at v6.3 1573 lines 54 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* Copyright (c) 2013-2022, Intel Corporation. */ 3 4#ifndef _VIRTCHNL_H_ 5#define _VIRTCHNL_H_ 6 7/* Description: 8 * This header file describes the Virtual Function (VF) - Physical Function 9 * (PF) communication protocol used by the drivers for all devices starting 10 * from our 40G product line 11 * 12 * Admin queue buffer usage: 13 * desc->opcode is always aqc_opc_send_msg_to_pf 14 * flags, retval, datalen, and data addr are all used normally. 15 * The Firmware copies the cookie fields when sending messages between the 16 * PF and VF, but uses all other fields internally. Due to this limitation, 17 * we must send all messages as "indirect", i.e. using an external buffer. 18 * 19 * All the VSI indexes are relative to the VF. Each VF can have maximum of 20 * three VSIs. All the queue indexes are relative to the VSI. Each VF can 21 * have a maximum of sixteen queues for all of its VSIs. 22 * 23 * The PF is required to return a status code in v_retval for all messages 24 * except RESET_VF, which does not require any response. The returned value 25 * is of virtchnl_status_code type, defined here. 26 * 27 * In general, VF driver initialization should roughly follow the order of 28 * these opcodes. The VF driver must first validate the API version of the 29 * PF driver, then request a reset, then get resources, then configure 30 * queues and interrupts. After these operations are complete, the VF 31 * driver may start its queues, optionally add MAC and VLAN filters, and 32 * process traffic. 33 */ 34 35/* START GENERIC DEFINES 36 * Need to ensure the following enums and defines hold the same meaning and 37 * value in current and future projects 38 */ 39 40/* Error Codes */ 41enum virtchnl_status_code { 42 VIRTCHNL_STATUS_SUCCESS = 0, 43 VIRTCHNL_STATUS_ERR_PARAM = -5, 44 VIRTCHNL_STATUS_ERR_NO_MEMORY = -18, 45 VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH = -38, 46 VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR = -39, 47 VIRTCHNL_STATUS_ERR_INVALID_VF_ID = -40, 48 VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR = -53, 49 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED = -64, 50}; 51 52/* Backward compatibility */ 53#define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM 54#define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED 55 56#define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT 0x0 57#define VIRTCHNL_LINK_SPEED_100MB_SHIFT 0x1 58#define VIRTCHNL_LINK_SPEED_1000MB_SHIFT 0x2 59#define VIRTCHNL_LINK_SPEED_10GB_SHIFT 0x3 60#define VIRTCHNL_LINK_SPEED_40GB_SHIFT 0x4 61#define VIRTCHNL_LINK_SPEED_20GB_SHIFT 0x5 62#define VIRTCHNL_LINK_SPEED_25GB_SHIFT 0x6 63#define VIRTCHNL_LINK_SPEED_5GB_SHIFT 0x7 64 65enum virtchnl_link_speed { 66 VIRTCHNL_LINK_SPEED_UNKNOWN = 0, 67 VIRTCHNL_LINK_SPEED_100MB = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT), 68 VIRTCHNL_LINK_SPEED_1GB = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT), 69 VIRTCHNL_LINK_SPEED_10GB = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT), 70 VIRTCHNL_LINK_SPEED_40GB = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT), 71 VIRTCHNL_LINK_SPEED_20GB = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT), 72 VIRTCHNL_LINK_SPEED_25GB = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT), 73 VIRTCHNL_LINK_SPEED_2_5GB = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT), 74 VIRTCHNL_LINK_SPEED_5GB = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT), 75}; 76 77/* for hsplit_0 field of Rx HMC context */ 78/* deprecated with AVF 1.0 */ 79enum virtchnl_rx_hsplit { 80 VIRTCHNL_RX_HSPLIT_NO_SPLIT = 0, 81 VIRTCHNL_RX_HSPLIT_SPLIT_L2 = 1, 82 VIRTCHNL_RX_HSPLIT_SPLIT_IP = 2, 83 VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4, 84 VIRTCHNL_RX_HSPLIT_SPLIT_SCTP = 8, 85}; 86 87/* END GENERIC DEFINES */ 88 89/* Opcodes for VF-PF communication. These are placed in the v_opcode field 90 * of the virtchnl_msg structure. 91 */ 92enum virtchnl_ops { 93/* The PF sends status change events to VFs using 94 * the VIRTCHNL_OP_EVENT opcode. 95 * VFs send requests to the PF using the other ops. 96 * Use of "advanced opcode" features must be negotiated as part of capabilities 97 * exchange and are not considered part of base mode feature set. 98 */ 99 VIRTCHNL_OP_UNKNOWN = 0, 100 VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */ 101 VIRTCHNL_OP_RESET_VF = 2, 102 VIRTCHNL_OP_GET_VF_RESOURCES = 3, 103 VIRTCHNL_OP_CONFIG_TX_QUEUE = 4, 104 VIRTCHNL_OP_CONFIG_RX_QUEUE = 5, 105 VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6, 106 VIRTCHNL_OP_CONFIG_IRQ_MAP = 7, 107 VIRTCHNL_OP_ENABLE_QUEUES = 8, 108 VIRTCHNL_OP_DISABLE_QUEUES = 9, 109 VIRTCHNL_OP_ADD_ETH_ADDR = 10, 110 VIRTCHNL_OP_DEL_ETH_ADDR = 11, 111 VIRTCHNL_OP_ADD_VLAN = 12, 112 VIRTCHNL_OP_DEL_VLAN = 13, 113 VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14, 114 VIRTCHNL_OP_GET_STATS = 15, 115 VIRTCHNL_OP_RSVD = 16, 116 VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */ 117 /* opcode 19 is reserved */ 118 VIRTCHNL_OP_IWARP = 20, /* advanced opcode */ 119 VIRTCHNL_OP_RDMA = VIRTCHNL_OP_IWARP, 120 VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */ 121 VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP = VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP, 122 VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */ 123 VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP = VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP, 124 VIRTCHNL_OP_CONFIG_RSS_KEY = 23, 125 VIRTCHNL_OP_CONFIG_RSS_LUT = 24, 126 VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25, 127 VIRTCHNL_OP_SET_RSS_HENA = 26, 128 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27, 129 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28, 130 VIRTCHNL_OP_REQUEST_QUEUES = 29, 131 VIRTCHNL_OP_ENABLE_CHANNELS = 30, 132 VIRTCHNL_OP_DISABLE_CHANNELS = 31, 133 VIRTCHNL_OP_ADD_CLOUD_FILTER = 32, 134 VIRTCHNL_OP_DEL_CLOUD_FILTER = 33, 135 /* opcode 34 - 43 are reserved */ 136 VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44, 137 VIRTCHNL_OP_ADD_RSS_CFG = 45, 138 VIRTCHNL_OP_DEL_RSS_CFG = 46, 139 VIRTCHNL_OP_ADD_FDIR_FILTER = 47, 140 VIRTCHNL_OP_DEL_FDIR_FILTER = 48, 141 VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51, 142 VIRTCHNL_OP_ADD_VLAN_V2 = 52, 143 VIRTCHNL_OP_DEL_VLAN_V2 = 53, 144 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54, 145 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55, 146 VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56, 147 VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57, 148 VIRTCHNL_OP_MAX, 149}; 150 151/* These macros are used to generate compilation errors if a structure/union 152 * is not exactly the correct length. It gives a divide by zero error if the 153 * structure/union is not of the correct size, otherwise it creates an enum 154 * that is never used. 155 */ 156#define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \ 157 { virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) } 158#define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \ 159 { virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) } 160 161/* Message descriptions and data structures. */ 162 163/* VIRTCHNL_OP_VERSION 164 * VF posts its version number to the PF. PF responds with its version number 165 * in the same format, along with a return code. 166 * Reply from PF has its major/minor versions also in param0 and param1. 