at v6.3 36 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_CPUMASK_H 3#define __LINUX_CPUMASK_H 4 5/* 6 * Cpumasks provide a bitmap suitable for representing the 7 * set of CPU's in a system, one bit position per CPU number. In general, 8 * only nr_cpu_ids (<= NR_CPUS) bits are valid. 9 */ 10#include <linux/kernel.h> 11#include <linux/threads.h> 12#include <linux/bitmap.h> 13#include <linux/atomic.h> 14#include <linux/bug.h> 15#include <linux/gfp_types.h> 16#include <linux/numa.h> 17 18/* Don't assign or return these: may not be this big! */ 19typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t; 20 21/** 22 * cpumask_bits - get the bits in a cpumask 23 * @maskp: the struct cpumask * 24 * 25 * You should only assume nr_cpu_ids bits of this mask are valid. This is 26 * a macro so it's const-correct. 27 */ 28#define cpumask_bits(maskp) ((maskp)->bits) 29 30/** 31 * cpumask_pr_args - printf args to output a cpumask 32 * @maskp: cpumask to be printed 33 * 34 * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. 35 */ 36#define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) 37 38#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) 39#define nr_cpu_ids ((unsigned int)NR_CPUS) 40#else 41extern unsigned int nr_cpu_ids; 42#endif 43 44static inline void set_nr_cpu_ids(unsigned int nr) 45{ 46#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) 47 WARN_ON(nr != nr_cpu_ids); 48#else 49 nr_cpu_ids = nr; 50#endif 51} 52 53/* 54 * We have several different "preferred sizes" for the cpumask 55 * operations, depending on operation. 56 * 57 * For example, the bitmap scanning and operating operations have 58 * optimized routines that work for the single-word case, but only when 59 * the size is constant. So if NR_CPUS fits in one single word, we are 60 * better off using that small constant, in order to trigger the 61 * optimized bit finding. That is 'small_cpumask_size'. 62 * 63 * The clearing and copying operations will similarly perform better 64 * with a constant size, but we limit that size arbitrarily to four 65 * words. We call this 'large_cpumask_size'. 66 * 67 * Finally, some operations just want the exact limit, either because 68 * they set bits or just don't have any faster fixed-sized versions. We 69 * call this just 'nr_cpumask_bits'. 70 * 71 * Note that these optional constants are always guaranteed to be at 72 * least as big as 'nr_cpu_ids' itself is, and all our cpumask 73 * allocations are at least that size (see cpumask_size()). The 74 * optimization comes from being able to potentially use a compile-time 75 * constant instead of a run-time generated exact number of CPUs. 76 */ 77#if NR_CPUS <= BITS_PER_LONG 78 #define small_cpumask_bits ((unsigned int)NR_CPUS) 79 #define large_cpumask_bits ((unsigned int)NR_CPUS) 80#elif NR_CPUS <= 4*BITS_PER_LONG 81 #define small_cpumask_bits nr_cpu_ids 82 #define large_cpumask_bits ((unsigned int)NR_CPUS) 83#else 84 #define small_cpumask_bits nr_cpu_ids 85 #define large_cpumask_bits nr_cpu_ids 86#endif 87#define nr_cpumask_bits nr_cpu_ids 88 89/* 90 * The following particular system cpumasks and operations manage 91 * possible, present, active and online cpus. 92 * 93 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable 94 * cpu_present_mask - has bit 'cpu' set iff cpu is populated 95 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler 96 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration 97 * 98 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. 99 * 100 * The cpu_possible_mask is fixed at boot time, as the set of CPU id's 101 * that it is possible might ever be plugged in at anytime during the 102 * life of that system boot. The cpu_present_mask is dynamic(*), 103 * representing which CPUs are currently plugged in. And 104 * cpu_online_mask is the dynamic subset of cpu_present_mask, 105 * indicating those CPUs available for scheduling. 106 * 107 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, 108 * depending on what ACPI reports as currently plugged in, otherwise 109 * cpu_present_mask is just a copy of cpu_possible_mask. 110 * 111 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not 112 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. 