at v6.3 47 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/page_counter.h> 18#include <linux/vmpressure.h> 19#include <linux/eventfd.h> 20#include <linux/mm.h> 21#include <linux/vmstat.h> 22#include <linux/writeback.h> 23#include <linux/page-flags.h> 24 25struct mem_cgroup; 26struct obj_cgroup; 27struct page; 28struct mm_struct; 29struct kmem_cache; 30 31/* Cgroup-specific page state, on top of universal node page state */ 32enum memcg_stat_item { 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 34 MEMCG_SOCK, 35 MEMCG_PERCPU_B, 36 MEMCG_VMALLOC, 37 MEMCG_KMEM, 38 MEMCG_ZSWAP_B, 39 MEMCG_ZSWAPPED, 40 MEMCG_NR_STAT, 41}; 42 43enum memcg_memory_event { 44 MEMCG_LOW, 45 MEMCG_HIGH, 46 MEMCG_MAX, 47 MEMCG_OOM, 48 MEMCG_OOM_KILL, 49 MEMCG_OOM_GROUP_KILL, 50 MEMCG_SWAP_HIGH, 51 MEMCG_SWAP_MAX, 52 MEMCG_SWAP_FAIL, 53 MEMCG_NR_MEMORY_EVENTS, 54}; 55 56struct mem_cgroup_reclaim_cookie { 57 pg_data_t *pgdat; 58 unsigned int generation; 59}; 60 61#ifdef CONFIG_MEMCG 62 63#define MEM_CGROUP_ID_SHIFT 16 64#define MEM_CGROUP_ID_MAX USHRT_MAX 65 66struct mem_cgroup_id { 67 int id; 68 refcount_t ref; 69}; 70 71/* 72 * Per memcg event counter is incremented at every pagein/pageout. With THP, 73 * it will be incremented by the number of pages. This counter is used 74 * to trigger some periodic events. This is straightforward and better 75 * than using jiffies etc. to handle periodic memcg event. 76 */ 77enum mem_cgroup_events_target { 78 MEM_CGROUP_TARGET_THRESH, 79 MEM_CGROUP_TARGET_SOFTLIMIT, 80 MEM_CGROUP_NTARGETS, 81}; 82 83struct memcg_vmstats_percpu; 84struct memcg_vmstats; 85 86struct mem_cgroup_reclaim_iter { 87 struct mem_cgroup *position; 88 /* scan generation, increased every round-trip */ 89 unsigned int generation; 90}; 91 92/* 93 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware 94 * shrinkers, which have elements charged to this memcg. 95 */ 96struct shrinker_info { 97 struct rcu_head rcu; 98 atomic_long_t *nr_deferred; 99 unsigned long *map; 100}; 101 102struct lruvec_stats_percpu { 103 /* Local (CPU and cgroup) state */ 104 long state[NR_VM_NODE_STAT_ITEMS]; 105 106 /* Delta calculation for lockless upward propagation */ 107 long state_prev[NR_VM_NODE_STAT_ITEMS]; 108}; 109 110struct lruvec_stats { 111 /* Aggregated (CPU and subtree) state */ 112 long state[NR_VM_NODE_STAT_ITEMS]; 113 114 /* Pending child counts during tree propagation */ 115 long state_pending[NR_VM_NODE_STAT_ITEMS]; 116}; 117 118/* 119 * per-node information in memory controller. 120 */ 121struct mem_cgroup_per_node { 122 struct lruvec lruvec; 123 124 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 125 struct lruvec_stats lruvec_stats; 126 127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 128 129 struct mem_cgroup_reclaim_iter iter; 130 131 struct shrinker_info __rcu *shrinker_info; 132 133 struct rb_node tree_node; /* RB tree node */ 134 unsigned long usage_in_excess;/* Set to the value by which */ 135 /* the soft limit is exceeded*/ 136 bool on_tree; 137 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 138 /* use container_of */ 139}; 140 141struct mem_cgroup_threshold { 142 struct eventfd_ctx *eventfd; 143 unsigned long threshold; 144}; 145 146/* For threshold */ 147struct mem_cgroup_threshold_ary { 148 /* An array index points to threshold just below or equal to usage. */ 149 int current_threshold; 150 /* Size of entries[] */ 151 unsigned int size; 152 /* Array of thresholds */ 153 struct mem_cgroup_threshold entries[]; 154}; 155 156struct mem_cgroup_thresholds { 157 /* Primary thresholds array */ 158 struct mem_cgroup_threshold_ary *primary; 159 /* 160 * Spare threshold array. 161 * This is needed to make mem_cgroup_unregister_event() "never fail". 162 * It must be able to store at least primary->size - 1 entries. 163 */ 164 struct mem_cgroup_threshold_ary *spare; 165}; 166 167/* 168 * Remember four most recent foreign writebacks with dirty pages in this 169 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 170 * one in a given round, we're likely to catch it later if it keeps 171 * foreign-dirtying, so a fairly low count should be enough. 172 * 173 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 174 */ 175#define MEMCG_CGWB_FRN_CNT 4 176 177struct memcg_cgwb_frn { 178 u64 bdi_id; /* bdi->id of the foreign inode */ 179 int memcg_id; /* memcg->css.id of foreign inode */ 180 u64 at; /* jiffies_64 at the time of dirtying */ 181 struct wb_completion done; /* tracks in-flight foreign writebacks */ 182}; 183 184/* 185 * Bucket for arbitrarily byte-sized objects charged to a memory 186 * cgroup. The bucket can be reparented in one piece when the cgroup 187 * is destroyed, without having to round up the individual references 188 * of all live memory objects in the wild. 189 */ 190struct obj_cgroup { 191 struct percpu_ref refcnt; 192 struct mem_cgroup *memcg; 193 atomic_t nr_charged_bytes; 194 union { 195 struct list_head list; /* protected by objcg_lock */ 196 struct rcu_head rcu; 197 }; 198}; 199 200/* 201 * The memory controller data structure. The memory controller controls both 202 * page cache and RSS per cgroup. We would eventually like to provide 203 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 204 * to help the administrator determine what knobs to tune. 205 */ 206struct mem_cgroup { 207 struct cgroup_subsys_state css; 208 209 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 210 struct mem_cgroup_id id; 211 212 /* Accounted resources */ 213 struct page_counter memory; /* Both v1 & v2 */ 214 215 union { 216 struct page_counter swap; /* v2 only */ 217 struct page_counter memsw; /* v1 only */ 218 }; 219 220 /* Legacy consumer-oriented counters */ 221 struct page_counter kmem; /* v1 only */ 222 struct page_counter tcpmem; /* v1 only */ 223 224 /* Range enforcement for interrupt charges */ 225 struct work_struct high_work; 226 227#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 228 unsigned long zswap_max; 229#endif 230 231 unsigned long soft_limit; 232 233 /* vmpressure notifications */ 234 struct vmpressure vmpressure; 235 236 /* 237 * Should the OOM killer kill all belonging tasks, had it kill one? 238 */ 239 bool oom_group; 240 241 /* protected by memcg_oom_lock */ 242 bool oom_lock; 243 int under_oom; 244 245 int swappiness; 246 /* OOM-Killer disable */ 247 int oom_kill_disable; 248 249 /* memory.events and memory.events.local */ 250 struct cgroup_file events_file; 251 struct cgroup_file events_local_file; 252 253 /* handle for "memory.swap.events" */ 254 struct cgroup_file swap_events_file; 255 256 /* protect arrays of thresholds */ 257 struct mutex thresholds_lock; 258 259 /* thresholds for memory usage. RCU-protected */ 260 struct mem_cgroup_thresholds thresholds; 261 262 /* thresholds for mem+swap usage. RCU-protected */ 263 struct mem_cgroup_thresholds memsw_thresholds; 264 265 /* For oom notifier event fd */ 266 struct list_head oom_notify; 267 268 /* 269 * Should we move charges of a task when a task is moved into this 270 * mem_cgroup ? And what type of charges should we move ? 