Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_HUGETLB_H
3#define _LINUX_HUGETLB_H
4
5#include <linux/mm.h>
6#include <linux/mm_types.h>
7#include <linux/mmdebug.h>
8#include <linux/fs.h>
9#include <linux/hugetlb_inline.h>
10#include <linux/cgroup.h>
11#include <linux/page_ref.h>
12#include <linux/list.h>
13#include <linux/kref.h>
14#include <linux/pgtable.h>
15#include <linux/gfp.h>
16#include <linux/userfaultfd_k.h>
17
18struct ctl_table;
19struct user_struct;
20struct mmu_gather;
21struct node;
22
23#ifndef CONFIG_ARCH_HAS_HUGEPD
24typedef struct { unsigned long pd; } hugepd_t;
25#define is_hugepd(hugepd) (0)
26#define __hugepd(x) ((hugepd_t) { (x) })
27#endif
28
29#ifdef CONFIG_HUGETLB_PAGE
30
31#include <linux/mempolicy.h>
32#include <linux/shm.h>
33#include <asm/tlbflush.h>
34
35/*
36 * For HugeTLB page, there are more metadata to save in the struct page. But
37 * the head struct page cannot meet our needs, so we have to abuse other tail
38 * struct page to store the metadata.
39 */
40#define __NR_USED_SUBPAGE 3
41
42struct hugepage_subpool {
43 spinlock_t lock;
44 long count;
45 long max_hpages; /* Maximum huge pages or -1 if no maximum. */
46 long used_hpages; /* Used count against maximum, includes */
47 /* both allocated and reserved pages. */
48 struct hstate *hstate;
49 long min_hpages; /* Minimum huge pages or -1 if no minimum. */
50 long rsv_hpages; /* Pages reserved against global pool to */
51 /* satisfy minimum size. */
52};
53
54struct resv_map {
55 struct kref refs;
56 spinlock_t lock;
57 struct list_head regions;
58 long adds_in_progress;
59 struct list_head region_cache;
60 long region_cache_count;
61#ifdef CONFIG_CGROUP_HUGETLB
62 /*
63 * On private mappings, the counter to uncharge reservations is stored
64 * here. If these fields are 0, then either the mapping is shared, or
65 * cgroup accounting is disabled for this resv_map.
66 */
67 struct page_counter *reservation_counter;
68 unsigned long pages_per_hpage;
69 struct cgroup_subsys_state *css;
70#endif
71};
72
73/*
74 * Region tracking -- allows tracking of reservations and instantiated pages
75 * across the pages in a mapping.
76 *
77 * The region data structures are embedded into a resv_map and protected
78 * by a resv_map's lock. The set of regions within the resv_map represent
79 * reservations for huge pages, or huge pages that have already been
80 * instantiated within the map. The from and to elements are huge page
81 * indices into the associated mapping. from indicates the starting index
82 * of the region. to represents the first index past the end of the region.
83 *
84 * For example, a file region structure with from == 0 and to == 4 represents
85 * four huge pages in a mapping. It is important to note that the to element
86 * represents the first element past the end of the region. This is used in
87 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
88 *
89 * Interval notation of the form [from, to) will be used to indicate that
90 * the endpoint from is inclusive and to is exclusive.
91 */
92struct file_region {
93 struct list_head link;
94 long from;
95 long to;
96#ifdef CONFIG_CGROUP_HUGETLB
97 /*
98 * On shared mappings, each reserved region appears as a struct
99 * file_region in resv_map. These fields hold the info needed to
100 * uncharge each reservation.
