Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/sched/stat.h>
14#include <linux/bug.h>
15#include <linux/minmax.h>
16#include <linux/mm.h>
17#include <linux/mmu_notifier.h>
18#include <linux/preempt.h>
19#include <linux/msi.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/rcupdate.h>
23#include <linux/ratelimit.h>
24#include <linux/err.h>
25#include <linux/irqflags.h>
26#include <linux/context_tracking.h>
27#include <linux/irqbypass.h>
28#include <linux/rcuwait.h>
29#include <linux/refcount.h>
30#include <linux/nospec.h>
31#include <linux/notifier.h>
32#include <linux/ftrace.h>
33#include <linux/hashtable.h>
34#include <linux/instrumentation.h>
35#include <linux/interval_tree.h>
36#include <linux/rbtree.h>
37#include <linux/xarray.h>
38#include <asm/signal.h>
39
40#include <linux/kvm.h>
41#include <linux/kvm_para.h>
42
43#include <linux/kvm_types.h>
44
45#include <asm/kvm_host.h>
46#include <linux/kvm_dirty_ring.h>
47
48#ifndef KVM_MAX_VCPU_IDS
49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50#endif
51
52/*
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
56 */
57#define KVM_MEMSLOT_INVALID (1UL << 16)
58
59/*
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of install_new_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
79
80/* Two fragments for cross MMIO pages. */
81#define KVM_MAX_MMIO_FRAGMENTS 2
82
83#ifndef KVM_ADDRESS_SPACE_NUM
84#define KVM_ADDRESS_SPACE_NUM 1
85#endif
86
87/*
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
91 */
92#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94#define KVM_PFN_NOSLOT (0x1ULL << 63)
95
96#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99#define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
100
101/*
102 * error pfns indicate that the gfn is in slot but faild to
103 * translate it to pfn on host.
104 */
105static inline bool is_error_pfn(kvm_pfn_t pfn)
106{
107 return !!(pfn & KVM_PFN_ERR_MASK);
108}
109
110/*
111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112 * by a pending signal. Note, the signal may or may not be fatal.
113 */
114static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115{
116 return pfn == KVM_PFN_ERR_SIGPENDING;
117}
118
119/*
120 * error_noslot pfns indicate that the gfn can not be
121 * translated to pfn - it is not in slot or failed to
122 * translate it to pfn.
123 */
124static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125{
126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127}
128
129/* noslot pfn indicates that the gfn is not in slot. */
130static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131{
132 return pfn == KVM_PFN_NOSLOT;
133}
134
135/*
136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137 * provide own defines and kvm_is_error_hva
138 */
139#ifndef KVM_HVA_ERR_BAD
140
141#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
142#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
143
144static inline bool kvm_is_error_hva(unsigned long addr)
145{
146 return addr >= PAGE_OFFSET;
147}
148
149#endif
150
151#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
152
153static inline bool is_error_page(struct page *page)
154{
155 return IS_ERR(page);
156}
157
158#define KVM_REQUEST_MASK GENMASK(7,0)
159#define KVM_REQUEST_NO_WAKEUP BIT(8)
160#define KVM_REQUEST_WAIT BIT(9)
161#define KVM_REQUEST_NO_ACTION BIT(10)
162/*
163 * Architecture-independent vcpu->requests bit members
164 * Bits 3-7 are reserved for more arch-independent bits.
165 */
166#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
168#define KVM_REQ_UNBLOCK 2
169#define KVM_REQ_DIRTY_RING_SOFT_FULL 3
170#define KVM_REQUEST_ARCH_BASE 8
171
172/*
173 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
174 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
175 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
176 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
177 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
178 * guarantee the vCPU received an IPI and has actually exited guest mode.
179 */
180#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
181
182#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
183 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
184 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
185})
186#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
187
188bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
189 unsigned long *vcpu_bitmap);
190bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
191bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
192 struct kvm_vcpu *except);
193bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
194 unsigned long *vcpu_bitmap);
195
196#define KVM_USERSPACE_IRQ_SOURCE_ID 0
197#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
198
199extern struct mutex kvm_lock;
200extern struct list_head vm_list;
201
202struct kvm_io_range {
203 gpa_t addr;
204 int len;
205 struct kvm_io_device *dev;
206};
207
208#define NR_IOBUS_DEVS 1000
209
210struct kvm_io_bus {
211 int dev_count;
212 int ioeventfd_count;
213 struct kvm_io_range range[];
214};
215
216enum kvm_bus {
217 KVM_MMIO_BUS,
218 KVM_PIO_BUS,
219 KVM_VIRTIO_CCW_NOTIFY_BUS,
220 KVM_FAST_MMIO_BUS,
221 KVM_NR_BUSES
222};
223
224int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
225 int len, const void *val);
226int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
227 gpa_t addr, int len, const void *val, long cookie);
228int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
229 int len, void *val);
230int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
231 int len, struct kvm_io_device *dev);
232int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
233 struct kvm_io_device *dev);
234struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
235 gpa_t addr);
236
237#ifdef CONFIG_KVM_ASYNC_PF
238struct kvm_async_pf {
239 struct work_struct work;
240 struct list_head link;
241 struct list_head queue;
242 struct kvm_vcpu *vcpu;
243 struct mm_struct *mm;
244 gpa_t cr2_or_gpa;
245 unsigned long addr;
246 struct kvm_arch_async_pf arch;
247 bool wakeup_all;
248 bool notpresent_injected;
249};
250
251void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
252void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
253bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
254 unsigned long hva, struct kvm_arch_async_pf *arch);
255int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
256#endif
257
258#ifdef KVM_ARCH_WANT_MMU_NOTIFIER
259struct kvm_gfn_range {
260 struct kvm_memory_slot *slot;
261 gfn_t start;
262 gfn_t end;
263 pte_t pte;
264 bool may_block;
265};
266bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
267bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
268bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
269bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
270#endif
271
272enum {
273 OUTSIDE_GUEST_MODE,
274 IN_GUEST_MODE,
275 EXITING_GUEST_MODE,
276 READING_SHADOW_PAGE_TABLES,
277};
278
279#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
280
281struct kvm_host_map {
282 /*
283 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
284 * a 'struct page' for it. When using mem= kernel parameter some memory
285 * can be used as guest memory but they are not managed by host
286 * kernel).
287 * If 'pfn' is not managed by the host kernel, this field is
288 * initialized to KVM_UNMAPPED_PAGE.
289 */
290 struct page *page;
291 void *hva;
292 kvm_pfn_t pfn;
293 kvm_pfn_t gfn;
294};
295
296/*
297 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
298 * directly to check for that.
299 */
300static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
301{
302 return !!map->hva;
303}
304
305static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
306{
307 return single_task_running() && !need_resched() && ktime_before(cur, stop);
308}
309
310/*
311 * Sometimes a large or cross-page mmio needs to be broken up into separate
312 * exits for userspace servicing.