113 * 114 * Subtleties: 115 * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode 116 * assumption that their single CPU is online. The UP 117 * cpu_{online,possible,present}_masks are placebos. Changing them 118 * will have no useful affect on the following num_*_cpus() 119 * and cpu_*() macros in the UP case. This ugliness is a UP 120 * optimization - don't waste any instructions or memory references 121 * asking if you're online or how many CPUs there are if there is 122 * only one CPU. 123 */ 124 125extern struct cpumask __cpu_possible_mask; 126extern struct cpumask __cpu_online_mask; 127extern struct cpumask __cpu_present_mask; 128extern struct cpumask __cpu_active_mask; 129extern struct cpumask __cpu_dying_mask; 130#define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) 131#define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) 132#define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) 133#define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) 134#define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask) 135 136extern atomic_t __num_online_cpus; 137 138extern cpumask_t cpus_booted_once_mask; 139 140static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) 141{ 142#ifdef CONFIG_DEBUG_PER_CPU_MAPS 143 WARN_ON_ONCE(cpu >= bits); 144#endif /* CONFIG_DEBUG_PER_CPU_MAPS */ 145} 146 147/* verify cpu argument to cpumask_* operators */ 148static __always_inline unsigned int cpumask_check(unsigned int cpu) 149{ 150 cpu_max_bits_warn(cpu, small_cpumask_bits); 151 return cpu; 152} 153 154/** 155 * cpumask_first - get the first cpu in a cpumask 156 * @srcp: the cpumask pointer 157 * 158 * Returns >= nr_cpu_ids if no cpus set. 159 */ 160static inline unsigned int cpumask_first(const struct cpumask *srcp) 161{ 162 return find_first_bit(cpumask_bits(srcp), small_cpumask_bits); 163} 164 165/** 166 * cpumask_first_zero - get the first unset cpu in a cpumask 167 * @srcp: the cpumask pointer 168 * 169 * Returns >= nr_cpu_ids if all cpus are set. 170 */ 171static inline unsigned int cpumask_first_zero(const struct cpumask *srcp) 172{ 173 return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits); 174} 175 176/** 177 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 178 * @src1p: the first input 179 * @src2p: the second input 180 * 181 * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). 182 */ 183static inline 184unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2) 185{ 186 return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 187} 188 189/** 190 * cpumask_last - get the last CPU in a cpumask 191 * @srcp: - the cpumask pointer 192 * 193 * Returns >= nr_cpumask_bits if no CPUs set. 194 */ 195static inline unsigned int cpumask_last(const struct cpumask *srcp) 196{ 197 return find_last_bit(cpumask_bits(srcp), small_cpumask_bits); 198} 199 200/** 201 * cpumask_next - get the next cpu in a cpumask 202 * @n: the cpu prior to the place to search (ie. return will be > @n) 203 * @srcp: the cpumask pointer 204 * 205 * Returns >= nr_cpu_ids if no further cpus set. 206 */ 207static inline 208unsigned int cpumask_next(int n, const struct cpumask *srcp) 209{ 210 /* -1 is a legal arg here. */ 211 if (n != -1) 212 cpumask_check(n); 213 return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1); 214} 215 216/** 217 * cpumask_next_zero - get the next unset cpu in a cpumask 218 * @n: the cpu prior to the place to search (ie. return will be > @n) 219 * @srcp: the cpumask pointer 220 * 221 * Returns >= nr_cpu_ids if no further cpus unset. 222 */ 223static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) 224{ 225 /* -1 is a legal arg here. */ 226 if (n != -1) 227 cpumask_check(n); 228 return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1); 229} 230 231#if NR_CPUS == 1 232/* Uniprocessor: there is only one valid CPU */ 233static inline unsigned int cpumask_local_spread(unsigned int i, int node) 234{ 235 return 0; 236} 237 238static inline unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, 239 const struct cpumask *src2p) 240{ 241 return cpumask_first_and(src1p, src2p); 242} 243 244static inline unsigned int cpumask_any_distribute(const struct cpumask *srcp) 245{ 246 return cpumask_first(srcp); 247} 248#else 249unsigned int cpumask_local_spread(unsigned int i, int node); 250unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, 251 const struct cpumask *src2p); 252unsigned int cpumask_any_distribute(const struct cpumask *srcp); 253#endif /* NR_CPUS */ 254 255/** 256 * cpumask_next_and - get the next cpu in *src1p & *src2p 257 * @n: the cpu prior to the place to search (ie. return will be > @n) 258 * @src1p: the first cpumask pointer 259 * @src2p: the second cpumask pointer 260 * 261 * Returns >= nr_cpu_ids if no further cpus set in both. 262 */ 263static inline 264unsigned int cpumask_next_and(int n, const struct cpumask *src1p, 265 const struct cpumask *src2p) 266{ 267 /* -1 is a legal arg here. */ 268 if (n != -1) 269 cpumask_check(n); 270 return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p), 271 small_cpumask_bits, n + 1); 272} 273 274/** 275 * for_each_cpu - iterate over every cpu in a mask 276 * @cpu: the (optionally unsigned) integer iterator 277 * @mask: the cpumask pointer 278 * 279 * After the loop, cpu is >= nr_cpu_ids. 280 */ 281#define for_each_cpu(cpu, mask) \ 282 for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits) 283 284#if NR_CPUS == 1 285static inline 286unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap) 287{ 288 cpumask_check(start); 289 if (n != -1) 290 cpumask_check(n); 291 292 /* 293 * Return the first available CPU when wrapping, or when starting before cpu0, 294 * since there is only one valid option. 