2506{
2507 return skb->head + skb->tail;
2508}
2509
2510static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2511{
2512 skb->tail = skb->data - skb->head;
2513}
2514
2515static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2516{
2517 skb_reset_tail_pointer(skb);
2518 skb->tail += offset;
2519}
2520
2521#else /* NET_SKBUFF_DATA_USES_OFFSET */
2522static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2523{
2524 return skb->tail;
2525}
2526
2527static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2528{
2529 skb->tail = skb->data;
2530}
2531
2532static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2533{
2534 skb->tail = skb->data + offset;
2535}
2536
2537#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2538
2539static inline void skb_assert_len(struct sk_buff *skb)
2540{
2541#ifdef CONFIG_DEBUG_NET
2542 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2543 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2544#endif /* CONFIG_DEBUG_NET */
2545}
2546
2547/*
2548 * Add data to an sk_buff
2549 */
2550void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2551void *skb_put(struct sk_buff *skb, unsigned int len);
2552static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2553{
2554 void *tmp = skb_tail_pointer(skb);
2555 SKB_LINEAR_ASSERT(skb);
2556 skb->tail += len;
2557 skb->len += len;
2558 return tmp;
2559}
2560
2561static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2562{
2563 void *tmp = __skb_put(skb, len);
2564
2565 memset(tmp, 0, len);
2566 return tmp;
2567}
2568
2569static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2570 unsigned int len)
2571{
2572 void *tmp = __skb_put(skb, len);
2573
2574 memcpy(tmp, data, len);
2575 return tmp;
2576}
2577
2578static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2579{
2580 *(u8 *)__skb_put(skb, 1) = val;
2581}
2582
2583static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2584{
2585 void *tmp = skb_put(skb, len);
2586
2587 memset(tmp, 0, len);
2588
2589 return tmp;
2590}
2591
2592static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2593 unsigned int len)
2594{
2595 void *tmp = skb_put(skb, len);
2596
2597 memcpy(tmp, data, len);
2598
2599 return tmp;
2600}
2601
2602static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2603{
2604 *(u8 *)skb_put(skb, 1) = val;
2605}
2606
2607void *skb_push(struct sk_buff *skb, unsigned int len);
2608static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2609{
2610 skb->data -= len;
2611 skb->len += len;
2612 return skb->data;
2613}
2614
2615void *skb_pull(struct sk_buff *skb, unsigned int len);
2616static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2617{
2618 skb->len -= len;
2619 if (unlikely(skb->len < skb->data_len)) {
2620#if defined(CONFIG_DEBUG_NET)
2621 skb->len += len;
2622 pr_err("__skb_pull(len=%u)\n", len);
2623 skb_dump(KERN_ERR, skb, false);
2624#endif
2625 BUG();
2626 }
2627 return skb->data += len;
2628}
2629
2630static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2631{
2632 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2633}
2634
2635void *skb_pull_data(struct sk_buff *skb, size_t len);
2636
2637void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2638
2639static inline enum skb_drop_reason
2640pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2641{
2642 if (likely(len <= skb_headlen(skb)))
2643 return SKB_NOT_DROPPED_YET;
2644
2645 if (unlikely(len > skb->len))
2646 return SKB_DROP_REASON_PKT_TOO_SMALL;
2647
2648 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2649 return SKB_DROP_REASON_NOMEM;
2650
2651 return SKB_NOT_DROPPED_YET;
2652}
2653
2654static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2655{
2656 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2657}
2658
2659static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2660{
2661 if (!pskb_may_pull(skb, len))
2662 return NULL;
2663
2664 skb->len -= len;
2665 return skb->data += len;
2666}
2667
2668void skb_condense(struct sk_buff *skb);
2669
2670/**
2671 * skb_headroom - bytes at buffer head
2672 * @skb: buffer to check
2673 *
2674 * Return the number of bytes of free space at the head of an &sk_buff.
2675 */
2676static inline unsigned int skb_headroom(const struct sk_buff *skb)
2677{
2678 return skb->data - skb->head;
2679}
2680
2681/**
2682 * skb_tailroom - bytes at buffer end
2683 * @skb: buffer to check
2684 *
2685 * Return the number of bytes of free space at the tail of an sk_buff
2686 */
2687static inline int skb_tailroom(const struct sk_buff *skb)
2688{
2689 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2690}
2691
2692/**
2693 * skb_availroom - bytes at buffer end
2694 * @skb: buffer to check
2695 *
2696 * Return the number of bytes of free space at the tail of an sk_buff
2697 * allocated by sk_stream_alloc()
2698 */
2699static inline int skb_availroom(const struct sk_buff *skb)
2700{
2701 if (skb_is_nonlinear(skb))
2702 return 0;
2703
2704 return skb->end - skb->tail - skb->reserved_tailroom;
2705}
2706
2707/**
2708 * skb_reserve - adjust headroom
2709 * @skb: buffer to alter
2710 * @len: bytes to move
2711 *
2712 * Increase the headroom of an empty &sk_buff by reducing the tail
2713 * room. This is only allowed for an empty buffer.
2714 */
2715static inline void skb_reserve(struct sk_buff *skb, int len)
2716{
2717 skb->data += len;
2718 skb->tail += len;
2719}
2720
2721/**
2722 * skb_tailroom_reserve - adjust reserved_tailroom
2723 * @skb: buffer to alter
2724 * @mtu: maximum amount of headlen permitted
2725 * @needed_tailroom: minimum amount of reserved_tailroom
2726 *
2727 * Set reserved_tailroom so that headlen can be as large as possible but
2728 * not larger than mtu and tailroom cannot be smaller than
2729 * needed_tailroom.
2730 * The required headroom should already have been reserved before using
2731 * this function.
2732 */
2733static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2734 unsigned int needed_tailroom)
2735{
2736 SKB_LINEAR_ASSERT(skb);
2737 if (mtu < skb_tailroom(skb) - needed_tailroom)
2738 /* use at most mtu */
2739 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2740 else
2741 /* use up to all available space */
2742 skb->reserved_tailroom = needed_tailroom;
2743}
2744
2745#define ENCAP_TYPE_ETHER 0
2746#define ENCAP_TYPE_IPPROTO 1
2747
2748static inline void skb_set_inner_protocol(struct sk_buff *skb,
2749 __be16 protocol)
2750{
2751 skb->inner_protocol = protocol;
2752 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2753}
2754
2755static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2756 __u8 ipproto)
2757{
2758 skb->inner_ipproto = ipproto;
2759 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2760}
2761
2762static inline void skb_reset_inner_headers(struct sk_buff *skb)
2763{
2764 skb->inner_mac_header = skb->mac_header;
2765 skb->inner_network_header = skb->network_header;
2766 skb->inner_transport_header = skb->transport_header;
2767}
2768
2769static inline void skb_reset_mac_len(struct sk_buff *skb)
2770{
2771 skb->mac_len = skb->network_header - skb->mac_header;
2772}
2773
2774static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2775 *skb)
2776{
2777 return skb->head + skb->inner_transport_header;
2778}
2779
2780static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2781{
2782 return skb_inner_transport_header(skb) - skb->data;
2783}
2784
2785static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2786{
2787 skb->inner_transport_header = skb->data - skb->head;
2788}
2789
2790static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2791 const int offset)
2792{
2793 skb_reset_inner_transport_header(skb);
2794 skb->inner_transport_header += offset;
2795}
2796
2797static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2798{
2799 return skb->head + skb->inner_network_header;
2800}
2801
2802static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2803{
2804 skb->inner_network_header = skb->data - skb->head;
2805}
2806
2807static inline void skb_set_inner_network_header(struct sk_buff *skb,
2808 const int offset)
2809{
2810 skb_reset_inner_network_header(skb);
2811 skb->inner_network_header += offset;
2812}
2813
2814static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2815{
2816 return skb->head + skb->inner_mac_header;
2817}
2818
2819static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2820{
2821 skb->inner_mac_header = skb->data - skb->head;
2822}
2823
2824static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2825 const int offset)
2826{
2827 skb_reset_inner_mac_header(skb);
2828 skb->inner_mac_header += offset;
2829}
2830static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2831{
2832 return skb->transport_header != (typeof(skb->transport_header))~0U;
2833}
2834
2835static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2836{
2837 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2838 return skb->head + skb->transport_header;
2839}
2840
2841static inline void skb_reset_transport_header(struct sk_buff *skb)
2842{
2843 skb->transport_header = skb->data - skb->head;
2844}
2845
2846static inline void skb_set_transport_header(struct sk_buff *skb,
2847 const int offset)
2848{
2849 skb_reset_transport_header(skb);
2850 skb->transport_header += offset;
2851}
2852
2853static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2854{
2855 return skb->head + skb->network_header;
2856}
2857
2858static inline void skb_reset_network_header(struct sk_buff *skb)
2859{
2860 skb->network_header = skb->data - skb->head;
2861}
2862
2863static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2864{
