Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6#include <linux/bsearch.h>
7#include <linux/fs.h>
8#include <linux/file.h>
9#include <linux/sort.h>
10#include <linux/mount.h>
11#include <linux/xattr.h>
12#include <linux/posix_acl_xattr.h>
13#include <linux/radix-tree.h>
14#include <linux/vmalloc.h>
15#include <linux/string.h>
16#include <linux/compat.h>
17#include <linux/crc32c.h>
18#include <linux/fsverity.h>
19
20#include "send.h"
21#include "ctree.h"
22#include "backref.h"
23#include "locking.h"
24#include "disk-io.h"
25#include "btrfs_inode.h"
26#include "transaction.h"
27#include "compression.h"
28#include "xattr.h"
29#include "print-tree.h"
30#include "accessors.h"
31#include "dir-item.h"
32#include "file-item.h"
33#include "ioctl.h"
34#include "verity.h"
35#include "lru_cache.h"
36
37/*
38 * Maximum number of references an extent can have in order for us to attempt to
39 * issue clone operations instead of write operations. This currently exists to
40 * avoid hitting limitations of the backreference walking code (taking a lot of
41 * time and using too much memory for extents with large number of references).
42 */
43#define SEND_MAX_EXTENT_REFS 1024
44
45/*
46 * A fs_path is a helper to dynamically build path names with unknown size.
47 * It reallocates the internal buffer on demand.
48 * It allows fast adding of path elements on the right side (normal path) and
49 * fast adding to the left side (reversed path). A reversed path can also be
50 * unreversed if needed.
51 */
52struct fs_path {
53 union {
54 struct {
55 char *start;
56 char *end;
57
58 char *buf;
59 unsigned short buf_len:15;
60 unsigned short reversed:1;
61 char inline_buf[];
62 };
63 /*
64 * Average path length does not exceed 200 bytes, we'll have
65 * better packing in the slab and higher chance to satisfy
66 * a allocation later during send.
67 */
68 char pad[256];
69 };
70};
71#define FS_PATH_INLINE_SIZE \
72 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
73
74
75/* reused for each extent */
76struct clone_root {
77 struct btrfs_root *root;
78 u64 ino;
79 u64 offset;
80 u64 num_bytes;
81 bool found_ref;
82};
83
84#define SEND_MAX_NAME_CACHE_SIZE 256
85
86/*
87 * Limit the root_ids array of struct backref_cache_entry to 17 elements.
88 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
89 * can be satisfied from the kmalloc-192 slab, without wasting any space.
90 * The most common case is to have a single root for cloning, which corresponds
91 * to the send root. Having the user specify more than 16 clone roots is not
92 * common, and in such rare cases we simply don't use caching if the number of
93 * cloning roots that lead down to a leaf is more than 17.
94 */
95#define SEND_MAX_BACKREF_CACHE_ROOTS 17
96
97/*
98 * Max number of entries in the cache.
99 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
100 * maple tree's internal nodes, is 24K.
101 */
102#define SEND_MAX_BACKREF_CACHE_SIZE 128
103
104/*
105 * A backref cache entry maps a leaf to a list of IDs of roots from which the
106 * leaf is accessible and we can use for clone operations.
107 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
108 * x86_64).
109 */
110struct backref_cache_entry {
111 struct btrfs_lru_cache_entry entry;
112 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
113 /* Number of valid elements in the root_ids array. */
114 int num_roots;
115};
116
117/* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
118static_assert(offsetof(struct backref_cache_entry, entry) == 0);
119
120/*
121 * Max number of entries in the cache that stores directories that were already
122 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
123 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
124 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
125 */
126#define SEND_MAX_DIR_CREATED_CACHE_SIZE 64
127
128/*
129 * Max number of entries in the cache that stores directories that were already
130 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
131 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
132 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
133 */
134#define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64
135
136struct send_ctx {
137 struct file *send_filp;
138 loff_t send_off;
139 char *send_buf;
140 u32 send_size;
141 u32 send_max_size;
142 /*
143 * Whether BTRFS_SEND_A_DATA attribute was already added to current
144 * command (since protocol v2, data must be the last attribute).
145 */
146 bool put_data;
147 struct page **send_buf_pages;
148 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
149 /* Protocol version compatibility requested */
150 u32 proto;
151
152 struct btrfs_root *send_root;
153 struct btrfs_root *parent_root;
154 struct clone_root *clone_roots;
155 int clone_roots_cnt;
156
157 /* current state of the compare_tree call */
158 struct btrfs_path *left_path;
159 struct btrfs_path *right_path;
160 struct btrfs_key *cmp_key;
161
162 /*
163 * Keep track of the generation of the last transaction that was used
164 * for relocating a block group. This is periodically checked in order
165 * to detect if a relocation happened since the last check, so that we
166 * don't operate on stale extent buffers for nodes (level >= 1) or on
167 * stale disk_bytenr values of file extent items.
168 */
169 u64 last_reloc_trans;
170
171 /*
172 * infos of the currently processed inode. In case of deleted inodes,
173 * these are the values from the deleted inode.
174 */
175 u64 cur_ino;
176 u64 cur_inode_gen;
177 u64 cur_inode_size;
178 u64 cur_inode_mode;
179 u64 cur_inode_rdev;
180 u64 cur_inode_last_extent;
181 u64 cur_inode_next_write_offset;
182 bool cur_inode_new;
183 bool cur_inode_new_gen;
184 bool cur_inode_deleted;
185 bool ignore_cur_inode;
186 bool cur_inode_needs_verity;
187 void *verity_descriptor;
188
189 u64 send_progress;
190
191 struct list_head new_refs;
192 struct list_head deleted_refs;
193
194 struct btrfs_lru_cache name_cache;
195
196 /*
197 * The inode we are currently processing. It's not NULL only when we
198 * need to issue write commands for data extents from this inode.
199 */
200 struct inode *cur_inode;
201 struct file_ra_state ra;
202 u64 page_cache_clear_start;
203 bool clean_page_cache;
204
205 /*
206 * We process inodes by their increasing order, so if before an
207 * incremental send we reverse the parent/child relationship of
208 * directories such that a directory with a lower inode number was
209 * the parent of a directory with a higher inode number, and the one
210 * becoming the new parent got renamed too, we can't rename/move the
211 * directory with lower inode number when we finish processing it - we
212 * must process the directory with higher inode number first, then
213 * rename/move it and then rename/move the directory with lower inode
214 * number. Example follows.
215 *
216 * Tree state when the first send was performed:
217 *
218 * .
219 * |-- a (ino 257)
220 * |-- b (ino 258)
221 * |
222 * |
223 * |-- c (ino 259)
224 * | |-- d (ino 260)
225 * |
226 * |-- c2 (ino 261)
227 *
228 * Tree state when the second (incremental) send is performed:
229 *
230 * .
231 * |-- a (ino 257)
232 * |-- b (ino 258)
233 * |-- c2 (ino 261)
234 * |-- d2 (ino 260)
235 * |-- cc (ino 259)
236 *
237 * The sequence of steps that lead to the second state was:
238 *
239 * mv /a/b/c/d /a/b/c2/d2
240 * mv /a/b/c /a/b/c2/d2/cc
241 *
242 * "c" has lower inode number, but we can't move it (2nd mv operation)
243 * before we move "d", which has higher inode number.
244 *
245 * So we just memorize which move/rename operations must be performed
246 * later when their respective parent is processed and moved/renamed.
247 */
248
249 /* Indexed by parent directory inode number. */
250 struct rb_root pending_dir_moves;
251
252 /*
253 * Reverse index, indexed by the inode number of a directory that
254 * is waiting for the move/rename of its immediate parent before its
255 * own move/rename can be performed.
256 */
257 struct rb_root waiting_dir_moves;
258
259 /*
260 * A directory that is going to be rm'ed might have a child directory
261 * which is in the pending directory moves index above. In this case,
262 * the directory can only be removed after the move/rename of its child
263 * is performed. Example:
264 *
265 * Parent snapshot:
266 *
267 * . (ino 256)
268 * |-- a/ (ino 257)
269 * |-- b/ (ino 258)
270 * |-- c/ (ino 259)
271 * | |-- x/ (ino 260)
272 * |
273 * |-- y/ (ino 261)
274 *
275 * Send snapshot:
276 *
277 * . (ino 256)
278 * |-- a/ (ino 257)
279 * |-- b/ (ino 258)
280 * |-- YY/ (ino 261)
281 * |-- x/ (ino 260)
282 *
283 * Sequence of steps that lead to the send snapshot:
284 * rm -f /a/b/c/foo.txt
285 * mv /a/b/y /a/b/YY
286 * mv /a/b/c/x /a/b/YY
287 * rmdir /a/b/c
288 *
289 * When the child is processed, its move/rename is delayed until its
290 * parent is processed (as explained above), but all other operations
291 * like update utimes, chown, chgrp, etc, are performed and the paths
292 * that it uses for those operations must use the orphanized name of
293 * its parent (the directory we're going to rm later), so we need to
294 * memorize that name.
295 *
296 * Indexed by the inode number of the directory to be deleted.
297 */
298 struct rb_root orphan_dirs;
299
300 struct rb_root rbtree_new_refs;
301 struct rb_root rbtree_deleted_refs;
302
303 struct btrfs_lru_cache backref_cache;
304 u64 backref_cache_last_reloc_trans;
305
306 struct btrfs_lru_cache dir_created_cache;
307 struct btrfs_lru_cache dir_utimes_cache;
308};
309
310struct pending_dir_move {
311 struct rb_node node;
312 struct list_head list;
313 u64 parent_ino;
314 u64 ino;
315 u64 gen;
316 struct list_head update_refs;
317};
318
319struct waiting_dir_move {
320 struct rb_node node;
321 u64 ino;
322 /*
323 * There might be some directory that could not be removed because it
324 * was waiting for this directory inode to be moved first. Therefore
325 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
326 */
327 u64 rmdir_ino;
328 u64 rmdir_gen;
329 bool orphanized;
330};
331
332struct orphan_dir_info {
333 struct rb_node node;
334 u64 ino;
335 u64 gen;
336 u64 last_dir_index_offset;
337 u64 dir_high_seq_ino;
338};
339
340struct name_cache_entry {
341 /*
342 * The key in the entry is an inode number, and the generation matches
343 * the inode's generation.
344 */
345 struct btrfs_lru_cache_entry entry;
346 u64 parent_ino;
347 u64 parent_gen;
348 int ret;
349 int need_later_update;
350 int name_len;
351 char name[];
352};
353
354/* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
355static_assert(offsetof(struct name_cache_entry, entry) == 0);
356
357#define ADVANCE 1
358#define ADVANCE_ONLY_NEXT -1
359
360enum btrfs_compare_tree_result {
361 BTRFS_COMPARE_TREE_NEW,
362 BTRFS_COMPARE_TREE_DELETED,
363 BTRFS_COMPARE_TREE_CHANGED,
364 BTRFS_COMPARE_TREE_SAME,
365};
366
367__cold
368static void inconsistent_snapshot_error(struct send_ctx *sctx,
369 enum btrfs_compare_tree_result result,
370 const char *what)
371{
372 const char *result_string;
373
374 switch (result) {
375 case BTRFS_COMPARE_TREE_NEW:
376 result_string = "new";
377 break;
378 case BTRFS_COMPARE_TREE_DELETED:
379 result_string = "deleted";
380 break;
381 case BTRFS_COMPARE_TREE_CHANGED:
382 result_string = "updated";
383 break;
384 case BTRFS_COMPARE_TREE_SAME:
385 ASSERT(0);
386 result_string = "unchanged";
387 break;
388 default:
389 ASSERT(0);
390 result_string = "unexpected";
391 }
392
393 btrfs_err(sctx->send_root->fs_info,
394 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
395 result_string, what, sctx->cmp_key->objectid,
396 sctx->send_root->root_key.objectid,
397 (sctx->parent_root ?
398 sctx->parent_root->root_key.objectid : 0));
399}
400
401__maybe_unused
402static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
403{
404 switch (sctx->proto) {
405 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
406 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
407 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
408 default: return false;
409 }
410}
411
412static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
413
414static struct waiting_dir_move *
415get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
416
417static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
418
419static int need_send_hole(struct send_ctx *sctx)
420{
421 return (sctx->parent_root && !sctx->cur_inode_new &&
422 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
423 S_ISREG(sctx->cur_inode_mode));
424}
425
426static void fs_path_reset(struct fs_path *p)
427{
428 if (p->reversed) {
429 p->start = p->buf + p->buf_len - 1;
430 p->end = p->start;
431 *p->start = 0;
432 } else {
433 p->start = p->buf;
434 p->end = p->start;
435 *p->start = 0;
436 }
437}
438
439static struct fs_path *fs_path_alloc(void)
440{
441 struct fs_path *p;
442
443 p = kmalloc(sizeof(*p), GFP_KERNEL);
444 if (!p)
445 return NULL;
446 p->reversed = 0;
447 p->buf = p->inline_buf;
448 p->buf_len = FS_PATH_INLINE_SIZE;
449 fs_path_reset(p);
450 return p;
451}
452
453static struct fs_path *fs_path_alloc_reversed(void)
454{
455 struct fs_path *p;
456
457 p = fs_path_alloc();
458 if (!p)
459 return NULL;
460 p->reversed = 1;
461 fs_path_reset(p);
462 return p;
463}
464
465static void fs_path_free(struct fs_path *p)
466{
467 if (!p)
468 return;
469 if (p->buf != p->inline_buf)
470 kfree(p->buf);
471 kfree(p);
472}
473
474static int fs_path_len(struct fs_path *p)
475{
476 return p->end - p->start;
477}
478
479static int fs_path_ensure_buf(struct fs_path *p, int len)
480{
481 char *tmp_buf;
482 int path_len;
483 int old_buf_len;
484
485 len++;
486
487 if (p->buf_len >= len)
488 return 0;
489
490 if (len > PATH_MAX) {
491 WARN_ON(1);
492 return -ENOMEM;
493 }
494
495 path_len = p->end - p->start;
496 old_buf_len = p->buf_len;
497
498 /*
499 * Allocate to the next largest kmalloc bucket size, to let
500 * the fast path happen most of the time.
501 */
502 len = kmalloc_size_roundup(len);
503 /*
504 * First time the inline_buf does not suffice
505 */
506 if (p->buf == p->inline_buf) {
507 tmp_buf = kmalloc(len, GFP_KERNEL);
508 if (tmp_buf)
509 memcpy(tmp_buf, p->buf, old_buf_len);
510 } else {
511 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
512 }
513 if (!tmp_buf)
514 return -ENOMEM;
515 p->buf = tmp_buf;
516 p->buf_len = len;
517
518 if (p->reversed) {
519 tmp_buf = p->buf + old_buf_len - path_len - 1;
520 p->end = p->buf + p->buf_len - 1;
521 p->start = p->end - path_len;
522 memmove(p->start, tmp_buf, path_len + 1);
523 } else {
524 p->start = p->buf;
525 p->end = p->start + path_len;
526 }
527 return 0;
528}
529
530static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
531 char **prepared)
532{
533 int ret;
534 int new_len;
535
536 new_len = p->end - p->start + name_len;
537 if (p->start != p->end)
538 new_len++;
539 ret = fs_path_ensure_buf(p, new_len);
540 if (ret < 0)
541 goto out;
542
543 if (p->reversed) {
544 if (p->start != p->end)
545 *--p->start = '/';
546 p->start -= name_len;
547 *prepared = p->start;
548 } else {
549 if (p->start != p->end)
550 *p->end++ = '/';
551 *prepared = p->end;
552 p->end += name_len;
553 *p->end = 0;
554 }
555
556out:
557 return ret;
558}
559
560static int fs_path_add(struct fs_path *p, const char *name, int name_len)
561{
562 int ret;
563 char *prepared;
564
565 ret = fs_path_prepare_for_add(p, name_len, &prepared);
566 if (ret < 0)
567 goto out;
568 memcpy(prepared, name, name_len);
569
570out:
571 return ret;
572}
573
574static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
575{
576 int ret;
577 char *prepared;
578
579 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
580 if (ret < 0)
581 goto out;
582 memcpy(prepared, p2->start, p2->end - p2->start);
583
584out:
585 return ret;
586}
587
588static int fs_path_add_from_extent_buffer(struct fs_path *p,
589 struct extent_buffer *eb,
590 unsigned long off, int len)
591{
592 int ret;
593 char *prepared;
594
595 ret = fs_path_prepare_for_add(p, len, &prepared);
596 if (ret < 0)
597 goto out;
598
599 read_extent_buffer(eb, prepared, off, len);
600
601out:
602 return ret;
603}
604
605static int fs_path_copy(struct fs_path *p, struct fs_path *from)
606{
607 p->reversed = from->reversed;
608 fs_path_reset(p);
609
610 return fs_path_add_path(p, from);
611}
612
613static void fs_path_unreverse(struct fs_path *p)
614{
615 char *tmp;
616 int len;
617
618 if (!p->reversed)
619 return;
620
621 tmp = p->start;
622 len = p->end - p->start;
623 p->start = p->buf;
624 p->end = p->start + len;
625 memmove(p->start, tmp, len + 1);
626 p->reversed = 0;
627}
628
629static struct btrfs_path *alloc_path_for_send(void)
630{
631 struct btrfs_path *path;
632
633 path = btrfs_alloc_path();
634 if (!path)
635 return NULL;
636 path->search_commit_root = 1;
637 path->skip_locking = 1;
638 path->need_commit_sem = 1;
639 return path;
640}
641
642static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
643{
644 int ret;
645 u32 pos = 0;
646
647 while (pos < len) {
648 ret = kernel_write(filp, buf + pos, len - pos, off);
649 if (ret < 0)
650 return ret;
651 if (ret == 0)
652 return -EIO;
653 pos += ret;
654 }
655
656 return 0;
657}
658
659static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
660{
661 struct btrfs_tlv_header *hdr;
662 int total_len = sizeof(*hdr) + len;
663 int left = sctx->send_max_size - sctx->send_size;
664
665 if (WARN_ON_ONCE(sctx->put_data))
666 return -EINVAL;
667
668 if (unlikely(left < total_len))
669 return -EOVERFLOW;
670
671 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
672 put_unaligned_le16(attr, &hdr->tlv_type);
673 put_unaligned_le16(len, &hdr->tlv_len);
674 memcpy(hdr + 1, data, len);
675 sctx->send_size += total_len;
676
677 return 0;
678}
679
680#define TLV_PUT_DEFINE_INT(bits) \
681 static int tlv_put_u##bits(struct send_ctx *sctx, \
682 u##bits attr, u##bits value) \
683 { \
684 __le##bits __tmp = cpu_to_le##bits(value); \
685 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
686 }
687
688TLV_PUT_DEFINE_INT(8)
689TLV_PUT_DEFINE_INT(32)
690TLV_PUT_DEFINE_INT(64)
691
692static int tlv_put_string(struct send_ctx *sctx, u16 attr,
693 const char *str, int len)
694{
695 if (len == -1)
696 len = strlen(str);
697 return tlv_put(sctx, attr, str, len);
698}
699
700static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
701 const u8 *uuid)
702{
703 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
704}
705
706static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
707 struct extent_buffer *eb,
708 struct btrfs_timespec *ts)
709{
710 struct btrfs_timespec bts;
711 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
712 return tlv_put(sctx, attr, &bts, sizeof(bts));
713}
714
715
716#define TLV_PUT(sctx, attrtype, data, attrlen) \
717 do { \
718 ret = tlv_put(sctx, attrtype, data, attrlen); \
719 if (ret < 0) \
720 goto tlv_put_failure; \
721 } while (0)
722
723#define TLV_PUT_INT(sctx, attrtype, bits, value) \
724 do { \
725 ret = tlv_put_u##bits(sctx, attrtype, value); \
726 if (ret < 0) \
727 goto tlv_put_failure; \
728 } while (0)
729
730#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
731#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
732#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
733#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
734#define TLV_PUT_STRING(sctx, attrtype, str, len) \
735 do { \
736 ret = tlv_put_string(sctx, attrtype, str, len); \
737 if (ret < 0) \
738 goto tlv_put_failure; \
739 } while (0)
740#define TLV_PUT_PATH(sctx, attrtype, p) \
741 do { \
742 ret = tlv_put_string(sctx, attrtype, p->start, \
743 p->end - p->start); \
744 if (ret < 0) \
745 goto tlv_put_failure; \
746 } while(0)
747#define TLV_PUT_UUID(sctx, attrtype, uuid) \
748 do { \
749 ret = tlv_put_uuid(sctx, attrtype, uuid); \
750 if (ret < 0) \
751 goto tlv_put_failure; \
752 } while (0)
753#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
754 do { \
755 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
756 if (ret < 0) \
757 goto tlv_put_failure; \
758 } while (0)
759
760static int send_header(struct send_ctx *sctx)
761{
762 struct btrfs_stream_header hdr;
763
764 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
765 hdr.version = cpu_to_le32(sctx->proto);
766 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
767 &sctx->send_off);
768}
769
770/*
771 * For each command/item we want to send to userspace, we call this function.
772 */
773static int begin_cmd(struct send_ctx *sctx, int cmd)
774{
775 struct btrfs_cmd_header *hdr;
776
777 if (WARN_ON(!sctx->send_buf))
778 return -EINVAL;
779
780 BUG_ON(sctx->send_size);
781
782 sctx->send_size += sizeof(*hdr);
783 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
784 put_unaligned_le16(cmd, &hdr->cmd);
785
786 return 0;
787}
788
789static int send_cmd(struct send_ctx *sctx)
790{
791 int ret;
792 struct btrfs_cmd_header *hdr;
793 u32 crc;
794
795 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
796 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
797 put_unaligned_le32(0, &hdr->crc);
798
799 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
800 put_unaligned_le32(crc, &hdr->crc);
801
802 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
803 &sctx->send_off);
804
805 sctx->send_size = 0;
806 sctx->put_data = false;
807
808 return ret;
809}
810
811/*
812 * Sends a move instruction to user space
813 */
814static int send_rename(struct send_ctx *sctx,
815 struct fs_path *from, struct fs_path *to)
816{
817 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
818 int ret;
819
820 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
821
822 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
823 if (ret < 0)
824 goto out;
825
826 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
827 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
828
829 ret = send_cmd(sctx);
830
831tlv_put_failure:
832out:
833 return ret;
834}
835
836/*
837 * Sends a link instruction to user space
838 */
839static int send_link(struct send_ctx *sctx,
840 struct fs_path *path, struct fs_path *lnk)
841{
842 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
843 int ret;
844
845 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
846
847 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
848 if (ret < 0)
849 goto out;
850
851 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
852 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
853
854 ret = send_cmd(sctx);
855
856tlv_put_failure:
857out:
858 return ret;
859}
860
861/*
862 * Sends an unlink instruction to user space
863 */
864static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
865{
866 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
867 int ret;
868
869 btrfs_debug(fs_info, "send_unlink %s", path->start);
870
871 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
872 if (ret < 0)
873 goto out;
874
875 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
876
877 ret = send_cmd(sctx);
878
879tlv_put_failure:
880out:
881 return ret;
882}
883
884/*
885 * Sends a rmdir instruction to user space
886 */
887static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
888{
889 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
890 int ret;
891
892 btrfs_debug(fs_info, "send_rmdir %s", path->start);
893
894 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
895 if (ret < 0)
896 goto out;
897
898 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
899
900 ret = send_cmd(sctx);
901
902tlv_put_failure:
903out:
904 return ret;
905}
906
907struct btrfs_inode_info {
908 u64 size;
909 u64 gen;
910 u64 mode;
911 u64 uid;
912 u64 gid;
913 u64 rdev;
914 u64 fileattr;
915 u64 nlink;
916};
917
918/*
919 * Helper function to retrieve some fields from an inode item.
920 */
921static int get_inode_info(struct btrfs_root *root, u64 ino,
922 struct btrfs_inode_info *info)
923{
924 int ret;
925 struct btrfs_path *path;
926 struct btrfs_inode_item *ii;
927 struct btrfs_key key;
928
929 path = alloc_path_for_send();
930 if (!path)
931 return -ENOMEM;
932
933 key.objectid = ino;
934 key.type = BTRFS_INODE_ITEM_KEY;
935 key.offset = 0;
936 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
937 if (ret) {
938 if (ret > 0)
939 ret = -ENOENT;
940 goto out;
941 }
942
943 if (!info)
944 goto out;
945
946 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
947 struct btrfs_inode_item);
948 info->size = btrfs_inode_size(path->nodes[0], ii);
949 info->gen = btrfs_inode_generation(path->nodes[0], ii);
950 info->mode = btrfs_inode_mode(path->nodes[0], ii);
951 info->uid = btrfs_inode_uid(path->nodes[0], ii);
952 info->gid = btrfs_inode_gid(path->nodes[0], ii);
953 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
954 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
955 /*
956 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
957 * otherwise logically split to 32/32 parts.
958 */
959 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
960
961out:
962 btrfs_free_path(path);
963 return ret;
964}
965
966static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
967{
968 int ret;
969 struct btrfs_inode_info info = { 0 };
970
971 ASSERT(gen);
972
973 ret = get_inode_info(root, ino, &info);
974 *gen = info.gen;
975 return ret;
976}
977
978typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
979 struct fs_path *p,
980 void *ctx);
981
982/*
983 * Helper function to iterate the entries in ONE btrfs_inode_ref or
984 * btrfs_inode_extref.
985 * The iterate callback may return a non zero value to stop iteration. This can
986 * be a negative value for error codes or 1 to simply stop it.
987 *
988 * path must point to the INODE_REF or INODE_EXTREF when called.
989 */
990static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
991 struct btrfs_key *found_key, int resolve,
992 iterate_inode_ref_t iterate, void *ctx)
993{
994 struct extent_buffer *eb = path->nodes[0];
995 struct btrfs_inode_ref *iref;
996 struct btrfs_inode_extref *extref;
997 struct btrfs_path *tmp_path;
998 struct fs_path *p;
999 u32 cur = 0;
1000 u32 total;
1001 int slot = path->slots[0];
1002 u32 name_len;
1003 char *start;
1004 int ret = 0;
1005 int num = 0;
1006 int index;
1007 u64 dir;
1008 unsigned long name_off;
1009 unsigned long elem_size;
1010 unsigned long ptr;
1011
1012 p = fs_path_alloc_reversed();
1013 if (!p)
1014 return -ENOMEM;
1015
1016 tmp_path = alloc_path_for_send();
1017 if (!tmp_path) {
1018 fs_path_free(p);
1019 return -ENOMEM;
1020 }
1021
1022
1023 if (found_key->type == BTRFS_INODE_REF_KEY) {
1024 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1025 struct btrfs_inode_ref);
1026 total = btrfs_item_size(eb, slot);
1027 elem_size = sizeof(*iref);
1028 } else {
1029 ptr = btrfs_item_ptr_offset(eb, slot);
1030 total = btrfs_item_size(eb, slot);
1031 elem_size = sizeof(*extref);
1032 }
1033
1034 while (cur < total) {
1035 fs_path_reset(p);
1036
1037 if (found_key->type == BTRFS_INODE_REF_KEY) {
1038 iref = (struct btrfs_inode_ref *)(ptr + cur);
1039 name_len = btrfs_inode_ref_name_len(eb, iref);
1040 name_off = (unsigned long)(iref + 1);
1041 index = btrfs_inode_ref_index(eb, iref);
1042 dir = found_key->offset;
1043 } else {
1044 extref = (struct btrfs_inode_extref *)(ptr + cur);
1045 name_len = btrfs_inode_extref_name_len(eb, extref);
1046 name_off = (unsigned long)&extref->name;
1047 index = btrfs_inode_extref_index(eb, extref);
1048 dir = btrfs_inode_extref_parent(eb, extref);
1049 }
1050
1051 if (resolve) {
1052 start = btrfs_ref_to_path(root, tmp_path, name_len,
1053 name_off, eb, dir,
1054 p->buf, p->buf_len);
1055 if (IS_ERR(start)) {
1056 ret = PTR_ERR(start);
1057 goto out;
1058 }
1059 if (start < p->buf) {
1060 /* overflow , try again with larger buffer */
1061 ret = fs_path_ensure_buf(p,
1062 p->buf_len + p->buf - start);
1063 if (ret < 0)
1064 goto out;
1065 start = btrfs_ref_to_path(root, tmp_path,
1066 name_len, name_off,
1067 eb, dir,
1068 p->buf, p->buf_len);
1069 if (IS_ERR(start)) {
1070 ret = PTR_ERR(start);
1071 goto out;
1072 }
1073 BUG_ON(start < p->buf);
1074 }
1075 p->start = start;
1076 } else {
1077 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1078 name_len);
1079 if (ret < 0)
1080 goto out;
1081 }
1082
1083 cur += elem_size + name_len;
1084 ret = iterate(num, dir, index, p, ctx);
1085 if (ret)
1086 goto out;
1087 num++;
1088 }
1089
1090out:
1091 btrfs_free_path(tmp_path);
1092 fs_path_free(p);
1093 return ret;
1094}
1095
1096typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1097 const char *name, int name_len,
1098 const char *data, int data_len,
1099 void *ctx);
1100
1101/*
1102 * Helper function to iterate the entries in ONE btrfs_dir_item.
1103 * The iterate callback may return a non zero value to stop iteration. This can
1104 * be a negative value for error codes or 1 to simply stop it.
1105 *
1106 * path must point to the dir item when called.
1107 */
1108static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1109 iterate_dir_item_t iterate, void *ctx)
1110{
1111 int ret = 0;
1112 struct extent_buffer *eb;
1113 struct btrfs_dir_item *di;
1114 struct btrfs_key di_key;
1115 char *buf = NULL;
1116 int buf_len;
1117 u32 name_len;
1118 u32 data_len;
1119 u32 cur;
1120 u32 len;
1121 u32 total;
1122 int slot;
1123 int num;
1124
1125 /*
1126 * Start with a small buffer (1 page). If later we end up needing more
1127 * space, which can happen for xattrs on a fs with a leaf size greater
1128 * then the page size, attempt to increase the buffer. Typically xattr
1129 * values are small.
