at v6.3 1465 lines 45 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PAGEMAP_H 3#define _LINUX_PAGEMAP_H 4 5/* 6 * Copyright 1995 Linus Torvalds 7 */ 8#include <linux/mm.h> 9#include <linux/fs.h> 10#include <linux/list.h> 11#include <linux/highmem.h> 12#include <linux/compiler.h> 13#include <linux/uaccess.h> 14#include <linux/gfp.h> 15#include <linux/bitops.h> 16#include <linux/hardirq.h> /* for in_interrupt() */ 17#include <linux/hugetlb_inline.h> 18 19struct folio_batch; 20 21unsigned long invalidate_mapping_pages(struct address_space *mapping, 22 pgoff_t start, pgoff_t end); 23 24static inline void invalidate_remote_inode(struct inode *inode) 25{ 26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 27 S_ISLNK(inode->i_mode)) 28 invalidate_mapping_pages(inode->i_mapping, 0, -1); 29} 30int invalidate_inode_pages2(struct address_space *mapping); 31int invalidate_inode_pages2_range(struct address_space *mapping, 32 pgoff_t start, pgoff_t end); 33int write_inode_now(struct inode *, int sync); 34int filemap_fdatawrite(struct address_space *); 35int filemap_flush(struct address_space *); 36int filemap_fdatawait_keep_errors(struct address_space *mapping); 37int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend); 38int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 39 loff_t start_byte, loff_t end_byte); 40 41static inline int filemap_fdatawait(struct address_space *mapping) 42{ 43 return filemap_fdatawait_range(mapping, 0, LLONG_MAX); 44} 45 46bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend); 47int filemap_write_and_wait_range(struct address_space *mapping, 48 loff_t lstart, loff_t lend); 49int __filemap_fdatawrite_range(struct address_space *mapping, 50 loff_t start, loff_t end, int sync_mode); 51int filemap_fdatawrite_range(struct address_space *mapping, 52 loff_t start, loff_t end); 53int filemap_check_errors(struct address_space *mapping); 54void __filemap_set_wb_err(struct address_space *mapping, int err); 55int filemap_fdatawrite_wbc(struct address_space *mapping, 56 struct writeback_control *wbc); 57 58static inline int filemap_write_and_wait(struct address_space *mapping) 59{ 60 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX); 61} 62 63/** 64 * filemap_set_wb_err - set a writeback error on an address_space 65 * @mapping: mapping in which to set writeback error 66 * @err: error to be set in mapping 67 * 68 * When writeback fails in some way, we must record that error so that 69 * userspace can be informed when fsync and the like are called. We endeavor 70 * to report errors on any file that was open at the time of the error. Some 71 * internal callers also need to know when writeback errors have occurred. 72 * 73 * When a writeback error occurs, most filesystems will want to call 74 * filemap_set_wb_err to record the error in the mapping so that it will be 75 * automatically reported whenever fsync is called on the file. 76 */ 77static inline void filemap_set_wb_err(struct address_space *mapping, int err) 78{ 79 /* Fastpath for common case of no error */ 80 if (unlikely(err)) 81 __filemap_set_wb_err(mapping, err); 82} 83 84/** 85 * filemap_check_wb_err - has an error occurred since the mark was sampled? 86 * @mapping: mapping to check for writeback errors 87 * @since: previously-sampled errseq_t 88 * 89 * Grab the errseq_t value from the mapping, and see if it has changed "since" 90 * the given value was sampled. 91 * 92 * If it has then report the latest error set, otherwise return 0. 93 */ 94static inline int filemap_check_wb_err(struct address_space *mapping, 95 errseq_t since) 96{ 97 return errseq_check(&mapping->wb_err, since); 98} 99 100/** 101 * filemap_sample_wb_err - sample the current errseq_t to test for later errors 102 * @mapping: mapping to be sampled 103 * 104 * Writeback errors are always reported relative to a particular sample point 105 * in the past. This function provides those sample points. 106 */ 107static inline errseq_t filemap_sample_wb_err(struct address_space *mapping) 108{ 109 return errseq_sample(&mapping->wb_err); 110} 111 112/** 113 * file_sample_sb_err - sample the current errseq_t to test for later errors 114 * @file: file pointer to be sampled 115 * 116 * Grab the most current superblock-level errseq_t value for the given 117 * struct file. 118 */ 119static inline errseq_t file_sample_sb_err(struct file *file) 120{ 121 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err); 122} 123 124/* 125 * Flush file data before changing attributes. Caller must hold any locks 126 * required to prevent further writes to this file until we're done setting 127 * flags. 128 */ 129static inline int inode_drain_writes(struct inode *inode) 130{ 131 inode_dio_wait(inode); 132 return filemap_write_and_wait(inode->i_mapping); 133} 134 135static inline bool mapping_empty(struct address_space *mapping) 136{ 137 return xa_empty(&mapping->i_pages); 138} 139 140/* 141 * mapping_shrinkable - test if page cache state allows inode reclaim 142 * @mapping: the page cache mapping 143 * 144 * This checks the mapping's cache state for the pupose of inode 145 * reclaim and LRU management. 146 * 147 * The caller is expected to hold the i_lock, but is not required to 148 * hold the i_pages lock, which usually protects cache state. That's 149 * because the i_lock and the list_lru lock that protect the inode and 150 * its LRU state don't nest inside the irq-safe i_pages lock. 151 * 152 * Cache deletions are performed under the i_lock, which ensures that 153 * when an inode goes empty, it will reliably get queued on the LRU. 154 * 155 * Cache additions do not acquire the i_lock and may race with this 156 * check, in which case we'll report the inode as shrinkable when it 157 * has cache pages. This is okay: the shrinker also checks the 158 * refcount and the referenced bit, which will be elevated or set in 159 * the process of adding new cache pages to an inode. 160 */ 161static inline bool mapping_shrinkable(struct address_space *mapping) 162{ 163 void *head; 164 165 /* 166 * On highmem systems, there could be lowmem pressure from the 167 * inodes before there is highmem pressure from the page 168 * cache. Make inodes shrinkable regardless of cache state. 