271 */ 272 unsigned long move_charge_at_immigrate; 273 /* taken only while moving_account > 0 */ 274 spinlock_t move_lock; 275 unsigned long move_lock_flags; 276 277 CACHELINE_PADDING(_pad1_); 278 279 /* memory.stat */ 280 struct memcg_vmstats *vmstats; 281 282 /* memory.events */ 283 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 284 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 285 286 unsigned long socket_pressure; 287 288 /* Legacy tcp memory accounting */ 289 bool tcpmem_active; 290 int tcpmem_pressure; 291 292#ifdef CONFIG_MEMCG_KMEM 293 int kmemcg_id; 294 struct obj_cgroup __rcu *objcg; 295 /* list of inherited objcgs, protected by objcg_lock */ 296 struct list_head objcg_list; 297#endif 298 299 CACHELINE_PADDING(_pad2_); 300 301 /* 302 * set > 0 if pages under this cgroup are moving to other cgroup. 303 */ 304 atomic_t moving_account; 305 struct task_struct *move_lock_task; 306 307 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 308 309#ifdef CONFIG_CGROUP_WRITEBACK 310 struct list_head cgwb_list; 311 struct wb_domain cgwb_domain; 312 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 313#endif 314 315 /* List of events which userspace want to receive */ 316 struct list_head event_list; 317 spinlock_t event_list_lock; 318 319#ifdef CONFIG_TRANSPARENT_HUGEPAGE 320 struct deferred_split deferred_split_queue; 321#endif 322 323#ifdef CONFIG_LRU_GEN 324 /* per-memcg mm_struct list */ 325 struct lru_gen_mm_list mm_list; 326#endif 327 328 struct mem_cgroup_per_node *nodeinfo[]; 329}; 330 331/* 332 * size of first charge trial. 333 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 334 * workload. 335 */ 336#define MEMCG_CHARGE_BATCH 64U 337 338extern struct mem_cgroup *root_mem_cgroup; 339 340enum page_memcg_data_flags { 341 /* page->memcg_data is a pointer to an objcgs vector */ 342 MEMCG_DATA_OBJCGS = (1UL << 0), 343 /* page has been accounted as a non-slab kernel page */ 344 MEMCG_DATA_KMEM = (1UL << 1), 345 /* the next bit after the last actual flag */ 346 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 347}; 348 349#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) 350 351static inline bool folio_memcg_kmem(struct folio *folio); 352 353/* 354 * After the initialization objcg->memcg is always pointing at 355 * a valid memcg, but can be atomically swapped to the parent memcg. 356 * 357 * The caller must ensure that the returned memcg won't be released: 358 * e.g. acquire the rcu_read_lock or css_set_lock. 359 */ 360static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 361{ 362 return READ_ONCE(objcg->memcg); 363} 364 365/* 366 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 367 * @folio: Pointer to the folio. 368 * 369 * Returns a pointer to the memory cgroup associated with the folio, 370 * or NULL. This function assumes that the folio is known to have a 371 * proper memory cgroup pointer. It's not safe to call this function 372 * against some type of folios, e.g. slab folios or ex-slab folios or 373 * kmem folios. 374 */ 375static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 376{ 377 unsigned long memcg_data = folio->memcg_data; 378 379 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 380 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 381 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 382 383 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 384} 385 386/* 387 * __folio_objcg - get the object cgroup associated with a kmem folio. 388 * @folio: Pointer to the folio. 389 * 390 * Returns a pointer to the object cgroup associated with the folio, 391 * or NULL. This function assumes that the folio is known to have a 392 * proper object cgroup pointer. It's not safe to call this function 393 * against some type of folios, e.g. slab folios or ex-slab folios or 394 * LRU folios. 395 */ 396static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 397{ 398 unsigned long memcg_data = folio->memcg_data; 399 400 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 401 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 402 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 403 404 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 405} 406 407/* 408 * folio_memcg - Get the memory cgroup associated with a folio. 409 * @folio: Pointer to the folio. 410 * 411 * Returns a pointer to the memory cgroup associated with the folio, 412 * or NULL. This function assumes that the folio is known to have a 413 * proper memory cgroup pointer. It's not safe to call this function 414 * against some type of folios, e.g. slab folios or ex-slab folios. 415 * 416 * For a non-kmem folio any of the following ensures folio and memcg binding 417 * stability: 418 * 419 * - the folio lock 420 * - LRU isolation 421 * - lock_page_memcg() 422 * - exclusive reference 423 * - mem_cgroup_trylock_pages() 424 * 425 * For a kmem folio a caller should hold an rcu read lock to protect memcg 426 * associated with a kmem folio from being released. 427 */ 428static inline struct mem_cgroup *folio_memcg(struct folio *folio) 429{ 430 if (folio_memcg_kmem(folio)) 431 return obj_cgroup_memcg(__folio_objcg(folio)); 432 return __folio_memcg(folio); 433} 434 435static inline struct mem_cgroup *page_memcg(struct page *page) 436{ 437 return folio_memcg(page_folio(page)); 438} 439 440/** 441 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio. 442 * @folio: Pointer to the folio. 443 * 444 * This function assumes that the folio is known to have a 445 * proper memory cgroup pointer. It's not safe to call this function 446 * against some type of folios, e.g. slab folios or ex-slab folios. 