at v6.3 1320 lines 35 kB view raw
1// SPDX-License-Identifier: LGPL-2.1 2/* 3 * 4 * Copyright (C) International Business Machines Corp., 2002,2008 5 * Author(s): Steve French (sfrench@us.ibm.com) 6 * 7 */ 8 9#include <linux/slab.h> 10#include <linux/ctype.h> 11#include <linux/mempool.h> 12#include <linux/vmalloc.h> 13#include "cifspdu.h" 14#include "cifsglob.h" 15#include "cifsproto.h" 16#include "cifs_debug.h" 17#include "smberr.h" 18#include "nterr.h" 19#include "cifs_unicode.h" 20#include "smb2pdu.h" 21#include "cifsfs.h" 22#ifdef CONFIG_CIFS_DFS_UPCALL 23#include "dns_resolve.h" 24#include "dfs_cache.h" 25#include "dfs.h" 26#endif 27#include "fs_context.h" 28#include "cached_dir.h" 29 30extern mempool_t *cifs_sm_req_poolp; 31extern mempool_t *cifs_req_poolp; 32 33/* The xid serves as a useful identifier for each incoming vfs request, 34 in a similar way to the mid which is useful to track each sent smb, 35 and CurrentXid can also provide a running counter (although it 36 will eventually wrap past zero) of the total vfs operations handled 37 since the cifs fs was mounted */ 38 39unsigned int 40_get_xid(void) 41{ 42 unsigned int xid; 43 44 spin_lock(&GlobalMid_Lock); 45 GlobalTotalActiveXid++; 46 47 /* keep high water mark for number of simultaneous ops in filesystem */ 48 if (GlobalTotalActiveXid > GlobalMaxActiveXid) 49 GlobalMaxActiveXid = GlobalTotalActiveXid; 50 if (GlobalTotalActiveXid > 65000) 51 cifs_dbg(FYI, "warning: more than 65000 requests active\n"); 52 xid = GlobalCurrentXid++; 53 spin_unlock(&GlobalMid_Lock); 54 return xid; 55} 56 57void 58_free_xid(unsigned int xid) 59{ 60 spin_lock(&GlobalMid_Lock); 61 /* if (GlobalTotalActiveXid == 0) 62 BUG(); */ 63 GlobalTotalActiveXid--; 64 spin_unlock(&GlobalMid_Lock); 65} 66 67struct cifs_ses * 68sesInfoAlloc(void) 69{ 70 struct cifs_ses *ret_buf; 71 72 ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL); 73 if (ret_buf) { 74 atomic_inc(&sesInfoAllocCount); 75 spin_lock_init(&ret_buf->ses_lock); 76 ret_buf->ses_status = SES_NEW; 77 ++ret_buf->ses_count; 78 INIT_LIST_HEAD(&ret_buf->smb_ses_list); 79 INIT_LIST_HEAD(&ret_buf->tcon_list); 80 mutex_init(&ret_buf->session_mutex); 81 spin_lock_init(&ret_buf->iface_lock); 82 INIT_LIST_HEAD(&ret_buf->iface_list); 83 spin_lock_init(&ret_buf->chan_lock); 84 } 85 return ret_buf; 86} 87 88void 89sesInfoFree(struct cifs_ses *buf_to_free) 90{ 91 struct cifs_server_iface *iface = NULL, *niface = NULL; 92 93 if (buf_to_free == NULL) { 94 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n"); 95 return; 96 } 97 98 atomic_dec(&sesInfoAllocCount); 99 kfree(buf_to_free->serverOS); 100 kfree(buf_to_free->serverDomain); 101 kfree(buf_to_free->serverNOS); 102 kfree_sensitive(buf_to_free->password); 103 kfree(buf_to_free->user_name); 104 kfree(buf_to_free->domainName); 105 kfree_sensitive(buf_to_free->auth_key.response); 106 spin_lock(&buf_to_free->iface_lock); 107 list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list, 108 iface_head) 109 kref_put(&iface->refcount, release_iface); 110 spin_unlock(&buf_to_free->iface_lock); 111 kfree_sensitive(buf_to_free); 112} 113 114struct cifs_tcon * 115tconInfoAlloc(void) 116{ 117 struct cifs_tcon *ret_buf; 118 119 ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL); 120 if (!ret_buf) 121 return NULL; 122 ret_buf->cfids = init_cached_dirs(); 123 if (!ret_buf->cfids) { 124 kfree(ret_buf); 125 return NULL; 126 } 127 128 atomic_inc(&tconInfoAllocCount); 129 ret_buf->status = TID_NEW; 130 ++ret_buf->tc_count; 131 spin_lock_init(&ret_buf->tc_lock); 132 INIT_LIST_HEAD(&ret_buf->openFileList); 133 INIT_LIST_HEAD(&ret_buf->tcon_list); 134 spin_lock_init(&ret_buf->open_file_lock); 135 spin_lock_init(&ret_buf->stat_lock); 136 atomic_set(&ret_buf->num_local_opens, 0); 137 atomic_set(&ret_buf->num_remote_opens, 0); 138#ifdef CONFIG_CIFS_DFS_UPCALL 139 INIT_LIST_HEAD(&ret_buf->dfs_ses_list); 140#endif 141 142 return ret_buf; 143} 144 145void 146tconInfoFree(struct cifs_tcon *tcon) 147{ 148 if (tcon == NULL) { 149 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n"); 150 return; 151 } 152 free_cached_dirs(tcon->cfids); 153 atomic_dec(&tconInfoAllocCount); 154 kfree(tcon->nativeFileSystem); 155 kfree_sensitive(tcon->password); 156#ifdef CONFIG_CIFS_DFS_UPCALL 157 dfs_put_root_smb_sessions(&tcon->dfs_ses_list); 158#endif 159 kfree(tcon); 160} 161 162struct smb_hdr * 163cifs_buf_get(void) 164{ 165 struct smb_hdr *ret_buf = NULL; 166 /* 167 * SMB2 header is bigger than CIFS one - no problems to clean some 168 * more bytes for CIFS. 169 */ 170 size_t buf_size = sizeof(struct smb2_hdr); 171 172 /* 173 * We could use negotiated size instead of max_msgsize - 174 * but it may be more efficient to always alloc same size 175 * albeit slightly larger than necessary and maxbuffersize 176 * defaults to this and can not be bigger. 