at v6.3 24 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 */ 4#ifndef _LINUX_BPF_VERIFIER_H 5#define _LINUX_BPF_VERIFIER_H 1 6 7#include <linux/bpf.h> /* for enum bpf_reg_type */ 8#include <linux/btf.h> /* for struct btf and btf_id() */ 9#include <linux/filter.h> /* for MAX_BPF_STACK */ 10#include <linux/tnum.h> 11 12/* Maximum variable offset umax_value permitted when resolving memory accesses. 13 * In practice this is far bigger than any realistic pointer offset; this limit 14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 15 */ 16#define BPF_MAX_VAR_OFF (1 << 29) 17/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 18 * that converting umax_value to int cannot overflow. 19 */ 20#define BPF_MAX_VAR_SIZ (1 << 29) 21/* size of type_str_buf in bpf_verifier. */ 22#define TYPE_STR_BUF_LEN 128 23 24/* Liveness marks, used for registers and spilled-regs (in stack slots). 25 * Read marks propagate upwards until they find a write mark; they record that 26 * "one of this state's descendants read this reg" (and therefore the reg is 27 * relevant for states_equal() checks). 28 * Write marks collect downwards and do not propagate; they record that "the 29 * straight-line code that reached this state (from its parent) wrote this reg" 30 * (and therefore that reads propagated from this state or its descendants 31 * should not propagate to its parent). 32 * A state with a write mark can receive read marks; it just won't propagate 33 * them to its parent, since the write mark is a property, not of the state, 34 * but of the link between it and its parent. See mark_reg_read() and 35 * mark_stack_slot_read() in kernel/bpf/verifier.c. 36 */ 37enum bpf_reg_liveness { 38 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ 39 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */ 40 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */ 41 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64, 42 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */ 43 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */ 44}; 45 46/* For every reg representing a map value or allocated object pointer, 47 * we consider the tuple of (ptr, id) for them to be unique in verifier 48 * context and conside them to not alias each other for the purposes of 49 * tracking lock state. 50 */ 51struct bpf_active_lock { 52 /* This can either be reg->map_ptr or reg->btf. If ptr is NULL, 53 * there's no active lock held, and other fields have no 54 * meaning. If non-NULL, it indicates that a lock is held and 55 * id member has the reg->id of the register which can be >= 0. 56 */ 57 void *ptr; 58 /* This will be reg->id */ 59 u32 id; 60}; 61 62struct bpf_reg_state { 63 /* Ordering of fields matters. See states_equal() */ 64 enum bpf_reg_type type; 65 /* Fixed part of pointer offset, pointer types only */ 66 s32 off; 67 union { 68 /* valid when type == PTR_TO_PACKET */ 69 int range; 70 71 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 72 * PTR_TO_MAP_VALUE_OR_NULL 73 */ 74 struct { 75 struct bpf_map *map_ptr; 76 /* To distinguish map lookups from outer map 77 * the map_uid is non-zero for registers 78 * pointing to inner maps. 79 */ 80 u32 map_uid; 81 }; 82 83 /* for PTR_TO_BTF_ID */ 84 struct { 85 struct btf *btf; 86 u32 btf_id; 87 }; 88 89 struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */ 90 u32 mem_size; 91 u32 dynptr_id; /* for dynptr slices */ 92 }; 93 94 /* For dynptr stack slots */ 95 struct { 96 enum bpf_dynptr_type type; 97 /* A dynptr is 16 bytes so it takes up 2 stack slots. 98 * We need to track which slot is the first slot 99 * to protect against cases where the user may try to 100 * pass in an address starting at the second slot of the 101 * dynptr. 102 */ 103 bool first_slot; 104 } dynptr; 105 106 /* Max size from any of the above. */ 107 struct { 108 unsigned long raw1; 109 unsigned long raw2; 110 } raw; 111 112 u32 subprogno; /* for PTR_TO_FUNC */ 113 }; 114 /* For scalar types (SCALAR_VALUE), this represents our knowledge of 115 * the actual value. 