313 */
314struct kvm_mmio_fragment {
315 gpa_t gpa;
316 void *data;
317 unsigned len;
318};
319
320struct kvm_vcpu {
321 struct kvm *kvm;
322#ifdef CONFIG_PREEMPT_NOTIFIERS
323 struct preempt_notifier preempt_notifier;
324#endif
325 int cpu;
326 int vcpu_id; /* id given by userspace at creation */
327 int vcpu_idx; /* index into kvm->vcpu_array */
328 int ____srcu_idx; /* Don't use this directly. You've been warned. */
329#ifdef CONFIG_PROVE_RCU
330 int srcu_depth;
331#endif
332 int mode;
333 u64 requests;
334 unsigned long guest_debug;
335
336 struct mutex mutex;
337 struct kvm_run *run;
338
339#ifndef __KVM_HAVE_ARCH_WQP
340 struct rcuwait wait;
341#endif
342 struct pid __rcu *pid;
343 int sigset_active;
344 sigset_t sigset;
345 unsigned int halt_poll_ns;
346 bool valid_wakeup;
347
348#ifdef CONFIG_HAS_IOMEM
349 int mmio_needed;
350 int mmio_read_completed;
351 int mmio_is_write;
352 int mmio_cur_fragment;
353 int mmio_nr_fragments;
354 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
355#endif
356
357#ifdef CONFIG_KVM_ASYNC_PF
358 struct {
359 u32 queued;
360 struct list_head queue;
361 struct list_head done;
362 spinlock_t lock;
363 } async_pf;
364#endif
365
366#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
367 /*
368 * Cpu relax intercept or pause loop exit optimization
369 * in_spin_loop: set when a vcpu does a pause loop exit
370 * or cpu relax intercepted.
371 * dy_eligible: indicates whether vcpu is eligible for directed yield.
372 */
373 struct {
374 bool in_spin_loop;
375 bool dy_eligible;
376 } spin_loop;
377#endif
378 bool preempted;
379 bool ready;
380 struct kvm_vcpu_arch arch;
381 struct kvm_vcpu_stat stat;
382 char stats_id[KVM_STATS_NAME_SIZE];
383 struct kvm_dirty_ring dirty_ring;
384
385 /*
386 * The most recently used memslot by this vCPU and the slots generation
387 * for which it is valid.
388 * No wraparound protection is needed since generations won't overflow in
389 * thousands of years, even assuming 1M memslot operations per second.
390 */
391 struct kvm_memory_slot *last_used_slot;
392 u64 last_used_slot_gen;
393};
394
395/*
396 * Start accounting time towards a guest.
397 * Must be called before entering guest context.
398 */
399static __always_inline void guest_timing_enter_irqoff(void)
400{
401 /*
402 * This is running in ioctl context so its safe to assume that it's the
403 * stime pending cputime to flush.
404 */
405 instrumentation_begin();
406 vtime_account_guest_enter();
407 instrumentation_end();
408}
409
410/*
411 * Enter guest context and enter an RCU extended quiescent state.
412 *
413 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
414 * unsafe to use any code which may directly or indirectly use RCU, tracing
415 * (including IRQ flag tracing), or lockdep. All code in this period must be
416 * non-instrumentable.
417 */
418static __always_inline void guest_context_enter_irqoff(void)
419{
420 /*
421 * KVM does not hold any references to rcu protected data when it
422 * switches CPU into a guest mode. In fact switching to a guest mode
423 * is very similar to exiting to userspace from rcu point of view. In
424 * addition CPU may stay in a guest mode for quite a long time (up to
425 * one time slice). Lets treat guest mode as quiescent state, just like
426 * we do with user-mode execution.
427 */
428 if (!context_tracking_guest_enter()) {
429 instrumentation_begin();
430 rcu_virt_note_context_switch();
431 instrumentation_end();
432 }
433}
434
435/*
436 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
437 * guest_state_enter_irqoff().
438 */
439static __always_inline void guest_enter_irqoff(void)
440{
441 guest_timing_enter_irqoff();
442 guest_context_enter_irqoff();
443}
444
445/**
446 * guest_state_enter_irqoff - Fixup state when entering a guest
447 *
448 * Entry to a guest will enable interrupts, but the kernel state is interrupts
449 * disabled when this is invoked. Also tell RCU about it.
450 *
451 * 1) Trace interrupts on state
452 * 2) Invoke context tracking if enabled to adjust RCU state
453 * 3) Tell lockdep that interrupts are enabled
454 *
455 * Invoked from architecture specific code before entering a guest.
456 * Must be called with interrupts disabled and the caller must be
457 * non-instrumentable.
458 * The caller has to invoke guest_timing_enter_irqoff() before this.
459 *
460 * Note: this is analogous to exit_to_user_mode().
461 */
462static __always_inline void guest_state_enter_irqoff(void)
463{
464 instrumentation_begin();
465 trace_hardirqs_on_prepare();
466 lockdep_hardirqs_on_prepare();
467 instrumentation_end();
468
469 guest_context_enter_irqoff();
470 lockdep_hardirqs_on(CALLER_ADDR0);
471}
472
473/*
474 * Exit guest context and exit an RCU extended quiescent state.
475 *
476 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
477 * unsafe to use any code which may directly or indirectly use RCU, tracing
478 * (including IRQ flag tracing), or lockdep. All code in this period must be
479 * non-instrumentable.
480 */
481static __always_inline void guest_context_exit_irqoff(void)
482{
483 context_tracking_guest_exit();
484}
485
486/*
487 * Stop accounting time towards a guest.
488 * Must be called after exiting guest context.
489 */
490static __always_inline void guest_timing_exit_irqoff(void)
491{
492 instrumentation_begin();
493 /* Flush the guest cputime we spent on the guest */
494 vtime_account_guest_exit();
495 instrumentation_end();
496}
497
498/*
499 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
500 * guest_timing_exit_irqoff().
501 */
502static __always_inline void guest_exit_irqoff(void)
503{
504 guest_context_exit_irqoff();
505 guest_timing_exit_irqoff();
506}
507
508static inline void guest_exit(void)
509{
510 unsigned long flags;
511
512 local_irq_save(flags);
513 guest_exit_irqoff();
514 local_irq_restore(flags);
515}
516
517/**
518 * guest_state_exit_irqoff - Establish state when returning from guest mode
519 *
520 * Entry from a guest disables interrupts, but guest mode is traced as
521 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
522 *
523 * 1) Tell lockdep that interrupts are disabled
524 * 2) Invoke context tracking if enabled to reactivate RCU
525 * 3) Trace interrupts off state
526 *
527 * Invoked from architecture specific code after exiting a guest.
528 * Must be invoked with interrupts disabled and the caller must be
529 * non-instrumentable.
530 * The caller has to invoke guest_timing_exit_irqoff() after this.
531 *
532 * Note: this is analogous to enter_from_user_mode().
533 */
534static __always_inline void guest_state_exit_irqoff(void)
535{
536 lockdep_hardirqs_off(CALLER_ADDR0);
537 guest_context_exit_irqoff();
538
539 instrumentation_begin();
540 trace_hardirqs_off_finish();
541 instrumentation_end();
542}
543
544static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
545{
546 /*
547 * The memory barrier ensures a previous write to vcpu->requests cannot
548 * be reordered with the read of vcpu->mode. It pairs with the general
549 * memory barrier following the write of vcpu->mode in VCPU RUN.
550 */
551 smp_mb__before_atomic();
552 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
553}
554
555/*
556 * Some of the bitops functions do not support too long bitmaps.
557 * This number must be determined not to exceed such limits.
558 */
559#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
560
561/*
562 * Since at idle each memslot belongs to two memslot sets it has to contain
563 * two embedded nodes for each data structure that it forms a part of.
564 *
565 * Two memslot sets (one active and one inactive) are necessary so the VM
566 * continues to run on one memslot set while the other is being modified.
567 *
568 * These two memslot sets normally point to the same set of memslots.
569 * They can, however, be desynchronized when performing a memslot management
570 * operation by replacing the memslot to be modified by its copy.
571 * After the operation is complete, both memslot sets once again point to
572 * the same, common set of memslot data.
