at v6.3 749 lines 25 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMU_NOTIFIER_H 3#define _LINUX_MMU_NOTIFIER_H 4 5#include <linux/list.h> 6#include <linux/spinlock.h> 7#include <linux/mm_types.h> 8#include <linux/mmap_lock.h> 9#include <linux/srcu.h> 10#include <linux/interval_tree.h> 11 12struct mmu_notifier_subscriptions; 13struct mmu_notifier; 14struct mmu_notifier_range; 15struct mmu_interval_notifier; 16 17/** 18 * enum mmu_notifier_event - reason for the mmu notifier callback 19 * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that 20 * move the range 21 * 22 * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like 23 * madvise() or replacing a page by another one, ...). 24 * 25 * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range 26 * ie using the vma access permission (vm_page_prot) to update the whole range 27 * is enough no need to inspect changes to the CPU page table (mprotect() 28 * syscall) 29 * 30 * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for 31 * pages in the range so to mirror those changes the user must inspect the CPU 32 * page table (from the end callback). 33 * 34 * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same 35 * access flags). User should soft dirty the page in the end callback to make 36 * sure that anyone relying on soft dirtiness catch pages that might be written 37 * through non CPU mappings. 38 * 39 * @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal 40 * that the mm refcount is zero and the range is no longer accessible. 41 * 42 * @MMU_NOTIFY_MIGRATE: used during migrate_vma_collect() invalidate to signal 43 * a device driver to possibly ignore the invalidation if the 44 * owner field matches the driver's device private pgmap owner. 45 * 46 * @MMU_NOTIFY_EXCLUSIVE: to signal a device driver that the device will no 47 * longer have exclusive access to the page. When sent during creation of an 48 * exclusive range the owner will be initialised to the value provided by the 49 * caller of make_device_exclusive_range(), otherwise the owner will be NULL. 50 */ 51enum mmu_notifier_event { 52 MMU_NOTIFY_UNMAP = 0, 53 MMU_NOTIFY_CLEAR, 54 MMU_NOTIFY_PROTECTION_VMA, 55 MMU_NOTIFY_PROTECTION_PAGE, 56 MMU_NOTIFY_SOFT_DIRTY, 57 MMU_NOTIFY_RELEASE, 58 MMU_NOTIFY_MIGRATE, 59 MMU_NOTIFY_EXCLUSIVE, 60}; 61 62#define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0) 63 64struct mmu_notifier_ops { 65 /* 66 * Called either by mmu_notifier_unregister or when the mm is 67 * being destroyed by exit_mmap, always before all pages are 68 * freed. This can run concurrently with other mmu notifier 69 * methods (the ones invoked outside the mm context) and it 70 * should tear down all secondary mmu mappings and freeze the 71 * secondary mmu. If this method isn't implemented you've to 72 * be sure that nothing could possibly write to the pages 73 * through the secondary mmu by the time the last thread with 74 * tsk->mm == mm exits. 75 * 76 * As side note: the pages freed after ->release returns could 77 * be immediately reallocated by the gart at an alias physical 78 * address with a different cache model, so if ->release isn't 79 * implemented because all _software_ driven memory accesses 80 * through the secondary mmu are terminated by the time the 81 * last thread of this mm quits, you've also to be sure that 82 * speculative _hardware_ operations can't allocate dirty 83 * cachelines in the cpu that could not be snooped and made 84 * coherent with the other read and write operations happening 85 * through the gart alias address, so leading to memory 86 * corruption. 87 */ 88 void (*release)(struct mmu_notifier *subscription, 89 struct mm_struct *mm); 90 91 /* 92 * clear_flush_young is called after the VM is 93 * test-and-clearing the young/accessed bitflag in the 94 * pte. This way the VM will provide proper aging to the 95 * accesses to the page through the secondary MMUs and not 96 * only to the ones through the Linux pte. 97 * Start-end is necessary in case the secondary MMU is mapping the page 98 * at a smaller granularity than the primary MMU. 99 */ 100 int (*clear_flush_young)(struct mmu_notifier *subscription, 101 struct mm_struct *mm, 102 unsigned long start, 103 unsigned long end); 104 105 /* 106 * clear_young is a lightweight version of clear_flush_young. Like