1130 */
1131 buf_len = PATH_MAX;
1132 buf = kmalloc(buf_len, GFP_KERNEL);
1133 if (!buf) {
1134 ret = -ENOMEM;
1135 goto out;
1136 }
1137
1138 eb = path->nodes[0];
1139 slot = path->slots[0];
1140 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1141 cur = 0;
1142 len = 0;
1143 total = btrfs_item_size(eb, slot);
1144
1145 num = 0;
1146 while (cur < total) {
1147 name_len = btrfs_dir_name_len(eb, di);
1148 data_len = btrfs_dir_data_len(eb, di);
1149 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1150
1151 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1152 if (name_len > XATTR_NAME_MAX) {
1153 ret = -ENAMETOOLONG;
1154 goto out;
1155 }
1156 if (name_len + data_len >
1157 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1158 ret = -E2BIG;
1159 goto out;
1160 }
1161 } else {
1162 /*
1163 * Path too long
1164 */
1165 if (name_len + data_len > PATH_MAX) {
1166 ret = -ENAMETOOLONG;
1167 goto out;
1168 }
1169 }
1170
1171 if (name_len + data_len > buf_len) {
1172 buf_len = name_len + data_len;
1173 if (is_vmalloc_addr(buf)) {
1174 vfree(buf);
1175 buf = NULL;
1176 } else {
1177 char *tmp = krealloc(buf, buf_len,
1178 GFP_KERNEL | __GFP_NOWARN);
1179
1180 if (!tmp)
1181 kfree(buf);
1182 buf = tmp;
1183 }
1184 if (!buf) {
1185 buf = kvmalloc(buf_len, GFP_KERNEL);
1186 if (!buf) {
1187 ret = -ENOMEM;
1188 goto out;
1189 }
1190 }
1191 }
1192
1193 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1194 name_len + data_len);
1195
1196 len = sizeof(*di) + name_len + data_len;
1197 di = (struct btrfs_dir_item *)((char *)di + len);
1198 cur += len;
1199
1200 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1201 data_len, ctx);
1202 if (ret < 0)
1203 goto out;
1204 if (ret) {
1205 ret = 0;
1206 goto out;
1207 }
1208
1209 num++;
1210 }
1211
1212out:
1213 kvfree(buf);
1214 return ret;
1215}
1216
1217static int __copy_first_ref(int num, u64 dir, int index,
1218 struct fs_path *p, void *ctx)
1219{
1220 int ret;
1221 struct fs_path *pt = ctx;
1222
1223 ret = fs_path_copy(pt, p);
1224 if (ret < 0)
1225 return ret;
1226
1227 /* we want the first only */
1228 return 1;
1229}
1230
1231/*
1232 * Retrieve the first path of an inode. If an inode has more then one
1233 * ref/hardlink, this is ignored.
1234 */
1235static int get_inode_path(struct btrfs_root *root,
1236 u64 ino, struct fs_path *path)
1237{
1238 int ret;
1239 struct btrfs_key key, found_key;
1240 struct btrfs_path *p;
1241
1242 p = alloc_path_for_send();
1243 if (!p)
1244 return -ENOMEM;
1245
1246 fs_path_reset(path);
1247
1248 key.objectid = ino;
1249 key.type = BTRFS_INODE_REF_KEY;
1250 key.offset = 0;
1251
1252 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1253 if (ret < 0)
1254 goto out;
1255 if (ret) {
1256 ret = 1;
1257 goto out;
1258 }
1259 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1260 if (found_key.objectid != ino ||
1261 (found_key.type != BTRFS_INODE_REF_KEY &&
1262 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1263 ret = -ENOENT;
1264 goto out;
1265 }
1266
1267 ret = iterate_inode_ref(root, p, &found_key, 1,
1268 __copy_first_ref, path);
1269 if (ret < 0)
1270 goto out;
1271 ret = 0;
1272
1273out:
1274 btrfs_free_path(p);
1275 return ret;
1276}
1277
1278struct backref_ctx {
1279 struct send_ctx *sctx;
1280
1281 /* number of total found references */
1282 u64 found;
1283
1284 /*
1285 * used for clones found in send_root. clones found behind cur_objectid
1286 * and cur_offset are not considered as allowed clones.
1287 */
1288 u64 cur_objectid;
1289 u64 cur_offset;
1290
1291 /* may be truncated in case it's the last extent in a file */
1292 u64 extent_len;
1293
1294 /* The bytenr the file extent item we are processing refers to. */
1295 u64 bytenr;
1296 /* The owner (root id) of the data backref for the current extent. */
1297 u64 backref_owner;
1298 /* The offset of the data backref for the current extent. */
1299 u64 backref_offset;
1300};
1301
1302static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1303{
1304 u64 root = (u64)(uintptr_t)key;
1305 const struct clone_root *cr = elt;
1306
1307 if (root < cr->root->root_key.objectid)
1308 return -1;
1309 if (root > cr->root->root_key.objectid)
1310 return 1;
1311 return 0;
1312}
1313
1314static int __clone_root_cmp_sort(const void *e1, const void *e2)
1315{
1316 const struct clone_root *cr1 = e1;
1317 const struct clone_root *cr2 = e2;
1318
1319 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1320 return -1;
1321 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1322 return 1;
1323 return 0;
1324}
1325
1326/*
1327 * Called for every backref that is found for the current extent.
1328 * Results are collected in sctx->clone_roots->ino/offset.
1329 */
1330static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1331 void *ctx_)
1332{
1333 struct backref_ctx *bctx = ctx_;
1334 struct clone_root *clone_root;
1335
1336 /* First check if the root is in the list of accepted clone sources */
1337 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1338 bctx->sctx->clone_roots_cnt,
1339 sizeof(struct clone_root),
1340 __clone_root_cmp_bsearch);
1341 if (!clone_root)
1342 return 0;
1343
1344 /* This is our own reference, bail out as we can't clone from it. */
1345 if (clone_root->root == bctx->sctx->send_root &&
1346 ino == bctx->cur_objectid &&
1347 offset == bctx->cur_offset)
1348 return 0;
1349
1350 /*
1351 * Make sure we don't consider clones from send_root that are
1352 * behind the current inode/offset.
1353 */
1354 if (clone_root->root == bctx->sctx->send_root) {
1355 /*
1356 * If the source inode was not yet processed we can't issue a
1357 * clone operation, as the source extent does not exist yet at
1358 * the destination of the stream.
1359 */
1360 if (ino > bctx->cur_objectid)
1361 return 0;
1362 /*
1363 * We clone from the inode currently being sent as long as the
1364 * source extent is already processed, otherwise we could try
1365 * to clone from an extent that does not exist yet at the
1366 * destination of the stream.
1367 */
1368 if (ino == bctx->cur_objectid &&
1369 offset + bctx->extent_len >
1370 bctx->sctx->cur_inode_next_write_offset)
1371 return 0;
1372 }
1373
1374 bctx->found++;
1375 clone_root->found_ref = true;
1376
1377 /*
1378 * If the given backref refers to a file extent item with a larger
1379 * number of bytes than what we found before, use the new one so that
1380 * we clone more optimally and end up doing less writes and getting
1381 * less exclusive, non-shared extents at the destination.
1382 */
1383 if (num_bytes > clone_root->num_bytes) {
1384 clone_root->ino = ino;
1385 clone_root->offset = offset;
1386 clone_root->num_bytes = num_bytes;
1387
1388 /*
1389 * Found a perfect candidate, so there's no need to continue
1390 * backref walking.
1391 */
1392 if (num_bytes >= bctx->extent_len)
1393 return BTRFS_ITERATE_EXTENT_INODES_STOP;
1394 }
1395
1396 return 0;
1397}
1398
1399static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1400 const u64 **root_ids_ret, int *root_count_ret)
1401{
1402 struct backref_ctx *bctx = ctx;
1403 struct send_ctx *sctx = bctx->sctx;
1404 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1405 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1406 struct btrfs_lru_cache_entry *raw_entry;
1407 struct backref_cache_entry *entry;
1408
1409 if (btrfs_lru_cache_size(&sctx->backref_cache) == 0)
1410 return false;
1411
1412 /*
1413 * If relocation happened since we first filled the cache, then we must
1414 * empty the cache and can not use it, because even though we operate on
1415 * read-only roots, their leaves and nodes may have been reallocated and
1416 * now be used for different nodes/leaves of the same tree or some other
1417 * tree.
1418 *
1419 * We are called from iterate_extent_inodes() while either holding a
1420 * transaction handle or holding fs_info->commit_root_sem, so no need
1421 * to take any lock here.
1422 */
1423 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1424 btrfs_lru_cache_clear(&sctx->backref_cache);
1425 return false;
1426 }
1427
1428 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1429 if (!raw_entry)
1430 return false;
1431
1432 entry = container_of(raw_entry, struct backref_cache_entry, entry);
1433 *root_ids_ret = entry->root_ids;
1434 *root_count_ret = entry->num_roots;
1435
1436 return true;
1437}
1438
1439static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1440 void *ctx)
1441{
1442 struct backref_ctx *bctx = ctx;
1443 struct send_ctx *sctx = bctx->sctx;
1444 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1445 struct backref_cache_entry *new_entry;
1446 struct ulist_iterator uiter;
1447 struct ulist_node *node;
1448 int ret;
1449
1450 /*
1451 * We're called while holding a transaction handle or while holding
1452 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1453 * NOFS allocation.
1454 */
1455 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1456 /* No worries, cache is optional. */
1457 if (!new_entry)
1458 return;
1459
1460 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1461 new_entry->entry.gen = 0;
1462 new_entry->num_roots = 0;
1463 ULIST_ITER_INIT(&uiter);
1464 while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1465 const u64 root_id = node->val;
1466 struct clone_root *root;
1467
1468 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1469 sctx->clone_roots_cnt, sizeof(struct clone_root),
1470 __clone_root_cmp_bsearch);
1471 if (!root)
1472 continue;
1473
1474 /* Too many roots, just exit, no worries as caching is optional. */
1475 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1476 kfree(new_entry);
1477 return;
1478 }
1479
1480 new_entry->root_ids[new_entry->num_roots] = root_id;
1481 new_entry->num_roots++;
1482 }
1483
1484 /*
1485 * We may have not added any roots to the new cache entry, which means
1486 * none of the roots is part of the list of roots from which we are
1487 * allowed to clone. Cache the new entry as it's still useful to avoid
1488 * backref walking to determine which roots have a path to the leaf.
1489 *
1490 * Also use GFP_NOFS because we're called while holding a transaction
1491 * handle or while holding fs_info->commit_root_sem.
1492 */
1493 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1494 GFP_NOFS);
1495 ASSERT(ret == 0 || ret == -ENOMEM);
1496 if (ret) {
1497 /* Caching is optional, no worries. */
1498 kfree(new_entry);
1499 return;
1500 }
1501
1502 /*
1503 * We are called from iterate_extent_inodes() while either holding a
1504 * transaction handle or holding fs_info->commit_root_sem, so no need
1505 * to take any lock here.
1506 */
1507 if (btrfs_lru_cache_size(&sctx->backref_cache) == 1)
1508 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1509}
1510
1511static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1512 const struct extent_buffer *leaf, void *ctx)
1513{
1514 const u64 refs = btrfs_extent_refs(leaf, ei);
1515 const struct backref_ctx *bctx = ctx;
1516 const struct send_ctx *sctx = bctx->sctx;
1517
1518 if (bytenr == bctx->bytenr) {
1519 const u64 flags = btrfs_extent_flags(leaf, ei);
1520
1521 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1522 return -EUCLEAN;
1523
1524 /*
1525 * If we have only one reference and only the send root as a
1526 * clone source - meaning no clone roots were given in the
1527 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1528 * it's our reference and there's no point in doing backref
1529 * walking which is expensive, so exit early.
1530 */
1531 if (refs == 1 && sctx->clone_roots_cnt == 1)
1532 return -ENOENT;
1533 }
1534
1535 /*
1536 * Backreference walking (iterate_extent_inodes() below) is currently
1537 * too expensive when an extent has a large number of references, both
1538 * in time spent and used memory. So for now just fallback to write
1539 * operations instead of clone operations when an extent has more than
1540 * a certain amount of references.
1541 */
1542 if (refs > SEND_MAX_EXTENT_REFS)
1543 return -ENOENT;
1544
1545 return 0;
1546}
1547
1548static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1549{
1550 const struct backref_ctx *bctx = ctx;
1551
1552 if (ino == bctx->cur_objectid &&
1553 root == bctx->backref_owner &&
1554 offset == bctx->backref_offset)
1555 return true;
1556
1557 return false;
1558}
1559
1560/*
1561 * Given an inode, offset and extent item, it finds a good clone for a clone
1562 * instruction. Returns -ENOENT when none could be found. The function makes
1563 * sure that the returned clone is usable at the point where sending is at the
1564 * moment. This means, that no clones are accepted which lie behind the current
1565 * inode+offset.
1566 *
1567 * path must point to the extent item when called.
1568 */
1569static int find_extent_clone(struct send_ctx *sctx,
1570 struct btrfs_path *path,
1571 u64 ino, u64 data_offset,
1572 u64 ino_size,
1573 struct clone_root **found)
1574{
1575 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1576 int ret;
1577 int extent_type;
1578 u64 logical;
1579 u64 disk_byte;
1580 u64 num_bytes;
1581 struct btrfs_file_extent_item *fi;
1582 struct extent_buffer *eb = path->nodes[0];
1583 struct backref_ctx backref_ctx = { 0 };
1584 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1585 struct clone_root *cur_clone_root;
1586 int compressed;
1587 u32 i;
1588
1589 /*
1590 * With fallocate we can get prealloc extents beyond the inode's i_size,
1591 * so we don't do anything here because clone operations can not clone
1592 * to a range beyond i_size without increasing the i_size of the
1593 * destination inode.
1594 */
1595 if (data_offset >= ino_size)
1596 return 0;
1597
1598 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1599 extent_type = btrfs_file_extent_type(eb, fi);
1600 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1601 return -ENOENT;
1602
1603 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1604 if (disk_byte == 0)
1605 return -ENOENT;
1606
1607 compressed = btrfs_file_extent_compression(eb, fi);
1608 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1609 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1610
1611 /*
1612 * Setup the clone roots.
1613 */
1614 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1615 cur_clone_root = sctx->clone_roots + i;
1616 cur_clone_root->ino = (u64)-1;
1617 cur_clone_root->offset = 0;
1618 cur_clone_root->num_bytes = 0;
1619 cur_clone_root->found_ref = false;
1620 }
1621
1622 backref_ctx.sctx = sctx;
1623 backref_ctx.cur_objectid = ino;
1624 backref_ctx.cur_offset = data_offset;
1625 backref_ctx.bytenr = disk_byte;
1626 /*
1627 * Use the header owner and not the send root's id, because in case of a
1628 * snapshot we can have shared subtrees.
1629 */
1630 backref_ctx.backref_owner = btrfs_header_owner(eb);
1631 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1632
1633 /*
1634 * The last extent of a file may be too large due to page alignment.
1635 * We need to adjust extent_len in this case so that the checks in
1636 * iterate_backrefs() work.
1637 */
1638 if (data_offset + num_bytes >= ino_size)
1639 backref_ctx.extent_len = ino_size - data_offset;
1640 else
1641 backref_ctx.extent_len = num_bytes;
1642
1643 /*
1644 * Now collect all backrefs.
1645 */
1646 backref_walk_ctx.bytenr = disk_byte;
1647 if (compressed == BTRFS_COMPRESS_NONE)
1648 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1649 backref_walk_ctx.fs_info = fs_info;
1650 backref_walk_ctx.cache_lookup = lookup_backref_cache;
1651 backref_walk_ctx.cache_store = store_backref_cache;
1652 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1653 backref_walk_ctx.check_extent_item = check_extent_item;
1654 backref_walk_ctx.user_ctx = &backref_ctx;
1655
1656 /*
1657 * If have a single clone root, then it's the send root and we can tell
1658 * the backref walking code to skip our own backref and not resolve it,
1659 * since we can not use it for cloning - the source and destination
1660 * ranges can't overlap and in case the leaf is shared through a subtree
1661 * due to snapshots, we can't use those other roots since they are not
1662 * in the list of clone roots.
1663 */
1664 if (sctx->clone_roots_cnt == 1)
1665 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1666
1667 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1668 &backref_ctx);
1669 if (ret < 0)
1670 return ret;
1671
1672 down_read(&fs_info->commit_root_sem);
1673 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1674 /*
1675 * A transaction commit for a transaction in which block group
1676 * relocation was done just happened.
1677 * The disk_bytenr of the file extent item we processed is
1678 * possibly stale, referring to the extent's location before
1679 * relocation. So act as if we haven't found any clone sources
1680 * and fallback to write commands, which will read the correct
1681 * data from the new extent location. Otherwise we will fail
1682 * below because we haven't found our own back reference or we
1683 * could be getting incorrect sources in case the old extent
1684 * was already reallocated after the relocation.
1685 */
1686 up_read(&fs_info->commit_root_sem);
1687 return -ENOENT;
1688 }
1689 up_read(&fs_info->commit_root_sem);
1690
1691 btrfs_debug(fs_info,
1692 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1693 data_offset, ino, num_bytes, logical);
1694
1695 if (!backref_ctx.found) {
1696 btrfs_debug(fs_info, "no clones found");
1697 return -ENOENT;
1698 }
1699
1700 cur_clone_root = NULL;
1701 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1702 struct clone_root *clone_root = &sctx->clone_roots[i];
1703
1704 if (!clone_root->found_ref)
1705 continue;
1706
1707 /*
1708 * Choose the root from which we can clone more bytes, to
1709 * minimize write operations and therefore have more extent
1710 * sharing at the destination (the same as in the source).
1711 */
1712 if (!cur_clone_root ||
1713 clone_root->num_bytes > cur_clone_root->num_bytes) {
1714 cur_clone_root = clone_root;
1715
1716 /*
1717 * We found an optimal clone candidate (any inode from
1718 * any root is fine), so we're done.
1719 */
1720 if (clone_root->num_bytes >= backref_ctx.extent_len)
1721 break;
1722 }
1723 }
1724
1725 if (cur_clone_root) {
1726 *found = cur_clone_root;
1727 ret = 0;
1728 } else {
1729 ret = -ENOENT;
1730 }
1731
1732 return ret;
1733}
1734
1735static int read_symlink(struct btrfs_root *root,
1736 u64 ino,
1737 struct fs_path *dest)
1738{
1739 int ret;
1740 struct btrfs_path *path;
1741 struct btrfs_key key;
1742 struct btrfs_file_extent_item *ei;
1743 u8 type;
1744 u8 compression;
1745 unsigned long off;
1746 int len;
1747
1748 path = alloc_path_for_send();
1749 if (!path)
1750 return -ENOMEM;
1751
1752 key.objectid = ino;
1753 key.type = BTRFS_EXTENT_DATA_KEY;
1754 key.offset = 0;
1755 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1756 if (ret < 0)
1757 goto out;
1758 if (ret) {
1759 /*
1760 * An empty symlink inode. Can happen in rare error paths when
1761 * creating a symlink (transaction committed before the inode
1762 * eviction handler removed the symlink inode items and a crash
1763 * happened in between or the subvol was snapshoted in between).
1764 * Print an informative message to dmesg/syslog so that the user
1765 * can delete the symlink.
1766 */
1767 btrfs_err(root->fs_info,
1768 "Found empty symlink inode %llu at root %llu",
1769 ino, root->root_key.objectid);
1770 ret = -EIO;
1771 goto out;
1772 }
1773
1774 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1775 struct btrfs_file_extent_item);
1776 type = btrfs_file_extent_type(path->nodes[0], ei);
1777 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1778 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1779 BUG_ON(compression);
1780
1781 off = btrfs_file_extent_inline_start(ei);
1782 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1783
1784 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1785
1786out:
1787 btrfs_free_path(path);
1788 return ret;
1789}
1790
1791/*
1792 * Helper function to generate a file name that is unique in the root of
1793 * send_root and parent_root. This is used to generate names for orphan inodes.
1794 */
1795static int gen_unique_name(struct send_ctx *sctx,
1796 u64 ino, u64 gen,
1797 struct fs_path *dest)
1798{
1799 int ret = 0;
1800 struct btrfs_path *path;
1801 struct btrfs_dir_item *di;
1802 char tmp[64];
1803 int len;
1804 u64 idx = 0;
1805
1806 path = alloc_path_for_send();
1807 if (!path)
1808 return -ENOMEM;
1809
1810 while (1) {
1811 struct fscrypt_str tmp_name;
1812
1813 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1814 ino, gen, idx);
1815 ASSERT(len < sizeof(tmp));
1816 tmp_name.name = tmp;
1817 tmp_name.len = strlen(tmp);
1818
1819 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1820 path, BTRFS_FIRST_FREE_OBJECTID,
1821 &tmp_name, 0);
1822 btrfs_release_path(path);
1823 if (IS_ERR(di)) {
1824 ret = PTR_ERR(di);
1825 goto out;
1826 }
1827 if (di) {
1828 /* not unique, try again */
1829 idx++;
1830 continue;
1831 }
1832
1833 if (!sctx->parent_root) {
1834 /* unique */
1835 ret = 0;
1836 break;
1837 }
1838
1839 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1840 path, BTRFS_FIRST_FREE_OBJECTID,
1841 &tmp_name, 0);
1842 btrfs_release_path(path);
1843 if (IS_ERR(di)) {
1844 ret = PTR_ERR(di);
1845 goto out;
1846 }
1847 if (di) {
1848 /* not unique, try again */
1849 idx++;
1850 continue;
1851 }
1852 /* unique */
1853 break;
1854 }
1855
1856 ret = fs_path_add(dest, tmp, strlen(tmp));
1857
1858out:
1859 btrfs_free_path(path);
1860 return ret;
1861}
1862
1863enum inode_state {
1864 inode_state_no_change,
1865 inode_state_will_create,
1866 inode_state_did_create,
1867 inode_state_will_delete,
1868 inode_state_did_delete,
1869};
1870
1871static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1872 u64 *send_gen, u64 *parent_gen)
1873{
1874 int ret;
1875 int left_ret;
1876 int right_ret;
1877 u64 left_gen;
1878 u64 right_gen;
1879 struct btrfs_inode_info info;
1880
1881 ret = get_inode_info(sctx->send_root, ino, &info);
1882 if (ret < 0 && ret != -ENOENT)
1883 goto out;
1884 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1885 left_gen = info.gen;
1886 if (send_gen)
1887 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1888
1889 if (!sctx->parent_root) {
1890 right_ret = -ENOENT;
1891 } else {
1892 ret = get_inode_info(sctx->parent_root, ino, &info);
1893 if (ret < 0 && ret != -ENOENT)
1894 goto out;
1895 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1896 right_gen = info.gen;
1897 if (parent_gen)
1898 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1899 }
1900
1901 if (!left_ret && !right_ret) {
1902 if (left_gen == gen && right_gen == gen) {
1903 ret = inode_state_no_change;
1904 } else if (left_gen == gen) {
1905 if (ino < sctx->send_progress)
1906 ret = inode_state_did_create;
1907 else
1908 ret = inode_state_will_create;
1909 } else if (right_gen == gen) {
1910 if (ino < sctx->send_progress)
1911 ret = inode_state_did_delete;
1912 else
1913 ret = inode_state_will_delete;
1914 } else {
1915 ret = -ENOENT;
1916 }
1917 } else if (!left_ret) {
1918 if (left_gen == gen) {
1919 if (ino < sctx->send_progress)
1920 ret = inode_state_did_create;
1921 else
1922 ret = inode_state_will_create;
1923 } else {
1924 ret = -ENOENT;
1925 }
1926 } else if (!right_ret) {
1927 if (right_gen == gen) {
1928 if (ino < sctx->send_progress)
1929 ret = inode_state_did_delete;
1930 else
1931 ret = inode_state_will_delete;
1932 } else {
1933 ret = -ENOENT;
1934 }
1935 } else {
1936 ret = -ENOENT;
1937 }
1938
1939out:
1940 return ret;
1941}
1942
1943static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1944 u64 *send_gen, u64 *parent_gen)
1945{
1946 int ret;
1947
1948 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1949 return 1;
1950
1951 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1952 if (ret < 0)
1953 goto out;
1954
1955 if (ret == inode_state_no_change ||
1956 ret == inode_state_did_create ||
1957 ret == inode_state_will_delete)
1958 ret = 1;
1959 else
1960 ret = 0;
1961
1962out:
1963 return ret;
1964}
1965
1966/*
1967 * Helper function to lookup a dir item in a dir.
1968 */
1969static int lookup_dir_item_inode(struct btrfs_root *root,
1970 u64 dir, const char *name, int name_len,
1971 u64 *found_inode)
1972{
1973 int ret = 0;
1974 struct btrfs_dir_item *di;
1975 struct btrfs_key key;
1976 struct btrfs_path *path;
1977 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1978
1979 path = alloc_path_for_send();
1980 if (!path)
1981 return -ENOMEM;
1982
1983 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
1984 if (IS_ERR_OR_NULL(di)) {
1985 ret = di ? PTR_ERR(di) : -ENOENT;
1986 goto out;
1987 }
1988 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1989 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1990 ret = -ENOENT;
1991 goto out;
1992 }
1993 *found_inode = key.objectid;
1994
1995out:
1996 btrfs_free_path(path);
1997 return ret;
1998}
1999
2000/*
2001 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2002 * generation of the parent dir and the name of the dir entry.
2003 */
2004static int get_first_ref(struct btrfs_root *root, u64 ino,
2005 u64 *dir, u64 *dir_gen, struct fs_path *name)
2006{
2007 int ret;
2008 struct btrfs_key key;
2009 struct btrfs_key found_key;
2010 struct btrfs_path *path;
2011 int len;
2012 u64 parent_dir;
2013
2014 path = alloc_path_for_send();
2015 if (!path)
2016 return -ENOMEM;
2017
2018 key.objectid = ino;
2019 key.type = BTRFS_INODE_REF_KEY;
2020 key.offset = 0;
2021
2022 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2023 if (ret < 0)
2024 goto out;
2025 if (!ret)
2026 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2027 path->slots[0]);
2028 if (ret || found_key.objectid != ino ||
2029 (found_key.type != BTRFS_INODE_REF_KEY &&
2030 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2031 ret = -ENOENT;
2032 goto out;
2033 }
2034
2035 if (found_key.type == BTRFS_INODE_REF_KEY) {
2036 struct btrfs_inode_ref *iref;
2037 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2038 struct btrfs_inode_ref);
2039 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2040 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2041 (unsigned long)(iref + 1),
2042 len);
2043 parent_dir = found_key.offset;
2044 } else {
2045 struct btrfs_inode_extref *extref;
2046 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2047 struct btrfs_inode_extref);
2048 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2049 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2050 (unsigned long)&extref->name, len);
2051 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2052 }
2053 if (ret < 0)
2054 goto out;
2055 btrfs_release_path(path);
2056
2057 if (dir_gen) {
2058 ret = get_inode_gen(root, parent_dir, dir_gen);
2059 if (ret < 0)
2060 goto out;
2061 }
2062
2063 *dir = parent_dir;
2064
2065out:
2066 btrfs_free_path(path);
2067 return ret;
2068}
2069
2070static int is_first_ref(struct btrfs_root *root,
2071 u64 ino, u64 dir,
2072 const char *name, int name_len)
2073{
2074 int ret;
2075 struct fs_path *tmp_name;
2076 u64 tmp_dir;
2077
2078 tmp_name = fs_path_alloc();
2079 if (!tmp_name)
2080 return -ENOMEM;
2081
2082 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2083 if (ret < 0)
2084 goto out;
2085
2086 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2087 ret = 0;
2088 goto out;
2089 }
2090
2091 ret = !memcmp(tmp_name->start, name, name_len);
2092
2093out:
2094 fs_path_free(tmp_name);
2095 return ret;
2096}
2097
2098/*
2099 * Used by process_recorded_refs to determine if a new ref would overwrite an
2100 * already existing ref. In case it detects an overwrite, it returns the
2101 * inode/gen in who_ino/who_gen.
2102 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2103 * to make sure later references to the overwritten inode are possible.
2104 * Orphanizing is however only required for the first ref of an inode.
2105 * process_recorded_refs does an additional is_first_ref check to see if
2106 * orphanizing is really required.
2107 */
2108static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2109 const char *name, int name_len,
2110 u64 *who_ino, u64 *who_gen, u64 *who_mode)
2111{
2112 int ret;
2113 u64 parent_root_dir_gen;
2114 u64 other_inode = 0;
2115 struct btrfs_inode_info info;
2116
2117 if (!sctx->parent_root)
2118 return 0;
2119
2120 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2121 if (ret <= 0)
2122 return 0;
2123
2124 /*
2125 * If we have a parent root we need to verify that the parent dir was
2126 * not deleted and then re-created, if it was then we have no overwrite
2127 * and we can just unlink this entry.
2128 *
2129 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2130 * parent root.
2131 */
2132 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2133 parent_root_dir_gen != dir_gen)
2134 return 0;
2135
2136 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2137 &other_inode);
2138 if (ret == -ENOENT)
2139 return 0;
2140 else if (ret < 0)
2141 return ret;
2142
2143 /*
2144 * Check if the overwritten ref was already processed. If yes, the ref
2145 * was already unlinked/moved, so we can safely assume that we will not
2146 * overwrite anything at this point in time.
2147 */
2148 if (other_inode > sctx->send_progress ||
2149 is_waiting_for_move(sctx, other_inode)) {
2150 ret = get_inode_info(sctx->parent_root, other_inode, &info);
2151 if (ret < 0)
2152 return ret;
2153
2154 *who_ino = other_inode;
2155 *who_gen = info.gen;
2156 *who_mode = info.mode;
2157 return 1;
2158 }
2159
2160 return 0;
2161}
2162
2163/*
2164 * Checks if the ref was overwritten by an already processed inode. This is
2165 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2166 * thus the orphan name needs be used.
2167 * process_recorded_refs also uses it to avoid unlinking of refs that were
2168 * overwritten.
2169 */
2170static int did_overwrite_ref(struct send_ctx *sctx,
2171 u64 dir, u64 dir_gen,
2172 u64 ino, u64 ino_gen,
2173 const char *name, int name_len)
2174{
2175 int ret;
2176 u64 ow_inode;
2177 u64 ow_gen = 0;
2178 u64 send_root_dir_gen;
2179
2180 if (!sctx->parent_root)
2181 return 0;
2182
2183 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2184 if (ret <= 0)
2185 return ret;
2186
2187 /*
2188 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2189 * send root.