573 *
574 * The memslots themselves are independent of each other so they can be
575 * individually added or deleted.
576 */
577struct kvm_memory_slot {
578 struct hlist_node id_node[2];
579 struct interval_tree_node hva_node[2];
580 struct rb_node gfn_node[2];
581 gfn_t base_gfn;
582 unsigned long npages;
583 unsigned long *dirty_bitmap;
584 struct kvm_arch_memory_slot arch;
585 unsigned long userspace_addr;
586 u32 flags;
587 short id;
588 u16 as_id;
589};
590
591static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
592{
593 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
594}
595
596static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
597{
598 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
599}
600
601static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
602{
603 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
604
605 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
606}
607
608#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
609#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
610#endif
611
612struct kvm_s390_adapter_int {
613 u64 ind_addr;
614 u64 summary_addr;
615 u64 ind_offset;
616 u32 summary_offset;
617 u32 adapter_id;
618};
619
620struct kvm_hv_sint {
621 u32 vcpu;
622 u32 sint;
623};
624
625struct kvm_xen_evtchn {
626 u32 port;
627 u32 vcpu_id;
628 int vcpu_idx;
629 u32 priority;
630};
631
632struct kvm_kernel_irq_routing_entry {
633 u32 gsi;
634 u32 type;
635 int (*set)(struct kvm_kernel_irq_routing_entry *e,
636 struct kvm *kvm, int irq_source_id, int level,
637 bool line_status);
638 union {
639 struct {
640 unsigned irqchip;
641 unsigned pin;
642 } irqchip;
643 struct {
644 u32 address_lo;
645 u32 address_hi;
646 u32 data;
647 u32 flags;
648 u32 devid;
649 } msi;
650 struct kvm_s390_adapter_int adapter;
651 struct kvm_hv_sint hv_sint;
652 struct kvm_xen_evtchn xen_evtchn;
653 };
654 struct hlist_node link;
655};
656
657#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
658struct kvm_irq_routing_table {
659 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
660 u32 nr_rt_entries;
661 /*
662 * Array indexed by gsi. Each entry contains list of irq chips
663 * the gsi is connected to.
664 */
665 struct hlist_head map[];
666};
667#endif
668
669bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
670
671#ifndef KVM_INTERNAL_MEM_SLOTS
672#define KVM_INTERNAL_MEM_SLOTS 0
673#endif
674
675#define KVM_MEM_SLOTS_NUM SHRT_MAX
676#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
677
678#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
679static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
680{
681 return 0;
682}
683#endif
684
685struct kvm_memslots {
686 u64 generation;
687 atomic_long_t last_used_slot;
688 struct rb_root_cached hva_tree;
689 struct rb_root gfn_tree;
690 /*
691 * The mapping table from slot id to memslot.
692 *
693 * 7-bit bucket count matches the size of the old id to index array for
694 * 512 slots, while giving good performance with this slot count.
695 * Higher bucket counts bring only small performance improvements but
696 * always result in higher memory usage (even for lower memslot counts).
697 */
698 DECLARE_HASHTABLE(id_hash, 7);
699 int node_idx;
700};
701
702struct kvm {
703#ifdef KVM_HAVE_MMU_RWLOCK
704 rwlock_t mmu_lock;
705#else
706 spinlock_t mmu_lock;
707#endif /* KVM_HAVE_MMU_RWLOCK */
708
709 struct mutex slots_lock;
710
711 /*
712 * Protects the arch-specific fields of struct kvm_memory_slots in
713 * use by the VM. To be used under the slots_lock (above) or in a
714 * kvm->srcu critical section where acquiring the slots_lock would
715 * lead to deadlock with the synchronize_srcu in
716 * install_new_memslots.
717 */
718 struct mutex slots_arch_lock;
719 struct mm_struct *mm; /* userspace tied to this vm */
720 unsigned long nr_memslot_pages;
721 /* The two memslot sets - active and inactive (per address space) */
722 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
723 /* The current active memslot set for each address space */
724 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
725 struct xarray vcpu_array;
726 /*
727 * Protected by slots_lock, but can be read outside if an
728 * incorrect answer is acceptable.
729 */
730 atomic_t nr_memslots_dirty_logging;
731
732 /* Used to wait for completion of MMU notifiers. */
733 spinlock_t mn_invalidate_lock;
734 unsigned long mn_active_invalidate_count;
735 struct rcuwait mn_memslots_update_rcuwait;
736
737 /* For management / invalidation of gfn_to_pfn_caches */
738 spinlock_t gpc_lock;
739 struct list_head gpc_list;
740
741 /*
742 * created_vcpus is protected by kvm->lock, and is incremented
743 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
744 * incremented after storing the kvm_vcpu pointer in vcpus,
745 * and is accessed atomically.
746 */
747 atomic_t online_vcpus;
748 int max_vcpus;
749 int created_vcpus;
750 int last_boosted_vcpu;
751 struct list_head vm_list;
752 struct mutex lock;
753 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
754#ifdef CONFIG_HAVE_KVM_EVENTFD
755 struct {
756 spinlock_t lock;
757 struct list_head items;
758 /* resampler_list update side is protected by resampler_lock. */
759 struct list_head resampler_list;
760 struct mutex resampler_lock;
761 } irqfds;
762 struct list_head ioeventfds;
763#endif
764 struct kvm_vm_stat stat;
765 struct kvm_arch arch;
766 refcount_t users_count;
767#ifdef CONFIG_KVM_MMIO
768 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
769 spinlock_t ring_lock;
770 struct list_head coalesced_zones;
771#endif
772
773 struct mutex irq_lock;
774#ifdef CONFIG_HAVE_KVM_IRQCHIP
775 /*
776 * Update side is protected by irq_lock.
