Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
20#include <linux/mm.h>
21#include <linux/vmstat.h>
22#include <linux/writeback.h>
23#include <linux/page-flags.h>
24
25struct mem_cgroup;
26struct obj_cgroup;
27struct page;
28struct mm_struct;
29struct kmem_cache;
30
31/* Cgroup-specific page state, on top of universal node page state */
32enum memcg_stat_item {
33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 MEMCG_SOCK,
35 MEMCG_PERCPU_B,
36 MEMCG_VMALLOC,
37 MEMCG_KMEM,
38 MEMCG_ZSWAP_B,
39 MEMCG_ZSWAPPED,
40 MEMCG_NR_STAT,
41};
42
43enum memcg_memory_event {
44 MEMCG_LOW,
45 MEMCG_HIGH,
46 MEMCG_MAX,
47 MEMCG_OOM,
48 MEMCG_OOM_KILL,
49 MEMCG_OOM_GROUP_KILL,
50 MEMCG_SWAP_HIGH,
51 MEMCG_SWAP_MAX,
52 MEMCG_SWAP_FAIL,
53 MEMCG_NR_MEMORY_EVENTS,
54};
55
56struct mem_cgroup_reclaim_cookie {
57 pg_data_t *pgdat;
58 unsigned int generation;
59};
60
61#ifdef CONFIG_MEMCG
62
63#define MEM_CGROUP_ID_SHIFT 16
64#define MEM_CGROUP_ID_MAX USHRT_MAX
65
66struct mem_cgroup_id {
67 int id;
68 refcount_t ref;
69};
70
71/*
72 * Per memcg event counter is incremented at every pagein/pageout. With THP,
73 * it will be incremented by the number of pages. This counter is used
74 * to trigger some periodic events. This is straightforward and better
75 * than using jiffies etc. to handle periodic memcg event.
76 */
77enum mem_cgroup_events_target {
78 MEM_CGROUP_TARGET_THRESH,
79 MEM_CGROUP_TARGET_SOFTLIMIT,
80 MEM_CGROUP_NTARGETS,
81};
82
83struct memcg_vmstats_percpu;
84struct memcg_vmstats;
85
86struct mem_cgroup_reclaim_iter {
87 struct mem_cgroup *position;
88 /* scan generation, increased every round-trip */
89 unsigned int generation;
90};
91
92/*
93 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
94 * shrinkers, which have elements charged to this memcg.
95 */
96struct shrinker_info {
97 struct rcu_head rcu;
98 atomic_long_t *nr_deferred;
99 unsigned long *map;
100};
101
102struct lruvec_stats_percpu {
103 /* Local (CPU and cgroup) state */
104 long state[NR_VM_NODE_STAT_ITEMS];
105
106 /* Delta calculation for lockless upward propagation */
107 long state_prev[NR_VM_NODE_STAT_ITEMS];
108};
109
110struct lruvec_stats {
111 /* Aggregated (CPU and subtree) state */
112 long state[NR_VM_NODE_STAT_ITEMS];
113
114 /* Pending child counts during tree propagation */
115 long state_pending[NR_VM_NODE_STAT_ITEMS];
116};
117
118/*
119 * per-node information in memory controller.
120 */
121struct mem_cgroup_per_node {
122 struct lruvec lruvec;
123
124 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
125 struct lruvec_stats lruvec_stats;
126
127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128
129 struct mem_cgroup_reclaim_iter iter;
130
131 struct shrinker_info __rcu *shrinker_info;
132
133 struct rb_node tree_node; /* RB tree node */
134 unsigned long usage_in_excess;/* Set to the value by which */
135 /* the soft limit is exceeded*/
136 bool on_tree;
137 struct mem_cgroup *memcg; /* Back pointer, we cannot */
138 /* use container_of */
139};
140
141struct mem_cgroup_threshold {
142 struct eventfd_ctx *eventfd;
143 unsigned long threshold;
144};
145
146/* For threshold */
147struct mem_cgroup_threshold_ary {
148 /* An array index points to threshold just below or equal to usage. */
149 int current_threshold;
150 /* Size of entries[] */
151 unsigned int size;
152 /* Array of thresholds */
153 struct mem_cgroup_threshold entries[];
154};
155
156struct mem_cgroup_thresholds {
157 /* Primary thresholds array */
158 struct mem_cgroup_threshold_ary *primary;
159 /*
160 * Spare threshold array.
161 * This is needed to make mem_cgroup_unregister_event() "never fail".
162 * It must be able to store at least primary->size - 1 entries.
163 */
164 struct mem_cgroup_threshold_ary *spare;
165};
166
167/*
168 * Remember four most recent foreign writebacks with dirty pages in this
169 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
170 * one in a given round, we're likely to catch it later if it keeps
171 * foreign-dirtying, so a fairly low count should be enough.
172 *
173 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
174 */
175#define MEMCG_CGWB_FRN_CNT 4
176
177struct memcg_cgwb_frn {
178 u64 bdi_id; /* bdi->id of the foreign inode */
179 int memcg_id; /* memcg->css.id of foreign inode */
180 u64 at; /* jiffies_64 at the time of dirtying */
181 struct wb_completion done; /* tracks in-flight foreign writebacks */
182};
183
184/*
185 * Bucket for arbitrarily byte-sized objects charged to a memory
186 * cgroup. The bucket can be reparented in one piece when the cgroup
187 * is destroyed, without having to round up the individual references
188 * of all live memory objects in the wild.
189 */
190struct obj_cgroup {
191 struct percpu_ref refcnt;
192 struct mem_cgroup *memcg;
193 atomic_t nr_charged_bytes;
194 union {
195 struct list_head list; /* protected by objcg_lock */
196 struct rcu_head rcu;
197 };
198};
199
200/*
201 * The memory controller data structure. The memory controller controls both
202 * page cache and RSS per cgroup. We would eventually like to provide
203 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
204 * to help the administrator determine what knobs to tune.