167 * If there is a major version mismatch, then the VF cannot operate. 168 * If there is a minor version mismatch, then the VF can operate but should 169 * add a warning to the system log. 170 * 171 * This enum element MUST always be specified as == 1, regardless of other 172 * changes in the API. The PF must always respond to this message without 173 * error regardless of version mismatch. 174 */ 175#define VIRTCHNL_VERSION_MAJOR 1 176#define VIRTCHNL_VERSION_MINOR 1 177#define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS 0 178 179struct virtchnl_version_info { 180 u32 major; 181 u32 minor; 182}; 183 184VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info); 185 186#define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0)) 187#define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1)) 188 189/* VIRTCHNL_OP_RESET_VF 190 * VF sends this request to PF with no parameters 191 * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register 192 * until reset completion is indicated. The admin queue must be reinitialized 193 * after this operation. 194 * 195 * When reset is complete, PF must ensure that all queues in all VSIs associated 196 * with the VF are stopped, all queue configurations in the HMC are set to 0, 197 * and all MAC and VLAN filters (except the default MAC address) on all VSIs 198 * are cleared. 199 */ 200 201/* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV 202 * vsi_type should always be 6 for backward compatibility. Add other fields 203 * as needed. 204 */ 205enum virtchnl_vsi_type { 206 VIRTCHNL_VSI_TYPE_INVALID = 0, 207 VIRTCHNL_VSI_SRIOV = 6, 208}; 209 210/* VIRTCHNL_OP_GET_VF_RESOURCES 211 * Version 1.0 VF sends this request to PF with no parameters 212 * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities 213 * PF responds with an indirect message containing 214 * virtchnl_vf_resource and one or more 215 * virtchnl_vsi_resource structures. 216 */ 217 218struct virtchnl_vsi_resource { 219 u16 vsi_id; 220 u16 num_queue_pairs; 221 222 /* see enum virtchnl_vsi_type */ 223 s32 vsi_type; 224 u16 qset_handle; 225 u8 default_mac_addr[ETH_ALEN]; 226}; 227 228VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource); 229 230/* VF capability flags 231 * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including 232 * TX/RX Checksum offloading and TSO for non-tunnelled packets. 233 */ 234#define VIRTCHNL_VF_OFFLOAD_L2 BIT(0) 235#define VIRTCHNL_VF_OFFLOAD_RDMA BIT(1) 236#define VIRTCHNL_VF_CAP_RDMA VIRTCHNL_VF_OFFLOAD_RDMA 237#define VIRTCHNL_VF_OFFLOAD_RSS_AQ BIT(3) 238#define VIRTCHNL_VF_OFFLOAD_RSS_REG BIT(4) 239#define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR BIT(5) 240#define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES BIT(6) 241/* used to negotiate communicating link speeds in Mbps */ 242#define VIRTCHNL_VF_CAP_ADV_LINK_SPEED BIT(7) 243#define VIRTCHNL_VF_OFFLOAD_VLAN_V2 BIT(15) 244#define VIRTCHNL_VF_OFFLOAD_VLAN BIT(16) 245#define VIRTCHNL_VF_OFFLOAD_RX_POLLING BIT(17) 246#define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2 BIT(18) 247#define VIRTCHNL_VF_OFFLOAD_RSS_PF BIT(19) 248#define VIRTCHNL_VF_OFFLOAD_ENCAP BIT(20) 249#define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM BIT(21) 250#define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM BIT(22) 251#define VIRTCHNL_VF_OFFLOAD_ADQ BIT(23) 252#define VIRTCHNL_VF_OFFLOAD_USO BIT(25) 253#define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC BIT(26) 254#define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF BIT(27) 255#define VIRTCHNL_VF_OFFLOAD_FDIR_PF BIT(28) 256 257#define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \ 258 VIRTCHNL_VF_OFFLOAD_VLAN | \ 259 VIRTCHNL_VF_OFFLOAD_RSS_PF) 260 261struct virtchnl_vf_resource { 262 u16 num_vsis; 263 u16 num_queue_pairs; 264 u16 max_vectors; 265 u16 max_mtu; 266 267 u32 vf_cap_flags; 268 u32 rss_key_size; 269 u32 rss_lut_size; 270 271 struct virtchnl_vsi_resource vsi_res[1]; 272}; 273 274VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource); 275 276/* VIRTCHNL_OP_CONFIG_TX_QUEUE 277 * VF sends this message to set up parameters for one TX queue. 278 * External data buffer contains one instance of virtchnl_txq_info. 279 * PF configures requested queue and returns a status code. 280 */ 281 282/* Tx queue config info */ 283struct virtchnl_txq_info { 284 u16 vsi_id; 285 u16 queue_id; 286 u16 ring_len; /* number of descriptors, multiple of 8 */ 287 u16 headwb_enabled; /* deprecated with AVF 1.0 */ 288 u64 dma_ring_addr; 289 u64 dma_headwb_addr; /* deprecated with AVF 1.0 */ 290}; 291 292VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info); 293 294/* VIRTCHNL_OP_CONFIG_RX_QUEUE 295 * VF sends this message to set up parameters for one RX queue. 296 * External data buffer contains one instance of virtchnl_rxq_info. 297 * PF configures requested queue and returns a status code. 298 */ 299 300/* Rx queue config info */ 301struct virtchnl_rxq_info { 302 u16 vsi_id; 303 u16 queue_id; 304 u32 ring_len; /* number of descriptors, multiple of 32 */ 305 u16 hdr_size; 306 u16 splithdr_enabled; /* deprecated with AVF 1.0 */ 307 u32 databuffer_size; 308 u32 max_pkt_size; 309 u8 pad0; 310 u8 rxdid; 311 u8 pad1[2]; 312 u64 dma_ring_addr; 313 314 /* see enum virtchnl_rx_hsplit; deprecated with AVF 1.0 */ 315 s32 rx_split_pos; 316 u32 pad2; 317}; 318 319VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info); 320 321/* VIRTCHNL_OP_CONFIG_VSI_QUEUES 322 * VF sends this message to set parameters for all active TX and RX queues 323 * associated with the specified VSI. 324 * PF configures queues and returns status. 325 * If the number of queues specified is greater than the number of queues 326 * associated with the VSI, an error is returned and no queues are configured. 327 * NOTE: The VF is not required to configure all queues in a single request. 328 * It may send multiple messages. PF drivers must correctly handle all VF 329 * requests. 330 */ 331struct virtchnl_queue_pair_info { 332 /* NOTE: vsi_id and queue_id should be identical for both queues. */ 333 struct virtchnl_txq_info txq; 334 struct virtchnl_rxq_info rxq; 335}; 336 337VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info); 338 339struct virtchnl_vsi_queue_config_info { 340 u16 vsi_id; 341 u16 num_queue_pairs; 342 u32 pad; 343 struct virtchnl_queue_pair_info qpair[1]; 344}; 345 346VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info); 347 348/* VIRTCHNL_OP_REQUEST_QUEUES 349 * VF sends this message to request the PF to allocate additional queues to 350 * this VF. Each VF gets a guaranteed number of queues on init but asking for 351 * additional queues must be negotiated. This is a best effort request as it 352 * is possible the PF does not have enough queues left to support the request. 353 * If the PF cannot support the number requested it will respond with the 354 * maximum number it is able to support. If the request is successful, PF will 355 * then reset the VF to institute required changes. 356 */ 357 358/* VF resource request */ 359struct virtchnl_vf_res_request { 360 u16 num_queue_pairs; 361}; 362 363/* VIRTCHNL_OP_CONFIG_IRQ_MAP 364 * VF uses this message to map vectors to queues. 365 * The rxq_map and txq_map fields are bitmaps used to indicate which queues 366 * are to be associated with the specified vector. 367 * The "other" causes are always mapped to vector 0. The VF may not request 368 * that vector 0 be used for traffic. 