2190 */
2191 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2192 return 0;
2193
2194 /* check if the ref was overwritten by another ref */
2195 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2196 &ow_inode);
2197 if (ret == -ENOENT) {
2198 /* was never and will never be overwritten */
2199 return 0;
2200 } else if (ret < 0) {
2201 return ret;
2202 }
2203
2204 if (ow_inode == ino) {
2205 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2206 if (ret < 0)
2207 return ret;
2208
2209 /* It's the same inode, so no overwrite happened. */
2210 if (ow_gen == ino_gen)
2211 return 0;
2212 }
2213
2214 /*
2215 * We know that it is or will be overwritten. Check this now.
2216 * The current inode being processed might have been the one that caused
2217 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2218 * the current inode being processed.
2219 */
2220 if (ow_inode < sctx->send_progress)
2221 return 1;
2222
2223 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2224 if (ow_gen == 0) {
2225 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2226 if (ret < 0)
2227 return ret;
2228 }
2229 if (ow_gen == sctx->cur_inode_gen)
2230 return 1;
2231 }
2232
2233 return 0;
2234}
2235
2236/*
2237 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2238 * that got overwritten. This is used by process_recorded_refs to determine
2239 * if it has to use the path as returned by get_cur_path or the orphan name.
2240 */
2241static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2242{
2243 int ret = 0;
2244 struct fs_path *name = NULL;
2245 u64 dir;
2246 u64 dir_gen;
2247
2248 if (!sctx->parent_root)
2249 goto out;
2250
2251 name = fs_path_alloc();
2252 if (!name)
2253 return -ENOMEM;
2254
2255 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2256 if (ret < 0)
2257 goto out;
2258
2259 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2260 name->start, fs_path_len(name));
2261
2262out:
2263 fs_path_free(name);
2264 return ret;
2265}
2266
2267static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2268 u64 ino, u64 gen)
2269{
2270 struct btrfs_lru_cache_entry *entry;
2271
2272 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2273 if (!entry)
2274 return NULL;
2275
2276 return container_of(entry, struct name_cache_entry, entry);
2277}
2278
2279/*
2280 * Used by get_cur_path for each ref up to the root.
2281 * Returns 0 if it succeeded.
2282 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2283 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2284 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2285 * Returns <0 in case of error.
2286 */
2287static int __get_cur_name_and_parent(struct send_ctx *sctx,
2288 u64 ino, u64 gen,
2289 u64 *parent_ino,
2290 u64 *parent_gen,
2291 struct fs_path *dest)
2292{
2293 int ret;
2294 int nce_ret;
2295 struct name_cache_entry *nce;
2296
2297 /*
2298 * First check if we already did a call to this function with the same
2299 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2300 * return the cached result.
2301 */
2302 nce = name_cache_search(sctx, ino, gen);
2303 if (nce) {
2304 if (ino < sctx->send_progress && nce->need_later_update) {
2305 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2306 nce = NULL;
2307 } else {
2308 *parent_ino = nce->parent_ino;
2309 *parent_gen = nce->parent_gen;
2310 ret = fs_path_add(dest, nce->name, nce->name_len);
2311 if (ret < 0)
2312 goto out;
2313 ret = nce->ret;
2314 goto out;
2315 }
2316 }
2317
2318 /*
2319 * If the inode is not existent yet, add the orphan name and return 1.
2320 * This should only happen for the parent dir that we determine in
2321 * record_new_ref_if_needed().
2322 */
2323 ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2324 if (ret < 0)
2325 goto out;
2326
2327 if (!ret) {
2328 ret = gen_unique_name(sctx, ino, gen, dest);
2329 if (ret < 0)
2330 goto out;
2331 ret = 1;
2332 goto out_cache;
2333 }
2334
2335 /*
2336 * Depending on whether the inode was already processed or not, use
2337 * send_root or parent_root for ref lookup.
2338 */
2339 if (ino < sctx->send_progress)
2340 ret = get_first_ref(sctx->send_root, ino,
2341 parent_ino, parent_gen, dest);
2342 else
2343 ret = get_first_ref(sctx->parent_root, ino,
2344 parent_ino, parent_gen, dest);
2345 if (ret < 0)
2346 goto out;
2347
2348 /*
2349 * Check if the ref was overwritten by an inode's ref that was processed
2350 * earlier. If yes, treat as orphan and return 1.
2351 */
2352 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2353 dest->start, dest->end - dest->start);
2354 if (ret < 0)
2355 goto out;
2356 if (ret) {
2357 fs_path_reset(dest);
2358 ret = gen_unique_name(sctx, ino, gen, dest);
2359 if (ret < 0)
2360 goto out;
2361 ret = 1;
2362 }
2363
2364out_cache:
2365 /*
2366 * Store the result of the lookup in the name cache.
2367 */
2368 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2369 if (!nce) {
2370 ret = -ENOMEM;
2371 goto out;
2372 }
2373
2374 nce->entry.key = ino;
2375 nce->entry.gen = gen;
2376 nce->parent_ino = *parent_ino;
2377 nce->parent_gen = *parent_gen;
2378 nce->name_len = fs_path_len(dest);
2379 nce->ret = ret;
2380 strcpy(nce->name, dest->start);
2381
2382 if (ino < sctx->send_progress)
2383 nce->need_later_update = 0;
2384 else
2385 nce->need_later_update = 1;
2386
2387 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2388 if (nce_ret < 0) {
2389 kfree(nce);
2390 ret = nce_ret;
2391 }
2392
2393out:
2394 return ret;
2395}
2396
2397/*
2398 * Magic happens here. This function returns the first ref to an inode as it
2399 * would look like while receiving the stream at this point in time.
2400 * We walk the path up to the root. For every inode in between, we check if it
2401 * was already processed/sent. If yes, we continue with the parent as found
2402 * in send_root. If not, we continue with the parent as found in parent_root.
2403 * If we encounter an inode that was deleted at this point in time, we use the
2404 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2405 * that were not created yet and overwritten inodes/refs.
2406 *
2407 * When do we have orphan inodes:
2408 * 1. When an inode is freshly created and thus no valid refs are available yet
2409 * 2. When a directory lost all it's refs (deleted) but still has dir items
2410 * inside which were not processed yet (pending for move/delete). If anyone
2411 * tried to get the path to the dir items, it would get a path inside that
2412 * orphan directory.
2413 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2414 * of an unprocessed inode. If in that case the first ref would be
2415 * overwritten, the overwritten inode gets "orphanized". Later when we
2416 * process this overwritten inode, it is restored at a new place by moving
2417 * the orphan inode.
2418 *
2419 * sctx->send_progress tells this function at which point in time receiving
2420 * would be.
2421 */
2422static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2423 struct fs_path *dest)
2424{
2425 int ret = 0;
2426 struct fs_path *name = NULL;
2427 u64 parent_inode = 0;
2428 u64 parent_gen = 0;
2429 int stop = 0;
2430
2431 name = fs_path_alloc();
2432 if (!name) {
2433 ret = -ENOMEM;
2434 goto out;
2435 }
2436
2437 dest->reversed = 1;
2438 fs_path_reset(dest);
2439
2440 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2441 struct waiting_dir_move *wdm;
2442
2443 fs_path_reset(name);
2444
2445 if (is_waiting_for_rm(sctx, ino, gen)) {
2446 ret = gen_unique_name(sctx, ino, gen, name);
2447 if (ret < 0)
2448 goto out;
2449 ret = fs_path_add_path(dest, name);
2450 break;
2451 }
2452
2453 wdm = get_waiting_dir_move(sctx, ino);
2454 if (wdm && wdm->orphanized) {
2455 ret = gen_unique_name(sctx, ino, gen, name);
2456 stop = 1;
2457 } else if (wdm) {
2458 ret = get_first_ref(sctx->parent_root, ino,
2459 &parent_inode, &parent_gen, name);
2460 } else {
2461 ret = __get_cur_name_and_parent(sctx, ino, gen,
2462 &parent_inode,
2463 &parent_gen, name);
2464 if (ret)
2465 stop = 1;
2466 }
2467
2468 if (ret < 0)
2469 goto out;
2470
2471 ret = fs_path_add_path(dest, name);
2472 if (ret < 0)
2473 goto out;
2474
2475 ino = parent_inode;
2476 gen = parent_gen;
2477 }
2478
2479out:
2480 fs_path_free(name);
2481 if (!ret)
2482 fs_path_unreverse(dest);
2483 return ret;
2484}
2485
2486/*
2487 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2488 */
2489static int send_subvol_begin(struct send_ctx *sctx)
2490{
2491 int ret;
2492 struct btrfs_root *send_root = sctx->send_root;
2493 struct btrfs_root *parent_root = sctx->parent_root;
2494 struct btrfs_path *path;
2495 struct btrfs_key key;
2496 struct btrfs_root_ref *ref;
2497 struct extent_buffer *leaf;
2498 char *name = NULL;
2499 int namelen;
2500
2501 path = btrfs_alloc_path();
2502 if (!path)
2503 return -ENOMEM;
2504
2505 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2506 if (!name) {
2507 btrfs_free_path(path);
2508 return -ENOMEM;
2509 }
2510
2511 key.objectid = send_root->root_key.objectid;
2512 key.type = BTRFS_ROOT_BACKREF_KEY;
2513 key.offset = 0;
2514
2515 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2516 &key, path, 1, 0);
2517 if (ret < 0)
2518 goto out;
2519 if (ret) {
2520 ret = -ENOENT;
2521 goto out;
2522 }
2523
2524 leaf = path->nodes[0];
2525 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2526 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2527 key.objectid != send_root->root_key.objectid) {
2528 ret = -ENOENT;
2529 goto out;
2530 }
2531 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2532 namelen = btrfs_root_ref_name_len(leaf, ref);
2533 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2534 btrfs_release_path(path);
2535
2536 if (parent_root) {
2537 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2538 if (ret < 0)
2539 goto out;
2540 } else {
2541 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2542 if (ret < 0)
2543 goto out;
2544 }
2545
2546 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2547
2548 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2549 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2550 sctx->send_root->root_item.received_uuid);
2551 else
2552 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2553 sctx->send_root->root_item.uuid);
2554
2555 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2556 btrfs_root_ctransid(&sctx->send_root->root_item));
2557 if (parent_root) {
2558 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2559 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2560 parent_root->root_item.received_uuid);
2561 else
2562 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2563 parent_root->root_item.uuid);
2564 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2565 btrfs_root_ctransid(&sctx->parent_root->root_item));
2566 }
2567
2568 ret = send_cmd(sctx);
2569
2570tlv_put_failure:
2571out:
2572 btrfs_free_path(path);
2573 kfree(name);
2574 return ret;
2575}
2576
2577static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2578{
2579 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2580 int ret = 0;
2581 struct fs_path *p;
2582
2583 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2584
2585 p = fs_path_alloc();
2586 if (!p)
2587 return -ENOMEM;
2588
2589 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2590 if (ret < 0)
2591 goto out;
2592
2593 ret = get_cur_path(sctx, ino, gen, p);
2594 if (ret < 0)
2595 goto out;
2596 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2597 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2598
2599 ret = send_cmd(sctx);
2600
2601tlv_put_failure:
2602out:
2603 fs_path_free(p);
2604 return ret;
2605}
2606
2607static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2608{
2609 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2610 int ret = 0;
2611 struct fs_path *p;
2612
2613 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2614
2615 p = fs_path_alloc();
2616 if (!p)
2617 return -ENOMEM;
2618
2619 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2620 if (ret < 0)
2621 goto out;
2622
2623 ret = get_cur_path(sctx, ino, gen, p);
2624 if (ret < 0)
2625 goto out;
2626 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2627 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2628
2629 ret = send_cmd(sctx);
2630
2631tlv_put_failure:
2632out:
2633 fs_path_free(p);
2634 return ret;
2635}
2636
2637static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2638{
2639 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2640 int ret = 0;
2641 struct fs_path *p;
2642
2643 if (sctx->proto < 2)
2644 return 0;
2645
2646 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2647
2648 p = fs_path_alloc();
2649 if (!p)
2650 return -ENOMEM;
2651
2652 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2653 if (ret < 0)
2654 goto out;
2655
2656 ret = get_cur_path(sctx, ino, gen, p);
2657 if (ret < 0)
2658 goto out;
2659 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2660 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2661
2662 ret = send_cmd(sctx);
2663
2664tlv_put_failure:
2665out:
2666 fs_path_free(p);
2667 return ret;
2668}
2669
2670static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2671{
2672 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2673 int ret = 0;
2674 struct fs_path *p;
2675
2676 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2677 ino, uid, gid);
2678
2679 p = fs_path_alloc();
2680 if (!p)
2681 return -ENOMEM;
2682
2683 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2684 if (ret < 0)
2685 goto out;
2686
2687 ret = get_cur_path(sctx, ino, gen, p);
2688 if (ret < 0)
2689 goto out;
2690 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2691 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2692 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2693
2694 ret = send_cmd(sctx);
2695
2696tlv_put_failure:
2697out:
2698 fs_path_free(p);
2699 return ret;
2700}
2701
2702static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2703{
2704 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2705 int ret = 0;
2706 struct fs_path *p = NULL;
2707 struct btrfs_inode_item *ii;
2708 struct btrfs_path *path = NULL;
2709 struct extent_buffer *eb;
2710 struct btrfs_key key;
2711 int slot;
2712
2713 btrfs_debug(fs_info, "send_utimes %llu", ino);
2714
2715 p = fs_path_alloc();
2716 if (!p)
2717 return -ENOMEM;
2718
2719 path = alloc_path_for_send();
2720 if (!path) {
2721 ret = -ENOMEM;
2722 goto out;
2723 }
2724
2725 key.objectid = ino;
2726 key.type = BTRFS_INODE_ITEM_KEY;
2727 key.offset = 0;
2728 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2729 if (ret > 0)
2730 ret = -ENOENT;
2731 if (ret < 0)
2732 goto out;
2733
2734 eb = path->nodes[0];
2735 slot = path->slots[0];
2736 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2737
2738 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2739 if (ret < 0)
2740 goto out;
2741
2742 ret = get_cur_path(sctx, ino, gen, p);
2743 if (ret < 0)
2744 goto out;
2745 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2746 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2747 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2748 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2749 if (sctx->proto >= 2)
2750 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2751
2752 ret = send_cmd(sctx);
2753
2754tlv_put_failure:
2755out:
2756 fs_path_free(p);
2757 btrfs_free_path(path);
2758 return ret;
2759}
2760
2761/*
2762 * If the cache is full, we can't remove entries from it and do a call to
2763 * send_utimes() for each respective inode, because we might be finishing
2764 * processing an inode that is a directory and it just got renamed, and existing
2765 * entries in the cache may refer to inodes that have the directory in their
2766 * full path - in which case we would generate outdated paths (pre-rename)
2767 * for the inodes that the cache entries point to. Instead of prunning the
2768 * cache when inserting, do it after we finish processing each inode at
2769 * finish_inode_if_needed().
2770 */
2771static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2772{
2773 struct btrfs_lru_cache_entry *entry;
2774 int ret;
2775
2776 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2777 if (entry != NULL)
2778 return 0;
2779
2780 /* Caching is optional, don't fail if we can't allocate memory. */
2781 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2782 if (!entry)
2783 return send_utimes(sctx, dir, gen);
2784
2785 entry->key = dir;
2786 entry->gen = gen;
2787
2788 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2789 ASSERT(ret != -EEXIST);
2790 if (ret) {
2791 kfree(entry);
2792 return send_utimes(sctx, dir, gen);
2793 }
2794
2795 return 0;
2796}
2797
2798static int trim_dir_utimes_cache(struct send_ctx *sctx)
2799{
2800 while (btrfs_lru_cache_size(&sctx->dir_utimes_cache) >
2801 SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2802 struct btrfs_lru_cache_entry *lru;
2803 int ret;
2804
2805 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2806 ASSERT(lru != NULL);
2807
2808 ret = send_utimes(sctx, lru->key, lru->gen);
2809 if (ret)
2810 return ret;
2811
2812 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2813 }
2814
2815 return 0;
2816}
2817
2818/*
2819 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2820 * a valid path yet because we did not process the refs yet. So, the inode
2821 * is created as orphan.
2822 */
2823static int send_create_inode(struct send_ctx *sctx, u64 ino)
2824{
2825 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2826 int ret = 0;
2827 struct fs_path *p;
2828 int cmd;
2829 struct btrfs_inode_info info;
2830 u64 gen;
2831 u64 mode;
2832 u64 rdev;
2833
2834 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2835
2836 p = fs_path_alloc();
2837 if (!p)
2838 return -ENOMEM;
2839
2840 if (ino != sctx->cur_ino) {
2841 ret = get_inode_info(sctx->send_root, ino, &info);
2842 if (ret < 0)
2843 goto out;
2844 gen = info.gen;
2845 mode = info.mode;
2846 rdev = info.rdev;
2847 } else {
2848 gen = sctx->cur_inode_gen;
2849 mode = sctx->cur_inode_mode;
2850 rdev = sctx->cur_inode_rdev;
2851 }
2852
2853 if (S_ISREG(mode)) {
2854 cmd = BTRFS_SEND_C_MKFILE;
2855 } else if (S_ISDIR(mode)) {
2856 cmd = BTRFS_SEND_C_MKDIR;
2857 } else if (S_ISLNK(mode)) {
2858 cmd = BTRFS_SEND_C_SYMLINK;
2859 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2860 cmd = BTRFS_SEND_C_MKNOD;
2861 } else if (S_ISFIFO(mode)) {
2862 cmd = BTRFS_SEND_C_MKFIFO;
2863 } else if (S_ISSOCK(mode)) {
2864 cmd = BTRFS_SEND_C_MKSOCK;
2865 } else {
2866 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2867 (int)(mode & S_IFMT));
2868 ret = -EOPNOTSUPP;
2869 goto out;
2870 }
2871
2872 ret = begin_cmd(sctx, cmd);
2873 if (ret < 0)
2874 goto out;
2875
2876 ret = gen_unique_name(sctx, ino, gen, p);
2877 if (ret < 0)
2878 goto out;
2879
2880 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2881 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2882
2883 if (S_ISLNK(mode)) {
2884 fs_path_reset(p);
2885 ret = read_symlink(sctx->send_root, ino, p);
2886 if (ret < 0)
2887 goto out;
2888 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2889 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2890 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2891 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2892 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2893 }
2894
2895 ret = send_cmd(sctx);
2896 if (ret < 0)
2897 goto out;
2898
2899
2900tlv_put_failure:
2901out:
2902 fs_path_free(p);
2903 return ret;
2904}
2905
2906static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2907{
2908 struct btrfs_lru_cache_entry *entry;
2909 int ret;
2910
2911 /* Caching is optional, ignore any failures. */
2912 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2913 if (!entry)
2914 return;
2915
2916 entry->key = dir;
2917 entry->gen = 0;
2918 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2919 if (ret < 0)
2920 kfree(entry);
2921}
2922
2923/*
2924 * We need some special handling for inodes that get processed before the parent
2925 * directory got created. See process_recorded_refs for details.
2926 * This function does the check if we already created the dir out of order.
2927 */
2928static int did_create_dir(struct send_ctx *sctx, u64 dir)
2929{
2930 int ret = 0;
2931 int iter_ret = 0;
2932 struct btrfs_path *path = NULL;
2933 struct btrfs_key key;
2934 struct btrfs_key found_key;
2935 struct btrfs_key di_key;
2936 struct btrfs_dir_item *di;
2937
2938 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2939 return 1;
2940
2941 path = alloc_path_for_send();
2942 if (!path)
2943 return -ENOMEM;
2944
2945 key.objectid = dir;
2946 key.type = BTRFS_DIR_INDEX_KEY;
2947 key.offset = 0;
2948
2949 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2950 struct extent_buffer *eb = path->nodes[0];
2951
2952 if (found_key.objectid != key.objectid ||
2953 found_key.type != key.type) {
2954 ret = 0;
2955 break;
2956 }
2957
2958 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2959 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2960
2961 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2962 di_key.objectid < sctx->send_progress) {
2963 ret = 1;
2964 cache_dir_created(sctx, dir);
2965 break;
2966 }
2967 }
2968 /* Catch error found during iteration */
2969 if (iter_ret < 0)
2970 ret = iter_ret;
2971
2972 btrfs_free_path(path);
2973 return ret;
2974}
2975
2976/*
2977 * Only creates the inode if it is:
2978 * 1. Not a directory
2979 * 2. Or a directory which was not created already due to out of order
2980 * directories. See did_create_dir and process_recorded_refs for details.
2981 */
2982static int send_create_inode_if_needed(struct send_ctx *sctx)
2983{
2984 int ret;
2985
2986 if (S_ISDIR(sctx->cur_inode_mode)) {
2987 ret = did_create_dir(sctx, sctx->cur_ino);
2988 if (ret < 0)
2989 return ret;
2990 else if (ret > 0)
2991 return 0;
2992 }
2993
2994 ret = send_create_inode(sctx, sctx->cur_ino);
2995
2996 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
2997 cache_dir_created(sctx, sctx->cur_ino);
2998
2999 return ret;
3000}
3001
3002struct recorded_ref {
3003 struct list_head list;
3004 char *name;
3005 struct fs_path *full_path;
3006 u64 dir;
3007 u64 dir_gen;
3008 int name_len;
3009 struct rb_node node;
3010 struct rb_root *root;
3011};
3012
3013static struct recorded_ref *recorded_ref_alloc(void)
3014{
3015 struct recorded_ref *ref;
3016
3017 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3018 if (!ref)
3019 return NULL;
3020 RB_CLEAR_NODE(&ref->node);
3021 INIT_LIST_HEAD(&ref->list);
3022 return ref;
3023}
3024
3025static void recorded_ref_free(struct recorded_ref *ref)
3026{
3027 if (!ref)
3028 return;
3029 if (!RB_EMPTY_NODE(&ref->node))
3030 rb_erase(&ref->node, ref->root);
3031 list_del(&ref->list);
3032 fs_path_free(ref->full_path);
3033 kfree(ref);
3034}
3035
3036static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3037{
3038 ref->full_path = path;
3039 ref->name = (char *)kbasename(ref->full_path->start);
3040 ref->name_len = ref->full_path->end - ref->name;
3041}
3042
3043static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3044{
3045 struct recorded_ref *new;
3046
3047 new = recorded_ref_alloc();
3048 if (!new)
3049 return -ENOMEM;
3050
3051 new->dir = ref->dir;
3052 new->dir_gen = ref->dir_gen;
3053 list_add_tail(&new->list, list);
3054 return 0;
3055}
3056
3057static void __free_recorded_refs(struct list_head *head)
3058{
3059 struct recorded_ref *cur;
3060
3061 while (!list_empty(head)) {
3062 cur = list_entry(head->next, struct recorded_ref, list);
3063 recorded_ref_free(cur);
3064 }
3065}
3066
3067static void free_recorded_refs(struct send_ctx *sctx)
3068{
3069 __free_recorded_refs(&sctx->new_refs);
3070 __free_recorded_refs(&sctx->deleted_refs);
3071}
3072
3073/*
3074 * Renames/moves a file/dir to its orphan name. Used when the first
3075 * ref of an unprocessed inode gets overwritten and for all non empty
3076 * directories.
3077 */
3078static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3079 struct fs_path *path)
3080{
3081 int ret;
3082 struct fs_path *orphan;
3083
3084 orphan = fs_path_alloc();
3085 if (!orphan)
3086 return -ENOMEM;
3087
3088 ret = gen_unique_name(sctx, ino, gen, orphan);
3089 if (ret < 0)
3090 goto out;
3091
3092 ret = send_rename(sctx, path, orphan);
3093
3094out:
3095 fs_path_free(orphan);
3096 return ret;
3097}
3098
3099static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3100 u64 dir_ino, u64 dir_gen)
3101{
3102 struct rb_node **p = &sctx->orphan_dirs.rb_node;
3103 struct rb_node *parent = NULL;
3104 struct orphan_dir_info *entry, *odi;
3105
3106 while (*p) {
3107 parent = *p;
3108 entry = rb_entry(parent, struct orphan_dir_info, node);
3109 if (dir_ino < entry->ino)
3110 p = &(*p)->rb_left;
3111 else if (dir_ino > entry->ino)
3112 p = &(*p)->rb_right;
3113 else if (dir_gen < entry->gen)
3114 p = &(*p)->rb_left;
3115 else if (dir_gen > entry->gen)
3116 p = &(*p)->rb_right;
3117 else
3118 return entry;
3119 }
3120
3121 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3122 if (!odi)
3123 return ERR_PTR(-ENOMEM);
3124 odi->ino = dir_ino;
3125 odi->gen = dir_gen;
3126 odi->last_dir_index_offset = 0;
3127 odi->dir_high_seq_ino = 0;
3128
3129 rb_link_node(&odi->node, parent, p);
3130 rb_insert_color(&odi->node, &sctx->orphan_dirs);
3131 return odi;
3132}
3133
3134static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3135 u64 dir_ino, u64 gen)
3136{
3137 struct rb_node *n = sctx->orphan_dirs.rb_node;
3138 struct orphan_dir_info *entry;
3139
3140 while (n) {
3141 entry = rb_entry(n, struct orphan_dir_info, node);
3142 if (dir_ino < entry->ino)
3143 n = n->rb_left;
3144 else if (dir_ino > entry->ino)
3145 n = n->rb_right;
3146 else if (gen < entry->gen)
3147 n = n->rb_left;
3148 else if (gen > entry->gen)
3149 n = n->rb_right;
3150 else
3151 return entry;
3152 }
3153 return NULL;
3154}
3155
3156static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3157{
3158 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3159
3160 return odi != NULL;
3161}
3162
3163static void free_orphan_dir_info(struct send_ctx *sctx,
3164 struct orphan_dir_info *odi)
3165{
3166 if (!odi)
3167 return;
3168 rb_erase(&odi->node, &sctx->orphan_dirs);
3169 kfree(odi);
3170}
3171
3172/*
3173 * Returns 1 if a directory can be removed at this point in time.
3174 * We check this by iterating all dir items and checking if the inode behind
3175 * the dir item was already processed.
3176 */
3177static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3178{
3179 int ret = 0;
3180 int iter_ret = 0;
3181 struct btrfs_root *root = sctx->parent_root;
3182 struct btrfs_path *path;
3183 struct btrfs_key key;
3184 struct btrfs_key found_key;
3185 struct btrfs_key loc;
3186 struct btrfs_dir_item *di;
3187 struct orphan_dir_info *odi = NULL;
3188 u64 dir_high_seq_ino = 0;
3189 u64 last_dir_index_offset = 0;
3190
3191 /*
3192 * Don't try to rmdir the top/root subvolume dir.
3193 */
3194 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3195 return 0;
3196
3197 odi = get_orphan_dir_info(sctx, dir, dir_gen);
3198 if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3199 return 0;
3200
3201 path = alloc_path_for_send();
3202 if (!path)
3203 return -ENOMEM;
3204
3205 if (!odi) {
3206 /*
3207 * Find the inode number associated with the last dir index
3208 * entry. This is very likely the inode with the highest number
3209 * of all inodes that have an entry in the directory. We can
3210 * then use it to avoid future calls to can_rmdir(), when
3211 * processing inodes with a lower number, from having to search
3212 * the parent root b+tree for dir index keys.
