at v6.3 66 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMZONE_H 3#define _LINUX_MMZONE_H 4 5#ifndef __ASSEMBLY__ 6#ifndef __GENERATING_BOUNDS_H 7 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/list_nulls.h> 11#include <linux/wait.h> 12#include <linux/bitops.h> 13#include <linux/cache.h> 14#include <linux/threads.h> 15#include <linux/numa.h> 16#include <linux/init.h> 17#include <linux/seqlock.h> 18#include <linux/nodemask.h> 19#include <linux/pageblock-flags.h> 20#include <linux/page-flags-layout.h> 21#include <linux/atomic.h> 22#include <linux/mm_types.h> 23#include <linux/page-flags.h> 24#include <linux/local_lock.h> 25#include <asm/page.h> 26 27/* Free memory management - zoned buddy allocator. */ 28#ifndef CONFIG_ARCH_FORCE_MAX_ORDER 29#define MAX_ORDER 11 30#else 31#define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 32#endif 33#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 34 35/* 36 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 37 * costly to service. That is between allocation orders which should 38 * coalesce naturally under reasonable reclaim pressure and those which 39 * will not. 40 */ 41#define PAGE_ALLOC_COSTLY_ORDER 3 42 43enum migratetype { 44 MIGRATE_UNMOVABLE, 45 MIGRATE_MOVABLE, 46 MIGRATE_RECLAIMABLE, 47 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 48 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 49#ifdef CONFIG_CMA 50 /* 51 * MIGRATE_CMA migration type is designed to mimic the way 52 * ZONE_MOVABLE works. Only movable pages can be allocated 53 * from MIGRATE_CMA pageblocks and page allocator never 54 * implicitly change migration type of MIGRATE_CMA pageblock. 55 * 56 * The way to use it is to change migratetype of a range of 57 * pageblocks to MIGRATE_CMA which can be done by 58 * __free_pageblock_cma() function. 59 */ 60 MIGRATE_CMA, 61#endif 62#ifdef CONFIG_MEMORY_ISOLATION 63 MIGRATE_ISOLATE, /* can't allocate from here */ 64#endif 65 MIGRATE_TYPES 66}; 67 68/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 69extern const char * const migratetype_names[MIGRATE_TYPES]; 70 71#ifdef CONFIG_CMA 72# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 73# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 74#else 75# define is_migrate_cma(migratetype) false 76# define is_migrate_cma_page(_page) false 77#endif 78 79static inline bool is_migrate_movable(int mt) 80{ 81 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 82} 83 84/* 85 * Check whether a migratetype can be merged with another migratetype. 86 * 87 * It is only mergeable when it can fall back to other migratetypes for 88 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 89 */ 90static inline bool migratetype_is_mergeable(int mt) 91{ 92 return mt < MIGRATE_PCPTYPES; 93} 94 95#define for_each_migratetype_order(order, type) \ 96 for (order = 0; order < MAX_ORDER; order++) \ 97 for (type = 0; type < MIGRATE_TYPES; type++) 98 99extern int page_group_by_mobility_disabled; 100 101#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 102 103#define get_pageblock_migratetype(page) \ 104 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 105 106struct free_area { 107 struct list_head free_list[MIGRATE_TYPES]; 108 unsigned long nr_free; 109}; 110 111static inline struct page *get_page_from_free_area(struct free_area *area, 112 int migratetype) 113{ 114 return list_first_entry_or_null(&area->free_list[migratetype], 115 struct page, lru); 116} 117 118static inline bool free_area_empty(struct free_area *area, int migratetype) 119{ 120 return list_empty(&area->free_list[migratetype]); 121} 122 123struct pglist_data; 124 125#ifdef CONFIG_NUMA 126enum numa_stat_item { 127 NUMA_HIT, /* allocated in intended node */ 128 NUMA_MISS, /* allocated in non intended node */ 129 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 130 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 131 NUMA_LOCAL, /* allocation from local node */ 132 NUMA_OTHER, /* allocation from other node */ 133 NR_VM_NUMA_EVENT_ITEMS 134}; 135#else 136#define NR_VM_NUMA_EVENT_ITEMS 0 137#endif 138 139enum zone_stat_item { 140 /* First 128 byte cacheline (assuming 64 bit words) */ 141 NR_FREE_PAGES, 142 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 143 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 144 NR_ZONE_ACTIVE_ANON, 145 NR_ZONE_INACTIVE_FILE, 146 NR_ZONE_ACTIVE_FILE, 147 NR_ZONE_UNEVICTABLE, 148 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 149 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 150 /* Second 128 byte cacheline */ 151 NR_BOUNCE, 152#if IS_ENABLED(CONFIG_ZSMALLOC) 153 NR_ZSPAGES, /* allocated in zsmalloc */ 154#endif 155 NR_FREE_CMA_PAGES, 156 NR_VM_ZONE_STAT_ITEMS }; 157 158enum node_stat_item { 159 NR_LRU_BASE, 160 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 161 NR_ACTIVE_ANON, /* " " " " " */ 162 NR_INACTIVE_FILE, /* " " " " " */ 163 NR_ACTIVE_FILE, /* " " " " " */ 164 NR_UNEVICTABLE, /* " " " " " */ 165 NR_SLAB_RECLAIMABLE_B, 166 NR_SLAB_UNRECLAIMABLE_B, 167 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 168 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 169 WORKINGSET_NODES, 170 WORKINGSET_REFAULT_BASE, 171 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 172 WORKINGSET_REFAULT_FILE, 173 WORKINGSET_ACTIVATE_BASE, 174 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 175 WORKINGSET_ACTIVATE_FILE, 176 WORKINGSET_RESTORE_BASE, 177 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 178 WORKINGSET_RESTORE_FILE, 179 WORKINGSET_NODERECLAIM, 180 NR_ANON_MAPPED, /* Mapped anonymous pages */ 181 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 182 only modified from process context */ 183 NR_FILE_PAGES, 184 NR_FILE_DIRTY, 185 NR_WRITEBACK, 186 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 187 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 188 NR_SHMEM_THPS, 189 NR_SHMEM_PMDMAPPED, 190 NR_FILE_THPS, 191 NR_FILE_PMDMAPPED, 192 NR_ANON_THPS, 193 NR_VMSCAN_WRITE, 194 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 195 NR_DIRTIED, /* page dirtyings since bootup */ 196 NR_WRITTEN, /* page writings since bootup */ 197 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 198 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 199 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 200 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 201 NR_KERNEL_STACK_KB, /* measured in KiB */ 202#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 203 NR_KERNEL_SCS_KB, /* measured in KiB */ 204#endif 205 NR_PAGETABLE, /* used for pagetables */ 206 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */ 207#ifdef CONFIG_SWAP 208 NR_SWAPCACHE, 209#endif 210#ifdef CONFIG_NUMA_BALANCING 211 PGPROMOTE_SUCCESS, /* promote successfully */ 212 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 213#endif 214 NR_VM_NODE_STAT_ITEMS 215}; 216 217/* 218 * Returns true if the item should be printed in THPs (/proc/vmstat 219 * currently prints number of anon, file and shmem THPs. But the item 220 * is charged in pages). 221 */ 222static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 223{ 224 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 225 return false; 226 227 return item == NR_ANON_THPS || 228 item == NR_FILE_THPS || 229 item == NR_SHMEM_THPS || 230 item == NR_SHMEM_PMDMAPPED || 231 item == NR_FILE_PMDMAPPED; 232} 233 234/* 235 * Returns true if the value is measured in bytes (most vmstat values are 236 * measured in pages). This defines the API part, the internal representation 237 * might be different. 238 */ 239static __always_inline bool vmstat_item_in_bytes(int idx) 240{ 241 /* 242 * Global and per-node slab counters track slab pages. 243 * It's expected that changes are multiples of PAGE_SIZE. 244 * Internally values are stored in pages. 245 * 246 * Per-memcg and per-lruvec counters track memory, consumed 247 * by individual slab objects. These counters are actually 248 * byte-precise. 