101 */
102 struct page_counter *reservation_counter;
103 struct cgroup_subsys_state *css;
104#endif
105};
106
107struct hugetlb_vma_lock {
108 struct kref refs;
109 struct rw_semaphore rw_sema;
110 struct vm_area_struct *vma;
111};
112
113extern struct resv_map *resv_map_alloc(void);
114void resv_map_release(struct kref *ref);
115
116extern spinlock_t hugetlb_lock;
117extern int hugetlb_max_hstate __read_mostly;
118#define for_each_hstate(h) \
119 for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
120
121struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
122 long min_hpages);
123void hugepage_put_subpool(struct hugepage_subpool *spool);
124
125void hugetlb_dup_vma_private(struct vm_area_struct *vma);
126void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
127int hugetlb_sysctl_handler(struct ctl_table *, int, void *, size_t *, loff_t *);
128int hugetlb_overcommit_handler(struct ctl_table *, int, void *, size_t *,
129 loff_t *);
130int hugetlb_treat_movable_handler(struct ctl_table *, int, void *, size_t *,
131 loff_t *);
132int hugetlb_mempolicy_sysctl_handler(struct ctl_table *, int, void *, size_t *,
133 loff_t *);
134
135int move_hugetlb_page_tables(struct vm_area_struct *vma,
136 struct vm_area_struct *new_vma,
137 unsigned long old_addr, unsigned long new_addr,
138 unsigned long len);
139int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
140 struct vm_area_struct *, struct vm_area_struct *);
141struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
142 unsigned long address, unsigned int flags);
143long follow_hugetlb_page(struct mm_struct *, struct vm_area_struct *,
144 struct page **, struct vm_area_struct **,
145 unsigned long *, unsigned long *, long, unsigned int,
146 int *);
147void unmap_hugepage_range(struct vm_area_struct *,
148 unsigned long, unsigned long, struct page *,
149 zap_flags_t);
150void __unmap_hugepage_range_final(struct mmu_gather *tlb,
151 struct vm_area_struct *vma,
152 unsigned long start, unsigned long end,
153 struct page *ref_page, zap_flags_t zap_flags);
154void hugetlb_report_meminfo(struct seq_file *);
155int hugetlb_report_node_meminfo(char *buf, int len, int nid);
156void hugetlb_show_meminfo_node(int nid);
157unsigned long hugetlb_total_pages(void);
158vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
159 unsigned long address, unsigned int flags);
160#ifdef CONFIG_USERFAULTFD
161int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, pte_t *dst_pte,
162 struct vm_area_struct *dst_vma,
163 unsigned long dst_addr,
164 unsigned long src_addr,
165 enum mcopy_atomic_mode mode,
166 struct page **pagep,
167 bool wp_copy);
168#endif /* CONFIG_USERFAULTFD */
169bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
170 struct vm_area_struct *vma,
171 vm_flags_t vm_flags);
172long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
173 long freed);
174bool isolate_hugetlb(struct folio *folio, struct list_head *list);
175int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
176int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
177 bool *migratable_cleared);
178void folio_putback_active_hugetlb(struct folio *folio);
179void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
180void free_huge_page(struct page *page);
181void hugetlb_fix_reserve_counts(struct inode *inode);
182extern struct mutex *hugetlb_fault_mutex_table;
183u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
184
185pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
186 unsigned long addr, pud_t *pud);
187
188struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage);
189
190extern int sysctl_hugetlb_shm_group;
191extern struct list_head huge_boot_pages;
192
193/* arch callbacks */
194
195pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
196 unsigned long addr, unsigned long sz);
197/*
198 * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
199 * Returns the pte_t* if found, or NULL if the address is not mapped.
200 *
201 * IMPORTANT: we should normally not directly call this function, instead
202 * this is only a common interface to implement arch-specific
203 * walker. Please use hugetlb_walk() instead, because that will attempt to
204 * verify the locking for you.
205 *
206 * Since this function will walk all the pgtable pages (including not only
207 * high-level pgtable page, but also PUD entry that can be unshared
208 * concurrently for VM_SHARED), the caller of this function should be
209 * responsible of its thread safety. One can follow this rule:
210 *
211 * (1) For private mappings: pmd unsharing is not possible, so holding the
212 * mmap_lock for either read or write is sufficient. Most callers
213 * already hold the mmap_lock, so normally, no special action is
214 * required.
215 *
216 * (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
217 * pgtable page can go away from under us! It can be done by a pmd
218 * unshare with a follow up munmap() on the other process), then we
219 * need either:
220 *
221 * (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
222 * won't happen upon the range (it also makes sure the pte_t we
223 * read is the right and stable one), or,
224 *
225 * (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
226 * sure even if unshare happened the racy unmap() will wait until
227 * i_mmap_rwsem is released.
228 *
229 * Option (2.1) is the safest, which guarantees pte stability from pmd
230 * sharing pov, until the vma lock released. Option (2.2) doesn't protect
231 * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
232 * access.