the 107 * latter, it is supposed to test-and-clear the young/accessed bitflag 108 * in the secondary pte, but it may omit flushing the secondary tlb. 109 */ 110 int (*clear_young)(struct mmu_notifier *subscription, 111 struct mm_struct *mm, 112 unsigned long start, 113 unsigned long end); 114 115 /* 116 * test_young is called to check the young/accessed bitflag in 117 * the secondary pte. This is used to know if the page is 118 * frequently used without actually clearing the flag or tearing 119 * down the secondary mapping on the page. 120 */ 121 int (*test_young)(struct mmu_notifier *subscription, 122 struct mm_struct *mm, 123 unsigned long address); 124 125 /* 126 * change_pte is called in cases that pte mapping to page is changed: 127 * for example, when ksm remaps pte to point to a new shared page. 128 */ 129 void (*change_pte)(struct mmu_notifier *subscription, 130 struct mm_struct *mm, 131 unsigned long address, 132 pte_t pte); 133 134 /* 135 * invalidate_range_start() and invalidate_range_end() must be 136 * paired and are called only when the mmap_lock and/or the 137 * locks protecting the reverse maps are held. If the subsystem 138 * can't guarantee that no additional references are taken to 139 * the pages in the range, it has to implement the 140 * invalidate_range() notifier to remove any references taken 141 * after invalidate_range_start(). 142 * 143 * Invalidation of multiple concurrent ranges may be 144 * optionally permitted by the driver. Either way the 145 * establishment of sptes is forbidden in the range passed to 146 * invalidate_range_begin/end for the whole duration of the 147 * invalidate_range_begin/end critical section. 148 * 149 * invalidate_range_start() is called when all pages in the 150 * range are still mapped and have at least a refcount of one. 151 * 152 * invalidate_range_end() is called when all pages in the 153 * range have been unmapped and the pages have been freed by 154 * the VM. 155 * 156 * The VM will remove the page table entries and potentially 157 * the page between invalidate_range_start() and 158 * invalidate_range_end(). If the page must not be freed 159 * because of pending I/O or other circumstances then the 160 * invalidate_range_start() callback (or the initial mapping 161 * by the driver) must make sure that the refcount is kept 162 * elevated. 163 * 164 * If the driver increases the refcount when the pages are 165 * initially mapped into an address space then either 166 * invalidate_range_start() or invalidate_range_end() may 167 * decrease the refcount. If the refcount is decreased on 168 * invalidate_range_start() then the VM can free pages as page 169 * table entries are removed. If the refcount is only 170 * dropped on invalidate_range_end() then the driver itself 171 * will drop the last refcount but it must take care to flush 172 * any secondary tlb before doing the final free on the 173 * page. Pages will no longer be referenced by the linux 174 * address space but may still be referenced by sptes until 175 * the last refcount is dropped. 176 * 177 * If blockable argument is set to false then the callback cannot 178 * sleep and has to return with -EAGAIN if sleeping would be required. 179 * 0 should be returned otherwise. Please note that notifiers that can 180 * fail invalidate_range_start are not allowed to implement 181 * invalidate_range_end, as there is no mechanism for informing the 182 * notifier that its start failed. 183 */ 184 int (*invalidate_range_start)(struct mmu_notifier *subscription, 185 const struct mmu_notifier_range *range); 186 void (*invalidate_range_end)(struct mmu_notifier *subscription, 187 const struct mmu_notifier_range *range); 188 189 /* 190 * invalidate_range() is either called between 191 * invalidate_range_start() and invalidate_range_end() when the 192 * VM has to free pages that where unmapped, but before the 193 * pages are actually freed, or outside of _start()/_end() when 194 * a (remote) TLB is necessary. 195 * 196 * If invalidate_range() is used to manage a non-CPU TLB with 197 * shared page-tables, it not necessary to implement the 198 * invalidate_range_start()/end() notifiers, as 199 * invalidate_range() already catches the points in time when an 200 * external TLB range needs to be flushed. For more in depth 201 * discussion on this see Documentation/mm/mmu_notifier.rst 202 * 203 * Note that this function might be called with just a sub-range 204 * of what was passed to invalidate_range_start()/end(), if 205 * called between those functions. 