169 */ 170 if (IS_ENABLED(CONFIG_HIGHMEM)) 171 return true; 172 173 /* Cache completely empty? Shrink away. */ 174 head = rcu_access_pointer(mapping->i_pages.xa_head); 175 if (!head) 176 return true; 177 178 /* 179 * The xarray stores single offset-0 entries directly in the 180 * head pointer, which allows non-resident page cache entries 181 * to escape the shadow shrinker's list of xarray nodes. The 182 * inode shrinker needs to pick them up under memory pressure. 183 */ 184 if (!xa_is_node(head) && xa_is_value(head)) 185 return true; 186 187 return false; 188} 189 190/* 191 * Bits in mapping->flags. 192 */ 193enum mapping_flags { 194 AS_EIO = 0, /* IO error on async write */ 195 AS_ENOSPC = 1, /* ENOSPC on async write */ 196 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 197 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 198 AS_EXITING = 4, /* final truncate in progress */ 199 /* writeback related tags are not used */ 200 AS_NO_WRITEBACK_TAGS = 5, 201 AS_LARGE_FOLIO_SUPPORT = 6, 202}; 203 204/** 205 * mapping_set_error - record a writeback error in the address_space 206 * @mapping: the mapping in which an error should be set 207 * @error: the error to set in the mapping 208 * 209 * When writeback fails in some way, we must record that error so that 210 * userspace can be informed when fsync and the like are called. We endeavor 211 * to report errors on any file that was open at the time of the error. Some 212 * internal callers also need to know when writeback errors have occurred. 213 * 214 * When a writeback error occurs, most filesystems will want to call 215 * mapping_set_error to record the error in the mapping so that it can be 216 * reported when the application calls fsync(2). 217 */ 218static inline void mapping_set_error(struct address_space *mapping, int error) 219{ 220 if (likely(!error)) 221 return; 222 223 /* Record in wb_err for checkers using errseq_t based tracking */ 224 __filemap_set_wb_err(mapping, error); 225 226 /* Record it in superblock */ 227 if (mapping->host) 228 errseq_set(&mapping->host->i_sb->s_wb_err, error); 229 230 /* Record it in flags for now, for legacy callers */ 231 if (error == -ENOSPC) 232 set_bit(AS_ENOSPC, &mapping->flags); 233 else 234 set_bit(AS_EIO, &mapping->flags); 235} 236 237static inline void mapping_set_unevictable(struct address_space *mapping) 238{ 239 set_bit(AS_UNEVICTABLE, &mapping->flags); 240} 241 242static inline void mapping_clear_unevictable(struct address_space *mapping) 243{ 244 clear_bit(AS_UNEVICTABLE, &mapping->flags); 245} 246 247static inline bool mapping_unevictable(struct address_space *mapping) 248{ 249 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 250} 251 252static inline void mapping_set_exiting(struct address_space *mapping) 253{ 254 set_bit(AS_EXITING, &mapping->flags); 255} 256 257static inline int mapping_exiting(struct address_space *mapping) 258{ 259 return test_bit(AS_EXITING, &mapping->flags); 260} 261 262static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 263{ 264 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 265} 266 267static inline int mapping_use_writeback_tags(struct address_space *mapping) 268{ 269 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 270} 271 272static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 273{ 274 return mapping->gfp_mask; 275} 276 277/* Restricts the given gfp_mask to what the mapping allows. */ 278static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 279 gfp_t gfp_mask) 280{ 281 return mapping_gfp_mask(mapping) & gfp_mask; 282} 283 284/* 285 * This is non-atomic. Only to be used before the mapping is activated. 286 * Probably needs a barrier... 287 */ 288static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 289{ 290 m->gfp_mask = mask; 291} 292 293/** 294 * mapping_set_large_folios() - Indicate the file supports large folios. 295 * @mapping: The file. 296 * 297 * The filesystem should call this function in its inode constructor to 298 * indicate that the VFS can use large folios to cache the contents of 299 * the file. 300 * 301 * Context: This should not be called while the inode is active as it 302 * is non-atomic. 303 */ 304static inline void mapping_set_large_folios(struct address_space *mapping) 305{ 306 __set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags); 307} 308 309/* 310 * Large folio support currently depends on THP. These dependencies are 311 * being worked on but are not yet fixed. 312 */ 313static inline bool mapping_large_folio_support(struct address_space *mapping) 314{ 315 return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && 316 test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags); 317} 318 319static inline int filemap_nr_thps(struct address_space *mapping) 320{ 321#ifdef CONFIG_READ_ONLY_THP_FOR_FS 322 return atomic_read(&mapping->nr_thps); 323#else 324 return 0; 325#endif 326} 327 328static inline void filemap_nr_thps_inc(struct address_space *mapping) 329{ 330#ifdef CONFIG_READ_ONLY_THP_FOR_FS 331 if (!mapping_large_folio_support(mapping)) 332 atomic_inc(&mapping->nr_thps); 333#else 334 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 335#endif 336} 337 338static inline void filemap_nr_thps_dec(struct address_space *mapping) 339{ 340#ifdef CONFIG_READ_ONLY_THP_FOR_FS 341 if (!mapping_large_folio_support(mapping)) 342 atomic_dec(&mapping->nr_thps); 343#else 344 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 345#endif 346} 347 348struct address_space *page_mapping(struct page *); 349struct address_space *folio_mapping(struct folio *); 350struct address_space *swapcache_mapping(struct folio *); 351 352/** 353 * folio_file_mapping - Find the mapping this folio belongs to. 354 * @folio: The folio. 355 * 356 * For folios which are in the page cache, return the mapping that this 357 * page belongs to. Folios in the swap cache return the mapping of the 358 * swap file or swap device where the data is stored. This is different 359 * from the mapping returned by folio_mapping(). The only reason to 360 * use it is if, like NFS, you return 0 from ->activate_swapfile. 