777 */
778 struct kvm_irq_routing_table __rcu *irq_routing;
779#endif
780#ifdef CONFIG_HAVE_KVM_IRQFD
781 struct hlist_head irq_ack_notifier_list;
782#endif
783
784#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
785 struct mmu_notifier mmu_notifier;
786 unsigned long mmu_invalidate_seq;
787 long mmu_invalidate_in_progress;
788 unsigned long mmu_invalidate_range_start;
789 unsigned long mmu_invalidate_range_end;
790#endif
791 struct list_head devices;
792 u64 manual_dirty_log_protect;
793 struct dentry *debugfs_dentry;
794 struct kvm_stat_data **debugfs_stat_data;
795 struct srcu_struct srcu;
796 struct srcu_struct irq_srcu;
797 pid_t userspace_pid;
798 bool override_halt_poll_ns;
799 unsigned int max_halt_poll_ns;
800 u32 dirty_ring_size;
801 bool dirty_ring_with_bitmap;
802 bool vm_bugged;
803 bool vm_dead;
804
805#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
806 struct notifier_block pm_notifier;
807#endif
808 char stats_id[KVM_STATS_NAME_SIZE];
809};
810
811#define kvm_err(fmt, ...) \
812 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
813#define kvm_info(fmt, ...) \
814 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
815#define kvm_debug(fmt, ...) \
816 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
817#define kvm_debug_ratelimited(fmt, ...) \
818 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
819 ## __VA_ARGS__)
820#define kvm_pr_unimpl(fmt, ...) \
821 pr_err_ratelimited("kvm [%i]: " fmt, \
822 task_tgid_nr(current), ## __VA_ARGS__)
823
824/* The guest did something we don't support. */
825#define vcpu_unimpl(vcpu, fmt, ...) \
826 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
827 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
828
829#define vcpu_debug(vcpu, fmt, ...) \
830 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
831#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
832 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
833 ## __VA_ARGS__)
834#define vcpu_err(vcpu, fmt, ...) \
835 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
836
837static inline void kvm_vm_dead(struct kvm *kvm)
838{
839 kvm->vm_dead = true;
840 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
841}
842
843static inline void kvm_vm_bugged(struct kvm *kvm)
844{
845 kvm->vm_bugged = true;
846 kvm_vm_dead(kvm);
847}
848
849
850#define KVM_BUG(cond, kvm, fmt...) \
851({ \
852 int __ret = (cond); \
853 \
854 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
855 kvm_vm_bugged(kvm); \
856 unlikely(__ret); \
857})
858
859#define KVM_BUG_ON(cond, kvm) \
860({ \
861 int __ret = (cond); \
862 \
863 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
864 kvm_vm_bugged(kvm); \
865 unlikely(__ret); \
866})
867
868static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
869{
870#ifdef CONFIG_PROVE_RCU
871 WARN_ONCE(vcpu->srcu_depth++,
872 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
873#endif
874 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
875}
876
877static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
878{
879 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
880
881#ifdef CONFIG_PROVE_RCU
882 WARN_ONCE(--vcpu->srcu_depth,
883 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
884#endif
885}
886
887static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
888{
889 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
890}
891
892static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
893{
894 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
895 lockdep_is_held(&kvm->slots_lock) ||
896 !refcount_read(&kvm->users_count));
897}
898
899static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
900{
901 int num_vcpus = atomic_read(&kvm->online_vcpus);
902 i = array_index_nospec(i, num_vcpus);
903
904 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
905 smp_rmb();
906 return xa_load(&kvm->vcpu_array, i);
907}
908
909#define kvm_for_each_vcpu(idx, vcpup, kvm) \
910 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
911 (atomic_read(&kvm->online_vcpus) - 1))
912
913static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
914{
915 struct kvm_vcpu *vcpu = NULL;
916 unsigned long i;
917
918 if (id < 0)
919 return NULL;
920 if (id < KVM_MAX_VCPUS)
921 vcpu = kvm_get_vcpu(kvm, id);
922 if (vcpu && vcpu->vcpu_id == id)
923 return vcpu;
924 kvm_for_each_vcpu(i, vcpu, kvm)
925 if (vcpu->vcpu_id == id)
926 return vcpu;
927 return NULL;
928}
929
930void kvm_destroy_vcpus(struct kvm *kvm);
931
932void vcpu_load(struct kvm_vcpu *vcpu);
933void vcpu_put(struct kvm_vcpu *vcpu);
934
935#ifdef __KVM_HAVE_IOAPIC
936void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
937void kvm_arch_post_irq_routing_update(struct kvm *kvm);
938#else
939static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
940{
941}
942static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
943{
944}
945#endif
946
947#ifdef CONFIG_HAVE_KVM_IRQFD
948int kvm_irqfd_init(void);
949void kvm_irqfd_exit(void);
950#else
951static inline int kvm_irqfd_init(void)
952{
953 return 0;
954}
955
956static inline void kvm_irqfd_exit(void)
957{
958}
959#endif
960int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
961void kvm_exit(void);
962
963void kvm_get_kvm(struct kvm *kvm);
964bool kvm_get_kvm_safe(struct kvm *kvm);
965void kvm_put_kvm(struct kvm *kvm);
966bool file_is_kvm(struct file *file);
967void kvm_put_kvm_no_destroy(struct kvm *kvm);
968
969static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
970{
971 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
972 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
973 lockdep_is_held(&kvm->slots_lock) ||
974 !refcount_read(&kvm->users_count));
975}
976
977static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
978{
979 return __kvm_memslots(kvm, 0);
980}
981
982static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
983{
984 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
985
986 return __kvm_memslots(vcpu->kvm, as_id);
987}
988
989static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
990{
991 return RB_EMPTY_ROOT(&slots->gfn_tree);
992}
993
994#define kvm_for_each_memslot(memslot, bkt, slots) \
995 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
996 if (WARN_ON_ONCE(!memslot->npages)) { \
997 } else
998
999static inline
1000struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1001{
1002 struct kvm_memory_slot *slot;
1003 int idx = slots->node_idx;
1004
1005 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1006 if (slot->id == id)
1007 return slot;
1008 }
1009
1010 return NULL;
1011}
1012
1013/* Iterator used for walking memslots that overlap a gfn range. */
1014struct kvm_memslot_iter {
1015 struct kvm_memslots *slots;
1016 struct rb_node *node;
1017 struct kvm_memory_slot *slot;
1018};
1019
1020static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1021{
1022 iter->node = rb_next(iter->node);
1023 if (!iter->node)
1024 return;
1025
1026 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1027}
1028
1029static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1030 struct kvm_memslots *slots,
1031 gfn_t start)
1032{
1033 int idx = slots->node_idx;
1034 struct rb_node *tmp;
1035 struct kvm_memory_slot *slot;
1036
1037 iter->slots = slots;
1038
1039 /*
1040 * Find the so called "upper bound" of a key - the first node that has
1041 * its key strictly greater than the searched one (the start gfn in our case).
1042 */
1043 iter->node = NULL;
1044 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1045 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1046 if (start < slot->base_gfn) {
1047 iter->node = tmp;
1048 tmp = tmp->rb_left;
1049 } else {
1050 tmp = tmp->rb_right;
1051 }
1052 }
1053
1054 /*
1055 * Find the slot with the lowest gfn that can possibly intersect with
1056 * the range, so we'll ideally have slot start <= range start
1057 */
1058 if (iter->node) {
1059 /*
1060 * A NULL previous node means that the very first slot
1061 * already has a higher start gfn.
1062 * In this case slot start > range start.
1063 */
1064 tmp = rb_prev(iter->node);
1065 if (tmp)
1066 iter->node = tmp;
1067 } else {
1068 /* a NULL node below means no slots */
1069 iter->node = rb_last(&slots->gfn_tree);
1070 }
1071
1072 if (iter->node) {
1073 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1074
1075 /*
1076 * It is possible in the slot start < range start case that the
1077 * found slot ends before or at range start (slot end <= range start)
1078 * and so it does not overlap the requested range.
1079 *
1080 * In such non-overlapping case the next slot (if it exists) will
1081 * already have slot start > range start, otherwise the logic above
1082 * would have found it instead of the current slot.