233 */
234pte_t *huge_pte_offset(struct mm_struct *mm,
235 unsigned long addr, unsigned long sz);
236unsigned long hugetlb_mask_last_page(struct hstate *h);
237int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
238 unsigned long addr, pte_t *ptep);
239void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
240 unsigned long *start, unsigned long *end);
241
242void hugetlb_vma_lock_read(struct vm_area_struct *vma);
243void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
244void hugetlb_vma_lock_write(struct vm_area_struct *vma);
245void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
246int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
247void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
248void hugetlb_vma_lock_release(struct kref *kref);
249
250int pmd_huge(pmd_t pmd);
251int pud_huge(pud_t pud);
252long hugetlb_change_protection(struct vm_area_struct *vma,
253 unsigned long address, unsigned long end, pgprot_t newprot,
254 unsigned long cp_flags);
255
256bool is_hugetlb_entry_migration(pte_t pte);
257void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
258
259#else /* !CONFIG_HUGETLB_PAGE */
260
261static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
262{
263}
264
265static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
266{
267}
268
269static inline unsigned long hugetlb_total_pages(void)
270{
271 return 0;
272}
273
274static inline struct address_space *hugetlb_page_mapping_lock_write(
275 struct page *hpage)
276{
277 return NULL;
278}
279
280static inline int huge_pmd_unshare(struct mm_struct *mm,
281 struct vm_area_struct *vma,
282 unsigned long addr, pte_t *ptep)
283{
284 return 0;
285}
286
287static inline void adjust_range_if_pmd_sharing_possible(
288 struct vm_area_struct *vma,
289 unsigned long *start, unsigned long *end)
290{
291}
292
293static inline struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
294 unsigned long address, unsigned int flags)
295{
296 BUILD_BUG(); /* should never be compiled in if !CONFIG_HUGETLB_PAGE*/
297}
298
299static inline long follow_hugetlb_page(struct mm_struct *mm,
300 struct vm_area_struct *vma, struct page **pages,
301 struct vm_area_struct **vmas, unsigned long *position,
302 unsigned long *nr_pages, long i, unsigned int flags,
303 int *nonblocking)
304{
305 BUG();
306 return 0;
307}
308
309static inline int copy_hugetlb_page_range(struct mm_struct *dst,
310 struct mm_struct *src,
311 struct vm_area_struct *dst_vma,
312 struct vm_area_struct *src_vma)
313{
314 BUG();
315 return 0;
316}
317
318static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
319 struct vm_area_struct *new_vma,
320 unsigned long old_addr,
321 unsigned long new_addr,
322 unsigned long len)
323{
324 BUG();
325 return 0;
326}
327
328static inline void hugetlb_report_meminfo(struct seq_file *m)
329{
330}
331
332static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
333{
334 return 0;
335}
336
337static inline void hugetlb_show_meminfo_node(int nid)
338{
339}
340
341static inline int prepare_hugepage_range(struct file *file,
342 unsigned long addr, unsigned long len)
343{
344 return -EINVAL;
345}
346
347static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
348{
349}
350
351static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
352{
353}
354
355static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
356{
357}
358
359static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
360{
361}
362
363static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
364{
365 return 1;
366}
367
368static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
369{
370}
371
372static inline int pmd_huge(pmd_t pmd)
373{
374 return 0;
375}
376
377static inline int pud_huge(pud_t pud)
378{
379 return 0;
380}
381
382static inline int is_hugepage_only_range(struct mm_struct *mm,
383 unsigned long addr, unsigned long len)
384{
385 return 0;
386}
387
388static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
389 unsigned long addr, unsigned long end,
390 unsigned long floor, unsigned long ceiling)
391{
392 BUG();
393}
394
395#ifdef CONFIG_USERFAULTFD
396static inline int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
397 pte_t *dst_pte,
398 struct vm_area_struct *dst_vma,
399 unsigned long dst_addr,
400 unsigned long src_addr,
401 enum mcopy_atomic_mode mode,
402 struct page **pagep,
403 bool wp_copy)
404{
405 BUG();
406 return 0;
407}
408#endif /* CONFIG_USERFAULTFD */
409
410static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
411 unsigned long sz)
412{
413 return NULL;
414}
415
416static inline bool isolate_hugetlb(struct folio *folio, struct list_head *list)
417{
418 return false;
419}
420
421static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
422{
423 return 0;
424}
425
426static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
427 bool *migratable_cleared)
428{
429 return 0;
430}
431
432static inline void folio_putback_active_hugetlb(struct folio *folio)
433{
434}
435
436static inline void move_hugetlb_state(struct folio *old_folio,
437 struct folio *new_folio, int reason)
438{
439}
440
441static inline long hugetlb_change_protection(
442 struct vm_area_struct *vma, unsigned long address,
443 unsigned long end, pgprot_t newprot,
444 unsigned long cp_flags)
445{
446 return 0;
447}
448
449static inline void __unmap_hugepage_range_final(struct mmu_gather *tlb,
450 struct vm_area_struct *vma, unsigned long start,
451 unsigned long end, struct page *ref_page,
452 zap_flags_t zap_flags)
453{
454 BUG();
455}
456
457static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
458 struct vm_area_struct *vma, unsigned long address,
459 unsigned int flags)
460{
461 BUG();
462 return 0;
463}
464
465static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
466
467#endif /* !CONFIG_HUGETLB_PAGE */
468/*
469 * hugepages at page global directory. If arch support
470 * hugepages at pgd level, they need to define this.