447 * 448 * Return: A pointer to the memory cgroup associated with the folio, 449 * or NULL. 450 */ 451static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 452{ 453 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 454 455 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 456 WARN_ON_ONCE(!rcu_read_lock_held()); 457 458 if (memcg_data & MEMCG_DATA_KMEM) { 459 struct obj_cgroup *objcg; 460 461 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 462 return obj_cgroup_memcg(objcg); 463 } 464 465 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 466} 467 468/* 469 * folio_memcg_check - Get the memory cgroup associated with a folio. 470 * @folio: Pointer to the folio. 471 * 472 * Returns a pointer to the memory cgroup associated with the folio, 473 * or NULL. This function unlike folio_memcg() can take any folio 474 * as an argument. It has to be used in cases when it's not known if a folio 475 * has an associated memory cgroup pointer or an object cgroups vector or 476 * an object cgroup. 477 * 478 * For a non-kmem folio any of the following ensures folio and memcg binding 479 * stability: 480 * 481 * - the folio lock 482 * - LRU isolation 483 * - lock_folio_memcg() 484 * - exclusive reference 485 * - mem_cgroup_trylock_pages() 486 * 487 * For a kmem folio a caller should hold an rcu read lock to protect memcg 488 * associated with a kmem folio from being released. 489 */ 490static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 491{ 492 /* 493 * Because folio->memcg_data might be changed asynchronously 494 * for slabs, READ_ONCE() should be used here. 495 */ 496 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 497 498 if (memcg_data & MEMCG_DATA_OBJCGS) 499 return NULL; 500 501 if (memcg_data & MEMCG_DATA_KMEM) { 502 struct obj_cgroup *objcg; 503 504 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 505 return obj_cgroup_memcg(objcg); 506 } 507 508 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 509} 510 511static inline struct mem_cgroup *page_memcg_check(struct page *page) 512{ 513 if (PageTail(page)) 514 return NULL; 515 return folio_memcg_check((struct folio *)page); 516} 517 518static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 519{ 520 struct mem_cgroup *memcg; 521 522 rcu_read_lock(); 523retry: 524 memcg = obj_cgroup_memcg(objcg); 525 if (unlikely(!css_tryget(&memcg->css))) 526 goto retry; 527 rcu_read_unlock(); 528 529 return memcg; 530} 531 532#ifdef CONFIG_MEMCG_KMEM 533/* 534 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 535 * @folio: Pointer to the folio. 536 * 537 * Checks if the folio has MemcgKmem flag set. The caller must ensure 538 * that the folio has an associated memory cgroup. It's not safe to call 539 * this function against some types of folios, e.g. slab folios. 540 */ 541static inline bool folio_memcg_kmem(struct folio *folio) 542{ 543 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 544 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio); 545 return folio->memcg_data & MEMCG_DATA_KMEM; 546} 547 548 549#else 550static inline bool folio_memcg_kmem(struct folio *folio) 551{ 552 return false; 553} 554 555#endif 556 557static inline bool PageMemcgKmem(struct page *page) 558{ 559 return folio_memcg_kmem(page_folio(page)); 560} 561 562static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 563{ 564 return (memcg == root_mem_cgroup); 565} 566 567static inline bool mem_cgroup_disabled(void) 568{ 569 return !cgroup_subsys_enabled(memory_cgrp_subsys); 570} 571 572static inline void mem_cgroup_protection(struct mem_cgroup *root, 573 struct mem_cgroup *memcg, 574 unsigned long *min, 575 unsigned long *low) 576{ 577 *min = *low = 0; 578 579 if (mem_cgroup_disabled()) 580 return; 581 582 /* 583 * There is no reclaim protection applied to a targeted reclaim. 584 * We are special casing this specific case here because 585 * mem_cgroup_protected calculation is not robust enough to keep 586 * the protection invariant for calculated effective values for 587 * parallel reclaimers with different reclaim target. This is 588 * especially a problem for tail memcgs (as they have pages on LRU) 589 * which would want to have effective values 0 for targeted reclaim 590 * but a different value for external reclaim. 591 * 592 * Example 593 * Let's have global and A's reclaim in parallel: 594 * | 595 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 596 * |\ 597 * | C (low = 1G, usage = 2.5G) 598 * B (low = 1G, usage = 0.5G) 599 * 600 * For the global reclaim 601 * A.elow = A.low 602 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 603 * C.elow = min(C.usage, C.low) 604 * 605 * With the effective values resetting we have A reclaim 606 * A.elow = 0 607 * B.elow = B.low 608 * C.elow = C.low 609 * 610 * If the global reclaim races with A's reclaim then 611 * B.elow = C.elow = 0 because children_low_usage > A.elow) 612 * is possible and reclaiming B would be violating the protection. 613 * 614 */ 615 if (root == memcg) 616 return; 617 618 *min = READ_ONCE(memcg->memory.emin); 619 *low = READ_ONCE(memcg->memory.elow); 620} 621 622void mem_cgroup_calculate_protection(struct mem_cgroup *root, 623 struct mem_cgroup *memcg); 624 625static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 626 struct mem_cgroup *memcg) 627{ 628 /* 629 * The root memcg doesn't account charges, and doesn't support 630 * protection. The target memcg's protection is ignored, see 631 * mem_cgroup_calculate_protection() and mem_cgroup_protection() 632 */ 633 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || 634 memcg == target; 635} 636 637static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 638 struct mem_cgroup *memcg) 639{ 640 if (mem_cgroup_unprotected(target, memcg)) 641 return false; 642 643 return READ_ONCE(memcg->memory.elow) >= 644 page_counter_read(&memcg->memory); 645} 646 647static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 648 struct mem_cgroup *memcg) 649{ 650 if (mem_cgroup_unprotected(target, memcg)) 651 return false; 652 653 return READ_ONCE(memcg->memory.emin) >= 654 page_counter_read(&memcg->memory); 655} 656 657int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 658 659/** 660 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 661 * @folio: Folio to charge. 