1083 */
1084 if (iter->slot->base_gfn + iter->slot->npages <= start)
1085 kvm_memslot_iter_next(iter);
1086 }
1087}
1088
1089static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1090{
1091 if (!iter->node)
1092 return false;
1093
1094 /*
1095 * If this slot starts beyond or at the end of the range so does
1096 * every next one
1097 */
1098 return iter->slot->base_gfn < end;
1099}
1100
1101/* Iterate over each memslot at least partially intersecting [start, end) range */
1102#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1103 for (kvm_memslot_iter_start(iter, slots, start); \
1104 kvm_memslot_iter_is_valid(iter, end); \
1105 kvm_memslot_iter_next(iter))
1106
1107/*
1108 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1109 * - create a new memory slot
1110 * - delete an existing memory slot
1111 * - modify an existing memory slot
1112 * -- move it in the guest physical memory space
1113 * -- just change its flags
1114 *
1115 * Since flags can be changed by some of these operations, the following
1116 * differentiation is the best we can do for __kvm_set_memory_region():
1117 */
1118enum kvm_mr_change {
1119 KVM_MR_CREATE,
1120 KVM_MR_DELETE,
1121 KVM_MR_MOVE,
1122 KVM_MR_FLAGS_ONLY,
1123};
1124
1125int kvm_set_memory_region(struct kvm *kvm,
1126 const struct kvm_userspace_memory_region *mem);
1127int __kvm_set_memory_region(struct kvm *kvm,
1128 const struct kvm_userspace_memory_region *mem);
1129void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1130void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1131int kvm_arch_prepare_memory_region(struct kvm *kvm,
1132 const struct kvm_memory_slot *old,
1133 struct kvm_memory_slot *new,
1134 enum kvm_mr_change change);
1135void kvm_arch_commit_memory_region(struct kvm *kvm,
1136 struct kvm_memory_slot *old,
1137 const struct kvm_memory_slot *new,
1138 enum kvm_mr_change change);
1139/* flush all memory translations */
1140void kvm_arch_flush_shadow_all(struct kvm *kvm);
1141/* flush memory translations pointing to 'slot' */
1142void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1143 struct kvm_memory_slot *slot);
1144
1145int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1146 struct page **pages, int nr_pages);
1147
1148struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1149unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1150unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1151unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1152unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1153 bool *writable);
1154void kvm_release_page_clean(struct page *page);
1155void kvm_release_page_dirty(struct page *page);
1156
1157kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1158kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1159 bool *writable);
1160kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1161kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1162kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1163 bool atomic, bool interruptible, bool *async,
1164 bool write_fault, bool *writable, hva_t *hva);
1165
1166void kvm_release_pfn_clean(kvm_pfn_t pfn);
1167void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1168void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1169void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1170
1171void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1172int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1173 int len);
1174int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1175int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1176 void *data, unsigned long len);
1177int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1178 void *data, unsigned int offset,
1179 unsigned long len);
1180int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1181 int offset, int len);
1182int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1183 unsigned long len);
1184int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1185 void *data, unsigned long len);
1186int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1187 void *data, unsigned int offset,
1188 unsigned long len);
1189int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1190 gpa_t gpa, unsigned long len);
1191
1192#define __kvm_get_guest(kvm, gfn, offset, v) \
1193({ \
1194 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1195 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1196 int __ret = -EFAULT; \
1197 \
1198 if (!kvm_is_error_hva(__addr)) \
1199 __ret = get_user(v, __uaddr); \
1200 __ret; \
1201})
1202
1203#define kvm_get_guest(kvm, gpa, v) \
1204({ \
1205 gpa_t __gpa = gpa; \
1206 struct kvm *__kvm = kvm; \
1207 \
1208 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1209 offset_in_page(__gpa), v); \
1210})
1211
1212#define __kvm_put_guest(kvm, gfn, offset, v) \
1213({ \
1214 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1215 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1216 int __ret = -EFAULT; \
1217 \
1218 if (!kvm_is_error_hva(__addr)) \
1219 __ret = put_user(v, __uaddr); \
1220 if (!__ret) \
1221 mark_page_dirty(kvm, gfn); \
1222 __ret; \
1223})
1224
1225#define kvm_put_guest(kvm, gpa, v) \
1226({ \
1227 gpa_t __gpa = gpa; \
1228 struct kvm *__kvm = kvm; \
1229 \
1230 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1231 offset_in_page(__gpa), v); \
1232})
1233
1234int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1235struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1236bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1237bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1238unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1239void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1240void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1241
1242struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1243struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1244kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1245kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1246int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1247void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1248unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1249unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1250int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1251 int len);
1252int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1253 unsigned long len);
1254int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1255 unsigned long len);
1256int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1257 int offset, int len);
1258int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1259 unsigned long len);
1260void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1261
1262/**
1263 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1264 *
1265 * @gpc: struct gfn_to_pfn_cache object.
1266 * @kvm: pointer to kvm instance.
1267 * @vcpu: vCPU to be used for marking pages dirty and to be woken on
1268 * invalidation.
1269 * @usage: indicates if the resulting host physical PFN is used while
1270 * the @vcpu is IN_GUEST_MODE (in which case invalidation of
1271 * the cache from MMU notifiers---but not for KVM memslot
1272 * changes!---will also force @vcpu to exit the guest and
1273 * refresh the cache); and/or if the PFN used directly
1274 * by KVM (and thus needs a kernel virtual mapping).
1275 *
1276 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1277 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by
1278 * the caller before init).
1279 */
1280void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm,
1281 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage);
1282
1283/**
1284 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1285 * physical address.
1286 *
1287 * @gpc: struct gfn_to_pfn_cache object.
1288 * @gpa: guest physical address to map.
1289 * @len: sanity check; the range being access must fit a single page.
1290 *
1291 * @return: 0 for success.
1292 * -EINVAL for a mapping which would cross a page boundary.
1293 * -EFAULT for an untranslatable guest physical address.
1294 *
1295 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1296 * invalidations to be processed. Callers are required to use kvm_gpc_check()
1297 * to ensure that the cache is valid before accessing the target page.
1298 */
1299int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1300
1301/**
1302 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1303 *
1304 * @gpc: struct gfn_to_pfn_cache object.
1305 * @len: sanity check; the range being access must fit a single page.
1306 *
1307 * @return: %true if the cache is still valid and the address matches.
1308 * %false if the cache is not valid.
1309 *
1310 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1311 * while calling this function, and then continue to hold the lock until the
1312 * access is complete.
1313 *
1314 * Callers in IN_GUEST_MODE may do so without locking, although they should
1315 * still hold a read lock on kvm->scru for the memslot checks.
1316 */
1317bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1318
1319/**
1320 * kvm_gpc_refresh - update a previously initialized cache.
1321 *
1322 * @gpc: struct gfn_to_pfn_cache object.
1323 * @len: sanity check; the range being access must fit a single page.
1324 *
1325 * @return: 0 for success.
1326 * -EINVAL for a mapping which would cross a page boundary.
1327 * -EFAULT for an untranslatable guest physical address.
1328 *
1329 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1330 * return from this function does not mean the page can be immediately
1331 * accessed because it may have raced with an invalidation. Callers must
1332 * still lock and check the cache status, as this function does not return
1333 * with the lock still held to permit access.
1334 */
1335int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1336
1337/**
1338 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1339 *
1340 * @gpc: struct gfn_to_pfn_cache object.
1341 *
1342 * This removes a cache from the VM's list to be processed on MMU notifier
1343 * invocation.