116 * For pointer types, this represents the variable part of the offset 117 * from the pointed-to object, and is shared with all bpf_reg_states 118 * with the same id as us. 119 */ 120 struct tnum var_off; 121 /* Used to determine if any memory access using this register will 122 * result in a bad access. 123 * These refer to the same value as var_off, not necessarily the actual 124 * contents of the register. 125 */ 126 s64 smin_value; /* minimum possible (s64)value */ 127 s64 smax_value; /* maximum possible (s64)value */ 128 u64 umin_value; /* minimum possible (u64)value */ 129 u64 umax_value; /* maximum possible (u64)value */ 130 s32 s32_min_value; /* minimum possible (s32)value */ 131 s32 s32_max_value; /* maximum possible (s32)value */ 132 u32 u32_min_value; /* minimum possible (u32)value */ 133 u32 u32_max_value; /* maximum possible (u32)value */ 134 /* For PTR_TO_PACKET, used to find other pointers with the same variable 135 * offset, so they can share range knowledge. 136 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 137 * came from, when one is tested for != NULL. 138 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation 139 * for the purpose of tracking that it's freed. 140 * For PTR_TO_SOCKET this is used to share which pointers retain the 141 * same reference to the socket, to determine proper reference freeing. 142 * For stack slots that are dynptrs, this is used to track references to 143 * the dynptr to determine proper reference freeing. 144 */ 145 u32 id; 146 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned 147 * from a pointer-cast helper, bpf_sk_fullsock() and 148 * bpf_tcp_sock(). 149 * 150 * Consider the following where "sk" is a reference counted 151 * pointer returned from "sk = bpf_sk_lookup_tcp();": 152 * 153 * 1: sk = bpf_sk_lookup_tcp(); 154 * 2: if (!sk) { return 0; } 155 * 3: fullsock = bpf_sk_fullsock(sk); 156 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } 157 * 5: tp = bpf_tcp_sock(fullsock); 158 * 6: if (!tp) { bpf_sk_release(sk); return 0; } 159 * 7: bpf_sk_release(sk); 160 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain 161 * 162 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and 163 * "tp" ptr should be invalidated also. In order to do that, 164 * the reg holding "fullsock" and "sk" need to remember 165 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id 166 * such that the verifier can reset all regs which have 167 * ref_obj_id matching the sk_reg->id. 168 * 169 * sk_reg->ref_obj_id is set to sk_reg->id at line 1. 170 * sk_reg->id will stay as NULL-marking purpose only. 171 * After NULL-marking is done, sk_reg->id can be reset to 0. 172 * 173 * After "fullsock = bpf_sk_fullsock(sk);" at line 3, 174 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. 175 * 176 * After "tp = bpf_tcp_sock(fullsock);" at line 5, 177 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id 178 * which is the same as sk_reg->ref_obj_id. 179 * 180 * From the verifier perspective, if sk, fullsock and tp 181 * are not NULL, they are the same ptr with different 182 * reg->type. In particular, bpf_sk_release(tp) is also 183 * allowed and has the same effect as bpf_sk_release(sk). 184 */ 185 u32 ref_obj_id; 186 /* parentage chain for liveness checking */ 187 struct bpf_reg_state *parent; 188 /* Inside the callee two registers can be both PTR_TO_STACK like 189 * R1=fp-8 and R2=fp-8, but one of them points to this function stack 190 * while another to the caller's stack. To differentiate them 'frameno' 191 * is used which is an index in bpf_verifier_state->frame[] array 192 * pointing to bpf_func_state. 193 */ 194 u32 frameno; 195 /* Tracks subreg definition. The stored value is the insn_idx of the 196 * writing insn. This is safe because subreg_def is used before any insn 197 * patching which only happens after main verification finished. 