205 */
206struct mem_cgroup {
207 struct cgroup_subsys_state css;
208
209 /* Private memcg ID. Used to ID objects that outlive the cgroup */
210 struct mem_cgroup_id id;
211
212 /* Accounted resources */
213 struct page_counter memory; /* Both v1 & v2 */
214
215 union {
216 struct page_counter swap; /* v2 only */
217 struct page_counter memsw; /* v1 only */
218 };
219
220 /* Legacy consumer-oriented counters */
221 struct page_counter kmem; /* v1 only */
222 struct page_counter tcpmem; /* v1 only */
223
224 /* Range enforcement for interrupt charges */
225 struct work_struct high_work;
226
227#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
228 unsigned long zswap_max;
229#endif
230
231 unsigned long soft_limit;
232
233 /* vmpressure notifications */
234 struct vmpressure vmpressure;
235
236 /*
237 * Should the OOM killer kill all belonging tasks, had it kill one?
238 */
239 bool oom_group;
240
241 /* protected by memcg_oom_lock */
242 bool oom_lock;
243 int under_oom;
244
245 int swappiness;
246 /* OOM-Killer disable */
247 int oom_kill_disable;
248
249 /* memory.events and memory.events.local */
250 struct cgroup_file events_file;
251 struct cgroup_file events_local_file;
252
253 /* handle for "memory.swap.events" */
254 struct cgroup_file swap_events_file;
255
256 /* protect arrays of thresholds */
257 struct mutex thresholds_lock;
258
259 /* thresholds for memory usage. RCU-protected */
260 struct mem_cgroup_thresholds thresholds;
261
262 /* thresholds for mem+swap usage. RCU-protected */
263 struct mem_cgroup_thresholds memsw_thresholds;
264
265 /* For oom notifier event fd */
266 struct list_head oom_notify;
267
268 /*
269 * Should we move charges of a task when a task is moved into this
270 * mem_cgroup ? And what type of charges should we move ?
271 */
272 unsigned long move_charge_at_immigrate;
273 /* taken only while moving_account > 0 */
274 spinlock_t move_lock;
275 unsigned long move_lock_flags;
276
277 CACHELINE_PADDING(_pad1_);
278
279 /* memory.stat */
280 struct memcg_vmstats *vmstats;
281
282 /* memory.events */
283 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
284 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
285
286 unsigned long socket_pressure;
287
288 /* Legacy tcp memory accounting */
289 bool tcpmem_active;
290 int tcpmem_pressure;
291
292#ifdef CONFIG_MEMCG_KMEM
293 int kmemcg_id;
294 struct obj_cgroup __rcu *objcg;
295 /* list of inherited objcgs, protected by objcg_lock */
296 struct list_head objcg_list;
297#endif
298
299 CACHELINE_PADDING(_pad2_);
300
301 /*
302 * set > 0 if pages under this cgroup are moving to other cgroup.
303 */
304 atomic_t moving_account;
305 struct task_struct *move_lock_task;
306
307 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
308
309#ifdef CONFIG_CGROUP_WRITEBACK
310 struct list_head cgwb_list;
311 struct wb_domain cgwb_domain;
312 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
313#endif
314
315 /* List of events which userspace want to receive */
316 struct list_head event_list;
317 spinlock_t event_list_lock;
318
319#ifdef CONFIG_TRANSPARENT_HUGEPAGE
320 struct deferred_split deferred_split_queue;
321#endif
322
323#ifdef CONFIG_LRU_GEN
324 /* per-memcg mm_struct list */
325 struct lru_gen_mm_list mm_list;
326#endif
327
328 struct mem_cgroup_per_node *nodeinfo[];
329};
330
331/*
332 * size of first charge trial.
333 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
334 * workload.
335 */
336#define MEMCG_CHARGE_BATCH 64U
337
338extern struct mem_cgroup *root_mem_cgroup;
339
340enum page_memcg_data_flags {
341 /* page->memcg_data is a pointer to an objcgs vector */
342 MEMCG_DATA_OBJCGS = (1UL << 0),
343 /* page has been accounted as a non-slab kernel page */
344 MEMCG_DATA_KMEM = (1UL << 1),
345 /* the next bit after the last actual flag */
346 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
347};
348
349#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
350
351static inline bool folio_memcg_kmem(struct folio *folio);
352
353/*
354 * After the initialization objcg->memcg is always pointing at
355 * a valid memcg, but can be atomically swapped to the parent memcg.
356 *
357 * The caller must ensure that the returned memcg won't be released:
358 * e.g. acquire the rcu_read_lock or css_set_lock.
359 */
360static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
361{
362 return READ_ONCE(objcg->memcg);
363}
364
365/*
366 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
367 * @folio: Pointer to the folio.
368 *
369 * Returns a pointer to the memory cgroup associated with the folio,
370 * or NULL. This function assumes that the folio is known to have a
371 * proper memory cgroup pointer. It's not safe to call this function
372 * against some type of folios, e.g. slab folios or ex-slab folios or
373 * kmem folios.
374 */
375static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
376{
377 unsigned long memcg_data = folio->memcg_data;
378
379 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
380 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
381 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
382
383 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
384}
385
386/*
387 * __folio_objcg - get the object cgroup associated with a kmem folio.
388 * @folio: Pointer to the folio.
389 *
390 * Returns a pointer to the object cgroup associated with the folio,
391 * or NULL. This function assumes that the folio is known to have a
392 * proper object cgroup pointer. It's not safe to call this function
393 * against some type of folios, e.g. slab folios or ex-slab folios or
394 * LRU folios.
395 */
396static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
397{
398 unsigned long memcg_data = folio->memcg_data;
399
400 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
402 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
403
404 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
405}
406
407/*
408 * folio_memcg - Get the memory cgroup associated with a folio.
409 * @folio: Pointer to the folio.
410 *
411 * Returns a pointer to the memory cgroup associated with the folio,
412 * or NULL. This function assumes that the folio is known to have a
413 * proper memory cgroup pointer. It's not safe to call this function
414 * against some type of folios, e.g. slab folios or ex-slab folios.