177 */ 178 ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS); 179 180 /* clear the first few header bytes */ 181 /* for most paths, more is cleared in header_assemble */ 182 memset(ret_buf, 0, buf_size + 3); 183 atomic_inc(&buf_alloc_count); 184#ifdef CONFIG_CIFS_STATS2 185 atomic_inc(&total_buf_alloc_count); 186#endif /* CONFIG_CIFS_STATS2 */ 187 188 return ret_buf; 189} 190 191void 192cifs_buf_release(void *buf_to_free) 193{ 194 if (buf_to_free == NULL) { 195 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/ 196 return; 197 } 198 mempool_free(buf_to_free, cifs_req_poolp); 199 200 atomic_dec(&buf_alloc_count); 201 return; 202} 203 204struct smb_hdr * 205cifs_small_buf_get(void) 206{ 207 struct smb_hdr *ret_buf = NULL; 208 209/* We could use negotiated size instead of max_msgsize - 210 but it may be more efficient to always alloc same size 211 albeit slightly larger than necessary and maxbuffersize 212 defaults to this and can not be bigger */ 213 ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS); 214 /* No need to clear memory here, cleared in header assemble */ 215 /* memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/ 216 atomic_inc(&small_buf_alloc_count); 217#ifdef CONFIG_CIFS_STATS2 218 atomic_inc(&total_small_buf_alloc_count); 219#endif /* CONFIG_CIFS_STATS2 */ 220 221 return ret_buf; 222} 223 224void 225cifs_small_buf_release(void *buf_to_free) 226{ 227 228 if (buf_to_free == NULL) { 229 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n"); 230 return; 231 } 232 mempool_free(buf_to_free, cifs_sm_req_poolp); 233 234 atomic_dec(&small_buf_alloc_count); 235 return; 236} 237 238void 239free_rsp_buf(int resp_buftype, void *rsp) 240{ 241 if (resp_buftype == CIFS_SMALL_BUFFER) 242 cifs_small_buf_release(rsp); 243 else if (resp_buftype == CIFS_LARGE_BUFFER) 244 cifs_buf_release(rsp); 245} 246 247/* NB: MID can not be set if treeCon not passed in, in that 248 case it is responsbility of caller to set the mid */ 249void 250header_assemble(struct smb_hdr *buffer, char smb_command /* command */ , 251 const struct cifs_tcon *treeCon, int word_count 252 /* length of fixed section (word count) in two byte units */) 253{ 254 char *temp = (char *) buffer; 255 256 memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */ 257 258 buffer->smb_buf_length = cpu_to_be32( 259 (2 * word_count) + sizeof(struct smb_hdr) - 260 4 /* RFC 1001 length field does not count */ + 261 2 /* for bcc field itself */) ; 262 263 buffer->Protocol[0] = 0xFF; 264 buffer->Protocol[1] = 'S'; 265 buffer->Protocol[2] = 'M'; 266 buffer->Protocol[3] = 'B'; 267 buffer->Command = smb_command; 268 buffer->Flags = 0x00; /* case sensitive */ 269 buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES; 270 buffer->Pid = cpu_to_le16((__u16)current->tgid); 271 buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16)); 272 if (treeCon) { 273 buffer->Tid = treeCon->tid; 274 if (treeCon->ses) { 275 if (treeCon->ses->capabilities & CAP_UNICODE) 276 buffer->Flags2 |= SMBFLG2_UNICODE; 277 if (treeCon->ses->capabilities & CAP_STATUS32) 278 buffer->Flags2 |= SMBFLG2_ERR_STATUS; 279 280 /* Uid is not converted */ 281 buffer->Uid = treeCon->ses->Suid; 282 if (treeCon->ses->server) 283 buffer->Mid = get_next_mid(treeCon->ses->server); 284 } 285 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS) 286 buffer->Flags2 |= SMBFLG2_DFS; 287 if (treeCon->nocase) 288 buffer->Flags |= SMBFLG_CASELESS; 289 if ((treeCon->ses) && (treeCon->ses->server)) 290 if (treeCon->ses->server->sign) 291 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE; 292 } 293 294/* endian conversion of flags is now done just before sending */ 295 buffer->WordCount = (char) word_count; 296 return; 297} 298 299static int 300check_smb_hdr(struct smb_hdr *smb) 301{ 302 /* does it have the right SMB "signature" ? */ 303 if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) { 304 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n", 305 *(unsigned int *)smb->Protocol); 306 return 1; 307 } 308 309 /* if it's a response then accept */ 310 if (smb->Flags & SMBFLG_RESPONSE) 311 return 0; 312 313 /* only one valid case where server sends us request */ 314 if (smb->Command == SMB_COM_LOCKING_ANDX) 315 return 0; 316 317 cifs_dbg(VFS, "Server sent request, not response. mid=%u\n", 318 get_mid(smb)); 319 return 1; 320} 321 322int 323checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server) 324{ 325 struct smb_hdr *smb = (struct smb_hdr *)buf; 326 __u32 rfclen = be32_to_cpu(smb->smb_buf_length); 327 __u32 clc_len; /* calculated length */ 328 cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n", 329 total_read, rfclen); 