3213 */
3214 key.objectid = dir;
3215 key.type = BTRFS_DIR_INDEX_KEY;
3216 key.offset = (u64)-1;
3217
3218 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3219 if (ret < 0) {
3220 goto out;
3221 } else if (ret > 0) {
3222 /* Can't happen, the root is never empty. */
3223 ASSERT(path->slots[0] > 0);
3224 if (WARN_ON(path->slots[0] == 0)) {
3225 ret = -EUCLEAN;
3226 goto out;
3227 }
3228 path->slots[0]--;
3229 }
3230
3231 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3232 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3233 /* No index keys, dir can be removed. */
3234 ret = 1;
3235 goto out;
3236 }
3237
3238 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3239 struct btrfs_dir_item);
3240 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3241 dir_high_seq_ino = loc.objectid;
3242 if (sctx->cur_ino < dir_high_seq_ino) {
3243 ret = 0;
3244 goto out;
3245 }
3246
3247 btrfs_release_path(path);
3248 }
3249
3250 key.objectid = dir;
3251 key.type = BTRFS_DIR_INDEX_KEY;
3252 key.offset = (odi ? odi->last_dir_index_offset : 0);
3253
3254 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3255 struct waiting_dir_move *dm;
3256
3257 if (found_key.objectid != key.objectid ||
3258 found_key.type != key.type)
3259 break;
3260
3261 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3262 struct btrfs_dir_item);
3263 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3264
3265 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3266 last_dir_index_offset = found_key.offset;
3267
3268 dm = get_waiting_dir_move(sctx, loc.objectid);
3269 if (dm) {
3270 dm->rmdir_ino = dir;
3271 dm->rmdir_gen = dir_gen;
3272 ret = 0;
3273 goto out;
3274 }
3275
3276 if (loc.objectid > sctx->cur_ino) {
3277 ret = 0;
3278 goto out;
3279 }
3280 }
3281 if (iter_ret < 0) {
3282 ret = iter_ret;
3283 goto out;
3284 }
3285 free_orphan_dir_info(sctx, odi);
3286
3287 ret = 1;
3288
3289out:
3290 btrfs_free_path(path);
3291
3292 if (ret)
3293 return ret;
3294
3295 if (!odi) {
3296 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3297 if (IS_ERR(odi))
3298 return PTR_ERR(odi);
3299
3300 odi->gen = dir_gen;
3301 }
3302
3303 odi->last_dir_index_offset = last_dir_index_offset;
3304 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3305
3306 return 0;
3307}
3308
3309static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3310{
3311 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3312
3313 return entry != NULL;
3314}
3315
3316static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3317{
3318 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3319 struct rb_node *parent = NULL;
3320 struct waiting_dir_move *entry, *dm;
3321
3322 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3323 if (!dm)
3324 return -ENOMEM;
3325 dm->ino = ino;
3326 dm->rmdir_ino = 0;
3327 dm->rmdir_gen = 0;
3328 dm->orphanized = orphanized;
3329
3330 while (*p) {
3331 parent = *p;
3332 entry = rb_entry(parent, struct waiting_dir_move, node);
3333 if (ino < entry->ino) {
3334 p = &(*p)->rb_left;
3335 } else if (ino > entry->ino) {
3336 p = &(*p)->rb_right;
3337 } else {
3338 kfree(dm);
3339 return -EEXIST;
3340 }
3341 }
3342
3343 rb_link_node(&dm->node, parent, p);
3344 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3345 return 0;
3346}
3347
3348static struct waiting_dir_move *
3349get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3350{
3351 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3352 struct waiting_dir_move *entry;
3353
3354 while (n) {
3355 entry = rb_entry(n, struct waiting_dir_move, node);
3356 if (ino < entry->ino)
3357 n = n->rb_left;
3358 else if (ino > entry->ino)
3359 n = n->rb_right;
3360 else
3361 return entry;
3362 }
3363 return NULL;
3364}
3365
3366static void free_waiting_dir_move(struct send_ctx *sctx,
3367 struct waiting_dir_move *dm)
3368{
3369 if (!dm)
3370 return;
3371 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3372 kfree(dm);
3373}
3374
3375static int add_pending_dir_move(struct send_ctx *sctx,
3376 u64 ino,
3377 u64 ino_gen,
3378 u64 parent_ino,
3379 struct list_head *new_refs,
3380 struct list_head *deleted_refs,
3381 const bool is_orphan)
3382{
3383 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3384 struct rb_node *parent = NULL;
3385 struct pending_dir_move *entry = NULL, *pm;
3386 struct recorded_ref *cur;
3387 int exists = 0;
3388 int ret;
3389
3390 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3391 if (!pm)
3392 return -ENOMEM;
3393 pm->parent_ino = parent_ino;
3394 pm->ino = ino;
3395 pm->gen = ino_gen;
3396 INIT_LIST_HEAD(&pm->list);
3397 INIT_LIST_HEAD(&pm->update_refs);
3398 RB_CLEAR_NODE(&pm->node);
3399
3400 while (*p) {
3401 parent = *p;
3402 entry = rb_entry(parent, struct pending_dir_move, node);
3403 if (parent_ino < entry->parent_ino) {
3404 p = &(*p)->rb_left;
3405 } else if (parent_ino > entry->parent_ino) {
3406 p = &(*p)->rb_right;
3407 } else {
3408 exists = 1;
3409 break;
3410 }
3411 }
3412
3413 list_for_each_entry(cur, deleted_refs, list) {
3414 ret = dup_ref(cur, &pm->update_refs);
3415 if (ret < 0)
3416 goto out;
3417 }
3418 list_for_each_entry(cur, new_refs, list) {
3419 ret = dup_ref(cur, &pm->update_refs);
3420 if (ret < 0)
3421 goto out;
3422 }
3423
3424 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3425 if (ret)
3426 goto out;
3427
3428 if (exists) {
3429 list_add_tail(&pm->list, &entry->list);
3430 } else {
3431 rb_link_node(&pm->node, parent, p);
3432 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3433 }
3434 ret = 0;
3435out:
3436 if (ret) {
3437 __free_recorded_refs(&pm->update_refs);
3438 kfree(pm);
3439 }
3440 return ret;
3441}
3442
3443static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3444 u64 parent_ino)
3445{
3446 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3447 struct pending_dir_move *entry;
3448
3449 while (n) {
3450 entry = rb_entry(n, struct pending_dir_move, node);
3451 if (parent_ino < entry->parent_ino)
3452 n = n->rb_left;
3453 else if (parent_ino > entry->parent_ino)
3454 n = n->rb_right;
3455 else
3456 return entry;
3457 }
3458 return NULL;
3459}
3460
3461static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3462 u64 ino, u64 gen, u64 *ancestor_ino)
3463{
3464 int ret = 0;
3465 u64 parent_inode = 0;
3466 u64 parent_gen = 0;
3467 u64 start_ino = ino;
3468
3469 *ancestor_ino = 0;
3470 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3471 fs_path_reset(name);
3472
3473 if (is_waiting_for_rm(sctx, ino, gen))
3474 break;
3475 if (is_waiting_for_move(sctx, ino)) {
3476 if (*ancestor_ino == 0)
3477 *ancestor_ino = ino;
3478 ret = get_first_ref(sctx->parent_root, ino,
3479 &parent_inode, &parent_gen, name);
3480 } else {
3481 ret = __get_cur_name_and_parent(sctx, ino, gen,
3482 &parent_inode,
3483 &parent_gen, name);
3484 if (ret > 0) {
3485 ret = 0;
3486 break;
3487 }
3488 }
3489 if (ret < 0)
3490 break;
3491 if (parent_inode == start_ino) {
3492 ret = 1;
3493 if (*ancestor_ino == 0)
3494 *ancestor_ino = ino;
3495 break;
3496 }
3497 ino = parent_inode;
3498 gen = parent_gen;
3499 }
3500 return ret;
3501}
3502
3503static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3504{
3505 struct fs_path *from_path = NULL;
3506 struct fs_path *to_path = NULL;
3507 struct fs_path *name = NULL;
3508 u64 orig_progress = sctx->send_progress;
3509 struct recorded_ref *cur;
3510 u64 parent_ino, parent_gen;
3511 struct waiting_dir_move *dm = NULL;
3512 u64 rmdir_ino = 0;
3513 u64 rmdir_gen;
3514 u64 ancestor;
3515 bool is_orphan;
3516 int ret;
3517
3518 name = fs_path_alloc();
3519 from_path = fs_path_alloc();
3520 if (!name || !from_path) {
3521 ret = -ENOMEM;
3522 goto out;
3523 }
3524
3525 dm = get_waiting_dir_move(sctx, pm->ino);
3526 ASSERT(dm);
3527 rmdir_ino = dm->rmdir_ino;
3528 rmdir_gen = dm->rmdir_gen;
3529 is_orphan = dm->orphanized;
3530 free_waiting_dir_move(sctx, dm);
3531
3532 if (is_orphan) {
3533 ret = gen_unique_name(sctx, pm->ino,
3534 pm->gen, from_path);
3535 } else {
3536 ret = get_first_ref(sctx->parent_root, pm->ino,
3537 &parent_ino, &parent_gen, name);
3538 if (ret < 0)
3539 goto out;
3540 ret = get_cur_path(sctx, parent_ino, parent_gen,
3541 from_path);
3542 if (ret < 0)
3543 goto out;
3544 ret = fs_path_add_path(from_path, name);
3545 }
3546 if (ret < 0)
3547 goto out;
3548
3549 sctx->send_progress = sctx->cur_ino + 1;
3550 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3551 if (ret < 0)
3552 goto out;
3553 if (ret) {
3554 LIST_HEAD(deleted_refs);
3555 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3556 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3557 &pm->update_refs, &deleted_refs,
3558 is_orphan);
3559 if (ret < 0)
3560 goto out;
3561 if (rmdir_ino) {
3562 dm = get_waiting_dir_move(sctx, pm->ino);
3563 ASSERT(dm);
3564 dm->rmdir_ino = rmdir_ino;
3565 dm->rmdir_gen = rmdir_gen;
3566 }
3567 goto out;
3568 }
3569 fs_path_reset(name);
3570 to_path = name;
3571 name = NULL;
3572 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3573 if (ret < 0)
3574 goto out;
3575
3576 ret = send_rename(sctx, from_path, to_path);
3577 if (ret < 0)
3578 goto out;
3579
3580 if (rmdir_ino) {
3581 struct orphan_dir_info *odi;
3582 u64 gen;
3583
3584 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3585 if (!odi) {
3586 /* already deleted */
3587 goto finish;
3588 }
3589 gen = odi->gen;
3590
3591 ret = can_rmdir(sctx, rmdir_ino, gen);
3592 if (ret < 0)
3593 goto out;
3594 if (!ret)
3595 goto finish;
3596
3597 name = fs_path_alloc();
3598 if (!name) {
3599 ret = -ENOMEM;
3600 goto out;
3601 }
3602 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3603 if (ret < 0)
3604 goto out;
3605 ret = send_rmdir(sctx, name);
3606 if (ret < 0)
3607 goto out;
3608 }
3609
3610finish:
3611 ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3612 if (ret < 0)
3613 goto out;
3614
3615 /*
3616 * After rename/move, need to update the utimes of both new parent(s)
3617 * and old parent(s).
3618 */
3619 list_for_each_entry(cur, &pm->update_refs, list) {
3620 /*
3621 * The parent inode might have been deleted in the send snapshot
3622 */
3623 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3624 if (ret == -ENOENT) {
3625 ret = 0;
3626 continue;
3627 }
3628 if (ret < 0)
3629 goto out;
3630
3631 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3632 if (ret < 0)
3633 goto out;
3634 }
3635
3636out:
3637 fs_path_free(name);
3638 fs_path_free(from_path);
3639 fs_path_free(to_path);
3640 sctx->send_progress = orig_progress;
3641
3642 return ret;
3643}
3644
3645static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3646{
3647 if (!list_empty(&m->list))
3648 list_del(&m->list);
3649 if (!RB_EMPTY_NODE(&m->node))
3650 rb_erase(&m->node, &sctx->pending_dir_moves);
3651 __free_recorded_refs(&m->update_refs);
3652 kfree(m);
3653}
3654
3655static void tail_append_pending_moves(struct send_ctx *sctx,
3656 struct pending_dir_move *moves,
3657 struct list_head *stack)
3658{
3659 if (list_empty(&moves->list)) {
3660 list_add_tail(&moves->list, stack);
3661 } else {
3662 LIST_HEAD(list);
3663 list_splice_init(&moves->list, &list);
3664 list_add_tail(&moves->list, stack);
3665 list_splice_tail(&list, stack);
3666 }
3667 if (!RB_EMPTY_NODE(&moves->node)) {
3668 rb_erase(&moves->node, &sctx->pending_dir_moves);
3669 RB_CLEAR_NODE(&moves->node);
3670 }
3671}
3672
3673static int apply_children_dir_moves(struct send_ctx *sctx)
3674{
3675 struct pending_dir_move *pm;
3676 struct list_head stack;
3677 u64 parent_ino = sctx->cur_ino;
3678 int ret = 0;
3679
3680 pm = get_pending_dir_moves(sctx, parent_ino);
3681 if (!pm)
3682 return 0;
3683
3684 INIT_LIST_HEAD(&stack);
3685 tail_append_pending_moves(sctx, pm, &stack);
3686
3687 while (!list_empty(&stack)) {
3688 pm = list_first_entry(&stack, struct pending_dir_move, list);
3689 parent_ino = pm->ino;
3690 ret = apply_dir_move(sctx, pm);
3691 free_pending_move(sctx, pm);
3692 if (ret)
3693 goto out;
3694 pm = get_pending_dir_moves(sctx, parent_ino);
3695 if (pm)
3696 tail_append_pending_moves(sctx, pm, &stack);
3697 }
3698 return 0;
3699
3700out:
3701 while (!list_empty(&stack)) {
3702 pm = list_first_entry(&stack, struct pending_dir_move, list);
3703 free_pending_move(sctx, pm);
3704 }
3705 return ret;
3706}
3707
3708/*
3709 * We might need to delay a directory rename even when no ancestor directory
3710 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3711 * renamed. This happens when we rename a directory to the old name (the name
3712 * in the parent root) of some other unrelated directory that got its rename
3713 * delayed due to some ancestor with higher number that got renamed.
3714 *
3715 * Example:
3716 *
3717 * Parent snapshot:
3718 * . (ino 256)
3719 * |---- a/ (ino 257)
3720 * | |---- file (ino 260)
3721 * |
3722 * |---- b/ (ino 258)
3723 * |---- c/ (ino 259)
3724 *
3725 * Send snapshot:
3726 * . (ino 256)
3727 * |---- a/ (ino 258)
3728 * |---- x/ (ino 259)
3729 * |---- y/ (ino 257)
3730 * |----- file (ino 260)
3731 *
3732 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3733 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3734 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3735 * must issue is:
3736 *
3737 * 1 - rename 259 from 'c' to 'x'
3738 * 2 - rename 257 from 'a' to 'x/y'
3739 * 3 - rename 258 from 'b' to 'a'
3740 *
3741 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3742 * be done right away and < 0 on error.
3743 */
3744static int wait_for_dest_dir_move(struct send_ctx *sctx,
3745 struct recorded_ref *parent_ref,
3746 const bool is_orphan)
3747{
3748 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3749 struct btrfs_path *path;
3750 struct btrfs_key key;
3751 struct btrfs_key di_key;
3752 struct btrfs_dir_item *di;
3753 u64 left_gen;
3754 u64 right_gen;
3755 int ret = 0;
3756 struct waiting_dir_move *wdm;
3757
3758 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3759 return 0;
3760
3761 path = alloc_path_for_send();
3762 if (!path)
3763 return -ENOMEM;
3764
3765 key.objectid = parent_ref->dir;
3766 key.type = BTRFS_DIR_ITEM_KEY;
3767 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3768
3769 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3770 if (ret < 0) {
3771 goto out;
3772 } else if (ret > 0) {
3773 ret = 0;
3774 goto out;
3775 }
3776
3777 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3778 parent_ref->name_len);
3779 if (!di) {
3780 ret = 0;
3781 goto out;
3782 }
3783 /*
3784 * di_key.objectid has the number of the inode that has a dentry in the
3785 * parent directory with the same name that sctx->cur_ino is being
3786 * renamed to. We need to check if that inode is in the send root as
3787 * well and if it is currently marked as an inode with a pending rename,
3788 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3789 * that it happens after that other inode is renamed.
3790 */
3791 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3792 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3793 ret = 0;
3794 goto out;
3795 }
3796
3797 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3798 if (ret < 0)
3799 goto out;
3800 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3801 if (ret < 0) {
3802 if (ret == -ENOENT)
3803 ret = 0;
3804 goto out;
3805 }
3806
3807 /* Different inode, no need to delay the rename of sctx->cur_ino */
3808 if (right_gen != left_gen) {
3809 ret = 0;
3810 goto out;
3811 }
3812
3813 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3814 if (wdm && !wdm->orphanized) {
3815 ret = add_pending_dir_move(sctx,
3816 sctx->cur_ino,
3817 sctx->cur_inode_gen,
3818 di_key.objectid,
3819 &sctx->new_refs,
3820 &sctx->deleted_refs,
3821 is_orphan);
3822 if (!ret)
3823 ret = 1;
3824 }
3825out:
3826 btrfs_free_path(path);
3827 return ret;
3828}
3829
3830/*
3831 * Check if inode ino2, or any of its ancestors, is inode ino1.
3832 * Return 1 if true, 0 if false and < 0 on error.
3833 */
3834static int check_ino_in_path(struct btrfs_root *root,
3835 const u64 ino1,
3836 const u64 ino1_gen,
3837 const u64 ino2,
3838 const u64 ino2_gen,
3839 struct fs_path *fs_path)
3840{
3841 u64 ino = ino2;
3842
3843 if (ino1 == ino2)
3844 return ino1_gen == ino2_gen;
3845
3846 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3847 u64 parent;
3848 u64 parent_gen;
3849 int ret;
3850
3851 fs_path_reset(fs_path);
3852 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3853 if (ret < 0)
3854 return ret;
3855 if (parent == ino1)
3856 return parent_gen == ino1_gen;
3857 ino = parent;
3858 }
3859 return 0;
3860}
3861
3862/*
3863 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3864 * possible path (in case ino2 is not a directory and has multiple hard links).
3865 * Return 1 if true, 0 if false and < 0 on error.
3866 */
3867static int is_ancestor(struct btrfs_root *root,
3868 const u64 ino1,
3869 const u64 ino1_gen,
3870 const u64 ino2,
3871 struct fs_path *fs_path)
3872{
3873 bool free_fs_path = false;
3874 int ret = 0;
3875 int iter_ret = 0;
3876 struct btrfs_path *path = NULL;
3877 struct btrfs_key key;
3878
3879 if (!fs_path) {
3880 fs_path = fs_path_alloc();
3881 if (!fs_path)
3882 return -ENOMEM;
3883 free_fs_path = true;
3884 }
3885
3886 path = alloc_path_for_send();
3887 if (!path) {
3888 ret = -ENOMEM;
3889 goto out;
3890 }
3891
3892 key.objectid = ino2;
3893 key.type = BTRFS_INODE_REF_KEY;
3894 key.offset = 0;
3895
3896 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3897 struct extent_buffer *leaf = path->nodes[0];
3898 int slot = path->slots[0];
3899 u32 cur_offset = 0;
3900 u32 item_size;
3901
3902 if (key.objectid != ino2)
3903 break;
3904 if (key.type != BTRFS_INODE_REF_KEY &&
3905 key.type != BTRFS_INODE_EXTREF_KEY)
3906 break;
3907
3908 item_size = btrfs_item_size(leaf, slot);
3909 while (cur_offset < item_size) {
3910 u64 parent;
3911 u64 parent_gen;
3912
3913 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3914 unsigned long ptr;
3915 struct btrfs_inode_extref *extref;
3916
3917 ptr = btrfs_item_ptr_offset(leaf, slot);
3918 extref = (struct btrfs_inode_extref *)
3919 (ptr + cur_offset);
3920 parent = btrfs_inode_extref_parent(leaf,
3921 extref);
3922 cur_offset += sizeof(*extref);
3923 cur_offset += btrfs_inode_extref_name_len(leaf,
3924 extref);
3925 } else {
3926 parent = key.offset;
3927 cur_offset = item_size;
3928 }
3929
3930 ret = get_inode_gen(root, parent, &parent_gen);
3931 if (ret < 0)
3932 goto out;
3933 ret = check_ino_in_path(root, ino1, ino1_gen,
3934 parent, parent_gen, fs_path);
3935 if (ret)
3936 goto out;
3937 }
3938 }
3939 ret = 0;
3940 if (iter_ret < 0)
3941 ret = iter_ret;
3942
3943out:
3944 btrfs_free_path(path);
3945 if (free_fs_path)
3946 fs_path_free(fs_path);
3947 return ret;
3948}
3949
3950static int wait_for_parent_move(struct send_ctx *sctx,
3951 struct recorded_ref *parent_ref,
3952 const bool is_orphan)
3953{
3954 int ret = 0;
3955 u64 ino = parent_ref->dir;
3956 u64 ino_gen = parent_ref->dir_gen;
3957 u64 parent_ino_before, parent_ino_after;
3958 struct fs_path *path_before = NULL;
3959 struct fs_path *path_after = NULL;
3960 int len1, len2;
3961
3962 path_after = fs_path_alloc();
3963 path_before = fs_path_alloc();
3964 if (!path_after || !path_before) {
3965 ret = -ENOMEM;
3966 goto out;
3967 }
3968
3969 /*
3970 * Our current directory inode may not yet be renamed/moved because some
3971 * ancestor (immediate or not) has to be renamed/moved first. So find if
3972 * such ancestor exists and make sure our own rename/move happens after
3973 * that ancestor is processed to avoid path build infinite loops (done
3974 * at get_cur_path()).
3975 */
3976 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3977 u64 parent_ino_after_gen;
3978
3979 if (is_waiting_for_move(sctx, ino)) {
3980 /*
3981 * If the current inode is an ancestor of ino in the
3982 * parent root, we need to delay the rename of the
3983 * current inode, otherwise don't delayed the rename
3984 * because we can end up with a circular dependency
3985 * of renames, resulting in some directories never
3986 * getting the respective rename operations issued in
3987 * the send stream or getting into infinite path build
3988 * loops.
3989 */
3990 ret = is_ancestor(sctx->parent_root,
3991 sctx->cur_ino, sctx->cur_inode_gen,
3992 ino, path_before);
3993 if (ret)
3994 break;
3995 }
3996
3997 fs_path_reset(path_before);
3998 fs_path_reset(path_after);
3999
4000 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4001 &parent_ino_after_gen, path_after);
4002 if (ret < 0)
4003 goto out;
4004 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4005 NULL, path_before);
4006 if (ret < 0 && ret != -ENOENT) {
4007 goto out;
4008 } else if (ret == -ENOENT) {
4009 ret = 0;
4010 break;
4011 }
4012
4013 len1 = fs_path_len(path_before);
4014 len2 = fs_path_len(path_after);
4015 if (ino > sctx->cur_ino &&
4016 (parent_ino_before != parent_ino_after || len1 != len2 ||
4017 memcmp(path_before->start, path_after->start, len1))) {
4018 u64 parent_ino_gen;
4019
4020 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4021 if (ret < 0)
4022 goto out;
4023 if (ino_gen == parent_ino_gen) {
4024 ret = 1;
4025 break;
4026 }
4027 }
4028 ino = parent_ino_after;
4029 ino_gen = parent_ino_after_gen;
4030 }
4031
4032out:
4033 fs_path_free(path_before);
4034 fs_path_free(path_after);
4035
4036 if (ret == 1) {
4037 ret = add_pending_dir_move(sctx,
4038 sctx->cur_ino,
4039 sctx->cur_inode_gen,
4040 ino,
4041 &sctx->new_refs,
4042 &sctx->deleted_refs,
4043 is_orphan);
4044 if (!ret)
4045 ret = 1;
4046 }
4047
4048 return ret;
4049}
4050
4051static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4052{
4053 int ret;
4054 struct fs_path *new_path;
4055
4056 /*
4057 * Our reference's name member points to its full_path member string, so
4058 * we use here a new path.
4059 */
4060 new_path = fs_path_alloc();
4061 if (!new_path)
4062 return -ENOMEM;
4063
4064 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4065 if (ret < 0) {
4066 fs_path_free(new_path);
4067 return ret;
4068 }
4069 ret = fs_path_add(new_path, ref->name, ref->name_len);
4070 if (ret < 0) {
4071 fs_path_free(new_path);
4072 return ret;
4073 }
4074
4075 fs_path_free(ref->full_path);
4076 set_ref_path(ref, new_path);
4077
4078 return 0;
4079}
4080
4081/*
4082 * When processing the new references for an inode we may orphanize an existing
4083 * directory inode because its old name conflicts with one of the new references
4084 * of the current inode. Later, when processing another new reference of our
4085 * inode, we might need to orphanize another inode, but the path we have in the
4086 * reference reflects the pre-orphanization name of the directory we previously
4087 * orphanized. For example:
4088 *
4089 * parent snapshot looks like:
4090 *
4091 * . (ino 256)
4092 * |----- f1 (ino 257)
4093 * |----- f2 (ino 258)
4094 * |----- d1/ (ino 259)
4095 * |----- d2/ (ino 260)
4096 *
4097 * send snapshot looks like:
4098 *
4099 * . (ino 256)
4100 * |----- d1 (ino 258)
4101 * |----- f2/ (ino 259)
4102 * |----- f2_link/ (ino 260)
4103 * | |----- f1 (ino 257)
4104 * |
4105 * |----- d2 (ino 258)
4106 *
4107 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4108 * cache it in the name cache. Later when we start processing inode 258, when
4109 * collecting all its new references we set a full path of "d1/d2" for its new
4110 * reference with name "d2". When we start processing the new references we
4111 * start by processing the new reference with name "d1", and this results in
4112 * orphanizing inode 259, since its old reference causes a conflict. Then we
4113 * move on the next new reference, with name "d2", and we find out we must
4114 * orphanize inode 260, as its old reference conflicts with ours - but for the
4115 * orphanization we use a source path corresponding to the path we stored in the
4116 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4117 * receiver fail since the path component "d1/" no longer exists, it was renamed
4118 * to "o259-6-0/" when processing the previous new reference. So in this case we
4119 * must recompute the path in the new reference and use it for the new
4120 * orphanization operation.
4121 */
4122static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4123{
4124 char *name;
4125 int ret;
4126
4127 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4128 if (!name)
4129 return -ENOMEM;
4130
4131 fs_path_reset(ref->full_path);
4132 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4133 if (ret < 0)
4134 goto out;
4135
4136 ret = fs_path_add(ref->full_path, name, ref->name_len);
4137 if (ret < 0)
4138 goto out;
4139
4140 /* Update the reference's base name pointer. */
4141 set_ref_path(ref, ref->full_path);
4142out:
4143 kfree(name);
4144 return ret;
4145}
4146
4147/*
4148 * This does all the move/link/unlink/rmdir magic.
4149 */
4150static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4151{
4152 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4153 int ret = 0;
4154 struct recorded_ref *cur;
4155 struct recorded_ref *cur2;
4156 struct list_head check_dirs;
4157 struct fs_path *valid_path = NULL;
4158 u64 ow_inode = 0;
4159 u64 ow_gen;
4160 u64 ow_mode;
4161 int did_overwrite = 0;
4162 int is_orphan = 0;
4163 u64 last_dir_ino_rm = 0;
4164 bool can_rename = true;
4165 bool orphanized_dir = false;
4166 bool orphanized_ancestor = false;
4167
4168 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4169
4170 /*
4171 * This should never happen as the root dir always has the same ref
4172 * which is always '..'
4173 */
4174 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
4175 INIT_LIST_HEAD(&check_dirs);
4176
4177 valid_path = fs_path_alloc();
4178 if (!valid_path) {
4179 ret = -ENOMEM;
4180 goto out;
4181 }
4182
4183 /*
4184 * First, check if the first ref of the current inode was overwritten
4185 * before. If yes, we know that the current inode was already orphanized
4186 * and thus use the orphan name. If not, we can use get_cur_path to
4187 * get the path of the first ref as it would like while receiving at
4188 * this point in time.
4189 * New inodes are always orphan at the beginning, so force to use the
4190 * orphan name in this case.
4191 * The first ref is stored in valid_path and will be updated if it
4192 * gets moved around.
4193 */
4194 if (!sctx->cur_inode_new) {
4195 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4196 sctx->cur_inode_gen);
4197 if (ret < 0)
4198 goto out;
4199 if (ret)
4200 did_overwrite = 1;
4201 }
4202 if (sctx->cur_inode_new || did_overwrite) {
4203 ret = gen_unique_name(sctx, sctx->cur_ino,
4204 sctx->cur_inode_gen, valid_path);
4205 if (ret < 0)
4206 goto out;
4207 is_orphan = 1;
4208 } else {
4209 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4210 valid_path);
4211 if (ret < 0)
4212 goto out;
4213 }
4214
4215 /*
4216 * Before doing any rename and link operations, do a first pass on the
4217 * new references to orphanize any unprocessed inodes that may have a
4218 * reference that conflicts with one of the new references of the current
4219 * inode. This needs to happen first because a new reference may conflict
4220 * with the old reference of a parent directory, so we must make sure
4221 * that the path used for link and rename commands don't use an
4222 * orphanized name when an ancestor was not yet orphanized.
4223 *
4224 * Example:
4225 *
4226 * Parent snapshot:
4227 *
4228 * . (ino 256)
4229 * |----- testdir/ (ino 259)
4230 * | |----- a (ino 257)
4231 * |
4232 * |----- b (ino 258)
4233 *
4234 * Send snapshot:
4235 *
4236 * . (ino 256)
4237 * |----- testdir_2/ (ino 259)
4238 * | |----- a (ino 260)
4239 * |
4240 * |----- testdir (ino 257)
4241 * |----- b (ino 257)
4242 * |----- b2 (ino 258)
4243 *
4244 * Processing the new reference for inode 257 with name "b" may happen
4245 * before processing the new reference with name "testdir". If so, we
4246 * must make sure that by the time we send a link command to create the
4247 * hard link "b", inode 259 was already orphanized, since the generated
4248 * path in "valid_path" already contains the orphanized name for 259.
4249 * We are processing inode 257, so only later when processing 259 we do
4250 * the rename operation to change its temporary (orphanized) name to
4251 * "testdir_2".
4252 */
4253 list_for_each_entry(cur, &sctx->new_refs, list) {
4254 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4255 if (ret < 0)
4256 goto out;
4257 if (ret == inode_state_will_create)
4258 continue;
4259
4260 /*
4261 * Check if this new ref would overwrite the first ref of another
4262 * unprocessed inode. If yes, orphanize the overwritten inode.
4263 * If we find an overwritten ref that is not the first ref,
4264 * simply unlink it.
4265 */
4266 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4267 cur->name, cur->name_len,
4268 &ow_inode, &ow_gen, &ow_mode);
4269 if (ret < 0)
4270 goto out;
4271 if (ret) {
4272 ret = is_first_ref(sctx->parent_root,
4273 ow_inode, cur->dir, cur->name,
4274 cur->name_len);
4275 if (ret < 0)
4276 goto out;
4277 if (ret) {
4278 struct name_cache_entry *nce;
4279 struct waiting_dir_move *wdm;
4280
4281 if (orphanized_dir) {
4282 ret = refresh_ref_path(sctx, cur);
4283 if (ret < 0)
4284 goto out;
4285 }
4286
4287 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4288 cur->full_path);
4289 if (ret < 0)
4290 goto out;
4291 if (S_ISDIR(ow_mode))
4292 orphanized_dir = true;
4293
4294 /*
4295 * If ow_inode has its rename operation delayed
4296 * make sure that its orphanized name is used in
4297 * the source path when performing its rename
4298 * operation.
4299 */
4300 wdm = get_waiting_dir_move(sctx, ow_inode);
4301 if (wdm)
4302 wdm->orphanized = true;
4303
4304 /*
4305 * Make sure we clear our orphanized inode's
4306 * name from the name cache. This is because the
4307 * inode ow_inode might be an ancestor of some
4308 * other inode that will be orphanized as well
4309 * later and has an inode number greater than
4310 * sctx->send_progress. We need to prevent
4311 * future name lookups from using the old name
4312 * and get instead the orphan name.
4313 */
4314 nce = name_cache_search(sctx, ow_inode, ow_gen);
4315 if (nce)
4316 btrfs_lru_cache_remove(&sctx->name_cache,
4317 &nce->entry);
4318
4319 /*
4320 * ow_inode might currently be an ancestor of
4321 * cur_ino, therefore compute valid_path (the
4322 * current path of cur_ino) again because it
4323 * might contain the pre-orphanization name of
4324 * ow_inode, which is no longer valid.
4325 */
4326 ret = is_ancestor(sctx->parent_root,
4327 ow_inode, ow_gen,
4328 sctx->cur_ino, NULL);
4329 if (ret > 0) {
4330 orphanized_ancestor = true;
4331 fs_path_reset(valid_path);
4332 ret = get_cur_path(sctx, sctx->cur_ino,
4333 sctx->cur_inode_gen,
4334 valid_path);
4335 }
4336 if (ret < 0)
4337 goto out;
4338 } else {
4339 /*
4340 * If we previously orphanized a directory that
4341 * collided with a new reference that we already
4342 * processed, recompute the current path because
4343 * that directory may be part of the path.