295 */ 296 if (wrap && n >= 0) 297 return nr_cpumask_bits; 298 299 return cpumask_first(mask); 300} 301#else 302unsigned int __pure cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap); 303#endif 304 305/** 306 * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location 307 * @cpu: the (optionally unsigned) integer iterator 308 * @mask: the cpumask pointer 309 * @start: the start location 310 * 311 * The implementation does not assume any bit in @mask is set (including @start). 312 * 313 * After the loop, cpu is >= nr_cpu_ids. 314 */ 315#define for_each_cpu_wrap(cpu, mask, start) \ 316 for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start) 317 318/** 319 * for_each_cpu_and - iterate over every cpu in both masks 320 * @cpu: the (optionally unsigned) integer iterator 321 * @mask1: the first cpumask pointer 322 * @mask2: the second cpumask pointer 323 * 324 * This saves a temporary CPU mask in many places. It is equivalent to: 325 * struct cpumask tmp; 326 * cpumask_and(&tmp, &mask1, &mask2); 327 * for_each_cpu(cpu, &tmp) 328 * ... 329 * 330 * After the loop, cpu is >= nr_cpu_ids. 331 */ 332#define for_each_cpu_and(cpu, mask1, mask2) \ 333 for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 334 335/** 336 * for_each_cpu_andnot - iterate over every cpu present in one mask, excluding 337 * those present in another. 338 * @cpu: the (optionally unsigned) integer iterator 339 * @mask1: the first cpumask pointer 340 * @mask2: the second cpumask pointer 341 * 342 * This saves a temporary CPU mask in many places. It is equivalent to: 343 * struct cpumask tmp; 344 * cpumask_andnot(&tmp, &mask1, &mask2); 345 * for_each_cpu(cpu, &tmp) 346 * ... 347 * 348 * After the loop, cpu is >= nr_cpu_ids. 349 */ 350#define for_each_cpu_andnot(cpu, mask1, mask2) \ 351 for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 352 353/** 354 * for_each_cpu_or - iterate over every cpu present in either mask 355 * @cpu: the (optionally unsigned) integer iterator 356 * @mask1: the first cpumask pointer 357 * @mask2: the second cpumask pointer 358 * 359 * This saves a temporary CPU mask in many places. It is equivalent to: 360 * struct cpumask tmp; 361 * cpumask_or(&tmp, &mask1, &mask2); 362 * for_each_cpu(cpu, &tmp) 363 * ... 364 * 365 * After the loop, cpu is >= nr_cpu_ids. 366 */ 367#define for_each_cpu_or(cpu, mask1, mask2) \ 368 for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 369 370/** 371 * cpumask_any_but - return a "random" in a cpumask, but not this one. 372 * @mask: the cpumask to search 373 * @cpu: the cpu to ignore. 374 * 375 * Often used to find any cpu but smp_processor_id() in a mask. 376 * Returns >= nr_cpu_ids if no cpus set. 377 */ 378static inline 379unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu) 380{ 381 unsigned int i; 382 383 cpumask_check(cpu); 384 for_each_cpu(i, mask) 385 if (i != cpu) 386 break; 387 return i; 388} 389 390/** 391 * cpumask_nth - get the first cpu in a cpumask 392 * @srcp: the cpumask pointer 393 * @cpu: the N'th cpu to find, starting from 0 394 * 395 * Returns >= nr_cpu_ids if such cpu doesn't exist. 396 */ 397static inline unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp) 398{ 399 return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu)); 400} 401 402/** 403 * cpumask_nth_and - get the first cpu in 2 cpumasks 404 * @srcp1: the cpumask pointer 405 * @srcp2: the cpumask pointer 406 * @cpu: the N'th cpu to find, starting from 0 407 * 408 * Returns >= nr_cpu_ids if such cpu doesn't exist. 409 */ 410static inline 411unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1, 412 const struct cpumask *srcp2) 413{ 414 return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 415 small_cpumask_bits, cpumask_check(cpu)); 416} 417 418/** 419 * cpumask_nth_andnot - get the first cpu set in 1st cpumask, and clear in 2nd. 420 * @srcp1: the cpumask pointer 421 * @srcp2: the cpumask pointer 422 * @cpu: the N'th cpu to find, starting from 0 423 * 424 * Returns >= nr_cpu_ids if such cpu doesn't exist. 425 */ 426static inline 427unsigned int cpumask_nth_andnot(unsigned int cpu, const struct cpumask *srcp1, 428 const struct cpumask *srcp2) 429{ 430 return find_nth_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 431 small_cpumask_bits, cpumask_check(cpu)); 432} 433 434/** 435 * cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd. 436 * @srcp1: the cpumask pointer 437 * @srcp2: the cpumask pointer 438 * @srcp3: the cpumask pointer 439 * @cpu: the N'th cpu to find, starting from 0 440 * 441 * Returns >= nr_cpu_ids if such cpu doesn't exist. 