361 * 362 * Do not call this for folios which aren't in the page cache or swap cache. 363 */ 364static inline struct address_space *folio_file_mapping(struct folio *folio) 365{ 366 if (unlikely(folio_test_swapcache(folio))) 367 return swapcache_mapping(folio); 368 369 return folio->mapping; 370} 371 372static inline struct address_space *page_file_mapping(struct page *page) 373{ 374 return folio_file_mapping(page_folio(page)); 375} 376 377/* 378 * For file cache pages, return the address_space, otherwise return NULL 379 */ 380static inline struct address_space *page_mapping_file(struct page *page) 381{ 382 struct folio *folio = page_folio(page); 383 384 if (unlikely(folio_test_swapcache(folio))) 385 return NULL; 386 return folio_mapping(folio); 387} 388 389/** 390 * folio_inode - Get the host inode for this folio. 391 * @folio: The folio. 392 * 393 * For folios which are in the page cache, return the inode that this folio 394 * belongs to. 395 * 396 * Do not call this for folios which aren't in the page cache. 397 */ 398static inline struct inode *folio_inode(struct folio *folio) 399{ 400 return folio->mapping->host; 401} 402 403/** 404 * folio_attach_private - Attach private data to a folio. 405 * @folio: Folio to attach data to. 406 * @data: Data to attach to folio. 407 * 408 * Attaching private data to a folio increments the page's reference count. 409 * The data must be detached before the folio will be freed. 410 */ 411static inline void folio_attach_private(struct folio *folio, void *data) 412{ 413 folio_get(folio); 414 folio->private = data; 415 folio_set_private(folio); 416} 417 418/** 419 * folio_change_private - Change private data on a folio. 420 * @folio: Folio to change the data on. 421 * @data: Data to set on the folio. 422 * 423 * Change the private data attached to a folio and return the old 424 * data. The page must previously have had data attached and the data 425 * must be detached before the folio will be freed. 426 * 427 * Return: Data that was previously attached to the folio. 428 */ 429static inline void *folio_change_private(struct folio *folio, void *data) 430{ 431 void *old = folio_get_private(folio); 432 433 folio->private = data; 434 return old; 435} 436 437/** 438 * folio_detach_private - Detach private data from a folio. 439 * @folio: Folio to detach data from. 440 * 441 * Removes the data that was previously attached to the folio and decrements 442 * the refcount on the page. 443 * 444 * Return: Data that was attached to the folio. 445 */ 446static inline void *folio_detach_private(struct folio *folio) 447{ 448 void *data = folio_get_private(folio); 449 450 if (!folio_test_private(folio)) 451 return NULL; 452 folio_clear_private(folio); 453 folio->private = NULL; 454 folio_put(folio); 455 456 return data; 457} 458 459static inline void attach_page_private(struct page *page, void *data) 460{ 461 folio_attach_private(page_folio(page), data); 462} 463 464static inline void *detach_page_private(struct page *page) 465{ 466 return folio_detach_private(page_folio(page)); 467} 468 469#ifdef CONFIG_NUMA 470struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order); 471#else 472static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 473{ 474 return folio_alloc(gfp, order); 475} 476#endif 477 478static inline struct page *__page_cache_alloc(gfp_t gfp) 479{ 480 return &filemap_alloc_folio(gfp, 0)->page; 481} 482 483static inline struct page *page_cache_alloc(struct address_space *x) 484{ 485 return __page_cache_alloc(mapping_gfp_mask(x)); 486} 487 488static inline gfp_t readahead_gfp_mask(struct address_space *x) 489{ 490 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 491} 492 493typedef int filler_t(struct file *, struct folio *); 494 495pgoff_t page_cache_next_miss(struct address_space *mapping, 496 pgoff_t index, unsigned long max_scan); 497pgoff_t page_cache_prev_miss(struct address_space *mapping, 498 pgoff_t index, unsigned long max_scan); 499 500#define FGP_ACCESSED 0x00000001 501#define FGP_LOCK 0x00000002 502#define FGP_CREAT 0x00000004 503#define FGP_WRITE 0x00000008 504#define FGP_NOFS 0x00000010 505#define FGP_NOWAIT 0x00000020 506#define FGP_FOR_MMAP 0x00000040 507#define FGP_ENTRY 0x00000080 508#define FGP_STABLE 0x00000100 509 510struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 511 int fgp_flags, gfp_t gfp); 512struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 513 int fgp_flags, gfp_t gfp); 514 515/** 516 * filemap_get_folio - Find and get a folio. 517 * @mapping: The address_space to search. 518 * @index: The page index. 519 * 520 * Looks up the page cache entry at @mapping & @index. If a folio is 521 * present, it is returned with an increased refcount. 522 * 523 * Otherwise, %NULL is returned. 524 */ 525static inline struct folio *filemap_get_folio(struct address_space *mapping, 526 pgoff_t index) 527{ 528 return __filemap_get_folio(mapping, index, 0, 0); 529} 530 531/** 532 * filemap_lock_folio - Find and lock a folio. 533 * @mapping: The address_space to search. 534 * @index: The page index. 535 * 536 * Looks up the page cache entry at @mapping & @index. If a folio is 537 * present, it is returned locked with an increased refcount. 538 * 539 * Context: May sleep. 540 * Return: A folio or %NULL if there is no folio in the cache for this 541 * index. Will not return a shadow, swap or DAX entry. 542 */ 543static inline struct folio *filemap_lock_folio(struct address_space *mapping, 544 pgoff_t index) 545{ 546 return __filemap_get_folio(mapping, index, FGP_LOCK, 0); 547} 548 549/** 550 * filemap_grab_folio - grab a folio from the page cache 551 * @mapping: The address space to search 552 * @index: The page index 553 * 554 * Looks up the page cache entry at @mapping & @index. If no folio is found, 555 * a new folio is created. The folio is locked, marked as accessed, and 556 * returned. 557 * 558 * Return: A found or created folio. NULL if no folio is found and failed to 559 * create a folio. 