2865 skb_reset_network_header(skb);
2866 skb->network_header += offset;
2867}
2868
2869static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2870{
2871 return skb->mac_header != (typeof(skb->mac_header))~0U;
2872}
2873
2874static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2875{
2876 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2877 return skb->head + skb->mac_header;
2878}
2879
2880static inline int skb_mac_offset(const struct sk_buff *skb)
2881{
2882 return skb_mac_header(skb) - skb->data;
2883}
2884
2885static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2886{
2887 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2888 return skb->network_header - skb->mac_header;
2889}
2890
2891static inline void skb_unset_mac_header(struct sk_buff *skb)
2892{
2893 skb->mac_header = (typeof(skb->mac_header))~0U;
2894}
2895
2896static inline void skb_reset_mac_header(struct sk_buff *skb)
2897{
2898 skb->mac_header = skb->data - skb->head;
2899}
2900
2901static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2902{
2903 skb_reset_mac_header(skb);
2904 skb->mac_header += offset;
2905}
2906
2907static inline void skb_pop_mac_header(struct sk_buff *skb)
2908{
2909 skb->mac_header = skb->network_header;
2910}
2911
2912static inline void skb_probe_transport_header(struct sk_buff *skb)
2913{
2914 struct flow_keys_basic keys;
2915
2916 if (skb_transport_header_was_set(skb))
2917 return;
2918
2919 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2920 NULL, 0, 0, 0, 0))
2921 skb_set_transport_header(skb, keys.control.thoff);
2922}
2923
2924static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2925{
2926 if (skb_mac_header_was_set(skb)) {
2927 const unsigned char *old_mac = skb_mac_header(skb);
2928
2929 skb_set_mac_header(skb, -skb->mac_len);
2930 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2931 }
2932}
2933
2934static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2935{
2936 return skb->csum_start - skb_headroom(skb);
2937}
2938
2939static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2940{
2941 return skb->head + skb->csum_start;
2942}
2943
2944static inline int skb_transport_offset(const struct sk_buff *skb)
2945{
2946 return skb_transport_header(skb) - skb->data;
2947}
2948
2949static inline u32 skb_network_header_len(const struct sk_buff *skb)
2950{
2951 return skb->transport_header - skb->network_header;
2952}
2953
2954static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2955{
2956 return skb->inner_transport_header - skb->inner_network_header;
2957}
2958
2959static inline int skb_network_offset(const struct sk_buff *skb)
2960{
2961 return skb_network_header(skb) - skb->data;
2962}
2963
2964static inline int skb_inner_network_offset(const struct sk_buff *skb)
2965{
2966 return skb_inner_network_header(skb) - skb->data;
2967}
2968
2969static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2970{
2971 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2972}
2973
2974/*
2975 * CPUs often take a performance hit when accessing unaligned memory
2976 * locations. The actual performance hit varies, it can be small if the
2977 * hardware handles it or large if we have to take an exception and fix it
2978 * in software.
2979 *
2980 * Since an ethernet header is 14 bytes network drivers often end up with
2981 * the IP header at an unaligned offset. The IP header can be aligned by
2982 * shifting the start of the packet by 2 bytes. Drivers should do this
2983 * with:
2984 *
2985 * skb_reserve(skb, NET_IP_ALIGN);
2986 *
2987 * The downside to this alignment of the IP header is that the DMA is now
2988 * unaligned. On some architectures the cost of an unaligned DMA is high
2989 * and this cost outweighs the gains made by aligning the IP header.
2990 *
2991 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2992 * to be overridden.
2993 */
2994#ifndef NET_IP_ALIGN
2995#define NET_IP_ALIGN 2
2996#endif
2997
2998/*
2999 * The networking layer reserves some headroom in skb data (via
3000 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3001 * the header has to grow. In the default case, if the header has to grow
3002 * 32 bytes or less we avoid the reallocation.
3003 *
3004 * Unfortunately this headroom changes the DMA alignment of the resulting
3005 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3006 * on some architectures. An architecture can override this value,
3007 * perhaps setting it to a cacheline in size (since that will maintain
3008 * cacheline alignment of the DMA). It must be a power of 2.
3009 *
3010 * Various parts of the networking layer expect at least 32 bytes of
3011 * headroom, you should not reduce this.
3012 *
3013 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3014 * to reduce average number of cache lines per packet.
3015 * get_rps_cpu() for example only access one 64 bytes aligned block :
3016 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3017 */
3018#ifndef NET_SKB_PAD
3019#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
3020#endif
3021
3022int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3023
3024static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3025{
3026 if (WARN_ON(skb_is_nonlinear(skb)))
3027 return;
3028 skb->len = len;
3029 skb_set_tail_pointer(skb, len);
3030}
3031
3032static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3033{
3034 __skb_set_length(skb, len);
3035}
3036
3037void skb_trim(struct sk_buff *skb, unsigned int len);
3038
3039static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3040{
3041 if (skb->data_len)
3042 return ___pskb_trim(skb, len);
3043 __skb_trim(skb, len);
3044 return 0;
3045}
3046
3047static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3048{
3049 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3050}
3051
3052/**
3053 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3054 * @skb: buffer to alter
3055 * @len: new length
3056 *
3057 * This is identical to pskb_trim except that the caller knows that
3058 * the skb is not cloned so we should never get an error due to out-
3059 * of-memory.
3060 */
3061static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3062{
3063 int err = pskb_trim(skb, len);
3064 BUG_ON(err);
3065}
3066
3067static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3068{
3069 unsigned int diff = len - skb->len;
3070
3071 if (skb_tailroom(skb) < diff) {
3072 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3073 GFP_ATOMIC);
3074 if (ret)
3075 return ret;
3076 }
3077 __skb_set_length(skb, len);
3078 return 0;
3079}
3080
3081/**
3082 * skb_orphan - orphan a buffer
3083 * @skb: buffer to orphan
3084 *
3085 * If a buffer currently has an owner then we call the owner's
3086 * destructor function and make the @skb unowned. The buffer continues
3087 * to exist but is no longer charged to its former owner.
3088 */
3089static inline void skb_orphan(struct sk_buff *skb)
3090{
3091 if (skb->destructor) {
3092 skb->destructor(skb);
3093 skb->destructor = NULL;
3094 skb->sk = NULL;
3095 } else {
3096 BUG_ON(skb->sk);
3097 }
3098}
3099
3100/**
3101 * skb_orphan_frags - orphan the frags contained in a buffer
3102 * @skb: buffer to orphan frags from
3103 * @gfp_mask: allocation mask for replacement pages
3104 *
3105 * For each frag in the SKB which needs a destructor (i.e. has an
3106 * owner) create a copy of that frag and release the original
3107 * page by calling the destructor.
3108 */
3109static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3110{
3111 if (likely(!skb_zcopy(skb)))
3112 return 0;
3113 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3114 return 0;
3115 return skb_copy_ubufs(skb, gfp_mask);
3116}
3117
3118/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3119static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3120{
3121 if (likely(!skb_zcopy(skb)))
3122 return 0;
3123 return skb_copy_ubufs(skb, gfp_mask);
3124}
3125
3126/**
3127 * __skb_queue_purge - empty a list
3128 * @list: list to empty
3129 *
3130 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3131 * the list and one reference dropped. This function does not take the
3132 * list lock and the caller must hold the relevant locks to use it.
3133 */
3134static inline void __skb_queue_purge(struct sk_buff_head *list)
3135{
3136 struct sk_buff *skb;
3137 while ((skb = __skb_dequeue(list)) != NULL)
3138 kfree_skb(skb);
3139}
3140void skb_queue_purge(struct sk_buff_head *list);
3141
3142unsigned int skb_rbtree_purge(struct rb_root *root);
3143
3144void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3145
3146/**
3147 * netdev_alloc_frag - allocate a page fragment
3148 * @fragsz: fragment size
3149 *
3150 * Allocates a frag from a page for receive buffer.
3151 * Uses GFP_ATOMIC allocations.
3152 */
3153static inline void *netdev_alloc_frag(unsigned int fragsz)
3154{
3155 return __netdev_alloc_frag_align(fragsz, ~0u);
3156}
3157
3158static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3159 unsigned int align)
3160{
3161 WARN_ON_ONCE(!is_power_of_2(align));
3162 return __netdev_alloc_frag_align(fragsz, -align);
3163}
3164
3165struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3166 gfp_t gfp_mask);
3167
3168/**
3169 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
3170 * @dev: network device to receive on
3171 * @length: length to allocate
3172 *
3173 * Allocate a new &sk_buff and assign it a usage count of one. The
3174 * buffer has unspecified headroom built in. Users should allocate
3175 * the headroom they think they need without accounting for the
3176 * built in space. The built in space is used for optimisations.