415 *
416 * For a non-kmem folio any of the following ensures folio and memcg binding
417 * stability:
418 *
419 * - the folio lock
420 * - LRU isolation
421 * - lock_page_memcg()
422 * - exclusive reference
423 * - mem_cgroup_trylock_pages()
424 *
425 * For a kmem folio a caller should hold an rcu read lock to protect memcg
426 * associated with a kmem folio from being released.
427 */
428static inline struct mem_cgroup *folio_memcg(struct folio *folio)
429{
430 if (folio_memcg_kmem(folio))
431 return obj_cgroup_memcg(__folio_objcg(folio));
432 return __folio_memcg(folio);
433}
434
435static inline struct mem_cgroup *page_memcg(struct page *page)
436{
437 return folio_memcg(page_folio(page));
438}
439
440/**
441 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
442 * @folio: Pointer to the folio.
443 *
444 * This function assumes that the folio is known to have a
445 * proper memory cgroup pointer. It's not safe to call this function
446 * against some type of folios, e.g. slab folios or ex-slab folios.
447 *
448 * Return: A pointer to the memory cgroup associated with the folio,
449 * or NULL.
450 */
451static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
452{
453 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
454
455 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
456 WARN_ON_ONCE(!rcu_read_lock_held());
457
458 if (memcg_data & MEMCG_DATA_KMEM) {
459 struct obj_cgroup *objcg;
460
461 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
462 return obj_cgroup_memcg(objcg);
463 }
464
465 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
466}
467
468/*
469 * folio_memcg_check - Get the memory cgroup associated with a folio.
470 * @folio: Pointer to the folio.
471 *
472 * Returns a pointer to the memory cgroup associated with the folio,
473 * or NULL. This function unlike folio_memcg() can take any folio
474 * as an argument. It has to be used in cases when it's not known if a folio
475 * has an associated memory cgroup pointer or an object cgroups vector or
476 * an object cgroup.
477 *
478 * For a non-kmem folio any of the following ensures folio and memcg binding
479 * stability:
480 *
481 * - the folio lock
482 * - LRU isolation
483 * - lock_folio_memcg()
484 * - exclusive reference
485 * - mem_cgroup_trylock_pages()
486 *
487 * For a kmem folio a caller should hold an rcu read lock to protect memcg
488 * associated with a kmem folio from being released.
489 */
490static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
491{
492 /*
493 * Because folio->memcg_data might be changed asynchronously
494 * for slabs, READ_ONCE() should be used here.
495 */
496 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
497
498 if (memcg_data & MEMCG_DATA_OBJCGS)
499 return NULL;
500
501 if (memcg_data & MEMCG_DATA_KMEM) {
502 struct obj_cgroup *objcg;
503
504 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
505 return obj_cgroup_memcg(objcg);
506 }
507
508 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
509}
510
511static inline struct mem_cgroup *page_memcg_check(struct page *page)
512{
513 if (PageTail(page))
514 return NULL;
515 return folio_memcg_check((struct folio *)page);
516}
517
518static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
519{
520 struct mem_cgroup *memcg;
521
522 rcu_read_lock();
523retry:
524 memcg = obj_cgroup_memcg(objcg);
525 if (unlikely(!css_tryget(&memcg->css)))
526 goto retry;
527 rcu_read_unlock();
528
529 return memcg;
530}
531
532#ifdef CONFIG_MEMCG_KMEM
533/*
534 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
535 * @folio: Pointer to the folio.
536 *
537 * Checks if the folio has MemcgKmem flag set. The caller must ensure
538 * that the folio has an associated memory cgroup. It's not safe to call
539 * this function against some types of folios, e.g. slab folios.
540 */
541static inline bool folio_memcg_kmem(struct folio *folio)
542{
543 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
544 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
545 return folio->memcg_data & MEMCG_DATA_KMEM;
546}
547
548
549#else
550static inline bool folio_memcg_kmem(struct folio *folio)
551{
552 return false;
553}
554
555#endif
556
557static inline bool PageMemcgKmem(struct page *page)
558{
559 return folio_memcg_kmem(page_folio(page));
560}
561
562static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
563{
564 return (memcg == root_mem_cgroup);
565}
566
567static inline bool mem_cgroup_disabled(void)
568{
569 return !cgroup_subsys_enabled(memory_cgrp_subsys);
570}
571
572static inline void mem_cgroup_protection(struct mem_cgroup *root,
573 struct mem_cgroup *memcg,
574 unsigned long *min,
575 unsigned long *low)
576{
577 *min = *low = 0;
578
579 if (mem_cgroup_disabled())
580 return;
581
582 /*
583 * There is no reclaim protection applied to a targeted reclaim.
584 * We are special casing this specific case here because
585 * mem_cgroup_protected calculation is not robust enough to keep
586 * the protection invariant for calculated effective values for
587 * parallel reclaimers with different reclaim target. This is
588 * especially a problem for tail memcgs (as they have pages on LRU)
589 * which would want to have effective values 0 for targeted reclaim
590 * but a different value for external reclaim.
591 *
592 * Example
593 * Let's have global and A's reclaim in parallel:
594 * |
595 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
596 * |\
597 * | C (low = 1G, usage = 2.5G)
598 * B (low = 1G, usage = 0.5G)
599 *
600 * For the global reclaim
601 * A.elow = A.low
602 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
603 * C.elow = min(C.usage, C.low)
604 *
605 * With the effective values resetting we have A reclaim
606 * A.elow = 0
607 * B.elow = B.low
608 * C.elow = C.low
609 *
610 * If the global reclaim races with A's reclaim then
611 * B.elow = C.elow = 0 because children_low_usage > A.elow)
612 * is possible and reclaiming B would be violating the protection.