471 */
472#ifndef pgd_huge
473#define pgd_huge(x) 0
474#endif
475#ifndef p4d_huge
476#define p4d_huge(x) 0
477#endif
478
479#ifndef pgd_write
480static inline int pgd_write(pgd_t pgd)
481{
482 BUG();
483 return 0;
484}
485#endif
486
487#define HUGETLB_ANON_FILE "anon_hugepage"
488
489enum {
490 /*
491 * The file will be used as an shm file so shmfs accounting rules
492 * apply
493 */
494 HUGETLB_SHMFS_INODE = 1,
495 /*
496 * The file is being created on the internal vfs mount and shmfs
497 * accounting rules do not apply
498 */
499 HUGETLB_ANONHUGE_INODE = 2,
500};
501
502#ifdef CONFIG_HUGETLBFS
503struct hugetlbfs_sb_info {
504 long max_inodes; /* inodes allowed */
505 long free_inodes; /* inodes free */
506 spinlock_t stat_lock;
507 struct hstate *hstate;
508 struct hugepage_subpool *spool;
509 kuid_t uid;
510 kgid_t gid;
511 umode_t mode;
512};
513
514static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
515{
516 return sb->s_fs_info;
517}
518
519struct hugetlbfs_inode_info {
520 struct shared_policy policy;
521 struct inode vfs_inode;
522 unsigned int seals;
523};
524
525static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
526{
527 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
528}
529
530extern const struct file_operations hugetlbfs_file_operations;
531extern const struct vm_operations_struct hugetlb_vm_ops;
532struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
533 int creat_flags, int page_size_log);
534
535static inline bool is_file_hugepages(struct file *file)
536{
537 if (file->f_op == &hugetlbfs_file_operations)
538 return true;
539
540 return is_file_shm_hugepages(file);
541}
542
543static inline struct hstate *hstate_inode(struct inode *i)
544{
545 return HUGETLBFS_SB(i->i_sb)->hstate;
546}
547#else /* !CONFIG_HUGETLBFS */
548
549#define is_file_hugepages(file) false
550static inline struct file *
551hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
552 int creat_flags, int page_size_log)
553{
554 return ERR_PTR(-ENOSYS);
555}
556
557static inline struct hstate *hstate_inode(struct inode *i)
558{
559 return NULL;
560}
561#endif /* !CONFIG_HUGETLBFS */
562
563#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
564unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
565 unsigned long len, unsigned long pgoff,
566 unsigned long flags);
567#endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
568
569unsigned long
570generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
571 unsigned long len, unsigned long pgoff,
572 unsigned long flags);
573
574/*
575 * huegtlb page specific state flags. These flags are located in page.private
576 * of the hugetlb head page. Functions created via the below macros should be
577 * used to manipulate these flags.
578 *
579 * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
580 * allocation time. Cleared when page is fully instantiated. Free
581 * routine checks flag to restore a reservation on error paths.
582 * Synchronization: Examined or modified by code that knows it has
583 * the only reference to page. i.e. After allocation but before use
584 * or when the page is being freed.
585 * HPG_migratable - Set after a newly allocated page is added to the page
586 * cache and/or page tables. Indicates the page is a candidate for
587 * migration.
588 * Synchronization: Initially set after new page allocation with no
589 * locking. When examined and modified during migration processing
590 * (isolate, migrate, putback) the hugetlb_lock is held.
591 * HPG_temporary - Set on a page that is temporarily allocated from the buddy
592 * allocator. Typically used for migration target pages when no pages
593 * are available in the pool. The hugetlb free page path will
594 * immediately free pages with this flag set to the buddy allocator.
595 * Synchronization: Can be set after huge page allocation from buddy when
596 * code knows it has only reference. All other examinations and
597 * modifications require hugetlb_lock.
598 * HPG_freed - Set when page is on the free lists.
599 * Synchronization: hugetlb_lock held for examination and modification.
600 * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
601 * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
602 * that is not tracked by raw_hwp_page list.
603 */
604enum hugetlb_page_flags {
605 HPG_restore_reserve = 0,
606 HPG_migratable,
607 HPG_temporary,
608 HPG_freed,
609 HPG_vmemmap_optimized,
610 HPG_raw_hwp_unreliable,
611 __NR_HPAGEFLAGS,
612};
613
614/*
615 * Macros to create test, set and clear function definitions for
616 * hugetlb specific page flags.