662 * @mm: mm context of the allocating task. 663 * @gfp: Reclaim mode. 664 * 665 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 666 * pages according to @gfp if necessary. If @mm is NULL, try to 667 * charge to the active memcg. 668 * 669 * Do not use this for folios allocated for swapin. 670 * 671 * Return: 0 on success. Otherwise, an error code is returned. 672 */ 673static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 674 gfp_t gfp) 675{ 676 if (mem_cgroup_disabled()) 677 return 0; 678 return __mem_cgroup_charge(folio, mm, gfp); 679} 680 681int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 682 gfp_t gfp, swp_entry_t entry); 683void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 684 685void __mem_cgroup_uncharge(struct folio *folio); 686 687/** 688 * mem_cgroup_uncharge - Uncharge a folio. 689 * @folio: Folio to uncharge. 690 * 691 * Uncharge a folio previously charged with mem_cgroup_charge(). 692 */ 693static inline void mem_cgroup_uncharge(struct folio *folio) 694{ 695 if (mem_cgroup_disabled()) 696 return; 697 __mem_cgroup_uncharge(folio); 698} 699 700void __mem_cgroup_uncharge_list(struct list_head *page_list); 701static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 702{ 703 if (mem_cgroup_disabled()) 704 return; 705 __mem_cgroup_uncharge_list(page_list); 706} 707 708void mem_cgroup_migrate(struct folio *old, struct folio *new); 709 710/** 711 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 712 * @memcg: memcg of the wanted lruvec 713 * @pgdat: pglist_data 714 * 715 * Returns the lru list vector holding pages for a given @memcg & 716 * @pgdat combination. This can be the node lruvec, if the memory 717 * controller is disabled. 718 */ 719static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 720 struct pglist_data *pgdat) 721{ 722 struct mem_cgroup_per_node *mz; 723 struct lruvec *lruvec; 724 725 if (mem_cgroup_disabled()) { 726 lruvec = &pgdat->__lruvec; 727 goto out; 728 } 729 730 if (!memcg) 731 memcg = root_mem_cgroup; 732 733 mz = memcg->nodeinfo[pgdat->node_id]; 734 lruvec = &mz->lruvec; 735out: 736 /* 737 * Since a node can be onlined after the mem_cgroup was created, 738 * we have to be prepared to initialize lruvec->pgdat here; 739 * and if offlined then reonlined, we need to reinitialize it. 740 */ 741 if (unlikely(lruvec->pgdat != pgdat)) 742 lruvec->pgdat = pgdat; 743 return lruvec; 744} 745 746/** 747 * folio_lruvec - return lruvec for isolating/putting an LRU folio 748 * @folio: Pointer to the folio. 749 * 750 * This function relies on folio->mem_cgroup being stable. 751 */ 752static inline struct lruvec *folio_lruvec(struct folio *folio) 753{ 754 struct mem_cgroup *memcg = folio_memcg(folio); 755 756 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 757 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 758} 759 760struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 761 762struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 763 764struct lruvec *folio_lruvec_lock(struct folio *folio); 765struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 766struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 767 unsigned long *flags); 768 769#ifdef CONFIG_DEBUG_VM 770void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 771#else 772static inline 773void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 774{ 775} 776#endif 777 778static inline 779struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 780 return css ? container_of(css, struct mem_cgroup, css) : NULL; 781} 782 783static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 784{ 785 return percpu_ref_tryget(&objcg->refcnt); 786} 787 788static inline void obj_cgroup_get(struct obj_cgroup *objcg) 789{ 790 percpu_ref_get(&objcg->refcnt); 791} 792 793static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 794 unsigned long nr) 795{ 796 percpu_ref_get_many(&objcg->refcnt, nr); 797} 798 799static inline void obj_cgroup_put(struct obj_cgroup *objcg) 800{ 801 percpu_ref_put(&objcg->refcnt); 802} 803 804static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 805{ 806 return !memcg || css_tryget(&memcg->css); 807} 808 809static inline void mem_cgroup_put(struct mem_cgroup *memcg) 810{ 811 if (memcg) 812 css_put(&memcg->css); 813} 814 815#define mem_cgroup_from_counter(counter, member) \ 816 container_of(counter, struct mem_cgroup, member) 817 818struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 819 struct mem_cgroup *, 820 struct mem_cgroup_reclaim_cookie *); 821void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 822int mem_cgroup_scan_tasks(struct mem_cgroup *, 823 int (*)(struct task_struct *, void *), void *); 824 825static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 826{ 827 if (mem_cgroup_disabled()) 828 return 0; 829 830 return memcg->id.id; 831} 832struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 833 834#ifdef CONFIG_SHRINKER_DEBUG 835static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 836{ 837 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 838} 839 840struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 841#endif 842 843static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 844{ 845 return mem_cgroup_from_css(seq_css(m)); 846} 847 848static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 849{ 850 struct mem_cgroup_per_node *mz; 851 852 if (mem_cgroup_disabled()) 853 return NULL; 854 855 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 856 return mz->memcg; 857} 858 859/** 860 * parent_mem_cgroup - find the accounting parent of a memcg 861 * @memcg: memcg whose parent to find 862 * 863 * Returns the parent memcg, or NULL if this is the root or the memory 864 * controller is in legacy no-hierarchy mode. 865 */ 866static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 867{ 868 return mem_cgroup_from_css(memcg->css.parent); 869} 870 871static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 872 struct mem_cgroup *root) 873{ 874 if (root == memcg) 875 return true; 876 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 877} 878 879static inline bool mm_match_cgroup(struct mm_struct *mm, 880 struct mem_cgroup *memcg) 881{ 882 struct mem_cgroup *task_memcg; 883 bool match = false; 884 885 rcu_read_lock(); 886 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 887 if (task_memcg) 888 match = mem_cgroup_is_descendant(task_memcg, memcg); 889 rcu_read_unlock(); 890 return match; 891} 892 893struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio); 894ino_t page_cgroup_ino(struct page *page); 895 896static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 897{ 898 if (mem_cgroup_disabled()) 899 return true; 900 return !!