249 */ 250 return (idx == NR_SLAB_RECLAIMABLE_B || 251 idx == NR_SLAB_UNRECLAIMABLE_B); 252} 253 254/* 255 * We do arithmetic on the LRU lists in various places in the code, 256 * so it is important to keep the active lists LRU_ACTIVE higher in 257 * the array than the corresponding inactive lists, and to keep 258 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 259 * 260 * This has to be kept in sync with the statistics in zone_stat_item 261 * above and the descriptions in vmstat_text in mm/vmstat.c 262 */ 263#define LRU_BASE 0 264#define LRU_ACTIVE 1 265#define LRU_FILE 2 266 267enum lru_list { 268 LRU_INACTIVE_ANON = LRU_BASE, 269 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 270 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 271 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 272 LRU_UNEVICTABLE, 273 NR_LRU_LISTS 274}; 275 276enum vmscan_throttle_state { 277 VMSCAN_THROTTLE_WRITEBACK, 278 VMSCAN_THROTTLE_ISOLATED, 279 VMSCAN_THROTTLE_NOPROGRESS, 280 VMSCAN_THROTTLE_CONGESTED, 281 NR_VMSCAN_THROTTLE, 282}; 283 284#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 285 286#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 287 288static inline bool is_file_lru(enum lru_list lru) 289{ 290 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 291} 292 293static inline bool is_active_lru(enum lru_list lru) 294{ 295 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 296} 297 298#define WORKINGSET_ANON 0 299#define WORKINGSET_FILE 1 300#define ANON_AND_FILE 2 301 302enum lruvec_flags { 303 LRUVEC_CONGESTED, /* lruvec has many dirty pages 304 * backed by a congested BDI 305 */ 306}; 307 308#endif /* !__GENERATING_BOUNDS_H */ 309 310/* 311 * Evictable pages are divided into multiple generations. The youngest and the 312 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 313 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 314 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 315 * corresponding generation. The gen counter in folio->flags stores gen+1 while 316 * a page is on one of lrugen->folios[]. Otherwise it stores 0. 317 * 318 * A page is added to the youngest generation on faulting. The aging needs to 319 * check the accessed bit at least twice before handing this page over to the 320 * eviction. The first check takes care of the accessed bit set on the initial 321 * fault; the second check makes sure this page hasn't been used since then. 322 * This process, AKA second chance, requires a minimum of two generations, 323 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive 324 * LRU, e.g., /proc/vmstat, these two generations are considered active; the 325 * rest of generations, if they exist, are considered inactive. See 326 * lru_gen_is_active(). 327 * 328 * PG_active is always cleared while a page is on one of lrugen->folios[] so 329 * that the aging needs not to worry about it. And it's set again when a page 330 * considered active is isolated for non-reclaiming purposes, e.g., migration. 331 * See lru_gen_add_folio() and lru_gen_del_folio(). 332 * 333 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 334 * number of categories of the active/inactive LRU when keeping track of 335 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 336 * in folio->flags. 337 */ 338#define MIN_NR_GENS 2U 339#define MAX_NR_GENS 4U 340 341/* 342 * Each generation is divided into multiple tiers. A page accessed N times 343 * through file descriptors is in tier order_base_2(N). A page in the first tier 344 * (N=0,1) is marked by PG_referenced unless it was faulted in through page 345 * tables or read ahead. A page in any other tier (N>1) is marked by 346 * PG_referenced and PG_workingset. This implies a minimum of two tiers is 347 * supported without using additional bits in folio->flags. 348 * 349 * In contrast to moving across generations which requires the LRU lock, moving 350 * across tiers only involves atomic operations on folio->flags and therefore 351 * has a negligible cost in the buffered access path. In the eviction path, 352 * comparisons of refaulted/(evicted+protected) from the first tier and the 353 * rest infer whether pages accessed multiple times through file descriptors 354 * are statistically hot and thus worth protecting. 355 * 356 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 357 * number of categories of the active/inactive LRU when keeping track of 358 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 359 * folio->flags. 360 */ 361#define MAX_NR_TIERS 4U 362 363#ifndef __GENERATING_BOUNDS_H 364 365struct lruvec; 366struct page_vma_mapped_walk; 367 368#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 369#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 370 371#ifdef CONFIG_LRU_GEN 372 373enum { 374 LRU_GEN_ANON, 375 LRU_GEN_FILE, 376}; 377 378enum { 379 LRU_GEN_CORE, 380 LRU_GEN_MM_WALK, 381 LRU_GEN_NONLEAF_YOUNG, 382 NR_LRU_GEN_CAPS 383}; 384 385#define MIN_LRU_BATCH BITS_PER_LONG 386#define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 387 388/* whether to keep historical stats from evicted generations */ 389#ifdef CONFIG_LRU_GEN_STATS 390#define NR_HIST_GENS MAX_NR_GENS 391#else 392#define NR_HIST_GENS 1U 393#endif 394 395/* 396 * The youngest generation number is stored in max_seq for both anon and file 397 * types as they are aged on an equal footing. The oldest generation numbers are 398 * stored in min_seq[] separately for anon and file types as clean file pages 399 * can be evicted regardless of swap constraints. 400 * 401 * Normally anon and file min_seq are in sync. But if swapping is constrained, 402 * e.g., out of swap space, file min_seq is allowed to advance and leave anon 403 * min_seq behind. 404 * 405 * The number of pages in each generation is eventually consistent and therefore 406 * can be transiently negative when reset_batch_size() is pending. 407 */ 408struct lru_gen_folio { 409 /* the aging increments the youngest generation number */ 410 unsigned long max_seq; 411 /* the eviction increments the oldest generation numbers */ 412 unsigned long min_seq[ANON_AND_FILE]; 413 /* the birth time of each generation in jiffies */ 414 unsigned long timestamps[MAX_NR_GENS]; 415 /* the multi-gen LRU lists, lazily sorted on eviction */ 416 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 417 /* the multi-gen LRU sizes, eventually consistent */ 418 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 419 /* the exponential moving average of refaulted */ 420 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 421 /* the exponential moving average of evicted+protected */ 422 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 423 /* the first tier doesn't need protection, hence the minus one */ 424 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; 425 /* can be modified without holding the LRU lock */ 426 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 427 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 428 /* whether the multi-gen LRU is enabled */ 429 bool enabled; 430#ifdef CONFIG_MEMCG 431 /* the memcg generation this lru_gen_folio belongs to */ 432 u8 gen; 433 /* the list segment this lru_gen_folio belongs to */ 434 u8 seg; 435 /* per-node lru_gen_folio list for global reclaim */ 436 struct hlist_nulls_node list; 437#endif 438}; 439 440enum { 441 MM_LEAF_TOTAL, /* total leaf entries */ 442 MM_LEAF_OLD, /* old leaf entries */ 443 MM_LEAF_YOUNG, /* young leaf entries */ 444 MM_NONLEAF_TOTAL, /* total non-leaf entries */ 445 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 446 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 447 NR_MM_STATS 448}; 449 450/* double-buffering Bloom filters */ 451#define NR_BLOOM_FILTERS 2 452 453struct lru_gen_mm_state { 454 /* set to max_seq after each iteration */ 455 unsigned long seq; 456 /* where the current iteration continues (inclusive) */ 457 struct list_head *head; 458 /* where the last iteration ended (exclusive) */ 459 struct list_head *tail; 460 /* to wait for the last page table walker to finish */ 461 struct wait_queue_head wait; 462 /* Bloom filters flip after each iteration */ 463 unsigned long *filters[NR_BLOOM_FILTERS]; 464 /* the mm stats for debugging */ 465 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 466 /* the number of concurrent page table walkers */ 467 int nr_walkers; 468}; 469 470struct lru_gen_mm_walk { 471 /* the lruvec under reclaim */ 472 struct lruvec *lruvec; 473 /* unstable max_seq from lru_gen_folio */ 474 unsigned long max_seq; 475 /* the next address within an mm to scan */ 476 unsigned long next_addr; 477 /* to batch promoted pages */ 478 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 479 /* to batch the mm stats */ 480 int mm_stats[NR_MM_STATS]; 481 /* total batched items */ 482 int batched; 483 bool can_swap; 484 bool force_scan; 485}; 486 487void lru_gen_init_lruvec(struct lruvec *lruvec); 488void lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 489 490#ifdef CONFIG_MEMCG 491 492/* 493 * For each node, memcgs are divided into two generations: the old and the 494 * young. For each generation, memcgs are randomly sharded into multiple bins 495 * to improve scalability. For each bin, the hlist_nulls is virtually divided 496 * into three segments: the head, the tail and the default. 497 * 498 * An onlining memcg is added to the tail of a random bin in the old generation. 