613 *
614 */
615 if (root == memcg)
616 return;
617
618 *min = READ_ONCE(memcg->memory.emin);
619 *low = READ_ONCE(memcg->memory.elow);
620}
621
622void mem_cgroup_calculate_protection(struct mem_cgroup *root,
623 struct mem_cgroup *memcg);
624
625static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
626 struct mem_cgroup *memcg)
627{
628 /*
629 * The root memcg doesn't account charges, and doesn't support
630 * protection. The target memcg's protection is ignored, see
631 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
632 */
633 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
634 memcg == target;
635}
636
637static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
638 struct mem_cgroup *memcg)
639{
640 if (mem_cgroup_unprotected(target, memcg))
641 return false;
642
643 return READ_ONCE(memcg->memory.elow) >=
644 page_counter_read(&memcg->memory);
645}
646
647static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
648 struct mem_cgroup *memcg)
649{
650 if (mem_cgroup_unprotected(target, memcg))
651 return false;
652
653 return READ_ONCE(memcg->memory.emin) >=
654 page_counter_read(&memcg->memory);
655}
656
657int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
658
659/**
660 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
661 * @folio: Folio to charge.
662 * @mm: mm context of the allocating task.
663 * @gfp: Reclaim mode.
664 *
665 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
666 * pages according to @gfp if necessary. If @mm is NULL, try to
667 * charge to the active memcg.
668 *
669 * Do not use this for folios allocated for swapin.
670 *
671 * Return: 0 on success. Otherwise, an error code is returned.
672 */
673static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
674 gfp_t gfp)
675{
676 if (mem_cgroup_disabled())
677 return 0;
678 return __mem_cgroup_charge(folio, mm, gfp);
679}
680
681int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
682 gfp_t gfp, swp_entry_t entry);
683void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
684
685void __mem_cgroup_uncharge(struct folio *folio);
686
687/**
688 * mem_cgroup_uncharge - Uncharge a folio.
689 * @folio: Folio to uncharge.
690 *
691 * Uncharge a folio previously charged with mem_cgroup_charge().
692 */
693static inline void mem_cgroup_uncharge(struct folio *folio)
694{
695 if (mem_cgroup_disabled())
696 return;
697 __mem_cgroup_uncharge(folio);
698}
699
700void __mem_cgroup_uncharge_list(struct list_head *page_list);
701static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
702{
703 if (mem_cgroup_disabled())
704 return;
705 __mem_cgroup_uncharge_list(page_list);
706}
707
708void mem_cgroup_migrate(struct folio *old, struct folio *new);
709
710/**
711 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
712 * @memcg: memcg of the wanted lruvec
713 * @pgdat: pglist_data
714 *
715 * Returns the lru list vector holding pages for a given @memcg &
716 * @pgdat combination. This can be the node lruvec, if the memory
717 * controller is disabled.
718 */
719static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
720 struct pglist_data *pgdat)
721{
722 struct mem_cgroup_per_node *mz;
723 struct lruvec *lruvec;
724
725 if (mem_cgroup_disabled()) {
726 lruvec = &pgdat->__lruvec;
727 goto out;
728 }
729
730 if (!memcg)
731 memcg = root_mem_cgroup;
732
733 mz = memcg->nodeinfo[pgdat->node_id];
734 lruvec = &mz->lruvec;
735out:
736 /*
737 * Since a node can be onlined after the mem_cgroup was created,
738 * we have to be prepared to initialize lruvec->pgdat here;
739 * and if offlined then reonlined, we need to reinitialize it.
740 */
741 if (unlikely(lruvec->pgdat != pgdat))
742 lruvec->pgdat = pgdat;
743 return lruvec;
744}
745
746/**
747 * folio_lruvec - return lruvec for isolating/putting an LRU folio
748 * @folio: Pointer to the folio.
749 *
750 * This function relies on folio->mem_cgroup being stable.
751 */
752static inline struct lruvec *folio_lruvec(struct folio *folio)
753{
754 struct mem_cgroup *memcg = folio_memcg(folio);
755
756 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
757 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
758}
759
760struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
761
762struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
763
764struct lruvec *folio_lruvec_lock(struct folio *folio);
765struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
766struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
767 unsigned long *flags);
768
769#ifdef CONFIG_DEBUG_VM
770void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
771#else
772static inline
773void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
774{
775}
776#endif
777
778static inline
779struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
780 return css ? container_of(css, struct mem_cgroup, css) : NULL;
781}
782
783static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
784{
785 return percpu_ref_tryget(&objcg->refcnt);
786}
787
788static inline void obj_cgroup_get(struct obj_cgroup *objcg)
789{
790 percpu_ref_get(&objcg->refcnt);
791}
792
793static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
794 unsigned long nr)
795{
796 percpu_ref_get_many(&objcg->refcnt, nr);
797}
798
799static inline void obj_cgroup_put(struct obj_cgroup *objcg)
800{
801 percpu_ref_put(&objcg->refcnt);
802}
803
804static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
805{
806 return !memcg || css_tryget(&memcg->css);
807}
808
809static inline void mem_cgroup_put(struct mem_cgroup *memcg)
810{
811 if (memcg)
812 css_put(&memcg->css);
813}
814
815#define mem_cgroup_from_counter(counter, member) \
816 container_of(counter, struct mem_cgroup, member)
817
818struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
819 struct mem_cgroup *,
820 struct mem_cgroup_reclaim_cookie *);
821void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
822int mem_cgroup_scan_tasks(struct mem_cgroup *,
823 int (*)(struct task_struct *, void *), void *);
824
825static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
826{
827 if (mem_cgroup_disabled())
828 return 0;
829
830 return memcg->id.id;
831}
832struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
833
834#ifdef CONFIG_SHRINKER_DEBUG
835static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
836{
837 return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
838}
839
840struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
841#endif
842
843static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
844{
845 return mem_cgroup_from_css(seq_css(m));
846}
847
848static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
849{
850 struct mem_cgroup_per_node *mz;
851
852 if (mem_cgroup_disabled())
853 return NULL;
854
855 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
856 return mz->memcg;
857}
858
859/**
860 * parent_mem_cgroup - find the accounting parent of a memcg
861 * @memcg: memcg whose parent to find
862 *
863 * Returns the parent memcg, or NULL if this is the root or the memory
864 * controller is in legacy no-hierarchy mode.