560 */ 561static inline struct folio *filemap_grab_folio(struct address_space *mapping, 562 pgoff_t index) 563{ 564 return __filemap_get_folio(mapping, index, 565 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 566 mapping_gfp_mask(mapping)); 567} 568 569/** 570 * find_get_page - find and get a page reference 571 * @mapping: the address_space to search 572 * @offset: the page index 573 * 574 * Looks up the page cache slot at @mapping & @offset. If there is a 575 * page cache page, it is returned with an increased refcount. 576 * 577 * Otherwise, %NULL is returned. 578 */ 579static inline struct page *find_get_page(struct address_space *mapping, 580 pgoff_t offset) 581{ 582 return pagecache_get_page(mapping, offset, 0, 0); 583} 584 585static inline struct page *find_get_page_flags(struct address_space *mapping, 586 pgoff_t offset, int fgp_flags) 587{ 588 return pagecache_get_page(mapping, offset, fgp_flags, 0); 589} 590 591/** 592 * find_lock_page - locate, pin and lock a pagecache page 593 * @mapping: the address_space to search 594 * @index: the page index 595 * 596 * Looks up the page cache entry at @mapping & @index. If there is a 597 * page cache page, it is returned locked and with an increased 598 * refcount. 599 * 600 * Context: May sleep. 601 * Return: A struct page or %NULL if there is no page in the cache for this 602 * index. 603 */ 604static inline struct page *find_lock_page(struct address_space *mapping, 605 pgoff_t index) 606{ 607 return pagecache_get_page(mapping, index, FGP_LOCK, 0); 608} 609 610/** 611 * find_or_create_page - locate or add a pagecache page 612 * @mapping: the page's address_space 613 * @index: the page's index into the mapping 614 * @gfp_mask: page allocation mode 615 * 616 * Looks up the page cache slot at @mapping & @offset. If there is a 617 * page cache page, it is returned locked and with an increased 618 * refcount. 619 * 620 * If the page is not present, a new page is allocated using @gfp_mask 621 * and added to the page cache and the VM's LRU list. The page is 622 * returned locked and with an increased refcount. 623 * 624 * On memory exhaustion, %NULL is returned. 625 * 626 * find_or_create_page() may sleep, even if @gfp_flags specifies an 627 * atomic allocation! 628 */ 629static inline struct page *find_or_create_page(struct address_space *mapping, 630 pgoff_t index, gfp_t gfp_mask) 631{ 632 return pagecache_get_page(mapping, index, 633 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 634 gfp_mask); 635} 636 637/** 638 * grab_cache_page_nowait - returns locked page at given index in given cache 639 * @mapping: target address_space 640 * @index: the page index 641 * 642 * Same as grab_cache_page(), but do not wait if the page is unavailable. 643 * This is intended for speculative data generators, where the data can 644 * be regenerated if the page couldn't be grabbed. This routine should 645 * be safe to call while holding the lock for another page. 646 * 647 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 648 * and deadlock against the caller's locked page. 649 */ 650static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 651 pgoff_t index) 652{ 653 return pagecache_get_page(mapping, index, 654 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 655 mapping_gfp_mask(mapping)); 656} 657 658#define swapcache_index(folio) __page_file_index(&(folio)->page) 659 660/** 661 * folio_index - File index of a folio. 662 * @folio: The folio. 663 * 664 * For a folio which is either in the page cache or the swap cache, 665 * return its index within the address_space it belongs to. If you know 666 * the page is definitely in the page cache, you can look at the folio's 667 * index directly. 668 * 669 * Return: The index (offset in units of pages) of a folio in its file. 670 */ 671static inline pgoff_t folio_index(struct folio *folio) 672{ 673 if (unlikely(folio_test_swapcache(folio))) 674 return swapcache_index(folio); 675 return folio->index; 676} 677 678/** 679 * folio_next_index - Get the index of the next folio. 680 * @folio: The current folio. 681 * 682 * Return: The index of the folio which follows this folio in the file. 683 */ 684static inline pgoff_t folio_next_index(struct folio *folio) 685{ 686 return folio->index + folio_nr_pages(folio); 687} 688 689/** 690 * folio_file_page - The page for a particular index. 691 * @folio: The folio which contains this index. 692 * @index: The index we want to look up. 693 * 694 * Sometimes after looking up a folio in the page cache, we need to 695 * obtain the specific page for an index (eg a page fault). 696 * 697 * Return: The page containing the file data for this index. 698 */ 699static inline struct page *folio_file_page(struct folio *folio, pgoff_t index) 700{ 701 /* HugeTLBfs indexes the page cache in units of hpage_size */ 702 if (folio_test_hugetlb(folio)) 703 return &folio->page; 704 return folio_page(folio, index & (folio_nr_pages(folio) - 1)); 705} 706 707/** 708 * folio_contains - Does this folio contain this index? 709 * @folio: The folio. 710 * @index: The page index within the file. 711 * 712 * Context: The caller should have the page locked in order to prevent 713 * (eg) shmem from moving the page between the page cache and swap cache 714 * and changing its index in the middle of the operation. 715 * Return: true or false. 716 */ 717static inline bool folio_contains(struct folio *folio, pgoff_t index) 718{ 719 /* HugeTLBfs indexes the page cache in units of hpage_size */ 720 if (folio_test_hugetlb(folio)) 721 return folio->index == index; 722 return index - folio_index(folio) < folio_nr_pages(folio); 723} 724 725/* 726 * Given the page we found in the page cache, return the page corresponding 727 * to this index in the file 728 */ 729static inline struct page *find_subpage(struct page *head, pgoff_t index) 730{ 731 /* HugeTLBfs wants the head page regardless */ 732 if (PageHuge(head)) 733 return head; 734 735 return head + (index & (thp_nr_pages(head) - 1)); 736} 737 738unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 739 pgoff_t end, struct folio_batch *fbatch); 740unsigned filemap_get_folios_contig(struct address_space *mapping, 741 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch); 742unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 743 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch); 744 745struct page *grab_cache_page_write_begin(struct address_space *mapping, 746 pgoff_t index); 747 748/* 749 * Returns locked page at given index in given cache, creating it if needed. 