3177 *
3178 * %NULL is returned if there is no free memory. Although this function
3179 * allocates memory it can be called from an interrupt.
3180 */
3181static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3182 unsigned int length)
3183{
3184 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3185}
3186
3187/* legacy helper around __netdev_alloc_skb() */
3188static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3189 gfp_t gfp_mask)
3190{
3191 return __netdev_alloc_skb(NULL, length, gfp_mask);
3192}
3193
3194/* legacy helper around netdev_alloc_skb() */
3195static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3196{
3197 return netdev_alloc_skb(NULL, length);
3198}
3199
3200
3201static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3202 unsigned int length, gfp_t gfp)
3203{
3204 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3205
3206 if (NET_IP_ALIGN && skb)
3207 skb_reserve(skb, NET_IP_ALIGN);
3208 return skb;
3209}
3210
3211static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3212 unsigned int length)
3213{
3214 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3215}
3216
3217static inline void skb_free_frag(void *addr)
3218{
3219 page_frag_free(addr);
3220}
3221
3222void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3223
3224static inline void *napi_alloc_frag(unsigned int fragsz)
3225{
3226 return __napi_alloc_frag_align(fragsz, ~0u);
3227}
3228
3229static inline void *napi_alloc_frag_align(unsigned int fragsz,
3230 unsigned int align)
3231{
3232 WARN_ON_ONCE(!is_power_of_2(align));
3233 return __napi_alloc_frag_align(fragsz, -align);
3234}
3235
3236struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3237 unsigned int length, gfp_t gfp_mask);
3238static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3239 unsigned int length)
3240{
3241 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3242}
3243void napi_consume_skb(struct sk_buff *skb, int budget);
3244
3245void napi_skb_free_stolen_head(struct sk_buff *skb);
3246void __kfree_skb_defer(struct sk_buff *skb);
3247
3248/**
3249 * __dev_alloc_pages - allocate page for network Rx
3250 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3251 * @order: size of the allocation
3252 *
3253 * Allocate a new page.
3254 *
3255 * %NULL is returned if there is no free memory.
3256*/
3257static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3258 unsigned int order)
3259{
3260 /* This piece of code contains several assumptions.
3261 * 1. This is for device Rx, therefor a cold page is preferred.
3262 * 2. The expectation is the user wants a compound page.
3263 * 3. If requesting a order 0 page it will not be compound
3264 * due to the check to see if order has a value in prep_new_page
3265 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3266 * code in gfp_to_alloc_flags that should be enforcing this.
3267 */
3268 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3269
3270 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3271}
3272
3273static inline struct page *dev_alloc_pages(unsigned int order)
3274{
3275 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3276}
3277
3278/**
3279 * __dev_alloc_page - allocate a page for network Rx
3280 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3281 *
3282 * Allocate a new page.
3283 *
3284 * %NULL is returned if there is no free memory.
3285 */
3286static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3287{
3288 return __dev_alloc_pages(gfp_mask, 0);
3289}
3290
3291static inline struct page *dev_alloc_page(void)
3292{
3293 return dev_alloc_pages(0);
3294}
3295
3296/**
3297 * dev_page_is_reusable - check whether a page can be reused for network Rx
3298 * @page: the page to test
3299 *
3300 * A page shouldn't be considered for reusing/recycling if it was allocated
3301 * under memory pressure or at a distant memory node.
3302 *
3303 * Returns false if this page should be returned to page allocator, true
3304 * otherwise.
3305 */
3306static inline bool dev_page_is_reusable(const struct page *page)
3307{
3308 return likely(page_to_nid(page) == numa_mem_id() &&
3309 !page_is_pfmemalloc(page));
3310}
3311
3312/**
3313 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3314 * @page: The page that was allocated from skb_alloc_page
3315 * @skb: The skb that may need pfmemalloc set
3316 */
3317static inline void skb_propagate_pfmemalloc(const struct page *page,
3318 struct sk_buff *skb)
3319{
3320 if (page_is_pfmemalloc(page))
3321 skb->pfmemalloc = true;
3322}
3323
3324/**
3325 * skb_frag_off() - Returns the offset of a skb fragment
3326 * @frag: the paged fragment
3327 */
3328static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3329{
3330 return frag->bv_offset;
3331}
3332
3333/**
3334 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3335 * @frag: skb fragment
3336 * @delta: value to add
3337 */
3338static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3339{
3340 frag->bv_offset += delta;
3341}
3342
3343/**
3344 * skb_frag_off_set() - Sets the offset of a skb fragment
3345 * @frag: skb fragment
3346 * @offset: offset of fragment
3347 */
3348static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3349{
3350 frag->bv_offset = offset;
3351}
3352
3353/**
3354 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3355 * @fragto: skb fragment where offset is set
3356 * @fragfrom: skb fragment offset is copied from
3357 */
3358static inline void skb_frag_off_copy(skb_frag_t *fragto,
3359 const skb_frag_t *fragfrom)
3360{
3361 fragto->bv_offset = fragfrom->bv_offset;
3362}
3363
3364/**
3365 * skb_frag_page - retrieve the page referred to by a paged fragment
3366 * @frag: the paged fragment
3367 *
3368 * Returns the &struct page associated with @frag.
3369 */
3370static inline struct page *skb_frag_page(const skb_frag_t *frag)
3371{
3372 return frag->bv_page;
3373}
3374
3375/**
3376 * __skb_frag_ref - take an addition reference on a paged fragment.
3377 * @frag: the paged fragment
3378 *
3379 * Takes an additional reference on the paged fragment @frag.
3380 */
3381static inline void __skb_frag_ref(skb_frag_t *frag)
3382{
3383 get_page(skb_frag_page(frag));
3384}
3385
3386/**
3387 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3388 * @skb: the buffer
3389 * @f: the fragment offset.
3390 *
3391 * Takes an additional reference on the @f'th paged fragment of @skb.
3392 */
3393static inline void skb_frag_ref(struct sk_buff *skb, int f)
3394{
3395 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3396}
3397
3398/**
3399 * __skb_frag_unref - release a reference on a paged fragment.
3400 * @frag: the paged fragment
3401 * @recycle: recycle the page if allocated via page_pool
3402 *
3403 * Releases a reference on the paged fragment @frag
3404 * or recycles the page via the page_pool API.
3405 */
3406static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3407{
3408 struct page *page = skb_frag_page(frag);
3409
3410#ifdef CONFIG_PAGE_POOL
3411 if (recycle && page_pool_return_skb_page(page))
3412 return;
3413#endif
3414 put_page(page);
3415}
3416
3417/**
3418 * skb_frag_unref - release a reference on a paged fragment of an skb.
3419 * @skb: the buffer
3420 * @f: the fragment offset
3421 *
3422 * Releases a reference on the @f'th paged fragment of @skb.
3423 */
3424static inline void skb_frag_unref(struct sk_buff *skb, int f)
3425{
3426 struct skb_shared_info *shinfo = skb_shinfo(skb);
3427
3428 if (!skb_zcopy_managed(skb))
3429 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3430}
3431
3432/**
3433 * skb_frag_address - gets the address of the data contained in a paged fragment
3434 * @frag: the paged fragment buffer
3435 *
3436 * Returns the address of the data within @frag. The page must already
3437 * be mapped.
3438 */
3439static inline void *skb_frag_address(const skb_frag_t *frag)
3440{
3441 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3442}
3443
3444/**
3445 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3446 * @frag: the paged fragment buffer
3447 *
3448 * Returns the address of the data within @frag. Checks that the page
3449 * is mapped and returns %NULL otherwise.
3450 */
3451static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3452{
3453 void *ptr = page_address(skb_frag_page(frag));
3454 if (unlikely(!ptr))
3455 return NULL;
3456
3457 return ptr + skb_frag_off(frag);
3458}
3459
3460/**
3461 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3462 * @fragto: skb fragment where page is set
3463 * @fragfrom: skb fragment page is copied from
3464 */
3465static inline void skb_frag_page_copy(skb_frag_t *fragto,
3466 const skb_frag_t *fragfrom)
3467{
3468 fragto->bv_page = fragfrom->bv_page;
3469}
3470
3471/**
3472 * __skb_frag_set_page - sets the page contained in a paged fragment
3473 * @frag: the paged fragment
3474 * @page: the page to set
3475 *
3476 * Sets the fragment @frag to contain @page.