198 */ 199 s32 subreg_def; 200 enum bpf_reg_liveness live; 201 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */ 202 bool precise; 203}; 204 205enum bpf_stack_slot_type { 206 STACK_INVALID, /* nothing was stored in this stack slot */ 207 STACK_SPILL, /* register spilled into stack */ 208 STACK_MISC, /* BPF program wrote some data into this slot */ 209 STACK_ZERO, /* BPF program wrote constant zero */ 210 /* A dynptr is stored in this stack slot. The type of dynptr 211 * is stored in bpf_stack_state->spilled_ptr.dynptr.type 212 */ 213 STACK_DYNPTR, 214}; 215 216#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 217#define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern) 218#define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE) 219 220struct bpf_stack_state { 221 struct bpf_reg_state spilled_ptr; 222 u8 slot_type[BPF_REG_SIZE]; 223}; 224 225struct bpf_reference_state { 226 /* Track each reference created with a unique id, even if the same 227 * instruction creates the reference multiple times (eg, via CALL). 228 */ 229 int id; 230 /* Instruction where the allocation of this reference occurred. This 231 * is used purely to inform the user of a reference leak. 232 */ 233 int insn_idx; 234 /* There can be a case like: 235 * main (frame 0) 236 * cb (frame 1) 237 * func (frame 3) 238 * cb (frame 4) 239 * Hence for frame 4, if callback_ref just stored boolean, it would be 240 * impossible to distinguish nested callback refs. Hence store the 241 * frameno and compare that to callback_ref in check_reference_leak when 242 * exiting a callback function. 243 */ 244 int callback_ref; 245}; 246 247/* state of the program: 248 * type of all registers and stack info 249 */ 250struct bpf_func_state { 251 struct bpf_reg_state regs[MAX_BPF_REG]; 252 /* index of call instruction that called into this func */ 253 int callsite; 254 /* stack frame number of this function state from pov of 255 * enclosing bpf_verifier_state. 256 * 0 = main function, 1 = first callee. 257 */ 258 u32 frameno; 259 /* subprog number == index within subprog_info 260 * zero == main subprog 261 */ 262 u32 subprogno; 263 /* Every bpf_timer_start will increment async_entry_cnt. 264 * It's used to distinguish: 265 * void foo(void) { for(;;); } 266 * void foo(void) { bpf_timer_set_callback(,foo); } 267 */ 268 u32 async_entry_cnt; 269 bool in_callback_fn; 270 struct tnum callback_ret_range; 271 bool in_async_callback_fn; 272 273 /* The following fields should be last. See copy_func_state() */ 274 int acquired_refs; 275 struct bpf_reference_state *refs; 276 int allocated_stack; 277 struct bpf_stack_state *stack; 278}; 279 280struct bpf_idx_pair { 281 u32 prev_idx; 282 u32 idx; 283}; 284 285struct bpf_id_pair { 286 u32 old; 287 u32 cur; 288}; 289 290#define MAX_CALL_FRAMES 8 291/* Maximum number of register states that can exist at once */ 292#define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES) 293struct bpf_verifier_state { 294 /* call stack tracking */ 295 struct bpf_func_state *frame[MAX_CALL_FRAMES]; 296 struct bpf_verifier_state *parent; 297 /* 298 * 'branches' field is the number of branches left to explore: 299 * 0 - all possible paths from this state reached bpf_exit or 300 * were safely pruned 301 * 1 - at least one path is being explored. 302 * This state hasn't reached bpf_exit 303 * 2 - at least two paths are being explored. 304 * This state is an immediate parent of two children. 305 * One is fallthrough branch with branches==1 and another 306 * state is pushed into stack (to be explored later) also with 307 * branches==1. The parent of this state has branches==1. 308 * The verifier state tree connected via 'parent' pointer looks like: 309 * 1 310 * 1 311 * 2 -> 1 (first 'if' pushed into stack) 312 * 1 313 * 2 -> 1 (second 'if' pushed into stack) 314 * 1 315 * 1 316 * 1 bpf_exit. 317 * 318 * Once do_check() reaches bpf_exit, it calls update_branch_counts() 319 * and the verifier state tree will look: 320 * 1 321 * 1 322 * 2 -> 1 (first 'if' pushed into stack) 323 * 1 324 * 1 -> 1 (second 'if' pushed into stack) 325 * 0 326 * 0 327 * 0 bpf_exit. 328 * After pop_stack() the do_check() will resume at second 'if'. 329 * 330 * If is_state_visited() sees a state with branches > 0 it means 331 * there is a loop. If such state is exactly equal to the current state 332 * it's an infinite loop. Note states_equal() checks for states 333 * equivalency, so two states being 'states_equal' does not mean 334 * infinite loop. The exact comparison is provided by 335 * states_maybe_looping() function. It's a stronger pre-check and 336 * much faster than states_equal(). 