Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * include/asm-xtensa/pgtable.h
4 *
5 * Copyright (C) 2001 - 2013 Tensilica Inc.
6 */
7
8#ifndef _XTENSA_PGTABLE_H
9#define _XTENSA_PGTABLE_H
10
11#include <asm/page.h>
12#include <asm/kmem_layout.h>
13#include <asm-generic/pgtable-nopmd.h>
14
15/*
16 * We only use two ring levels, user and kernel space.
17 */
18
19#ifdef CONFIG_MMU
20#define USER_RING 1 /* user ring level */
21#else
22#define USER_RING 0
23#endif
24#define KERNEL_RING 0 /* kernel ring level */
25
26/*
27 * The Xtensa architecture port of Linux has a two-level page table system,
28 * i.e. the logical three-level Linux page table layout is folded.
29 * Each task has the following memory page tables:
30 *
31 * PGD table (page directory), ie. 3rd-level page table:
32 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
33 * (Architectures that don't have the PMD folded point to the PMD tables)
34 *
35 * The pointer to the PGD table for a given task can be retrieved from
36 * the task structure (struct task_struct*) t, e.g. current():
37 * (t->mm ? t->mm : t->active_mm)->pgd
38 *
39 * PMD tables (page middle-directory), ie. 2nd-level page tables:
40 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
41 *
42 * PTE tables (page table entry), ie. 1st-level page tables:
43 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
44 * invalid_pte_table for absent mappings.
45 *
46 * The individual pages are 4 kB big with special pages for the empty_zero_page.
47 */
48
49#define PGDIR_SHIFT 22
50#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
51#define PGDIR_MASK (~(PGDIR_SIZE-1))
52
53/*
54 * Entries per page directory level: we use two-level, so
55 * we don't really have any PMD directory physically.
56 */
57#define PTRS_PER_PTE 1024
58#define PTRS_PER_PTE_SHIFT 10
59#define PTRS_PER_PGD 1024
60#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
61#define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
62
63#ifdef CONFIG_MMU
64/*
65 * Virtual memory area. We keep a distance to other memory regions to be
66 * on the safe side. We also use this area for cache aliasing.
67 */
68#define VMALLOC_START (XCHAL_KSEG_CACHED_VADDR - 0x10000000)
69#define VMALLOC_END (VMALLOC_START + 0x07FEFFFF)
70#define TLBTEMP_BASE_1 (VMALLOC_START + 0x08000000)
71#define TLBTEMP_BASE_2 (TLBTEMP_BASE_1 + DCACHE_WAY_SIZE)
72#if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE
73#define TLBTEMP_SIZE (2 * DCACHE_WAY_SIZE)
74#else
75#define TLBTEMP_SIZE ICACHE_WAY_SIZE
76#endif
77
78#else
79
80#define VMALLOC_START __XTENSA_UL_CONST(0)
81#define VMALLOC_END __XTENSA_UL_CONST(0xffffffff)
82
83#endif
84
85/*
86 * For the Xtensa architecture, the PTE layout is as follows:
87 *
88 * 31------12 11 10-9 8-6 5-4 3-2 1-0
89 * +-----------------------------------------+
90 * | | Software | HARDWARE |
91 * | PPN | ADW | RI |Attribute|
92 * +-----------------------------------------+
93 * pte_none | MBZ | 01 | 11 | 00 |
94 * +-----------------------------------------+
95 * present | PPN | 0 | 00 | ADW | RI | CA | wx |
96 * +- - - - - - - - - - - - - - - - - - - - -+
97 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 11 | 11 |
98 * +-----------------------------------------+
99 * swap | index | type | 01 | 11 | e0 |
100 * +-----------------------------------------+
101 *
102 * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE)
103 * +-----------------------------------------+
104 * present | PPN | 0 | 00 | ADW | RI | CA | w1 |
105 * +-----------------------------------------+
106 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 01 | 00 |
107 * +-----------------------------------------+
108 *
109 * Legend:
110 * PPN Physical Page Number
111 * ADW software: accessed (young) / dirty / writable
112 * RI ring (0=privileged, 1=user, 2 and 3 are unused)
113 * CA cache attribute: 00 bypass, 01 writeback, 10 writethrough
114 * (11 is invalid and used to mark pages that are not present)
115 * e exclusive marker in swap PTEs
116 * w page is writable (hw)
117 * x page is executable (hw)
118 * index swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB)
119 * (note that the index is always non-zero)
120 * type swap type (5 bits -> 32 types)
121 *
122 * Notes:
123 * - (PROT_NONE) is a special case of 'present' but causes an exception for
124 * any access (read, write, and execute).