3477 */
3478static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3479{
3480 frag->bv_page = page;
3481}
3482
3483/**
3484 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3485 * @skb: the buffer
3486 * @f: the fragment offset
3487 * @page: the page to set
3488 *
3489 * Sets the @f'th fragment of @skb to contain @page.
3490 */
3491static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3492 struct page *page)
3493{
3494 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3495}
3496
3497bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3498
3499/**
3500 * skb_frag_dma_map - maps a paged fragment via the DMA API
3501 * @dev: the device to map the fragment to
3502 * @frag: the paged fragment to map
3503 * @offset: the offset within the fragment (starting at the
3504 * fragment's own offset)
3505 * @size: the number of bytes to map
3506 * @dir: the direction of the mapping (``PCI_DMA_*``)
3507 *
3508 * Maps the page associated with @frag to @device.
3509 */
3510static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3511 const skb_frag_t *frag,
3512 size_t offset, size_t size,
3513 enum dma_data_direction dir)
3514{
3515 return dma_map_page(dev, skb_frag_page(frag),
3516 skb_frag_off(frag) + offset, size, dir);
3517}
3518
3519static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3520 gfp_t gfp_mask)
3521{
3522 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3523}
3524
3525
3526static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3527 gfp_t gfp_mask)
3528{
3529 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3530}
3531
3532
3533/**
3534 * skb_clone_writable - is the header of a clone writable
3535 * @skb: buffer to check
3536 * @len: length up to which to write
3537 *
3538 * Returns true if modifying the header part of the cloned buffer
3539 * does not requires the data to be copied.
3540 */
3541static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3542{
3543 return !skb_header_cloned(skb) &&
3544 skb_headroom(skb) + len <= skb->hdr_len;
3545}
3546
3547static inline int skb_try_make_writable(struct sk_buff *skb,
3548 unsigned int write_len)
3549{
3550 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3551 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3552}
3553
3554static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3555 int cloned)
3556{
3557 int delta = 0;
3558
3559 if (headroom > skb_headroom(skb))
3560 delta = headroom - skb_headroom(skb);
3561
3562 if (delta || cloned)
3563 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3564 GFP_ATOMIC);
3565 return 0;
3566}
3567
3568/**
3569 * skb_cow - copy header of skb when it is required
3570 * @skb: buffer to cow
3571 * @headroom: needed headroom
3572 *
3573 * If the skb passed lacks sufficient headroom or its data part
3574 * is shared, data is reallocated. If reallocation fails, an error
3575 * is returned and original skb is not changed.
3576 *
3577 * The result is skb with writable area skb->head...skb->tail
3578 * and at least @headroom of space at head.
3579 */
3580static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3581{
3582 return __skb_cow(skb, headroom, skb_cloned(skb));
3583}
3584
3585/**
3586 * skb_cow_head - skb_cow but only making the head writable
3587 * @skb: buffer to cow
3588 * @headroom: needed headroom
3589 *
3590 * This function is identical to skb_cow except that we replace the
3591 * skb_cloned check by skb_header_cloned. It should be used when
3592 * you only need to push on some header and do not need to modify
3593 * the data.
3594 */
3595static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3596{
3597 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3598}
3599
3600/**
3601 * skb_padto - pad an skbuff up to a minimal size
3602 * @skb: buffer to pad
3603 * @len: minimal length
3604 *
3605 * Pads up a buffer to ensure the trailing bytes exist and are
3606 * blanked. If the buffer already contains sufficient data it
3607 * is untouched. Otherwise it is extended. Returns zero on
3608 * success. The skb is freed on error.
3609 */
3610static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3611{
3612 unsigned int size = skb->len;
3613 if (likely(size >= len))
3614 return 0;
3615 return skb_pad(skb, len - size);
3616}
3617
3618/**
3619 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3620 * @skb: buffer to pad
3621 * @len: minimal length
3622 * @free_on_error: free buffer on error
3623 *
3624 * Pads up a buffer to ensure the trailing bytes exist and are
3625 * blanked. If the buffer already contains sufficient data it
3626 * is untouched. Otherwise it is extended. Returns zero on
3627 * success. The skb is freed on error if @free_on_error is true.
3628 */
3629static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3630 unsigned int len,
3631 bool free_on_error)
3632{
3633 unsigned int size = skb->len;
3634
3635 if (unlikely(size < len)) {
3636 len -= size;
3637 if (__skb_pad(skb, len, free_on_error))
3638 return -ENOMEM;
3639 __skb_put(skb, len);
3640 }
3641 return 0;
3642}
3643
3644/**
3645 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3646 * @skb: buffer to pad
3647 * @len: minimal length
3648 *
3649 * Pads up a buffer to ensure the trailing bytes exist and are
3650 * blanked. If the buffer already contains sufficient data it
3651 * is untouched. Otherwise it is extended. Returns zero on
3652 * success. The skb is freed on error.
3653 */
3654static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3655{
3656 return __skb_put_padto(skb, len, true);
3657}
3658
3659static inline int skb_add_data(struct sk_buff *skb,
3660 struct iov_iter *from, int copy)
3661{
3662 const int off = skb->len;
3663
3664 if (skb->ip_summed == CHECKSUM_NONE) {
3665 __wsum csum = 0;
3666 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3667 &csum, from)) {
3668 skb->csum = csum_block_add(skb->csum, csum, off);
3669 return 0;
3670 }
3671 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3672 return 0;
3673
3674 __skb_trim(skb, off);
3675 return -EFAULT;
3676}
3677
3678static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3679 const struct page *page, int off)
3680{
3681 if (skb_zcopy(skb))
3682 return false;
3683 if (i) {
3684 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3685
3686 return page == skb_frag_page(frag) &&
3687 off == skb_frag_off(frag) + skb_frag_size(frag);
3688 }
3689 return false;
3690}
3691
3692static inline int __skb_linearize(struct sk_buff *skb)
3693{
3694 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3695}
3696
3697/**
3698 * skb_linearize - convert paged skb to linear one
3699 * @skb: buffer to linarize
3700 *
3701 * If there is no free memory -ENOMEM is returned, otherwise zero
3702 * is returned and the old skb data released.
3703 */
3704static inline int skb_linearize(struct sk_buff *skb)
3705{
3706 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3707}
3708
3709/**
3710 * skb_has_shared_frag - can any frag be overwritten
3711 * @skb: buffer to test
3712 *
3713 * Return true if the skb has at least one frag that might be modified
3714 * by an external entity (as in vmsplice()/sendfile())
3715 */
3716static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3717{
3718 return skb_is_nonlinear(skb) &&
3719 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3720}
3721
3722/**
3723 * skb_linearize_cow - make sure skb is linear and writable
3724 * @skb: buffer to process
3725 *
3726 * If there is no free memory -ENOMEM is returned, otherwise zero
3727 * is returned and the old skb data released.
3728 */
3729static inline int skb_linearize_cow(struct sk_buff *skb)
3730{
3731 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3732 __skb_linearize(skb) : 0;
3733}
3734
3735static __always_inline void
3736__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3737 unsigned int off)
3738{
3739 if (skb->ip_summed == CHECKSUM_COMPLETE)
3740 skb->csum = csum_block_sub(skb->csum,
3741 csum_partial(start, len, 0), off);
3742 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3743 skb_checksum_start_offset(skb) < 0)
3744 skb->ip_summed = CHECKSUM_NONE;
3745}
3746
3747/**
3748 * skb_postpull_rcsum - update checksum for received skb after pull
3749 * @skb: buffer to update
3750 * @start: start of data before pull
3751 * @len: length of data pulled
3752 *
3753 * After doing a pull on a received packet, you need to call this to
3754 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3755 * CHECKSUM_NONE so that it can be recomputed from scratch.
3756 */
3757static inline void skb_postpull_rcsum(struct sk_buff *skb,
3758 const void *start, unsigned int len)
3759{
3760 if (skb->ip_summed == CHECKSUM_COMPLETE)
3761 skb->csum = wsum_negate(csum_partial(start, len,
3762 wsum_negate(skb->csum)));
3763 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3764 skb_checksum_start_offset(skb) < 0)
3765 skb->ip_summed = CHECKSUM_NONE;
3766}
3767
3768static __always_inline void
3769__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3770 unsigned int off)
3771{
3772 if (skb->ip_summed == CHECKSUM_COMPLETE)
3773 skb->csum = csum_block_add(skb->csum,
3774 csum_partial(start, len, 0), off);
3775}
3776
3777/**
3778 * skb_postpush_rcsum - update checksum for received skb after push
3779 * @skb: buffer to update
3780 * @start: start of data after push
3781 * @len: length of data pushed
3782 *
3783 * After doing a push on a received packet, you need to call this to
3784 * update the CHECKSUM_COMPLETE checksum.