(memcg->css.flags & CSS_ONLINE); 901} 902 903void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 904 int zid, int nr_pages); 905 906static inline 907unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 908 enum lru_list lru, int zone_idx) 909{ 910 struct mem_cgroup_per_node *mz; 911 912 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 913 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 914} 915 916void mem_cgroup_handle_over_high(void); 917 918unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 919 920unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 921 922void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 923 struct task_struct *p); 924 925void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 926 927static inline void mem_cgroup_enter_user_fault(void) 928{ 929 WARN_ON(current->in_user_fault); 930 current->in_user_fault = 1; 931} 932 933static inline void mem_cgroup_exit_user_fault(void) 934{ 935 WARN_ON(!current->in_user_fault); 936 current->in_user_fault = 0; 937} 938 939static inline bool task_in_memcg_oom(struct task_struct *p) 940{ 941 return p->memcg_in_oom; 942} 943 944bool mem_cgroup_oom_synchronize(bool wait); 945struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 946 struct mem_cgroup *oom_domain); 947void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 948 949void folio_memcg_lock(struct folio *folio); 950void folio_memcg_unlock(struct folio *folio); 951void lock_page_memcg(struct page *page); 952void unlock_page_memcg(struct page *page); 953 954void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 955 956/* try to stablize folio_memcg() for all the pages in a memcg */ 957static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 958{ 959 rcu_read_lock(); 960 961 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account)) 962 return true; 963 964 rcu_read_unlock(); 965 return false; 966} 967 968static inline void mem_cgroup_unlock_pages(void) 969{ 970 rcu_read_unlock(); 971} 972 973/* idx can be of type enum memcg_stat_item or node_stat_item */ 974static inline void mod_memcg_state(struct mem_cgroup *memcg, 975 int idx, int val) 976{ 977 unsigned long flags; 978 979 local_irq_save(flags); 980 __mod_memcg_state(memcg, idx, val); 981 local_irq_restore(flags); 982} 983 984static inline void mod_memcg_page_state(struct page *page, 985 int idx, int val) 986{ 987 struct mem_cgroup *memcg; 988 989 if (mem_cgroup_disabled()) 990 return; 991 992 rcu_read_lock(); 993 memcg = page_memcg(page); 994 if (memcg) 995 mod_memcg_state(memcg, idx, val); 996 rcu_read_unlock(); 997} 998 999unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 1000 1001static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1002 enum node_stat_item idx) 1003{ 1004 struct mem_cgroup_per_node *pn; 1005 long x; 1006 1007 if (mem_cgroup_disabled()) 1008 return node_page_state(lruvec_pgdat(lruvec), idx); 1009 1010 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1011 x = READ_ONCE(pn->lruvec_stats.state[idx]); 1012#ifdef CONFIG_SMP 1013 if (x < 0) 1014 x = 0; 1015#endif 1016 return x; 1017} 1018 1019static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1020 enum node_stat_item idx) 1021{ 1022 struct mem_cgroup_per_node *pn; 1023 long x = 0; 1024 int cpu; 1025 1026 if (mem_cgroup_disabled()) 1027 return node_page_state(lruvec_pgdat(lruvec), idx); 1028 1029 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1030 for_each_possible_cpu(cpu) 1031 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu); 1032#ifdef CONFIG_SMP 1033 if (x < 0) 1034 x = 0; 1035#endif 1036 return x; 1037} 1038 1039void mem_cgroup_flush_stats(void); 1040void mem_cgroup_flush_stats_delayed(void); 1041 1042void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 1043 int val); 1044void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 1045 1046static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1047 int val) 1048{ 1049 unsigned long flags; 1050 1051 local_irq_save(flags); 1052 __mod_lruvec_kmem_state(p, idx, val); 1053 local_irq_restore(flags); 1054} 1055 1056static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 1057 enum node_stat_item idx, int val) 1058{ 1059 unsigned long flags; 1060 1061 local_irq_save(flags); 1062 __mod_memcg_lruvec_state(lruvec, idx, val); 1063 local_irq_restore(flags); 1064} 1065 1066void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1067 unsigned long count); 1068 1069static inline void count_memcg_events(struct mem_cgroup *memcg, 1070 enum vm_event_item idx, 1071 unsigned long count) 1072{ 1073 unsigned long flags; 1074 1075 local_irq_save(flags); 1076 __count_memcg_events(memcg, idx, count); 1077 local_irq_restore(flags); 1078} 1079 1080static inline void count_memcg_page_event(struct page *page, 1081 enum vm_event_item idx) 1082{ 1083 struct mem_cgroup *memcg = page_memcg(page); 1084 1085 if (memcg) 1086 count_memcg_events(memcg, idx, 1); 1087} 1088 1089static inline void count_memcg_folio_events(struct folio *folio, 1090 enum vm_event_item idx, unsigned long nr) 1091{ 1092 struct mem_cgroup *memcg = folio_memcg(folio); 1093 1094 if (memcg) 1095 count_memcg_events(memcg, idx, nr); 1096} 1097 1098static inline void count_memcg_event_mm(struct mm_struct *mm, 1099 enum vm_event_item idx) 1100{ 1101 struct mem_cgroup *memcg; 1102 1103 if (mem_cgroup_disabled()) 1104 return; 1105 1106 rcu_read_lock(); 1107 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1108 if (likely(memcg)) 1109 count_memcg_events(memcg, idx, 1); 1110 rcu_read_unlock(); 1111} 1112 1113static inline void memcg_memory_event(struct mem_cgroup *memcg, 1114 enum memcg_memory_event event) 1115{ 1116 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1117 event == MEMCG_SWAP_FAIL; 1118 1119 atomic_long_inc(&memcg->memory_events_local[event]); 1120 if (!swap_event) 1121 cgroup_file_notify(&memcg->events_local_file); 1122 1123 do { 1124 atomic_long_inc(&memcg->memory_events[event]); 1125 if (swap_event) 1126 