750 */ 751static inline struct page *grab_cache_page(struct address_space *mapping, 752 pgoff_t index) 753{ 754 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 755} 756 757struct folio *read_cache_folio(struct address_space *, pgoff_t index, 758 filler_t *filler, struct file *file); 759struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index, 760 gfp_t flags); 761struct page *read_cache_page(struct address_space *, pgoff_t index, 762 filler_t *filler, struct file *file); 763extern struct page * read_cache_page_gfp(struct address_space *mapping, 764 pgoff_t index, gfp_t gfp_mask); 765 766static inline struct page *read_mapping_page(struct address_space *mapping, 767 pgoff_t index, struct file *file) 768{ 769 return read_cache_page(mapping, index, NULL, file); 770} 771 772static inline struct folio *read_mapping_folio(struct address_space *mapping, 773 pgoff_t index, struct file *file) 774{ 775 return read_cache_folio(mapping, index, NULL, file); 776} 777 778/* 779 * Get index of the page within radix-tree (but not for hugetlb pages). 780 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) 781 */ 782static inline pgoff_t page_to_index(struct page *page) 783{ 784 struct page *head; 785 786 if (likely(!PageTransTail(page))) 787 return page->index; 788 789 head = compound_head(page); 790 /* 791 * We don't initialize ->index for tail pages: calculate based on 792 * head page 793 */ 794 return head->index + page - head; 795} 796 797extern pgoff_t hugetlb_basepage_index(struct page *page); 798 799/* 800 * Get the offset in PAGE_SIZE (even for hugetlb pages). 801 * (TODO: hugetlb pages should have ->index in PAGE_SIZE) 802 */ 803static inline pgoff_t page_to_pgoff(struct page *page) 804{ 805 if (unlikely(PageHuge(page))) 806 return hugetlb_basepage_index(page); 807 return page_to_index(page); 808} 809 810/* 811 * Return byte-offset into filesystem object for page. 812 */ 813static inline loff_t page_offset(struct page *page) 814{ 815 return ((loff_t)page->index) << PAGE_SHIFT; 816} 817 818static inline loff_t page_file_offset(struct page *page) 819{ 820 return ((loff_t)page_index(page)) << PAGE_SHIFT; 821} 822 823/** 824 * folio_pos - Returns the byte position of this folio in its file. 825 * @folio: The folio. 826 */ 827static inline loff_t folio_pos(struct folio *folio) 828{ 829 return page_offset(&folio->page); 830} 831 832/** 833 * folio_file_pos - Returns the byte position of this folio in its file. 834 * @folio: The folio. 835 * 836 * This differs from folio_pos() for folios which belong to a swap file. 837 * NFS is the only filesystem today which needs to use folio_file_pos(). 838 */ 839static inline loff_t folio_file_pos(struct folio *folio) 840{ 841 return page_file_offset(&folio->page); 842} 843 844/* 845 * Get the offset in PAGE_SIZE (even for hugetlb folios). 846 * (TODO: hugetlb folios should have ->index in PAGE_SIZE) 847 */ 848static inline pgoff_t folio_pgoff(struct folio *folio) 849{ 850 if (unlikely(folio_test_hugetlb(folio))) 851 return hugetlb_basepage_index(&folio->page); 852 return folio->index; 853} 854 855extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 856 unsigned long address); 857 858static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 859 unsigned long address) 860{ 861 pgoff_t pgoff; 862 if (unlikely(is_vm_hugetlb_page(vma))) 863 return linear_hugepage_index(vma, address); 864 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 865 pgoff += vma->vm_pgoff; 866 return pgoff; 867} 868 869struct wait_page_key { 870 struct folio *folio; 871 int bit_nr; 872 int page_match; 873}; 874 875struct wait_page_queue { 876 struct folio *folio; 877 int bit_nr; 878 wait_queue_entry_t wait; 879}; 880 881static inline bool wake_page_match(struct wait_page_queue *wait_page, 882 struct wait_page_key *key) 883{ 884 if (wait_page->folio != key->folio) 885 return false; 886 key->page_match = 1; 887 888 if (wait_page->bit_nr != key->bit_nr) 889 return false; 890 891 return true; 892} 893 894void __folio_lock(struct folio *folio); 895int __folio_lock_killable(struct folio *folio); 896bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 897 unsigned int flags); 898void unlock_page(struct page *page); 899void folio_unlock(struct folio *folio); 900 901/** 902 * folio_trylock() - Attempt to lock a folio. 903 * @folio: The folio to attempt to lock. 904 * 905 * Sometimes it is undesirable to wait for a folio to be unlocked (eg 906 * when the locks are being taken in the wrong order, or if making 907 * progress through a batch of folios is more important than processing 908 * them in order). Usually folio_lock() is the correct function to call. 909 * 910 * Context: Any context. 911 * Return: Whether the lock was successfully acquired. 912 */ 913static inline bool folio_trylock(struct folio *folio) 914{ 915 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0))); 916} 917 918/* 919 * Return true if the page was successfully locked 920 */ 921static inline int trylock_page(struct page *page) 922{ 923 return folio_trylock(page_folio(page)); 924} 925 926/** 927 * folio_lock() - Lock this folio. 928 * @folio: The folio to lock. 929 * 930 * The folio lock protects against many things, probably more than it 931 * should. It is primarily held while a folio is being brought uptodate, 932 * either from its backing file or from swap. It is also held while a 933 * folio is being truncated from its address_space, so holding the lock 934 * is sufficient to keep folio->mapping stable. 935 * 936 * The folio lock is also held while write() is modifying the page to 937 * provide POSIX atomicity guarantees (as long as the write does not 938 * cross a page boundary). Other modifications to the data in the folio 939 * do not hold the folio lock and can race with writes, eg DMA and stores 940 * to mapped pages. 