1344 */
1345void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1346
1347void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1348void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1349
1350void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1351bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1352void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1353void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1354bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1355void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1356int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1357void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1358
1359void kvm_flush_remote_tlbs(struct kvm *kvm);
1360
1361#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1362int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1363int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1364int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1365void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1366void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1367#endif
1368
1369void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
1370 unsigned long end);
1371void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
1372 unsigned long end);
1373
1374long kvm_arch_dev_ioctl(struct file *filp,
1375 unsigned int ioctl, unsigned long arg);
1376long kvm_arch_vcpu_ioctl(struct file *filp,
1377 unsigned int ioctl, unsigned long arg);
1378vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1379
1380int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1381
1382void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1383 struct kvm_memory_slot *slot,
1384 gfn_t gfn_offset,
1385 unsigned long mask);
1386void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1387
1388#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1389void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1390 const struct kvm_memory_slot *memslot);
1391#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1392int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1393int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1394 int *is_dirty, struct kvm_memory_slot **memslot);
1395#endif
1396
1397int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1398 bool line_status);
1399int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1400 struct kvm_enable_cap *cap);
1401long kvm_arch_vm_ioctl(struct file *filp,
1402 unsigned int ioctl, unsigned long arg);
1403long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1404 unsigned long arg);
1405
1406int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1407int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1408
1409int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1410 struct kvm_translation *tr);
1411
1412int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1413int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1414int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1415 struct kvm_sregs *sregs);
1416int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1417 struct kvm_sregs *sregs);
1418int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1419 struct kvm_mp_state *mp_state);
1420int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1421 struct kvm_mp_state *mp_state);
1422int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1423 struct kvm_guest_debug *dbg);
1424int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1425
1426void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1427
1428void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1429void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1430int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1431int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1432void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1433void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1434
1435#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1436int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1437#endif
1438
1439#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1440void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1441#else
1442static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1443#endif
1444
1445#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1446int kvm_arch_hardware_enable(void);
1447void kvm_arch_hardware_disable(void);
1448#endif
1449int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1450bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1451int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1452bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1453bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1454int kvm_arch_post_init_vm(struct kvm *kvm);
1455void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1456int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1457
1458#ifndef __KVM_HAVE_ARCH_VM_ALLOC
1459/*
1460 * All architectures that want to use vzalloc currently also
1461 * need their own kvm_arch_alloc_vm implementation.
1462 */
1463static inline struct kvm *kvm_arch_alloc_vm(void)
1464{
1465 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1466}
1467#endif
1468
1469static inline void __kvm_arch_free_vm(struct kvm *kvm)
1470{
1471 kvfree(kvm);
1472}
1473
1474#ifndef __KVM_HAVE_ARCH_VM_FREE
1475static inline void kvm_arch_free_vm(struct kvm *kvm)
1476{
1477 __kvm_arch_free_vm(kvm);
1478}
1479#endif
1480
1481#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1482static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1483{
1484 return -ENOTSUPP;
1485}
1486#endif
1487
1488#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1489void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1490void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1491bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1492#else
1493static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1494{
1495}
1496
1497static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1498{
1499}
1500
1501static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1502{
1503 return false;
1504}
1505#endif
1506#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1507void kvm_arch_start_assignment(struct kvm *kvm);
1508void kvm_arch_end_assignment(struct kvm *kvm);
1509bool kvm_arch_has_assigned_device(struct kvm *kvm);
1510#else
1511static inline void kvm_arch_start_assignment(struct kvm *kvm)
1512{
1513}
1514
1515static inline void kvm_arch_end_assignment(struct kvm *kvm)
1516{
1517}
1518
1519static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1520{
1521 return false;
1522}
1523#endif
1524
1525static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1526{
1527#ifdef __KVM_HAVE_ARCH_WQP
1528 return vcpu->arch.waitp;
1529#else
1530 return &vcpu->wait;
1531#endif
1532}
1533
1534/*
1535 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1536 * true if the vCPU was blocking and was awakened, false otherwise.
1537 */
1538static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1539{
1540 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1541}
1542
1543static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1544{
1545 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1546}
1547
1548#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1549/*
1550 * returns true if the virtual interrupt controller is initialized and
1551 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1552 * controller is dynamically instantiated and this is not always true.
1553 */
1554bool kvm_arch_intc_initialized(struct kvm *kvm);
1555#else
1556static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1557{
1558 return true;
1559}
1560#endif
1561
1562#ifdef CONFIG_GUEST_PERF_EVENTS
1563unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1564
1565void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1566void kvm_unregister_perf_callbacks(void);
1567#else
1568static inline void kvm_register_perf_callbacks(void *ign) {}
1569static inline void kvm_unregister_perf_callbacks(void) {}
1570#endif /* CONFIG_GUEST_PERF_EVENTS */
1571
1572int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1573void kvm_arch_destroy_vm(struct kvm *kvm);
1574void kvm_arch_sync_events(struct kvm *kvm);
1575
1576int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1577
1578struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1579bool kvm_is_zone_device_page(struct page *page);
1580
1581struct kvm_irq_ack_notifier {
1582 struct hlist_node link;
1583 unsigned gsi;
1584 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1585};
1586
1587int kvm_irq_map_gsi(struct kvm *kvm,
1588 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1589int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1590
1591int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1592 bool line_status);
1593int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1594 int irq_source_id, int level, bool line_status);
1595int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1596 struct kvm *kvm, int irq_source_id,
1597 int level, bool line_status);
1598bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1599void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1600void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1601void kvm_register_irq_ack_notifier(struct kvm *kvm,
1602 struct kvm_irq_ack_notifier *kian);
1603void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1604 struct kvm_irq_ack_notifier *kian);
1605int kvm_request_irq_source_id(struct kvm *kvm);
1606void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1607bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1608
1609/*
1610 * Returns a pointer to the memslot if it contains gfn.
1611 * Otherwise returns NULL.
1612 */
1613static inline struct kvm_memory_slot *
1614try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1615{
1616 if (!slot)
1617 return NULL;
1618
1619 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1620 return slot;
1621 else
1622 return NULL;
1623}
1624
1625/*
1626 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1627 *
1628 * With "approx" set returns the memslot also when the address falls
1629 * in a hole. In that case one of the memslots bordering the hole is
1630 * returned.
1631 */
1632static inline struct kvm_memory_slot *
1633search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1634{
1635 struct kvm_memory_slot *slot;
1636 struct rb_node *node;
1637 int idx = slots->node_idx;
1638
1639 slot = NULL;
1640 for (node = slots->gfn_tree.rb_node; node; ) {
1641 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1642 if (gfn >= slot->base_gfn) {
1643 if (gfn < slot->base_gfn + slot->npages)
1644 return slot;
1645 node = node->rb_right;
1646 } else
1647 node = node->rb_left;
1648 }
1649
1650 return approx ? slot : NULL;
1651}
1652
1653static inline struct kvm_memory_slot *
1654____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1655{
1656 struct kvm_memory_slot *slot;
1657
1658 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1659 slot = try_get_memslot(slot, gfn);
1660 if (slot)
1661 return slot;
1662
1663 slot = search_memslots(slots, gfn, approx);
1664 if (slot) {
1665 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1666 return slot;
1667 }
1668
1669 return NULL;
1670}
1671
1672/*
1673 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1674 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1675 * because that would bloat other code too much.
1676 */
1677static inline struct kvm_memory_slot *
1678__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1679{
1680 return ____gfn_to_memslot(slots, gfn, false);
1681}
1682
1683static inline unsigned long
1684__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1685{
1686 /*
1687 * The index was checked originally in search_memslots. To avoid
1688 * that a malicious guest builds a Spectre gadget out of e.g. page
1689 * table walks, do not let the processor speculate loads outside
1690 * the guest's registered memslots.