330 331 /* is this frame too small to even get to a BCC? */ 332 if (total_read < 2 + sizeof(struct smb_hdr)) { 333 if ((total_read >= sizeof(struct smb_hdr) - 1) 334 && (smb->Status.CifsError != 0)) { 335 /* it's an error return */ 336 smb->WordCount = 0; 337 /* some error cases do not return wct and bcc */ 338 return 0; 339 } else if ((total_read == sizeof(struct smb_hdr) + 1) && 340 (smb->WordCount == 0)) { 341 char *tmp = (char *)smb; 342 /* Need to work around a bug in two servers here */ 343 /* First, check if the part of bcc they sent was zero */ 344 if (tmp[sizeof(struct smb_hdr)] == 0) { 345 /* some servers return only half of bcc 346 * on simple responses (wct, bcc both zero) 347 * in particular have seen this on 348 * ulogoffX and FindClose. This leaves 349 * one byte of bcc potentially unitialized 350 */ 351 /* zero rest of bcc */ 352 tmp[sizeof(struct smb_hdr)+1] = 0; 353 return 0; 354 } 355 cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n"); 356 } else { 357 cifs_dbg(VFS, "Length less than smb header size\n"); 358 } 359 return -EIO; 360 } 361 362 /* otherwise, there is enough to get to the BCC */ 363 if (check_smb_hdr(smb)) 364 return -EIO; 365 clc_len = smbCalcSize(smb); 366 367 if (4 + rfclen != total_read) { 368 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n", 369 rfclen); 370 return -EIO; 371 } 372 373 if (4 + rfclen != clc_len) { 374 __u16 mid = get_mid(smb); 375 /* check if bcc wrapped around for large read responses */ 376 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) { 377 /* check if lengths match mod 64K */ 378 if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF)) 379 return 0; /* bcc wrapped */ 380 } 381 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n", 382 clc_len, 4 + rfclen, mid); 383 384 if (4 + rfclen < clc_len) { 385 cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n", 386 rfclen, mid); 387 return -EIO; 388 } else if (rfclen > clc_len + 512) { 389 /* 390 * Some servers (Windows XP in particular) send more 391 * data than the lengths in the SMB packet would 392 * indicate on certain calls (byte range locks and 393 * trans2 find first calls in particular). While the 394 * client can handle such a frame by ignoring the 395 * trailing data, we choose limit the amount of extra 396 * data to 512 bytes. 397 */ 398 cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n", 399 rfclen, mid); 400 return -EIO; 401 } 402 } 403 return 0; 404} 405 406bool 407is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv) 408{ 409 struct smb_hdr *buf = (struct smb_hdr *)buffer; 410 struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf; 411 struct TCP_Server_Info *pserver; 412 struct cifs_ses *ses; 413 struct cifs_tcon *tcon; 414 struct cifsInodeInfo *pCifsInode; 415 struct cifsFileInfo *netfile; 416 417 cifs_dbg(FYI, "Checking for oplock break or dnotify response\n"); 418 if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) && 419 (pSMB->hdr.Flags & SMBFLG_RESPONSE)) { 420 struct smb_com_transaction_change_notify_rsp *pSMBr = 421 (struct smb_com_transaction_change_notify_rsp *)buf; 422 struct file_notify_information *pnotify; 423 __u32 data_offset = 0; 424 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length); 425 426 if (get_bcc(buf) > sizeof(struct file_notify_information)) { 427 data_offset = le32_to_cpu(pSMBr->DataOffset); 428 429 if (data_offset > 430 len - sizeof(struct file_notify_information)) { 431 cifs_dbg(FYI, "Invalid data_offset %u\n", 432 data_offset); 433 return true; 434 } 435 pnotify = (struct file_notify_information *) 436 ((char *)&pSMBr->hdr.Protocol + data_offset); 437 cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n", 438 pnotify->FileName, pnotify->Action); 439 /* cifs_dump_mem("Rcvd notify Data: ",buf, 440 sizeof(struct smb_hdr)+60); */ 441 return true; 442 } 443 if (pSMBr->hdr.Status.CifsError) { 444 cifs_dbg(FYI, "notify err 0x%x\n", 445 pSMBr->hdr.Status.CifsError); 446 return true; 447 } 448 return false; 449 } 450 if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX) 451 return false; 452 if (pSMB->hdr.Flags & SMBFLG_RESPONSE) { 453 /* no sense logging error on invalid handle on oplock 454 break - harmless race between close request and oplock 455 break response is expected from time to time writing out 456 large dirty files cached on the client */ 457 if ((NT_STATUS_INVALID_HANDLE) == 458 le32_to_cpu(pSMB->hdr.Status.CifsError)) { 459 cifs_dbg(FYI, "Invalid handle on oplock break\n"); 460 return true; 461 } else if (ERRbadfid == 462 le16_to_cpu(pSMB->hdr.Status.DosError.Error)) { 463 return true; 464 } else { 465 return false; /* on valid oplock brk we get "request" */ 466 } 467 } 468 if (pSMB->hdr.WordCount != 8) 469 return false; 470 471 cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n", 472 pSMB->LockType, pSMB->OplockLevel); 473 if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE)) 474 return false; 475 476 /* If server is a channel, select the primary channel */ 477 pserver = CIFS_SERVER_IS_CHAN(srv) ? srv->primary_server : srv; 478 479 /* look up tcon based on tid & uid */ 480 spin_lock(&cifs_tcp_ses_lock); 481 list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) { 482 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) { 483 if (tcon->tid != buf->Tid) 484 continue; 485 486 cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks); 487 spin_lock(&tcon->open_file_lock); 488 list_for_each_entry(netfile, &tcon->openFileList, tlist) { 489 if (pSMB->Fid != netfile->fid.netfid) 490 continue; 491 492 cifs_dbg(FYI, "file id match, oplock break\n"); 493 pCifsInode = CIFS_I(d_inode(netfile->dentry)); 494 495 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, 496 &pCifsInode->flags); 497 498 netfile->oplock_epoch = 0; 499 netfile->oplock_level = pSMB->OplockLevel; 500 netfile->oplock_break_cancelled = false; 501 cifs_queue_oplock_break(netfile); 502 503 spin_unlock(&tcon->open_file_lock); 504 spin_unlock(&cifs_tcp_ses_lock); 505 return true; 506 } 507 spin_unlock(&tcon->open_file_lock); 508 spin_unlock(&cifs_tcp_ses_lock); 509 cifs_dbg(FYI, "No matching file for oplock break\n"); 510 return true; 511 } 512 } 513 spin_unlock(&cifs_tcp_ses_lock); 514 cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n"); 515 return true; 516} 517 518void 519dump_smb(void *buf, int smb_buf_length) 520{ 521 if (traceSMB == 0) 522 return; 523 524 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf, 525 smb_buf_length, true); 526} 527 528void 529cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb) 530{ 531 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) { 532 struct cifs_tcon *tcon = NULL; 533 534 if (cifs_sb->master_tlink) 535 tcon = cifs_sb_master_tcon(cifs_sb); 536 537 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM; 538 cifs_sb->mnt_cifs_serverino_autodisabled = true; 539 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n", 540 tcon ? tcon->tree_name : "new server"); 541 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n"); 542 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n"); 543 544 } 545} 546 547void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock) 548{ 549 oplock &= 0xF; 550 551 if (oplock == OPLOCK_EXCLUSIVE) { 552 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG; 553 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n", 554 &cinode->netfs.inode); 555 } else if (oplock == OPLOCK_READ) { 556 cinode->oplock = CIFS_CACHE_READ_FLG; 557 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n", 558 &cinode->netfs.inode); 559 } else 560 cinode->oplock = 0; 561} 562 563/* 564 * We wait for oplock breaks to be processed before we attempt to perform 565 * writes. 566 */ 567int cifs_get_writer(struct cifsInodeInfo *cinode) 568{ 569 int rc; 570 571start: 572 rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK, 573 TASK_KILLABLE); 574 if (rc) 575 return rc; 576 577 spin_lock(&cinode->writers_lock); 578 if (!cinode->writers) 579 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 580 cinode->writers++; 581 /* Check to see if we have started servicing an oplock break */ 582 if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) { 583 cinode->writers--; 584 if (cinode->writers == 0) { 585 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 586 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS); 587 } 588 spin_unlock(&cinode->writers_lock); 589 goto start; 590 } 591 spin_unlock(&cinode->writers_lock); 592 return 0; 593} 594 595void cifs_put_writer(struct cifsInodeInfo *cinode) 596{ 597 spin_lock(&cinode->writers_lock); 598 cinode->writers--; 599 if (cinode->writers == 0) { 600 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 601 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS); 602 } 603 spin_unlock(&cinode->writers_lock); 604} 605 606/** 607 * cifs_queue_oplock_break - queue the oplock break handler for cfile 608 * @cfile: The file to break the oplock on 609 * 610 * This function is called from the demultiplex thread when it 611 * receives an oplock break for @cfile. 612 * 613 * Assumes the tcon->open_file_lock is held. 614 * Assumes cfile->file_info_lock is NOT held. 615 */ 616void cifs_queue_oplock_break(struct cifsFileInfo *cfile) 617{ 618 /* 619 * Bump the handle refcount now while we hold the 620 * open_file_lock to enforce the validity of it for the oplock 621 * break handler. The matching put is done at the end of the 622 * handler. 