499 * The eviction starts at the head of a random bin in the old generation. The 500 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 501 * the old generation, is incremented when all its bins become empty. 502 * 503 * There are four operations: 504 * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its 505 * current generation (old or young) and updates its "seg" to "head"; 506 * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its 507 * current generation (old or young) and updates its "seg" to "tail"; 508 * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old 509 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 510 * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the 511 * young generation, updates its "gen" to "young" and resets its "seg" to 512 * "default". 513 * 514 * The events that trigger the above operations are: 515 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 516 * 2. The first attempt to reclaim an memcg below low, which triggers 517 * MEMCG_LRU_TAIL; 518 * 3. The first attempt to reclaim an memcg below reclaimable size threshold, 519 * which triggers MEMCG_LRU_TAIL; 520 * 4. The second attempt to reclaim an memcg below reclaimable size threshold, 521 * which triggers MEMCG_LRU_YOUNG; 522 * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG; 523 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 524 * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD. 525 * 526 * Note that memcg LRU only applies to global reclaim, and the round-robin 527 * incrementing of their max_seq counters ensures the eventual fairness to all 528 * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 529 */ 530#define MEMCG_NR_GENS 2 531#define MEMCG_NR_BINS 8 532 533struct lru_gen_memcg { 534 /* the per-node memcg generation counter */ 535 unsigned long seq; 536 /* each memcg has one lru_gen_folio per node */ 537 unsigned long nr_memcgs[MEMCG_NR_GENS]; 538 /* per-node lru_gen_folio list for global reclaim */ 539 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 540 /* protects the above */ 541 spinlock_t lock; 542}; 543 544void lru_gen_init_pgdat(struct pglist_data *pgdat); 545 546void lru_gen_init_memcg(struct mem_cgroup *memcg); 547void lru_gen_exit_memcg(struct mem_cgroup *memcg); 548void lru_gen_online_memcg(struct mem_cgroup *memcg); 549void lru_gen_offline_memcg(struct mem_cgroup *memcg); 550void lru_gen_release_memcg(struct mem_cgroup *memcg); 551void lru_gen_soft_reclaim(struct lruvec *lruvec); 552 553#else /* !CONFIG_MEMCG */ 554 555#define MEMCG_NR_GENS 1 556 557struct lru_gen_memcg { 558}; 559 560static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 561{ 562} 563 564#endif /* CONFIG_MEMCG */ 565 566#else /* !CONFIG_LRU_GEN */ 567 568static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 569{ 570} 571 572static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 573{ 574} 575 576static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 577{ 578} 579 580#ifdef CONFIG_MEMCG 581 582static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 583{ 584} 585 586static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 587{ 588} 589 590static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 591{ 592} 593 594static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 595{ 596} 597 598static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 599{ 600} 601 602static inline void lru_gen_soft_reclaim(struct lruvec *lruvec) 603{ 604} 605 606#endif /* CONFIG_MEMCG */ 607 608#endif /* CONFIG_LRU_GEN */ 609 610struct lruvec { 611 struct list_head lists[NR_LRU_LISTS]; 612 /* per lruvec lru_lock for memcg */ 613 spinlock_t lru_lock; 614 /* 615 * These track the cost of reclaiming one LRU - file or anon - 616 * over the other. As the observed cost of reclaiming one LRU 617 * increases, the reclaim scan balance tips toward the other. 618 */ 619 unsigned long anon_cost; 620 unsigned long file_cost; 621 /* Non-resident age, driven by LRU movement */ 622 atomic_long_t nonresident_age; 623 /* Refaults at the time of last reclaim cycle */ 624 unsigned long refaults[ANON_AND_FILE]; 625 /* Various lruvec state flags (enum lruvec_flags) */ 626 unsigned long flags; 627#ifdef CONFIG_LRU_GEN 628 /* evictable pages divided into generations */ 629 struct lru_gen_folio lrugen; 630 /* to concurrently iterate lru_gen_mm_list */ 631 struct lru_gen_mm_state mm_state; 632#endif 633#ifdef CONFIG_MEMCG 634 struct pglist_data *pgdat; 635#endif 636}; 637 638/* Isolate unmapped pages */ 639#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 640/* Isolate for asynchronous migration */ 641#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 642/* Isolate unevictable pages */ 643#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 644 645/* LRU Isolation modes. */ 646typedef unsigned __bitwise isolate_mode_t; 647 648enum zone_watermarks { 649 WMARK_MIN, 650 WMARK_LOW, 651 WMARK_HIGH, 652 WMARK_PROMO, 653 NR_WMARK 654}; 655 656/* 657 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list 658 * for THP which will usually be GFP_MOVABLE. Even if it is another type, 659 * it should not contribute to serious fragmentation causing THP allocation 660 * failures. 661 */ 662#ifdef CONFIG_TRANSPARENT_HUGEPAGE 663#define NR_PCP_THP 1 664#else 665#define NR_PCP_THP 0 666#endif 667#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 668#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 669 670#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 671#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 672#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 673#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 674 675/* Fields and list protected by pagesets local_lock in page_alloc.c */ 676struct per_cpu_pages { 677 spinlock_t lock; /* Protects lists field */ 678 int count; /* number of pages in the list */ 679 int high; /* high watermark, emptying needed */ 680 int batch; /* chunk size for buddy add/remove */ 681 short free_factor; /* batch scaling factor during free */ 682#ifdef CONFIG_NUMA 683 short expire; /* When 0, remote pagesets are drained */ 684#endif 685 686 /* Lists of pages, one per migrate type stored on the pcp-lists */ 687 struct list_head lists[NR_PCP_LISTS]; 688} ____cacheline_aligned_in_smp; 689 690struct per_cpu_zonestat { 691#ifdef CONFIG_SMP 692 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 693 s8 stat_threshold; 694#endif 695#ifdef CONFIG_NUMA 696 /* 697 * Low priority inaccurate counters that are only folded 698 * on demand. Use a large type to avoid the overhead of 699 * folding during refresh_cpu_vm_stats. 700 */ 701 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 702#endif 703}; 704 705struct per_cpu_nodestat { 706 s8 stat_threshold; 707 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 708}; 709 710#endif /* !__GENERATING_BOUNDS.H */ 711 712enum zone_type { 713 /* 714 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 715 * to DMA to all of the addressable memory (ZONE_NORMAL). 716 * On architectures where this area covers the whole 32 bit address 717 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 718 * DMA addressing constraints. This distinction is important as a 32bit 719 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 720 * platforms may need both zones as they support peripherals with 721 * different DMA addressing limitations. 722 */ 723#ifdef CONFIG_ZONE_DMA 724 ZONE_DMA, 725#endif 726#ifdef CONFIG_ZONE_DMA32 727 ZONE_DMA32, 728#endif 729 /* 730 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 731 * performed on pages in ZONE_NORMAL if the DMA devices support 732 * transfers to all addressable memory. 733 */ 734 ZONE_NORMAL, 735#ifdef CONFIG_HIGHMEM 736 /* 737 * A memory area that is only addressable by the kernel through 738 * mapping portions into its own address space. This is for example 739 * used by i386 to allow the kernel to address the memory beyond 740 * 900MB. The kernel will set up special mappings (page 741 * table entries on i386) for each page that the kernel needs to 742 * access. 743 */ 744 ZONE_HIGHMEM, 745#endif 746 /* 747 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 748 * movable pages with few exceptional cases described below. Main use 749 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 750 * likely to succeed, and to locally limit unmovable allocations - e.g., 751 * to increase the number of THP/huge pages. Notable special cases are: 752 * 753 * 1. Pinned pages: (long-term) pinning of movable pages might 754 * essentially turn such pages unmovable. Therefore, we do not allow 755 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 756 * faulted, they come from the right zone right away. However, it is 757 * still possible that address space already has pages in 758 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 759 * touches that memory before pinning). In such case we migrate them 760 * to a different zone. When migration fails - pinning fails. 