865 */
866static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
867{
868 return mem_cgroup_from_css(memcg->css.parent);
869}
870
871static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
872 struct mem_cgroup *root)
873{
874 if (root == memcg)
875 return true;
876 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
877}
878
879static inline bool mm_match_cgroup(struct mm_struct *mm,
880 struct mem_cgroup *memcg)
881{
882 struct mem_cgroup *task_memcg;
883 bool match = false;
884
885 rcu_read_lock();
886 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
887 if (task_memcg)
888 match = mem_cgroup_is_descendant(task_memcg, memcg);
889 rcu_read_unlock();
890 return match;
891}
892
893struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
894ino_t page_cgroup_ino(struct page *page);
895
896static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
897{
898 if (mem_cgroup_disabled())
899 return true;
900 return !!(memcg->css.flags & CSS_ONLINE);
901}
902
903void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
904 int zid, int nr_pages);
905
906static inline
907unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
908 enum lru_list lru, int zone_idx)
909{
910 struct mem_cgroup_per_node *mz;
911
912 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
913 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
914}
915
916void mem_cgroup_handle_over_high(void);
917
918unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
919
920unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
921
922void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
923 struct task_struct *p);
924
925void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
926
927static inline void mem_cgroup_enter_user_fault(void)
928{
929 WARN_ON(current->in_user_fault);
930 current->in_user_fault = 1;
931}
932
933static inline void mem_cgroup_exit_user_fault(void)
934{
935 WARN_ON(!current->in_user_fault);
936 current->in_user_fault = 0;
937}
938
939static inline bool task_in_memcg_oom(struct task_struct *p)
940{
941 return p->memcg_in_oom;
942}
943
944bool mem_cgroup_oom_synchronize(bool wait);
945struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
946 struct mem_cgroup *oom_domain);
947void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
948
949void folio_memcg_lock(struct folio *folio);
950void folio_memcg_unlock(struct folio *folio);
951void lock_page_memcg(struct page *page);
952void unlock_page_memcg(struct page *page);
953
954void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
955
956/* try to stablize folio_memcg() for all the pages in a memcg */
957static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
958{
959 rcu_read_lock();
960
961 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
962 return true;
963
964 rcu_read_unlock();
965 return false;
966}
967
968static inline void mem_cgroup_unlock_pages(void)
969{
970 rcu_read_unlock();
971}
972
973/* idx can be of type enum memcg_stat_item or node_stat_item */
974static inline void mod_memcg_state(struct mem_cgroup *memcg,
975 int idx, int val)
976{
977 unsigned long flags;
978
979 local_irq_save(flags);
980 __mod_memcg_state(memcg, idx, val);
981 local_irq_restore(flags);
982}
983
984static inline void mod_memcg_page_state(struct page *page,
985 int idx, int val)
986{
987 struct mem_cgroup *memcg;
988
989 if (mem_cgroup_disabled())
990 return;
991
992 rcu_read_lock();
993 memcg = page_memcg(page);
994 if (memcg)
995 mod_memcg_state(memcg, idx, val);
996 rcu_read_unlock();
997}
998
999unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1000
1001static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1002 enum node_stat_item idx)
1003{
1004 struct mem_cgroup_per_node *pn;
1005 long x;
1006
1007 if (mem_cgroup_disabled())
1008 return node_page_state(lruvec_pgdat(lruvec), idx);
1009
1010 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1011 x = READ_ONCE(pn->lruvec_stats.state[idx]);
1012#ifdef CONFIG_SMP
1013 if (x < 0)
1014 x = 0;
1015#endif
1016 return x;
1017}
1018
1019static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1020 enum node_stat_item idx)
1021{
1022 struct mem_cgroup_per_node *pn;
1023 long x = 0;
1024 int cpu;
1025
1026 if (mem_cgroup_disabled())
1027 return node_page_state(lruvec_pgdat(lruvec), idx);
1028
1029 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1030 for_each_possible_cpu(cpu)
1031 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1032#ifdef CONFIG_SMP
1033 if (x < 0)
1034 x = 0;
1035#endif
1036 return x;
1037}
1038
1039void mem_cgroup_flush_stats(void);
1040void mem_cgroup_flush_stats_delayed(void);
1041
1042void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1043 int val);
1044void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1045
1046static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1047 int val)
1048{
1049 unsigned long flags;
1050
1051 local_irq_save(flags);
1052 __mod_lruvec_kmem_state(p, idx, val);
1053 local_irq_restore(flags);
1054}
1055
1056static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1057 enum node_stat_item idx, int val)
1058{
1059 unsigned long flags;
1060
1061 local_irq_save(flags);
1062 __mod_memcg_lruvec_state(lruvec, idx, val);
1063 local_irq_restore(flags);
1064}
1065
1066void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1067 unsigned long count);
1068
1069static inline void count_memcg_events(struct mem_cgroup *memcg,
1070 enum vm_event_item idx,
1071 unsigned long count)
1072{
1073 unsigned long flags;
1074
1075 local_irq_save(flags);
1076 __count_memcg_events(memcg, idx, count);
1077 local_irq_restore(flags);
1078}
1079
1080static inline void count_memcg_page_event(struct page *page,
1081 enum vm_event_item idx)
1082{
1083 struct mem_cgroup *memcg = page_memcg(page);
1084
1085 if (memcg)
1086 count_memcg_events(memcg, idx, 1);
1087}
1088
1089static inline void count_memcg_folio_events(struct folio *folio,
1090 enum vm_event_item idx, unsigned long nr)
1091{
1092 struct mem_cgroup *memcg = folio_memcg(folio);
1093
1094 if (memcg)
1095 count_memcg_events(memcg, idx, nr);
1096}
1097
1098static inline void count_memcg_event_mm(struct mm_struct *mm,
1099 enum vm_event_item idx)
1100{
1101 struct mem_cgroup *memcg;
1102
1103 if (mem_cgroup_disabled())
1104 return;
1105
1106 rcu_read_lock();
1107 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1108 if (likely(memcg))
1109 count_memcg_events(memcg, idx, 1);
1110 rcu_read_unlock();
1111}
1112