cgroup_file_notify(&memcg->swap_events_file); 1127 else 1128 cgroup_file_notify(&memcg->events_file); 1129 1130 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1131 break; 1132 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1133 break; 1134 } while ((memcg = parent_mem_cgroup(memcg)) && 1135 !mem_cgroup_is_root(memcg)); 1136} 1137 1138static inline void memcg_memory_event_mm(struct mm_struct *mm, 1139 enum memcg_memory_event event) 1140{ 1141 struct mem_cgroup *memcg; 1142 1143 if (mem_cgroup_disabled()) 1144 return; 1145 1146 rcu_read_lock(); 1147 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1148 if (likely(memcg)) 1149 memcg_memory_event(memcg, event); 1150 rcu_read_unlock(); 1151} 1152 1153void split_page_memcg(struct page *head, unsigned int nr); 1154 1155unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1156 gfp_t gfp_mask, 1157 unsigned long *total_scanned); 1158 1159#else /* CONFIG_MEMCG */ 1160 1161#define MEM_CGROUP_ID_SHIFT 0 1162#define MEM_CGROUP_ID_MAX 0 1163 1164static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1165{ 1166 return NULL; 1167} 1168 1169static inline struct mem_cgroup *page_memcg(struct page *page) 1170{ 1171 return NULL; 1172} 1173 1174static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 1175{ 1176 WARN_ON_ONCE(!rcu_read_lock_held()); 1177 return NULL; 1178} 1179 1180static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 1181{ 1182 return NULL; 1183} 1184 1185static inline struct mem_cgroup *page_memcg_check(struct page *page) 1186{ 1187 return NULL; 1188} 1189 1190static inline bool folio_memcg_kmem(struct folio *folio) 1191{ 1192 return false; 1193} 1194 1195static inline bool PageMemcgKmem(struct page *page) 1196{ 1197 return false; 1198} 1199 1200static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1201{ 1202 return true; 1203} 1204 1205static inline bool mem_cgroup_disabled(void) 1206{ 1207 return true; 1208} 1209 1210static inline void memcg_memory_event(struct mem_cgroup *memcg, 1211 enum memcg_memory_event event) 1212{ 1213} 1214 1215static inline void memcg_memory_event_mm(struct mm_struct *mm, 1216 enum memcg_memory_event event) 1217{ 1218} 1219 1220static inline void mem_cgroup_protection(struct mem_cgroup *root, 1221 struct mem_cgroup *memcg, 1222 unsigned long *min, 1223 unsigned long *low) 1224{ 1225 *min = *low = 0; 1226} 1227 1228static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1229 struct mem_cgroup *memcg) 1230{ 1231} 1232 1233static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 1234 struct mem_cgroup *memcg) 1235{ 1236 return true; 1237} 1238static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 1239 struct mem_cgroup *memcg) 1240{ 1241 return false; 1242} 1243 1244static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 1245 struct mem_cgroup *memcg) 1246{ 1247 return false; 1248} 1249 1250static inline int mem_cgroup_charge(struct folio *folio, 1251 struct mm_struct *mm, gfp_t gfp) 1252{ 1253 return 0; 1254} 1255 1256static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1257 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1258{ 1259 return 0; 1260} 1261 1262static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1263{ 1264} 1265 1266static inline void mem_cgroup_uncharge(struct folio *folio) 1267{ 1268} 1269 1270static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 1271{ 1272} 1273 1274static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1275{ 1276} 1277 1278static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1279 struct pglist_data *pgdat) 1280{ 1281 return &pgdat->__lruvec; 1282} 1283 1284static inline struct lruvec *folio_lruvec(struct folio *folio) 1285{ 1286 struct pglist_data *pgdat = folio_pgdat(folio); 1287 return &pgdat->__lruvec; 1288} 1289 1290static inline 1291void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1292{ 1293} 1294 1295static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1296{ 1297 return NULL; 1298} 1299 1300static inline bool mm_match_cgroup(struct mm_struct *mm, 1301 struct mem_cgroup *memcg) 1302{ 1303 return true; 1304} 1305 1306static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1307{ 1308 return NULL; 1309} 1310 1311static inline 1312struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1313{ 1314 return NULL; 1315} 1316 1317static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1318{ 1319} 1320 1321static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 1322{ 1323 return true; 1324} 1325 1326static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1327{ 1328} 1329 1330static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1331{ 1332 struct pglist_data *pgdat = folio_pgdat(folio); 1333 1334 spin_lock(&pgdat->__lruvec.lru_lock); 1335 return &pgdat->__lruvec; 1336} 1337 1338static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1339{ 1340 struct pglist_data *pgdat = folio_pgdat(folio); 1341 1342 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1343 return &pgdat->__lruvec; 1344} 1345 1346static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1347 unsigned long *flagsp) 1348{ 1349 struct pglist_data *pgdat = folio_pgdat(folio); 1350 1351 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1352 return &pgdat->__lruvec; 1353} 1354 1355static inline struct mem_cgroup * 1356mem_cgroup_iter(struct mem_cgroup *root, 1357 struct mem_cgroup *prev, 1358 struct mem_cgroup_reclaim_cookie *reclaim) 1359{ 1360 return NULL; 1361} 1362 1363static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1364 struct mem_cgroup *prev) 1365{ 1366} 1367 1368static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1369 int (*fn)(struct task_struct *, void *), void *arg) 1370{ 1371 return 0; 1372} 1373 1374static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1375{ 1376 return 0; 1377} 1378 1379static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1380{ 1381 WARN_ON_ONCE(id); 1382 /* XXX: This should always return root_mem_cgroup */ 1383 return NULL; 1384} 1385 1386#ifdef CONFIG_SHRINKER_DEBUG 1387static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1388{ 1389 return 0; 1390} 1391 1392static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1393{ 1394 return NULL; 1395} 1396#endif 1397 1398static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1399{ 1400 return NULL; 1401} 1402 