3785 */
3786static inline void skb_postpush_rcsum(struct sk_buff *skb,
3787 const void *start, unsigned int len)
3788{
3789 __skb_postpush_rcsum(skb, start, len, 0);
3790}
3791
3792void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3793
3794/**
3795 * skb_push_rcsum - push skb and update receive checksum
3796 * @skb: buffer to update
3797 * @len: length of data pulled
3798 *
3799 * This function performs an skb_push on the packet and updates
3800 * the CHECKSUM_COMPLETE checksum. It should be used on
3801 * receive path processing instead of skb_push unless you know
3802 * that the checksum difference is zero (e.g., a valid IP header)
3803 * or you are setting ip_summed to CHECKSUM_NONE.
3804 */
3805static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3806{
3807 skb_push(skb, len);
3808 skb_postpush_rcsum(skb, skb->data, len);
3809 return skb->data;
3810}
3811
3812int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3813/**
3814 * pskb_trim_rcsum - trim received skb and update checksum
3815 * @skb: buffer to trim
3816 * @len: new length
3817 *
3818 * This is exactly the same as pskb_trim except that it ensures the
3819 * checksum of received packets are still valid after the operation.
3820 * It can change skb pointers.
3821 */
3822
3823static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3824{
3825 if (likely(len >= skb->len))
3826 return 0;
3827 return pskb_trim_rcsum_slow(skb, len);
3828}
3829
3830static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3831{
3832 if (skb->ip_summed == CHECKSUM_COMPLETE)
3833 skb->ip_summed = CHECKSUM_NONE;
3834 __skb_trim(skb, len);
3835 return 0;
3836}
3837
3838static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3839{
3840 if (skb->ip_summed == CHECKSUM_COMPLETE)
3841 skb->ip_summed = CHECKSUM_NONE;
3842 return __skb_grow(skb, len);
3843}
3844
3845#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3846#define skb_rb_first(root) rb_to_skb(rb_first(root))
3847#define skb_rb_last(root) rb_to_skb(rb_last(root))
3848#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3849#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3850
3851#define skb_queue_walk(queue, skb) \
3852 for (skb = (queue)->next; \
3853 skb != (struct sk_buff *)(queue); \
3854 skb = skb->next)
3855
3856#define skb_queue_walk_safe(queue, skb, tmp) \
3857 for (skb = (queue)->next, tmp = skb->next; \
3858 skb != (struct sk_buff *)(queue); \
3859 skb = tmp, tmp = skb->next)
3860
3861#define skb_queue_walk_from(queue, skb) \
3862 for (; skb != (struct sk_buff *)(queue); \
3863 skb = skb->next)
3864
3865#define skb_rbtree_walk(skb, root) \
3866 for (skb = skb_rb_first(root); skb != NULL; \
3867 skb = skb_rb_next(skb))
3868
3869#define skb_rbtree_walk_from(skb) \
3870 for (; skb != NULL; \
3871 skb = skb_rb_next(skb))
3872
3873#define skb_rbtree_walk_from_safe(skb, tmp) \
3874 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3875 skb = tmp)
3876
3877#define skb_queue_walk_from_safe(queue, skb, tmp) \
3878 for (tmp = skb->next; \
3879 skb != (struct sk_buff *)(queue); \
3880 skb = tmp, tmp = skb->next)
3881
3882#define skb_queue_reverse_walk(queue, skb) \
3883 for (skb = (queue)->prev; \
3884 skb != (struct sk_buff *)(queue); \
3885 skb = skb->prev)
3886
3887#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3888 for (skb = (queue)->prev, tmp = skb->prev; \
3889 skb != (struct sk_buff *)(queue); \
3890 skb = tmp, tmp = skb->prev)
3891
3892#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3893 for (tmp = skb->prev; \
3894 skb != (struct sk_buff *)(queue); \
3895 skb = tmp, tmp = skb->prev)
3896
3897static inline bool skb_has_frag_list(const struct sk_buff *skb)
3898{
3899 return skb_shinfo(skb)->frag_list != NULL;
3900}
3901
3902static inline void skb_frag_list_init(struct sk_buff *skb)
3903{
3904 skb_shinfo(skb)->frag_list = NULL;
3905}
3906
3907#define skb_walk_frags(skb, iter) \
3908 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3909
3910
3911int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3912 int *err, long *timeo_p,
3913 const struct sk_buff *skb);
3914struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3915 struct sk_buff_head *queue,
3916 unsigned int flags,
3917 int *off, int *err,
3918 struct sk_buff **last);
3919struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3920 struct sk_buff_head *queue,
3921 unsigned int flags, int *off, int *err,
3922 struct sk_buff **last);
3923struct sk_buff *__skb_recv_datagram(struct sock *sk,
3924 struct sk_buff_head *sk_queue,
3925 unsigned int flags, int *off, int *err);
3926struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3927__poll_t datagram_poll(struct file *file, struct socket *sock,
3928 struct poll_table_struct *wait);
3929int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3930 struct iov_iter *to, int size);
3931static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3932 struct msghdr *msg, int size)
3933{
3934 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3935}
3936int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3937 struct msghdr *msg);
3938int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3939 struct iov_iter *to, int len,
3940 struct ahash_request *hash);
3941int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3942 struct iov_iter *from, int len);
3943int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3944void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3945void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3946static inline void skb_free_datagram_locked(struct sock *sk,
3947 struct sk_buff *skb)
3948{
3949 __skb_free_datagram_locked(sk, skb, 0);
3950}
3951int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3952int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3953int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3954__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3955 int len);
3956int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3957 struct pipe_inode_info *pipe, unsigned int len,
3958 unsigned int flags);
3959int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3960 int len);
3961int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3962void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3963unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3964int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3965 int len, int hlen);
3966void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3967int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3968void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3969bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3970bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3971struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3972struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3973 unsigned int offset);
3974struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3975int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3976int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3977int skb_vlan_pop(struct sk_buff *skb);
3978int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3979int skb_eth_pop(struct sk_buff *skb);
3980int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3981 const unsigned char *src);
3982int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3983 int mac_len, bool ethernet);
3984int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3985 bool ethernet);
3986int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3987int skb_mpls_dec_ttl(struct sk_buff *skb);
3988struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3989 gfp_t gfp);
3990
3991static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3992{
3993 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3994}
3995
3996static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3997{
3998 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3999}
4000
4001struct skb_checksum_ops {
4002 __wsum (*update)(const void *mem, int len, __wsum wsum);
4003 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4004};
4005
4006extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4007
4008__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4009 __wsum csum, const struct skb_checksum_ops *ops);
4010__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4011 __wsum csum);
4012
4013static inline void * __must_check
4014__skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4015 const void *data, int hlen, void *buffer)
4016{
4017 if (likely(hlen - offset >= len))
4018 return (void *)data + offset;
4019
4020 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4021 return NULL;
4022
4023 return buffer;
4024}
4025
4026static inline void * __must_check
4027skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4028{
4029 return __skb_header_pointer(skb, offset, len, skb->data,
4030 skb_headlen(skb), buffer);
4031}
4032
4033/**
4034 * skb_needs_linearize - check if we need to linearize a given skb
4035 * depending on the given device features.
4036 * @skb: socket buffer to check
4037 * @features: net device features
4038 *
4039 * Returns true if either:
4040 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
4041 * 2. skb is fragmented and the device does not support SG.
4042 */
4043static inline bool skb_needs_linearize(struct sk_buff *skb,
4044 netdev_features_t features)
4045{
4046 return skb_is_nonlinear(skb) &&
4047 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4048 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4049}
4050
4051static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4052 void *to,
4053 const unsigned int len)
4054{
4055 memcpy(to, skb->data, len);
4056}
4057
4058static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4059 const int offset, void *to,
4060 const unsigned int len)
4061{
4062 memcpy(to, skb->data + offset, len);
4063}
4064
4065static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4066 const void *from,
4067 const unsigned int len)
4068{
4069 memcpy(skb->data, from, len);
4070}
4071
4072static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4073 const int offset,
4074 const void *from,
4075 const unsigned int len)
4076{
4077 memcpy(skb->data + offset, from, len);
4078}
4079
4080void skb_init(void);
4081
4082static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4083{
4084 return skb->tstamp;
4085}
4086
4087/**
4088 * skb_get_timestamp - get timestamp from a skb
4089 * @skb: skb to get stamp from
4090 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
4091 *
4092 * Timestamps are stored in the skb as offsets to a base timestamp.
4093 * This function converts the offset back to a struct timeval and stores
4094 * it in stamp.