4344 */
4345 if (orphanized_dir) {
4346 ret = refresh_ref_path(sctx, cur);
4347 if (ret < 0)
4348 goto out;
4349 }
4350 ret = send_unlink(sctx, cur->full_path);
4351 if (ret < 0)
4352 goto out;
4353 }
4354 }
4355
4356 }
4357
4358 list_for_each_entry(cur, &sctx->new_refs, list) {
4359 /*
4360 * We may have refs where the parent directory does not exist
4361 * yet. This happens if the parent directories inum is higher
4362 * than the current inum. To handle this case, we create the
4363 * parent directory out of order. But we need to check if this
4364 * did already happen before due to other refs in the same dir.
4365 */
4366 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4367 if (ret < 0)
4368 goto out;
4369 if (ret == inode_state_will_create) {
4370 ret = 0;
4371 /*
4372 * First check if any of the current inodes refs did
4373 * already create the dir.
4374 */
4375 list_for_each_entry(cur2, &sctx->new_refs, list) {
4376 if (cur == cur2)
4377 break;
4378 if (cur2->dir == cur->dir) {
4379 ret = 1;
4380 break;
4381 }
4382 }
4383
4384 /*
4385 * If that did not happen, check if a previous inode
4386 * did already create the dir.
4387 */
4388 if (!ret)
4389 ret = did_create_dir(sctx, cur->dir);
4390 if (ret < 0)
4391 goto out;
4392 if (!ret) {
4393 ret = send_create_inode(sctx, cur->dir);
4394 if (ret < 0)
4395 goto out;
4396 cache_dir_created(sctx, cur->dir);
4397 }
4398 }
4399
4400 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4401 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4402 if (ret < 0)
4403 goto out;
4404 if (ret == 1) {
4405 can_rename = false;
4406 *pending_move = 1;
4407 }
4408 }
4409
4410 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4411 can_rename) {
4412 ret = wait_for_parent_move(sctx, cur, is_orphan);
4413 if (ret < 0)
4414 goto out;
4415 if (ret == 1) {
4416 can_rename = false;
4417 *pending_move = 1;
4418 }
4419 }
4420
4421 /*
4422 * link/move the ref to the new place. If we have an orphan
4423 * inode, move it and update valid_path. If not, link or move
4424 * it depending on the inode mode.
4425 */
4426 if (is_orphan && can_rename) {
4427 ret = send_rename(sctx, valid_path, cur->full_path);
4428 if (ret < 0)
4429 goto out;
4430 is_orphan = 0;
4431 ret = fs_path_copy(valid_path, cur->full_path);
4432 if (ret < 0)
4433 goto out;
4434 } else if (can_rename) {
4435 if (S_ISDIR(sctx->cur_inode_mode)) {
4436 /*
4437 * Dirs can't be linked, so move it. For moved
4438 * dirs, we always have one new and one deleted
4439 * ref. The deleted ref is ignored later.
4440 */
4441 ret = send_rename(sctx, valid_path,
4442 cur->full_path);
4443 if (!ret)
4444 ret = fs_path_copy(valid_path,
4445 cur->full_path);
4446 if (ret < 0)
4447 goto out;
4448 } else {
4449 /*
4450 * We might have previously orphanized an inode
4451 * which is an ancestor of our current inode,
4452 * so our reference's full path, which was
4453 * computed before any such orphanizations, must
4454 * be updated.
4455 */
4456 if (orphanized_dir) {
4457 ret = update_ref_path(sctx, cur);
4458 if (ret < 0)
4459 goto out;
4460 }
4461 ret = send_link(sctx, cur->full_path,
4462 valid_path);
4463 if (ret < 0)
4464 goto out;
4465 }
4466 }
4467 ret = dup_ref(cur, &check_dirs);
4468 if (ret < 0)
4469 goto out;
4470 }
4471
4472 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4473 /*
4474 * Check if we can already rmdir the directory. If not,
4475 * orphanize it. For every dir item inside that gets deleted
4476 * later, we do this check again and rmdir it then if possible.
4477 * See the use of check_dirs for more details.
4478 */
4479 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4480 if (ret < 0)
4481 goto out;
4482 if (ret) {
4483 ret = send_rmdir(sctx, valid_path);
4484 if (ret < 0)
4485 goto out;
4486 } else if (!is_orphan) {
4487 ret = orphanize_inode(sctx, sctx->cur_ino,
4488 sctx->cur_inode_gen, valid_path);
4489 if (ret < 0)
4490 goto out;
4491 is_orphan = 1;
4492 }
4493
4494 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4495 ret = dup_ref(cur, &check_dirs);
4496 if (ret < 0)
4497 goto out;
4498 }
4499 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4500 !list_empty(&sctx->deleted_refs)) {
4501 /*
4502 * We have a moved dir. Add the old parent to check_dirs
4503 */
4504 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4505 list);
4506 ret = dup_ref(cur, &check_dirs);
4507 if (ret < 0)
4508 goto out;
4509 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4510 /*
4511 * We have a non dir inode. Go through all deleted refs and
4512 * unlink them if they were not already overwritten by other
4513 * inodes.
4514 */
4515 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4516 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4517 sctx->cur_ino, sctx->cur_inode_gen,
4518 cur->name, cur->name_len);
4519 if (ret < 0)
4520 goto out;
4521 if (!ret) {
4522 /*
4523 * If we orphanized any ancestor before, we need
4524 * to recompute the full path for deleted names,
4525 * since any such path was computed before we
4526 * processed any references and orphanized any
4527 * ancestor inode.
4528 */
4529 if (orphanized_ancestor) {
4530 ret = update_ref_path(sctx, cur);
4531 if (ret < 0)
4532 goto out;
4533 }
4534 ret = send_unlink(sctx, cur->full_path);
4535 if (ret < 0)
4536 goto out;
4537 }
4538 ret = dup_ref(cur, &check_dirs);
4539 if (ret < 0)
4540 goto out;
4541 }
4542 /*
4543 * If the inode is still orphan, unlink the orphan. This may
4544 * happen when a previous inode did overwrite the first ref
4545 * of this inode and no new refs were added for the current
4546 * inode. Unlinking does not mean that the inode is deleted in
4547 * all cases. There may still be links to this inode in other
4548 * places.
4549 */
4550 if (is_orphan) {
4551 ret = send_unlink(sctx, valid_path);
4552 if (ret < 0)
4553 goto out;
4554 }
4555 }
4556
4557 /*
4558 * We did collect all parent dirs where cur_inode was once located. We
4559 * now go through all these dirs and check if they are pending for
4560 * deletion and if it's finally possible to perform the rmdir now.
4561 * We also update the inode stats of the parent dirs here.
4562 */
4563 list_for_each_entry(cur, &check_dirs, list) {
4564 /*
4565 * In case we had refs into dirs that were not processed yet,
4566 * we don't need to do the utime and rmdir logic for these dirs.
4567 * The dir will be processed later.
4568 */
4569 if (cur->dir > sctx->cur_ino)
4570 continue;
4571
4572 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4573 if (ret < 0)
4574 goto out;
4575
4576 if (ret == inode_state_did_create ||
4577 ret == inode_state_no_change) {
4578 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4579 if (ret < 0)
4580 goto out;
4581 } else if (ret == inode_state_did_delete &&
4582 cur->dir != last_dir_ino_rm) {
4583 ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4584 if (ret < 0)
4585 goto out;
4586 if (ret) {
4587 ret = get_cur_path(sctx, cur->dir,
4588 cur->dir_gen, valid_path);
4589 if (ret < 0)
4590 goto out;
4591 ret = send_rmdir(sctx, valid_path);
4592 if (ret < 0)
4593 goto out;
4594 last_dir_ino_rm = cur->dir;
4595 }
4596 }
4597 }
4598
4599 ret = 0;
4600
4601out:
4602 __free_recorded_refs(&check_dirs);
4603 free_recorded_refs(sctx);
4604 fs_path_free(valid_path);
4605 return ret;
4606}
4607
4608static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4609{
4610 const struct recorded_ref *data = k;
4611 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4612 int result;
4613
4614 if (data->dir > ref->dir)
4615 return 1;
4616 if (data->dir < ref->dir)
4617 return -1;
4618 if (data->dir_gen > ref->dir_gen)
4619 return 1;
4620 if (data->dir_gen < ref->dir_gen)
4621 return -1;
4622 if (data->name_len > ref->name_len)
4623 return 1;
4624 if (data->name_len < ref->name_len)
4625 return -1;
4626 result = strcmp(data->name, ref->name);
4627 if (result > 0)
4628 return 1;
4629 if (result < 0)
4630 return -1;
4631 return 0;
4632}
4633
4634static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4635{
4636 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4637
4638 return rbtree_ref_comp(entry, parent) < 0;
4639}
4640
4641static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4642 struct fs_path *name, u64 dir, u64 dir_gen,
4643 struct send_ctx *sctx)
4644{
4645 int ret = 0;
4646 struct fs_path *path = NULL;
4647 struct recorded_ref *ref = NULL;
4648
4649 path = fs_path_alloc();
4650 if (!path) {
4651 ret = -ENOMEM;
4652 goto out;
4653 }
4654
4655 ref = recorded_ref_alloc();
4656 if (!ref) {
4657 ret = -ENOMEM;
4658 goto out;
4659 }
4660
4661 ret = get_cur_path(sctx, dir, dir_gen, path);
4662 if (ret < 0)
4663 goto out;
4664 ret = fs_path_add_path(path, name);
4665 if (ret < 0)
4666 goto out;
4667
4668 ref->dir = dir;
4669 ref->dir_gen = dir_gen;
4670 set_ref_path(ref, path);
4671 list_add_tail(&ref->list, refs);
4672 rb_add(&ref->node, root, rbtree_ref_less);
4673 ref->root = root;
4674out:
4675 if (ret) {
4676 if (path && (!ref || !ref->full_path))
4677 fs_path_free(path);
4678 recorded_ref_free(ref);
4679 }
4680 return ret;
4681}
4682
4683static int record_new_ref_if_needed(int num, u64 dir, int index,
4684 struct fs_path *name, void *ctx)
4685{
4686 int ret = 0;
4687 struct send_ctx *sctx = ctx;
4688 struct rb_node *node = NULL;
4689 struct recorded_ref data;
4690 struct recorded_ref *ref;
4691 u64 dir_gen;
4692
4693 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4694 if (ret < 0)
4695 goto out;
4696
4697 data.dir = dir;
4698 data.dir_gen = dir_gen;
4699 set_ref_path(&data, name);
4700 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4701 if (node) {
4702 ref = rb_entry(node, struct recorded_ref, node);
4703 recorded_ref_free(ref);
4704 } else {
4705 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4706 &sctx->new_refs, name, dir, dir_gen,
4707 sctx);
4708 }
4709out:
4710 return ret;
4711}
4712
4713static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4714 struct fs_path *name, void *ctx)
4715{
4716 int ret = 0;
4717 struct send_ctx *sctx = ctx;
4718 struct rb_node *node = NULL;
4719 struct recorded_ref data;
4720 struct recorded_ref *ref;
4721 u64 dir_gen;
4722
4723 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4724 if (ret < 0)
4725 goto out;
4726
4727 data.dir = dir;
4728 data.dir_gen = dir_gen;
4729 set_ref_path(&data, name);
4730 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4731 if (node) {
4732 ref = rb_entry(node, struct recorded_ref, node);
4733 recorded_ref_free(ref);
4734 } else {
4735 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4736 &sctx->deleted_refs, name, dir,
4737 dir_gen, sctx);
4738 }
4739out:
4740 return ret;
4741}
4742
4743static int record_new_ref(struct send_ctx *sctx)
4744{
4745 int ret;
4746
4747 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4748 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4749 if (ret < 0)
4750 goto out;
4751 ret = 0;
4752
4753out:
4754 return ret;
4755}
4756
4757static int record_deleted_ref(struct send_ctx *sctx)
4758{
4759 int ret;
4760
4761 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4762 sctx->cmp_key, 0, record_deleted_ref_if_needed,
4763 sctx);
4764 if (ret < 0)
4765 goto out;
4766 ret = 0;
4767
4768out:
4769 return ret;
4770}
4771
4772static int record_changed_ref(struct send_ctx *sctx)
4773{
4774 int ret = 0;
4775
4776 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4777 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4778 if (ret < 0)
4779 goto out;
4780 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4781 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4782 if (ret < 0)
4783 goto out;
4784 ret = 0;
4785
4786out:
4787 return ret;
4788}
4789
4790/*
4791 * Record and process all refs at once. Needed when an inode changes the
4792 * generation number, which means that it was deleted and recreated.
4793 */
4794static int process_all_refs(struct send_ctx *sctx,
4795 enum btrfs_compare_tree_result cmd)
4796{
4797 int ret = 0;
4798 int iter_ret = 0;
4799 struct btrfs_root *root;
4800 struct btrfs_path *path;
4801 struct btrfs_key key;
4802 struct btrfs_key found_key;
4803 iterate_inode_ref_t cb;
4804 int pending_move = 0;
4805
4806 path = alloc_path_for_send();
4807 if (!path)
4808 return -ENOMEM;
4809
4810 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4811 root = sctx->send_root;
4812 cb = record_new_ref_if_needed;
4813 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4814 root = sctx->parent_root;
4815 cb = record_deleted_ref_if_needed;
4816 } else {
4817 btrfs_err(sctx->send_root->fs_info,
4818 "Wrong command %d in process_all_refs", cmd);
4819 ret = -EINVAL;
4820 goto out;
4821 }
4822
4823 key.objectid = sctx->cmp_key->objectid;
4824 key.type = BTRFS_INODE_REF_KEY;
4825 key.offset = 0;
4826 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4827 if (found_key.objectid != key.objectid ||
4828 (found_key.type != BTRFS_INODE_REF_KEY &&
4829 found_key.type != BTRFS_INODE_EXTREF_KEY))
4830 break;
4831
4832 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4833 if (ret < 0)
4834 goto out;
4835 }
4836 /* Catch error found during iteration */
4837 if (iter_ret < 0) {
4838 ret = iter_ret;
4839 goto out;
4840 }
4841 btrfs_release_path(path);
4842
4843 /*
4844 * We don't actually care about pending_move as we are simply
4845 * re-creating this inode and will be rename'ing it into place once we
4846 * rename the parent directory.
4847 */
4848 ret = process_recorded_refs(sctx, &pending_move);
4849out:
4850 btrfs_free_path(path);
4851 return ret;
4852}
4853
4854static int send_set_xattr(struct send_ctx *sctx,
4855 struct fs_path *path,
4856 const char *name, int name_len,
4857 const char *data, int data_len)
4858{
4859 int ret = 0;
4860
4861 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4862 if (ret < 0)
4863 goto out;
4864
4865 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4866 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4867 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4868
4869 ret = send_cmd(sctx);
4870
4871tlv_put_failure:
4872out:
4873 return ret;
4874}
4875
4876static int send_remove_xattr(struct send_ctx *sctx,
4877 struct fs_path *path,
4878 const char *name, int name_len)
4879{
4880 int ret = 0;
4881
4882 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4883 if (ret < 0)
4884 goto out;
4885
4886 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4887 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4888
4889 ret = send_cmd(sctx);
4890
4891tlv_put_failure:
4892out:
4893 return ret;
4894}
4895
4896static int __process_new_xattr(int num, struct btrfs_key *di_key,
4897 const char *name, int name_len, const char *data,
4898 int data_len, void *ctx)
4899{
4900 int ret;
4901 struct send_ctx *sctx = ctx;
4902 struct fs_path *p;
4903 struct posix_acl_xattr_header dummy_acl;
4904
4905 /* Capabilities are emitted by finish_inode_if_needed */
4906 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4907 return 0;
4908
4909 p = fs_path_alloc();
4910 if (!p)
4911 return -ENOMEM;
4912
4913 /*
4914 * This hack is needed because empty acls are stored as zero byte
4915 * data in xattrs. Problem with that is, that receiving these zero byte
4916 * acls will fail later. To fix this, we send a dummy acl list that
4917 * only contains the version number and no entries.
4918 */
4919 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4920 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4921 if (data_len == 0) {
4922 dummy_acl.a_version =
4923 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4924 data = (char *)&dummy_acl;
4925 data_len = sizeof(dummy_acl);
4926 }
4927 }
4928
4929 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4930 if (ret < 0)
4931 goto out;
4932
4933 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4934
4935out:
4936 fs_path_free(p);
4937 return ret;
4938}
4939
4940static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4941 const char *name, int name_len,
4942 const char *data, int data_len, void *ctx)
4943{
4944 int ret;
4945 struct send_ctx *sctx = ctx;
4946 struct fs_path *p;
4947
4948 p = fs_path_alloc();
4949 if (!p)
4950 return -ENOMEM;
4951
4952 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4953 if (ret < 0)
4954 goto out;
4955
4956 ret = send_remove_xattr(sctx, p, name, name_len);
4957
4958out:
4959 fs_path_free(p);
4960 return ret;
4961}
4962
4963static int process_new_xattr(struct send_ctx *sctx)
4964{
4965 int ret = 0;
4966
4967 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4968 __process_new_xattr, sctx);
4969
4970 return ret;
4971}
4972
4973static int process_deleted_xattr(struct send_ctx *sctx)
4974{
4975 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4976 __process_deleted_xattr, sctx);
4977}
4978
4979struct find_xattr_ctx {
4980 const char *name;
4981 int name_len;
4982 int found_idx;
4983 char *found_data;
4984 int found_data_len;
4985};
4986
4987static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4988 int name_len, const char *data, int data_len, void *vctx)
4989{
4990 struct find_xattr_ctx *ctx = vctx;
4991
4992 if (name_len == ctx->name_len &&
4993 strncmp(name, ctx->name, name_len) == 0) {
4994 ctx->found_idx = num;
4995 ctx->found_data_len = data_len;
4996 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4997 if (!ctx->found_data)
4998 return -ENOMEM;
4999 return 1;
5000 }
5001 return 0;
5002}
5003
5004static int find_xattr(struct btrfs_root *root,
5005 struct btrfs_path *path,
5006 struct btrfs_key *key,
5007 const char *name, int name_len,
5008 char **data, int *data_len)
5009{
5010 int ret;
5011 struct find_xattr_ctx ctx;
5012
5013 ctx.name = name;
5014 ctx.name_len = name_len;
5015 ctx.found_idx = -1;
5016 ctx.found_data = NULL;
5017 ctx.found_data_len = 0;
5018
5019 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5020 if (ret < 0)
5021 return ret;
5022
5023 if (ctx.found_idx == -1)
5024 return -ENOENT;
5025 if (data) {
5026 *data = ctx.found_data;
5027 *data_len = ctx.found_data_len;
5028 } else {
5029 kfree(ctx.found_data);
5030 }
5031 return ctx.found_idx;
5032}
5033
5034
5035static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5036 const char *name, int name_len,
5037 const char *data, int data_len,
5038 void *ctx)
5039{
5040 int ret;
5041 struct send_ctx *sctx = ctx;
5042 char *found_data = NULL;
5043 int found_data_len = 0;
5044
5045 ret = find_xattr(sctx->parent_root, sctx->right_path,
5046 sctx->cmp_key, name, name_len, &found_data,
5047 &found_data_len);
5048 if (ret == -ENOENT) {
5049 ret = __process_new_xattr(num, di_key, name, name_len, data,
5050 data_len, ctx);
5051 } else if (ret >= 0) {
5052 if (data_len != found_data_len ||
5053 memcmp(data, found_data, data_len)) {
5054 ret = __process_new_xattr(num, di_key, name, name_len,
5055 data, data_len, ctx);
5056 } else {
5057 ret = 0;
5058 }
5059 }
5060
5061 kfree(found_data);
5062 return ret;
5063}
5064
5065static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5066 const char *name, int name_len,
5067 const char *data, int data_len,
5068 void *ctx)
5069{
5070 int ret;
5071 struct send_ctx *sctx = ctx;
5072
5073 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5074 name, name_len, NULL, NULL);
5075 if (ret == -ENOENT)
5076 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5077 data_len, ctx);
5078 else if (ret >= 0)
5079 ret = 0;
5080
5081 return ret;
5082}
5083
5084static int process_changed_xattr(struct send_ctx *sctx)
5085{
5086 int ret = 0;
5087
5088 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5089 __process_changed_new_xattr, sctx);
5090 if (ret < 0)
5091 goto out;
5092 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5093 __process_changed_deleted_xattr, sctx);
5094
5095out:
5096 return ret;
5097}
5098
5099static int process_all_new_xattrs(struct send_ctx *sctx)
5100{
5101 int ret = 0;
5102 int iter_ret = 0;
5103 struct btrfs_root *root;
5104 struct btrfs_path *path;
5105 struct btrfs_key key;
5106 struct btrfs_key found_key;
5107
5108 path = alloc_path_for_send();
5109 if (!path)
5110 return -ENOMEM;
5111
5112 root = sctx->send_root;
5113
5114 key.objectid = sctx->cmp_key->objectid;
5115 key.type = BTRFS_XATTR_ITEM_KEY;
5116 key.offset = 0;
5117 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5118 if (found_key.objectid != key.objectid ||
5119 found_key.type != key.type) {
5120 ret = 0;
5121 break;
5122 }
5123
5124 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5125 if (ret < 0)
5126 break;
5127 }
5128 /* Catch error found during iteration */
5129 if (iter_ret < 0)
5130 ret = iter_ret;
5131
5132 btrfs_free_path(path);
5133 return ret;
5134}
5135
5136static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5137 struct fsverity_descriptor *desc)
5138{
5139 int ret;
5140
5141 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5142 if (ret < 0)
5143 goto out;
5144
5145 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5146 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5147 le8_to_cpu(desc->hash_algorithm));
5148 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5149 1U << le8_to_cpu(desc->log_blocksize));
5150 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5151 le8_to_cpu(desc->salt_size));
5152 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5153 le32_to_cpu(desc->sig_size));
5154
5155 ret = send_cmd(sctx);
5156
5157tlv_put_failure:
5158out:
5159 return ret;
5160}
5161
5162static int process_verity(struct send_ctx *sctx)
5163{
5164 int ret = 0;
5165 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5166 struct inode *inode;
5167 struct fs_path *p;
5168
5169 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
5170 if (IS_ERR(inode))
5171 return PTR_ERR(inode);
5172
5173 ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5174 if (ret < 0)
5175 goto iput;
5176
5177 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5178 ret = -EMSGSIZE;
5179 goto iput;
5180 }
5181 if (!sctx->verity_descriptor) {
5182 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5183 GFP_KERNEL);
5184 if (!sctx->verity_descriptor) {
5185 ret = -ENOMEM;
5186 goto iput;
5187 }
5188 }
5189
5190 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5191 if (ret < 0)
5192 goto iput;
5193
5194 p = fs_path_alloc();
5195 if (!p) {
5196 ret = -ENOMEM;
5197 goto iput;
5198 }
5199 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5200 if (ret < 0)
5201 goto free_path;
5202
5203 ret = send_verity(sctx, p, sctx->verity_descriptor);
5204 if (ret < 0)
5205 goto free_path;
5206
5207free_path:
5208 fs_path_free(p);
5209iput:
5210 iput(inode);
5211 return ret;
5212}
5213
5214static inline u64 max_send_read_size(const struct send_ctx *sctx)
5215{
5216 return sctx->send_max_size - SZ_16K;
5217}
5218
5219static int put_data_header(struct send_ctx *sctx, u32 len)
5220{
5221 if (WARN_ON_ONCE(sctx->put_data))
5222 return -EINVAL;
5223 sctx->put_data = true;
5224 if (sctx->proto >= 2) {
5225 /*
5226 * Since v2, the data attribute header doesn't include a length,
5227 * it is implicitly to the end of the command.
5228 */
5229 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5230 return -EOVERFLOW;
5231 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5232 sctx->send_size += sizeof(__le16);
5233 } else {
5234 struct btrfs_tlv_header *hdr;
5235
5236 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5237 return -EOVERFLOW;
5238 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5239 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5240 put_unaligned_le16(len, &hdr->tlv_len);
5241 sctx->send_size += sizeof(*hdr);
5242 }
5243 return 0;
5244}
5245
5246static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5247{
5248 struct btrfs_root *root = sctx->send_root;
5249 struct btrfs_fs_info *fs_info = root->fs_info;
5250 struct page *page;
5251 pgoff_t index = offset >> PAGE_SHIFT;
5252 pgoff_t last_index;
5253 unsigned pg_offset = offset_in_page(offset);
5254 int ret;
5255
5256 ret = put_data_header(sctx, len);
5257 if (ret)
5258 return ret;
5259
5260 last_index = (offset + len - 1) >> PAGE_SHIFT;
5261
5262 while (index <= last_index) {
5263 unsigned cur_len = min_t(unsigned, len,
5264 PAGE_SIZE - pg_offset);
5265
5266 page = find_lock_page(sctx->cur_inode->i_mapping, index);
5267 if (!page) {
5268 page_cache_sync_readahead(sctx->cur_inode->i_mapping,
5269 &sctx->ra, NULL, index,
5270 last_index + 1 - index);
5271
5272 page = find_or_create_page(sctx->cur_inode->i_mapping,
5273 index, GFP_KERNEL);
5274 if (!page) {
5275 ret = -ENOMEM;
5276 break;
5277 }
5278 }
5279
5280 if (PageReadahead(page))
5281 page_cache_async_readahead(sctx->cur_inode->i_mapping,
5282 &sctx->ra, NULL, page_folio(page),
5283 index, last_index + 1 - index);
5284
5285 if (!PageUptodate(page)) {
5286 btrfs_read_folio(NULL, page_folio(page));
5287 lock_page(page);
5288 if (!PageUptodate(page)) {
5289 unlock_page(page);
5290 btrfs_err(fs_info,
5291 "send: IO error at offset %llu for inode %llu root %llu",
5292 page_offset(page), sctx->cur_ino,
5293 sctx->send_root->root_key.objectid);
5294 put_page(page);
5295 ret = -EIO;
5296 break;
5297 }
5298 }
5299
5300 memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5301 pg_offset, cur_len);
5302 unlock_page(page);
5303 put_page(page);
5304 index++;
5305 pg_offset = 0;
5306 len -= cur_len;
5307 sctx->send_size += cur_len;
5308 }
5309
5310 return ret;
5311}
5312
5313/*
5314 * Read some bytes from the current inode/file and send a write command to
5315 * user space.
5316 */
5317static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5318{
5319 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5320 int ret = 0;
5321 struct fs_path *p;
5322
5323 p = fs_path_alloc();
5324 if (!p)
5325 return -ENOMEM;
5326
5327 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5328
5329 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5330 if (ret < 0)
5331 goto out;
5332
5333 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5334 if (ret < 0)
5335 goto out;
5336
5337 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5338 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5339 ret = put_file_data(sctx, offset, len);
5340 if (ret < 0)
5341 goto out;
5342
5343 ret = send_cmd(sctx);
5344
5345tlv_put_failure:
5346out:
5347 fs_path_free(p);
5348 return ret;
5349}
5350
5351/*
5352 * Send a clone command to user space.
5353 */
5354static int send_clone(struct send_ctx *sctx,
5355 u64 offset, u32 len,
5356 struct clone_root *clone_root)
5357{
5358 int ret = 0;
5359 struct fs_path *p;
5360 u64 gen;
5361
5362 btrfs_debug(sctx->send_root->fs_info,
5363 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5364 offset, len, clone_root->root->root_key.objectid,
5365 clone_root->ino, clone_root->offset);
5366
5367 p = fs_path_alloc();
5368 if (!p)
5369 return -ENOMEM;
5370
5371 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5372 if (ret < 0)
5373 goto out;
5374
5375 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5376 if (ret < 0)
5377 goto out;
5378
5379 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5380 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5381 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5382
5383 if (clone_root->root == sctx->send_root) {
5384 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5385 if (ret < 0)
5386 goto out;
5387 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5388 } else {
5389 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5390 }
5391 if (ret < 0)
5392 goto out;
5393
5394 /*
5395 * If the parent we're using has a received_uuid set then use that as
5396 * our clone source as that is what we will look for when doing a
5397 * receive.
5398 *
5399 * This covers the case that we create a snapshot off of a received
5400 * subvolume and then use that as the parent and try to receive on a
5401 * different host.
5402 */
5403 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5404 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5405 clone_root->root->root_item.received_uuid);
5406 else
5407 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5408 clone_root->root->root_item.uuid);
5409 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5410 btrfs_root_ctransid(&clone_root->root->root_item));
5411 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5412 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5413 clone_root->offset);
5414
5415 ret = send_cmd(sctx);
5416
5417tlv_put_failure:
5418out:
5419 fs_path_free(p);
5420 return ret;
5421}
5422
5423/*
5424 * Send an update extent command to user space.
5425 */
5426static int send_update_extent(struct send_ctx *sctx,
5427 u64 offset, u32 len)
5428{
5429 int ret = 0;
5430 struct fs_path *p;
5431
5432 p = fs_path_alloc();
5433 if (!p)
5434 return -ENOMEM;
5435
5436 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5437 if (ret < 0)
5438 goto out;
5439
5440 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5441 if (ret < 0)
5442 goto out;
5443
5444 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5445 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5446 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5447
5448 ret = send_cmd(sctx);
5449
5450tlv_put_failure:
5451out:
5452 fs_path_free(p);
5453 return ret;
5454}
5455
5456static int send_hole(struct send_ctx *sctx, u64 end)
5457{
5458 struct fs_path *p = NULL;
5459 u64 read_size = max_send_read_size(sctx);
5460 u64 offset = sctx->cur_inode_last_extent;
5461 int ret = 0;
5462
5463 /*
5464 * A hole that starts at EOF or beyond it. Since we do not yet support
5465 * fallocate (for extent preallocation and hole punching), sending a
5466 * write of zeroes starting at EOF or beyond would later require issuing
5467 * a truncate operation which would undo the write and achieve nothing.
5468 */
5469 if (offset >= sctx->cur_inode_size)
5470 return 0;
5471
5472 /*
5473 * Don't go beyond the inode's i_size due to prealloc extents that start
5474 * after the i_size.