1403static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1404{ 1405 return NULL; 1406} 1407 1408static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1409{ 1410 return true; 1411} 1412 1413static inline 1414unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1415 enum lru_list lru, int zone_idx) 1416{ 1417 return 0; 1418} 1419 1420static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1421{ 1422 return 0; 1423} 1424 1425static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1426{ 1427 return 0; 1428} 1429 1430static inline void 1431mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1432{ 1433} 1434 1435static inline void 1436mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1437{ 1438} 1439 1440static inline void lock_page_memcg(struct page *page) 1441{ 1442} 1443 1444static inline void unlock_page_memcg(struct page *page) 1445{ 1446} 1447 1448static inline void folio_memcg_lock(struct folio *folio) 1449{ 1450} 1451 1452static inline void folio_memcg_unlock(struct folio *folio) 1453{ 1454} 1455 1456static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1457{ 1458 /* to match folio_memcg_rcu() */ 1459 rcu_read_lock(); 1460 return true; 1461} 1462 1463static inline void mem_cgroup_unlock_pages(void) 1464{ 1465 rcu_read_unlock(); 1466} 1467 1468static inline void mem_cgroup_handle_over_high(void) 1469{ 1470} 1471 1472static inline void mem_cgroup_enter_user_fault(void) 1473{ 1474} 1475 1476static inline void mem_cgroup_exit_user_fault(void) 1477{ 1478} 1479 1480static inline bool task_in_memcg_oom(struct task_struct *p) 1481{ 1482 return false; 1483} 1484 1485static inline bool mem_cgroup_oom_synchronize(bool wait) 1486{ 1487 return false; 1488} 1489 1490static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1491 struct task_struct *victim, struct mem_cgroup *oom_domain) 1492{ 1493 return NULL; 1494} 1495 1496static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1497{ 1498} 1499 1500static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1501 int idx, 1502 int nr) 1503{ 1504} 1505 1506static inline void mod_memcg_state(struct mem_cgroup *memcg, 1507 int idx, 1508 int nr) 1509{ 1510} 1511 1512static inline void mod_memcg_page_state(struct page *page, 1513 int idx, int val) 1514{ 1515} 1516 1517static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1518{ 1519 return 0; 1520} 1521 1522static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1523 enum node_stat_item idx) 1524{ 1525 return node_page_state(lruvec_pgdat(lruvec), idx); 1526} 1527 1528static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1529 enum node_stat_item idx) 1530{ 1531 return node_page_state(lruvec_pgdat(lruvec), idx); 1532} 1533 1534static inline void mem_cgroup_flush_stats(void) 1535{ 1536} 1537 1538static inline void mem_cgroup_flush_stats_delayed(void) 1539{ 1540} 1541 1542static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1543 enum node_stat_item idx, int val) 1544{ 1545} 1546 1547static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1548 int val) 1549{ 1550 struct page *page = virt_to_head_page(p); 1551 1552 __mod_node_page_state(page_pgdat(page), idx, val); 1553} 1554 1555static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1556 int val) 1557{ 1558 struct page *page = virt_to_head_page(p); 1559 1560 mod_node_page_state(page_pgdat(page), idx, val); 1561} 1562 1563static inline void count_memcg_events(struct mem_cgroup *memcg, 1564 enum vm_event_item idx, 1565 unsigned long count) 1566{ 1567} 1568 1569static inline void __count_memcg_events(struct mem_cgroup *memcg, 1570 enum vm_event_item idx, 1571 unsigned long count) 1572{ 1573} 1574 1575static inline void count_memcg_page_event(struct page *page, 1576 int idx) 1577{ 1578} 1579 1580static inline void count_memcg_folio_events(struct folio *folio, 1581 enum vm_event_item idx, unsigned long nr) 1582{ 1583} 1584 1585static inline 1586void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1587{ 1588} 1589 1590static inline void split_page_memcg(struct page *head, unsigned int nr) 1591{ 1592} 1593 1594static inline 1595unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1596 gfp_t gfp_mask, 1597 unsigned long *total_scanned) 1598{ 1599 return 0; 1600} 1601#endif /* CONFIG_MEMCG */ 1602 1603static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1604{ 1605 __mod_lruvec_kmem_state(p, idx, 1); 1606} 1607 1608static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1609{ 1610 __mod_lruvec_kmem_state(p, idx, -1); 1611} 1612 1613static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1614{ 1615 struct mem_cgroup *memcg; 1616 1617 memcg = lruvec_memcg(lruvec); 1618 if (!memcg) 1619 return NULL; 1620 memcg = parent_mem_cgroup(memcg); 1621 if (!memcg) 1622 return NULL; 1623 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1624} 1625 1626static inline void unlock_page_lruvec(struct lruvec *lruvec) 1627{ 1628 spin_unlock(&lruvec->lru_lock); 1629} 1630 1631static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1632{ 1633 spin_unlock_irq(&lruvec->lru_lock); 1634} 1635 1636static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1637 unsigned long flags) 1638{ 1639 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1640} 1641 1642/* Test requires a stable page->memcg binding, see page_memcg() */ 1643static inline bool folio_matches_lruvec(struct folio *folio, 1644 struct lruvec *lruvec) 1645{ 1646 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1647 lruvec_memcg(lruvec) == folio_memcg(folio); 1648} 1649 1650/* Don't lock again iff page's lruvec locked */ 1651static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1652 struct lruvec *locked_lruvec) 1653{ 1654 if (locked_lruvec) { 1655 if (folio_matches_lruvec(folio, locked_lruvec)) 1656 return locked_lruvec; 1657 1658 unlock_page_lruvec_irq(locked_lruvec); 1659 } 1660 1661 return folio_lruvec_lock_irq(folio); 1662} 1663 1664/* Don't lock again iff page's lruvec locked */ 1665static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio, 1666 struct lruvec *locked_lruvec, unsigned long *flags) 1667{ 1668 if (locked_lruvec) { 1669 if (folio_matches_lruvec(folio, locked_lruvec)) 1670 return locked_lruvec; 1671 1672 unlock_page_lruvec_irqrestore(locked_lruvec, *flags); 1673 } 1674 1675 return folio_lruvec_lock_irqsave(folio, flags); 1676} 1677 