623 */ 624 cifsFileInfo_get(cfile); 625 626 queue_work(cifsoplockd_wq, &cfile->oplock_break); 627} 628 629void cifs_done_oplock_break(struct cifsInodeInfo *cinode) 630{ 631 clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags); 632 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK); 633} 634 635bool 636backup_cred(struct cifs_sb_info *cifs_sb) 637{ 638 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) { 639 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid())) 640 return true; 641 } 642 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) { 643 if (in_group_p(cifs_sb->ctx->backupgid)) 644 return true; 645 } 646 647 return false; 648} 649 650void 651cifs_del_pending_open(struct cifs_pending_open *open) 652{ 653 spin_lock(&tlink_tcon(open->tlink)->open_file_lock); 654 list_del(&open->olist); 655 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock); 656} 657 658void 659cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink, 660 struct cifs_pending_open *open) 661{ 662 memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE); 663 open->oplock = CIFS_OPLOCK_NO_CHANGE; 664 open->tlink = tlink; 665 fid->pending_open = open; 666 list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens); 667} 668 669void 670cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink, 671 struct cifs_pending_open *open) 672{ 673 spin_lock(&tlink_tcon(tlink)->open_file_lock); 674 cifs_add_pending_open_locked(fid, tlink, open); 675 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock); 676} 677 678/* 679 * Critical section which runs after acquiring deferred_lock. 680 * As there is no reference count on cifs_deferred_close, pdclose 681 * should not be used outside deferred_lock. 682 */ 683bool 684cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose) 685{ 686 struct cifs_deferred_close *dclose; 687 688 list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) { 689 if ((dclose->netfid == cfile->fid.netfid) && 690 (dclose->persistent_fid == cfile->fid.persistent_fid) && 691 (dclose->volatile_fid == cfile->fid.volatile_fid)) { 692 *pdclose = dclose; 693 return true; 694 } 695 } 696 return false; 697} 698 699/* 700 * Critical section which runs after acquiring deferred_lock. 701 */ 702void 703cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose) 704{ 705 bool is_deferred = false; 706 struct cifs_deferred_close *pdclose; 707 708 is_deferred = cifs_is_deferred_close(cfile, &pdclose); 709 if (is_deferred) { 710 kfree(dclose); 711 return; 712 } 713 714 dclose->tlink = cfile->tlink; 715 dclose->netfid = cfile->fid.netfid; 716 dclose->persistent_fid = cfile->fid.persistent_fid; 717 dclose->volatile_fid = cfile->fid.volatile_fid; 718 list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes); 719} 720 721/* 722 * Critical section which runs after acquiring deferred_lock. 723 */ 724void 725cifs_del_deferred_close(struct cifsFileInfo *cfile) 726{ 727 bool is_deferred = false; 728 struct cifs_deferred_close *dclose; 729 730 is_deferred = cifs_is_deferred_close(cfile, &dclose); 731 if (!is_deferred) 732 return; 733 list_del(&dclose->dlist); 734 kfree(dclose); 735} 736 737void 738cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode) 739{ 740 struct cifsFileInfo *cfile = NULL; 741 struct file_list *tmp_list, *tmp_next_list; 742 struct list_head file_head; 743 744 if (cifs_inode == NULL) 745 return; 746 747 INIT_LIST_HEAD(&file_head); 748 spin_lock(&cifs_inode->open_file_lock); 749 list_for_each_entry(cfile, &cifs_inode->openFileList, flist) { 750 if (delayed_work_pending(&cfile->deferred)) { 751 if (cancel_delayed_work(&cfile->deferred)) { 752 cifs_del_deferred_close(cfile); 753 754 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 755 if (tmp_list == NULL) 756 break; 757 tmp_list->cfile = cfile; 758 list_add_tail(&tmp_list->list, &file_head); 759 } 760 } 761 } 762 spin_unlock(&cifs_inode->open_file_lock); 763 764 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 765 _cifsFileInfo_put(tmp_list->cfile, true, false); 766 list_del(&tmp_list->list); 767 kfree(tmp_list); 768 } 769} 770 771void 772cifs_close_all_deferred_files(struct cifs_tcon *tcon) 773{ 774 struct cifsFileInfo *cfile; 775 struct file_list *tmp_list, *tmp_next_list; 776 struct list_head file_head; 777 778 INIT_LIST_HEAD(&file_head); 779 spin_lock(&tcon->open_file_lock); 780 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 781 if (delayed_work_pending(&cfile->deferred)) { 782 if (cancel_delayed_work(&cfile->deferred)) { 783 cifs_del_deferred_close(cfile); 784 785 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 786 if (tmp_list == NULL) 787 break; 788 tmp_list->cfile = cfile; 789 list_add_tail(&tmp_list->list, &file_head); 790 } 791 } 792 } 793 spin_unlock(&tcon->open_file_lock); 794 795 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 