1691 */
1692 unsigned long offset = gfn - slot->base_gfn;
1693 offset = array_index_nospec(offset, slot->npages);
1694 return slot->userspace_addr + offset * PAGE_SIZE;
1695}
1696
1697static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1698{
1699 return gfn_to_memslot(kvm, gfn)->id;
1700}
1701
1702static inline gfn_t
1703hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1704{
1705 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1706
1707 return slot->base_gfn + gfn_offset;
1708}
1709
1710static inline gpa_t gfn_to_gpa(gfn_t gfn)
1711{
1712 return (gpa_t)gfn << PAGE_SHIFT;
1713}
1714
1715static inline gfn_t gpa_to_gfn(gpa_t gpa)
1716{
1717 return (gfn_t)(gpa >> PAGE_SHIFT);
1718}
1719
1720static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1721{
1722 return (hpa_t)pfn << PAGE_SHIFT;
1723}
1724
1725static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1726{
1727 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1728
1729 return kvm_is_error_hva(hva);
1730}
1731
1732enum kvm_stat_kind {
1733 KVM_STAT_VM,
1734 KVM_STAT_VCPU,
1735};
1736
1737struct kvm_stat_data {
1738 struct kvm *kvm;
1739 const struct _kvm_stats_desc *desc;
1740 enum kvm_stat_kind kind;
1741};
1742
1743struct _kvm_stats_desc {
1744 struct kvm_stats_desc desc;
1745 char name[KVM_STATS_NAME_SIZE];
1746};
1747
1748#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1749 .flags = type | unit | base | \
1750 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1751 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1752 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1753 .exponent = exp, \
1754 .size = sz, \
1755 .bucket_size = bsz
1756
1757#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1758 { \
1759 { \
1760 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1761 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1762 }, \
1763 .name = #stat, \
1764 }
1765#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1766 { \
1767 { \
1768 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1769 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1770 }, \
1771 .name = #stat, \
1772 }
1773#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1774 { \
1775 { \
1776 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1777 .offset = offsetof(struct kvm_vm_stat, stat) \
1778 }, \
1779 .name = #stat, \
1780 }
1781#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1782 { \
1783 { \
1784 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1785 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1786 }, \
1787 .name = #stat, \
1788 }
1789/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1790#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1791 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1792
1793#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1794 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1795 unit, base, exponent, 1, 0)
1796#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1797 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1798 unit, base, exponent, 1, 0)
1799#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1800 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1801 unit, base, exponent, 1, 0)
1802#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1803 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1804 unit, base, exponent, sz, bsz)
1805#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1806 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1807 unit, base, exponent, sz, 0)
1808
1809/* Cumulative counter, read/write */
1810#define STATS_DESC_COUNTER(SCOPE, name) \
1811 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1812 KVM_STATS_BASE_POW10, 0)
1813/* Instantaneous counter, read only */
1814#define STATS_DESC_ICOUNTER(SCOPE, name) \
1815 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1816 KVM_STATS_BASE_POW10, 0)
1817/* Peak counter, read/write */
1818#define STATS_DESC_PCOUNTER(SCOPE, name) \
1819 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1820 KVM_STATS_BASE_POW10, 0)
1821
1822/* Instantaneous boolean value, read only */
1823#define STATS_DESC_IBOOLEAN(SCOPE, name) \
1824 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1825 KVM_STATS_BASE_POW10, 0)
1826/* Peak (sticky) boolean value, read/write */
1827#define STATS_DESC_PBOOLEAN(SCOPE, name) \
1828 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1829 KVM_STATS_BASE_POW10, 0)
1830
1831/* Cumulative time in nanosecond */
1832#define STATS_DESC_TIME_NSEC(SCOPE, name) \
1833 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1834 KVM_STATS_BASE_POW10, -9)
1835/* Linear histogram for time in nanosecond */
1836#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
1837 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1838 KVM_STATS_BASE_POW10, -9, sz, bsz)
1839/* Logarithmic histogram for time in nanosecond */
1840#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
1841 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1842 KVM_STATS_BASE_POW10, -9, sz)
1843
1844#define KVM_GENERIC_VM_STATS() \
1845 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
1846 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1847
1848#define KVM_GENERIC_VCPU_STATS() \
1849 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
1850 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
1851 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
1852 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
1853 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
1854 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
1855 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
1856 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
1857 HALT_POLL_HIST_COUNT), \
1858 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
1859 HALT_POLL_HIST_COUNT), \
1860 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
1861 HALT_POLL_HIST_COUNT), \
1862 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1863
1864extern struct dentry *kvm_debugfs_dir;
1865
1866ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1867 const struct _kvm_stats_desc *desc,
1868 void *stats, size_t size_stats,
1869 char __user *user_buffer, size_t size, loff_t *offset);
1870
1871/**
1872 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1873 * statistics data.
1874 *
1875 * @data: start address of the stats data
1876 * @size: the number of bucket of the stats data
1877 * @value: the new value used to update the linear histogram's bucket
1878 * @bucket_size: the size (width) of a bucket
1879 */
1880static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1881 u64 value, size_t bucket_size)
1882{
1883 size_t index = div64_u64(value, bucket_size);
1884
1885 index = min(index, size - 1);
1886 ++data[index];
1887}
1888
1889/**
1890 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1891 * statistics data.
1892 *
1893 * @data: start address of the stats data
1894 * @size: the number of bucket of the stats data
1895 * @value: the new value used to update the logarithmic histogram's bucket
1896 */
1897static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1898{
1899 size_t index = fls64(value);
1900
1901 index = min(index, size - 1);
1902 ++data[index];
1903}
1904
1905#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
1906 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1907#define KVM_STATS_LOG_HIST_UPDATE(array, value) \
1908 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1909
1910
1911extern const struct kvm_stats_header kvm_vm_stats_header;
1912extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1913extern const struct kvm_stats_header kvm_vcpu_stats_header;
1914extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1915
1916#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1917static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
1918{
1919 if (unlikely(kvm->mmu_invalidate_in_progress))
1920 return 1;
1921 /*
1922 * Ensure the read of mmu_invalidate_in_progress happens before
1923 * the read of mmu_invalidate_seq. This interacts with the
1924 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
1925 * that the caller either sees the old (non-zero) value of
1926 * mmu_invalidate_in_progress or the new (incremented) value of
1927 * mmu_invalidate_seq.
1928 *
1929 * PowerPC Book3s HV KVM calls this under a per-page lock rather
1930 * than under kvm->mmu_lock, for scalability, so can't rely on
1931 * kvm->mmu_lock to keep things ordered.
1932 */
1933 smp_rmb();
1934 if (kvm->mmu_invalidate_seq != mmu_seq)
1935 return 1;
1936 return 0;
1937}
1938
1939static inline int mmu_invalidate_retry_hva(struct kvm *kvm,
1940 unsigned long mmu_seq,
1941 unsigned long hva)
1942{
1943 lockdep_assert_held(&kvm->mmu_lock);
1944 /*
1945 * If mmu_invalidate_in_progress is non-zero, then the range maintained
1946 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
1947 * that might be being invalidated. Note that it may include some false
1948 * positives, due to shortcuts when handing concurrent invalidations.