617 */
618#ifdef CONFIG_HUGETLB_PAGE
619#define TESTHPAGEFLAG(uname, flname) \
620static __always_inline \
621bool folio_test_hugetlb_##flname(struct folio *folio) \
622 { void *private = &folio->private; \
623 return test_bit(HPG_##flname, private); \
624 } \
625static inline int HPage##uname(struct page *page) \
626 { return test_bit(HPG_##flname, &(page->private)); }
627
628#define SETHPAGEFLAG(uname, flname) \
629static __always_inline \
630void folio_set_hugetlb_##flname(struct folio *folio) \
631 { void *private = &folio->private; \
632 set_bit(HPG_##flname, private); \
633 } \
634static inline void SetHPage##uname(struct page *page) \
635 { set_bit(HPG_##flname, &(page->private)); }
636
637#define CLEARHPAGEFLAG(uname, flname) \
638static __always_inline \
639void folio_clear_hugetlb_##flname(struct folio *folio) \
640 { void *private = &folio->private; \
641 clear_bit(HPG_##flname, private); \
642 } \
643static inline void ClearHPage##uname(struct page *page) \
644 { clear_bit(HPG_##flname, &(page->private)); }
645#else
646#define TESTHPAGEFLAG(uname, flname) \
647static inline bool \
648folio_test_hugetlb_##flname(struct folio *folio) \
649 { return 0; } \
650static inline int HPage##uname(struct page *page) \
651 { return 0; }
652
653#define SETHPAGEFLAG(uname, flname) \
654static inline void \
655folio_set_hugetlb_##flname(struct folio *folio) \
656 { } \
657static inline void SetHPage##uname(struct page *page) \
658 { }
659
660#define CLEARHPAGEFLAG(uname, flname) \
661static inline void \
662folio_clear_hugetlb_##flname(struct folio *folio) \
663 { } \
664static inline void ClearHPage##uname(struct page *page) \
665 { }
666#endif
667
668#define HPAGEFLAG(uname, flname) \
669 TESTHPAGEFLAG(uname, flname) \
670 SETHPAGEFLAG(uname, flname) \
671 CLEARHPAGEFLAG(uname, flname) \
672
673/*
674 * Create functions associated with hugetlb page flags
675 */
676HPAGEFLAG(RestoreReserve, restore_reserve)
677HPAGEFLAG(Migratable, migratable)
678HPAGEFLAG(Temporary, temporary)
679HPAGEFLAG(Freed, freed)
680HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
681HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
682
683#ifdef CONFIG_HUGETLB_PAGE
684
685#define HSTATE_NAME_LEN 32
686/* Defines one hugetlb page size */
687struct hstate {
688 struct mutex resize_lock;
689 int next_nid_to_alloc;
690 int next_nid_to_free;
691 unsigned int order;
692 unsigned int demote_order;
693 unsigned long mask;
694 unsigned long max_huge_pages;
695 unsigned long nr_huge_pages;
696 unsigned long free_huge_pages;
697 unsigned long resv_huge_pages;
698 unsigned long surplus_huge_pages;
699 unsigned long nr_overcommit_huge_pages;
700 struct list_head hugepage_activelist;
701 struct list_head hugepage_freelists[MAX_NUMNODES];
702 unsigned int max_huge_pages_node[MAX_NUMNODES];
703 unsigned int nr_huge_pages_node[MAX_NUMNODES];
704 unsigned int free_huge_pages_node[MAX_NUMNODES];
705 unsigned int surplus_huge_pages_node[MAX_NUMNODES];
706#ifdef CONFIG_CGROUP_HUGETLB
707 /* cgroup control files */
708 struct cftype cgroup_files_dfl[8];
709 struct cftype cgroup_files_legacy[10];
710#endif
711 char name[HSTATE_NAME_LEN];
712};
713
714struct huge_bootmem_page {
715 struct list_head list;
716 struct hstate *hstate;
717};
718
719int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list);
720struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
721 unsigned long addr, int avoid_reserve);
722struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
723 nodemask_t *nmask, gfp_t gfp_mask);
724struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
725 unsigned long address);
726int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
727 pgoff_t idx);
728void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
729 unsigned long address, struct folio *folio);
730
731/* arch callback */
732int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
733int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
734bool __init hugetlb_node_alloc_supported(void);
735
736void __init hugetlb_add_hstate(unsigned order);
737bool __init arch_hugetlb_valid_size(unsigned long size);
738struct hstate *size_to_hstate(unsigned long size);
739
740#ifndef HUGE_MAX_HSTATE
741#define HUGE_MAX_HSTATE 1
742#endif
743
744extern struct hstate hstates[HUGE_MAX_HSTATE];
745extern unsigned int default_hstate_idx;