941 * 942 * Context: May sleep. If you need to acquire the locks of two or 943 * more folios, they must be in order of ascending index, if they are 944 * in the same address_space. If they are in different address_spaces, 945 * acquire the lock of the folio which belongs to the address_space which 946 * has the lowest address in memory first. 947 */ 948static inline void folio_lock(struct folio *folio) 949{ 950 might_sleep(); 951 if (!folio_trylock(folio)) 952 __folio_lock(folio); 953} 954 955/** 956 * lock_page() - Lock the folio containing this page. 957 * @page: The page to lock. 958 * 959 * See folio_lock() for a description of what the lock protects. 960 * This is a legacy function and new code should probably use folio_lock() 961 * instead. 962 * 963 * Context: May sleep. Pages in the same folio share a lock, so do not 964 * attempt to lock two pages which share a folio. 965 */ 966static inline void lock_page(struct page *page) 967{ 968 struct folio *folio; 969 might_sleep(); 970 971 folio = page_folio(page); 972 if (!folio_trylock(folio)) 973 __folio_lock(folio); 974} 975 976/** 977 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal. 978 * @folio: The folio to lock. 979 * 980 * Attempts to lock the folio, like folio_lock(), except that the sleep 981 * to acquire the lock is interruptible by a fatal signal. 982 * 983 * Context: May sleep; see folio_lock(). 984 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received. 985 */ 986static inline int folio_lock_killable(struct folio *folio) 987{ 988 might_sleep(); 989 if (!folio_trylock(folio)) 990 return __folio_lock_killable(folio); 991 return 0; 992} 993 994/* 995 * folio_lock_or_retry - Lock the folio, unless this would block and the 996 * caller indicated that it can handle a retry. 997 * 998 * Return value and mmap_lock implications depend on flags; see 999 * __folio_lock_or_retry(). 1000 */ 1001static inline bool folio_lock_or_retry(struct folio *folio, 1002 struct mm_struct *mm, unsigned int flags) 1003{ 1004 might_sleep(); 1005 return folio_trylock(folio) || __folio_lock_or_retry(folio, mm, flags); 1006} 1007 1008/* 1009 * This is exported only for folio_wait_locked/folio_wait_writeback, etc., 1010 * and should not be used directly. 1011 */ 1012void folio_wait_bit(struct folio *folio, int bit_nr); 1013int folio_wait_bit_killable(struct folio *folio, int bit_nr); 1014 1015/* 1016 * Wait for a folio to be unlocked. 1017 * 1018 * This must be called with the caller "holding" the folio, 1019 * ie with increased folio reference count so that the folio won't 1020 * go away during the wait. 1021 */ 1022static inline void folio_wait_locked(struct folio *folio) 1023{ 1024 if (folio_test_locked(folio)) 1025 folio_wait_bit(folio, PG_locked); 1026} 1027 1028static inline int folio_wait_locked_killable(struct folio *folio) 1029{ 1030 if (!folio_test_locked(folio)) 1031 return 0; 1032 return folio_wait_bit_killable(folio, PG_locked); 1033} 1034 1035static inline void wait_on_page_locked(struct page *page) 1036{ 1037 folio_wait_locked(page_folio(page)); 1038} 1039 1040static inline int wait_on_page_locked_killable(struct page *page) 1041{ 1042 return folio_wait_locked_killable(page_folio(page)); 1043} 1044 1045void wait_on_page_writeback(struct page *page); 1046void folio_wait_writeback(struct folio *folio); 1047int folio_wait_writeback_killable(struct folio *folio); 1048void end_page_writeback(struct page *page); 1049void folio_end_writeback(struct folio *folio); 1050void wait_for_stable_page(struct page *page); 1051void folio_wait_stable(struct folio *folio); 1052void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn); 1053static inline void __set_page_dirty(struct page *page, 1054 struct address_space *mapping, int warn) 1055{ 1056 __folio_mark_dirty(page_folio(page), mapping, warn); 1057} 1058void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb); 1059void __folio_cancel_dirty(struct folio *folio); 1060static inline void folio_cancel_dirty(struct folio *folio) 1061{ 1062 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1063 if (folio_test_dirty(folio)) 1064 __folio_cancel_dirty(folio); 1065} 1066bool folio_clear_dirty_for_io(struct folio *folio); 1067bool clear_page_dirty_for_io(struct page *page); 1068void folio_invalidate(struct folio *folio, size_t offset, size_t length); 1069int __must_check folio_write_one(struct folio *folio); 1070static inline int __must_check write_one_page(struct page *page) 1071{ 1072 return folio_write_one(page_folio(page)); 1073} 1074 1075int __set_page_dirty_nobuffers(struct page *page); 1076bool noop_dirty_folio(struct address_space *mapping, struct folio *folio); 1077 1078#ifdef CONFIG_MIGRATION 1079int filemap_migrate_folio(struct address_space *mapping, struct folio *dst, 1080 struct folio *src, enum migrate_mode mode); 1081#else 1082#define filemap_migrate_folio NULL 1083#endif 1084void page_endio(struct page *page, bool is_write, int err); 1085 1086void folio_end_private_2(struct folio *folio); 1087void folio_wait_private_2(struct folio *folio); 1088int folio_wait_private_2_killable(struct folio *folio); 1089 1090/* 1091 * Add an arbitrary waiter to a page's wait queue 1092 */ 1093void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter); 1094 1095/* 1096 * Fault in userspace address range. 