337 * 338 * This algorithm may not find all possible infinite loops or 339 * loop iteration count may be too high. 340 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in. 341 */ 342 u32 branches; 343 u32 insn_idx; 344 u32 curframe; 345 346 struct bpf_active_lock active_lock; 347 bool speculative; 348 bool active_rcu_lock; 349 350 /* first and last insn idx of this verifier state */ 351 u32 first_insn_idx; 352 u32 last_insn_idx; 353 /* jmp history recorded from first to last. 354 * backtracking is using it to go from last to first. 355 * For most states jmp_history_cnt is [0-3]. 356 * For loops can go up to ~40. 357 */ 358 struct bpf_idx_pair *jmp_history; 359 u32 jmp_history_cnt; 360}; 361 362#define bpf_get_spilled_reg(slot, frame) \ 363 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 364 (frame->stack[slot].slot_type[0] == STACK_SPILL)) \ 365 ? &frame->stack[slot].spilled_ptr : NULL) 366 367/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 368#define bpf_for_each_spilled_reg(iter, frame, reg) \ 369 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \ 370 iter < frame->allocated_stack / BPF_REG_SIZE; \ 371 iter++, reg = bpf_get_spilled_reg(iter, frame)) 372 373/* Invoke __expr over regsiters in __vst, setting __state and __reg */ 374#define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \ 375 ({ \ 376 struct bpf_verifier_state *___vstate = __vst; \ 377 int ___i, ___j; \ 378 for (___i = 0; ___i <= ___vstate->curframe; ___i++) { \ 379 struct bpf_reg_state *___regs; \ 380 __state = ___vstate->frame[___i]; \ 381 ___regs = __state->regs; \ 382 for (___j = 0; ___j < MAX_BPF_REG; ___j++) { \ 383 __reg = &___regs[___j]; \ 384 (void)(__expr); \ 385 } \ 386 bpf_for_each_spilled_reg(___j, __state, __reg) { \ 387 if (!__reg) \ 388 continue; \ 389 (void)(__expr); \ 390 } \ 391 } \ 392 }) 393 394/* linked list of verifier states used to prune search */ 395struct bpf_verifier_state_list { 396 struct bpf_verifier_state state; 397 struct bpf_verifier_state_list *next; 398 int miss_cnt, hit_cnt; 399}; 400 401struct bpf_loop_inline_state { 402 unsigned int initialized:1; /* set to true upon first entry */ 403 unsigned int fit_for_inline:1; /* true if callback function is the same 404 * at each call and flags are always zero 405 */ 406 u32 callback_subprogno; /* valid when fit_for_inline is true */ 407}; 408 409/* Possible states for alu_state member. */ 410#define BPF_ALU_SANITIZE_SRC (1U << 0) 411#define BPF_ALU_SANITIZE_DST (1U << 1) 412#define BPF_ALU_NEG_VALUE (1U << 2) 413#define BPF_ALU_NON_POINTER (1U << 3) 414#define BPF_ALU_IMMEDIATE (1U << 4) 415#define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 416 BPF_ALU_SANITIZE_DST) 417 418struct bpf_insn_aux_data { 419 union { 420 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 421 unsigned long map_ptr_state; /* pointer/poison value for maps */ 422 s32 call_imm; /* saved imm field of call insn */ 423 u32 alu_limit; /* limit for add/sub register with pointer */ 424 struct { 425 u32 map_index; /* index into used_maps[] */ 426 u32 map_off; /* offset from value base address */ 427 }; 428 struct { 429 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */ 430 union { 431 struct { 432 struct btf *btf; 433 u32 btf_id; /* btf_id for struct typed var */ 434 }; 435 u32 mem_size; /* mem_size for non-struct typed var */ 436 }; 437 } btf_var; 438 /* if instruction is a call to bpf_loop this field tracks 439 * the state of the relevant registers to make decision about inlining 440 */ 441 struct bpf_loop_inline_state loop_inline_state; 442 }; 443 u64 obj_new_size; /* remember the size of type passed to bpf_obj_new to rewrite R1 */ 444 struct btf_struct_meta *kptr_struct_meta; 445 u64 map_key_state; /* constant (32 bit) key tracking for maps */ 446 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 447 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */ 448 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */ 449 bool zext_dst; /* this insn zero extends dst reg */ 450 bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */ 451 u8 alu_state; /* used in combination with alu_limit */ 452 453 /* below fields are initialized once */ 454 unsigned int orig_idx; /* original instruction index */ 455 bool prune_point; 456 bool jmp_point; 457}; 458 459#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 460#define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */ 461 462#define BPF_VERIFIER_TMP_LOG_SIZE 1024 463 464struct bpf_verifier_log { 465 u32 level; 466 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 467 char __user *ubuf; 468 u32 len_used; 469 u32 len_total; 470}; 471 472static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log) 473{ 474 return log->len_used >= log->len_total - 1; 475} 476 477#define BPF_LOG_LEVEL1 1 478#define BPF_LOG_LEVEL2 2 479#define BPF_LOG_STATS 4 480#define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) 481#define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS) 482#define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */ 483#define BPF_LOG_MIN_ALIGNMENT 8U 484#define BPF_LOG_ALIGNMENT 40U 485 486static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 487{ 488 return log && 489 ((log->level && log->ubuf && !bpf_verifier_log_full(log)) || 490 log->level == BPF_LOG_KERNEL); 491} 492 493static inline bool 494bpf_verifier_log_attr_valid(const struct bpf_verifier_log *log) 495{ 496 return log->len_total >= 128 && log->len_total <= UINT_MAX >> 2 && 497 log->level && log->ubuf && !(log->level & ~BPF_LOG_MASK); 498} 499 500#define BPF_MAX_SUBPROGS 256 501 502struct bpf_subprog_info { 503 /* 'start' has to be the first field otherwise find_subprog() won't work */ 504 u32 start; /* insn idx of function entry point */ 505 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 506 u16 stack_depth; /* max. stack depth used by this function */ 507 bool has_tail_call; 508 bool tail_call_reachable; 509 bool has_ld_abs; 510 bool is_async_cb; 511}; 512 513/* single container for all structs 514 * one verifier_env per bpf_check() call 515 */ 516struct bpf_verifier_env { 517 u32 insn_idx; 518 u32 prev_insn_idx; 519 struct bpf_prog *prog; /* eBPF program being verified */ 520 const struct bpf_verifier_ops *ops; 521 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 522 int stack_size; /* number of states to be processed */ 523 bool strict_alignment; /* perform strict pointer alignment checks */ 524 bool test_state_freq; /* test verifier with different pruning frequency */ 525 struct bpf_verifier_state *cur_state; /* current verifier state */ 526 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ 527 struct bpf_verifier_state_list *free_list; 528 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 529 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */ 530 u32 used_map_cnt; /* number of used maps */ 531 u32 used_btf_cnt; /* number of used BTF objects */ 532 u32 id_gen; /* used to generate unique reg IDs */ 533 bool explore_alu_limits; 534 bool allow_ptr_leaks; 535 bool allow_uninit_stack; 536 bool bpf_capable; 537 bool bypass_spec_v1; 538 bool bypass_spec_v4; 539 bool seen_direct_write; 540 bool rcu_tag_supported; 541 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 542 const struct bpf_line_info *prev_linfo; 543 struct bpf_verifier_log log; 544 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1]; 545 struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE]; 546 struct { 547 int *insn_state; 548 int *insn_stack; 549 int cur_stack; 550 } cfg; 551 u32 pass_cnt; /* number of times do_check() was called */ 552 u32 subprog_cnt; 553 /* number of instructions analyzed by the verifier */ 554 u32 prev_insn_processed, insn_processed; 555 /* number of jmps, calls, exits analyzed so far */ 556 u32 prev_jmps_processed, jmps_processed; 557 /* total verification time */ 558 u64 verification_time; 559 /* maximum number of verifier states kept in 'branching' instructions */ 560 u32 max_states_per_insn; 561 /* total number of allocated verifier states */ 562 u32 total_states; 563 /* some states are freed during program analysis. 