369 * PF configures interrupt mapping and returns status. 370 * NOTE: due to hardware requirements, all active queues (both TX and RX) 371 * should be mapped to interrupts, even if the driver intends to operate 372 * only in polling mode. In this case the interrupt may be disabled, but 373 * the ITR timer will still run to trigger writebacks. 374 */ 375struct virtchnl_vector_map { 376 u16 vsi_id; 377 u16 vector_id; 378 u16 rxq_map; 379 u16 txq_map; 380 u16 rxitr_idx; 381 u16 txitr_idx; 382}; 383 384VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map); 385 386struct virtchnl_irq_map_info { 387 u16 num_vectors; 388 struct virtchnl_vector_map vecmap[1]; 389}; 390 391VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info); 392 393/* VIRTCHNL_OP_ENABLE_QUEUES 394 * VIRTCHNL_OP_DISABLE_QUEUES 395 * VF sends these message to enable or disable TX/RX queue pairs. 396 * The queues fields are bitmaps indicating which queues to act upon. 397 * (Currently, we only support 16 queues per VF, but we make the field 398 * u32 to allow for expansion.) 399 * PF performs requested action and returns status. 400 * NOTE: The VF is not required to enable/disable all queues in a single 401 * request. It may send multiple messages. 402 * PF drivers must correctly handle all VF requests. 403 */ 404struct virtchnl_queue_select { 405 u16 vsi_id; 406 u16 pad; 407 u32 rx_queues; 408 u32 tx_queues; 409}; 410 411VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select); 412 413/* VIRTCHNL_OP_ADD_ETH_ADDR 414 * VF sends this message in order to add one or more unicast or multicast 415 * address filters for the specified VSI. 416 * PF adds the filters and returns status. 417 */ 418 419/* VIRTCHNL_OP_DEL_ETH_ADDR 420 * VF sends this message in order to remove one or more unicast or multicast 421 * filters for the specified VSI. 422 * PF removes the filters and returns status. 423 */ 424 425/* VIRTCHNL_ETHER_ADDR_LEGACY 426 * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad 427 * bytes. Moving forward all VF drivers should not set type to 428 * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy 429 * behavior. The control plane function (i.e. PF) can use a best effort method 430 * of tracking the primary/device unicast in this case, but there is no 431 * guarantee and functionality depends on the implementation of the PF. 432 */ 433 434/* VIRTCHNL_ETHER_ADDR_PRIMARY 435 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the 436 * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and 437 * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane 438 * function (i.e. PF) to accurately track and use this MAC address for 439 * displaying on the host and for VM/function reset. 440 */ 441 442/* VIRTCHNL_ETHER_ADDR_EXTRA 443 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra 444 * unicast and/or multicast filters that are being added/deleted via 445 * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively. 446 */ 447struct virtchnl_ether_addr { 448 u8 addr[ETH_ALEN]; 449 u8 type; 450#define VIRTCHNL_ETHER_ADDR_LEGACY 0 451#define VIRTCHNL_ETHER_ADDR_PRIMARY 1 452#define VIRTCHNL_ETHER_ADDR_EXTRA 2 453#define VIRTCHNL_ETHER_ADDR_TYPE_MASK 3 /* first two bits of type are valid */ 454 u8 pad; 455}; 456 457VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr); 458 459struct virtchnl_ether_addr_list { 460 u16 vsi_id; 461 u16 num_elements; 462 struct virtchnl_ether_addr list[1]; 463}; 464 465VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list); 466 467/* VIRTCHNL_OP_ADD_VLAN 468 * VF sends this message to add one or more VLAN tag filters for receives. 469 * PF adds the filters and returns status. 470 * If a port VLAN is configured by the PF, this operation will return an 471 * error to the VF. 472 */ 473 474/* VIRTCHNL_OP_DEL_VLAN 475 * VF sends this message to remove one or more VLAN tag filters for receives. 476 * PF removes the filters and returns status. 477 * If a port VLAN is configured by the PF, this operation will return an 478 * error to the VF. 479 */ 480 481struct virtchnl_vlan_filter_list { 482 u16 vsi_id; 483 u16 num_elements; 484 u16 vlan_id[1]; 485}; 486 487VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list); 488 489/* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related 490 * structures and opcodes. 491 * 492 * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver 493 * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED. 494 * 495 * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype. 496 * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype. 497 * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype. 498 * 499 * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported 500 * by the PF concurrently. For example, if the PF can support 501 * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it 502 * would OR the following bits: 503 * 504 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 505 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 506 * VIRTCHNL_VLAN_ETHERTYPE_AND; 507 * 508 * The VF would interpret this as VLAN filtering can be supported on both 0x8100 509 * and 0x88A8 VLAN ethertypes. 510 * 511 * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported 512 * by the PF concurrently. For example if the PF can support 513 * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping 514 * offload it would OR the following bits: 515 * 516 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 517 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 518 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 519 * 520 * The VF would interpret this as VLAN stripping can be supported on either 521 * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via 522 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override 523 * the previously set value. 524 * 525 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or 526 * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors. 527 * 528 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware 529 * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor. 530 * 531 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware 532 * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor. 533 * 534 * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for 535 * VLAN filtering if the underlying PF supports it. 536 * 537 * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a 538 * certain VLAN capability can be toggled. For example if the underlying PF/CP 539 * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should 540 * set this bit along with the supported ethertypes. 541 */ 542enum virtchnl_vlan_support { 543 VIRTCHNL_VLAN_UNSUPPORTED = 0, 544 VIRTCHNL_VLAN_ETHERTYPE_8100 = BIT(0), 545 VIRTCHNL_VLAN_ETHERTYPE_88A8 = BIT(1), 546 VIRTCHNL_VLAN_ETHERTYPE_9100 = BIT(2), 547 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 = BIT(8), 548 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 = BIT(9), 549 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 = BIT(10), 550 VIRTCHNL_VLAN_PRIO = BIT(24), 551 VIRTCHNL_VLAN_FILTER_MASK = BIT(28), 552 VIRTCHNL_VLAN_ETHERTYPE_AND = BIT(29), 553 VIRTCHNL_VLAN_ETHERTYPE_XOR = BIT(30), 554 VIRTCHNL_VLAN_TOGGLE = BIT(31), 555}; 556 557/* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 558 * for filtering, insertion, and stripping capabilities. 