796 _cifsFileInfo_put(tmp_list->cfile, true, false); 797 list_del(&tmp_list->list); 798 kfree(tmp_list); 799 } 800} 801void 802cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path) 803{ 804 struct cifsFileInfo *cfile; 805 struct file_list *tmp_list, *tmp_next_list; 806 struct list_head file_head; 807 void *page; 808 const char *full_path; 809 810 INIT_LIST_HEAD(&file_head); 811 page = alloc_dentry_path(); 812 spin_lock(&tcon->open_file_lock); 813 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 814 full_path = build_path_from_dentry(cfile->dentry, page); 815 if (strstr(full_path, path)) { 816 if (delayed_work_pending(&cfile->deferred)) { 817 if (cancel_delayed_work(&cfile->deferred)) { 818 cifs_del_deferred_close(cfile); 819 820 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 821 if (tmp_list == NULL) 822 break; 823 tmp_list->cfile = cfile; 824 list_add_tail(&tmp_list->list, &file_head); 825 } 826 } 827 } 828 } 829 spin_unlock(&tcon->open_file_lock); 830 831 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 832 _cifsFileInfo_put(tmp_list->cfile, true, false); 833 list_del(&tmp_list->list); 834 kfree(tmp_list); 835 } 836 free_dentry_path(page); 837} 838 839/* parses DFS referral V3 structure 840 * caller is responsible for freeing target_nodes 841 * returns: 842 * - on success - 0 843 * - on failure - errno 844 */ 845int 846parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size, 847 unsigned int *num_of_nodes, 848 struct dfs_info3_param **target_nodes, 849 const struct nls_table *nls_codepage, int remap, 850 const char *searchName, bool is_unicode) 851{ 852 int i, rc = 0; 853 char *data_end; 854 struct dfs_referral_level_3 *ref; 855 856 *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals); 857 858 if (*num_of_nodes < 1) { 859 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n", 860 *num_of_nodes); 861 rc = -EINVAL; 862 goto parse_DFS_referrals_exit; 863 } 864 865 ref = (struct dfs_referral_level_3 *) &(rsp->referrals); 866 if (ref->VersionNumber != cpu_to_le16(3)) { 867 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n", 868 le16_to_cpu(ref->VersionNumber)); 869 rc = -EINVAL; 870 goto parse_DFS_referrals_exit; 871 } 872 873 /* get the upper boundary of the resp buffer */ 874 data_end = (char *)rsp + rsp_size; 875 876 cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n", 877 *num_of_nodes, le32_to_cpu(rsp->DFSFlags)); 878 879 *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param), 880 GFP_KERNEL); 881 if (*target_nodes == NULL) { 882 rc = -ENOMEM; 883 goto parse_DFS_referrals_exit; 884 } 885 886 /* collect necessary data from referrals */ 887 for (i = 0; i < *num_of_nodes; i++) { 888 char *temp; 889 int max_len; 890 struct dfs_info3_param *node = (*target_nodes)+i; 891 892 node->flags = le32_to_cpu(rsp->DFSFlags); 893 if (is_unicode) { 894 __le16 *tmp = kmalloc(strlen(searchName)*2 + 2, 895 GFP_KERNEL); 896 if (tmp == NULL) { 897 rc = -ENOMEM; 898 goto parse_DFS_referrals_exit; 899 } 900 cifsConvertToUTF16((__le16 *) tmp, searchName, 901 PATH_MAX, nls_codepage, remap); 902 node->path_consumed = cifs_utf16_bytes(tmp, 903 le16_to_cpu(rsp->PathConsumed), 904 nls_codepage); 905 kfree(tmp); 906 } else 907 node->path_consumed = le16_to_cpu(rsp->PathConsumed); 908 909 node->server_type = le16_to_cpu(ref->ServerType); 910 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags); 911 912 /* copy DfsPath */ 913 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset); 914 max_len = data_end - temp; 915 node->path_name = cifs_strndup_from_utf16(temp, max_len, 916 is_unicode, nls_codepage); 917 if (!node->path_name) { 918 rc = -ENOMEM; 919 goto parse_DFS_referrals_exit; 920 } 921 922 /* copy link target UNC */ 923 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset); 924 max_len = data_end - temp; 925 node->node_name = cifs_strndup_from_utf16(temp, max_len, 926 is_unicode, nls_codepage); 927 if (!node->node_name) { 928 rc = -ENOMEM; 929 goto parse_DFS_referrals_exit; 930 } 931 932 node->ttl = le32_to_cpu(ref->TimeToLive); 933 934 ref++; 935 } 936 937parse_DFS_referrals_exit: 938 if (rc) { 939 free_dfs_info_array(*target_nodes, *num_of_nodes); 940 *target_nodes = NULL; 941 *num_of_nodes = 0; 942 } 943 return rc; 944} 945 946struct cifs_aio_ctx * 947cifs_aio_ctx_alloc(void) 948{ 949 struct cifs_aio_ctx *ctx; 950 951 /* 952 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io 953 * to false so that we know when we have to unreference pages within 954 * cifs_aio_ctx_release() 955 */ 956 ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL); 957 if (!ctx) 958 return NULL; 959 960 INIT_LIST_HEAD(&ctx->list); 961 mutex_init(&ctx->aio_mutex); 962 init_completion(&ctx->done); 963 kref_init(&ctx->refcount); 964 return ctx; 965} 966 967void 968cifs_aio_ctx_release(struct kref *refcount) 969{ 970 struct cifs_aio_ctx *ctx = container_of(refcount, 971 struct cifs_aio_ctx, refcount); 972 973 cifsFileInfo_put(ctx->cfile); 974 975 /* 976 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly 977 * which means that iov_iter_extract_pages() was a success and thus 978 * that we may have references or pins on pages that we need to 979 * release. 