206 */ 207 void (*invalidate_range)(struct mmu_notifier *subscription, 208 struct mm_struct *mm, 209 unsigned long start, 210 unsigned long end); 211 212 /* 213 * These callbacks are used with the get/put interface to manage the 214 * lifetime of the mmu_notifier memory. alloc_notifier() returns a new 215 * notifier for use with the mm. 216 * 217 * free_notifier() is only called after the mmu_notifier has been 218 * fully put, calls to any ops callback are prevented and no ops 219 * callbacks are currently running. It is called from a SRCU callback 220 * and cannot sleep. 221 */ 222 struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm); 223 void (*free_notifier)(struct mmu_notifier *subscription); 224}; 225 226/* 227 * The notifier chains are protected by mmap_lock and/or the reverse map 228 * semaphores. Notifier chains are only changed when all reverse maps and 229 * the mmap_lock locks are taken. 230 * 231 * Therefore notifier chains can only be traversed when either 232 * 233 * 1. mmap_lock is held. 234 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem). 235 * 3. No other concurrent thread can access the list (release) 236 */ 237struct mmu_notifier { 238 struct hlist_node hlist; 239 const struct mmu_notifier_ops *ops; 240 struct mm_struct *mm; 241 struct rcu_head rcu; 242 unsigned int users; 243}; 244 245/** 246 * struct mmu_interval_notifier_ops 247 * @invalidate: Upon return the caller must stop using any SPTEs within this 248 * range. This function can sleep. Return false only if sleeping 249 * was required but mmu_notifier_range_blockable(range) is false. 250 */ 251struct mmu_interval_notifier_ops { 252 bool (*invalidate)(struct mmu_interval_notifier *interval_sub, 253 const struct mmu_notifier_range *range, 254 unsigned long cur_seq); 255}; 256 257struct mmu_interval_notifier { 258 struct interval_tree_node interval_tree; 259 const struct mmu_interval_notifier_ops *ops; 260 struct mm_struct *mm; 261 struct hlist_node deferred_item; 262 unsigned long invalidate_seq; 263}; 264 265#ifdef CONFIG_MMU_NOTIFIER 266 267#ifdef CONFIG_LOCKDEP 268extern struct lockdep_map __mmu_notifier_invalidate_range_start_map; 269#endif 270 271struct mmu_notifier_range { 272 struct mm_struct *mm; 273 unsigned long start; 274 unsigned long end; 275 unsigned flags; 276 enum mmu_notifier_event event; 277 void *owner; 278}; 279 280static inline int mm_has_notifiers(struct mm_struct *mm) 281{ 282 return unlikely(mm->notifier_subscriptions); 283} 284 285struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops, 286 struct mm_struct *mm); 287static inline struct mmu_notifier * 288mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm) 289{ 290 struct mmu_notifier *ret; 291 292 mmap_write_lock(mm); 293 ret = mmu_notifier_get_locked(ops, mm); 294 mmap_write_unlock(mm); 295 return ret; 296} 297void mmu_notifier_put(struct mmu_notifier *subscription); 298void mmu_notifier_synchronize(void); 299 300extern int mmu_notifier_register(struct mmu_notifier *subscription, 301 struct mm_struct *mm); 302extern int __mmu_notifier_register(struct mmu_notifier *subscription, 303 struct mm_struct *mm); 304extern void mmu_notifier_unregister(struct mmu_notifier *subscription, 305 struct mm_struct *mm); 306 307unsigned long 308mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub); 309int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub, 310 struct mm_struct *mm, unsigned long start, 311 unsigned long length, 312 const struct mmu_interval_notifier_ops *ops); 313int mmu_interval_notifier_insert_locked( 314 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm, 315 unsigned long start, unsigned long length, 316 const struct mmu_interval_notifier_ops *ops); 317void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub); 318 319/** 320 * mmu_interval_set_seq - Save the invalidation sequence 321 * @interval_sub - The subscription passed to invalidate 322 * @cur_seq - The cur_seq passed to the invalidate() callback 323 * 324 * This must be called unconditionally from the invalidate callback of a 325 * struct mmu_interval_notifier_ops under the same lock that is used to call 326 * mmu_interval_read_retry(). It updates the sequence number for later use by 327 * mmu_interval_read_retry(). The provided cur_seq will always be odd. 328 * 329 * If the caller does not call mmu_interval_read_begin() or 330 * mmu_interval_read_retry() then this call is not required. 