559 * 560 * If only outer capabilities are supported (for filtering, insertion, and/or 561 * stripping) then this refers to the outer most or single VLAN from the VF's 562 * perspective. 563 * 564 * If only inner capabilities are supported (for filtering, insertion, and/or 565 * stripping) then this refers to the outer most or single VLAN from the VF's 566 * perspective. Functionally this is the same as if only outer capabilities are 567 * supported. The VF driver is just forced to use the inner fields when 568 * adding/deleting filters and enabling/disabling offloads (if supported). 569 * 570 * If both outer and inner capabilities are supported (for filtering, insertion, 571 * and/or stripping) then outer refers to the outer most or single VLAN and 572 * inner refers to the second VLAN, if it exists, in the packet. 573 * 574 * There is no support for tunneled VLAN offloads, so outer or inner are never 575 * referring to a tunneled packet from the VF's perspective. 576 */ 577struct virtchnl_vlan_supported_caps { 578 u32 outer; 579 u32 inner; 580}; 581 582/* The PF populates these fields based on the supported VLAN filtering. If a 583 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 584 * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using 585 * the unsupported fields. 586 * 587 * Also, a VF is only allowed to toggle its VLAN filtering setting if the 588 * VIRTCHNL_VLAN_TOGGLE bit is set. 589 * 590 * The ethertype(s) specified in the ethertype_init field are the ethertypes 591 * enabled for VLAN filtering. VLAN filtering in this case refers to the outer 592 * most VLAN from the VF's perspective. If both inner and outer filtering are 593 * allowed then ethertype_init only refers to the outer most VLAN as only 594 * VLAN ethertype supported for inner VLAN filtering is 595 * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled 596 * when both inner and outer filtering are allowed. 597 * 598 * The max_filters field tells the VF how many VLAN filters it's allowed to have 599 * at any one time. If it exceeds this amount and tries to add another filter, 600 * then the request will be rejected by the PF. To prevent failures, the VF 601 * should keep track of how many VLAN filters it has added and not attempt to 602 * add more than max_filters. 603 */ 604struct virtchnl_vlan_filtering_caps { 605 struct virtchnl_vlan_supported_caps filtering_support; 606 u32 ethertype_init; 607 u16 max_filters; 608 u8 pad[2]; 609}; 610 611VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps); 612 613/* This enum is used for the virtchnl_vlan_offload_caps structure to specify 614 * if the PF supports a different ethertype for stripping and insertion. 615 * 616 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified 617 * for stripping affect the ethertype(s) specified for insertion and visa versa 618 * as well. If the VF tries to configure VLAN stripping via 619 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then 620 * that will be the ethertype for both stripping and insertion. 621 * 622 * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for 623 * stripping do not affect the ethertype(s) specified for insertion and visa 624 * versa. 625 */ 626enum virtchnl_vlan_ethertype_match { 627 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0, 628 VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1, 629}; 630 631/* The PF populates these fields based on the supported VLAN offloads. If a 632 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 633 * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or 634 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields. 635 * 636 * Also, a VF is only allowed to toggle its VLAN offload setting if the 637 * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set. 638 * 639 * The VF driver needs to be aware of how the tags are stripped by hardware and 640 * inserted by the VF driver based on the level of offload support. The PF will 641 * populate these fields based on where the VLAN tags are expected to be 642 * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to 643 * interpret these fields. See the definition of the 644 * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support 645 * enumeration. 646 */ 647struct virtchnl_vlan_offload_caps { 648 struct virtchnl_vlan_supported_caps stripping_support; 649 struct virtchnl_vlan_supported_caps insertion_support; 650 u32 ethertype_init; 651 u8 ethertype_match; 652 u8 pad[3]; 653}; 654 655VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps); 656 657/* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 658 * VF sends this message to determine its VLAN capabilities. 659 * 660 * PF will mark which capabilities it supports based on hardware support and 661 * current configuration. For example, if a port VLAN is configured the PF will 662 * not allow outer VLAN filtering, stripping, or insertion to be configured so 663 * it will block these features from the VF. 664 * 665 * The VF will need to cross reference its capabilities with the PFs 666 * capabilities in the response message from the PF to determine the VLAN 667 * support. 668 */ 669struct virtchnl_vlan_caps { 670 struct virtchnl_vlan_filtering_caps filtering; 671 struct virtchnl_vlan_offload_caps offloads; 672}; 673 674VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps); 675 676struct virtchnl_vlan { 677 u16 tci; /* tci[15:13] = PCP and tci[11:0] = VID */ 678 u16 tci_mask; /* only valid if VIRTCHNL_VLAN_FILTER_MASK set in 679 * filtering caps 680 */ 681 u16 tpid; /* 0x8100, 0x88a8, etc. and only type(s) set in 682 * filtering caps. Note that tpid here does not refer to 683 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the 684 * actual 2-byte VLAN TPID 685 */ 686 u8 pad[2]; 687}; 688 689VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan); 690 691struct virtchnl_vlan_filter { 692 struct virtchnl_vlan inner; 693 struct virtchnl_vlan outer; 694 u8 pad[16]; 695}; 696 697VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter); 698 699/* VIRTCHNL_OP_ADD_VLAN_V2 700 * VIRTCHNL_OP_DEL_VLAN_V2 701 * 702 * VF sends these messages to add/del one or more VLAN tag filters for Rx 703 * traffic. 704 * 705 * The PF attempts to add the filters and returns status. 706 * 707 * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the 708 * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS. 709 */ 710struct virtchnl_vlan_filter_list_v2 { 711 u16 vport_id; 712 u16 num_elements; 713 u8 pad[4]; 714 struct virtchnl_vlan_filter filters[1]; 715}; 716 717VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2); 718 719/* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 720 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 721 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 722 * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 723 * 724 * VF sends this message to enable or disable VLAN stripping or insertion. It 725 * also needs to specify an ethertype. The VF knows which VLAN ethertypes are 726 * allowed and whether or not it's allowed to enable/disable the specific 727 * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to 728 * parse the virtchnl_vlan_caps.offloads fields to determine which offload 729 * messages are allowed. 730 * 731 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 732 * following manner the VF will be allowed to enable and/or disable 0x8100 inner 733 * VLAN insertion and/or stripping via the opcodes listed above. Inner in this 734 * case means the outer most or single VLAN from the VF's perspective. This is 735 * because no outer offloads are supported. See the comments above the 736 * virtchnl_vlan_supported_caps structure for more details. 