746
747#define default_hstate (hstates[default_hstate_idx])
748
749static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
750{
751 return folio->_hugetlb_subpool;
752}
753
754/*
755 * hugetlb page subpool pointer located in hpage[2].hugetlb_subpool
756 */
757static inline struct hugepage_subpool *hugetlb_page_subpool(struct page *hpage)
758{
759 return hugetlb_folio_subpool(page_folio(hpage));
760}
761
762static inline void hugetlb_set_folio_subpool(struct folio *folio,
763 struct hugepage_subpool *subpool)
764{
765 folio->_hugetlb_subpool = subpool;
766}
767
768static inline void hugetlb_set_page_subpool(struct page *hpage,
769 struct hugepage_subpool *subpool)
770{
771 hugetlb_set_folio_subpool(page_folio(hpage), subpool);
772}
773
774static inline struct hstate *hstate_file(struct file *f)
775{
776 return hstate_inode(file_inode(f));
777}
778
779static inline struct hstate *hstate_sizelog(int page_size_log)
780{
781 if (!page_size_log)
782 return &default_hstate;
783
784 if (page_size_log < BITS_PER_LONG)
785 return size_to_hstate(1UL << page_size_log);
786
787 return NULL;
788}
789
790static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
791{
792 return hstate_file(vma->vm_file);
793}
794
795static inline unsigned long huge_page_size(const struct hstate *h)
796{
797 return (unsigned long)PAGE_SIZE << h->order;
798}
799
800extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
801
802extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
803
804static inline unsigned long huge_page_mask(struct hstate *h)
805{
806 return h->mask;
807}
808
809static inline unsigned int huge_page_order(struct hstate *h)
810{
811 return h->order;
812}
813
814static inline unsigned huge_page_shift(struct hstate *h)
815{
816 return h->order + PAGE_SHIFT;
817}
818
819static inline bool hstate_is_gigantic(struct hstate *h)
820{
821 return huge_page_order(h) >= MAX_ORDER;
822}
823
824static inline unsigned int pages_per_huge_page(const struct hstate *h)
825{
826 return 1 << h->order;
827}
828
829static inline unsigned int blocks_per_huge_page(struct hstate *h)
830{
831 return huge_page_size(h) / 512;
832}
833
834#include <asm/hugetlb.h>
835
836#ifndef is_hugepage_only_range
837static inline int is_hugepage_only_range(struct mm_struct *mm,
838 unsigned long addr, unsigned long len)
839{
840 return 0;
841}
842#define is_hugepage_only_range is_hugepage_only_range
843#endif
844
845#ifndef arch_clear_hugepage_flags
846static inline void arch_clear_hugepage_flags(struct page *page) { }
847#define arch_clear_hugepage_flags arch_clear_hugepage_flags
848#endif
849
850#ifndef arch_make_huge_pte
851static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
852 vm_flags_t flags)
853{
854 return pte_mkhuge(entry);
855}
856#endif
857
858static inline struct hstate *folio_hstate(struct folio *folio)
859{
860 VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
861 return size_to_hstate(folio_size(folio));
862}
863
864static inline struct hstate *page_hstate(struct page *page)
865{
866 return folio_hstate(page_folio(page));
867}
868
869static inline unsigned hstate_index_to_shift(unsigned index)
870{
871 return hstates[index].order + PAGE_SHIFT;
872}
873
874static inline int hstate_index(struct hstate *h)
875{
876 return h - hstates;
877}
878
879extern int dissolve_free_huge_page(struct page *page);
880extern int dissolve_free_huge_pages(unsigned long start_pfn,
881 unsigned long end_pfn);
882
883#ifdef CONFIG_MEMORY_FAILURE
884extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
885#else
886static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
887{
888}
889#endif
890
891#ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
892#ifndef arch_hugetlb_migration_supported
893static inline bool arch_hugetlb_migration_supported(struct hstate *h)
894{
895 if ((huge_page_shift(h) == PMD_SHIFT) ||
896 (huge_page_shift(h) == PUD_SHIFT) ||
897 (huge_page_shift(h) == PGDIR_SHIFT))
898 return true;
899 else
900 return false;
901}
902#endif
903#else
904static inline bool arch_hugetlb_migration_supported(struct hstate *h)
905{
906 return false;
907}
908#endif
909
910static inline bool hugepage_migration_supported(struct hstate *h)
911{
912 return arch_hugetlb_migration_supported(h);
913}
914
915/*
916 * Movability check is different as compared to migration check.