5475 */
5476 end = min_t(u64, end, sctx->cur_inode_size);
5477
5478 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5479 return send_update_extent(sctx, offset, end - offset);
5480
5481 p = fs_path_alloc();
5482 if (!p)
5483 return -ENOMEM;
5484 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5485 if (ret < 0)
5486 goto tlv_put_failure;
5487 while (offset < end) {
5488 u64 len = min(end - offset, read_size);
5489
5490 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5491 if (ret < 0)
5492 break;
5493 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5494 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5495 ret = put_data_header(sctx, len);
5496 if (ret < 0)
5497 break;
5498 memset(sctx->send_buf + sctx->send_size, 0, len);
5499 sctx->send_size += len;
5500 ret = send_cmd(sctx);
5501 if (ret < 0)
5502 break;
5503 offset += len;
5504 }
5505 sctx->cur_inode_next_write_offset = offset;
5506tlv_put_failure:
5507 fs_path_free(p);
5508 return ret;
5509}
5510
5511static int send_encoded_inline_extent(struct send_ctx *sctx,
5512 struct btrfs_path *path, u64 offset,
5513 u64 len)
5514{
5515 struct btrfs_root *root = sctx->send_root;
5516 struct btrfs_fs_info *fs_info = root->fs_info;
5517 struct inode *inode;
5518 struct fs_path *fspath;
5519 struct extent_buffer *leaf = path->nodes[0];
5520 struct btrfs_key key;
5521 struct btrfs_file_extent_item *ei;
5522 u64 ram_bytes;
5523 size_t inline_size;
5524 int ret;
5525
5526 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5527 if (IS_ERR(inode))
5528 return PTR_ERR(inode);
5529
5530 fspath = fs_path_alloc();
5531 if (!fspath) {
5532 ret = -ENOMEM;
5533 goto out;
5534 }
5535
5536 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5537 if (ret < 0)
5538 goto out;
5539
5540 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5541 if (ret < 0)
5542 goto out;
5543
5544 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5545 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5546 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5547 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5548
5549 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5550 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5551 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5552 min(key.offset + ram_bytes - offset, len));
5553 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5554 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5555 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5556 btrfs_file_extent_compression(leaf, ei));
5557 if (ret < 0)
5558 goto out;
5559 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5560
5561 ret = put_data_header(sctx, inline_size);
5562 if (ret < 0)
5563 goto out;
5564 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5565 btrfs_file_extent_inline_start(ei), inline_size);
5566 sctx->send_size += inline_size;
5567
5568 ret = send_cmd(sctx);
5569
5570tlv_put_failure:
5571out:
5572 fs_path_free(fspath);
5573 iput(inode);
5574 return ret;
5575}
5576
5577static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5578 u64 offset, u64 len)
5579{
5580 struct btrfs_root *root = sctx->send_root;
5581 struct btrfs_fs_info *fs_info = root->fs_info;
5582 struct inode *inode;
5583 struct fs_path *fspath;
5584 struct extent_buffer *leaf = path->nodes[0];
5585 struct btrfs_key key;
5586 struct btrfs_file_extent_item *ei;
5587 u64 disk_bytenr, disk_num_bytes;
5588 u32 data_offset;
5589 struct btrfs_cmd_header *hdr;
5590 u32 crc;
5591 int ret;
5592
5593 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5594 if (IS_ERR(inode))
5595 return PTR_ERR(inode);
5596
5597 fspath = fs_path_alloc();
5598 if (!fspath) {
5599 ret = -ENOMEM;
5600 goto out;
5601 }
5602
5603 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5604 if (ret < 0)
5605 goto out;
5606
5607 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5608 if (ret < 0)
5609 goto out;
5610
5611 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5612 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5613 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5614 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5615
5616 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5617 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5618 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5619 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5620 len));
5621 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5622 btrfs_file_extent_ram_bytes(leaf, ei));
5623 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5624 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5625 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5626 btrfs_file_extent_compression(leaf, ei));
5627 if (ret < 0)
5628 goto out;
5629 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5630 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5631
5632 ret = put_data_header(sctx, disk_num_bytes);
5633 if (ret < 0)
5634 goto out;
5635
5636 /*
5637 * We want to do I/O directly into the send buffer, so get the next page
5638 * boundary in the send buffer. This means that there may be a gap
5639 * between the beginning of the command and the file data.
5640 */
5641 data_offset = PAGE_ALIGN(sctx->send_size);
5642 if (data_offset > sctx->send_max_size ||
5643 sctx->send_max_size - data_offset < disk_num_bytes) {
5644 ret = -EOVERFLOW;
5645 goto out;
5646 }
5647
5648 /*
5649 * Note that send_buf is a mapping of send_buf_pages, so this is really
5650 * reading into send_buf.
5651 */
5652 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5653 disk_bytenr, disk_num_bytes,
5654 sctx->send_buf_pages +
5655 (data_offset >> PAGE_SHIFT));
5656 if (ret)
5657 goto out;
5658
5659 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5660 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5661 hdr->crc = 0;
5662 crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size);
5663 crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5664 hdr->crc = cpu_to_le32(crc);
5665
5666 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5667 &sctx->send_off);
5668 if (!ret) {
5669 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5670 disk_num_bytes, &sctx->send_off);
5671 }
5672 sctx->send_size = 0;
5673 sctx->put_data = false;
5674
5675tlv_put_failure:
5676out:
5677 fs_path_free(fspath);
5678 iput(inode);
5679 return ret;
5680}
5681
5682static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5683 const u64 offset, const u64 len)
5684{
5685 const u64 end = offset + len;
5686 struct extent_buffer *leaf = path->nodes[0];
5687 struct btrfs_file_extent_item *ei;
5688 u64 read_size = max_send_read_size(sctx);
5689 u64 sent = 0;
5690
5691 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5692 return send_update_extent(sctx, offset, len);
5693
5694 ei = btrfs_item_ptr(leaf, path->slots[0],
5695 struct btrfs_file_extent_item);
5696 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5697 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5698 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5699 BTRFS_FILE_EXTENT_INLINE);
5700
5701 /*
5702 * Send the compressed extent unless the compressed data is
5703 * larger than the decompressed data. This can happen if we're
5704 * not sending the entire extent, either because it has been
5705 * partially overwritten/truncated or because this is a part of
5706 * the extent that we couldn't clone in clone_range().
5707 */
5708 if (is_inline &&
5709 btrfs_file_extent_inline_item_len(leaf,
5710 path->slots[0]) <= len) {
5711 return send_encoded_inline_extent(sctx, path, offset,
5712 len);
5713 } else if (!is_inline &&
5714 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5715 return send_encoded_extent(sctx, path, offset, len);
5716 }
5717 }
5718
5719 if (sctx->cur_inode == NULL) {
5720 struct btrfs_root *root = sctx->send_root;
5721
5722 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5723 if (IS_ERR(sctx->cur_inode)) {
5724 int err = PTR_ERR(sctx->cur_inode);
5725
5726 sctx->cur_inode = NULL;
5727 return err;
5728 }
5729 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5730 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5731
5732 /*
5733 * It's very likely there are no pages from this inode in the page
5734 * cache, so after reading extents and sending their data, we clean
5735 * the page cache to avoid trashing the page cache (adding pressure
5736 * to the page cache and forcing eviction of other data more useful
5737 * for applications).
5738 *
5739 * We decide if we should clean the page cache simply by checking
5740 * if the inode's mapping nrpages is 0 when we first open it, and
5741 * not by using something like filemap_range_has_page() before
5742 * reading an extent because when we ask the readahead code to
5743 * read a given file range, it may (and almost always does) read
5744 * pages from beyond that range (see the documentation for
5745 * page_cache_sync_readahead()), so it would not be reliable,
5746 * because after reading the first extent future calls to
5747 * filemap_range_has_page() would return true because the readahead
5748 * on the previous extent resulted in reading pages of the current
5749 * extent as well.
5750 */
5751 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5752 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5753 }
5754
5755 while (sent < len) {
5756 u64 size = min(len - sent, read_size);
5757 int ret;
5758
5759 ret = send_write(sctx, offset + sent, size);
5760 if (ret < 0)
5761 return ret;
5762 sent += size;
5763 }
5764
5765 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5766 /*
5767 * Always operate only on ranges that are a multiple of the page
5768 * size. This is not only to prevent zeroing parts of a page in
5769 * the case of subpage sector size, but also to guarantee we evict
5770 * pages, as passing a range that is smaller than page size does
5771 * not evict the respective page (only zeroes part of its content).
5772 *
5773 * Always start from the end offset of the last range cleared.
5774 * This is because the readahead code may (and very often does)
5775 * reads pages beyond the range we request for readahead. So if
5776 * we have an extent layout like this:
5777 *
5778 * [ extent A ] [ extent B ] [ extent C ]
5779 *
5780 * When we ask page_cache_sync_readahead() to read extent A, it
5781 * may also trigger reads for pages of extent B. If we are doing
5782 * an incremental send and extent B has not changed between the
5783 * parent and send snapshots, some or all of its pages may end
5784 * up being read and placed in the page cache. So when truncating
5785 * the page cache we always start from the end offset of the
5786 * previously processed extent up to the end of the current
5787 * extent.
5788 */
5789 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5790 sctx->page_cache_clear_start,
5791 end - 1);
5792 sctx->page_cache_clear_start = end;
5793 }
5794
5795 return 0;
5796}
5797
5798/*
5799 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5800 * found, call send_set_xattr function to emit it.
5801 *
5802 * Return 0 if there isn't a capability, or when the capability was emitted
5803 * successfully, or < 0 if an error occurred.
5804 */
5805static int send_capabilities(struct send_ctx *sctx)
5806{
5807 struct fs_path *fspath = NULL;
5808 struct btrfs_path *path;
5809 struct btrfs_dir_item *di;
5810 struct extent_buffer *leaf;
5811 unsigned long data_ptr;
5812 char *buf = NULL;
5813 int buf_len;
5814 int ret = 0;
5815
5816 path = alloc_path_for_send();
5817 if (!path)
5818 return -ENOMEM;
5819
5820 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5821 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5822 if (!di) {
5823 /* There is no xattr for this inode */
5824 goto out;
5825 } else if (IS_ERR(di)) {
5826 ret = PTR_ERR(di);
5827 goto out;
5828 }
5829
5830 leaf = path->nodes[0];
5831 buf_len = btrfs_dir_data_len(leaf, di);
5832
5833 fspath = fs_path_alloc();
5834 buf = kmalloc(buf_len, GFP_KERNEL);
5835 if (!fspath || !buf) {
5836 ret = -ENOMEM;
5837 goto out;
5838 }
5839
5840 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5841 if (ret < 0)
5842 goto out;
5843
5844 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5845 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5846
5847 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5848 strlen(XATTR_NAME_CAPS), buf, buf_len);
5849out:
5850 kfree(buf);
5851 fs_path_free(fspath);
5852 btrfs_free_path(path);
5853 return ret;
5854}
5855
5856static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5857 struct clone_root *clone_root, const u64 disk_byte,
5858 u64 data_offset, u64 offset, u64 len)
5859{
5860 struct btrfs_path *path;
5861 struct btrfs_key key;
5862 int ret;
5863 struct btrfs_inode_info info;
5864 u64 clone_src_i_size = 0;
5865
5866 /*
5867 * Prevent cloning from a zero offset with a length matching the sector
5868 * size because in some scenarios this will make the receiver fail.
5869 *
5870 * For example, if in the source filesystem the extent at offset 0
5871 * has a length of sectorsize and it was written using direct IO, then
5872 * it can never be an inline extent (even if compression is enabled).
5873 * Then this extent can be cloned in the original filesystem to a non
5874 * zero file offset, but it may not be possible to clone in the
5875 * destination filesystem because it can be inlined due to compression
5876 * on the destination filesystem (as the receiver's write operations are
5877 * always done using buffered IO). The same happens when the original
5878 * filesystem does not have compression enabled but the destination
5879 * filesystem has.
5880 */
5881 if (clone_root->offset == 0 &&
5882 len == sctx->send_root->fs_info->sectorsize)
5883 return send_extent_data(sctx, dst_path, offset, len);
5884
5885 path = alloc_path_for_send();
5886 if (!path)
5887 return -ENOMEM;
5888
5889 /*
5890 * There are inodes that have extents that lie behind its i_size. Don't
5891 * accept clones from these extents.
5892 */
5893 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5894 btrfs_release_path(path);
5895 if (ret < 0)
5896 goto out;
5897 clone_src_i_size = info.size;
5898
5899 /*
5900 * We can't send a clone operation for the entire range if we find
5901 * extent items in the respective range in the source file that
5902 * refer to different extents or if we find holes.
5903 * So check for that and do a mix of clone and regular write/copy
5904 * operations if needed.
5905 *
5906 * Example:
5907 *
5908 * mkfs.btrfs -f /dev/sda
5909 * mount /dev/sda /mnt
5910 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5911 * cp --reflink=always /mnt/foo /mnt/bar
5912 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5913 * btrfs subvolume snapshot -r /mnt /mnt/snap
5914 *
5915 * If when we send the snapshot and we are processing file bar (which
5916 * has a higher inode number than foo) we blindly send a clone operation
5917 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5918 * a file bar that matches the content of file foo - iow, doesn't match
5919 * the content from bar in the original filesystem.
5920 */
5921 key.objectid = clone_root->ino;
5922 key.type = BTRFS_EXTENT_DATA_KEY;
5923 key.offset = clone_root->offset;
5924 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5925 if (ret < 0)
5926 goto out;
5927 if (ret > 0 && path->slots[0] > 0) {
5928 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5929 if (key.objectid == clone_root->ino &&
5930 key.type == BTRFS_EXTENT_DATA_KEY)
5931 path->slots[0]--;
5932 }
5933
5934 while (true) {
5935 struct extent_buffer *leaf = path->nodes[0];
5936 int slot = path->slots[0];
5937 struct btrfs_file_extent_item *ei;
5938 u8 type;
5939 u64 ext_len;
5940 u64 clone_len;
5941 u64 clone_data_offset;
5942 bool crossed_src_i_size = false;
5943
5944 if (slot >= btrfs_header_nritems(leaf)) {
5945 ret = btrfs_next_leaf(clone_root->root, path);
5946 if (ret < 0)
5947 goto out;
5948 else if (ret > 0)
5949 break;
5950 continue;
5951 }
5952
5953 btrfs_item_key_to_cpu(leaf, &key, slot);
5954
5955 /*
5956 * We might have an implicit trailing hole (NO_HOLES feature
5957 * enabled). We deal with it after leaving this loop.
5958 */
5959 if (key.objectid != clone_root->ino ||
5960 key.type != BTRFS_EXTENT_DATA_KEY)
5961 break;
5962
5963 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5964 type = btrfs_file_extent_type(leaf, ei);
5965 if (type == BTRFS_FILE_EXTENT_INLINE) {
5966 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5967 ext_len = PAGE_ALIGN(ext_len);
5968 } else {
5969 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5970 }
5971
5972 if (key.offset + ext_len <= clone_root->offset)
5973 goto next;
5974
5975 if (key.offset > clone_root->offset) {
5976 /* Implicit hole, NO_HOLES feature enabled. */
5977 u64 hole_len = key.offset - clone_root->offset;
5978
5979 if (hole_len > len)
5980 hole_len = len;
5981 ret = send_extent_data(sctx, dst_path, offset,
5982 hole_len);
5983 if (ret < 0)
5984 goto out;
5985
5986 len -= hole_len;
5987 if (len == 0)
5988 break;
5989 offset += hole_len;
5990 clone_root->offset += hole_len;
5991 data_offset += hole_len;
5992 }
5993
5994 if (key.offset >= clone_root->offset + len)
5995 break;
5996
5997 if (key.offset >= clone_src_i_size)
5998 break;
5999
6000 if (key.offset + ext_len > clone_src_i_size) {
6001 ext_len = clone_src_i_size - key.offset;
6002 crossed_src_i_size = true;
6003 }
6004
6005 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6006 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6007 clone_root->offset = key.offset;
6008 if (clone_data_offset < data_offset &&
6009 clone_data_offset + ext_len > data_offset) {
6010 u64 extent_offset;
6011
6012 extent_offset = data_offset - clone_data_offset;
6013 ext_len -= extent_offset;
6014 clone_data_offset += extent_offset;
6015 clone_root->offset += extent_offset;
6016 }
6017 }
6018
6019 clone_len = min_t(u64, ext_len, len);
6020
6021 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6022 clone_data_offset == data_offset) {
6023 const u64 src_end = clone_root->offset + clone_len;
6024 const u64 sectorsize = SZ_64K;
6025
6026 /*
6027 * We can't clone the last block, when its size is not
6028 * sector size aligned, into the middle of a file. If we
6029 * do so, the receiver will get a failure (-EINVAL) when
6030 * trying to clone or will silently corrupt the data in
6031 * the destination file if it's on a kernel without the
6032 * fix introduced by commit ac765f83f1397646
6033 * ("Btrfs: fix data corruption due to cloning of eof
6034 * block).
6035 *
6036 * So issue a clone of the aligned down range plus a
6037 * regular write for the eof block, if we hit that case.
6038 *
6039 * Also, we use the maximum possible sector size, 64K,
6040 * because we don't know what's the sector size of the
6041 * filesystem that receives the stream, so we have to
6042 * assume the largest possible sector size.
6043 */
6044 if (src_end == clone_src_i_size &&
6045 !IS_ALIGNED(src_end, sectorsize) &&
6046 offset + clone_len < sctx->cur_inode_size) {
6047 u64 slen;
6048
6049 slen = ALIGN_DOWN(src_end - clone_root->offset,
6050 sectorsize);
6051 if (slen > 0) {
6052 ret = send_clone(sctx, offset, slen,
6053 clone_root);
6054 if (ret < 0)
6055 goto out;
6056 }
6057 ret = send_extent_data(sctx, dst_path,
6058 offset + slen,
6059 clone_len - slen);
6060 } else {
6061 ret = send_clone(sctx, offset, clone_len,
6062 clone_root);
6063 }
6064 } else if (crossed_src_i_size && clone_len < len) {
6065 /*
6066 * If we are at i_size of the clone source inode and we
6067 * can not clone from it, terminate the loop. This is
6068 * to avoid sending two write operations, one with a
6069 * length matching clone_len and the final one after
6070 * this loop with a length of len - clone_len.
6071 *
6072 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6073 * was passed to the send ioctl), this helps avoid
6074 * sending an encoded write for an offset that is not
6075 * sector size aligned, in case the i_size of the source
6076 * inode is not sector size aligned. That will make the
6077 * receiver fallback to decompression of the data and
6078 * writing it using regular buffered IO, therefore while
6079 * not incorrect, it's not optimal due decompression and
6080 * possible re-compression at the receiver.
6081 */
6082 break;
6083 } else {
6084 ret = send_extent_data(sctx, dst_path, offset,
6085 clone_len);
6086 }
6087
6088 if (ret < 0)
6089 goto out;
6090
6091 len -= clone_len;
6092 if (len == 0)
6093 break;
6094 offset += clone_len;
6095 clone_root->offset += clone_len;
6096
6097 /*
6098 * If we are cloning from the file we are currently processing,
6099 * and using the send root as the clone root, we must stop once
6100 * the current clone offset reaches the current eof of the file
6101 * at the receiver, otherwise we would issue an invalid clone
6102 * operation (source range going beyond eof) and cause the
6103 * receiver to fail. So if we reach the current eof, bail out
6104 * and fallback to a regular write.
6105 */
6106 if (clone_root->root == sctx->send_root &&
6107 clone_root->ino == sctx->cur_ino &&
6108 clone_root->offset >= sctx->cur_inode_next_write_offset)
6109 break;
6110
6111 data_offset += clone_len;
6112next:
6113 path->slots[0]++;
6114 }
6115
6116 if (len > 0)
6117 ret = send_extent_data(sctx, dst_path, offset, len);
6118 else
6119 ret = 0;
6120out:
6121 btrfs_free_path(path);
6122 return ret;
6123}
6124
6125static int send_write_or_clone(struct send_ctx *sctx,
6126 struct btrfs_path *path,
6127 struct btrfs_key *key,
6128 struct clone_root *clone_root)
6129{
6130 int ret = 0;
6131 u64 offset = key->offset;
6132 u64 end;
6133 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
6134
6135 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6136 if (offset >= end)
6137 return 0;
6138
6139 if (clone_root && IS_ALIGNED(end, bs)) {
6140 struct btrfs_file_extent_item *ei;
6141 u64 disk_byte;
6142 u64 data_offset;
6143
6144 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6145 struct btrfs_file_extent_item);
6146 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6147 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6148 ret = clone_range(sctx, path, clone_root, disk_byte,
6149 data_offset, offset, end - offset);
6150 } else {
6151 ret = send_extent_data(sctx, path, offset, end - offset);
6152 }
6153 sctx->cur_inode_next_write_offset = end;
6154 return ret;
6155}
6156
6157static int is_extent_unchanged(struct send_ctx *sctx,
6158 struct btrfs_path *left_path,
6159 struct btrfs_key *ekey)
6160{
6161 int ret = 0;
6162 struct btrfs_key key;
6163 struct btrfs_path *path = NULL;
6164 struct extent_buffer *eb;
6165 int slot;
6166 struct btrfs_key found_key;
6167 struct btrfs_file_extent_item *ei;
6168 u64 left_disknr;
6169 u64 right_disknr;
6170 u64 left_offset;
6171 u64 right_offset;
6172 u64 left_offset_fixed;
6173 u64 left_len;
6174 u64 right_len;
6175 u64 left_gen;
6176 u64 right_gen;
6177 u8 left_type;
6178 u8 right_type;
6179
6180 path = alloc_path_for_send();
6181 if (!path)
6182 return -ENOMEM;
6183
6184 eb = left_path->nodes[0];
6185 slot = left_path->slots[0];
6186 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6187 left_type = btrfs_file_extent_type(eb, ei);
6188
6189 if (left_type != BTRFS_FILE_EXTENT_REG) {
6190 ret = 0;
6191 goto out;
6192 }
6193 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6194 left_len = btrfs_file_extent_num_bytes(eb, ei);
6195 left_offset = btrfs_file_extent_offset(eb, ei);
6196 left_gen = btrfs_file_extent_generation(eb, ei);
6197
6198 /*
6199 * Following comments will refer to these graphics. L is the left
6200 * extents which we are checking at the moment. 1-8 are the right
6201 * extents that we iterate.
6202 *
6203 * |-----L-----|
6204 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6205 *
6206 * |-----L-----|
6207 * |--1--|-2b-|...(same as above)
6208 *
6209 * Alternative situation. Happens on files where extents got split.
6210 * |-----L-----|
6211 * |-----------7-----------|-6-|
6212 *
6213 * Alternative situation. Happens on files which got larger.
6214 * |-----L-----|
6215 * |-8-|
6216 * Nothing follows after 8.
6217 */
6218
6219 key.objectid = ekey->objectid;
6220 key.type = BTRFS_EXTENT_DATA_KEY;
6221 key.offset = ekey->offset;
6222 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6223 if (ret < 0)
6224 goto out;
6225 if (ret) {
6226 ret = 0;
6227 goto out;
6228 }
6229
6230 /*
6231 * Handle special case where the right side has no extents at all.
6232 */
6233 eb = path->nodes[0];
6234 slot = path->slots[0];
6235 btrfs_item_key_to_cpu(eb, &found_key, slot);
6236 if (found_key.objectid != key.objectid ||
6237 found_key.type != key.type) {
6238 /* If we're a hole then just pretend nothing changed */
6239 ret = (left_disknr) ? 0 : 1;
6240 goto out;
6241 }
6242
6243 /*
6244 * We're now on 2a, 2b or 7.
6245 */
6246 key = found_key;
6247 while (key.offset < ekey->offset + left_len) {
6248 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6249 right_type = btrfs_file_extent_type(eb, ei);
6250 if (right_type != BTRFS_FILE_EXTENT_REG &&
6251 right_type != BTRFS_FILE_EXTENT_INLINE) {
6252 ret = 0;
6253 goto out;
6254 }
6255
6256 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6257 right_len = btrfs_file_extent_ram_bytes(eb, ei);
6258 right_len = PAGE_ALIGN(right_len);
6259 } else {
6260 right_len = btrfs_file_extent_num_bytes(eb, ei);
6261 }
6262
6263 /*
6264 * Are we at extent 8? If yes, we know the extent is changed.
6265 * This may only happen on the first iteration.
6266 */
6267 if (found_key.offset + right_len <= ekey->offset) {
6268 /* If we're a hole just pretend nothing changed */
6269 ret = (left_disknr) ? 0 : 1;
6270 goto out;
6271 }
6272
6273 /*
6274 * We just wanted to see if when we have an inline extent, what
6275 * follows it is a regular extent (wanted to check the above
6276 * condition for inline extents too). This should normally not
6277 * happen but it's possible for example when we have an inline
6278 * compressed extent representing data with a size matching
6279 * the page size (currently the same as sector size).
6280 */
6281 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6282 ret = 0;
6283 goto out;
6284 }
6285
6286 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6287 right_offset = btrfs_file_extent_offset(eb, ei);
6288 right_gen = btrfs_file_extent_generation(eb, ei);
6289
6290 left_offset_fixed = left_offset;
6291 if (key.offset < ekey->offset) {
6292 /* Fix the right offset for 2a and 7. */
6293 right_offset += ekey->offset - key.offset;
6294 } else {
6295 /* Fix the left offset for all behind 2a and 2b */
6296 left_offset_fixed += key.offset - ekey->offset;
6297 }
6298
6299 /*
6300 * Check if we have the same extent.
6301 */
6302 if (left_disknr != right_disknr ||
6303 left_offset_fixed != right_offset ||
6304 left_gen != right_gen) {
6305 ret = 0;
6306 goto out;
6307 }
6308
6309 /*
6310 * Go to the next extent.
6311 */
6312 ret = btrfs_next_item(sctx->parent_root, path);
6313 if (ret < 0)
6314 goto out;
6315 if (!ret) {
6316 eb = path->nodes[0];
6317 slot = path->slots[0];
6318 btrfs_item_key_to_cpu(eb, &found_key, slot);
6319 }
6320 if (ret || found_key.objectid != key.objectid ||
6321 found_key.type != key.type) {
6322 key.offset += right_len;
6323 break;
6324 }
6325 if (found_key.offset != key.offset + right_len) {
6326 ret = 0;
6327 goto out;
6328 }
6329 key = found_key;
6330 }
6331
6332 /*
6333 * We're now behind the left extent (treat as unchanged) or at the end
6334 * of the right side (treat as changed).
6335 */
6336 if (key.offset >= ekey->offset + left_len)
6337 ret = 1;
6338 else
6339 ret = 0;
6340
6341
6342out:
6343 btrfs_free_path(path);
6344 return ret;
6345}
6346
6347static int get_last_extent(struct send_ctx *sctx, u64 offset)
6348{
6349 struct btrfs_path *path;
6350 struct btrfs_root *root = sctx->send_root;
6351 struct btrfs_key key;
6352 int ret;
6353
6354 path = alloc_path_for_send();
6355 if (!path)
6356 return -ENOMEM;
6357
6358 sctx->cur_inode_last_extent = 0;
6359
6360 key.objectid = sctx->cur_ino;
6361 key.type = BTRFS_EXTENT_DATA_KEY;
6362 key.offset = offset;
6363 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6364 if (ret < 0)
6365 goto out;
6366 ret = 0;
6367 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6368 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6369 goto out;
6370
6371 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6372out:
6373 btrfs_free_path(path);
6374 return ret;
6375}
6376
6377static int range_is_hole_in_parent(struct send_ctx *sctx,
6378 const u64 start,
6379 const u64 end)
6380{
6381 struct btrfs_path *path;
6382 struct btrfs_key key;
6383 struct btrfs_root *root = sctx->parent_root;
6384 u64 search_start = start;
6385 int ret;
6386
6387 path = alloc_path_for_send();
6388 if (!path)
6389 return -ENOMEM;
6390
6391 key.objectid = sctx->cur_ino;
6392 key.type = BTRFS_EXTENT_DATA_KEY;
6393 key.offset = search_start;
6394 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6395 if (ret < 0)
6396 goto out;
6397 if (ret > 0 && path->slots[0] > 0)
6398 path->slots[0]--;
6399
6400 while (search_start < end) {
6401 struct extent_buffer *leaf = path->nodes[0];
6402 int slot = path->slots[0];
6403 struct btrfs_file_extent_item *fi;
6404 u64 extent_end;
6405
6406 if (slot >= btrfs_header_nritems(leaf)) {
6407 ret = btrfs_next_leaf(root, path);
6408 if (ret < 0)
6409 goto out;
6410 else if (ret > 0)
6411 break;
6412 continue;
6413 }
6414
6415 btrfs_item_key_to_cpu(leaf, &key, slot);
6416 if (key.objectid < sctx->cur_ino ||
6417 key.type < BTRFS_EXTENT_DATA_KEY)
6418 goto next;
6419 if (key.objectid > sctx->cur_ino ||
6420 key.type > BTRFS_EXTENT_DATA_KEY ||
6421 key.offset >= end)
6422 break;
6423
6424 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6425 extent_end = btrfs_file_extent_end(path);
6426 if (extent_end <= start)
6427 goto next;
6428 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6429 search_start = extent_end;
6430 goto next;
6431 }
6432 ret = 0;
6433 goto out;
6434next:
6435 path->slots[0]++;
6436 }
6437 ret = 1;
6438out:
6439 btrfs_free_path(path);
6440 return ret;
6441}
6442
6443static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6444 struct btrfs_key *key)
6445{
6446 int ret = 0;
6447
6448 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6449 return 0;
6450
6451 if (sctx->cur_inode_last_extent == (u64)-1) {
6452 ret = get_last_extent(sctx, key->offset - 1);
6453 if (ret)
6454 return ret;
6455 }
6456
6457 if (path->slots[0] == 0 &&
6458 sctx->cur_inode_last_extent < key->offset) {
6459 /*
6460 * We might have skipped entire leafs that contained only
6461 * file extent items for our current inode. These leafs have
6462 * a generation number smaller (older) than the one in the
6463 * current leaf and the leaf our last extent came from, and
6464 * are located between these 2 leafs.