125 * - 'multihit-exception' has the highest priority of all MMU exceptions,
126 * so the ring must be set to 'RING_USER' even for 'non-present' pages.
127 * - on older hardware, the exectuable flag was not supported and
128 * used as a 'valid' flag, so it needs to be always set.
129 * - we need to keep track of certain flags in software (dirty and young)
130 * to do this, we use write exceptions and have a separate software w-flag.
131 * - attribute value 1101 (and 1111 on T1050 and earlier) is reserved
132 */
133
134#define _PAGE_ATTRIB_MASK 0xf
135
136#define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */
137#define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */
138
139#define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */
140#define _PAGE_CA_WB (1<<2) /* write-back */
141#define _PAGE_CA_WT (2<<2) /* write-through */
142#define _PAGE_CA_MASK (3<<2)
143#define _PAGE_CA_INVALID (3<<2)
144
145/* We use invalid attribute values to distinguish special pte entries */
146#if XCHAL_HW_VERSION_MAJOR < 2000
147#define _PAGE_HW_VALID 0x01 /* older HW needed this bit set */
148#define _PAGE_NONE 0x04
149#else
150#define _PAGE_HW_VALID 0x00
151#define _PAGE_NONE 0x0f
152#endif
153
154#define _PAGE_USER (1<<4) /* user access (ring=1) */
155
156/* Software */
157#define _PAGE_WRITABLE_BIT 6
158#define _PAGE_WRITABLE (1<<6) /* software: page writable */
159#define _PAGE_DIRTY (1<<7) /* software: page dirty */
160#define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */
161
162/* We borrow bit 1 to store the exclusive marker in swap PTEs. */
163#define _PAGE_SWP_EXCLUSIVE (1<<1)
164
165#ifdef CONFIG_MMU
166
167#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
168#define _PAGE_PRESENT (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED)
169
170#define PAGE_NONE __pgprot(_PAGE_NONE | _PAGE_USER)
171#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER)
172#define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
173#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER)
174#define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
175#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE)
176#define PAGE_SHARED_EXEC \
177 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC)
178#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE)
179#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT)
180#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC)
181
182#if (DCACHE_WAY_SIZE > PAGE_SIZE)
183# define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS)
184#else
185# define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB)
186#endif
187
188#else /* no mmu */
189
190# define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
191# define PAGE_NONE __pgprot(0)
192# define PAGE_SHARED __pgprot(0)
193# define PAGE_COPY __pgprot(0)
194# define PAGE_READONLY __pgprot(0)
195# define PAGE_KERNEL __pgprot(0)
196
197#endif
198
199/*
200 * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
201 * the MMU can't do page protection for execute, and considers that the same as
202 * read. Also, write permissions may imply read permissions.
203 * What follows is the closest we can get by reasonable means..
204 * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
205 */
206#ifndef __ASSEMBLY__
207
208#define pte_ERROR(e) \
209 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
210#define pgd_ERROR(e) \
211 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
212
213extern unsigned long empty_zero_page[1024];
214
215#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
216
217#ifdef CONFIG_MMU
218extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
219extern void paging_init(void);
220#else
221# define swapper_pg_dir NULL
222static inline void paging_init(void) { }
223#endif
224
225/*
226 * The pmd contains the kernel virtual address of the pte page.
227 */
228#define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
229#define pmd_pfn(pmd) (__pa(pmd_val(pmd)) >> PAGE_SHIFT)
230#define pmd_page(pmd) virt_to_page(pmd_val(pmd))
231
232/*
233 * pte status.
234 */
235# define pte_none(pte) (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER))
236#if XCHAL_HW_VERSION_MAJOR < 2000
237# define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)
238#else
239# define pte_present(pte) \
240 (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) \
241 || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE))
242#endif
243#define pte_clear(mm,addr,ptep) \
244 do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0)
245
246#define pmd_none(pmd) (!pmd_val(pmd))
247#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
248#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
249#define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0)
250
251static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; }
252static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
253static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
254
255static inline pte_t pte_wrprotect(pte_t pte)
256 { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; }
257static inline pte_t pte_mkclean(pte_t pte)
258 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; }
259static inline pte_t pte_mkold(pte_t pte)
260 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
261static inline pte_t pte_mkdirty(pte_t pte)
262 { pte_val(pte) |= _PAGE_DIRTY; return pte; }
263static inline pte_t pte_mkyoung(pte_t pte)
264 { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
265static inline pte_t pte_mkwrite(pte_t pte)
266 { pte_val(pte) |= _PAGE_WRITABLE; return pte; }
267
268#define pgprot_noncached(prot) \
269 ((__pgprot((pgprot_val(prot) & ~_PAGE_CA_MASK) | \
270 _PAGE_CA_BYPASS)))
271
272/*
273 * Conversion functions: convert a page and protection to a page entry,
274 * and a page entry and page directory to the page they refer to.