980 */ 981 if (ctx->bv) { 982 if (ctx->should_dirty || ctx->bv_need_unpin) { 983 unsigned int i; 984 985 for (i = 0; i < ctx->nr_pinned_pages; i++) { 986 struct page *page = ctx->bv[i].bv_page; 987 988 if (ctx->should_dirty) 989 set_page_dirty(page); 990 if (ctx->bv_need_unpin) 991 unpin_user_page(page); 992 } 993 } 994 kvfree(ctx->bv); 995 } 996 997 kfree(ctx); 998} 999 1000/** 1001 * cifs_alloc_hash - allocate hash and hash context together 1002 * @name: The name of the crypto hash algo 1003 * @sdesc: SHASH descriptor where to put the pointer to the hash TFM 1004 * 1005 * The caller has to make sure @sdesc is initialized to either NULL or 1006 * a valid context. It can be freed via cifs_free_hash(). 1007 */ 1008int 1009cifs_alloc_hash(const char *name, struct shash_desc **sdesc) 1010{ 1011 int rc = 0; 1012 struct crypto_shash *alg = NULL; 1013 1014 if (*sdesc) 1015 return 0; 1016 1017 alg = crypto_alloc_shash(name, 0, 0); 1018 if (IS_ERR(alg)) { 1019 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name); 1020 rc = PTR_ERR(alg); 1021 *sdesc = NULL; 1022 return rc; 1023 } 1024 1025 *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL); 1026 if (*sdesc == NULL) { 1027 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name); 1028 crypto_free_shash(alg); 1029 return -ENOMEM; 1030 } 1031 1032 (*sdesc)->tfm = alg; 1033 return 0; 1034} 1035 1036/** 1037 * cifs_free_hash - free hash and hash context together 1038 * @sdesc: Where to find the pointer to the hash TFM 1039 * 1040 * Freeing a NULL descriptor is safe. 1041 */ 1042void 1043cifs_free_hash(struct shash_desc **sdesc) 1044{ 1045 if (unlikely(!sdesc) || !*sdesc) 1046 return; 1047 1048 if ((*sdesc)->tfm) { 1049 crypto_free_shash((*sdesc)->tfm); 1050 (*sdesc)->tfm = NULL; 1051 } 1052 1053 kfree_sensitive(*sdesc); 1054 *sdesc = NULL; 1055} 1056 1057void extract_unc_hostname(const char *unc, const char **h, size_t *len) 1058{ 1059 const char *end; 1060 1061 /* skip initial slashes */ 1062 while (*unc && (*unc == '\\' || *unc == '/')) 1063 unc++; 1064 1065 end = unc; 1066 1067 while (*end && !(*end == '\\' || *end == '/')) 1068 end++; 1069 1070 *h = unc; 1071 *len = end - unc; 1072} 1073 1074/** 1075 * copy_path_name - copy src path to dst, possibly truncating 1076 * @dst: The destination buffer 1077 * @src: The source name 1078 * 1079 * returns number of bytes written (including trailing nul) 1080 */ 1081int copy_path_name(char *dst, const char *src) 1082{ 1083 int name_len; 1084 1085 /* 1086 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it 1087 * will truncate and strlen(dst) will be PATH_MAX-1 1088 */ 1089 name_len = strscpy(dst, src, PATH_MAX); 1090 if (WARN_ON_ONCE(name_len < 0)) 1091 name_len = PATH_MAX-1; 1092 1093 /* we count the trailing nul */ 1094 name_len++; 1095 return name_len; 1096} 1097 1098struct super_cb_data { 1099 void *data; 1100 struct super_block *sb; 1101}; 1102 1103static void tcp_super_cb(struct super_block *sb, void *arg) 1104{ 1105 struct super_cb_data *sd = arg; 1106 struct TCP_Server_Info *server = sd->data; 1107 struct cifs_sb_info *cifs_sb; 1108 struct cifs_tcon *tcon; 1109 1110 if (sd->sb) 1111 return; 1112 1113 cifs_sb = CIFS_SB(sb); 1114 tcon = cifs_sb_master_tcon(cifs_sb); 1115 if (tcon->ses->server == server) 1116 sd->sb = sb; 1117} 1118 1119static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *), 1120 void *data) 1121{ 1122 struct super_cb_data sd = { 1123 .data = data, 1124 .sb = NULL, 1125 }; 1126 struct file_system_type **fs_type = (struct file_system_type *[]) { 1127 &cifs_fs_type, &smb3_fs_type, NULL, 1128 }; 1129 1130 for (; *fs_type; fs_type++) { 1131 iterate_supers_type(*fs_type, f, &sd); 1132 if (sd.sb) { 1133 /* 1134 * Grab an active reference in order to prevent automounts (DFS links) 1135 * of expiring and then freeing up our cifs superblock pointer while 1136 * we're doing failover. 