442 */ 443static __always_inline 444unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1, 445 const struct cpumask *srcp2, 446 const struct cpumask *srcp3) 447{ 448 return find_nth_and_andnot_bit(cpumask_bits(srcp1), 449 cpumask_bits(srcp2), 450 cpumask_bits(srcp3), 451 small_cpumask_bits, cpumask_check(cpu)); 452} 453 454#define CPU_BITS_NONE \ 455{ \ 456 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 457} 458 459#define CPU_BITS_CPU0 \ 460{ \ 461 [0] = 1UL \ 462} 463 464/** 465 * cpumask_set_cpu - set a cpu in a cpumask 466 * @cpu: cpu number (< nr_cpu_ids) 467 * @dstp: the cpumask pointer 468 */ 469static __always_inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 470{ 471 set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 472} 473 474static __always_inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 475{ 476 __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 477} 478 479 480/** 481 * cpumask_clear_cpu - clear a cpu in a cpumask 482 * @cpu: cpu number (< nr_cpu_ids) 483 * @dstp: the cpumask pointer 484 */ 485static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) 486{ 487 clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 488} 489 490static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) 491{ 492 __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 493} 494 495/** 496 * cpumask_test_cpu - test for a cpu in a cpumask 497 * @cpu: cpu number (< nr_cpu_ids) 498 * @cpumask: the cpumask pointer 499 * 500 * Returns true if @cpu is set in @cpumask, else returns false 501 */ 502static __always_inline bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask) 503{ 504 return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); 505} 506 507/** 508 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask 509 * @cpu: cpu number (< nr_cpu_ids) 510 * @cpumask: the cpumask pointer 511 * 512 * Returns true if @cpu is set in old bitmap of @cpumask, else returns false 513 * 514 * test_and_set_bit wrapper for cpumasks. 515 */ 516static __always_inline bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) 517{ 518 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 519} 520 521/** 522 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask 523 * @cpu: cpu number (< nr_cpu_ids) 524 * @cpumask: the cpumask pointer 525 * 526 * Returns true if @cpu is set in old bitmap of @cpumask, else returns false 527 * 528 * test_and_clear_bit wrapper for cpumasks. 529 */ 530static __always_inline bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) 531{ 532 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 533} 534 535/** 536 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask 537 * @dstp: the cpumask pointer 538 */ 539static inline void cpumask_setall(struct cpumask *dstp) 540{ 541 if (small_const_nbits(small_cpumask_bits)) { 542 cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits); 543 return; 544 } 545 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); 546} 547 548/** 549 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask 550 * @dstp: the cpumask pointer 551 */ 552static inline void cpumask_clear(struct cpumask *dstp) 553{ 554 bitmap_zero(cpumask_bits(dstp), large_cpumask_bits); 555} 556 557/** 558 * cpumask_and - *dstp = *src1p & *src2p 559 * @dstp: the cpumask result 560 * @src1p: the first input 561 * @src2p: the second input 562 * 563 * If *@dstp is empty, returns false, else returns true 564 */ 565static inline bool cpumask_and(struct cpumask *dstp, 566 const struct cpumask *src1p, 567 const struct cpumask *src2p) 568{ 569 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), 570 cpumask_bits(src2p), small_cpumask_bits); 571} 572 573/** 574 * cpumask_or - *dstp = *src1p | *src2p 575 * @dstp: the cpumask result 576 * @src1p: the first input 577 * @src2p: the second input 578 */ 579static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, 580 const struct cpumask *src2p) 581{ 582 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), 583 cpumask_bits(src2p), small_cpumask_bits); 584} 585 586/** 587 * cpumask_xor - *dstp = *src1p ^ *src2p 588 * @dstp: the cpumask result 589 * @src1p: the first input 590 * @src2p: the second input 591 */ 592static inline void cpumask_xor(struct cpumask *dstp, 593 const struct cpumask *src1p, 594 const struct cpumask *src2p) 595{ 596 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), 597 cpumask_bits(src2p), small_cpumask_bits); 598} 599 600/** 601 * cpumask_andnot - *dstp = *src1p & ~*src2p 602 * @dstp: the cpumask result 603 * @src1p: the first input 604 * @src2p: the second input 605 * 606 * If *@dstp is empty, returns false, else returns true 607 */ 608static inline bool cpumask_andnot(struct cpumask *dstp, 609 const