737 * 738 * virtchnl_vlan_caps.offloads.stripping_support.inner = 739 * VIRTCHNL_VLAN_TOGGLE | 740 * VIRTCHNL_VLAN_ETHERTYPE_8100; 741 * 742 * virtchnl_vlan_caps.offloads.insertion_support.inner = 743 * VIRTCHNL_VLAN_TOGGLE | 744 * VIRTCHNL_VLAN_ETHERTYPE_8100; 745 * 746 * In order to enable inner (again note that in this case inner is the outer 747 * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100 748 * VLANs, the VF would populate the virtchnl_vlan_setting structure in the 749 * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 750 * 751 * virtchnl_vlan_setting.inner_ethertype_setting = 752 * VIRTCHNL_VLAN_ETHERTYPE_8100; 753 * 754 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 755 * initialization. 756 * 757 * The reason that VLAN TPID(s) are not being used for the 758 * outer_ethertype_setting and inner_ethertype_setting fields is because it's 759 * possible a device could support VLAN insertion and/or stripping offload on 760 * multiple ethertypes concurrently, so this method allows a VF to request 761 * multiple ethertypes in one message using the virtchnl_vlan_support 762 * enumeration. 763 * 764 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 765 * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer 766 * VLAN insertion and stripping simultaneously. The 767 * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be 768 * populated based on what the PF can support. 769 * 770 * virtchnl_vlan_caps.offloads.stripping_support.outer = 771 * VIRTCHNL_VLAN_TOGGLE | 772 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 773 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 774 * VIRTCHNL_VLAN_ETHERTYPE_AND; 775 * 776 * virtchnl_vlan_caps.offloads.insertion_support.outer = 777 * VIRTCHNL_VLAN_TOGGLE | 778 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 779 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 780 * VIRTCHNL_VLAN_ETHERTYPE_AND; 781 * 782 * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF 783 * would populate the virthcnl_vlan_offload_structure in the following manner 784 * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 785 * 786 * virtchnl_vlan_setting.outer_ethertype_setting = 787 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 788 * VIRTHCNL_VLAN_ETHERTYPE_88A8; 789 * 790 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 791 * initialization. 792 * 793 * There is also the case where a PF and the underlying hardware can support 794 * VLAN offloads on multiple ethertypes, but not concurrently. For example, if 795 * the PF populates the virtchnl_vlan_caps.offloads in the following manner the 796 * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN 797 * offloads. The ethertypes must match for stripping and insertion. 798 * 799 * virtchnl_vlan_caps.offloads.stripping_support.outer = 800 * VIRTCHNL_VLAN_TOGGLE | 801 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 802 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 803 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 804 * 805 * virtchnl_vlan_caps.offloads.insertion_support.outer = 806 * VIRTCHNL_VLAN_TOGGLE | 807 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 808 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 809 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 810 * 811 * virtchnl_vlan_caps.offloads.ethertype_match = 812 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 813 * 814 * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would 815 * populate the virtchnl_vlan_setting structure in the following manner and send 816 * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the 817 * ethertype for VLAN insertion if it's enabled. So, for completeness, a 818 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent. 819 * 820 * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8; 821 * 822 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 823 * initialization. 824 */ 825struct virtchnl_vlan_setting { 826 u32 outer_ethertype_setting; 827 u32 inner_ethertype_setting; 828 u16 vport_id; 829 u8 pad[6]; 830}; 831 832VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting); 833 834/* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE 835 * VF sends VSI id and flags. 836 * PF returns status code in retval. 837 * Note: we assume that broadcast accept mode is always enabled. 838 */ 839struct virtchnl_promisc_info { 840 u16 vsi_id; 841 u16 flags; 842}; 843 844VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info); 845 846#define FLAG_VF_UNICAST_PROMISC 0x00000001 847#define FLAG_VF_MULTICAST_PROMISC 0x00000002 848 849/* VIRTCHNL_OP_GET_STATS 850 * VF sends this message to request stats for the selected VSI. VF uses 851 * the virtchnl_queue_select struct to specify the VSI. The queue_id 852 * field is ignored by the PF. 853 * 854 * PF replies with struct eth_stats in an external buffer. 855 */ 856 857/* VIRTCHNL_OP_CONFIG_RSS_KEY 858 * VIRTCHNL_OP_CONFIG_RSS_LUT 859 * VF sends these messages to configure RSS. Only supported if both PF 860 * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during 861 * configuration negotiation. If this is the case, then the RSS fields in 862 * the VF resource struct are valid. 863 * Both the key and LUT are initialized to 0 by the PF, meaning that 864 * RSS is effectively disabled until set up by the VF. 865 */ 866struct virtchnl_rss_key { 867 u16 vsi_id; 868 u16 key_len; 869 u8 key[1]; /* RSS hash key, packed bytes */ 870}; 871 872VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key); 873 874struct virtchnl_rss_lut { 875 u16 vsi_id; 876 u16 lut_entries; 877 u8 lut[1]; /* RSS lookup table */ 878}; 879 880VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut); 881 882/* VIRTCHNL_OP_GET_RSS_HENA_CAPS 883 * VIRTCHNL_OP_SET_RSS_HENA 884 * VF sends these messages to get and set the hash filter enable bits for RSS. 885 * By default, the PF sets these to all possible traffic types that the 886 * hardware supports. The VF can query this value if it wants to change the 887 * traffic types that are hashed by the hardware. 888 */ 889struct virtchnl_rss_hena { 890 u64 hena; 891}; 892 893VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena); 894 895/* VIRTCHNL_OP_ENABLE_CHANNELS 896 * VIRTCHNL_OP_DISABLE_CHANNELS 897 * VF sends these messages to enable or disable channels based on 898 * the user specified queue count and queue offset for each traffic class. 899 * This struct encompasses all the information that the PF needs from 900 * VF to create a channel. 901 */ 902struct virtchnl_channel_info { 903 u16 count; /* number of queues in a channel */ 904 u16 offset; /* queues in a channel start from 'offset' */ 905 u32 pad; 906 u64 max_tx_rate; 907}; 908 909VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info); 910 911struct virtchnl_tc_info { 912 u32 num_tc; 913 u32 pad; 914 struct virtchnl_channel_info list[1]; 915}; 916 917VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info); 918 919/* VIRTCHNL_ADD_CLOUD_FILTER 920 * VIRTCHNL_DEL_CLOUD_FILTER 921 * VF sends these messages to add or delete a cloud filter based on the 922 * user specified match and action filters. These structures encompass 923 * all the information that the PF needs from the VF to add/delete a 924 * cloud filter. 