761 * 2. memblock allocations: kernelcore/movablecore setups might create 762 * situations where ZONE_MOVABLE contains unmovable allocations 763 * after boot. Memory offlining and allocations fail early. 764 * 3. Memory holes: kernelcore/movablecore setups might create very rare 765 * situations where ZONE_MOVABLE contains memory holes after boot, 766 * for example, if we have sections that are only partially 767 * populated. Memory offlining and allocations fail early. 768 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 769 * memory offlining, such pages cannot be allocated. 770 * 5. Unmovable PG_offline pages: in paravirtualized environments, 771 * hotplugged memory blocks might only partially be managed by the 772 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 773 * parts not manged by the buddy are unmovable PG_offline pages. In 774 * some cases (virtio-mem), such pages can be skipped during 775 * memory offlining, however, cannot be moved/allocated. These 776 * techniques might use alloc_contig_range() to hide previously 777 * exposed pages from the buddy again (e.g., to implement some sort 778 * of memory unplug in virtio-mem). 779 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 780 * situations where ZERO_PAGE(0) which is allocated differently 781 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 782 * cannot be migrated. 783 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 784 * memory to the MOVABLE zone, the vmemmap pages are also placed in 785 * such zone. Such pages cannot be really moved around as they are 786 * self-stored in the range, but they are treated as movable when 787 * the range they describe is about to be offlined. 788 * 789 * In general, no unmovable allocations that degrade memory offlining 790 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 791 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 792 * if has_unmovable_pages() states that there are no unmovable pages, 793 * there can be false negatives). 794 */ 795 ZONE_MOVABLE, 796#ifdef CONFIG_ZONE_DEVICE 797 ZONE_DEVICE, 798#endif 799 __MAX_NR_ZONES 800 801}; 802 803#ifndef __GENERATING_BOUNDS_H 804 805#define ASYNC_AND_SYNC 2 806 807struct zone { 808 /* Read-mostly fields */ 809 810 /* zone watermarks, access with *_wmark_pages(zone) macros */ 811 unsigned long _watermark[NR_WMARK]; 812 unsigned long watermark_boost; 813 814 unsigned long nr_reserved_highatomic; 815 816 /* 817 * We don't know if the memory that we're going to allocate will be 818 * freeable or/and it will be released eventually, so to avoid totally 819 * wasting several GB of ram we must reserve some of the lower zone 820 * memory (otherwise we risk to run OOM on the lower zones despite 821 * there being tons of freeable ram on the higher zones). This array is 822 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 823 * changes. 824 */ 825 long lowmem_reserve[MAX_NR_ZONES]; 826 827#ifdef CONFIG_NUMA 828 int node; 829#endif 830 struct pglist_data *zone_pgdat; 831 struct per_cpu_pages __percpu *per_cpu_pageset; 832 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 833 /* 834 * the high and batch values are copied to individual pagesets for 835 * faster access 836 */ 837 int pageset_high; 838 int pageset_batch; 839 840#ifndef CONFIG_SPARSEMEM 841 /* 842 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 843 * In SPARSEMEM, this map is stored in struct mem_section 844 */ 845 unsigned long *pageblock_flags; 846#endif /* CONFIG_SPARSEMEM */ 847 848 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 849 unsigned long zone_start_pfn; 850 851 /* 852 * spanned_pages is the total pages spanned by the zone, including 853 * holes, which is calculated as: 854 * spanned_pages = zone_end_pfn - zone_start_pfn; 855 * 856 * present_pages is physical pages existing within the zone, which 857 * is calculated as: 858 * present_pages = spanned_pages - absent_pages(pages in holes); 859 * 860 * present_early_pages is present pages existing within the zone 861 * located on memory available since early boot, excluding hotplugged 862 * memory. 863 * 864 * managed_pages is present pages managed by the buddy system, which 865 * is calculated as (reserved_pages includes pages allocated by the 866 * bootmem allocator): 867 * managed_pages = present_pages - reserved_pages; 868 * 869 * cma pages is present pages that are assigned for CMA use 870 * (MIGRATE_CMA). 871 * 872 * So present_pages may be used by memory hotplug or memory power 873 * management logic to figure out unmanaged pages by checking 874 * (present_pages - managed_pages). And managed_pages should be used 875 * by page allocator and vm scanner to calculate all kinds of watermarks 876 * and thresholds. 877 * 878 * Locking rules: 879 * 880 * zone_start_pfn and spanned_pages are protected by span_seqlock. 881 * It is a seqlock because it has to be read outside of zone->lock, 882 * and it is done in the main allocator path. But, it is written 883 * quite infrequently. 884 * 885 * The span_seq lock is declared along with zone->lock because it is 886 * frequently read in proximity to zone->lock. It's good to 887 * give them a chance of being in the same cacheline. 888 * 889 * Write access to present_pages at runtime should be protected by 890 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 891 * present_pages should use get_online_mems() to get a stable value. 892 */ 893 atomic_long_t managed_pages; 894 unsigned long spanned_pages; 895 unsigned long present_pages; 896#if defined(CONFIG_MEMORY_HOTPLUG) 897 unsigned long present_early_pages; 898#endif 899#ifdef CONFIG_CMA 900 unsigned long cma_pages; 901#endif 902 903 const char *name; 904 905#ifdef CONFIG_MEMORY_ISOLATION 906 /* 907 * Number of isolated pageblock. It is used to solve incorrect 908 * freepage counting problem due to racy retrieving migratetype 909 * of pageblock. Protected by zone->lock. 910 */ 911 unsigned long nr_isolate_pageblock; 912#endif 913 914#ifdef CONFIG_MEMORY_HOTPLUG 915 /* see spanned/present_pages for more description */ 916 seqlock_t span_seqlock; 917#endif 918 919 int initialized; 920 921 /* Write-intensive fields used from the page allocator */ 922 CACHELINE_PADDING(_pad1_); 923 924 /* free areas of different sizes */ 925 struct free_area free_area[MAX_ORDER]; 926 927 /* zone flags, see below */ 928 unsigned long flags; 929 930 /* Primarily protects free_area */ 931 spinlock_t lock; 932 933 /* Write-intensive fields used by compaction and vmstats. */ 934 CACHELINE_PADDING(_pad2_); 935 936 /* 937 * When free pages are below this point, additional steps are taken 938 * when reading the number of free pages to avoid per-cpu counter 939 * drift allowing watermarks to be breached 940 */ 941 unsigned long percpu_drift_mark; 942 943#if defined CONFIG_COMPACTION || defined CONFIG_CMA 944 /* pfn where compaction free scanner should start */ 945 unsigned long compact_cached_free_pfn; 946 /* pfn where compaction migration scanner should start */ 947 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 948 unsigned long compact_init_migrate_pfn; 949 unsigned long compact_init_free_pfn; 950#endif 951 952#ifdef CONFIG_COMPACTION 953 /* 954 * On compaction failure, 1<<compact_defer_shift compactions 955 * are skipped before trying again. The number attempted since 956 * last failure is tracked with compact_considered. 957 * compact_order_failed is the minimum compaction failed order. 958 */ 959 unsigned int compact_considered; 960 unsigned int compact_defer_shift; 961 int compact_order_failed; 962#endif 963 964#if defined CONFIG_COMPACTION || defined CONFIG_CMA 965 /* Set to true when the PG_migrate_skip bits should be cleared */ 966 bool compact_blockskip_flush; 967#endif 968 969 bool contiguous; 970 971 CACHELINE_PADDING(_pad3_); 972 /* Zone statistics */ 973 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 974 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 975} ____cacheline_internodealigned_in_smp; 976 977enum pgdat_flags { 978 PGDAT_DIRTY, /* reclaim scanning has recently found 979 * many dirty file pages at the tail 980 * of the LRU. 981 */ 982 PGDAT_WRITEBACK, /* reclaim scanning has recently found 983 * many pages under writeback 984 */ 985 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 986}; 987 988enum zone_flags { 989 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 990 * Cleared when kswapd is woken. 