1949 */
1950 if (unlikely(kvm->mmu_invalidate_in_progress) &&
1951 hva >= kvm->mmu_invalidate_range_start &&
1952 hva < kvm->mmu_invalidate_range_end)
1953 return 1;
1954 if (kvm->mmu_invalidate_seq != mmu_seq)
1955 return 1;
1956 return 0;
1957}
1958#endif
1959
1960#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1961
1962#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1963
1964bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1965int kvm_set_irq_routing(struct kvm *kvm,
1966 const struct kvm_irq_routing_entry *entries,
1967 unsigned nr,
1968 unsigned flags);
1969int kvm_set_routing_entry(struct kvm *kvm,
1970 struct kvm_kernel_irq_routing_entry *e,
1971 const struct kvm_irq_routing_entry *ue);
1972void kvm_free_irq_routing(struct kvm *kvm);
1973
1974#else
1975
1976static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1977
1978#endif
1979
1980int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1981
1982#ifdef CONFIG_HAVE_KVM_EVENTFD
1983
1984void kvm_eventfd_init(struct kvm *kvm);
1985int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1986
1987#ifdef CONFIG_HAVE_KVM_IRQFD
1988int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1989void kvm_irqfd_release(struct kvm *kvm);
1990bool kvm_notify_irqfd_resampler(struct kvm *kvm,
1991 unsigned int irqchip,
1992 unsigned int pin);
1993void kvm_irq_routing_update(struct kvm *);
1994#else
1995static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1996{
1997 return -EINVAL;
1998}
1999
2000static inline void kvm_irqfd_release(struct kvm *kvm) {}
2001
2002static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2003 unsigned int irqchip,
2004 unsigned int pin)
2005{
2006 return false;
2007}
2008#endif
2009
2010#else
2011
2012static inline void kvm_eventfd_init(struct kvm *kvm) {}
2013
2014static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2015{
2016 return -EINVAL;
2017}
2018
2019static inline void kvm_irqfd_release(struct kvm *kvm) {}
2020
2021#ifdef CONFIG_HAVE_KVM_IRQCHIP
2022static inline void kvm_irq_routing_update(struct kvm *kvm)
2023{
2024}
2025#endif
2026
2027static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
2028{
2029 return -ENOSYS;
2030}
2031
2032#endif /* CONFIG_HAVE_KVM_EVENTFD */
2033
2034void kvm_arch_irq_routing_update(struct kvm *kvm);
2035
2036static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2037{
2038 /*
2039 * Ensure the rest of the request is published to kvm_check_request's
2040 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2041 */
2042 smp_wmb();
2043 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2044}
2045
2046static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2047{
2048 /*
2049 * Request that don't require vCPU action should never be logged in
2050 * vcpu->requests. The vCPU won't clear the request, so it will stay
2051 * logged indefinitely and prevent the vCPU from entering the guest.
2052 */
2053 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2054 (req & KVM_REQUEST_NO_ACTION));
2055
2056 __kvm_make_request(req, vcpu);
2057}
2058
2059static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2060{
2061 return READ_ONCE(vcpu->requests);
2062}
2063
2064static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2065{
2066 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2067}
2068
2069static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2070{
2071 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2072}
2073
2074static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2075{
2076 if (kvm_test_request(req, vcpu)) {
2077 kvm_clear_request(req, vcpu);
2078
2079 /*
2080 * Ensure the rest of the request is visible to kvm_check_request's
2081 * caller. Paired with the smp_wmb in kvm_make_request.
2082 */
2083 smp_mb__after_atomic();
2084 return true;
2085 } else {
2086 return false;
2087 }
2088}
2089
2090#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2091extern bool kvm_rebooting;
2092#endif
2093
2094extern unsigned int halt_poll_ns;
2095extern unsigned int halt_poll_ns_grow;
2096extern unsigned int halt_poll_ns_grow_start;
2097extern unsigned int halt_poll_ns_shrink;
2098
2099struct kvm_device {
2100 const struct kvm_device_ops *ops;
2101 struct kvm *kvm;
2102 void *private;
2103 struct list_head vm_node;
2104};
2105
2106/* create, destroy, and name are mandatory */
2107struct kvm_device_ops {
2108 const char *name;
2109
2110 /*
2111 * create is called holding kvm->lock and any operations not suitable
2112 * to do while holding the lock should be deferred to init (see
2113 * below).
2114 */
2115 int (*create)(struct kvm_device *dev, u32 type);
2116
2117 /*
2118 * init is called after create if create is successful and is called
2119 * outside of holding kvm->lock.
2120 */
2121 void (*init)(struct kvm_device *dev);
2122
2123 /*
2124 * Destroy is responsible for freeing dev.
2125 *
2126 * Destroy may be called before or after destructors are called
2127 * on emulated I/O regions, depending on whether a reference is
2128 * held by a vcpu or other kvm component that gets destroyed
2129 * after the emulated I/O.
2130 */
2131 void (*destroy)(struct kvm_device *dev);
2132
2133 /*
2134 * Release is an alternative method to free the device. It is
2135 * called when the device file descriptor is closed. Once
2136 * release is called, the destroy method will not be called
2137 * anymore as the device is removed from the device list of
2138 * the VM. kvm->lock is held.
2139 */
2140 void (*release)(struct kvm_device *dev);
2141
2142 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2143 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2144 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2145 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2146 unsigned long arg);
2147 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2148};
2149
2150void kvm_device_get(struct kvm_device *dev);
2151void kvm_device_put(struct kvm_device *dev);
2152struct kvm_device *kvm_device_from_filp(struct file *filp);
2153int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2154void kvm_unregister_device_ops(u32 type);
2155
2156extern struct kvm_device_ops kvm_mpic_ops;
2157extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2158extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2159
2160#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2161
2162static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2163{
2164 vcpu->spin_loop.in_spin_loop = val;
2165}
2166static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2167{
2168 vcpu->spin_loop.dy_eligible = val;
2169}
2170
2171#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2172
2173static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2174{
2175}
2176
2177static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2178{
2179}
2180#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2181
2182static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2183{
2184 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2185 !(memslot->flags & KVM_MEMSLOT_INVALID));
2186}
2187
2188struct kvm_vcpu *kvm_get_running_vcpu(void);
2189struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2190
2191#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2192bool kvm_arch_has_irq_bypass(void);
2193int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2194 struct irq_bypass_producer *);
2195void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2196 struct irq_bypass_producer *);
2197void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2198void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2199int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2200 uint32_t guest_irq, bool set);
2201bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2202 struct kvm_kernel_irq_routing_entry *);
2203#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2204
2205#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2206/* If we wakeup during the poll time, was it a sucessful poll? */
2207static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2208{
2209 return vcpu->valid_wakeup;
2210}
2211
2212#else
2213static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2214{
2215 return true;
2216}
2217#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2218
2219#ifdef CONFIG_HAVE_KVM_NO_POLL
2220/* Callback that tells if we must not poll */
2221bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2222#else
2223static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2224{
2225 return false;
2226}
2227#endif /* CONFIG_HAVE_KVM_NO_POLL */
2228
2229#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2230long kvm_arch_vcpu_async_ioctl(struct file *filp,
2231 unsigned int ioctl, unsigned long arg);
2232#else
2233static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2234 unsigned int ioctl,
2235 unsigned long arg)
2236{
2237 return -ENOIOCTLCMD;
2238}
2239#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2240
2241void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
2242 unsigned long start, unsigned long end);
2243
2244void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2245
2246#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2247int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2248#else
2249static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2250{
2251 return 0;
2252}
2253#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2254
2255typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2256
2257int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2258 uintptr_t data, const char *name,
2259 struct task_struct **thread_ptr);
2260
2261#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2262static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2263{
2264 vcpu->run->exit_reason = KVM_EXIT_INTR;
2265 vcpu->stat.signal_exits++;
2266}
2267#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2268
2269/*
2270 * If more than one page is being (un)accounted, @virt must be the address of
2271 * the first page of a block of pages what were allocated together (i.e
2272 * accounted together).
2273 *
2274 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2275 * is thread-safe.
2276 */
2277static inline void kvm_account_pgtable_pages(void *virt, int nr)
2278{
2279 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2280}
2281
2282/*
2283 * This defines how many reserved entries we want to keep before we
2284 * kick the vcpu to the userspace to avoid dirty ring full. This
2285 * value can be tuned to higher if e.g. PML is enabled on the host.
2286 */
2287#define KVM_DIRTY_RING_RSVD_ENTRIES 64
2288
2289/* Max number of entries allowed for each kvm dirty ring */
2290#define KVM_DIRTY_RING_MAX_ENTRIES 65536
2291
2292#endif