1113static inline void memcg_memory_event(struct mem_cgroup *memcg,
1114 enum memcg_memory_event event)
1115{
1116 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1117 event == MEMCG_SWAP_FAIL;
1118
1119 atomic_long_inc(&memcg->memory_events_local[event]);
1120 if (!swap_event)
1121 cgroup_file_notify(&memcg->events_local_file);
1122
1123 do {
1124 atomic_long_inc(&memcg->memory_events[event]);
1125 if (swap_event)
1126 cgroup_file_notify(&memcg->swap_events_file);
1127 else
1128 cgroup_file_notify(&memcg->events_file);
1129
1130 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1131 break;
1132 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1133 break;
1134 } while ((memcg = parent_mem_cgroup(memcg)) &&
1135 !mem_cgroup_is_root(memcg));
1136}
1137
1138static inline void memcg_memory_event_mm(struct mm_struct *mm,
1139 enum memcg_memory_event event)
1140{
1141 struct mem_cgroup *memcg;
1142
1143 if (mem_cgroup_disabled())
1144 return;
1145
1146 rcu_read_lock();
1147 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1148 if (likely(memcg))
1149 memcg_memory_event(memcg, event);
1150 rcu_read_unlock();
1151}
1152
1153void split_page_memcg(struct page *head, unsigned int nr);
1154
1155unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1156 gfp_t gfp_mask,
1157 unsigned long *total_scanned);
1158
1159#else /* CONFIG_MEMCG */
1160
1161#define MEM_CGROUP_ID_SHIFT 0
1162#define MEM_CGROUP_ID_MAX 0
1163
1164static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1165{
1166 return NULL;
1167}
1168
1169static inline struct mem_cgroup *page_memcg(struct page *page)
1170{
1171 return NULL;
1172}
1173
1174static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1175{
1176 WARN_ON_ONCE(!rcu_read_lock_held());
1177 return NULL;
1178}
1179
1180static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1181{
1182 return NULL;
1183}
1184
1185static inline struct mem_cgroup *page_memcg_check(struct page *page)
1186{
1187 return NULL;
1188}
1189
1190static inline bool folio_memcg_kmem(struct folio *folio)
1191{
1192 return false;
1193}
1194
1195static inline bool PageMemcgKmem(struct page *page)
1196{
1197 return false;
1198}
1199
1200static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1201{
1202 return true;
1203}
1204
1205static inline bool mem_cgroup_disabled(void)
1206{
1207 return true;
1208}
1209
1210static inline void memcg_memory_event(struct mem_cgroup *memcg,
1211 enum memcg_memory_event event)
1212{
1213}
1214
1215static inline void memcg_memory_event_mm(struct mm_struct *mm,
1216 enum memcg_memory_event event)
1217{
1218}
1219
1220static inline void mem_cgroup_protection(struct mem_cgroup *root,
1221 struct mem_cgroup *memcg,
1222 unsigned long *min,
1223 unsigned long *low)
1224{
1225 *min = *low = 0;
1226}
1227
1228static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1229 struct mem_cgroup *memcg)
1230{
1231}
1232
1233static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1234 struct mem_cgroup *memcg)
1235{
1236 return true;
1237}
1238static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1239 struct mem_cgroup *memcg)
1240{
1241 return false;
1242}
1243
1244static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1245 struct mem_cgroup *memcg)
1246{
1247 return false;
1248}
1249
1250static inline int mem_cgroup_charge(struct folio *folio,
1251 struct mm_struct *mm, gfp_t gfp)
1252{
1253 return 0;
1254}
1255
1256static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1257 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1258{
1259 return 0;
1260}
1261
1262static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1263{
1264}
1265
1266static inline void mem_cgroup_uncharge(struct folio *folio)
1267{
1268}
1269
1270static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1271{
1272}
1273
1274static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1275{
1276}
1277
1278static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1279 struct pglist_data *pgdat)
1280{
1281 return &pgdat->__lruvec;
1282}
1283
1284static inline struct lruvec *folio_lruvec(struct folio *folio)
1285{
1286 struct pglist_data *pgdat = folio_pgdat(folio);
1287 return &pgdat->__lruvec;
1288}
1289
1290static inline
1291void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1292{
1293}
1294
1295static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1296{
1297 return NULL;
1298}
1299
1300static inline bool mm_match_cgroup(struct mm_struct *mm,
1301 struct mem_cgroup *memcg)
1302{
1303 return true;
1304}
1305
1306static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1307{
1308 return NULL;
1309}
1310
1311static inline
1312struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1313{
1314 return NULL;
1315}
1316
1317static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1318{
1319}
1320
1321static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1322{
1323 return true;
1324}
1325
1326static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1327{
1328}
1329
1330static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1331{
1332 struct pglist_data *pgdat = folio_pgdat(folio);
1333
1334 spin_lock(&pgdat->__lruvec.lru_lock);
1335 return &pgdat->__lruvec;
1336}
1337
1338static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1339{
1340 struct pglist_data *pgdat = folio_pgdat(folio);
1341
1342 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1343 return &pgdat->__lruvec;
1344}
1345
1346static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1347 unsigned long *flagsp)
1348{
1349 struct pglist_data *pgdat = folio_pgdat(folio);
1350
1351 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1352 return &pgdat->__lruvec;
1353}
1354
1355static inline struct mem_cgroup *
1356mem_cgroup_iter(struct mem_cgroup *root,
1357 struct mem_cgroup *prev,
1358 struct mem_cgroup_reclaim_cookie *reclaim)
1359{
1360 return NULL;
1361}
1362
1363static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1364 struct mem_cgroup *prev)
1365{
1366}
1367
1368static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1369 int (*fn)(struct task_struct *, void *), void *arg)
1370{
1371 return 0;
1372}
1373
1374static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1375{
1376 return 0;
1377}
1378
1379static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1380{
1381 WARN_ON_ONCE(id);
1382 /* XXX: This should always return root_mem_cgroup */
1383 return NULL;
1384}
1385
1386#ifdef CONFIG_SHRINKER_DEBUG