991 */ 992 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 993}; 994 995static inline unsigned long zone_managed_pages(struct zone *zone) 996{ 997 return (unsigned long)atomic_long_read(&zone->managed_pages); 998} 999 1000static inline unsigned long zone_cma_pages(struct zone *zone) 1001{ 1002#ifdef CONFIG_CMA 1003 return zone->cma_pages; 1004#else 1005 return 0; 1006#endif 1007} 1008 1009static inline unsigned long zone_end_pfn(const struct zone *zone) 1010{ 1011 return zone->zone_start_pfn + zone->spanned_pages; 1012} 1013 1014static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1015{ 1016 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1017} 1018 1019static inline bool zone_is_initialized(struct zone *zone) 1020{ 1021 return zone->initialized; 1022} 1023 1024static inline bool zone_is_empty(struct zone *zone) 1025{ 1026 return zone->spanned_pages == 0; 1027} 1028 1029#ifndef BUILD_VDSO32_64 1030/* 1031 * The zone field is never updated after free_area_init_core() 1032 * sets it, so none of the operations on it need to be atomic. 1033 */ 1034 1035/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1036#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1037#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1038#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1039#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1040#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1041#define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1042#define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1043 1044/* 1045 * Define the bit shifts to access each section. For non-existent 1046 * sections we define the shift as 0; that plus a 0 mask ensures 1047 * the compiler will optimise away reference to them. 1048 */ 1049#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1050#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1051#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1052#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1053#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1054 1055/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1056#ifdef NODE_NOT_IN_PAGE_FLAGS 1057#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1058#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1059 SECTIONS_PGOFF : ZONES_PGOFF) 1060#else 1061#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1062#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1063 NODES_PGOFF : ZONES_PGOFF) 1064#endif 1065 1066#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1067 1068#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1069#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1070#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1071#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1072#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1073#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1074 1075static inline enum zone_type page_zonenum(const struct page *page) 1076{ 1077 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1078 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1079} 1080 1081static inline enum zone_type folio_zonenum(const struct folio *folio) 1082{ 1083 return page_zonenum(&folio->page); 1084} 1085 1086#ifdef CONFIG_ZONE_DEVICE 1087static inline bool is_zone_device_page(const struct page *page) 1088{ 1089 return page_zonenum(page) == ZONE_DEVICE; 1090} 1091 1092/* 1093 * Consecutive zone device pages should not be merged into the same sgl 1094 * or bvec segment with other types of pages or if they belong to different 1095 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1096 * without scanning the entire segment. This helper returns true either if 1097 * both pages are not zone device pages or both pages are zone device pages 1098 * with the same pgmap. 1099 */ 1100static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1101 const struct page *b) 1102{ 1103 if (is_zone_device_page(a) != is_zone_device_page(b)) 1104 return false; 1105 if (!is_zone_device_page(a)) 1106 return true; 1107 return a->pgmap == b->pgmap; 1108} 1109 1110extern void memmap_init_zone_device(struct zone *, unsigned long, 1111 unsigned long, struct dev_pagemap *); 1112#else 1113static inline bool is_zone_device_page(const struct page *page) 1114{ 1115 return false; 1116} 1117static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1118 const struct page *b) 1119{ 1120 return true; 1121} 1122#endif 1123 1124static inline bool folio_is_zone_device(const struct folio *folio) 1125{ 1126 return is_zone_device_page(&folio->page); 1127} 1128 1129static inline bool is_zone_movable_page(const struct page *page) 1130{ 1131 return page_zonenum(page) == ZONE_MOVABLE; 1132} 1133#endif 1134 1135/* 1136 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1137 * intersection with the given zone 1138 */ 1139static inline bool zone_intersects(struct zone *zone, 1140 unsigned long start_pfn, unsigned long nr_pages) 1141{ 1142 if (zone_is_empty(zone)) 1143 return false; 1144 if (start_pfn >= zone_end_pfn(zone) || 1145 start_pfn + nr_pages <= zone->zone_start_pfn) 1146 return false; 1147 1148 return true; 1149} 1150 1151/* 1152 * The "priority" of VM scanning is how much of the queues we will scan in one 1153 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1154 * queues ("queue_length >> 12") during an aging round. 1155 */ 1156#define DEF_PRIORITY 12 1157 1158/* Maximum number of zones on a zonelist */ 1159#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1160 1161enum { 1162 ZONELIST_FALLBACK, /* zonelist with fallback */ 1163#ifdef CONFIG_NUMA 1164 /* 1165 * The NUMA zonelists are doubled because we need zonelists that 1166 * restrict the allocations to a single node for __GFP_THISNODE. 1167 */ 1168 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1169#endif 1170 MAX_ZONELISTS 1171}; 1172 1173/* 1174 * This struct contains information about a zone in a zonelist. It is stored 1175 * here to avoid dereferences into large structures and lookups of tables 1176 */ 1177struct zoneref { 1178 struct zone *zone; /* Pointer to actual zone */ 1179 int zone_idx; /* zone_idx(zoneref->zone) */ 1180}; 1181 1182/* 1183 * One allocation request operates on a zonelist. A zonelist 1184 * is a list of zones, the first one is the 'goal' of the 1185 * allocation, the other zones are fallback zones, in decreasing 1186 * priority. 1187 * 1188 * To speed the reading of the zonelist, the zonerefs contain the zone index 1189 * of the entry being read. Helper functions to access information given 1190 * a struct zoneref are 1191 * 1192 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1193 * zonelist_zone_idx() - Return the index of the zone for an entry 1194 * zonelist_node_idx() - Return the index of the node for an entry 1195 */ 1196struct zonelist { 1197 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1198}; 1199 1200/* 1201 * The array of struct pages for flatmem. 1202 * It must be declared for SPARSEMEM as well because there are configurations 1203 * that rely on that. 1204 */ 1205extern struct page *mem_map; 1206 1207#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1208struct deferred_split { 1209 spinlock_t split_queue_lock; 1210 struct list_head split_queue; 1211 unsigned long split_queue_len; 1212}; 1213#endif 1214 1215#ifdef CONFIG_MEMORY_FAILURE 1216/* 1217 * Per NUMA node memory failure handling statistics. 1218 */ 1219struct memory_failure_stats { 1220 /* 1221 * Number of raw pages poisoned. 1222 * Cases not accounted: memory outside kernel control, offline page, 1223 * arch-specific memory_failure (SGX), hwpoison_filter() filtered 1224 * error events, and unpoison actions from hwpoison_unpoison. 1225 */ 1226 unsigned long total; 1227 /* 1228 * Recovery results of poisoned raw pages handled by memory_failure, 1229 * in sync with mf_result. 1230 * total = ignored + failed + delayed + recovered. 1231 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. 1232 */ 1233 unsigned long ignored; 1234 unsigned long failed; 1235 unsigned long delayed; 1236 unsigned long recovered; 1237}; 1238#endif 1239 1240/* 1241 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1242 * it's memory layout. On UMA machines there is a single pglist_data which 1243 * describes the whole memory. 1244 * 1245 * Memory statistics and page replacement data structures are maintained on a 1246 * per-zone basis. 1247 */ 1248typedef struct pglist_data { 1249 /* 1250 * node_zones contains just the zones for THIS node. Not all of the 1251 * zones may be populated, but it is the full list. It is referenced by 1252 * this node's node_zonelists as well as other node's node_zonelists. 