4095 */
4096static inline void skb_get_timestamp(const struct sk_buff *skb,
4097 struct __kernel_old_timeval *stamp)
4098{
4099 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4100}
4101
4102static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4103 struct __kernel_sock_timeval *stamp)
4104{
4105 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4106
4107 stamp->tv_sec = ts.tv_sec;
4108 stamp->tv_usec = ts.tv_nsec / 1000;
4109}
4110
4111static inline void skb_get_timestampns(const struct sk_buff *skb,
4112 struct __kernel_old_timespec *stamp)
4113{
4114 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4115
4116 stamp->tv_sec = ts.tv_sec;
4117 stamp->tv_nsec = ts.tv_nsec;
4118}
4119
4120static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4121 struct __kernel_timespec *stamp)
4122{
4123 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4124
4125 stamp->tv_sec = ts.tv_sec;
4126 stamp->tv_nsec = ts.tv_nsec;
4127}
4128
4129static inline void __net_timestamp(struct sk_buff *skb)
4130{
4131 skb->tstamp = ktime_get_real();
4132 skb->mono_delivery_time = 0;
4133}
4134
4135static inline ktime_t net_timedelta(ktime_t t)
4136{
4137 return ktime_sub(ktime_get_real(), t);
4138}
4139
4140static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4141 bool mono)
4142{
4143 skb->tstamp = kt;
4144 skb->mono_delivery_time = kt && mono;
4145}
4146
4147DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4148
4149/* It is used in the ingress path to clear the delivery_time.
4150 * If needed, set the skb->tstamp to the (rcv) timestamp.
4151 */
4152static inline void skb_clear_delivery_time(struct sk_buff *skb)
4153{
4154 if (skb->mono_delivery_time) {
4155 skb->mono_delivery_time = 0;
4156 if (static_branch_unlikely(&netstamp_needed_key))
4157 skb->tstamp = ktime_get_real();
4158 else
4159 skb->tstamp = 0;
4160 }
4161}
4162
4163static inline void skb_clear_tstamp(struct sk_buff *skb)
4164{
4165 if (skb->mono_delivery_time)
4166 return;
4167
4168 skb->tstamp = 0;
4169}
4170
4171static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4172{
4173 if (skb->mono_delivery_time)
4174 return 0;
4175
4176 return skb->tstamp;
4177}
4178
4179static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4180{
4181 if (!skb->mono_delivery_time && skb->tstamp)
4182 return skb->tstamp;
4183
4184 if (static_branch_unlikely(&netstamp_needed_key) || cond)
4185 return ktime_get_real();
4186
4187 return 0;
4188}
4189
4190static inline u8 skb_metadata_len(const struct sk_buff *skb)
4191{
4192 return skb_shinfo(skb)->meta_len;
4193}
4194
4195static inline void *skb_metadata_end(const struct sk_buff *skb)
4196{
4197 return skb_mac_header(skb);
4198}
4199
4200static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4201 const struct sk_buff *skb_b,
4202 u8 meta_len)
4203{
4204 const void *a = skb_metadata_end(skb_a);
4205 const void *b = skb_metadata_end(skb_b);
4206 /* Using more efficient varaiant than plain call to memcmp(). */
4207#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4208 u64 diffs = 0;
4209
4210 switch (meta_len) {
4211#define __it(x, op) (x -= sizeof(u##op))
4212#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4213 case 32: diffs |= __it_diff(a, b, 64);
4214 fallthrough;
4215 case 24: diffs |= __it_diff(a, b, 64);
4216 fallthrough;
4217 case 16: diffs |= __it_diff(a, b, 64);
4218 fallthrough;
4219 case 8: diffs |= __it_diff(a, b, 64);
4220 break;
4221 case 28: diffs |= __it_diff(a, b, 64);
4222 fallthrough;
4223 case 20: diffs |= __it_diff(a, b, 64);
4224 fallthrough;
4225 case 12: diffs |= __it_diff(a, b, 64);
4226 fallthrough;
4227 case 4: diffs |= __it_diff(a, b, 32);
4228 break;
4229 }
4230 return diffs;
4231#else
4232 return memcmp(a - meta_len, b - meta_len, meta_len);
4233#endif
4234}
4235
4236static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4237 const struct sk_buff *skb_b)
4238{
4239 u8 len_a = skb_metadata_len(skb_a);
4240 u8 len_b = skb_metadata_len(skb_b);
4241
4242 if (!(len_a | len_b))
4243 return false;
4244
4245 return len_a != len_b ?
4246 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4247}
4248
4249static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4250{
4251 skb_shinfo(skb)->meta_len = meta_len;
4252}
4253
4254static inline void skb_metadata_clear(struct sk_buff *skb)
4255{
4256 skb_metadata_set(skb, 0);
4257}
4258
4259struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4260
4261#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4262
4263void skb_clone_tx_timestamp(struct sk_buff *skb);
4264bool skb_defer_rx_timestamp(struct sk_buff *skb);
4265
4266#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4267
4268static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4269{
4270}
4271
4272static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4273{
4274 return false;
4275}
4276
4277#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4278
4279/**
4280 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4281 *
4282 * PHY drivers may accept clones of transmitted packets for
4283 * timestamping via their phy_driver.txtstamp method. These drivers
4284 * must call this function to return the skb back to the stack with a
4285 * timestamp.
4286 *
4287 * @skb: clone of the original outgoing packet
4288 * @hwtstamps: hardware time stamps
4289 *
4290 */
4291void skb_complete_tx_timestamp(struct sk_buff *skb,
4292 struct skb_shared_hwtstamps *hwtstamps);
4293
4294void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4295 struct skb_shared_hwtstamps *hwtstamps,
4296 struct sock *sk, int tstype);
4297
4298/**
4299 * skb_tstamp_tx - queue clone of skb with send time stamps
4300 * @orig_skb: the original outgoing packet
4301 * @hwtstamps: hardware time stamps, may be NULL if not available
4302 *
4303 * If the skb has a socket associated, then this function clones the
4304 * skb (thus sharing the actual data and optional structures), stores
4305 * the optional hardware time stamping information (if non NULL) or
4306 * generates a software time stamp (otherwise), then queues the clone
4307 * to the error queue of the socket. Errors are silently ignored.
4308 */
4309void skb_tstamp_tx(struct sk_buff *orig_skb,
4310 struct skb_shared_hwtstamps *hwtstamps);
4311
4312/**
4313 * skb_tx_timestamp() - Driver hook for transmit timestamping
4314 *
4315 * Ethernet MAC Drivers should call this function in their hard_xmit()
4316 * function immediately before giving the sk_buff to the MAC hardware.
4317 *
4318 * Specifically, one should make absolutely sure that this function is
4319 * called before TX completion of this packet can trigger. Otherwise
4320 * the packet could potentially already be freed.
4321 *
4322 * @skb: A socket buffer.
4323 */
4324static inline void skb_tx_timestamp(struct sk_buff *skb)
4325{
4326 skb_clone_tx_timestamp(skb);
4327 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4328 skb_tstamp_tx(skb, NULL);
4329}
4330
4331/**
4332 * skb_complete_wifi_ack - deliver skb with wifi status
4333 *
4334 * @skb: the original outgoing packet
4335 * @acked: ack status
4336 *
4337 */
4338void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4339
4340__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4341__sum16 __skb_checksum_complete(struct sk_buff *skb);
4342
4343static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4344{
4345 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4346 skb->csum_valid ||
4347 (skb->ip_summed == CHECKSUM_PARTIAL &&
4348 skb_checksum_start_offset(skb) >= 0));
4349}
4350
4351/**
4352 * skb_checksum_complete - Calculate checksum of an entire packet
4353 * @skb: packet to process
4354 *
4355 * This function calculates the checksum over the entire packet plus
4356 * the value of skb->csum. The latter can be used to supply the
4357 * checksum of a pseudo header as used by TCP/UDP. It returns the
4358 * checksum.
4359 *
4360 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4361 * this function can be used to verify that checksum on received
4362 * packets. In that case the function should return zero if the
4363 * checksum is correct. In particular, this function will return zero
4364 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4365 * hardware has already verified the correctness of the checksum.
4366 */
4367static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4368{
4369 return skb_csum_unnecessary(skb) ?
4370 0 : __skb_checksum_complete(skb);
4371}
4372
4373static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4374{
4375 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4376 if (skb->csum_level == 0)
4377 skb->ip_summed = CHECKSUM_NONE;
4378 else
4379 skb->csum_level--;
4380 }
4381}
4382
4383static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4384{
4385 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4386 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4387 skb->csum_level++;
4388 } else if (skb->ip_summed == CHECKSUM_NONE) {
4389 skb->ip_summed = CHECKSUM_UNNECESSARY;
4390 skb->csum_level = 0;
4391 }
4392}
4393
4394static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4395{
4396 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4397 skb->ip_summed = CHECKSUM_NONE;
4398 skb->csum_level = 0;
4399 }
4400}
4401
4402/* Check if we need to perform checksum complete validation.