925 */ 926 927struct virtchnl_l4_spec { 928 u8 src_mac[ETH_ALEN]; 929 u8 dst_mac[ETH_ALEN]; 930 __be16 vlan_id; 931 __be16 pad; /* reserved for future use */ 932 __be32 src_ip[4]; 933 __be32 dst_ip[4]; 934 __be16 src_port; 935 __be16 dst_port; 936}; 937 938VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec); 939 940union virtchnl_flow_spec { 941 struct virtchnl_l4_spec tcp_spec; 942 u8 buffer[128]; /* reserved for future use */ 943}; 944 945VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec); 946 947enum virtchnl_action { 948 /* action types */ 949 VIRTCHNL_ACTION_DROP = 0, 950 VIRTCHNL_ACTION_TC_REDIRECT, 951 VIRTCHNL_ACTION_PASSTHRU, 952 VIRTCHNL_ACTION_QUEUE, 953 VIRTCHNL_ACTION_Q_REGION, 954 VIRTCHNL_ACTION_MARK, 955 VIRTCHNL_ACTION_COUNT, 956}; 957 958enum virtchnl_flow_type { 959 /* flow types */ 960 VIRTCHNL_TCP_V4_FLOW = 0, 961 VIRTCHNL_TCP_V6_FLOW, 962}; 963 964struct virtchnl_filter { 965 union virtchnl_flow_spec data; 966 union virtchnl_flow_spec mask; 967 968 /* see enum virtchnl_flow_type */ 969 s32 flow_type; 970 971 /* see enum virtchnl_action */ 972 s32 action; 973 u32 action_meta; 974 u8 field_flags; 975 u8 pad[3]; 976}; 977 978VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter); 979 980struct virtchnl_supported_rxdids { 981 u64 supported_rxdids; 982}; 983 984/* VIRTCHNL_OP_EVENT 985 * PF sends this message to inform the VF driver of events that may affect it. 986 * No direct response is expected from the VF, though it may generate other 987 * messages in response to this one. 988 */ 989enum virtchnl_event_codes { 990 VIRTCHNL_EVENT_UNKNOWN = 0, 991 VIRTCHNL_EVENT_LINK_CHANGE, 992 VIRTCHNL_EVENT_RESET_IMPENDING, 993 VIRTCHNL_EVENT_PF_DRIVER_CLOSE, 994}; 995 996#define PF_EVENT_SEVERITY_INFO 0 997#define PF_EVENT_SEVERITY_CERTAIN_DOOM 255 998 999struct virtchnl_pf_event { 1000 /* see enum virtchnl_event_codes */ 1001 s32 event; 1002 union { 1003 /* If the PF driver does not support the new speed reporting 1004 * capabilities then use link_event else use link_event_adv to 1005 * get the speed and link information. The ability to understand 1006 * new speeds is indicated by setting the capability flag 1007 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter 1008 * in virtchnl_vf_resource struct and can be used to determine 1009 * which link event struct to use below. 1010 */ 1011 struct { 1012 enum virtchnl_link_speed link_speed; 1013 bool link_status; 1014 u8 pad[3]; 1015 } link_event; 1016 struct { 1017 /* link_speed provided in Mbps */ 1018 u32 link_speed; 1019 u8 link_status; 1020 u8 pad[3]; 1021 } link_event_adv; 1022 } event_data; 1023 1024 s32 severity; 1025}; 1026 1027VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event); 1028 1029/* used to specify if a ceq_idx or aeq_idx is invalid */ 1030#define VIRTCHNL_RDMA_INVALID_QUEUE_IDX 0xFFFF 1031/* VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP 1032 * VF uses this message to request PF to map RDMA vectors to RDMA queues. 1033 * The request for this originates from the VF RDMA driver through 1034 * a client interface between VF LAN and VF RDMA driver. 1035 * A vector could have an AEQ and CEQ attached to it although 1036 * there is a single AEQ per VF RDMA instance in which case 1037 * most vectors will have an VIRTCHNL_RDMA_INVALID_QUEUE_IDX for aeq and valid 1038 * idx for ceqs There will never be a case where there will be multiple CEQs 1039 * attached to a single vector. 1040 * PF configures interrupt mapping and returns status. 1041 */ 1042 1043struct virtchnl_rdma_qv_info { 1044 u32 v_idx; /* msix_vector */ 1045 u16 ceq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */ 1046 u16 aeq_idx; /* set to VIRTCHNL_RDMA_INVALID_QUEUE_IDX if invalid */ 1047 u8 itr_idx; 1048 u8 pad[3]; 1049}; 1050 1051VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_rdma_qv_info); 1052 1053struct virtchnl_rdma_qvlist_info { 1054 u32 num_vectors; 1055 struct virtchnl_rdma_qv_info qv_info[1]; 1056}; 1057 1058VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_rdma_qvlist_info); 1059 1060/* VF reset states - these are written into the RSTAT register: 1061 * VFGEN_RSTAT on the VF 1062 * When the PF initiates a reset, it writes 0 1063 * When the reset is complete, it writes 1 1064 * When the PF detects that the VF has recovered, it writes 2 1065 * VF checks this register periodically to determine if a reset has occurred, 1066 * then polls it to know when the reset is complete. 1067 * If either the PF or VF reads the register while the hardware 1068 * is in a reset state, it will return DEADBEEF, which, when masked 1069 * will result in 3. 1070 */ 1071enum virtchnl_vfr_states { 1072 VIRTCHNL_VFR_INPROGRESS = 0, 1073 VIRTCHNL_VFR_COMPLETED, 1074 VIRTCHNL_VFR_VFACTIVE, 1075}; 1076 1077/* Type of RSS algorithm */ 1078enum virtchnl_rss_algorithm { 1079 VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC = 0, 1080 VIRTCHNL_RSS_ALG_R_ASYMMETRIC = 1, 1081 VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC = 2, 1082 VIRTCHNL_RSS_ALG_XOR_SYMMETRIC = 3, 1083}; 1084 1085#define VIRTCHNL_MAX_NUM_PROTO_HDRS 32 1086#define PROTO_HDR_SHIFT 5 1087#define PROTO_HDR_FIELD_START(proto_hdr_type) ((proto_hdr_type) << PROTO_HDR_SHIFT) 1088#define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1) 1089 1090/* VF use these macros to configure each protocol header. 1091 * Specify which protocol headers and protocol header fields base on 1092 * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field. 1093 * @param hdr: a struct of virtchnl_proto_hdr 1094 * @param hdr_type: ETH/IPV4/TCP, etc 1095 * @param field: SRC/DST/TEID/SPI, etc 1096 */ 1097#define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \ 1098 ((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK)) 1099#define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \ 1100 ((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK)) 1101#define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \ 1102 ((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK)) 1103#define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr) ((hdr)->field_selector) 1104 1105#define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1106 (VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \ 1107 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1108#define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1109 (VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \ 1110 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1111 1112#define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \ 1113 ((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type) 1114#define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \ 1115 (((hdr)->type) >> PROTO_HDR_SHIFT) 1116#define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \ 1117 ((hdr)->type == ((s32)((val) >> PROTO_HDR_SHIFT))) 1118#define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \ 1119 (VIRTCHNL_TEST_PROTO_HDR_TYPE((hdr), (val)) && \ 1120 VIRTCHNL_TEST_PROTO_HDR_FIELD((hdr), (val))) 1121 1122/* Protocol header type within a packet segment. A segment consists of one or 1123 * more protocol headers that make up a logical group of protocol headers. Each 1124 * logical group of protocol headers encapsulates or is encapsulated using/by 1125 * tunneling or encapsulation protocols for network virtualization. 