1678#ifdef CONFIG_CGROUP_WRITEBACK 1679 1680struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1681void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1682 unsigned long *pheadroom, unsigned long *pdirty, 1683 unsigned long *pwriteback); 1684 1685void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1686 struct bdi_writeback *wb); 1687 1688static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1689 struct bdi_writeback *wb) 1690{ 1691 struct mem_cgroup *memcg; 1692 1693 if (mem_cgroup_disabled()) 1694 return; 1695 1696 memcg = folio_memcg(folio); 1697 if (unlikely(memcg && &memcg->css != wb->memcg_css)) 1698 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1699} 1700 1701void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1702 1703#else /* CONFIG_CGROUP_WRITEBACK */ 1704 1705static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1706{ 1707 return NULL; 1708} 1709 1710static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1711 unsigned long *pfilepages, 1712 unsigned long *pheadroom, 1713 unsigned long *pdirty, 1714 unsigned long *pwriteback) 1715{ 1716} 1717 1718static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1719 struct bdi_writeback *wb) 1720{ 1721} 1722 1723static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1724{ 1725} 1726 1727#endif /* CONFIG_CGROUP_WRITEBACK */ 1728 1729struct sock; 1730bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1731 gfp_t gfp_mask); 1732void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1733#ifdef CONFIG_MEMCG 1734extern struct static_key_false memcg_sockets_enabled_key; 1735#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1736void mem_cgroup_sk_alloc(struct sock *sk); 1737void mem_cgroup_sk_free(struct sock *sk); 1738static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1739{ 1740 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1741 return true; 1742 do { 1743 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure))) 1744 return true; 1745 } while ((memcg = parent_mem_cgroup(memcg))); 1746 return false; 1747} 1748 1749int alloc_shrinker_info(struct mem_cgroup *memcg); 1750void free_shrinker_info(struct mem_cgroup *memcg); 1751void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1752void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1753#else 1754#define mem_cgroup_sockets_enabled 0 1755static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1756static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1757static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1758{ 1759 return false; 1760} 1761 1762static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1763 int nid, int shrinker_id) 1764{ 1765} 1766#endif 1767 1768#ifdef CONFIG_MEMCG_KMEM 1769bool mem_cgroup_kmem_disabled(void); 1770int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1771void __memcg_kmem_uncharge_page(struct page *page, int order); 1772 1773struct obj_cgroup *get_obj_cgroup_from_current(void); 1774struct obj_cgroup *get_obj_cgroup_from_page(struct page *page); 1775 1776int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1777void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1778 1779extern struct static_key_false memcg_bpf_enabled_key; 1780static inline bool memcg_bpf_enabled(void) 1781{ 1782 return static_branch_likely(&memcg_bpf_enabled_key); 1783} 1784 1785extern struct static_key_false memcg_kmem_online_key; 1786 1787static inline bool memcg_kmem_online(void) 1788{ 1789 return static_branch_likely(&memcg_kmem_online_key); 1790} 1791 1792static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1793 int order) 1794{ 1795 if (memcg_kmem_online()) 1796 return __memcg_kmem_charge_page(page, gfp, order); 1797 return 0; 1798} 1799 1800static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1801{ 1802 if (memcg_kmem_online()) 1803 __memcg_kmem_uncharge_page(page, order); 1804} 1805 1806/* 1807 * A helper for accessing memcg's kmem_id, used for getting 1808 * corresponding LRU lists. 1809 */ 1810static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1811{ 1812 return memcg ? memcg->kmemcg_id : -1; 1813} 1814 1815struct mem_cgroup *mem_cgroup_from_obj(void *p); 1816struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1817 1818static inline void count_objcg_event(struct obj_cgroup *objcg, 1819 enum vm_event_item idx) 1820{ 1821 struct mem_cgroup *memcg; 1822 1823 if (!memcg_kmem_online()) 1824 return; 1825 1826 rcu_read_lock(); 1827 memcg = obj_cgroup_memcg(objcg); 1828 count_memcg_events(memcg, idx, 1); 1829 rcu_read_unlock(); 1830} 1831 1832#else 1833static inline bool mem_cgroup_kmem_disabled(void) 1834{ 1835 return true; 1836} 1837 1838static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1839 int order) 1840{ 1841 return 0; 1842} 1843 1844static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1845{ 1846} 1847 1848static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1849 int order) 1850{ 1851 return 0; 1852} 1853 1854static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1855{ 1856} 1857 1858static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page) 1859{ 1860 return NULL; 1861} 1862 1863static inline bool memcg_bpf_enabled(void) 1864{ 1865 return false; 1866} 1867 1868static inline bool memcg_kmem_online(void) 1869{ 1870 return false; 1871} 1872 1873static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1874{ 1875 return -1; 1876} 1877 1878static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1879{ 1880 return NULL; 1881} 1882 1883static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1884{ 1885 return NULL; 1886} 1887 1888static inline void count_objcg_event(struct obj_cgroup *objcg, 1889 enum vm_event_item idx) 1890{ 1891} 1892 1893#endif /* CONFIG_MEMCG_KMEM */ 1894 1895#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1896bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1897void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1898void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1899#else 1900static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1901{ 1902 return true; 1903} 1904static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1905 size_t size) 1906{ 1907} 1908static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1909 size_t size) 1910{ 1911} 1912#endif 1913 1914#endif /* _LINUX_MEMCONTROL_H */