1253 */ 1254 struct zone node_zones[MAX_NR_ZONES]; 1255 1256 /* 1257 * node_zonelists contains references to all zones in all nodes. 1258 * Generally the first zones will be references to this node's 1259 * node_zones. 1260 */ 1261 struct zonelist node_zonelists[MAX_ZONELISTS]; 1262 1263 int nr_zones; /* number of populated zones in this node */ 1264#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1265 struct page *node_mem_map; 1266#ifdef CONFIG_PAGE_EXTENSION 1267 struct page_ext *node_page_ext; 1268#endif 1269#endif 1270#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1271 /* 1272 * Must be held any time you expect node_start_pfn, 1273 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1274 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1275 * init. 1276 * 1277 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1278 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1279 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1280 * 1281 * Nests above zone->lock and zone->span_seqlock 1282 */ 1283 spinlock_t node_size_lock; 1284#endif 1285 unsigned long node_start_pfn; 1286 unsigned long node_present_pages; /* total number of physical pages */ 1287 unsigned long node_spanned_pages; /* total size of physical page 1288 range, including holes */ 1289 int node_id; 1290 wait_queue_head_t kswapd_wait; 1291 wait_queue_head_t pfmemalloc_wait; 1292 1293 /* workqueues for throttling reclaim for different reasons. */ 1294 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1295 1296 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1297 unsigned long nr_reclaim_start; /* nr pages written while throttled 1298 * when throttling started. */ 1299#ifdef CONFIG_MEMORY_HOTPLUG 1300 struct mutex kswapd_lock; 1301#endif 1302 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1303 int kswapd_order; 1304 enum zone_type kswapd_highest_zoneidx; 1305 1306 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1307 1308#ifdef CONFIG_COMPACTION 1309 int kcompactd_max_order; 1310 enum zone_type kcompactd_highest_zoneidx; 1311 wait_queue_head_t kcompactd_wait; 1312 struct task_struct *kcompactd; 1313 bool proactive_compact_trigger; 1314#endif 1315 /* 1316 * This is a per-node reserve of pages that are not available 1317 * to userspace allocations. 1318 */ 1319 unsigned long totalreserve_pages; 1320 1321#ifdef CONFIG_NUMA 1322 /* 1323 * node reclaim becomes active if more unmapped pages exist. 1324 */ 1325 unsigned long min_unmapped_pages; 1326 unsigned long min_slab_pages; 1327#endif /* CONFIG_NUMA */ 1328 1329 /* Write-intensive fields used by page reclaim */ 1330 CACHELINE_PADDING(_pad1_); 1331 1332#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1333 /* 1334 * If memory initialisation on large machines is deferred then this 1335 * is the first PFN that needs to be initialised. 1336 */ 1337 unsigned long first_deferred_pfn; 1338#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1339 1340#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1341 struct deferred_split deferred_split_queue; 1342#endif 1343 1344#ifdef CONFIG_NUMA_BALANCING 1345 /* start time in ms of current promote rate limit period */ 1346 unsigned int nbp_rl_start; 1347 /* number of promote candidate pages at start time of current rate limit period */ 1348 unsigned long nbp_rl_nr_cand; 1349 /* promote threshold in ms */ 1350 unsigned int nbp_threshold; 1351 /* start time in ms of current promote threshold adjustment period */ 1352 unsigned int nbp_th_start; 1353 /* 1354 * number of promote candidate pages at start time of current promote 1355 * threshold adjustment period 1356 */ 1357 unsigned long nbp_th_nr_cand; 1358#endif 1359 /* Fields commonly accessed by the page reclaim scanner */ 1360 1361 /* 1362 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1363 * 1364 * Use mem_cgroup_lruvec() to look up lruvecs. 1365 */ 1366 struct lruvec __lruvec; 1367 1368 unsigned long flags; 1369 1370#ifdef CONFIG_LRU_GEN 1371 /* kswap mm walk data */ 1372 struct lru_gen_mm_walk mm_walk; 1373 /* lru_gen_folio list */ 1374 struct lru_gen_memcg memcg_lru; 1375#endif 1376 1377 CACHELINE_PADDING(_pad2_); 1378 1379 /* Per-node vmstats */ 1380 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1381 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1382#ifdef CONFIG_NUMA 1383 struct memory_tier __rcu *memtier; 1384#endif 1385#ifdef CONFIG_MEMORY_FAILURE 1386 struct memory_failure_stats mf_stats; 1387#endif 1388} pg_data_t; 1389 1390#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1391#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1392 1393#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1394#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1395 1396static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1397{ 1398 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1399} 1400 1401#include <linux/memory_hotplug.h> 1402 1403void build_all_zonelists(pg_data_t *pgdat); 1404void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1405 enum zone_type highest_zoneidx); 1406bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1407 int highest_zoneidx, unsigned int alloc_flags, 1408 long free_pages); 1409bool zone_watermark_ok(struct zone *z, unsigned int order, 1410 unsigned long mark, int highest_zoneidx, 1411 unsigned int alloc_flags); 1412bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1413 unsigned long mark, int highest_zoneidx); 1414/* 1415 * Memory initialization context, use to differentiate memory added by 1416 * the platform statically or via memory hotplug interface. 1417 */ 1418enum meminit_context { 1419 MEMINIT_EARLY, 1420 MEMINIT_HOTPLUG, 1421}; 1422 1423extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1424 unsigned long size); 1425 1426extern void lruvec_init(struct lruvec *lruvec); 1427 1428static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1429{ 1430#ifdef CONFIG_MEMCG 1431 return lruvec->pgdat; 1432#else 1433 return container_of(lruvec, struct pglist_data, __lruvec); 1434#endif 1435} 1436 1437#ifdef CONFIG_HAVE_MEMORYLESS_NODES 1438int local_memory_node(int node_id); 1439#else 1440static inline int local_memory_node(int node_id) { return node_id; }; 1441#endif 1442 1443/* 1444 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1445 */ 1446#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1447 1448#ifdef CONFIG_ZONE_DEVICE 1449static inline bool zone_is_zone_device(struct zone *zone) 1450{ 1451 return zone_idx(zone) == ZONE_DEVICE; 1452} 1453#else 1454static inline bool zone_is_zone_device(struct zone *zone) 1455{ 1456 return false; 1457} 1458#endif 1459 1460/* 1461 * Returns true if a zone has pages managed by the buddy allocator. 1462 * All the reclaim decisions have to use this function rather than 1463 * populated_zone(). If the whole zone is reserved then we can easily 1464 * end up with populated_zone() && !managed_zone(). 1465 */ 1466static inline bool managed_zone(struct zone *zone) 1467{ 1468 return zone_managed_pages(zone); 1469} 1470 1471/* Returns true if a zone has memory */ 1472static inline bool populated_zone(struct zone *zone) 1473{ 1474 return zone->present_pages; 1475} 1476 1477#ifdef CONFIG_NUMA 1478static inline int zone_to_nid(struct zone *zone) 1479{ 1480 return zone->node; 1481} 1482 1483static inline void zone_set_nid(struct zone *zone, int nid) 1484{ 1485 zone->node = nid; 1486} 1487#else 1488static inline int zone_to_nid(struct zone *zone) 1489{ 1490 return 0; 1491} 1492 1493static inline void zone_set_nid(struct zone *zone, int nid) {} 1494#endif 1495 1496extern int movable_zone; 1497 1498static inline int is_highmem_idx(enum zone_type idx) 1499{ 1500#ifdef CONFIG_HIGHMEM 1501 return (idx == ZONE_HIGHMEM || 1502 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1503#else 1504 return 0; 1505#endif 1506} 1507 1508/** 1509 * is_highmem - helper function to quickly check if a struct zone is a 1510 * highmem zone or not. This is an attempt to keep references 1511 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1512 * @zone: pointer to struct zone variable 1513 * Return: 1 for a highmem zone, 0 otherwise 1514 */ 1515static inline int is_highmem(struct zone *zone) 1516{ 1517 return is_highmem_idx(zone_idx(zone)); 1518} 1519 1520#ifdef CONFIG_ZONE_DMA 1521bool has_managed_dma(void); 1522#else 1523static inline bool has_managed_dma(void) 1524{ 1525 return false; 1526} 1527#endif 1528 1529/* These two functions are used to setup the per zone pages min values */ 1530struct ctl_table; 1531 