struct cpumask *src1p, 610 const struct cpumask *src2p) 611{ 612 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), 613 cpumask_bits(src2p), small_cpumask_bits); 614} 615 616/** 617 * cpumask_equal - *src1p == *src2p 618 * @src1p: the first input 619 * @src2p: the second input 620 */ 621static inline bool cpumask_equal(const struct cpumask *src1p, 622 const struct cpumask *src2p) 623{ 624 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), 625 small_cpumask_bits); 626} 627 628/** 629 * cpumask_or_equal - *src1p | *src2p == *src3p 630 * @src1p: the first input 631 * @src2p: the second input 632 * @src3p: the third input 633 */ 634static inline bool cpumask_or_equal(const struct cpumask *src1p, 635 const struct cpumask *src2p, 636 const struct cpumask *src3p) 637{ 638 return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), 639 cpumask_bits(src3p), small_cpumask_bits); 640} 641 642/** 643 * cpumask_intersects - (*src1p & *src2p) != 0 644 * @src1p: the first input 645 * @src2p: the second input 646 */ 647static inline bool cpumask_intersects(const struct cpumask *src1p, 648 const struct cpumask *src2p) 649{ 650 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), 651 small_cpumask_bits); 652} 653 654/** 655 * cpumask_subset - (*src1p & ~*src2p) == 0 656 * @src1p: the first input 657 * @src2p: the second input 658 * 659 * Returns true if *@src1p is a subset of *@src2p, else returns false 660 */ 661static inline bool cpumask_subset(const struct cpumask *src1p, 662 const struct cpumask *src2p) 663{ 664 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), 665 small_cpumask_bits); 666} 667 668/** 669 * cpumask_empty - *srcp == 0 670 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. 671 */ 672static inline bool cpumask_empty(const struct cpumask *srcp) 673{ 674 return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits); 675} 676 677/** 678 * cpumask_full - *srcp == 0xFFFFFFFF... 679 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. 680 */ 681static inline bool cpumask_full(const struct cpumask *srcp) 682{ 683 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); 684} 685 686/** 687 * cpumask_weight - Count of bits in *srcp 688 * @srcp: the cpumask to count bits (< nr_cpu_ids) in. 689 */ 690static inline unsigned int cpumask_weight(const struct cpumask *srcp) 691{ 692 return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits); 693} 694 695/** 696 * cpumask_weight_and - Count of bits in (*srcp1 & *srcp2) 697 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in. 698 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in. 699 */ 700static inline unsigned int cpumask_weight_and(const struct cpumask *srcp1, 701 const struct cpumask *srcp2) 702{ 703 return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 704} 705 706/** 707 * cpumask_shift_right - *dstp = *srcp >> n 708 * @dstp: the cpumask result 709 * @srcp: the input to shift 710 * @n: the number of bits to shift by 711 */ 712static inline void cpumask_shift_right(struct cpumask *dstp, 713 const struct cpumask *srcp, int n) 714{ 715 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, 716 small_cpumask_bits); 717} 718 719/** 720 * cpumask_shift_left - *dstp = *srcp << n 721 * @dstp: the cpumask result 722 * @srcp: the input to shift 723 * @n: the number of bits to shift by 724 */ 725static inline void cpumask_shift_left(struct cpumask *dstp, 726 const struct cpumask *srcp, int n) 727{ 728 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, 729 nr_cpumask_bits); 730} 731 732/** 733 * cpumask_copy - *dstp = *srcp 734 * @dstp: the result 735 * @srcp: the input cpumask 736 */ 737static inline void cpumask_copy(struct cpumask *dstp, 738 const struct cpumask *srcp) 739{ 740 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits); 741} 742 743/** 744 * cpumask_any - pick a "random" cpu from *srcp 745 * @srcp: the input cpumask 746 * 747 * Returns >= nr_cpu_ids if no cpus set. 748 */ 749#define cpumask_any(srcp) cpumask_first(srcp) 750 751/** 752 * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2 753 * @mask1: the first input cpumask 754 * @mask2: the second input cpumask 755 * 756 * Returns >= nr_cpu_ids if no cpus set. 757 */ 758#define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) 759 760/** 761 * cpumask_of - the cpumask containing just a given cpu 762 * @cpu: the cpu (<= nr_cpu_ids) 763 */ 764#define cpumask_of(cpu) (get_cpu_mask(cpu)) 765 766/** 767 * cpumask_parse_user - extract a cpumask from a user string 768 * @buf: the buffer to extract from 769 * @len: the length of the buffer 770 * @dstp: the cpumask to set. 771 * 772 * Returns -errno, or 0 for success. 