6465 */
6466 ret = get_last_extent(sctx, key->offset - 1);
6467 if (ret)
6468 return ret;
6469 }
6470
6471 if (sctx->cur_inode_last_extent < key->offset) {
6472 ret = range_is_hole_in_parent(sctx,
6473 sctx->cur_inode_last_extent,
6474 key->offset);
6475 if (ret < 0)
6476 return ret;
6477 else if (ret == 0)
6478 ret = send_hole(sctx, key->offset);
6479 else
6480 ret = 0;
6481 }
6482 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6483 return ret;
6484}
6485
6486static int process_extent(struct send_ctx *sctx,
6487 struct btrfs_path *path,
6488 struct btrfs_key *key)
6489{
6490 struct clone_root *found_clone = NULL;
6491 int ret = 0;
6492
6493 if (S_ISLNK(sctx->cur_inode_mode))
6494 return 0;
6495
6496 if (sctx->parent_root && !sctx->cur_inode_new) {
6497 ret = is_extent_unchanged(sctx, path, key);
6498 if (ret < 0)
6499 goto out;
6500 if (ret) {
6501 ret = 0;
6502 goto out_hole;
6503 }
6504 } else {
6505 struct btrfs_file_extent_item *ei;
6506 u8 type;
6507
6508 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6509 struct btrfs_file_extent_item);
6510 type = btrfs_file_extent_type(path->nodes[0], ei);
6511 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6512 type == BTRFS_FILE_EXTENT_REG) {
6513 /*
6514 * The send spec does not have a prealloc command yet,
6515 * so just leave a hole for prealloc'ed extents until
6516 * we have enough commands queued up to justify rev'ing
6517 * the send spec.
6518 */
6519 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6520 ret = 0;
6521 goto out;
6522 }
6523
6524 /* Have a hole, just skip it. */
6525 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6526 ret = 0;
6527 goto out;
6528 }
6529 }
6530 }
6531
6532 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6533 sctx->cur_inode_size, &found_clone);
6534 if (ret != -ENOENT && ret < 0)
6535 goto out;
6536
6537 ret = send_write_or_clone(sctx, path, key, found_clone);
6538 if (ret)
6539 goto out;
6540out_hole:
6541 ret = maybe_send_hole(sctx, path, key);
6542out:
6543 return ret;
6544}
6545
6546static int process_all_extents(struct send_ctx *sctx)
6547{
6548 int ret = 0;
6549 int iter_ret = 0;
6550 struct btrfs_root *root;
6551 struct btrfs_path *path;
6552 struct btrfs_key key;
6553 struct btrfs_key found_key;
6554
6555 root = sctx->send_root;
6556 path = alloc_path_for_send();
6557 if (!path)
6558 return -ENOMEM;
6559
6560 key.objectid = sctx->cmp_key->objectid;
6561 key.type = BTRFS_EXTENT_DATA_KEY;
6562 key.offset = 0;
6563 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6564 if (found_key.objectid != key.objectid ||
6565 found_key.type != key.type) {
6566 ret = 0;
6567 break;
6568 }
6569
6570 ret = process_extent(sctx, path, &found_key);
6571 if (ret < 0)
6572 break;
6573 }
6574 /* Catch error found during iteration */
6575 if (iter_ret < 0)
6576 ret = iter_ret;
6577
6578 btrfs_free_path(path);
6579 return ret;
6580}
6581
6582static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6583 int *pending_move,
6584 int *refs_processed)
6585{
6586 int ret = 0;
6587
6588 if (sctx->cur_ino == 0)
6589 goto out;
6590 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6591 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6592 goto out;
6593 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6594 goto out;
6595
6596 ret = process_recorded_refs(sctx, pending_move);
6597 if (ret < 0)
6598 goto out;
6599
6600 *refs_processed = 1;
6601out:
6602 return ret;
6603}
6604
6605static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6606{
6607 int ret = 0;
6608 struct btrfs_inode_info info;
6609 u64 left_mode;
6610 u64 left_uid;
6611 u64 left_gid;
6612 u64 left_fileattr;
6613 u64 right_mode;
6614 u64 right_uid;
6615 u64 right_gid;
6616 u64 right_fileattr;
6617 int need_chmod = 0;
6618 int need_chown = 0;
6619 bool need_fileattr = false;
6620 int need_truncate = 1;
6621 int pending_move = 0;
6622 int refs_processed = 0;
6623
6624 if (sctx->ignore_cur_inode)
6625 return 0;
6626
6627 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6628 &refs_processed);
6629 if (ret < 0)
6630 goto out;
6631
6632 /*
6633 * We have processed the refs and thus need to advance send_progress.
6634 * Now, calls to get_cur_xxx will take the updated refs of the current
6635 * inode into account.
6636 *
6637 * On the other hand, if our current inode is a directory and couldn't
6638 * be moved/renamed because its parent was renamed/moved too and it has
6639 * a higher inode number, we can only move/rename our current inode
6640 * after we moved/renamed its parent. Therefore in this case operate on
6641 * the old path (pre move/rename) of our current inode, and the
6642 * move/rename will be performed later.
6643 */
6644 if (refs_processed && !pending_move)
6645 sctx->send_progress = sctx->cur_ino + 1;
6646
6647 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6648 goto out;
6649 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6650 goto out;
6651 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6652 if (ret < 0)
6653 goto out;
6654 left_mode = info.mode;
6655 left_uid = info.uid;
6656 left_gid = info.gid;
6657 left_fileattr = info.fileattr;
6658
6659 if (!sctx->parent_root || sctx->cur_inode_new) {
6660 need_chown = 1;
6661 if (!S_ISLNK(sctx->cur_inode_mode))
6662 need_chmod = 1;
6663 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6664 need_truncate = 0;
6665 } else {
6666 u64 old_size;
6667
6668 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6669 if (ret < 0)
6670 goto out;
6671 old_size = info.size;
6672 right_mode = info.mode;
6673 right_uid = info.uid;
6674 right_gid = info.gid;
6675 right_fileattr = info.fileattr;
6676
6677 if (left_uid != right_uid || left_gid != right_gid)
6678 need_chown = 1;
6679 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6680 need_chmod = 1;
6681 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6682 need_fileattr = true;
6683 if ((old_size == sctx->cur_inode_size) ||
6684 (sctx->cur_inode_size > old_size &&
6685 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6686 need_truncate = 0;
6687 }
6688
6689 if (S_ISREG(sctx->cur_inode_mode)) {
6690 if (need_send_hole(sctx)) {
6691 if (sctx->cur_inode_last_extent == (u64)-1 ||
6692 sctx->cur_inode_last_extent <
6693 sctx->cur_inode_size) {
6694 ret = get_last_extent(sctx, (u64)-1);
6695 if (ret)
6696 goto out;
6697 }
6698 if (sctx->cur_inode_last_extent <
6699 sctx->cur_inode_size) {
6700 ret = send_hole(sctx, sctx->cur_inode_size);
6701 if (ret)
6702 goto out;
6703 }
6704 }
6705 if (need_truncate) {
6706 ret = send_truncate(sctx, sctx->cur_ino,
6707 sctx->cur_inode_gen,
6708 sctx->cur_inode_size);
6709 if (ret < 0)
6710 goto out;
6711 }
6712 }
6713
6714 if (need_chown) {
6715 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6716 left_uid, left_gid);
6717 if (ret < 0)
6718 goto out;
6719 }
6720 if (need_chmod) {
6721 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6722 left_mode);
6723 if (ret < 0)
6724 goto out;
6725 }
6726 if (need_fileattr) {
6727 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6728 left_fileattr);
6729 if (ret < 0)
6730 goto out;
6731 }
6732
6733 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6734 && sctx->cur_inode_needs_verity) {
6735 ret = process_verity(sctx);
6736 if (ret < 0)
6737 goto out;
6738 }
6739
6740 ret = send_capabilities(sctx);
6741 if (ret < 0)
6742 goto out;
6743
6744 /*
6745 * If other directory inodes depended on our current directory
6746 * inode's move/rename, now do their move/rename operations.
6747 */
6748 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6749 ret = apply_children_dir_moves(sctx);
6750 if (ret)
6751 goto out;
6752 /*
6753 * Need to send that every time, no matter if it actually
6754 * changed between the two trees as we have done changes to
6755 * the inode before. If our inode is a directory and it's
6756 * waiting to be moved/renamed, we will send its utimes when
6757 * it's moved/renamed, therefore we don't need to do it here.
6758 */
6759 sctx->send_progress = sctx->cur_ino + 1;
6760
6761 /*
6762 * If the current inode is a non-empty directory, delay issuing
6763 * the utimes command for it, as it's very likely we have inodes
6764 * with an higher number inside it. We want to issue the utimes
6765 * command only after adding all dentries to it.
6766 */
6767 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6768 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6769 else
6770 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6771
6772 if (ret < 0)
6773 goto out;
6774 }
6775
6776out:
6777 if (!ret)
6778 ret = trim_dir_utimes_cache(sctx);
6779
6780 return ret;
6781}
6782
6783static void close_current_inode(struct send_ctx *sctx)
6784{
6785 u64 i_size;
6786
6787 if (sctx->cur_inode == NULL)
6788 return;
6789
6790 i_size = i_size_read(sctx->cur_inode);
6791
6792 /*
6793 * If we are doing an incremental send, we may have extents between the
6794 * last processed extent and the i_size that have not been processed
6795 * because they haven't changed but we may have read some of their pages
6796 * through readahead, see the comments at send_extent_data().
6797 */
6798 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6799 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6800 sctx->page_cache_clear_start,
6801 round_up(i_size, PAGE_SIZE) - 1);
6802
6803 iput(sctx->cur_inode);
6804 sctx->cur_inode = NULL;
6805}
6806
6807static int changed_inode(struct send_ctx *sctx,
6808 enum btrfs_compare_tree_result result)
6809{
6810 int ret = 0;
6811 struct btrfs_key *key = sctx->cmp_key;
6812 struct btrfs_inode_item *left_ii = NULL;
6813 struct btrfs_inode_item *right_ii = NULL;
6814 u64 left_gen = 0;
6815 u64 right_gen = 0;
6816
6817 close_current_inode(sctx);
6818
6819 sctx->cur_ino = key->objectid;
6820 sctx->cur_inode_new_gen = false;
6821 sctx->cur_inode_last_extent = (u64)-1;
6822 sctx->cur_inode_next_write_offset = 0;
6823 sctx->ignore_cur_inode = false;
6824
6825 /*
6826 * Set send_progress to current inode. This will tell all get_cur_xxx
6827 * functions that the current inode's refs are not updated yet. Later,
6828 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6829 */
6830 sctx->send_progress = sctx->cur_ino;
6831
6832 if (result == BTRFS_COMPARE_TREE_NEW ||
6833 result == BTRFS_COMPARE_TREE_CHANGED) {
6834 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6835 sctx->left_path->slots[0],
6836 struct btrfs_inode_item);
6837 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6838 left_ii);
6839 } else {
6840 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6841 sctx->right_path->slots[0],
6842 struct btrfs_inode_item);
6843 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6844 right_ii);
6845 }
6846 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6847 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6848 sctx->right_path->slots[0],
6849 struct btrfs_inode_item);
6850
6851 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6852 right_ii);
6853
6854 /*
6855 * The cur_ino = root dir case is special here. We can't treat
6856 * the inode as deleted+reused because it would generate a
6857 * stream that tries to delete/mkdir the root dir.
6858 */
6859 if (left_gen != right_gen &&
6860 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6861 sctx->cur_inode_new_gen = true;
6862 }
6863
6864 /*
6865 * Normally we do not find inodes with a link count of zero (orphans)
6866 * because the most common case is to create a snapshot and use it
6867 * for a send operation. However other less common use cases involve
6868 * using a subvolume and send it after turning it to RO mode just
6869 * after deleting all hard links of a file while holding an open
6870 * file descriptor against it or turning a RO snapshot into RW mode,
6871 * keep an open file descriptor against a file, delete it and then
6872 * turn the snapshot back to RO mode before using it for a send
6873 * operation. The former is what the receiver operation does.
6874 * Therefore, if we want to send these snapshots soon after they're
6875 * received, we need to handle orphan inodes as well. Moreover, orphans
6876 * can appear not only in the send snapshot but also in the parent
6877 * snapshot. Here are several cases:
6878 *
6879 * Case 1: BTRFS_COMPARE_TREE_NEW
6880 * | send snapshot | action
6881 * --------------------------------
6882 * nlink | 0 | ignore
6883 *
6884 * Case 2: BTRFS_COMPARE_TREE_DELETED
6885 * | parent snapshot | action
6886 * ----------------------------------
6887 * nlink | 0 | as usual
6888 * Note: No unlinks will be sent because there're no paths for it.
6889 *
6890 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6891 * | | parent snapshot | send snapshot | action
6892 * -----------------------------------------------------------------------
6893 * subcase 1 | nlink | 0 | 0 | ignore
6894 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6895 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6896 *
6897 */
6898 if (result == BTRFS_COMPARE_TREE_NEW) {
6899 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6900 sctx->ignore_cur_inode = true;
6901 goto out;
6902 }
6903 sctx->cur_inode_gen = left_gen;
6904 sctx->cur_inode_new = true;
6905 sctx->cur_inode_deleted = false;
6906 sctx->cur_inode_size = btrfs_inode_size(
6907 sctx->left_path->nodes[0], left_ii);
6908 sctx->cur_inode_mode = btrfs_inode_mode(
6909 sctx->left_path->nodes[0], left_ii);
6910 sctx->cur_inode_rdev = btrfs_inode_rdev(
6911 sctx->left_path->nodes[0], left_ii);
6912 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6913 ret = send_create_inode_if_needed(sctx);
6914 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6915 sctx->cur_inode_gen = right_gen;
6916 sctx->cur_inode_new = false;
6917 sctx->cur_inode_deleted = true;
6918 sctx->cur_inode_size = btrfs_inode_size(
6919 sctx->right_path->nodes[0], right_ii);
6920 sctx->cur_inode_mode = btrfs_inode_mode(
6921 sctx->right_path->nodes[0], right_ii);
6922 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6923 u32 new_nlinks, old_nlinks;
6924
6925 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6926 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6927 if (new_nlinks == 0 && old_nlinks == 0) {
6928 sctx->ignore_cur_inode = true;
6929 goto out;
6930 } else if (new_nlinks == 0 || old_nlinks == 0) {
6931 sctx->cur_inode_new_gen = 1;
6932 }
6933 /*
6934 * We need to do some special handling in case the inode was
6935 * reported as changed with a changed generation number. This
6936 * means that the original inode was deleted and new inode
6937 * reused the same inum. So we have to treat the old inode as
6938 * deleted and the new one as new.
6939 */
6940 if (sctx->cur_inode_new_gen) {
6941 /*
6942 * First, process the inode as if it was deleted.
6943 */
6944 if (old_nlinks > 0) {
6945 sctx->cur_inode_gen = right_gen;
6946 sctx->cur_inode_new = false;
6947 sctx->cur_inode_deleted = true;
6948 sctx->cur_inode_size = btrfs_inode_size(
6949 sctx->right_path->nodes[0], right_ii);
6950 sctx->cur_inode_mode = btrfs_inode_mode(
6951 sctx->right_path->nodes[0], right_ii);
6952 ret = process_all_refs(sctx,
6953 BTRFS_COMPARE_TREE_DELETED);
6954 if (ret < 0)
6955 goto out;
6956 }
6957
6958 /*
6959 * Now process the inode as if it was new.
6960 */
6961 if (new_nlinks > 0) {
6962 sctx->cur_inode_gen = left_gen;
6963 sctx->cur_inode_new = true;
6964 sctx->cur_inode_deleted = false;
6965 sctx->cur_inode_size = btrfs_inode_size(
6966 sctx->left_path->nodes[0],
6967 left_ii);
6968 sctx->cur_inode_mode = btrfs_inode_mode(
6969 sctx->left_path->nodes[0],
6970 left_ii);
6971 sctx->cur_inode_rdev = btrfs_inode_rdev(
6972 sctx->left_path->nodes[0],
6973 left_ii);
6974 ret = send_create_inode_if_needed(sctx);
6975 if (ret < 0)
6976 goto out;
6977
6978 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6979 if (ret < 0)
6980 goto out;
6981 /*
6982 * Advance send_progress now as we did not get
6983 * into process_recorded_refs_if_needed in the
6984 * new_gen case.
6985 */
6986 sctx->send_progress = sctx->cur_ino + 1;
6987
6988 /*
6989 * Now process all extents and xattrs of the
6990 * inode as if they were all new.
6991 */
6992 ret = process_all_extents(sctx);
6993 if (ret < 0)
6994 goto out;
6995 ret = process_all_new_xattrs(sctx);
6996 if (ret < 0)
6997 goto out;
6998 }
6999 } else {
7000 sctx->cur_inode_gen = left_gen;
7001 sctx->cur_inode_new = false;
7002 sctx->cur_inode_new_gen = false;
7003 sctx->cur_inode_deleted = false;
7004 sctx->cur_inode_size = btrfs_inode_size(
7005 sctx->left_path->nodes[0], left_ii);
7006 sctx->cur_inode_mode = btrfs_inode_mode(
7007 sctx->left_path->nodes[0], left_ii);
7008 }
7009 }
7010
7011out:
7012 return ret;
7013}
7014
7015/*
7016 * We have to process new refs before deleted refs, but compare_trees gives us
7017 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7018 * first and later process them in process_recorded_refs.
7019 * For the cur_inode_new_gen case, we skip recording completely because
7020 * changed_inode did already initiate processing of refs. The reason for this is
7021 * that in this case, compare_tree actually compares the refs of 2 different
7022 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7023 * refs of the right tree as deleted and all refs of the left tree as new.
7024 */
7025static int changed_ref(struct send_ctx *sctx,
7026 enum btrfs_compare_tree_result result)
7027{
7028 int ret = 0;
7029
7030 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7031 inconsistent_snapshot_error(sctx, result, "reference");
7032 return -EIO;
7033 }
7034
7035 if (!sctx->cur_inode_new_gen &&
7036 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7037 if (result == BTRFS_COMPARE_TREE_NEW)
7038 ret = record_new_ref(sctx);
7039 else if (result == BTRFS_COMPARE_TREE_DELETED)
7040 ret = record_deleted_ref(sctx);
7041 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7042 ret = record_changed_ref(sctx);
7043 }
7044
7045 return ret;
7046}
7047
7048/*
7049 * Process new/deleted/changed xattrs. We skip processing in the
7050 * cur_inode_new_gen case because changed_inode did already initiate processing
7051 * of xattrs. The reason is the same as in changed_ref
7052 */
7053static int changed_xattr(struct send_ctx *sctx,
7054 enum btrfs_compare_tree_result result)
7055{
7056 int ret = 0;
7057
7058 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7059 inconsistent_snapshot_error(sctx, result, "xattr");
7060 return -EIO;
7061 }
7062
7063 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7064 if (result == BTRFS_COMPARE_TREE_NEW)
7065 ret = process_new_xattr(sctx);
7066 else if (result == BTRFS_COMPARE_TREE_DELETED)
7067 ret = process_deleted_xattr(sctx);
7068 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7069 ret = process_changed_xattr(sctx);
7070 }
7071
7072 return ret;
7073}
7074
7075/*
7076 * Process new/deleted/changed extents. We skip processing in the
7077 * cur_inode_new_gen case because changed_inode did already initiate processing
7078 * of extents. The reason is the same as in changed_ref
7079 */
7080static int changed_extent(struct send_ctx *sctx,
7081 enum btrfs_compare_tree_result result)
7082{
7083 int ret = 0;
7084
7085 /*
7086 * We have found an extent item that changed without the inode item
7087 * having changed. This can happen either after relocation (where the
7088 * disk_bytenr of an extent item is replaced at
7089 * relocation.c:replace_file_extents()) or after deduplication into a
7090 * file in both the parent and send snapshots (where an extent item can
7091 * get modified or replaced with a new one). Note that deduplication
7092 * updates the inode item, but it only changes the iversion (sequence
7093 * field in the inode item) of the inode, so if a file is deduplicated
7094 * the same amount of times in both the parent and send snapshots, its
7095 * iversion becomes the same in both snapshots, whence the inode item is
7096 * the same on both snapshots.
7097 */
7098 if (sctx->cur_ino != sctx->cmp_key->objectid)
7099 return 0;
7100
7101 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7102 if (result != BTRFS_COMPARE_TREE_DELETED)
7103 ret = process_extent(sctx, sctx->left_path,
7104 sctx->cmp_key);
7105 }
7106
7107 return ret;
7108}
7109
7110static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7111{
7112 int ret = 0;
7113
7114 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7115 if (result == BTRFS_COMPARE_TREE_NEW)
7116 sctx->cur_inode_needs_verity = true;
7117 }
7118 return ret;
7119}
7120
7121static int dir_changed(struct send_ctx *sctx, u64 dir)
7122{
7123 u64 orig_gen, new_gen;
7124 int ret;
7125
7126 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7127 if (ret)
7128 return ret;
7129
7130 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7131 if (ret)
7132 return ret;
7133
7134 return (orig_gen != new_gen) ? 1 : 0;
7135}
7136
7137static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7138 struct btrfs_key *key)
7139{
7140 struct btrfs_inode_extref *extref;
7141 struct extent_buffer *leaf;
7142 u64 dirid = 0, last_dirid = 0;
7143 unsigned long ptr;
7144 u32 item_size;
7145 u32 cur_offset = 0;
7146 int ref_name_len;
7147 int ret = 0;
7148
7149 /* Easy case, just check this one dirid */
7150 if (key->type == BTRFS_INODE_REF_KEY) {
7151 dirid = key->offset;
7152
7153 ret = dir_changed(sctx, dirid);
7154 goto out;
7155 }
7156
7157 leaf = path->nodes[0];
7158 item_size = btrfs_item_size(leaf, path->slots[0]);
7159 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7160 while (cur_offset < item_size) {
7161 extref = (struct btrfs_inode_extref *)(ptr +
7162 cur_offset);
7163 dirid = btrfs_inode_extref_parent(leaf, extref);
7164 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7165 cur_offset += ref_name_len + sizeof(*extref);
7166 if (dirid == last_dirid)
7167 continue;
7168 ret = dir_changed(sctx, dirid);
7169 if (ret)
7170 break;
7171 last_dirid = dirid;
7172 }
7173out:
7174 return ret;
7175}
7176
7177/*
7178 * Updates compare related fields in sctx and simply forwards to the actual
7179 * changed_xxx functions.
7180 */
7181static int changed_cb(struct btrfs_path *left_path,
7182 struct btrfs_path *right_path,
7183 struct btrfs_key *key,
7184 enum btrfs_compare_tree_result result,
7185 struct send_ctx *sctx)
7186{
7187 int ret = 0;
7188
7189 /*
7190 * We can not hold the commit root semaphore here. This is because in
7191 * the case of sending and receiving to the same filesystem, using a
7192 * pipe, could result in a deadlock:
7193 *
7194 * 1) The task running send blocks on the pipe because it's full;
7195 *
7196 * 2) The task running receive, which is the only consumer of the pipe,
7197 * is waiting for a transaction commit (for example due to a space
7198 * reservation when doing a write or triggering a transaction commit
7199 * when creating a subvolume);
7200 *
7201 * 3) The transaction is waiting to write lock the commit root semaphore,
7202 * but can not acquire it since it's being held at 1).
7203 *
7204 * Down this call chain we write to the pipe through kernel_write().
7205 * The same type of problem can also happen when sending to a file that
7206 * is stored in the same filesystem - when reserving space for a write
7207 * into the file, we can trigger a transaction commit.
7208 *
7209 * Our caller has supplied us with clones of leaves from the send and
7210 * parent roots, so we're safe here from a concurrent relocation and
7211 * further reallocation of metadata extents while we are here. Below we
7212 * also assert that the leaves are clones.
7213 */
7214 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7215
7216 /*
7217 * We always have a send root, so left_path is never NULL. We will not
7218 * have a leaf when we have reached the end of the send root but have
7219 * not yet reached the end of the parent root.
7220 */
7221 if (left_path->nodes[0])
7222 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7223 &left_path->nodes[0]->bflags));
7224 /*
7225 * When doing a full send we don't have a parent root, so right_path is
7226 * NULL. When doing an incremental send, we may have reached the end of
7227 * the parent root already, so we don't have a leaf at right_path.
7228 */
7229 if (right_path && right_path->nodes[0])
7230 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7231 &right_path->nodes[0]->bflags));
7232
7233 if (result == BTRFS_COMPARE_TREE_SAME) {
7234 if (key->type == BTRFS_INODE_REF_KEY ||
7235 key->type == BTRFS_INODE_EXTREF_KEY) {
7236 ret = compare_refs(sctx, left_path, key);
7237 if (!ret)
7238 return 0;
7239 if (ret < 0)
7240 return ret;
7241 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7242 return maybe_send_hole(sctx, left_path, key);
7243 } else {
7244 return 0;
7245 }
7246 result = BTRFS_COMPARE_TREE_CHANGED;
7247 ret = 0;
7248 }
7249
7250 sctx->left_path = left_path;
7251 sctx->right_path = right_path;
7252 sctx->cmp_key = key;
7253
7254 ret = finish_inode_if_needed(sctx, 0);
7255 if (ret < 0)
7256 goto out;
7257
7258 /* Ignore non-FS objects */
7259 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7260 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7261 goto out;
7262
7263 if (key->type == BTRFS_INODE_ITEM_KEY) {
7264 ret = changed_inode(sctx, result);
7265 } else if (!sctx->ignore_cur_inode) {
7266 if (key->type == BTRFS_INODE_REF_KEY ||
7267 key->type == BTRFS_INODE_EXTREF_KEY)
7268 ret = changed_ref(sctx, result);
7269 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7270 ret = changed_xattr(sctx, result);
7271 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7272 ret = changed_extent(sctx, result);
7273 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7274 key->offset == 0)
7275 ret = changed_verity(sctx, result);
7276 }
7277
7278out:
7279 return ret;
7280}
7281
7282static int search_key_again(const struct send_ctx *sctx,
7283 struct btrfs_root *root,
7284 struct btrfs_path *path,
7285 const struct btrfs_key *key)
7286{
7287 int ret;
7288
7289 if (!path->need_commit_sem)
7290 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7291
7292 /*
7293 * Roots used for send operations are readonly and no one can add,
7294 * update or remove keys from them, so we should be able to find our
7295 * key again. The only exception is deduplication, which can operate on
7296 * readonly roots and add, update or remove keys to/from them - but at
7297 * the moment we don't allow it to run in parallel with send.
7298 */
7299 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7300 ASSERT(ret <= 0);
7301 if (ret > 0) {
7302 btrfs_print_tree(path->nodes[path->lowest_level], false);
7303 btrfs_err(root->fs_info,
7304"send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7305 key->objectid, key->type, key->offset,
7306 (root == sctx->parent_root ? "parent" : "send"),
7307 root->root_key.objectid, path->lowest_level,
7308 path->slots[path->lowest_level]);
7309 return -EUCLEAN;
7310 }
7311
7312 return ret;
7313}
7314
7315static int full_send_tree(struct send_ctx *sctx)
7316{
7317 int ret;
7318 struct btrfs_root *send_root = sctx->send_root;
7319 struct btrfs_key key;
7320 struct btrfs_fs_info *fs_info = send_root->fs_info;
7321 struct btrfs_path *path;
7322
7323 path = alloc_path_for_send();
7324 if (!path)
7325 return -ENOMEM;
7326 path->reada = READA_FORWARD_ALWAYS;
7327
7328 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7329 key.type = BTRFS_INODE_ITEM_KEY;
7330 key.offset = 0;
7331
7332 down_read(&fs_info->commit_root_sem);
7333 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7334 up_read(&fs_info->commit_root_sem);
7335
7336 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7337 if (ret < 0)
7338 goto out;
7339 if (ret)
7340 goto out_finish;
7341
7342 while (1) {
7343 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7344
7345 ret = changed_cb(path, NULL, &key,
7346 BTRFS_COMPARE_TREE_NEW, sctx);
7347 if (ret < 0)
7348 goto out;
7349
7350 down_read(&fs_info->commit_root_sem);
7351 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7352 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7353 up_read(&fs_info->commit_root_sem);
7354 /*
7355 * A transaction used for relocating a block group was
7356 * committed or is about to finish its commit. Release
7357 * our path (leaf) and restart the search, so that we
7358 * avoid operating on any file extent items that are
7359 * stale, with a disk_bytenr that reflects a pre
7360 * relocation value. This way we avoid as much as
7361 * possible to fallback to regular writes when checking
7362 * if we can clone file ranges.
7363 */
7364 btrfs_release_path(path);
7365 ret = search_key_again(sctx, send_root, path, &key);
7366 if (ret < 0)
7367 goto out;
7368 } else {
7369 up_read(&fs_info->commit_root_sem);
7370 }
7371
7372 ret = btrfs_next_item(send_root, path);
7373 if (ret < 0)
7374 goto out;
7375 if (ret) {
7376 ret = 0;
7377 break;
7378 }
7379 }
7380
7381out_finish:
7382 ret = finish_inode_if_needed(sctx, 1);
7383
7384out:
7385 btrfs_free_path(path);
7386 return ret;
7387}
7388
7389static int replace_node_with_clone(struct btrfs_path *path, int level)
7390{
7391 struct extent_buffer *clone;
7392
7393 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7394 if (!clone)
7395 return -ENOMEM;
7396
7397 free_extent_buffer(path->nodes[level]);
7398 path->nodes[level] = clone;
7399
7400 return 0;
7401}
7402
7403static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7404{
7405 struct extent_buffer *eb;
7406 struct extent_buffer *parent = path->nodes[*level];
7407 int slot = path->slots[*level];
7408 const int nritems = btrfs_header_nritems(parent);
7409 u64 reada_max;
7410 u64 reada_done = 0;
7411
7412 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7413
7414 BUG_ON(*level == 0);
7415 eb = btrfs_read_node_slot(parent, slot);
7416 if (IS_ERR(eb))
7417 return PTR_ERR(eb);
7418
7419 /*
7420 * Trigger readahead for the next leaves we will process, so that it is
7421 * very likely that when we need them they are already in memory and we
7422 * will not block on disk IO. For nodes we only do readahead for one,
7423 * since the time window between processing nodes is typically larger.