917 * It determines whether or not a huge page should be placed on
918 * movable zone or not. Movability of any huge page should be
919 * required only if huge page size is supported for migration.
920 * There won't be any reason for the huge page to be movable if
921 * it is not migratable to start with. Also the size of the huge
922 * page should be large enough to be placed under a movable zone
923 * and still feasible enough to be migratable. Just the presence
924 * in movable zone does not make the migration feasible.
925 *
926 * So even though large huge page sizes like the gigantic ones
927 * are migratable they should not be movable because its not
928 * feasible to migrate them from movable zone.
929 */
930static inline bool hugepage_movable_supported(struct hstate *h)
931{
932 if (!hugepage_migration_supported(h))
933 return false;
934
935 if (hstate_is_gigantic(h))
936 return false;
937 return true;
938}
939
940/* Movability of hugepages depends on migration support. */
941static inline gfp_t htlb_alloc_mask(struct hstate *h)
942{
943 if (hugepage_movable_supported(h))
944 return GFP_HIGHUSER_MOVABLE;
945 else
946 return GFP_HIGHUSER;
947}
948
949static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
950{
951 gfp_t modified_mask = htlb_alloc_mask(h);
952
953 /* Some callers might want to enforce node */
954 modified_mask |= (gfp_mask & __GFP_THISNODE);
955
956 modified_mask |= (gfp_mask & __GFP_NOWARN);
957
958 return modified_mask;
959}
960
961static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
962 struct mm_struct *mm, pte_t *pte)
963{
964 if (huge_page_size(h) == PMD_SIZE)
965 return pmd_lockptr(mm, (pmd_t *) pte);
966 VM_BUG_ON(huge_page_size(h) == PAGE_SIZE);
967 return &mm->page_table_lock;
968}
969
970#ifndef hugepages_supported
971/*
972 * Some platform decide whether they support huge pages at boot
973 * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
974 * when there is no such support
975 */
976#define hugepages_supported() (HPAGE_SHIFT != 0)
977#endif
978
979void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
980
981static inline void hugetlb_count_init(struct mm_struct *mm)
982{
983 atomic_long_set(&mm->hugetlb_usage, 0);
984}
985
986static inline void hugetlb_count_add(long l, struct mm_struct *mm)
987{
988 atomic_long_add(l, &mm->hugetlb_usage);
989}
990
991static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
992{
993 atomic_long_sub(l, &mm->hugetlb_usage);
994}
995
996#ifndef huge_ptep_modify_prot_start
997#define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
998static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
999 unsigned long addr, pte_t *ptep)
1000{
1001 return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep);
1002}
1003#endif
1004
1005#ifndef huge_ptep_modify_prot_commit
1006#define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
1007static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1008 unsigned long addr, pte_t *ptep,
1009 pte_t old_pte, pte_t pte)
1010{
1011 set_huge_pte_at(vma->vm_mm, addr, ptep, pte);
1012}
1013#endif
1014
1015#ifdef CONFIG_NUMA
1016void hugetlb_register_node(struct node *node);
1017void hugetlb_unregister_node(struct node *node);
1018#endif
1019
1020#else /* CONFIG_HUGETLB_PAGE */
1021struct hstate {};
1022
1023static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1024{
1025 return NULL;
1026}
1027
1028static inline struct hugepage_subpool *hugetlb_page_subpool(struct page *hpage)
1029{
1030 return NULL;
1031}
1032
1033static inline int isolate_or_dissolve_huge_page(struct page *page,
1034 struct list_head *list)
1035{
1036 return -ENOMEM;
1037}
1038
1039static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
1040 unsigned long addr,
1041 int avoid_reserve)
1042{
1043 return NULL;
1044}
1045
1046static inline struct folio *
1047alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
1048 nodemask_t *nmask, gfp_t gfp_mask)
1049{
1050 return NULL;
1051}
1052
1053static inline struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
1054 struct vm_area_struct *vma,
1055 unsigned long address)
1056{
1057 return NULL;
1058}
1059
1060static inline int __alloc_bootmem_huge_page(struct hstate *h)
1061{
1062 return 0;
1063}
1064
1065static inline struct hstate *hstate_file(struct file *f)
1066{
1067 return NULL;
1068}
1069
1070static inline struct hstate *hstate_sizelog(int page_size_log)
1071{
1072 return NULL;
1073}
1074
1075static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1076{
1077 return NULL;
1078}
1079
1080static inline struct hstate *folio_hstate(struct folio *folio)
1081{
1082 return NULL;
1083}
1084
1085static inline struct hstate *page_hstate(struct page *page)