1387static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1388{
1389 return 0;
1390}
1391
1392static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1393{
1394 return NULL;
1395}
1396#endif
1397
1398static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1399{
1400 return NULL;
1401}
1402
1403static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1404{
1405 return NULL;
1406}
1407
1408static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1409{
1410 return true;
1411}
1412
1413static inline
1414unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1415 enum lru_list lru, int zone_idx)
1416{
1417 return 0;
1418}
1419
1420static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1421{
1422 return 0;
1423}
1424
1425static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1426{
1427 return 0;
1428}
1429
1430static inline void
1431mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1432{
1433}
1434
1435static inline void
1436mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1437{
1438}
1439
1440static inline void lock_page_memcg(struct page *page)
1441{
1442}
1443
1444static inline void unlock_page_memcg(struct page *page)
1445{
1446}
1447
1448static inline void folio_memcg_lock(struct folio *folio)
1449{
1450}
1451
1452static inline void folio_memcg_unlock(struct folio *folio)
1453{
1454}
1455
1456static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1457{
1458 /* to match folio_memcg_rcu() */
1459 rcu_read_lock();
1460 return true;
1461}
1462
1463static inline void mem_cgroup_unlock_pages(void)
1464{
1465 rcu_read_unlock();
1466}
1467
1468static inline void mem_cgroup_handle_over_high(void)
1469{
1470}
1471
1472static inline void mem_cgroup_enter_user_fault(void)
1473{
1474}
1475
1476static inline void mem_cgroup_exit_user_fault(void)
1477{
1478}
1479
1480static inline bool task_in_memcg_oom(struct task_struct *p)
1481{
1482 return false;
1483}
1484
1485static inline bool mem_cgroup_oom_synchronize(bool wait)
1486{
1487 return false;
1488}
1489
1490static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1491 struct task_struct *victim, struct mem_cgroup *oom_domain)
1492{
1493 return NULL;
1494}
1495
1496static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1497{
1498}
1499
1500static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1501 int idx,
1502 int nr)
1503{
1504}
1505
1506static inline void mod_memcg_state(struct mem_cgroup *memcg,
1507 int idx,
1508 int nr)
1509{
1510}
1511
1512static inline void mod_memcg_page_state(struct page *page,
1513 int idx, int val)
1514{
1515}
1516
1517static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1518{
1519 return 0;
1520}
1521
1522static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1523 enum node_stat_item idx)
1524{
1525 return node_page_state(lruvec_pgdat(lruvec), idx);
1526}
1527
1528static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1529 enum node_stat_item idx)
1530{
1531 return node_page_state(lruvec_pgdat(lruvec), idx);
1532}
1533
1534static inline void mem_cgroup_flush_stats(void)
1535{
1536}
1537
1538static inline void mem_cgroup_flush_stats_delayed(void)
1539{
1540}
1541
1542static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1543 enum node_stat_item idx, int val)
1544{
1545}
1546
1547static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1548 int val)
1549{
1550 struct page *page = virt_to_head_page(p);
1551
1552 __mod_node_page_state(page_pgdat(page), idx, val);
1553}
1554
1555static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1556 int val)
1557{
1558 struct page *page = virt_to_head_page(p);
1559
1560 mod_node_page_state(page_pgdat(page), idx, val);
1561}
1562
1563static inline void count_memcg_events(struct mem_cgroup *memcg,
1564 enum vm_event_item idx,
1565 unsigned long count)
1566{
1567}
1568
1569static inline void __count_memcg_events(struct mem_cgroup *memcg,
1570 enum vm_event_item idx,
1571 unsigned long count)
1572{
1573}
1574
1575static inline void count_memcg_page_event(struct page *page,
1576 int idx)
1577{
1578}
1579
1580static inline void count_memcg_folio_events(struct folio *folio,
1581 enum vm_event_item idx, unsigned long nr)
1582{
1583}
1584
1585static inline
1586void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1587{
1588}
1589
1590static inline void split_page_memcg(struct page *head, unsigned int nr)
1591{
1592}
1593
1594static inline
1595unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1596 gfp_t gfp_mask,
1597 unsigned long *total_scanned)
1598{
1599 return 0;
1600}
1601#endif /* CONFIG_MEMCG */
1602
1603static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1604{
1605 __mod_lruvec_kmem_state(p, idx, 1);
1606}
1607
1608static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1609{
1610 __mod_lruvec_kmem_state(p, idx, -1);
1611}
1612
1613static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1614{
1615 struct mem_cgroup *memcg;
1616
1617 memcg = lruvec_memcg(lruvec);
1618 if (!memcg)
1619 return NULL;
1620 memcg = parent_mem_cgroup(memcg);
1621 if (!memcg)
1622 return NULL;
1623 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1624}
1625
1626static inline void unlock_page_lruvec(struct lruvec *lruvec)
1627{
1628 spin_unlock(&lruvec->lru_lock);
1629}
1630
1631static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1632{
1633 spin_unlock_irq(&lruvec->lru_lock);
1634}
1635
1636static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1637 unsigned long flags)
1638{
1639 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1640}
1641
1642/* Test requires a stable page->memcg binding, see page_memcg() */
1643static inline bool folio_matches_lruvec(struct folio *folio,
1644 struct lruvec *lruvec)
1645{
1646 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1647 lruvec_memcg(lruvec) == folio_memcg(folio);
1648}
1649
1650/* Don't lock again iff page's lruvec locked */
1651static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1652 struct lruvec *locked_lruvec)
1653{
1654 if (locked_lruvec) {
1655 if (folio_matches_lruvec(folio, locked_lruvec))
1656 return locked_lruvec;
1657
1658 unlock_page_lruvec_irq(locked_lruvec);
1659 }
1660
1661 return folio_lruvec_lock_irq(folio);
1662}
1663
1664/* Don't lock again iff page's lruvec locked */
1665static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1666 struct lruvec *locked_lruvec, unsigned long *flags)
1667{
1668 if (locked_lruvec) {
1669 if (folio_matches_lruvec(folio, locked_lruvec))
1670 return locked_lruvec;