7424 */
7425 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7426
7427 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7428 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7429 btrfs_readahead_node_child(parent, slot);
7430 reada_done += eb->fs_info->nodesize;
7431 }
7432 }
7433
7434 path->nodes[*level - 1] = eb;
7435 path->slots[*level - 1] = 0;
7436 (*level)--;
7437
7438 if (*level == 0)
7439 return replace_node_with_clone(path, 0);
7440
7441 return 0;
7442}
7443
7444static int tree_move_next_or_upnext(struct btrfs_path *path,
7445 int *level, int root_level)
7446{
7447 int ret = 0;
7448 int nritems;
7449 nritems = btrfs_header_nritems(path->nodes[*level]);
7450
7451 path->slots[*level]++;
7452
7453 while (path->slots[*level] >= nritems) {
7454 if (*level == root_level) {
7455 path->slots[*level] = nritems - 1;
7456 return -1;
7457 }
7458
7459 /* move upnext */
7460 path->slots[*level] = 0;
7461 free_extent_buffer(path->nodes[*level]);
7462 path->nodes[*level] = NULL;
7463 (*level)++;
7464 path->slots[*level]++;
7465
7466 nritems = btrfs_header_nritems(path->nodes[*level]);
7467 ret = 1;
7468 }
7469 return ret;
7470}
7471
7472/*
7473 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7474 * or down.
7475 */
7476static int tree_advance(struct btrfs_path *path,
7477 int *level, int root_level,
7478 int allow_down,
7479 struct btrfs_key *key,
7480 u64 reada_min_gen)
7481{
7482 int ret;
7483
7484 if (*level == 0 || !allow_down) {
7485 ret = tree_move_next_or_upnext(path, level, root_level);
7486 } else {
7487 ret = tree_move_down(path, level, reada_min_gen);
7488 }
7489
7490 /*
7491 * Even if we have reached the end of a tree, ret is -1, update the key
7492 * anyway, so that in case we need to restart due to a block group
7493 * relocation, we can assert that the last key of the root node still
7494 * exists in the tree.
7495 */
7496 if (*level == 0)
7497 btrfs_item_key_to_cpu(path->nodes[*level], key,
7498 path->slots[*level]);
7499 else
7500 btrfs_node_key_to_cpu(path->nodes[*level], key,
7501 path->slots[*level]);
7502
7503 return ret;
7504}
7505
7506static int tree_compare_item(struct btrfs_path *left_path,
7507 struct btrfs_path *right_path,
7508 char *tmp_buf)
7509{
7510 int cmp;
7511 int len1, len2;
7512 unsigned long off1, off2;
7513
7514 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7515 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7516 if (len1 != len2)
7517 return 1;
7518
7519 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7520 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7521 right_path->slots[0]);
7522
7523 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7524
7525 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7526 if (cmp)
7527 return 1;
7528 return 0;
7529}
7530
7531/*
7532 * A transaction used for relocating a block group was committed or is about to
7533 * finish its commit. Release our paths and restart the search, so that we are
7534 * not using stale extent buffers:
7535 *
7536 * 1) For levels > 0, we are only holding references of extent buffers, without
7537 * any locks on them, which does not prevent them from having been relocated
7538 * and reallocated after the last time we released the commit root semaphore.
7539 * The exception are the root nodes, for which we always have a clone, see
7540 * the comment at btrfs_compare_trees();
7541 *
7542 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7543 * we are safe from the concurrent relocation and reallocation. However they
7544 * can have file extent items with a pre relocation disk_bytenr value, so we
7545 * restart the start from the current commit roots and clone the new leaves so
7546 * that we get the post relocation disk_bytenr values. Not doing so, could
7547 * make us clone the wrong data in case there are new extents using the old
7548 * disk_bytenr that happen to be shared.
7549 */
7550static int restart_after_relocation(struct btrfs_path *left_path,
7551 struct btrfs_path *right_path,
7552 const struct btrfs_key *left_key,
7553 const struct btrfs_key *right_key,
7554 int left_level,
7555 int right_level,
7556 const struct send_ctx *sctx)
7557{
7558 int root_level;
7559 int ret;
7560
7561 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7562
7563 btrfs_release_path(left_path);
7564 btrfs_release_path(right_path);
7565
7566 /*
7567 * Since keys can not be added or removed to/from our roots because they
7568 * are readonly and we do not allow deduplication to run in parallel
7569 * (which can add, remove or change keys), the layout of the trees should
7570 * not change.
7571 */
7572 left_path->lowest_level = left_level;
7573 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7574 if (ret < 0)
7575 return ret;
7576
7577 right_path->lowest_level = right_level;
7578 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7579 if (ret < 0)
7580 return ret;
7581
7582 /*
7583 * If the lowest level nodes are leaves, clone them so that they can be
7584 * safely used by changed_cb() while not under the protection of the
7585 * commit root semaphore, even if relocation and reallocation happens in
7586 * parallel.
7587 */
7588 if (left_level == 0) {
7589 ret = replace_node_with_clone(left_path, 0);
7590 if (ret < 0)
7591 return ret;
7592 }
7593
7594 if (right_level == 0) {
7595 ret = replace_node_with_clone(right_path, 0);
7596 if (ret < 0)
7597 return ret;
7598 }
7599
7600 /*
7601 * Now clone the root nodes (unless they happen to be the leaves we have
7602 * already cloned). This is to protect against concurrent snapshotting of
7603 * the send and parent roots (see the comment at btrfs_compare_trees()).
7604 */
7605 root_level = btrfs_header_level(sctx->send_root->commit_root);
7606 if (root_level > 0) {
7607 ret = replace_node_with_clone(left_path, root_level);
7608 if (ret < 0)
7609 return ret;
7610 }
7611
7612 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7613 if (root_level > 0) {
7614 ret = replace_node_with_clone(right_path, root_level);
7615 if (ret < 0)
7616 return ret;
7617 }
7618
7619 return 0;
7620}
7621
7622/*
7623 * This function compares two trees and calls the provided callback for
7624 * every changed/new/deleted item it finds.
7625 * If shared tree blocks are encountered, whole subtrees are skipped, making
7626 * the compare pretty fast on snapshotted subvolumes.
7627 *
7628 * This currently works on commit roots only. As commit roots are read only,
7629 * we don't do any locking. The commit roots are protected with transactions.
7630 * Transactions are ended and rejoined when a commit is tried in between.
7631 *
7632 * This function checks for modifications done to the trees while comparing.
7633 * If it detects a change, it aborts immediately.
7634 */
7635static int btrfs_compare_trees(struct btrfs_root *left_root,
7636 struct btrfs_root *right_root, struct send_ctx *sctx)
7637{
7638 struct btrfs_fs_info *fs_info = left_root->fs_info;
7639 int ret;
7640 int cmp;
7641 struct btrfs_path *left_path = NULL;
7642 struct btrfs_path *right_path = NULL;
7643 struct btrfs_key left_key;
7644 struct btrfs_key right_key;
7645 char *tmp_buf = NULL;
7646 int left_root_level;
7647 int right_root_level;
7648 int left_level;
7649 int right_level;
7650 int left_end_reached = 0;
7651 int right_end_reached = 0;
7652 int advance_left = 0;
7653 int advance_right = 0;
7654 u64 left_blockptr;
7655 u64 right_blockptr;
7656 u64 left_gen;
7657 u64 right_gen;
7658 u64 reada_min_gen;
7659
7660 left_path = btrfs_alloc_path();
7661 if (!left_path) {
7662 ret = -ENOMEM;
7663 goto out;
7664 }
7665 right_path = btrfs_alloc_path();
7666 if (!right_path) {
7667 ret = -ENOMEM;
7668 goto out;
7669 }
7670
7671 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7672 if (!tmp_buf) {
7673 ret = -ENOMEM;
7674 goto out;
7675 }
7676
7677 left_path->search_commit_root = 1;
7678 left_path->skip_locking = 1;
7679 right_path->search_commit_root = 1;
7680 right_path->skip_locking = 1;
7681
7682 /*
7683 * Strategy: Go to the first items of both trees. Then do
7684 *
7685 * If both trees are at level 0
7686 * Compare keys of current items
7687 * If left < right treat left item as new, advance left tree
7688 * and repeat
7689 * If left > right treat right item as deleted, advance right tree
7690 * and repeat
7691 * If left == right do deep compare of items, treat as changed if
7692 * needed, advance both trees and repeat
7693 * If both trees are at the same level but not at level 0
7694 * Compare keys of current nodes/leafs
7695 * If left < right advance left tree and repeat
7696 * If left > right advance right tree and repeat
7697 * If left == right compare blockptrs of the next nodes/leafs
7698 * If they match advance both trees but stay at the same level
7699 * and repeat
7700 * If they don't match advance both trees while allowing to go
7701 * deeper and repeat
7702 * If tree levels are different
7703 * Advance the tree that needs it and repeat
7704 *
7705 * Advancing a tree means:
7706 * If we are at level 0, try to go to the next slot. If that's not
7707 * possible, go one level up and repeat. Stop when we found a level
7708 * where we could go to the next slot. We may at this point be on a
7709 * node or a leaf.
7710 *
7711 * If we are not at level 0 and not on shared tree blocks, go one
7712 * level deeper.
7713 *
7714 * If we are not at level 0 and on shared tree blocks, go one slot to
7715 * the right if possible or go up and right.
7716 */
7717
7718 down_read(&fs_info->commit_root_sem);
7719 left_level = btrfs_header_level(left_root->commit_root);
7720 left_root_level = left_level;
7721 /*
7722 * We clone the root node of the send and parent roots to prevent races
7723 * with snapshot creation of these roots. Snapshot creation COWs the
7724 * root node of a tree, so after the transaction is committed the old
7725 * extent can be reallocated while this send operation is still ongoing.
7726 * So we clone them, under the commit root semaphore, to be race free.
7727 */
7728 left_path->nodes[left_level] =
7729 btrfs_clone_extent_buffer(left_root->commit_root);
7730 if (!left_path->nodes[left_level]) {
7731 ret = -ENOMEM;
7732 goto out_unlock;
7733 }
7734
7735 right_level = btrfs_header_level(right_root->commit_root);
7736 right_root_level = right_level;
7737 right_path->nodes[right_level] =
7738 btrfs_clone_extent_buffer(right_root->commit_root);
7739 if (!right_path->nodes[right_level]) {
7740 ret = -ENOMEM;
7741 goto out_unlock;
7742 }
7743 /*
7744 * Our right root is the parent root, while the left root is the "send"
7745 * root. We know that all new nodes/leaves in the left root must have
7746 * a generation greater than the right root's generation, so we trigger
7747 * readahead for those nodes and leaves of the left root, as we know we
7748 * will need to read them at some point.
7749 */
7750 reada_min_gen = btrfs_header_generation(right_root->commit_root);
7751
7752 if (left_level == 0)
7753 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7754 &left_key, left_path->slots[left_level]);
7755 else
7756 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7757 &left_key, left_path->slots[left_level]);
7758 if (right_level == 0)
7759 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7760 &right_key, right_path->slots[right_level]);
7761 else
7762 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7763 &right_key, right_path->slots[right_level]);
7764
7765 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7766
7767 while (1) {
7768 if (need_resched() ||
7769 rwsem_is_contended(&fs_info->commit_root_sem)) {
7770 up_read(&fs_info->commit_root_sem);
7771 cond_resched();
7772 down_read(&fs_info->commit_root_sem);
7773 }
7774
7775 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7776 ret = restart_after_relocation(left_path, right_path,
7777 &left_key, &right_key,
7778 left_level, right_level,
7779 sctx);
7780 if (ret < 0)
7781 goto out_unlock;
7782 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7783 }
7784
7785 if (advance_left && !left_end_reached) {
7786 ret = tree_advance(left_path, &left_level,
7787 left_root_level,
7788 advance_left != ADVANCE_ONLY_NEXT,
7789 &left_key, reada_min_gen);
7790 if (ret == -1)
7791 left_end_reached = ADVANCE;
7792 else if (ret < 0)
7793 goto out_unlock;
7794 advance_left = 0;
7795 }
7796 if (advance_right && !right_end_reached) {
7797 ret = tree_advance(right_path, &right_level,
7798 right_root_level,
7799 advance_right != ADVANCE_ONLY_NEXT,
7800 &right_key, reada_min_gen);
7801 if (ret == -1)
7802 right_end_reached = ADVANCE;
7803 else if (ret < 0)
7804 goto out_unlock;
7805 advance_right = 0;
7806 }
7807
7808 if (left_end_reached && right_end_reached) {
7809 ret = 0;
7810 goto out_unlock;
7811 } else if (left_end_reached) {
7812 if (right_level == 0) {
7813 up_read(&fs_info->commit_root_sem);
7814 ret = changed_cb(left_path, right_path,
7815 &right_key,
7816 BTRFS_COMPARE_TREE_DELETED,
7817 sctx);
7818 if (ret < 0)
7819 goto out;
7820 down_read(&fs_info->commit_root_sem);
7821 }
7822 advance_right = ADVANCE;
7823 continue;
7824 } else if (right_end_reached) {
7825 if (left_level == 0) {
7826 up_read(&fs_info->commit_root_sem);
7827 ret = changed_cb(left_path, right_path,
7828 &left_key,
7829 BTRFS_COMPARE_TREE_NEW,
7830 sctx);
7831 if (ret < 0)
7832 goto out;
7833 down_read(&fs_info->commit_root_sem);
7834 }
7835 advance_left = ADVANCE;
7836 continue;
7837 }
7838
7839 if (left_level == 0 && right_level == 0) {
7840 up_read(&fs_info->commit_root_sem);
7841 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7842 if (cmp < 0) {
7843 ret = changed_cb(left_path, right_path,
7844 &left_key,
7845 BTRFS_COMPARE_TREE_NEW,
7846 sctx);
7847 advance_left = ADVANCE;
7848 } else if (cmp > 0) {
7849 ret = changed_cb(left_path, right_path,
7850 &right_key,
7851 BTRFS_COMPARE_TREE_DELETED,
7852 sctx);
7853 advance_right = ADVANCE;
7854 } else {
7855 enum btrfs_compare_tree_result result;
7856
7857 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7858 ret = tree_compare_item(left_path, right_path,
7859 tmp_buf);
7860 if (ret)
7861 result = BTRFS_COMPARE_TREE_CHANGED;
7862 else
7863 result = BTRFS_COMPARE_TREE_SAME;
7864 ret = changed_cb(left_path, right_path,
7865 &left_key, result, sctx);
7866 advance_left = ADVANCE;
7867 advance_right = ADVANCE;
7868 }
7869
7870 if (ret < 0)
7871 goto out;
7872 down_read(&fs_info->commit_root_sem);
7873 } else if (left_level == right_level) {
7874 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7875 if (cmp < 0) {
7876 advance_left = ADVANCE;
7877 } else if (cmp > 0) {
7878 advance_right = ADVANCE;
7879 } else {
7880 left_blockptr = btrfs_node_blockptr(
7881 left_path->nodes[left_level],
7882 left_path->slots[left_level]);
7883 right_blockptr = btrfs_node_blockptr(
7884 right_path->nodes[right_level],
7885 right_path->slots[right_level]);
7886 left_gen = btrfs_node_ptr_generation(
7887 left_path->nodes[left_level],
7888 left_path->slots[left_level]);
7889 right_gen = btrfs_node_ptr_generation(
7890 right_path->nodes[right_level],
7891 right_path->slots[right_level]);
7892 if (left_blockptr == right_blockptr &&
7893 left_gen == right_gen) {
7894 /*
7895 * As we're on a shared block, don't
7896 * allow to go deeper.
7897 */
7898 advance_left = ADVANCE_ONLY_NEXT;
7899 advance_right = ADVANCE_ONLY_NEXT;
7900 } else {
7901 advance_left = ADVANCE;
7902 advance_right = ADVANCE;
7903 }
7904 }
7905 } else if (left_level < right_level) {
7906 advance_right = ADVANCE;
7907 } else {
7908 advance_left = ADVANCE;
7909 }
7910 }
7911
7912out_unlock:
7913 up_read(&fs_info->commit_root_sem);
7914out:
7915 btrfs_free_path(left_path);
7916 btrfs_free_path(right_path);
7917 kvfree(tmp_buf);
7918 return ret;
7919}
7920
7921static int send_subvol(struct send_ctx *sctx)
7922{
7923 int ret;
7924
7925 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7926 ret = send_header(sctx);
7927 if (ret < 0)
7928 goto out;
7929 }
7930
7931 ret = send_subvol_begin(sctx);
7932 if (ret < 0)
7933 goto out;
7934
7935 if (sctx->parent_root) {
7936 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7937 if (ret < 0)
7938 goto out;
7939 ret = finish_inode_if_needed(sctx, 1);
7940 if (ret < 0)
7941 goto out;
7942 } else {
7943 ret = full_send_tree(sctx);
7944 if (ret < 0)
7945 goto out;
7946 }
7947
7948out:
7949 free_recorded_refs(sctx);
7950 return ret;
7951}
7952
7953/*
7954 * If orphan cleanup did remove any orphans from a root, it means the tree
7955 * was modified and therefore the commit root is not the same as the current
7956 * root anymore. This is a problem, because send uses the commit root and
7957 * therefore can see inode items that don't exist in the current root anymore,
7958 * and for example make calls to btrfs_iget, which will do tree lookups based
7959 * on the current root and not on the commit root. Those lookups will fail,
7960 * returning a -ESTALE error, and making send fail with that error. So make
7961 * sure a send does not see any orphans we have just removed, and that it will
7962 * see the same inodes regardless of whether a transaction commit happened
7963 * before it started (meaning that the commit root will be the same as the
7964 * current root) or not.
7965 */
7966static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7967{
7968 int i;
7969 struct btrfs_trans_handle *trans = NULL;
7970
7971again:
7972 if (sctx->parent_root &&
7973 sctx->parent_root->node != sctx->parent_root->commit_root)
7974 goto commit_trans;
7975
7976 for (i = 0; i < sctx->clone_roots_cnt; i++)
7977 if (sctx->clone_roots[i].root->node !=
7978 sctx->clone_roots[i].root->commit_root)
7979 goto commit_trans;
7980
7981 if (trans)
7982 return btrfs_end_transaction(trans);
7983
7984 return 0;
7985
7986commit_trans:
7987 /* Use any root, all fs roots will get their commit roots updated. */
7988 if (!trans) {
7989 trans = btrfs_join_transaction(sctx->send_root);
7990 if (IS_ERR(trans))
7991 return PTR_ERR(trans);
7992 goto again;
7993 }
7994
7995 return btrfs_commit_transaction(trans);
7996}
7997
7998/*
7999 * Make sure any existing dellaloc is flushed for any root used by a send
8000 * operation so that we do not miss any data and we do not race with writeback
8001 * finishing and changing a tree while send is using the tree. This could
8002 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8003 * a send operation then uses the subvolume.
8004 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8005 */
8006static int flush_delalloc_roots(struct send_ctx *sctx)
8007{
8008 struct btrfs_root *root = sctx->parent_root;
8009 int ret;
8010 int i;
8011
8012 if (root) {
8013 ret = btrfs_start_delalloc_snapshot(root, false);
8014 if (ret)
8015 return ret;
8016 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8017 }
8018
8019 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8020 root = sctx->clone_roots[i].root;
8021 ret = btrfs_start_delalloc_snapshot(root, false);
8022 if (ret)
8023 return ret;
8024 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8025 }
8026
8027 return 0;
8028}
8029
8030static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8031{
8032 spin_lock(&root->root_item_lock);
8033 root->send_in_progress--;
8034 /*
8035 * Not much left to do, we don't know why it's unbalanced and
8036 * can't blindly reset it to 0.
8037 */
8038 if (root->send_in_progress < 0)
8039 btrfs_err(root->fs_info,
8040 "send_in_progress unbalanced %d root %llu",
8041 root->send_in_progress, root->root_key.objectid);
8042 spin_unlock(&root->root_item_lock);
8043}
8044
8045static void dedupe_in_progress_warn(const struct btrfs_root *root)
8046{
8047 btrfs_warn_rl(root->fs_info,
8048"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8049 root->root_key.objectid, root->dedupe_in_progress);
8050}
8051
8052long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
8053{
8054 int ret = 0;
8055 struct btrfs_root *send_root = BTRFS_I(inode)->root;
8056 struct btrfs_fs_info *fs_info = send_root->fs_info;
8057 struct btrfs_root *clone_root;
8058 struct send_ctx *sctx = NULL;
8059 u32 i;
8060 u64 *clone_sources_tmp = NULL;
8061 int clone_sources_to_rollback = 0;
8062 size_t alloc_size;
8063 int sort_clone_roots = 0;
8064 struct btrfs_lru_cache_entry *entry;
8065 struct btrfs_lru_cache_entry *tmp;
8066
8067 if (!capable(CAP_SYS_ADMIN))
8068 return -EPERM;
8069
8070 /*
8071 * The subvolume must remain read-only during send, protect against
8072 * making it RW. This also protects against deletion.
8073 */
8074 spin_lock(&send_root->root_item_lock);
8075 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8076 dedupe_in_progress_warn(send_root);
8077 spin_unlock(&send_root->root_item_lock);
8078 return -EAGAIN;
8079 }
8080 send_root->send_in_progress++;
8081 spin_unlock(&send_root->root_item_lock);
8082
8083 /*
8084 * Userspace tools do the checks and warn the user if it's
8085 * not RO.
8086 */
8087 if (!btrfs_root_readonly(send_root)) {
8088 ret = -EPERM;
8089 goto out;
8090 }
8091
8092 /*
8093 * Check that we don't overflow at later allocations, we request
8094 * clone_sources_count + 1 items, and compare to unsigned long inside
8095 * access_ok. Also set an upper limit for allocation size so this can't
8096 * easily exhaust memory. Max number of clone sources is about 200K.
8097 */
8098 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8099 ret = -EINVAL;
8100 goto out;
8101 }
8102
8103 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8104 ret = -EINVAL;
8105 goto out;
8106 }
8107
8108 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8109 if (!sctx) {
8110 ret = -ENOMEM;
8111 goto out;
8112 }
8113
8114 INIT_LIST_HEAD(&sctx->new_refs);
8115 INIT_LIST_HEAD(&sctx->deleted_refs);
8116
8117 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8118 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8119 btrfs_lru_cache_init(&sctx->dir_created_cache,
8120 SEND_MAX_DIR_CREATED_CACHE_SIZE);
8121 /*
8122 * This cache is periodically trimmed to a fixed size elsewhere, see
8123 * cache_dir_utimes() and trim_dir_utimes_cache().
8124 */
8125 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8126
8127 sctx->pending_dir_moves = RB_ROOT;
8128 sctx->waiting_dir_moves = RB_ROOT;
8129 sctx->orphan_dirs = RB_ROOT;
8130 sctx->rbtree_new_refs = RB_ROOT;
8131 sctx->rbtree_deleted_refs = RB_ROOT;
8132
8133 sctx->flags = arg->flags;
8134
8135 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8136 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8137 ret = -EPROTO;
8138 goto out;
8139 }
8140 /* Zero means "use the highest version" */
8141 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8142 } else {
8143 sctx->proto = 1;
8144 }
8145 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8146 ret = -EINVAL;
8147 goto out;
8148 }
8149
8150 sctx->send_filp = fget(arg->send_fd);
8151 if (!sctx->send_filp) {
8152 ret = -EBADF;
8153 goto out;
8154 }
8155
8156 sctx->send_root = send_root;
8157 /*
8158 * Unlikely but possible, if the subvolume is marked for deletion but
8159 * is slow to remove the directory entry, send can still be started
8160 */
8161 if (btrfs_root_dead(sctx->send_root)) {
8162 ret = -EPERM;
8163 goto out;
8164 }
8165
8166 sctx->clone_roots_cnt = arg->clone_sources_count;
8167
8168 if (sctx->proto >= 2) {
8169 u32 send_buf_num_pages;
8170
8171 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8172 sctx->send_buf = vmalloc(sctx->send_max_size);
8173 if (!sctx->send_buf) {
8174 ret = -ENOMEM;
8175 goto out;
8176 }
8177 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8178 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8179 sizeof(*sctx->send_buf_pages),
8180 GFP_KERNEL);
8181 if (!sctx->send_buf_pages) {
8182 ret = -ENOMEM;
8183 goto out;
8184 }
8185 for (i = 0; i < send_buf_num_pages; i++) {
8186 sctx->send_buf_pages[i] =
8187 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8188 }
8189 } else {
8190 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8191 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8192 }
8193 if (!sctx->send_buf) {
8194 ret = -ENOMEM;
8195 goto out;
8196 }
8197
8198 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
8199 arg->clone_sources_count + 1,
8200 GFP_KERNEL);
8201 if (!sctx->clone_roots) {
8202 ret = -ENOMEM;
8203 goto out;
8204 }
8205
8206 alloc_size = array_size(sizeof(*arg->clone_sources),
8207 arg->clone_sources_count);
8208
8209 if (arg->clone_sources_count) {
8210 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8211 if (!clone_sources_tmp) {
8212 ret = -ENOMEM;
8213 goto out;
8214 }
8215
8216 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8217 alloc_size);
8218 if (ret) {
8219 ret = -EFAULT;
8220 goto out;
8221 }
8222
8223 for (i = 0; i < arg->clone_sources_count; i++) {
8224 clone_root = btrfs_get_fs_root(fs_info,
8225 clone_sources_tmp[i], true);
8226 if (IS_ERR(clone_root)) {
8227 ret = PTR_ERR(clone_root);
8228 goto out;
8229 }
8230 spin_lock(&clone_root->root_item_lock);
8231 if (!btrfs_root_readonly(clone_root) ||
8232 btrfs_root_dead(clone_root)) {
8233 spin_unlock(&clone_root->root_item_lock);
8234 btrfs_put_root(clone_root);
8235 ret = -EPERM;
8236 goto out;
8237 }
8238 if (clone_root->dedupe_in_progress) {
8239 dedupe_in_progress_warn(clone_root);
8240 spin_unlock(&clone_root->root_item_lock);
8241 btrfs_put_root(clone_root);
8242 ret = -EAGAIN;
8243 goto out;
8244 }
8245 clone_root->send_in_progress++;
8246 spin_unlock(&clone_root->root_item_lock);
8247
8248 sctx->clone_roots[i].root = clone_root;
8249 clone_sources_to_rollback = i + 1;
8250 }
8251 kvfree(clone_sources_tmp);
8252 clone_sources_tmp = NULL;
8253 }
8254
8255 if (arg->parent_root) {
8256 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8257 true);
8258 if (IS_ERR(sctx->parent_root)) {
8259 ret = PTR_ERR(sctx->parent_root);
8260 goto out;
8261 }
8262
8263 spin_lock(&sctx->parent_root->root_item_lock);
8264 sctx->parent_root->send_in_progress++;
8265 if (!btrfs_root_readonly(sctx->parent_root) ||
8266 btrfs_root_dead(sctx->parent_root)) {
8267 spin_unlock(&sctx->parent_root->root_item_lock);
8268 ret = -EPERM;
8269 goto out;
8270 }
8271 if (sctx->parent_root->dedupe_in_progress) {
8272 dedupe_in_progress_warn(sctx->parent_root);
8273 spin_unlock(&sctx->parent_root->root_item_lock);
8274 ret = -EAGAIN;
8275 goto out;
8276 }
8277 spin_unlock(&sctx->parent_root->root_item_lock);
8278 }
8279
8280 /*
8281 * Clones from send_root are allowed, but only if the clone source
8282 * is behind the current send position. This is checked while searching
8283 * for possible clone sources.
8284 */
8285 sctx->clone_roots[sctx->clone_roots_cnt++].root =
8286 btrfs_grab_root(sctx->send_root);
8287
8288 /* We do a bsearch later */
8289 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8290 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8291 NULL);
8292 sort_clone_roots = 1;
8293
8294 ret = flush_delalloc_roots(sctx);
8295 if (ret)
8296 goto out;
8297
8298 ret = ensure_commit_roots_uptodate(sctx);
8299 if (ret)
8300 goto out;
8301
8302 ret = send_subvol(sctx);
8303 if (ret < 0)
8304 goto out;
8305
8306 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8307 ret = send_utimes(sctx, entry->key, entry->gen);
8308 if (ret < 0)
8309 goto out;
8310 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8311 }
8312
8313 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8314 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8315 if (ret < 0)
8316 goto out;
8317 ret = send_cmd(sctx);
8318 if (ret < 0)
8319 goto out;
8320 }
8321
8322out:
8323 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8324 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8325 struct rb_node *n;
8326 struct pending_dir_move *pm;
8327
8328 n = rb_first(&sctx->pending_dir_moves);
8329 pm = rb_entry(n, struct pending_dir_move, node);
8330 while (!list_empty(&pm->list)) {
8331 struct pending_dir_move *pm2;
8332
8333 pm2 = list_first_entry(&pm->list,
8334 struct pending_dir_move, list);
8335 free_pending_move(sctx, pm2);
8336 }
8337 free_pending_move(sctx, pm);
8338 }
8339
8340 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8341 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8342 struct rb_node *n;
8343 struct waiting_dir_move *dm;
8344
8345 n = rb_first(&sctx->waiting_dir_moves);
8346 dm = rb_entry(n, struct waiting_dir_move, node);
8347 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8348 kfree(dm);
8349 }
8350
8351 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8352 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8353 struct rb_node *n;
8354 struct orphan_dir_info *odi;
8355
8356 n = rb_first(&sctx->orphan_dirs);
8357 odi = rb_entry(n, struct orphan_dir_info, node);
8358 free_orphan_dir_info(sctx, odi);
8359 }
8360
8361 if (sort_clone_roots) {
8362 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8363 btrfs_root_dec_send_in_progress(
8364 sctx->clone_roots[i].root);
8365 btrfs_put_root(sctx->clone_roots[i].root);
8366 }
8367 } else {
8368 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8369 btrfs_root_dec_send_in_progress(
8370 sctx->clone_roots[i].root);
8371 btrfs_put_root(sctx->clone_roots[i].root);
8372 }
8373
8374 btrfs_root_dec_send_in_progress(send_root);
8375 }
8376 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8377 btrfs_root_dec_send_in_progress(sctx->parent_root);
8378 btrfs_put_root(sctx->parent_root);
8379 }
8380
8381 kvfree(clone_sources_tmp);
8382
8383 if (sctx) {
8384 if (sctx->send_filp)
8385 fput(sctx->send_filp);
8386
8387 kvfree(sctx->clone_roots);
8388 kfree(sctx->send_buf_pages);
8389 kvfree(sctx->send_buf);
8390 kvfree(sctx->verity_descriptor);
8391
8392 close_current_inode(sctx);
8393
8394 btrfs_lru_cache_clear(&sctx->name_cache);
8395 btrfs_lru_cache_clear(&sctx->backref_cache);
8396 btrfs_lru_cache_clear(&sctx->dir_created_cache);
8397 btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8398
8399 kfree(sctx);
8400 }
8401
8402 return ret;
8403}