331 */ 332static inline void 333mmu_interval_set_seq(struct mmu_interval_notifier *interval_sub, 334 unsigned long cur_seq) 335{ 336 WRITE_ONCE(interval_sub->invalidate_seq, cur_seq); 337} 338 339/** 340 * mmu_interval_read_retry - End a read side critical section against a VA range 341 * interval_sub: The subscription 342 * seq: The return of the paired mmu_interval_read_begin() 343 * 344 * This MUST be called under a user provided lock that is also held 345 * unconditionally by op->invalidate() when it calls mmu_interval_set_seq(). 346 * 347 * Each call should be paired with a single mmu_interval_read_begin() and 348 * should be used to conclude the read side. 349 * 350 * Returns true if an invalidation collided with this critical section, and 351 * the caller should retry. 352 */ 353static inline bool 354mmu_interval_read_retry(struct mmu_interval_notifier *interval_sub, 355 unsigned long seq) 356{ 357 return interval_sub->invalidate_seq != seq; 358} 359 360/** 361 * mmu_interval_check_retry - Test if a collision has occurred 362 * interval_sub: The subscription 363 * seq: The return of the matching mmu_interval_read_begin() 364 * 365 * This can be used in the critical section between mmu_interval_read_begin() 366 * and mmu_interval_read_retry(). A return of true indicates an invalidation 367 * has collided with this critical region and a future 368 * mmu_interval_read_retry() will return true. 369 * 370 * False is not reliable and only suggests a collision may not have 371 * occurred. It can be called many times and does not have to hold the user 372 * provided lock. 373 * 374 * This call can be used as part of loops and other expensive operations to 375 * expedite a retry. 376 */ 377static inline bool 378mmu_interval_check_retry(struct mmu_interval_notifier *interval_sub, 379 unsigned long seq) 380{ 381 /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */ 382 return READ_ONCE(interval_sub->invalidate_seq) != seq; 383} 384 385extern void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm); 386extern void __mmu_notifier_release(struct mm_struct *mm); 387extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm, 388 unsigned long start, 389 unsigned long end); 390extern int __mmu_notifier_clear_young(struct mm_struct *mm, 391 unsigned long start, 392 unsigned long end); 393extern int __mmu_notifier_test_young(struct mm_struct *mm, 394 unsigned long address); 395extern void __mmu_notifier_change_pte(struct mm_struct *mm, 396 unsigned long address, pte_t pte); 397extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r); 398extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r, 399 bool only_end); 400extern void __mmu_notifier_invalidate_range(struct mm_struct *mm, 401 unsigned long start, unsigned long end); 402extern bool 403mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range); 404 405static inline bool 406mmu_notifier_range_blockable(const struct mmu_notifier_range *range) 407{ 408 return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE); 409} 410 411static inline void mmu_notifier_release(struct mm_struct *mm) 412{ 413 if (mm_has_notifiers(mm)) 414 __mmu_notifier_release(mm); 415} 416 417static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, 418 unsigned long start, 419 unsigned long end) 420{ 421 if (mm_has_notifiers(mm)) 422 return __mmu_notifier_clear_flush_young(mm, start, end); 423 return 0; 424} 425 426static inline int mmu_notifier_clear_young(struct mm_struct *mm, 427 unsigned long start, 428 unsigned long end) 429{ 430 if (mm_has_notifiers(mm)) 431 return __mmu_notifier_clear_young(mm, start, end); 432 return 0; 433} 434 435static inline int mmu_notifier_test_young(struct mm_struct *mm, 436 unsigned long address) 437{ 438 if (mm_has_notifiers(mm)) 439 return __mmu_notifier_test_young(mm, address); 440 return 0; 441} 442 443static inline void mmu_notifier_change_pte(struct mm_struct *mm, 444 unsigned long address, pte_t pte) 445{ 446 if (mm_has_notifiers(mm)) 447 __mmu_notifier_change_pte(mm, address, pte); 448} 449 450static inline void 451mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 452{ 453 might_sleep(); 454 455 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 456 if (mm_has_notifiers(range->mm)) { 457 range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE; 458 __mmu_notifier_invalidate_range_start(range); 459 } 460 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 461} 462 463static inline int 464mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) 465{ 466 int ret = 0; 467 468 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 469 if (mm_has_notifiers(range->mm)) { 470 range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE; 471 ret = __mmu_notifier_invalidate_range_start(range); 472 } 473 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 474 return ret; 475} 476 477static inline void 478mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) 479{ 480 if (mmu_notifier_range_blockable(range)) 481 might_sleep(); 482 483 if (mm_has_notifiers(range->mm)) 484 __mmu_notifier_invalidate_range_end(range, false); 485} 486 487static inline void 488mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) 489{ 490 if (mm_has_notifiers(range->mm)) 491 __mmu_notifier_invalidate_range_end(range, true); 492} 493 494static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, 495 unsigned long start, unsigned long end) 496{ 497 if (mm_has_notifiers(mm)) 498 __mmu_notifier_invalidate_range(mm, start, end); 499} 500 501static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm) 502{ 503 mm->notifier_subscriptions = NULL; 504} 505 506static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm) 507{ 508 if (mm_has_notifiers(mm)) 509 __mmu_notifier_subscriptions_destroy(mm); 510} 511 512 513static inline void mmu_notifier_range_init(struct mmu_notifier_range *range, 514 enum mmu_notifier_event event, 515 unsigned flags, 516 struct mm_struct *mm, 517 unsigned long start, 518 unsigned long end) 519{ 520 range->event = event; 521 range->mm = mm; 522 range->start = start; 523 range->end = end; 524 range->flags = flags; 525} 526 527static inline void mmu_notifier_range_init_owner( 528 struct mmu_notifier_range *range, 529 enum mmu_notifier_event event, unsigned int flags, 530 struct mm_struct *mm, unsigned long start, 531 unsigned long end, void *owner) 532{ 533 mmu_notifier_range_init(range, event, flags, mm, start, end); 534 range->owner = owner; 535} 536 537#define ptep_clear_flush_young_notify(__vma, __address, __ptep) \ 538({ \ 539 int __young; \ 540 struct vm_area_struct *___vma = __vma; \ 541 unsigned long ___address = __address; \ 542 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \ 543 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ 544 ___address, \ 545 ___address + \ 546 PAGE_SIZE); \ 547 __young; \ 548}) 549 550#define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \ 551({ \ 552 int __young; \ 553 struct vm_area_struct *___vma = __vma; \ 554 unsigned long ___address = __address; \ 555 __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \ 556 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \ 557 ___address, \ 558 ___address + \ 559 PMD_SIZE); \ 560 __young; \ 561}) 562 563#define ptep_clear_young_notify(__vma, __address, __ptep) \ 564({ \ 565 int __young; \ 566 struct vm_area_struct *___vma = __vma; \ 567 unsigned long ___address = __address; \ 568 __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\ 569 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ 570 ___address + PAGE_SIZE); \ 571 __young; \ 572}) 573 574#define pmdp_clear_young_notify(__vma, __address, __pmdp) \ 575({ \ 576 int __young; \ 577 struct vm_area_struct *___vma = __vma; \ 578 unsigned long ___address = __address; \ 579 __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\ 580 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \ 581 ___address + PMD_SIZE); \ 582 __young; \ 583}) 584 585#define ptep_clear_flush_notify(__vma, __address, __ptep) \ 586({ \ 587 unsigned long ___addr = __address & PAGE_MASK; \ 588 struct mm_struct *___mm = (__vma)->vm_mm; \ 589 pte_t ___pte; \ 590 \ 591 ___pte = ptep_clear_flush(__vma, __address, __ptep); \ 592 mmu_notifier_invalidate_range(___mm, ___addr, \ 593 ___addr + PAGE_SIZE); \ 594 \ 595 ___pte; \ 596}) 597 