1532int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, 1533 loff_t *); 1534int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, 1535 size_t *, loff_t *); 1536extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 1537int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, 1538 size_t *, loff_t *); 1539int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int, 1540 void *, size_t *, loff_t *); 1541int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 1542 void *, size_t *, loff_t *); 1543int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 1544 void *, size_t *, loff_t *); 1545int numa_zonelist_order_handler(struct ctl_table *, int, 1546 void *, size_t *, loff_t *); 1547extern int percpu_pagelist_high_fraction; 1548extern char numa_zonelist_order[]; 1549#define NUMA_ZONELIST_ORDER_LEN 16 1550 1551#ifndef CONFIG_NUMA 1552 1553extern struct pglist_data contig_page_data; 1554static inline struct pglist_data *NODE_DATA(int nid) 1555{ 1556 return &contig_page_data; 1557} 1558 1559#else /* CONFIG_NUMA */ 1560 1561#include <asm/mmzone.h> 1562 1563#endif /* !CONFIG_NUMA */ 1564 1565extern struct pglist_data *first_online_pgdat(void); 1566extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1567extern struct zone *next_zone(struct zone *zone); 1568 1569/** 1570 * for_each_online_pgdat - helper macro to iterate over all online nodes 1571 * @pgdat: pointer to a pg_data_t variable 1572 */ 1573#define for_each_online_pgdat(pgdat) \ 1574 for (pgdat = first_online_pgdat(); \ 1575 pgdat; \ 1576 pgdat = next_online_pgdat(pgdat)) 1577/** 1578 * for_each_zone - helper macro to iterate over all memory zones 1579 * @zone: pointer to struct zone variable 1580 * 1581 * The user only needs to declare the zone variable, for_each_zone 1582 * fills it in. 1583 */ 1584#define for_each_zone(zone) \ 1585 for (zone = (first_online_pgdat())->node_zones; \ 1586 zone; \ 1587 zone = next_zone(zone)) 1588 1589#define for_each_populated_zone(zone) \ 1590 for (zone = (first_online_pgdat())->node_zones; \ 1591 zone; \ 1592 zone = next_zone(zone)) \ 1593 if (!populated_zone(zone)) \ 1594 ; /* do nothing */ \ 1595 else 1596 1597static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1598{ 1599 return zoneref->zone; 1600} 1601 1602static inline int zonelist_zone_idx(struct zoneref *zoneref) 1603{ 1604 return zoneref->zone_idx; 1605} 1606 1607static inline int zonelist_node_idx(struct zoneref *zoneref) 1608{ 1609 return zone_to_nid(zoneref->zone); 1610} 1611 1612struct zoneref *__next_zones_zonelist(struct zoneref *z, 1613 enum zone_type highest_zoneidx, 1614 nodemask_t *nodes); 1615 1616/** 1617 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1618 * @z: The cursor used as a starting point for the search 1619 * @highest_zoneidx: The zone index of the highest zone to return 1620 * @nodes: An optional nodemask to filter the zonelist with 1621 * 1622 * This function returns the next zone at or below a given zone index that is 1623 * within the allowed nodemask using a cursor as the starting point for the 1624 * search. The zoneref returned is a cursor that represents the current zone 1625 * being examined. It should be advanced by one before calling 1626 * next_zones_zonelist again. 1627 * 1628 * Return: the next zone at or below highest_zoneidx within the allowed 1629 * nodemask using a cursor within a zonelist as a starting point 1630 */ 1631static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1632 enum zone_type highest_zoneidx, 1633 nodemask_t *nodes) 1634{ 1635 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1636 return z; 1637 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1638} 1639 1640/** 1641 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1642 * @zonelist: The zonelist to search for a suitable zone 1643 * @highest_zoneidx: The zone index of the highest zone to return 1644 * @nodes: An optional nodemask to filter the zonelist with 1645 * 1646 * This function returns the first zone at or below a given zone index that is 1647 * within the allowed nodemask. The zoneref returned is a cursor that can be 1648 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1649 * one before calling. 1650 * 1651 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1652 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1653 * update due to cpuset modification. 1654 * 1655 * Return: Zoneref pointer for the first suitable zone found 1656 */ 1657static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1658 enum zone_type highest_zoneidx, 1659 nodemask_t *nodes) 1660{ 1661 return next_zones_zonelist(zonelist->_zonerefs, 1662 highest_zoneidx, nodes); 1663} 1664 1665/** 1666 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1667 * @zone: The current zone in the iterator 1668 * @z: The current pointer within zonelist->_zonerefs being iterated 1669 * @zlist: The zonelist being iterated 1670 * @highidx: The zone index of the highest zone to return 1671 * @nodemask: Nodemask allowed by the allocator 1672 * 1673 * This iterator iterates though all zones at or below a given zone index and 1674 * within a given nodemask 1675 */ 1676#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1677 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1678 zone; \ 1679 z = next_zones_zonelist(++z, highidx, nodemask), \ 1680 zone = zonelist_zone(z)) 1681 1682#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1683 for (zone = z->zone; \ 1684 zone; \ 1685 z = next_zones_zonelist(++z, highidx, nodemask), \ 1686 zone = zonelist_zone(z)) 1687 1688 1689/** 1690 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1691 * @zone: The current zone in the iterator 1692 * @z: The current pointer within zonelist->zones being iterated 1693 * @zlist: The zonelist being iterated 1694 * @highidx: The zone index of the highest zone to return 1695 * 1696 * This iterator iterates though all zones at or below a given zone index. 1697 */ 1698#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1699 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1700 1701/* Whether the 'nodes' are all movable nodes */ 1702static inline bool movable_only_nodes(nodemask_t *nodes) 1703{ 1704 struct zonelist *zonelist; 1705 struct zoneref *z; 1706 int nid; 1707 1708 if (nodes_empty(*nodes)) 1709 return false; 1710 1711 /* 1712 * We can chose arbitrary node from the nodemask to get a 1713 * zonelist as they are interlinked. We just need to find 1714 * at least one zone that can satisfy kernel allocations. 1715 */ 1716 nid = first_node(*nodes); 1717 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1718 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1719 return (!z->zone) ? true : false; 1720} 1721 1722 1723#ifdef CONFIG_SPARSEMEM 1724#include <asm/sparsemem.h> 1725#endif 1726 1727#ifdef CONFIG_FLATMEM 1728#define pfn_to_nid(pfn) (0) 1729#endif 1730 1731#ifdef CONFIG_SPARSEMEM 1732 1733/* 1734 * PA_SECTION_SHIFT physical address to/from section number 1735 * PFN_SECTION_SHIFT pfn to/from section number 1736 */ 1737#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1738#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1739 1740#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1741 1742#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1743#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1744 1745#define SECTION_BLOCKFLAGS_BITS \ 1746 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1747 1748#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1749#error Allocator MAX_ORDER exceeds SECTION_SIZE 1750#endif 1751 1752static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1753{ 1754 return pfn >> PFN_SECTION_SHIFT; 1755} 1756static inline unsigned long section_nr_to_pfn(unsigned long sec) 1757{ 1758 return sec << PFN_SECTION_SHIFT; 1759} 1760 1761#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1762#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1763 1764#define SUBSECTION_SHIFT 21 1765#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1766 1767#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1768#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1769#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1770 1771#if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1772#error Subsection size exceeds section size 1773#else 1774#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1775#endif 1776 1777#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1778#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1779 1780struct mem_section_usage { 1781#ifdef CONFIG_SPARSEMEM_VMEMMAP 1782 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1783#endif 1784 /* See declaration of similar field in struct zone */ 1785 unsigned long pageblock_flags[0]; 1786}; 1787 1788void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1789 1790struct page; 1791struct page_ext; 1792struct mem_section { 1793 /* 1794 * This is, logically, a pointer to an array of struct 1795 * pages. However, it is stored with some other magic. 