1097 */ 1098size_t fault_in_writeable(char __user *uaddr, size_t size); 1099size_t fault_in_subpage_writeable(char __user *uaddr, size_t size); 1100size_t fault_in_safe_writeable(const char __user *uaddr, size_t size); 1101size_t fault_in_readable(const char __user *uaddr, size_t size); 1102 1103int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 1104 pgoff_t index, gfp_t gfp); 1105int filemap_add_folio(struct address_space *mapping, struct folio *folio, 1106 pgoff_t index, gfp_t gfp); 1107void filemap_remove_folio(struct folio *folio); 1108void __filemap_remove_folio(struct folio *folio, void *shadow); 1109void replace_page_cache_folio(struct folio *old, struct folio *new); 1110void delete_from_page_cache_batch(struct address_space *mapping, 1111 struct folio_batch *fbatch); 1112bool filemap_release_folio(struct folio *folio, gfp_t gfp); 1113loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end, 1114 int whence); 1115 1116/* Must be non-static for BPF error injection */ 1117int __filemap_add_folio(struct address_space *mapping, struct folio *folio, 1118 pgoff_t index, gfp_t gfp, void **shadowp); 1119 1120bool filemap_range_has_writeback(struct address_space *mapping, 1121 loff_t start_byte, loff_t end_byte); 1122 1123/** 1124 * filemap_range_needs_writeback - check if range potentially needs writeback 1125 * @mapping: address space within which to check 1126 * @start_byte: offset in bytes where the range starts 1127 * @end_byte: offset in bytes where the range ends (inclusive) 1128 * 1129 * Find at least one page in the range supplied, usually used to check if 1130 * direct writing in this range will trigger a writeback. Used by O_DIRECT 1131 * read/write with IOCB_NOWAIT, to see if the caller needs to do 1132 * filemap_write_and_wait_range() before proceeding. 1133 * 1134 * Return: %true if the caller should do filemap_write_and_wait_range() before 1135 * doing O_DIRECT to a page in this range, %false otherwise. 1136 */ 1137static inline bool filemap_range_needs_writeback(struct address_space *mapping, 1138 loff_t start_byte, 1139 loff_t end_byte) 1140{ 1141 if (!mapping->nrpages) 1142 return false; 1143 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 1144 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 1145 return false; 1146 return filemap_range_has_writeback(mapping, start_byte, end_byte); 1147} 1148 1149/** 1150 * struct readahead_control - Describes a readahead request. 1151 * 1152 * A readahead request is for consecutive pages. Filesystems which 1153 * implement the ->readahead method should call readahead_page() or 1154 * readahead_page_batch() in a loop and attempt to start I/O against 1155 * each page in the request. 1156 * 1157 * Most of the fields in this struct are private and should be accessed 1158 * by the functions below. 1159 * 1160 * @file: The file, used primarily by network filesystems for authentication. 1161 * May be NULL if invoked internally by the filesystem. 1162 * @mapping: Readahead this filesystem object. 1163 * @ra: File readahead state. May be NULL. 1164 */ 1165struct readahead_control { 1166 struct file *file; 1167 struct address_space *mapping; 1168 struct file_ra_state *ra; 1169/* private: use the readahead_* accessors instead */ 1170 pgoff_t _index; 1171 unsigned int _nr_pages; 1172 unsigned int _batch_count; 1173 bool _workingset; 1174 unsigned long _pflags; 1175}; 1176 1177#define DEFINE_READAHEAD(ractl, f, r, m, i) \ 1178 struct readahead_control ractl = { \ 1179 .file = f, \ 1180 .mapping = m, \ 1181 .ra = r, \ 1182 ._index = i, \ 1183 } 1184 1185#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 1186 1187void page_cache_ra_unbounded(struct readahead_control *, 1188 unsigned long nr_to_read, unsigned long lookahead_count); 1189void page_cache_sync_ra(struct readahead_control *, unsigned long req_count); 1190void page_cache_async_ra(struct readahead_control *, struct folio *, 1191 unsigned long req_count); 1192void readahead_expand(struct readahead_control *ractl, 1193 loff_t new_start, size_t new_len); 1194 1195/** 1196 * page_cache_sync_readahead - generic file readahead 1197 * @mapping: address_space which holds the pagecache and I/O vectors 1198 * @ra: file_ra_state which holds the readahead state 1199 * @file: Used by the filesystem for authentication. 1200 * @index: Index of first page to be read. 1201 * @req_count: Total number of pages being read by the caller. 1202 * 1203 * page_cache_sync_readahead() should be called when a cache miss happened: 1204 * it will submit the read. The readahead logic may decide to piggyback more 1205 * pages onto the read request if access patterns suggest it will improve 1206 * performance. 1207 */ 1208static inline 1209void page_cache_sync_readahead(struct address_space *mapping, 1210 struct file_ra_state *ra, struct file *file, pgoff_t index, 1211 unsigned long req_count) 1212{ 1213 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 1214 page_cache_sync_ra(&ractl, req_count); 1215} 1216 1217/** 1218 * page_cache_async_readahead - file readahead for marked pages 1219 * @mapping: address_space which holds the pagecache and I/O vectors 1220 * @ra: file_ra_state which holds the readahead state 1221 * @file: Used by the filesystem for authentication. 1222 * @folio: The folio at @index which triggered the readahead call. 1223 * @index: Index of first page to be read. 1224 * @req_count: Total number of pages being read by the caller. 1225 * 1226 * page_cache_async_readahead() should be called when a page is used which 1227 * is marked as PageReadahead; this is a marker to suggest that the application 1228 * has used up enough of the readahead window that we should start pulling in 1229 * more pages. 1230 */ 1231static inline 1232void page_cache_async_readahead(struct address_space *mapping, 1233 struct file_ra_state *ra, struct file *file, 1234 struct folio *folio, pgoff_t index, unsigned long req_count) 1235{ 1236 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 1237 page_cache_async_ra(&ractl, folio, req_count); 1238} 1239 1240static inline struct folio *__readahead_folio(struct readahead_control *ractl) 1241{ 1242 struct folio *folio; 1243 1244 BUG_ON(ractl->_batch_count > ractl->_nr_pages); 1245 ractl->_nr_pages -= ractl->_batch_count; 1246 ractl->_index += ractl->_batch_count; 1247 1248 if (!ractl->_nr_pages) { 1249 ractl->_batch_count = 0; 1250 return NULL; 1251 } 1252 1253 folio = xa_load(&ractl->mapping->i_pages, ractl->_index); 1254 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1255 ractl->_batch_count = folio_nr_pages(folio); 1256 1257 return folio; 1258} 1259 1260/** 1261 * readahead_page - Get the next page to read. 1262 * @ractl: The current readahead request. 1263 * 1264 * Context: The page is locked and has an elevated refcount. The caller 1265 * should decreases the refcount once the page has been submitted for I/O 1266 * and unlock the page once all I/O to that page has completed. 