1126 */ 1127enum virtchnl_proto_hdr_type { 1128 VIRTCHNL_PROTO_HDR_NONE, 1129 VIRTCHNL_PROTO_HDR_ETH, 1130 VIRTCHNL_PROTO_HDR_S_VLAN, 1131 VIRTCHNL_PROTO_HDR_C_VLAN, 1132 VIRTCHNL_PROTO_HDR_IPV4, 1133 VIRTCHNL_PROTO_HDR_IPV6, 1134 VIRTCHNL_PROTO_HDR_TCP, 1135 VIRTCHNL_PROTO_HDR_UDP, 1136 VIRTCHNL_PROTO_HDR_SCTP, 1137 VIRTCHNL_PROTO_HDR_GTPU_IP, 1138 VIRTCHNL_PROTO_HDR_GTPU_EH, 1139 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 1140 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 1141 VIRTCHNL_PROTO_HDR_PPPOE, 1142 VIRTCHNL_PROTO_HDR_L2TPV3, 1143 VIRTCHNL_PROTO_HDR_ESP, 1144 VIRTCHNL_PROTO_HDR_AH, 1145 VIRTCHNL_PROTO_HDR_PFCP, 1146}; 1147 1148/* Protocol header field within a protocol header. */ 1149enum virtchnl_proto_hdr_field { 1150 /* ETHER */ 1151 VIRTCHNL_PROTO_HDR_ETH_SRC = 1152 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH), 1153 VIRTCHNL_PROTO_HDR_ETH_DST, 1154 VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE, 1155 /* S-VLAN */ 1156 VIRTCHNL_PROTO_HDR_S_VLAN_ID = 1157 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN), 1158 /* C-VLAN */ 1159 VIRTCHNL_PROTO_HDR_C_VLAN_ID = 1160 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN), 1161 /* IPV4 */ 1162 VIRTCHNL_PROTO_HDR_IPV4_SRC = 1163 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4), 1164 VIRTCHNL_PROTO_HDR_IPV4_DST, 1165 VIRTCHNL_PROTO_HDR_IPV4_DSCP, 1166 VIRTCHNL_PROTO_HDR_IPV4_TTL, 1167 VIRTCHNL_PROTO_HDR_IPV4_PROT, 1168 /* IPV6 */ 1169 VIRTCHNL_PROTO_HDR_IPV6_SRC = 1170 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6), 1171 VIRTCHNL_PROTO_HDR_IPV6_DST, 1172 VIRTCHNL_PROTO_HDR_IPV6_TC, 1173 VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT, 1174 VIRTCHNL_PROTO_HDR_IPV6_PROT, 1175 /* TCP */ 1176 VIRTCHNL_PROTO_HDR_TCP_SRC_PORT = 1177 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP), 1178 VIRTCHNL_PROTO_HDR_TCP_DST_PORT, 1179 /* UDP */ 1180 VIRTCHNL_PROTO_HDR_UDP_SRC_PORT = 1181 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP), 1182 VIRTCHNL_PROTO_HDR_UDP_DST_PORT, 1183 /* SCTP */ 1184 VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT = 1185 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP), 1186 VIRTCHNL_PROTO_HDR_SCTP_DST_PORT, 1187 /* GTPU_IP */ 1188 VIRTCHNL_PROTO_HDR_GTPU_IP_TEID = 1189 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP), 1190 /* GTPU_EH */ 1191 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU = 1192 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH), 1193 VIRTCHNL_PROTO_HDR_GTPU_EH_QFI, 1194 /* PPPOE */ 1195 VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID = 1196 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE), 1197 /* L2TPV3 */ 1198 VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID = 1199 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3), 1200 /* ESP */ 1201 VIRTCHNL_PROTO_HDR_ESP_SPI = 1202 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP), 1203 /* AH */ 1204 VIRTCHNL_PROTO_HDR_AH_SPI = 1205 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH), 1206 /* PFCP */ 1207 VIRTCHNL_PROTO_HDR_PFCP_S_FIELD = 1208 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP), 1209 VIRTCHNL_PROTO_HDR_PFCP_SEID, 1210}; 1211 1212struct virtchnl_proto_hdr { 1213 /* see enum virtchnl_proto_hdr_type */ 1214 s32 type; 1215 u32 field_selector; /* a bit mask to select field for header type */ 1216 u8 buffer[64]; 1217 /** 1218 * binary buffer in network order for specific header type. 1219 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4 1220 * header is expected to be copied into the buffer. 1221 */ 1222}; 1223 1224VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr); 1225 1226struct virtchnl_proto_hdrs { 1227 u8 tunnel_level; 1228 u8 pad[3]; 1229 /** 1230 * specify where protocol header start from. 1231 * 0 - from the outer layer 1232 * 1 - from the first inner layer 1233 * 2 - from the second inner layer 1234 * .... 1235 **/ 1236 int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */ 1237 struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS]; 1238}; 1239 1240VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs); 1241 1242struct virtchnl_rss_cfg { 1243 struct virtchnl_proto_hdrs proto_hdrs; /* protocol headers */ 1244 1245 /* see enum virtchnl_rss_algorithm; rss algorithm type */ 1246 s32 rss_algorithm; 1247 u8 reserved[128]; /* reserve for future */ 1248}; 1249 1250VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg); 1251 1252/* action configuration for FDIR */ 1253struct virtchnl_filter_action { 1254 /* see enum virtchnl_action type */ 1255 s32 type; 1256 union { 1257 /* used for queue and qgroup action */ 1258 struct { 1259 u16 index; 1260 u8 region; 1261 } queue; 1262 /* used for count action */ 1263 struct { 1264 /* share counter ID with other flow rules */ 1265 u8 shared; 1266 u32 id; /* counter ID */ 1267 } count; 1268 /* used for mark action */ 1269 u32 mark_id; 1270 u8 reserve[32]; 1271 } act_conf; 1272}; 1273 1274VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action); 1275 1276#define VIRTCHNL_MAX_NUM_ACTIONS 8 1277 1278struct virtchnl_filter_action_set { 1279 /* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */ 1280 int count; 1281 struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS]; 1282}; 1283 1284VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set); 1285 1286/* pattern and action for FDIR rule */ 1287struct virtchnl_fdir_rule { 1288 struct virtchnl_proto_hdrs proto_hdrs; 1289 struct virtchnl_filter_action_set action_set; 1290}; 1291 1292VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule); 1293 1294/* Status returned to VF after VF requests FDIR commands 1295 * VIRTCHNL_FDIR_SUCCESS 1296 * VF FDIR related request is successfully done by PF 1297 * The request can be OP_ADD/DEL/QUERY_FDIR_FILTER. 1298 * 1299 * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE 1300 * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource. 1301 * 1302 * VIRTCHNL_FDIR_FAILURE_RULE_EXIST 1303 * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed. 1304 * 1305 * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT 1306 * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule. 1307 * 1308 * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST 1309 * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist. 1310 * 1311 * VIRTCHNL_FDIR_FAILURE_RULE_INVALID 1312 * OP_ADD_FDIR_FILTER request is failed due to parameters validation 1313 * or HW doesn't support. 1314 * 1315 * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT 1316 * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out 1317 * for programming. 1318 * 1319 * VIRTCHNL_FDIR_FAILURE_QUERY_INVALID 1320 * OP_QUERY_FDIR_FILTER request is failed due to parameters validation, 1321 * for example, VF query counter of a rule who has no counter action. 