773 */ 774static inline int cpumask_parse_user(const char __user *buf, int len, 775 struct cpumask *dstp) 776{ 777 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); 778} 779 780/** 781 * cpumask_parselist_user - extract a cpumask from a user string 782 * @buf: the buffer to extract from 783 * @len: the length of the buffer 784 * @dstp: the cpumask to set. 785 * 786 * Returns -errno, or 0 for success. 787 */ 788static inline int cpumask_parselist_user(const char __user *buf, int len, 789 struct cpumask *dstp) 790{ 791 return bitmap_parselist_user(buf, len, cpumask_bits(dstp), 792 nr_cpumask_bits); 793} 794 795/** 796 * cpumask_parse - extract a cpumask from a string 797 * @buf: the buffer to extract from 798 * @dstp: the cpumask to set. 799 * 800 * Returns -errno, or 0 for success. 801 */ 802static inline int cpumask_parse(const char *buf, struct cpumask *dstp) 803{ 804 return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); 805} 806 807/** 808 * cpulist_parse - extract a cpumask from a user string of ranges 809 * @buf: the buffer to extract from 810 * @dstp: the cpumask to set. 811 * 812 * Returns -errno, or 0 for success. 813 */ 814static inline int cpulist_parse(const char *buf, struct cpumask *dstp) 815{ 816 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); 817} 818 819/** 820 * cpumask_size - size to allocate for a 'struct cpumask' in bytes 821 */ 822static inline unsigned int cpumask_size(void) 823{ 824 return BITS_TO_LONGS(large_cpumask_bits) * sizeof(long); 825} 826 827/* 828 * cpumask_var_t: struct cpumask for stack usage. 829 * 830 * Oh, the wicked games we play! In order to make kernel coding a 831 * little more difficult, we typedef cpumask_var_t to an array or a 832 * pointer: doing &mask on an array is a noop, so it still works. 833 * 834 * ie. 835 * cpumask_var_t tmpmask; 836 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) 837 * return -ENOMEM; 838 * 839 * ... use 'tmpmask' like a normal struct cpumask * ... 840 * 841 * free_cpumask_var(tmpmask); 842 * 843 * 844 * However, one notable exception is there. alloc_cpumask_var() allocates 845 * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has 846 * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t. 847 * 848 * cpumask_var_t tmpmask; 849 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) 850 * return -ENOMEM; 851 * 852 * var = *tmpmask; 853 * 854 * This code makes NR_CPUS length memcopy and brings to a memory corruption. 855 * cpumask_copy() provide safe copy functionality. 856 * 857 * Note that there is another evil here: If you define a cpumask_var_t 858 * as a percpu variable then the way to obtain the address of the cpumask 859 * structure differently influences what this_cpu_* operation needs to be 860 * used. Please use this_cpu_cpumask_var_t in those cases. The direct use 861 * of this_cpu_ptr() or this_cpu_read() will lead to failures when the 862 * other type of cpumask_var_t implementation is configured. 863 * 864 * Please also note that __cpumask_var_read_mostly can be used to declare 865 * a cpumask_var_t variable itself (not its content) as read mostly. 866 */ 867#ifdef CONFIG_CPUMASK_OFFSTACK 868typedef struct cpumask *cpumask_var_t; 869 870#define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) 871#define __cpumask_var_read_mostly __read_mostly 872 873bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); 874 875static inline 876bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) 877{ 878 return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node); 879} 880 881/** 882 * alloc_cpumask_var - allocate a struct cpumask 883 * @mask: pointer to cpumask_var_t where the cpumask is returned 884 * @flags: GFP_ flags 885 * 886 * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is 887 * a nop returning a constant 1 (in <linux/cpumask.h>). 888 * 889 * See alloc_cpumask_var_node. 890 */ 891static inline 892bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 893{ 894 return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE); 895} 896 897static inline 898bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 899{ 900 return alloc_cpumask_var(mask, flags | __GFP_ZERO); 901} 902 903void alloc_bootmem_cpumask_var(cpumask_var_t *mask); 904void free_cpumask_var(cpumask_var_t mask); 905void free_bootmem_cpumask_var(cpumask_var_t mask); 906 907static inline bool cpumask_available(cpumask_var_t mask) 908{ 909 return mask != NULL; 910} 911 912#else 913typedef struct cpumask cpumask_var_t[1]; 914 915#define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) 916#define __cpumask_var_read_mostly 917 918static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 919{ 920 return true; 921} 922 923static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 924 int node) 925{ 926 return true; 927} 928 929static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 930{ 931 cpumask_clear(*mask); 932 return true; 933} 934 935static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 