1671
1672 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1673 }
1674
1675 return folio_lruvec_lock_irqsave(folio, flags);
1676}
1677
1678#ifdef CONFIG_CGROUP_WRITEBACK
1679
1680struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1681void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1682 unsigned long *pheadroom, unsigned long *pdirty,
1683 unsigned long *pwriteback);
1684
1685void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1686 struct bdi_writeback *wb);
1687
1688static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1689 struct bdi_writeback *wb)
1690{
1691 struct mem_cgroup *memcg;
1692
1693 if (mem_cgroup_disabled())
1694 return;
1695
1696 memcg = folio_memcg(folio);
1697 if (unlikely(memcg && &memcg->css != wb->memcg_css))
1698 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1699}
1700
1701void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1702
1703#else /* CONFIG_CGROUP_WRITEBACK */
1704
1705static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1706{
1707 return NULL;
1708}
1709
1710static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1711 unsigned long *pfilepages,
1712 unsigned long *pheadroom,
1713 unsigned long *pdirty,
1714 unsigned long *pwriteback)
1715{
1716}
1717
1718static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1719 struct bdi_writeback *wb)
1720{
1721}
1722
1723static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1724{
1725}
1726
1727#endif /* CONFIG_CGROUP_WRITEBACK */
1728
1729struct sock;
1730bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1731 gfp_t gfp_mask);
1732void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1733#ifdef CONFIG_MEMCG
1734extern struct static_key_false memcg_sockets_enabled_key;
1735#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1736void mem_cgroup_sk_alloc(struct sock *sk);
1737void mem_cgroup_sk_free(struct sock *sk);
1738static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1739{
1740 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1741 return true;
1742 do {
1743 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1744 return true;
1745 } while ((memcg = parent_mem_cgroup(memcg)));
1746 return false;
1747}
1748
1749int alloc_shrinker_info(struct mem_cgroup *memcg);
1750void free_shrinker_info(struct mem_cgroup *memcg);
1751void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1752void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1753#else
1754#define mem_cgroup_sockets_enabled 0
1755static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1756static inline void mem_cgroup_sk_free(struct sock *sk) { };
1757static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1758{
1759 return false;
1760}
1761
1762static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1763 int nid, int shrinker_id)
1764{
1765}
1766#endif
1767
1768#ifdef CONFIG_MEMCG_KMEM
1769bool mem_cgroup_kmem_disabled(void);
1770int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1771void __memcg_kmem_uncharge_page(struct page *page, int order);
1772
1773struct obj_cgroup *get_obj_cgroup_from_current(void);
1774struct obj_cgroup *get_obj_cgroup_from_page(struct page *page);
1775
1776int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1777void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1778
1779extern struct static_key_false memcg_bpf_enabled_key;
1780static inline bool memcg_bpf_enabled(void)
1781{
1782 return static_branch_likely(&memcg_bpf_enabled_key);
1783}
1784
1785extern struct static_key_false memcg_kmem_online_key;
1786
1787static inline bool memcg_kmem_online(void)
1788{
1789 return static_branch_likely(&memcg_kmem_online_key);
1790}
1791
1792static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1793 int order)
1794{
1795 if (memcg_kmem_online())
1796 return __memcg_kmem_charge_page(page, gfp, order);
1797 return 0;
1798}
1799
1800static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1801{
1802 if (memcg_kmem_online())
1803 __memcg_kmem_uncharge_page(page, order);
1804}
1805
1806/*
1807 * A helper for accessing memcg's kmem_id, used for getting
1808 * corresponding LRU lists.
1809 */
1810static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1811{
1812 return memcg ? memcg->kmemcg_id : -1;
1813}
1814
1815struct mem_cgroup *mem_cgroup_from_obj(void *p);
1816struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1817
1818static inline void count_objcg_event(struct obj_cgroup *objcg,
1819 enum vm_event_item idx)
1820{
1821 struct mem_cgroup *memcg;
1822
1823 if (!memcg_kmem_online())
1824 return;
1825
1826 rcu_read_lock();
1827 memcg = obj_cgroup_memcg(objcg);
1828 count_memcg_events(memcg, idx, 1);
1829 rcu_read_unlock();
1830}
1831
1832#else
1833static inline bool mem_cgroup_kmem_disabled(void)
1834{
1835 return true;
1836}
1837
1838static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1839 int order)
1840{
1841 return 0;
1842}
1843
1844static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1845{
1846}
1847
1848static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1849 int order)
1850{
1851 return 0;
1852}
1853
1854static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1855{
1856}
1857
1858static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
1859{
1860 return NULL;
1861}
1862
1863static inline bool memcg_bpf_enabled(void)
1864{
1865 return false;
1866}
1867
1868static inline bool memcg_kmem_online(void)
1869{
1870 return false;
1871}
1872
1873static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1874{
1875 return -1;
1876}
1877
1878static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1879{
1880 return NULL;
1881}
1882
1883static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1884{
1885 return NULL;
1886}
1887
1888static inline void count_objcg_event(struct obj_cgroup *objcg,
1889 enum vm_event_item idx)
1890{
1891}
1892
1893#endif /* CONFIG_MEMCG_KMEM */
1894
1895#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1896bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1897void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1898void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1899#else
1900static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1901{
1902 return true;
1903}
1904static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1905 size_t size)
1906{
1907}
1908static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1909 size_t size)
1910{
1911}
1912#endif
1913
1914#endif /* _LINUX_MEMCONTROL_H */