564 * this is peak number of states. this number dominates kernel 565 * memory consumption during verification 566 */ 567 u32 peak_states; 568 /* longest register parentage chain walked for liveness marking */ 569 u32 longest_mark_read_walk; 570 bpfptr_t fd_array; 571 572 /* bit mask to keep track of whether a register has been accessed 573 * since the last time the function state was printed 574 */ 575 u32 scratched_regs; 576 /* Same as scratched_regs but for stack slots */ 577 u64 scratched_stack_slots; 578 u32 prev_log_len, prev_insn_print_len; 579 /* buffer used in reg_type_str() to generate reg_type string */ 580 char type_str_buf[TYPE_STR_BUF_LEN]; 581}; 582 583__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 584 const char *fmt, va_list args); 585__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 586 const char *fmt, ...); 587__printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 588 const char *fmt, ...); 589 590static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 591{ 592 struct bpf_verifier_state *cur = env->cur_state; 593 594 return cur->frame[cur->curframe]; 595} 596 597static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 598{ 599 return cur_func(env)->regs; 600} 601 602int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 603int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 604 int insn_idx, int prev_insn_idx); 605int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 606void 607bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, 608 struct bpf_insn *insn); 609void 610bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); 611 612int check_ptr_off_reg(struct bpf_verifier_env *env, 613 const struct bpf_reg_state *reg, int regno); 614int check_func_arg_reg_off(struct bpf_verifier_env *env, 615 const struct bpf_reg_state *reg, int regno, 616 enum bpf_arg_type arg_type); 617int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 618 u32 regno, u32 mem_size); 619struct bpf_call_arg_meta; 620int process_dynptr_func(struct bpf_verifier_env *env, int regno, 621 enum bpf_arg_type arg_type, struct bpf_call_arg_meta *meta); 622 623/* this lives here instead of in bpf.h because it needs to dereference tgt_prog */ 624static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog, 625 struct btf *btf, u32 btf_id) 626{ 627 if (tgt_prog) 628 return ((u64)tgt_prog->aux->id << 32) | btf_id; 629 else 630 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id; 631} 632 633/* unpack the IDs from the key as constructed above */ 634static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id) 635{ 636 if (obj_id) 637 *obj_id = key >> 32; 638 if (btf_id) 639 *btf_id = key & 0x7FFFFFFF; 640} 641 642int bpf_check_attach_target(struct bpf_verifier_log *log, 643 const struct bpf_prog *prog, 644 const struct bpf_prog *tgt_prog, 645 u32 btf_id, 646 struct bpf_attach_target_info *tgt_info); 647void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab); 648 649int mark_chain_precision(struct bpf_verifier_env *env, int regno); 650 651#define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0) 652 653/* extract base type from bpf_{arg, return, reg}_type. */ 654static inline u32 base_type(u32 type) 655{ 656 return type & BPF_BASE_TYPE_MASK; 657} 658 659/* extract flags from an extended type. See bpf_type_flag in bpf.h. */ 660static inline u32 type_flag(u32 type) 661{ 662 return type & ~BPF_BASE_TYPE_MASK; 663} 664 665/* only use after check_attach_btf_id() */ 666static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog) 667{ 668 return prog->type == BPF_PROG_TYPE_EXT ? 669 prog->aux->dst_prog->type : prog->type; 670} 671 672static inline bool bpf_prog_check_recur(const struct bpf_prog *prog) 673{ 674 switch (resolve_prog_type(prog)) { 675 case BPF_PROG_TYPE_TRACING: 676 return prog->expected_attach_type != BPF_TRACE_ITER; 677 case BPF_PROG_TYPE_STRUCT_OPS: 678 case BPF_PROG_TYPE_LSM: 679 return false; 680 default: 681 return true; 682 } 683} 684 685#define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED) 686 687static inline bool bpf_type_has_unsafe_modifiers(u32 type) 688{ 689 return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS; 690} 691 692#endif /* _LINUX_BPF_VERIFIER_H */