936 int node) 937{ 938 cpumask_clear(*mask); 939 return true; 940} 941 942static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) 943{ 944} 945 946static inline void free_cpumask_var(cpumask_var_t mask) 947{ 948} 949 950static inline void free_bootmem_cpumask_var(cpumask_var_t mask) 951{ 952} 953 954static inline bool cpumask_available(cpumask_var_t mask) 955{ 956 return true; 957} 958#endif /* CONFIG_CPUMASK_OFFSTACK */ 959 960/* It's common to want to use cpu_all_mask in struct member initializers, 961 * so it has to refer to an address rather than a pointer. */ 962extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); 963#define cpu_all_mask to_cpumask(cpu_all_bits) 964 965/* First bits of cpu_bit_bitmap are in fact unset. */ 966#define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) 967 968#if NR_CPUS == 1 969/* Uniprocessor: the possible/online/present masks are always "1" */ 970#define for_each_possible_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 971#define for_each_online_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 972#define for_each_present_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 973#else 974#define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) 975#define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) 976#define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) 977#endif 978 979/* Wrappers for arch boot code to manipulate normally-constant masks */ 980void init_cpu_present(const struct cpumask *src); 981void init_cpu_possible(const struct cpumask *src); 982void init_cpu_online(const struct cpumask *src); 983 984static inline void reset_cpu_possible_mask(void) 985{ 986 bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS); 987} 988 989static inline void 990set_cpu_possible(unsigned int cpu, bool possible) 991{ 992 if (possible) 993 cpumask_set_cpu(cpu, &__cpu_possible_mask); 994 else 995 cpumask_clear_cpu(cpu, &__cpu_possible_mask); 996} 997 998static inline void 999set_cpu_present(unsigned int cpu, bool present) 1000{ 1001 if (present) 1002 cpumask_set_cpu(cpu, &__cpu_present_mask); 1003 else 1004 cpumask_clear_cpu(cpu, &__cpu_present_mask); 1005} 1006 1007void set_cpu_online(unsigned int cpu, bool online); 1008 1009static inline void 1010set_cpu_active(unsigned int cpu, bool active) 1011{ 1012 if (active) 1013 cpumask_set_cpu(cpu, &__cpu_active_mask); 1014 else 1015 cpumask_clear_cpu(cpu, &__cpu_active_mask); 1016} 1017 1018static inline void 1019set_cpu_dying(unsigned int cpu, bool dying) 1020{ 1021 if (dying) 1022 cpumask_set_cpu(cpu, &__cpu_dying_mask); 1023 else 1024 cpumask_clear_cpu(cpu, &__cpu_dying_mask); 1025} 1026 1027/** 1028 * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask * 1029 * @bitmap: the bitmap 1030 * 1031 * There are a few places where cpumask_var_t isn't appropriate and 1032 * static cpumasks must be used (eg. very early boot), yet we don't 1033 * expose the definition of 'struct cpumask'. 1034 * 1035 * This does the conversion, and can be used as a constant initializer. 1036 */ 1037#define to_cpumask(bitmap) \ 1038 ((struct cpumask *)(1 ? (bitmap) \ 1039 : (void *)sizeof(__check_is_bitmap(bitmap)))) 1040 1041static inline int __check_is_bitmap(const unsigned long *bitmap) 1042{ 1043 return 1; 1044} 1045 1046/* 1047 * Special-case data structure for "single bit set only" constant CPU masks. 1048 * 1049 * We pre-generate all the 64 (or 32) possible bit positions, with enough 1050 * padding to the left and the right, and return the constant pointer 1051 * appropriately offset. 1052 */ 1053extern const unsigned long 1054 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; 1055 1056static inline const struct cpumask *get_cpu_mask(unsigned int cpu) 1057{ 1058 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; 1059 p -= cpu / BITS_PER_LONG; 1060 return to_cpumask(p); 1061} 1062 1063#if NR_CPUS > 1 1064/** 1065 * num_online_cpus() - Read the number of online CPUs 1066 * 1067 * Despite the fact that __num_online_cpus is of type atomic_t, this 1068 * interface gives only a momentary snapshot and is not protected against 1069 * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held 1070 * region. 