598#define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \ 599({ \ 600 unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \ 601 struct mm_struct *___mm = (__vma)->vm_mm; \ 602 pmd_t ___pmd; \ 603 \ 604 ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \ 605 mmu_notifier_invalidate_range(___mm, ___haddr, \ 606 ___haddr + HPAGE_PMD_SIZE); \ 607 \ 608 ___pmd; \ 609}) 610 611#define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \ 612({ \ 613 unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \ 614 struct mm_struct *___mm = (__vma)->vm_mm; \ 615 pud_t ___pud; \ 616 \ 617 ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \ 618 mmu_notifier_invalidate_range(___mm, ___haddr, \ 619 ___haddr + HPAGE_PUD_SIZE); \ 620 \ 621 ___pud; \ 622}) 623 624/* 625 * set_pte_at_notify() sets the pte _after_ running the notifier. 626 * This is safe to start by updating the secondary MMUs, because the primary MMU 627 * pte invalidate must have already happened with a ptep_clear_flush() before 628 * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is 629 * required when we change both the protection of the mapping from read-only to 630 * read-write and the pfn (like during copy on write page faults). Otherwise the 631 * old page would remain mapped readonly in the secondary MMUs after the new 632 * page is already writable by some CPU through the primary MMU. 633 */ 634#define set_pte_at_notify(__mm, __address, __ptep, __pte) \ 635({ \ 636 struct mm_struct *___mm = __mm; \ 637 unsigned long ___address = __address; \ 638 pte_t ___pte = __pte; \ 639 \ 640 mmu_notifier_change_pte(___mm, ___address, ___pte); \ 641 set_pte_at(___mm, ___address, __ptep, ___pte); \ 642}) 643 644#else /* CONFIG_MMU_NOTIFIER */ 645 646struct mmu_notifier_range { 647 unsigned long start; 648 unsigned long end; 649}; 650 651static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range, 652 unsigned long start, 653 unsigned long end) 654{ 655 range->start = start; 656 range->end = end; 657} 658 659#define mmu_notifier_range_init(range,event,flags,mm,start,end) \ 660 _mmu_notifier_range_init(range, start, end) 661#define mmu_notifier_range_init_owner(range, event, flags, mm, start, \ 662 end, owner) \ 663 _mmu_notifier_range_init(range, start, end) 664 665static inline bool 666mmu_notifier_range_blockable(const struct mmu_notifier_range *range) 667{ 668 return true; 669} 670 671static inline int mm_has_notifiers(struct mm_struct *mm) 672{ 673 return 0; 674} 675 676static inline void mmu_notifier_release(struct mm_struct *mm) 677{ 678} 679 680static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm, 681 unsigned long start, 682 unsigned long end) 683{ 684 return 0; 685} 686 687static inline int mmu_notifier_test_young(struct mm_struct *mm, 688 unsigned long address) 689{ 690 return 0; 691} 692 693static inline void mmu_notifier_change_pte(struct mm_struct *mm, 694 unsigned long address, pte_t pte) 695{ 696} 697 698static inline void 699mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range) 700{ 701} 702 703static inline int 704mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range) 705{ 706 return 0; 707} 708 709static inline 710void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range) 711{ 712} 713 714static inline void 715mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range) 716{ 717} 718 719static inline void mmu_notifier_invalidate_range(struct mm_struct *mm, 720 unsigned long start, unsigned long end) 721{ 722} 723 724static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm) 725{ 726} 727 728static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm) 729{ 730} 731 732#define mmu_notifier_range_update_to_read_only(r) false 733 734#define ptep_clear_flush_young_notify ptep_clear_flush_young 735#define pmdp_clear_flush_young_notify pmdp_clear_flush_young 736#define ptep_clear_young_notify ptep_test_and_clear_young 737#define pmdp_clear_young_notify pmdp_test_and_clear_young 738#define ptep_clear_flush_notify ptep_clear_flush 739#define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush 740#define pudp_huge_clear_flush_notify pudp_huge_clear_flush 741#define set_pte_at_notify set_pte_at 742 743static inline void mmu_notifier_synchronize(void) 744{ 745} 746 747#endif /* CONFIG_MMU_NOTIFIER */ 748 749#endif /* _LINUX_MMU_NOTIFIER_H */