1137 */ 1138 cifs_sb_active(sd.sb); 1139 return sd.sb; 1140 } 1141 } 1142 return ERR_PTR(-EINVAL); 1143} 1144 1145static void __cifs_put_super(struct super_block *sb) 1146{ 1147 if (!IS_ERR_OR_NULL(sb)) 1148 cifs_sb_deactive(sb); 1149} 1150 1151struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server) 1152{ 1153 return __cifs_get_super(tcp_super_cb, server); 1154} 1155 1156void cifs_put_tcp_super(struct super_block *sb) 1157{ 1158 __cifs_put_super(sb); 1159} 1160 1161#ifdef CONFIG_CIFS_DFS_UPCALL 1162int match_target_ip(struct TCP_Server_Info *server, 1163 const char *share, size_t share_len, 1164 bool *result) 1165{ 1166 int rc; 1167 char *target; 1168 struct sockaddr_storage ss; 1169 1170 *result = false; 1171 1172 target = kzalloc(share_len + 3, GFP_KERNEL); 1173 if (!target) 1174 return -ENOMEM; 1175 1176 scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share); 1177 1178 cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2); 1179 1180 rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL); 1181 kfree(target); 1182 1183 if (rc < 0) 1184 return rc; 1185 1186 spin_lock(&server->srv_lock); 1187 *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss); 1188 spin_unlock(&server->srv_lock); 1189 cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result); 1190 return 0; 1191} 1192 1193int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix) 1194{ 1195 kfree(cifs_sb->prepath); 1196 1197 if (prefix && *prefix) { 1198 cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC); 1199 if (!cifs_sb->prepath) 1200 return -ENOMEM; 1201 1202 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb)); 1203 } else 1204 cifs_sb->prepath = NULL; 1205 1206 cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH; 1207 return 0; 1208} 1209 1210/* 1211 * Handle weird Windows SMB server behaviour. It responds with 1212 * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for 1213 * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains 1214 * non-ASCII unicode symbols. 1215 */ 1216int cifs_inval_name_dfs_link_error(const unsigned int xid, 1217 struct cifs_tcon *tcon, 1218 struct cifs_sb_info *cifs_sb, 1219 const char *full_path, 1220 bool *islink) 1221{ 1222 struct cifs_ses *ses = tcon->ses; 1223 size_t len; 1224 char *path; 1225 char *ref_path; 1226 1227 *islink = false; 1228 1229 /* 1230 * Fast path - skip check when @full_path doesn't have a prefix path to 1231 * look up or tcon is not DFS. 1232 */ 1233 if (strlen(full_path) < 2 || !cifs_sb || 1234 (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) || 1235 !is_tcon_dfs(tcon) || !ses->server->origin_fullpath) 1236 return 0; 1237 1238 /* 1239 * Slow path - tcon is DFS and @full_path has prefix path, so attempt 1240 * to get a referral to figure out whether it is an DFS link. 1241 */ 1242 len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1; 1243 path = kmalloc(len, GFP_KERNEL); 1244 if (!path) 1245 return -ENOMEM; 1246 1247 scnprintf(path, len, "%s%s", tcon->tree_name, full_path); 1248 ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls, 1249 cifs_remap(cifs_sb)); 1250 kfree(path); 1251 1252 if (IS_ERR(ref_path)) { 1253 if (PTR_ERR(ref_path) != -EINVAL) 1254 return PTR_ERR(ref_path); 1255 } else { 1256 struct dfs_info3_param *refs = NULL; 1257 int num_refs = 0; 1258 1259 /* 1260 * XXX: we are not using dfs_cache_find() here because we might 1261 * end filling all the DFS cache and thus potentially 1262 * removing cached DFS targets that the client would eventually 1263 * need during failover. 1264 */ 1265 ses = CIFS_DFS_ROOT_SES(ses); 1266 if (ses->server->ops->get_dfs_refer && 1267 !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs, 1268 &num_refs, cifs_sb->local_nls, 1269 cifs_remap(cifs_sb))) 1270 *islink = refs[0].server_type == DFS_TYPE_LINK; 1271 free_dfs_info_array(refs, num_refs); 1272 kfree(ref_path); 1273 } 1274 return 0; 1275} 1276#endif 1277 1278int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry) 1279{ 1280 int timeout = 10; 1281 int rc; 1282 1283 spin_lock(&server->srv_lock); 1284 if (server->tcpStatus != CifsNeedReconnect) { 1285 spin_unlock(&server->srv_lock); 1286 return 0; 1287 } 1288 timeout *= server->nr_targets; 1289 spin_unlock(&server->srv_lock); 1290 1291 /* 1292 * Give demultiplex thread up to 10 seconds to each target available for 1293 * reconnect -- should be greater than cifs socket timeout which is 7 1294 * seconds. 1295 * 1296 * On "soft" mounts we wait once. Hard mounts keep retrying until 1297 * process is killed or server comes back on-line. 1298 */ 1299 do { 1300 rc = wait_event_interruptible_timeout(server->response_q, 1301 (server->tcpStatus != CifsNeedReconnect), 1302 timeout * HZ); 1303 if (rc < 0) { 1304 cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n", 1305 __func__); 1306 return -ERESTARTSYS; 1307 } 1308 1309 /* are we still trying to reconnect? */ 1310 spin_lock(&server->srv_lock); 1311 if (server->tcpStatus != CifsNeedReconnect) { 1312 spin_unlock(&server->srv_lock); 1313 return 0; 1314 } 1315 spin_unlock(&server->srv_lock); 1316 } while (retry); 1317 1318 cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__); 1319 return -EHOSTDOWN; 1320}