1071 */ 1072static __always_inline unsigned int num_online_cpus(void) 1073{ 1074 return arch_atomic_read(&__num_online_cpus); 1075} 1076#define num_possible_cpus() cpumask_weight(cpu_possible_mask) 1077#define num_present_cpus() cpumask_weight(cpu_present_mask) 1078#define num_active_cpus() cpumask_weight(cpu_active_mask) 1079 1080static inline bool cpu_online(unsigned int cpu) 1081{ 1082 return cpumask_test_cpu(cpu, cpu_online_mask); 1083} 1084 1085static inline bool cpu_possible(unsigned int cpu) 1086{ 1087 return cpumask_test_cpu(cpu, cpu_possible_mask); 1088} 1089 1090static inline bool cpu_present(unsigned int cpu) 1091{ 1092 return cpumask_test_cpu(cpu, cpu_present_mask); 1093} 1094 1095static inline bool cpu_active(unsigned int cpu) 1096{ 1097 return cpumask_test_cpu(cpu, cpu_active_mask); 1098} 1099 1100static inline bool cpu_dying(unsigned int cpu) 1101{ 1102 return cpumask_test_cpu(cpu, cpu_dying_mask); 1103} 1104 1105#else 1106 1107#define num_online_cpus() 1U 1108#define num_possible_cpus() 1U 1109#define num_present_cpus() 1U 1110#define num_active_cpus() 1U 1111 1112static inline bool cpu_online(unsigned int cpu) 1113{ 1114 return cpu == 0; 1115} 1116 1117static inline bool cpu_possible(unsigned int cpu) 1118{ 1119 return cpu == 0; 1120} 1121 1122static inline bool cpu_present(unsigned int cpu) 1123{ 1124 return cpu == 0; 1125} 1126 1127static inline bool cpu_active(unsigned int cpu) 1128{ 1129 return cpu == 0; 1130} 1131 1132static inline bool cpu_dying(unsigned int cpu) 1133{ 1134 return false; 1135} 1136 1137#endif /* NR_CPUS > 1 */ 1138 1139#define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) 1140 1141#if NR_CPUS <= BITS_PER_LONG 1142#define CPU_BITS_ALL \ 1143{ \ 1144 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1145} 1146 1147#else /* NR_CPUS > BITS_PER_LONG */ 1148 1149#define CPU_BITS_ALL \ 1150{ \ 1151 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1152 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1153} 1154#endif /* NR_CPUS > BITS_PER_LONG */ 1155 1156/** 1157 * cpumap_print_to_pagebuf - copies the cpumask into the buffer either 1158 * as comma-separated list of cpus or hex values of cpumask 1159 * @list: indicates whether the cpumap must be list 1160 * @mask: the cpumask to copy 1161 * @buf: the buffer to copy into 1162 * 1163 * Returns the length of the (null-terminated) @buf string, zero if 1164 * nothing is copied. 1165 */ 1166static inline ssize_t 1167cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) 1168{ 1169 return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), 1170 nr_cpu_ids); 1171} 1172 1173/** 1174 * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as 1175 * hex values of cpumask 1176 * 1177 * @buf: the buffer to copy into 1178 * @mask: the cpumask to copy 1179 * @off: in the string from which we are copying, we copy to @buf 1180 * @count: the maximum number of bytes to print 1181 * 1182 * The function prints the cpumask into the buffer as hex values of 1183 * cpumask; Typically used by bin_attribute to export cpumask bitmask 1184 * ABI. 1185 * 1186 * Returns the length of how many bytes have been copied, excluding 1187 * terminating '\0'. 1188 */ 1189static inline ssize_t 1190cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask, 1191 loff_t off, size_t count) 1192{ 1193 return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask), 1194 nr_cpu_ids, off, count) - 1; 1195} 1196 1197/** 1198 * cpumap_print_list_to_buf - copies the cpumask into the buffer as 1199 * comma-separated list of cpus 1200 * 1201 * Everything is same with the above cpumap_print_bitmask_to_buf() 1202 * except the print format. 1203 */ 1204static inline ssize_t 1205cpumap_print_list_to_buf(char *buf, const struct cpumask *mask, 1206 loff_t off, size_t count) 1207{ 1208 return bitmap_print_list_to_buf(buf, cpumask_bits(mask), 1209 nr_cpu_ids, off, count) - 1; 1210} 1211 1212#if NR_CPUS <= BITS_PER_LONG 1213#define CPU_MASK_ALL \ 1214(cpumask_t) { { \ 1215 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1216} } 1217#else 1218#define CPU_MASK_ALL \ 1219(cpumask_t) { { \ 1220 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1221 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1222} } 1223#endif /* NR_CPUS > BITS_PER_LONG */ 1224 1225#define CPU_MASK_NONE \ 1226(cpumask_t) { { \ 1227 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 1228} } 1229 1230#define CPU_MASK_CPU0 \ 1231(cpumask_t) { { \ 1232 [0] = 1UL \ 1233} } 1234 1235/* 1236 * Provide a valid theoretical max size for cpumap and cpulist sysfs files 1237 * to avoid breaking userspace which may allocate a buffer based on the size 1238 * reported by e.g. fstat. 1239 * 1240 * for cpumap NR_CPUS * 9/32 - 1 should be an exact length. 1241 * 1242 * For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up 1243 * to 2 orders of magnitude larger than 8192. And then we divide by 2 to 1244 * cover a worst-case of every other cpu being on one of two nodes for a 1245 * very large NR_CPUS. 1246 * 1247 * Use PAGE_SIZE as a minimum for smaller configurations while avoiding 1248 * unsigned comparison to -1. 1249 */ 1250#define CPUMAP_FILE_MAX_BYTES (((NR_CPUS * 9)/32 > PAGE_SIZE) \ 1251 ? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE) 1252#define CPULIST_FILE_MAX_BYTES (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE) 1253 1254#endif /* __LINUX_CPUMASK_H */