1267 * Return: A pointer to the next page, or %NULL if we are done. 1268 */ 1269static inline struct page *readahead_page(struct readahead_control *ractl) 1270{ 1271 struct folio *folio = __readahead_folio(ractl); 1272 1273 return &folio->page; 1274} 1275 1276/** 1277 * readahead_folio - Get the next folio to read. 1278 * @ractl: The current readahead request. 1279 * 1280 * Context: The folio is locked. The caller should unlock the folio once 1281 * all I/O to that folio has completed. 1282 * Return: A pointer to the next folio, or %NULL if we are done. 1283 */ 1284static inline struct folio *readahead_folio(struct readahead_control *ractl) 1285{ 1286 struct folio *folio = __readahead_folio(ractl); 1287 1288 if (folio) 1289 folio_put(folio); 1290 return folio; 1291} 1292 1293static inline unsigned int __readahead_batch(struct readahead_control *rac, 1294 struct page **array, unsigned int array_sz) 1295{ 1296 unsigned int i = 0; 1297 XA_STATE(xas, &rac->mapping->i_pages, 0); 1298 struct page *page; 1299 1300 BUG_ON(rac->_batch_count > rac->_nr_pages); 1301 rac->_nr_pages -= rac->_batch_count; 1302 rac->_index += rac->_batch_count; 1303 rac->_batch_count = 0; 1304 1305 xas_set(&xas, rac->_index); 1306 rcu_read_lock(); 1307 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { 1308 if (xas_retry(&xas, page)) 1309 continue; 1310 VM_BUG_ON_PAGE(!PageLocked(page), page); 1311 VM_BUG_ON_PAGE(PageTail(page), page); 1312 array[i++] = page; 1313 rac->_batch_count += thp_nr_pages(page); 1314 if (i == array_sz) 1315 break; 1316 } 1317 rcu_read_unlock(); 1318 1319 return i; 1320} 1321 1322/** 1323 * readahead_page_batch - Get a batch of pages to read. 1324 * @rac: The current readahead request. 1325 * @array: An array of pointers to struct page. 1326 * 1327 * Context: The pages are locked and have an elevated refcount. The caller 1328 * should decreases the refcount once the page has been submitted for I/O 1329 * and unlock the page once all I/O to that page has completed. 1330 * Return: The number of pages placed in the array. 0 indicates the request 1331 * is complete. 1332 */ 1333#define readahead_page_batch(rac, array) \ 1334 __readahead_batch(rac, array, ARRAY_SIZE(array)) 1335 1336/** 1337 * readahead_pos - The byte offset into the file of this readahead request. 1338 * @rac: The readahead request. 1339 */ 1340static inline loff_t readahead_pos(struct readahead_control *rac) 1341{ 1342 return (loff_t)rac->_index * PAGE_SIZE; 1343} 1344 1345/** 1346 * readahead_length - The number of bytes in this readahead request. 1347 * @rac: The readahead request. 1348 */ 1349static inline size_t readahead_length(struct readahead_control *rac) 1350{ 1351 return rac->_nr_pages * PAGE_SIZE; 1352} 1353 1354/** 1355 * readahead_index - The index of the first page in this readahead request. 1356 * @rac: The readahead request. 1357 */ 1358static inline pgoff_t readahead_index(struct readahead_control *rac) 1359{ 1360 return rac->_index; 1361} 1362 1363/** 1364 * readahead_count - The number of pages in this readahead request. 1365 * @rac: The readahead request. 1366 */ 1367static inline unsigned int readahead_count(struct readahead_control *rac) 1368{ 1369 return rac->_nr_pages; 1370} 1371 1372/** 1373 * readahead_batch_length - The number of bytes in the current batch. 1374 * @rac: The readahead request. 1375 */ 1376static inline size_t readahead_batch_length(struct readahead_control *rac) 1377{ 1378 return rac->_batch_count * PAGE_SIZE; 1379} 1380 1381static inline unsigned long dir_pages(struct inode *inode) 1382{ 1383 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 1384 PAGE_SHIFT; 1385} 1386 1387/** 1388 * folio_mkwrite_check_truncate - check if folio was truncated 1389 * @folio: the folio to check 1390 * @inode: the inode to check the folio against 1391 * 1392 * Return: the number of bytes in the folio up to EOF, 1393 * or -EFAULT if the folio was truncated. 1394 */ 1395static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio, 1396 struct inode *inode) 1397{ 1398 loff_t size = i_size_read(inode); 1399 pgoff_t index = size >> PAGE_SHIFT; 1400 size_t offset = offset_in_folio(folio, size); 1401 1402 if (!folio->mapping) 1403 return -EFAULT; 1404 1405 /* folio is wholly inside EOF */ 1406 if (folio_next_index(folio) - 1 < index) 1407 return folio_size(folio); 1408 /* folio is wholly past EOF */ 1409 if (folio->index > index || !offset) 1410 return -EFAULT; 1411 /* folio is partially inside EOF */ 1412 return offset; 1413} 1414 1415/** 1416 * page_mkwrite_check_truncate - check if page was truncated 1417 * @page: the page to check 1418 * @inode: the inode to check the page against 1419 * 1420 * Returns the number of bytes in the page up to EOF, 1421 * or -EFAULT if the page was truncated. 1422 */ 1423static inline int page_mkwrite_check_truncate(struct page *page, 1424 struct inode *inode) 1425{ 1426 loff_t size = i_size_read(inode); 1427 pgoff_t index = size >> PAGE_SHIFT; 1428 int offset = offset_in_page(size); 1429 1430 if (page->mapping != inode->i_mapping) 1431 return -EFAULT; 1432 1433 /* page is wholly inside EOF */ 1434 if (page->index < index) 1435 return PAGE_SIZE; 1436 /* page is wholly past EOF */ 1437 if (page->index > index || !offset) 1438 return -EFAULT; 1439 /* page is partially inside EOF */ 1440 return offset; 1441} 1442 1443/** 1444 * i_blocks_per_folio - How many blocks fit in this folio. 1445 * @inode: The inode which contains the blocks. 1446 * @folio: The folio. 1447 * 1448 * If the block size is larger than the size of this folio, return zero. 1449 * 1450 * Context: The caller should hold a refcount on the folio to prevent it 1451 * from being split. 1452 * Return: The number of filesystem blocks covered by this folio. 1453 */ 1454static inline 1455unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio) 1456{ 1457 return folio_size(folio) >> inode->i_blkbits; 1458} 1459 1460static inline 1461unsigned int i_blocks_per_page(struct inode *inode, struct page *page) 1462{ 1463 return i_blocks_per_folio(inode, page_folio(page)); 1464} 1465#endif /* _LINUX_PAGEMAP_H */