1086{
1087 return NULL;
1088}
1089
1090static inline struct hstate *size_to_hstate(unsigned long size)
1091{
1092 return NULL;
1093}
1094
1095static inline unsigned long huge_page_size(struct hstate *h)
1096{
1097 return PAGE_SIZE;
1098}
1099
1100static inline unsigned long huge_page_mask(struct hstate *h)
1101{
1102 return PAGE_MASK;
1103}
1104
1105static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1106{
1107 return PAGE_SIZE;
1108}
1109
1110static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1111{
1112 return PAGE_SIZE;
1113}
1114
1115static inline unsigned int huge_page_order(struct hstate *h)
1116{
1117 return 0;
1118}
1119
1120static inline unsigned int huge_page_shift(struct hstate *h)
1121{
1122 return PAGE_SHIFT;
1123}
1124
1125static inline bool hstate_is_gigantic(struct hstate *h)
1126{
1127 return false;
1128}
1129
1130static inline unsigned int pages_per_huge_page(struct hstate *h)
1131{
1132 return 1;
1133}
1134
1135static inline unsigned hstate_index_to_shift(unsigned index)
1136{
1137 return 0;
1138}
1139
1140static inline int hstate_index(struct hstate *h)
1141{
1142 return 0;
1143}
1144
1145static inline int dissolve_free_huge_page(struct page *page)
1146{
1147 return 0;
1148}
1149
1150static inline int dissolve_free_huge_pages(unsigned long start_pfn,
1151 unsigned long end_pfn)
1152{
1153 return 0;
1154}
1155
1156static inline bool hugepage_migration_supported(struct hstate *h)
1157{
1158 return false;
1159}
1160
1161static inline bool hugepage_movable_supported(struct hstate *h)
1162{
1163 return false;
1164}
1165
1166static inline gfp_t htlb_alloc_mask(struct hstate *h)
1167{
1168 return 0;
1169}
1170
1171static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1172{
1173 return 0;
1174}
1175
1176static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1177 struct mm_struct *mm, pte_t *pte)
1178{
1179 return &mm->page_table_lock;
1180}
1181
1182static inline void hugetlb_count_init(struct mm_struct *mm)
1183{
1184}
1185
1186static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1187{
1188}
1189
1190static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1191{
1192}
1193
1194static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1195 unsigned long addr, pte_t *ptep)
1196{
1197 return *ptep;
1198}
1199
1200static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
1201 pte_t *ptep, pte_t pte)
1202{
1203}
1204
1205static inline void hugetlb_register_node(struct node *node)
1206{
1207}
1208
1209static inline void hugetlb_unregister_node(struct node *node)
1210{
1211}
1212#endif /* CONFIG_HUGETLB_PAGE */
1213
1214static inline spinlock_t *huge_pte_lock(struct hstate *h,
1215 struct mm_struct *mm, pte_t *pte)
1216{
1217 spinlock_t *ptl;
1218
1219 ptl = huge_pte_lockptr(h, mm, pte);
1220 spin_lock(ptl);
1221 return ptl;
1222}
1223
1224#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1225extern void __init hugetlb_cma_reserve(int order);
1226#else
1227static inline __init void hugetlb_cma_reserve(int order)
1228{
1229}
1230#endif
1231
1232#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
1233static inline bool hugetlb_pmd_shared(pte_t *pte)
1234{
1235 return page_count(virt_to_page(pte)) > 1;
1236}
1237#else
1238static inline bool hugetlb_pmd_shared(pte_t *pte)
1239{
1240 return false;
1241}
1242#endif
1243
1244bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1245
1246#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1247/*
1248 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1249 * implement this.
1250 */
1251#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1252#endif
1253
1254static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1255{
1256 return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1257}
1258
1259/*
1260 * Safe version of huge_pte_offset() to check the locks. See comments
1261 * above huge_pte_offset().
1262 */
1263static inline pte_t *
1264hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1265{
1266#if defined(CONFIG_HUGETLB_PAGE) && \
1267 defined(CONFIG_ARCH_WANT_HUGE_PMD_SHARE) && defined(CONFIG_LOCKDEP)
1268 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1269
1270 /*
1271 * If pmd sharing possible, locking needed to safely walk the
1272 * hugetlb pgtables. More information can be found at the comment
1273 * above huge_pte_offset() in the same file.
1274 *
1275 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1276 */
1277 if (__vma_shareable_lock(vma))
1278 WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1279 !lockdep_is_held(
1280 &vma->vm_file->f_mapping->i_mmap_rwsem));
1281#endif
1282 return huge_pte_offset(vma->vm_mm, addr, sz);
1283}
1284
1285#endif /* _LINUX_HUGETLB_H */