4403 *
4404 * Returns true if checksum complete is needed, false otherwise
4405 * (either checksum is unnecessary or zero checksum is allowed).
4406 */
4407static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4408 bool zero_okay,
4409 __sum16 check)
4410{
4411 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4412 skb->csum_valid = 1;
4413 __skb_decr_checksum_unnecessary(skb);
4414 return false;
4415 }
4416
4417 return true;
4418}
4419
4420/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4421 * in checksum_init.
4422 */
4423#define CHECKSUM_BREAK 76
4424
4425/* Unset checksum-complete
4426 *
4427 * Unset checksum complete can be done when packet is being modified
4428 * (uncompressed for instance) and checksum-complete value is
4429 * invalidated.
4430 */
4431static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4432{
4433 if (skb->ip_summed == CHECKSUM_COMPLETE)
4434 skb->ip_summed = CHECKSUM_NONE;
4435}
4436
4437/* Validate (init) checksum based on checksum complete.
4438 *
4439 * Return values:
4440 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4441 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4442 * checksum is stored in skb->csum for use in __skb_checksum_complete
4443 * non-zero: value of invalid checksum
4444 *
4445 */
4446static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4447 bool complete,
4448 __wsum psum)
4449{
4450 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4451 if (!csum_fold(csum_add(psum, skb->csum))) {
4452 skb->csum_valid = 1;
4453 return 0;
4454 }
4455 }
4456
4457 skb->csum = psum;
4458
4459 if (complete || skb->len <= CHECKSUM_BREAK) {
4460 __sum16 csum;
4461
4462 csum = __skb_checksum_complete(skb);
4463 skb->csum_valid = !csum;
4464 return csum;
4465 }
4466
4467 return 0;
4468}
4469
4470static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4471{
4472 return 0;
4473}
4474
4475/* Perform checksum validate (init). Note that this is a macro since we only
4476 * want to calculate the pseudo header which is an input function if necessary.
4477 * First we try to validate without any computation (checksum unnecessary) and
4478 * then calculate based on checksum complete calling the function to compute
4479 * pseudo header.
4480 *
4481 * Return values:
4482 * 0: checksum is validated or try to in skb_checksum_complete
4483 * non-zero: value of invalid checksum
4484 */
4485#define __skb_checksum_validate(skb, proto, complete, \
4486 zero_okay, check, compute_pseudo) \
4487({ \
4488 __sum16 __ret = 0; \
4489 skb->csum_valid = 0; \
4490 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4491 __ret = __skb_checksum_validate_complete(skb, \
4492 complete, compute_pseudo(skb, proto)); \
4493 __ret; \
4494})
4495
4496#define skb_checksum_init(skb, proto, compute_pseudo) \
4497 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4498
4499#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4500 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4501
4502#define skb_checksum_validate(skb, proto, compute_pseudo) \
4503 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4504
4505#define skb_checksum_validate_zero_check(skb, proto, check, \
4506 compute_pseudo) \
4507 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4508
4509#define skb_checksum_simple_validate(skb) \
4510 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4511
4512static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4513{
4514 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4515}
4516
4517static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4518{
4519 skb->csum = ~pseudo;
4520 skb->ip_summed = CHECKSUM_COMPLETE;
4521}
4522
4523#define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4524do { \
4525 if (__skb_checksum_convert_check(skb)) \
4526 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4527} while (0)
4528
4529static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4530 u16 start, u16 offset)
4531{
4532 skb->ip_summed = CHECKSUM_PARTIAL;
4533 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4534 skb->csum_offset = offset - start;
4535}
4536
4537/* Update skbuf and packet to reflect the remote checksum offload operation.
4538 * When called, ptr indicates the starting point for skb->csum when
4539 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4540 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4541 */
4542static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4543 int start, int offset, bool nopartial)
4544{
4545 __wsum delta;
4546
4547 if (!nopartial) {
4548 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4549 return;
4550 }
4551
4552 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4553 __skb_checksum_complete(skb);
4554 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4555 }
4556
4557 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4558
4559 /* Adjust skb->csum since we changed the packet */
4560 skb->csum = csum_add(skb->csum, delta);
4561}
4562
4563static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4564{
4565#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4566 return (void *)(skb->_nfct & NFCT_PTRMASK);
4567#else
4568 return NULL;
4569#endif
4570}
4571
4572static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4573{
4574#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4575 return skb->_nfct;
4576#else
4577 return 0UL;
4578#endif
4579}
4580
4581static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4582{
4583#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4584 skb->slow_gro |= !!nfct;
4585 skb->_nfct = nfct;
4586#endif
4587}
4588
4589#ifdef CONFIG_SKB_EXTENSIONS
4590enum skb_ext_id {
4591#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4592 SKB_EXT_BRIDGE_NF,
4593#endif
4594#ifdef CONFIG_XFRM
4595 SKB_EXT_SEC_PATH,
4596#endif
4597#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4598 TC_SKB_EXT,
4599#endif
4600#if IS_ENABLED(CONFIG_MPTCP)
4601 SKB_EXT_MPTCP,
4602#endif
4603#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4604 SKB_EXT_MCTP,
4605#endif
4606 SKB_EXT_NUM, /* must be last */
4607};
4608
4609/**
4610 * struct skb_ext - sk_buff extensions
4611 * @refcnt: 1 on allocation, deallocated on 0
4612 * @offset: offset to add to @data to obtain extension address
4613 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4614 * @data: start of extension data, variable sized
4615 *
4616 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4617 * to use 'u8' types while allowing up to 2kb worth of extension data.
4618 */
4619struct skb_ext {
4620 refcount_t refcnt;
4621 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4622 u8 chunks; /* same */
4623 char data[] __aligned(8);
4624};
4625
4626struct skb_ext *__skb_ext_alloc(gfp_t flags);
4627void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4628 struct skb_ext *ext);
4629void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4630void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4631void __skb_ext_put(struct skb_ext *ext);
4632
4633static inline void skb_ext_put(struct sk_buff *skb)
4634{
4635 if (skb->active_extensions)
4636 __skb_ext_put(skb->extensions);
4637}
4638
4639static inline void __skb_ext_copy(struct sk_buff *dst,
4640 const struct sk_buff *src)
4641{
4642 dst->active_extensions = src->active_extensions;
4643
4644 if (src->active_extensions) {
4645 struct skb_ext *ext = src->extensions;
4646
4647 refcount_inc(&ext->refcnt);
4648 dst->extensions = ext;
4649 }
4650}
4651
4652static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4653{
4654 skb_ext_put(dst);
4655 __skb_ext_copy(dst, src);
4656}
4657
4658static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4659{
4660 return !!ext->offset[i];
4661}
4662
4663static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4664{
4665 return skb->active_extensions & (1 << id);
4666}
4667
4668static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4669{
4670 if (skb_ext_exist(skb, id))
4671 __skb_ext_del(skb, id);
4672}
4673
4674static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4675{
4676 if (skb_ext_exist(skb, id)) {
4677 struct skb_ext *ext = skb->extensions;
4678
4679 return (void *)ext + (ext->offset[id] << 3);
4680 }
4681
4682 return NULL;
4683}
4684
4685static inline void skb_ext_reset(struct sk_buff *skb)
4686{
4687 if (unlikely(skb->active_extensions)) {
4688 __skb_ext_put(skb->extensions);
4689 skb->active_extensions = 0;
4690 }
4691}
4692
4693static inline bool skb_has_extensions(struct sk_buff *skb)
4694{
4695 return unlikely(skb->active_extensions);
4696}
4697#else
4698static inline void skb_ext_put(struct sk_buff *skb) {}
4699static inline void skb_ext_reset(struct sk_buff *skb) {}
4700static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4701static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4702static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4703static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4704#endif /* CONFIG_SKB_EXTENSIONS */
4705
4706static inline void nf_reset_ct(struct sk_buff *skb)
4707{
4708#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4709 nf_conntrack_put(skb_nfct(skb));
4710 skb->_nfct = 0;
4711#endif
4712}
4713
4714static inline void nf_reset_trace(struct sk_buff *skb)
4715{
4716#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4717 skb->nf_trace = 0;
4718#endif
4719}
4720
4721static inline void ipvs_reset(struct sk_buff *skb)
4722{
4723#if IS_ENABLED(CONFIG_IP_VS)
4724 skb->ipvs_property = 0;
4725#endif
4726}
4727
4728/* Note: This doesn't put any conntrack info in dst. */
4729static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4730 bool copy)
4731{
4732#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4733 dst->_nfct = src->_nfct;
4734 nf_conntrack_get(skb_nfct(src));
4735#endif
4736#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4737 if (copy)
4738 dst->nf_trace = src->nf_trace;
4739#endif
4740}
4741
4742static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4743{
4744#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4745 nf_conntrack_put(skb_nfct(dst));
4746#endif
4747 dst->slow_gro = src->slow_gro;
4748 __nf_copy(dst, src, true);
4749}
4750
4751#ifdef CONFIG_NETWORK_SECMARK
4752static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4753{
4754 to->secmark = from->secmark;
4755}
4756
4757static inline void skb_init_secmark(struct sk_buff *skb)
4758{
4759 skb->secmark = 0;
4760}
4761#else
4762static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4763{ }
4764
4765static inline void skb_init_secmark(struct sk_buff *skb)
4766{ }
4767#endif
4768
4769static inline int secpath_exists(const struct sk_buff *skb)
4770{
4771#ifdef CONFIG_XFRM
4772 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4773#else
4774 return 0;
4775#endif
4776}
4777
4778static inline bool skb_irq_freeable(const struct sk_buff *skb)
4779{
4780 return !skb->destructor &&
4781 !secpath_exists(skb) &&
4782 !skb_nfct(skb) &&
4783 !skb->_skb_refdst &&
4784 !skb_has_frag_list(skb);
4785}
4786
4787static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4788{
4789 skb->queue_mapping = queue_mapping;
4790}
4791
4792static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4793{
4794 return skb->queue_mapping;
4795}
4796
4797static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4798{
4799 to->queue_mapping = from->queue_mapping;
4800}
4801
4802static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4803{
4804 skb->queue_mapping = rx_queue + 1;
4805}
4806
4807static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4808{
4809 return skb->queue_mapping - 1;
4810}
4811
4812static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4813{
4814 return skb->queue_mapping != 0;
4815}
4816
4817static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4818{
4819 skb->dst_pending_confirm = val;
4820}
4821
4822static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4823{
4824 return skb->dst_pending_confirm != 0;
4825}
4826
4827static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4828{
4829#ifdef CONFIG_XFRM
4830 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4831#else
4832 return NULL;
4833#endif
4834}
4835
4836/* Keeps track of mac header offset relative to skb->head.