1322 */ 1323enum virtchnl_fdir_prgm_status { 1324 VIRTCHNL_FDIR_SUCCESS = 0, 1325 VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE, 1326 VIRTCHNL_FDIR_FAILURE_RULE_EXIST, 1327 VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT, 1328 VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST, 1329 VIRTCHNL_FDIR_FAILURE_RULE_INVALID, 1330 VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT, 1331 VIRTCHNL_FDIR_FAILURE_QUERY_INVALID, 1332}; 1333 1334/* VIRTCHNL_OP_ADD_FDIR_FILTER 1335 * VF sends this request to PF by filling out vsi_id, 1336 * validate_only and rule_cfg. PF will return flow_id 1337 * if the request is successfully done and return add_status to VF. 1338 */ 1339struct virtchnl_fdir_add { 1340 u16 vsi_id; /* INPUT */ 1341 /* 1342 * 1 for validating a fdir rule, 0 for creating a fdir rule. 1343 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER. 1344 */ 1345 u16 validate_only; /* INPUT */ 1346 u32 flow_id; /* OUTPUT */ 1347 struct virtchnl_fdir_rule rule_cfg; /* INPUT */ 1348 1349 /* see enum virtchnl_fdir_prgm_status; OUTPUT */ 1350 s32 status; 1351}; 1352 1353VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add); 1354 1355/* VIRTCHNL_OP_DEL_FDIR_FILTER 1356 * VF sends this request to PF by filling out vsi_id 1357 * and flow_id. PF will return del_status to VF. 1358 */ 1359struct virtchnl_fdir_del { 1360 u16 vsi_id; /* INPUT */ 1361 u16 pad; 1362 u32 flow_id; /* INPUT */ 1363 1364 /* see enum virtchnl_fdir_prgm_status; OUTPUT */ 1365 s32 status; 1366}; 1367 1368VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del); 1369 1370/** 1371 * virtchnl_vc_validate_vf_msg 1372 * @ver: Virtchnl version info 1373 * @v_opcode: Opcode for the message 1374 * @msg: pointer to the msg buffer 1375 * @msglen: msg length 1376 * 1377 * validate msg format against struct for each opcode 1378 */ 1379static inline int 1380virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode, 1381 u8 *msg, u16 msglen) 1382{ 1383 bool err_msg_format = false; 1384 u32 valid_len = 0; 1385 1386 /* Validate message length. */ 1387 switch (v_opcode) { 1388 case VIRTCHNL_OP_VERSION: 1389 valid_len = sizeof(struct virtchnl_version_info); 1390 break; 1391 case VIRTCHNL_OP_RESET_VF: 1392 break; 1393 case VIRTCHNL_OP_GET_VF_RESOURCES: 1394 if (VF_IS_V11(ver)) 1395 valid_len = sizeof(u32); 1396 break; 1397 case VIRTCHNL_OP_CONFIG_TX_QUEUE: 1398 valid_len = sizeof(struct virtchnl_txq_info); 1399 break; 1400 case VIRTCHNL_OP_CONFIG_RX_QUEUE: 1401 valid_len = sizeof(struct virtchnl_rxq_info); 1402 break; 1403 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 1404 valid_len = sizeof(struct virtchnl_vsi_queue_config_info); 1405 if (msglen >= valid_len) { 1406 struct virtchnl_vsi_queue_config_info *vqc = 1407 (struct virtchnl_vsi_queue_config_info *)msg; 1408 valid_len += (vqc->num_queue_pairs * 1409 sizeof(struct 1410 virtchnl_queue_pair_info)); 1411 if (vqc->num_queue_pairs == 0) 1412 err_msg_format = true; 1413 } 1414 break; 1415 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 1416 valid_len = sizeof(struct virtchnl_irq_map_info); 1417 if (msglen >= valid_len) { 1418 struct virtchnl_irq_map_info *vimi = 1419 (struct virtchnl_irq_map_info *)msg; 1420 valid_len += (vimi->num_vectors * 1421 sizeof(struct virtchnl_vector_map)); 1422 if (vimi->num_vectors == 0) 1423 err_msg_format = true; 1424 } 1425 break; 1426 case VIRTCHNL_OP_ENABLE_QUEUES: 1427 case VIRTCHNL_OP_DISABLE_QUEUES: 1428 valid_len = sizeof(struct virtchnl_queue_select); 1429 break; 1430 case VIRTCHNL_OP_ADD_ETH_ADDR: 1431 case VIRTCHNL_OP_DEL_ETH_ADDR: 1432 valid_len = sizeof(struct virtchnl_ether_addr_list); 1433 if (msglen >= valid_len) { 1434 struct virtchnl_ether_addr_list *veal = 1435 (struct virtchnl_ether_addr_list *)msg; 1436 valid_len += veal->num_elements * 1437 sizeof(struct virtchnl_ether_addr); 1438 if (veal->num_elements == 0) 1439 err_msg_format = true; 1440 } 1441 break; 1442 case VIRTCHNL_OP_ADD_VLAN: 1443 case VIRTCHNL_OP_DEL_VLAN: 1444 valid_len = sizeof(struct virtchnl_vlan_filter_list); 1445 if (msglen >= valid_len) { 1446 struct virtchnl_vlan_filter_list *vfl = 1447 (struct virtchnl_vlan_filter_list *)msg; 1448 valid_len += vfl->num_elements * sizeof(u16); 1449 if (vfl->num_elements == 0) 1450 err_msg_format = true; 1451 } 1452 break; 1453 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 1454 valid_len = sizeof(struct virtchnl_promisc_info); 1455 break; 1456 case VIRTCHNL_OP_GET_STATS: 1457 valid_len = sizeof(struct virtchnl_queue_select); 1458 break; 1459 case VIRTCHNL_OP_RDMA: 1460 /* These messages are opaque to us and will be validated in 1461 * the RDMA client code. We just need to check for nonzero 1462 * length. The firmware will enforce max length restrictions. 1463 */ 1464 if (msglen) 1465 valid_len = msglen; 1466 else 1467 err_msg_format = true; 1468 break; 1469 case VIRTCHNL_OP_RELEASE_RDMA_IRQ_MAP: 1470 break; 1471 case VIRTCHNL_OP_CONFIG_RDMA_IRQ_MAP: 1472 valid_len = sizeof(struct virtchnl_rdma_qvlist_info); 1473 if (msglen >= valid_len) { 1474 struct virtchnl_rdma_qvlist_info *qv = 1475 (struct virtchnl_rdma_qvlist_info *)msg; 1476 1477 valid_len += ((qv->num_vectors - 1) * 1478 sizeof(struct virtchnl_rdma_qv_info)); 1479 } 1480 break; 1481 case VIRTCHNL_OP_CONFIG_RSS_KEY: 1482 valid_len = sizeof(struct virtchnl_rss_key); 1483 if (msglen >= valid_len) { 1484 struct virtchnl_rss_key *vrk = 1485 (struct virtchnl_rss_key *)msg; 1486 valid_len += vrk->key_len - 1; 1487 } 1488 break; 1489 case VIRTCHNL_OP_CONFIG_RSS_LUT: 1490 valid_len = sizeof(struct virtchnl_rss_lut); 1491 if (msglen >= valid_len) { 1492 struct virtchnl_rss_lut *vrl = 1493 (struct virtchnl_rss_lut *)msg; 1494 valid_len += vrl->lut_entries - 1; 1495 } 1496 break; 1497 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 1498 break; 1499 case VIRTCHNL_OP_SET_RSS_HENA: 1500 valid_len = sizeof(struct virtchnl_rss_hena); 1501 break; 1502 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 1503 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 1504 break; 1505 case VIRTCHNL_OP_REQUEST_QUEUES: 1506 valid_len = sizeof(struct virtchnl_vf_res_request); 1507 break; 1508 case VIRTCHNL_OP_ENABLE_CHANNELS: 1509 valid_len = sizeof(struct virtchnl_tc_info); 1510 if (msglen >= valid_len) { 1511 struct virtchnl_tc_info *vti = 1512 (struct virtchnl_tc_info *)msg; 1513 valid_len += (vti->num_tc - 1) * 1514 sizeof(struct virtchnl_channel_info); 1515 if (vti->num_tc == 0) 1516 err_msg_format = true; 1517 } 1518 break; 1519 case VIRTCHNL_OP_DISABLE_CHANNELS: 1520 break; 1521 case VIRTCHNL_OP_ADD_CLOUD_FILTER: 1522 case VIRTCHNL_OP_DEL_CLOUD_FILTER: 1523 valid_len = sizeof(struct virtchnl_filter); 1524 break; 1525 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 1526 break; 1527 case VIRTCHNL_OP_ADD_RSS_CFG: 1528 case VIRTCHNL_OP_DEL_RSS_CFG: 1529 valid_len = sizeof(struct virtchnl_rss_cfg); 1530 break; 1531 case VIRTCHNL_OP_ADD_FDIR_FILTER: 1532 valid_len = sizeof(struct virtchnl_fdir_add); 1533 break; 1534 case VIRTCHNL_OP_DEL_FDIR_FILTER: 1535 valid_len = sizeof(struct virtchnl_fdir_del); 1536 break; 1537 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 1538 break; 1539 case VIRTCHNL_OP_ADD_VLAN_V2: 1540 case VIRTCHNL_OP_DEL_VLAN_V2: 1541 valid_len = sizeof(struct virtchnl_vlan_filter_list_v2); 1542 if (msglen >= valid_len) { 1543 struct virtchnl_vlan_filter_list_v2 *vfl = 1544 (struct virtchnl_vlan_filter_list_v2 *)msg; 1545 1546 valid_len += (vfl->num_elements - 1) * 1547 sizeof(struct virtchnl_vlan_filter); 1548 1549 if (vfl->num_elements == 0) { 1550 err_msg_format = true; 1551 break; 1552 } 1553 } 1554 break; 1555 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 1556 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 1557 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 1558 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 1559 valid_len = sizeof(struct virtchnl_vlan_setting); 1560 break; 1561 /* These are always errors coming from the VF. */ 1562 case VIRTCHNL_OP_EVENT: 1563 case VIRTCHNL_OP_UNKNOWN: 1564 default: 1565 return VIRTCHNL_STATUS_ERR_PARAM; 1566 } 1567 /* few more checks */ 1568 if (err_msg_format || valid_len != msglen) 1569 return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH; 1570 1571 return 0; 1572} 1573#endif /* _VIRTCHNL_H_ */