1796 * (see sparse.c::sparse_init_one_section()) 1797 * 1798 * Additionally during early boot we encode node id of 1799 * the location of the section here to guide allocation. 1800 * (see sparse.c::memory_present()) 1801 * 1802 * Making it a UL at least makes someone do a cast 1803 * before using it wrong. 1804 */ 1805 unsigned long section_mem_map; 1806 1807 struct mem_section_usage *usage; 1808#ifdef CONFIG_PAGE_EXTENSION 1809 /* 1810 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1811 * section. (see page_ext.h about this.) 1812 */ 1813 struct page_ext *page_ext; 1814 unsigned long pad; 1815#endif 1816 /* 1817 * WARNING: mem_section must be a power-of-2 in size for the 1818 * calculation and use of SECTION_ROOT_MASK to make sense. 1819 */ 1820}; 1821 1822#ifdef CONFIG_SPARSEMEM_EXTREME 1823#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1824#else 1825#define SECTIONS_PER_ROOT 1 1826#endif 1827 1828#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1829#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1830#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1831 1832#ifdef CONFIG_SPARSEMEM_EXTREME 1833extern struct mem_section **mem_section; 1834#else 1835extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1836#endif 1837 1838static inline unsigned long *section_to_usemap(struct mem_section *ms) 1839{ 1840 return ms->usage->pageblock_flags; 1841} 1842 1843static inline struct mem_section *__nr_to_section(unsigned long nr) 1844{ 1845 unsigned long root = SECTION_NR_TO_ROOT(nr); 1846 1847 if (unlikely(root >= NR_SECTION_ROOTS)) 1848 return NULL; 1849 1850#ifdef CONFIG_SPARSEMEM_EXTREME 1851 if (!mem_section || !mem_section[root]) 1852 return NULL; 1853#endif 1854 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1855} 1856extern size_t mem_section_usage_size(void); 1857 1858/* 1859 * We use the lower bits of the mem_map pointer to store 1860 * a little bit of information. The pointer is calculated 1861 * as mem_map - section_nr_to_pfn(pnum). The result is 1862 * aligned to the minimum alignment of the two values: 1863 * 1. All mem_map arrays are page-aligned. 1864 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1865 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1866 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1867 * worst combination is powerpc with 256k pages, 1868 * which results in PFN_SECTION_SHIFT equal 6. 1869 * To sum it up, at least 6 bits are available on all architectures. 1870 * However, we can exceed 6 bits on some other architectures except 1871 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1872 * with the worst case of 64K pages on arm64) if we make sure the 1873 * exceeded bit is not applicable to powerpc. 1874 */ 1875enum { 1876 SECTION_MARKED_PRESENT_BIT, 1877 SECTION_HAS_MEM_MAP_BIT, 1878 SECTION_IS_ONLINE_BIT, 1879 SECTION_IS_EARLY_BIT, 1880#ifdef CONFIG_ZONE_DEVICE 1881 SECTION_TAINT_ZONE_DEVICE_BIT, 1882#endif 1883 SECTION_MAP_LAST_BIT, 1884}; 1885 1886#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1887#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1888#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1889#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1890#ifdef CONFIG_ZONE_DEVICE 1891#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1892#endif 1893#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1894#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1895 1896static inline struct page *__section_mem_map_addr(struct mem_section *section) 1897{ 1898 unsigned long map = section->section_mem_map; 1899 map &= SECTION_MAP_MASK; 1900 return (struct page *)map; 1901} 1902 1903static inline int present_section(struct mem_section *section) 1904{ 1905 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1906} 1907 1908static inline int present_section_nr(unsigned long nr) 1909{ 1910 return present_section(__nr_to_section(nr)); 1911} 1912 1913static inline int valid_section(struct mem_section *section) 1914{ 1915 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1916} 1917 1918static inline int early_section(struct mem_section *section) 1919{ 1920 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1921} 1922 1923static inline int valid_section_nr(unsigned long nr) 1924{ 1925 return valid_section(__nr_to_section(nr)); 1926} 1927 1928static inline int online_section(struct mem_section *section) 1929{ 1930 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1931} 1932 1933#ifdef CONFIG_ZONE_DEVICE 1934static inline int online_device_section(struct mem_section *section) 1935{ 1936 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1937 1938 return section && ((section->section_mem_map & flags) == flags); 1939} 1940#else 1941static inline int online_device_section(struct mem_section *section) 1942{ 1943 return 0; 1944} 1945#endif 1946 1947static inline int online_section_nr(unsigned long nr) 1948{ 1949 return online_section(__nr_to_section(nr)); 1950} 1951 1952#ifdef CONFIG_MEMORY_HOTPLUG 1953void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1954void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1955#endif 1956 1957static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1958{ 1959 return __nr_to_section(pfn_to_section_nr(pfn)); 1960} 1961 1962extern unsigned long __highest_present_section_nr; 1963 1964static inline int subsection_map_index(unsigned long pfn) 1965{ 1966 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1967} 1968 1969#ifdef CONFIG_SPARSEMEM_VMEMMAP 1970static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1971{ 1972 int idx = subsection_map_index(pfn); 1973 1974 return test_bit(idx, ms->usage->subsection_map); 1975} 1976#else 1977static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1978{ 1979 return 1; 1980} 1981#endif 1982 1983#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1984/** 1985 * pfn_valid - check if there is a valid memory map entry for a PFN 1986 * @pfn: the page frame number to check 1987 * 1988 * Check if there is a valid memory map entry aka struct page for the @pfn. 1989 * Note, that availability of the memory map entry does not imply that 1990 * there is actual usable memory at that @pfn. The struct page may 1991 * represent a hole or an unusable page frame. 1992 * 1993 * Return: 1 for PFNs that have memory map entries and 0 otherwise 1994 */ 1995static inline int pfn_valid(unsigned long pfn) 1996{ 1997 struct mem_section *ms; 1998 1999 /* 2000 * Ensure the upper PAGE_SHIFT bits are clear in the 2001 * pfn. Else it might lead to false positives when 2002 * some of the upper bits are set, but the lower bits 2003 * match a valid pfn. 2004 */ 2005 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 2006 return 0; 2007 2008 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2009 return 0; 2010 ms = __pfn_to_section(pfn); 2011 if (!valid_section(ms)) 2012 return 0; 2013 /* 2014 * Traditionally early sections always returned pfn_valid() for 2015 * the entire section-sized span. 2016 */ 2017 return early_section(ms) || pfn_section_valid(ms, pfn); 2018} 2019#endif 2020 2021static inline int pfn_in_present_section(unsigned long pfn) 2022{ 2023 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2024 return 0; 2025 return present_section(__pfn_to_section(pfn)); 2026} 2027 2028static inline unsigned long next_present_section_nr(unsigned long section_nr) 2029{ 2030 while (++section_nr <= __highest_present_section_nr) { 2031 if (present_section_nr(section_nr)) 2032 return section_nr; 2033 } 2034 2035 return -1; 2036} 2037 2038/* 2039 * These are _only_ used during initialisation, therefore they 2040 * can use __initdata ... They could have names to indicate 2041 * this restriction. 2042 */ 2043#ifdef CONFIG_NUMA 2044#define pfn_to_nid(pfn) \ 2045({ \ 2046 unsigned long __pfn_to_nid_pfn = (pfn); \ 2047 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2048}) 2049#else 2050#define pfn_to_nid(pfn) (0) 2051#endif 2052 2053void sparse_init(void); 2054#else 2055#define sparse_init() do {} while (0) 2056#define sparse_index_init(_sec, _nid) do {} while (0) 2057#define pfn_in_present_section pfn_valid 2058#define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2059#endif /* CONFIG_SPARSEMEM */ 2060 2061#endif /* !__GENERATING_BOUNDS.H */ 2062#endif /* !__ASSEMBLY__ */ 2063#endif /* _LINUX_MMZONE_H */