4837 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4838 * For non-tunnel skb it points to skb_mac_header() and for
4839 * tunnel skb it points to outer mac header.
4840 * Keeps track of level of encapsulation of network headers.
4841 */
4842struct skb_gso_cb {
4843 union {
4844 int mac_offset;
4845 int data_offset;
4846 };
4847 int encap_level;
4848 __wsum csum;
4849 __u16 csum_start;
4850};
4851#define SKB_GSO_CB_OFFSET 32
4852#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4853
4854static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4855{
4856 return (skb_mac_header(inner_skb) - inner_skb->head) -
4857 SKB_GSO_CB(inner_skb)->mac_offset;
4858}
4859
4860static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4861{
4862 int new_headroom, headroom;
4863 int ret;
4864
4865 headroom = skb_headroom(skb);
4866 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4867 if (ret)
4868 return ret;
4869
4870 new_headroom = skb_headroom(skb);
4871 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4872 return 0;
4873}
4874
4875static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4876{
4877 /* Do not update partial checksums if remote checksum is enabled. */
4878 if (skb->remcsum_offload)
4879 return;
4880
4881 SKB_GSO_CB(skb)->csum = res;
4882 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4883}
4884
4885/* Compute the checksum for a gso segment. First compute the checksum value
4886 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4887 * then add in skb->csum (checksum from csum_start to end of packet).
4888 * skb->csum and csum_start are then updated to reflect the checksum of the
4889 * resultant packet starting from the transport header-- the resultant checksum
4890 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4891 * header.
4892 */
4893static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4894{
4895 unsigned char *csum_start = skb_transport_header(skb);
4896 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4897 __wsum partial = SKB_GSO_CB(skb)->csum;
4898
4899 SKB_GSO_CB(skb)->csum = res;
4900 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4901
4902 return csum_fold(csum_partial(csum_start, plen, partial));
4903}
4904
4905static inline bool skb_is_gso(const struct sk_buff *skb)
4906{
4907 return skb_shinfo(skb)->gso_size;
4908}
4909
4910/* Note: Should be called only if skb_is_gso(skb) is true */
4911static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4912{
4913 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4914}
4915
4916/* Note: Should be called only if skb_is_gso(skb) is true */
4917static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4918{
4919 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4920}
4921
4922/* Note: Should be called only if skb_is_gso(skb) is true */
4923static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4924{
4925 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4926}
4927
4928static inline void skb_gso_reset(struct sk_buff *skb)
4929{
4930 skb_shinfo(skb)->gso_size = 0;
4931 skb_shinfo(skb)->gso_segs = 0;
4932 skb_shinfo(skb)->gso_type = 0;
4933}
4934
4935static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4936 u16 increment)
4937{
4938 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4939 return;
4940 shinfo->gso_size += increment;
4941}
4942
4943static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4944 u16 decrement)
4945{
4946 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4947 return;
4948 shinfo->gso_size -= decrement;
4949}
4950
4951void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4952
4953static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4954{
4955 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4956 * wanted then gso_type will be set. */
4957 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4958
4959 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4960 unlikely(shinfo->gso_type == 0)) {
4961 __skb_warn_lro_forwarding(skb);
4962 return true;
4963 }
4964 return false;
4965}
4966
4967static inline void skb_forward_csum(struct sk_buff *skb)
4968{
4969 /* Unfortunately we don't support this one. Any brave souls? */
4970 if (skb->ip_summed == CHECKSUM_COMPLETE)
4971 skb->ip_summed = CHECKSUM_NONE;
4972}
4973
4974/**
4975 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4976 * @skb: skb to check
4977 *
4978 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4979 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4980 * use this helper, to document places where we make this assertion.
4981 */
4982static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4983{
4984 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4985}
4986
4987bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4988
4989int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4990struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4991 unsigned int transport_len,
4992 __sum16(*skb_chkf)(struct sk_buff *skb));
4993
4994/**
4995 * skb_head_is_locked - Determine if the skb->head is locked down
4996 * @skb: skb to check
4997 *
4998 * The head on skbs build around a head frag can be removed if they are
4999 * not cloned. This function returns true if the skb head is locked down
5000 * due to either being allocated via kmalloc, or by being a clone with
5001 * multiple references to the head.
5002 */
5003static inline bool skb_head_is_locked(const struct sk_buff *skb)
5004{
5005 return !skb->head_frag || skb_cloned(skb);
5006}
5007
5008/* Local Checksum Offload.
5009 * Compute outer checksum based on the assumption that the
5010 * inner checksum will be offloaded later.
5011 * See Documentation/networking/checksum-offloads.rst for
5012 * explanation of how this works.
5013 * Fill in outer checksum adjustment (e.g. with sum of outer
5014 * pseudo-header) before calling.
5015 * Also ensure that inner checksum is in linear data area.
5016 */
5017static inline __wsum lco_csum(struct sk_buff *skb)
5018{
5019 unsigned char *csum_start = skb_checksum_start(skb);
5020 unsigned char *l4_hdr = skb_transport_header(skb);
5021 __wsum partial;
5022
5023 /* Start with complement of inner checksum adjustment */
5024 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5025 skb->csum_offset));
5026
5027 /* Add in checksum of our headers (incl. outer checksum
5028 * adjustment filled in by caller) and return result.
5029 */
5030 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5031}
5032
5033static inline bool skb_is_redirected(const struct sk_buff *skb)
5034{
5035 return skb->redirected;
5036}
5037
5038static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5039{
5040 skb->redirected = 1;
5041#ifdef CONFIG_NET_REDIRECT
5042 skb->from_ingress = from_ingress;
5043 if (skb->from_ingress)
5044 skb_clear_tstamp(skb);
5045#endif
5046}
5047
5048static inline void skb_reset_redirect(struct sk_buff *skb)
5049{
5050 skb->redirected = 0;
5051}
5052
5053static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5054{
5055 return skb->csum_not_inet;
5056}
5057
5058static inline void skb_set_kcov_handle(struct sk_buff *skb,
5059 const u64 kcov_handle)
5060{
5061#ifdef CONFIG_KCOV
5062 skb->kcov_handle = kcov_handle;
5063#endif
5064}
5065
5066static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5067{
5068#ifdef CONFIG_KCOV
5069 return skb->kcov_handle;
5070#else
5071 return 0;
5072#endif
5073}
5074
5075#ifdef CONFIG_PAGE_POOL
5076static inline void skb_mark_for_recycle(struct sk_buff *skb)
5077{
5078 skb->pp_recycle = 1;
5079}
5080#endif
5081
5082#endif /* __KERNEL__ */
5083#endif /* _LINUX_SKBUFF_H */