275 */
276
277#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
278#define pte_same(a,b) (pte_val(a) == pte_val(b))
279#define pte_page(x) pfn_to_page(pte_pfn(x))
280#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
281#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
282
283static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
284{
285 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
286}
287
288/*
289 * Certain architectures need to do special things when pte's
290 * within a page table are directly modified. Thus, the following
291 * hook is made available.
292 */
293static inline void update_pte(pte_t *ptep, pte_t pteval)
294{
295 *ptep = pteval;
296#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
297 __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep));
298#endif
299
300}
301
302struct mm_struct;
303
304static inline void
305set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
306{
307 update_pte(ptep, pteval);
308}
309
310static inline void set_pte(pte_t *ptep, pte_t pteval)
311{
312 update_pte(ptep, pteval);
313}
314
315static inline void
316set_pmd(pmd_t *pmdp, pmd_t pmdval)
317{
318 *pmdp = pmdval;
319}
320
321struct vm_area_struct;
322
323static inline int
324ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
325 pte_t *ptep)
326{
327 pte_t pte = *ptep;
328 if (!pte_young(pte))
329 return 0;
330 update_pte(ptep, pte_mkold(pte));
331 return 1;
332}
333
334static inline pte_t
335ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
336{
337 pte_t pte = *ptep;
338 pte_clear(mm, addr, ptep);
339 return pte;
340}
341
342static inline void
343ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
344{
345 pte_t pte = *ptep;
346 update_pte(ptep, pte_wrprotect(pte));
347}
348
349/*
350 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
351 * are !pte_none() && !pte_present().
352 */
353#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
354
355#define __swp_type(entry) (((entry).val >> 6) & 0x1f)
356#define __swp_offset(entry) ((entry).val >> 11)
357#define __swp_entry(type,offs) \
358 ((swp_entry_t){(((type) & 0x1f) << 6) | ((offs) << 11) | \
359 _PAGE_CA_INVALID | _PAGE_USER})
360#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
361#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
362
363static inline int pte_swp_exclusive(pte_t pte)
364{
365 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
366}
367
368static inline pte_t pte_swp_mkexclusive(pte_t pte)
369{
370 pte_val(pte) |= _PAGE_SWP_EXCLUSIVE;
371 return pte;
372}
373
374static inline pte_t pte_swp_clear_exclusive(pte_t pte)
375{
376 pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE;
377 return pte;
378}
379
380#endif /* !defined (__ASSEMBLY__) */
381
382
383#ifdef __ASSEMBLY__
384
385/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
386 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
387 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
388 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
389 *
390 * Note: We require an additional temporary register which can be the same as
391 * the register that holds the address.
392 *
393 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
394 *
395 */
396#define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
397#define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
398
399#define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \
400 _PGD_INDEX(tmp, adr); \
401 addx4 mm, tmp, mm
402
403#define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \
404 srli pmd, pmd, PAGE_SHIFT; \
405 slli pmd, pmd, PAGE_SHIFT; \
406 addx4 pmd, tmp, pmd
407
408#else
409
410extern void update_mmu_cache(struct vm_area_struct * vma,
411 unsigned long address, pte_t *ptep);
412
413typedef pte_t *pte_addr_t;
414
415void update_mmu_tlb(struct vm_area_struct *vma,
416 unsigned long address, pte_t *ptep);
417#define __HAVE_ARCH_UPDATE_MMU_TLB
418
419#endif /* !defined (__ASSEMBLY__) */
420
421#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
422#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
423#define __HAVE_ARCH_PTEP_SET_WRPROTECT
424#define __HAVE_ARCH_PTEP_MKDIRTY
425#define __HAVE_ARCH_PTE_SAME
426/* We provide our own get_unmapped_area to cope with
427 * SHM area cache aliasing for userland.
428 */
429#define HAVE_ARCH_UNMAPPED_AREA
430
431#endif /* _XTENSA_PGTABLE_H */