Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 Regents of the University of California
4 */
5
6#ifndef _ASM_RISCV_PGTABLE_H
7#define _ASM_RISCV_PGTABLE_H
8
9#include <linux/mmzone.h>
10#include <linux/sizes.h>
11
12#include <asm/pgtable-bits.h>
13
14#ifndef CONFIG_MMU
15#define KERNEL_LINK_ADDR PAGE_OFFSET
16#define KERN_VIRT_SIZE (UL(-1))
17#else
18
19#define ADDRESS_SPACE_END (UL(-1))
20
21#ifdef CONFIG_64BIT
22/* Leave 2GB for kernel and BPF at the end of the address space */
23#define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1)
24#else
25#define KERNEL_LINK_ADDR PAGE_OFFSET
26#endif
27
28/* Number of entries in the page global directory */
29#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
30/* Number of entries in the page table */
31#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
32
33/*
34 * Half of the kernel address space (1/4 of the entries of the page global
35 * directory) is for the direct mapping.
36 */
37#define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
38
39#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
40#define VMALLOC_END PAGE_OFFSET
41#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
42
43#define BPF_JIT_REGION_SIZE (SZ_128M)
44#ifdef CONFIG_64BIT
45#define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
46#define BPF_JIT_REGION_END (MODULES_END)
47#else
48#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
49#define BPF_JIT_REGION_END (VMALLOC_END)
50#endif
51
52/* Modules always live before the kernel */
53#ifdef CONFIG_64BIT
54/* This is used to define the end of the KASAN shadow region */
55#define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G)
56#define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G)
57#define MODULES_END (PFN_ALIGN((unsigned long)&_start))
58#endif
59
60/*
61 * Roughly size the vmemmap space to be large enough to fit enough
62 * struct pages to map half the virtual address space. Then
63 * position vmemmap directly below the VMALLOC region.
64 */
65#ifdef CONFIG_64BIT
66#define VA_BITS (pgtable_l5_enabled ? \
67 57 : (pgtable_l4_enabled ? 48 : 39))
68#else
69#define VA_BITS 32
70#endif
71
72#define VMEMMAP_SHIFT \
73 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
74#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
75#define VMEMMAP_END VMALLOC_START
76#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
77
78/*
79 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
80 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
81 */
82#define vmemmap ((struct page *)VMEMMAP_START)
83
84#define PCI_IO_SIZE SZ_16M
85#define PCI_IO_END VMEMMAP_START
86#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
87
88#define FIXADDR_TOP PCI_IO_START
89#ifdef CONFIG_64BIT
90#define MAX_FDT_SIZE PMD_SIZE
91#define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M)
92#define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE)
93#else
94#define MAX_FDT_SIZE PGDIR_SIZE
95#define FIX_FDT_SIZE MAX_FDT_SIZE
96#define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE)
97#endif
98#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
99
100#endif
101
102#ifdef CONFIG_XIP_KERNEL
103#define XIP_OFFSET SZ_32M
104#define XIP_OFFSET_MASK (SZ_32M - 1)
105#else
106#define XIP_OFFSET 0
107#endif
108
109#ifndef __ASSEMBLY__
110
111#include <asm/page.h>
112#include <asm/tlbflush.h>
113#include <linux/mm_types.h>
114
115#define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
116
117#ifdef CONFIG_64BIT
118#include <asm/pgtable-64.h>
119#else
120#include <asm/pgtable-32.h>
121#endif /* CONFIG_64BIT */
122
123#include <linux/page_table_check.h>
124
125#ifdef CONFIG_XIP_KERNEL
126#define XIP_FIXUP(addr) ({ \
127 uintptr_t __a = (uintptr_t)(addr); \
128 (__a >= CONFIG_XIP_PHYS_ADDR && \
129 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \
130 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\
131 __a; \
132 })
133#else
134#define XIP_FIXUP(addr) (addr)
135#endif /* CONFIG_XIP_KERNEL */
136
137struct pt_alloc_ops {
138 pte_t *(*get_pte_virt)(phys_addr_t pa);
139 phys_addr_t (*alloc_pte)(uintptr_t va);
140#ifndef __PAGETABLE_PMD_FOLDED
141 pmd_t *(*get_pmd_virt)(phys_addr_t pa);
142 phys_addr_t (*alloc_pmd)(uintptr_t va);
143 pud_t *(*get_pud_virt)(phys_addr_t pa);
144 phys_addr_t (*alloc_pud)(uintptr_t va);
145 p4d_t *(*get_p4d_virt)(phys_addr_t pa);
146 phys_addr_t (*alloc_p4d)(uintptr_t va);
147#endif
148};
149
150extern struct pt_alloc_ops pt_ops __initdata;
151
152#ifdef CONFIG_MMU
153/* Number of PGD entries that a user-mode program can use */
154#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
155
156/* Page protection bits */
157#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
158
159#define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ)
160#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
161#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
162#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
163#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
164#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
165 _PAGE_EXEC | _PAGE_WRITE)
166
167#define PAGE_COPY PAGE_READ
168#define PAGE_COPY_EXEC PAGE_EXEC
169#define PAGE_COPY_READ_EXEC PAGE_READ_EXEC
170#define PAGE_SHARED PAGE_WRITE
171#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
172
173#define _PAGE_KERNEL (_PAGE_READ \
174 | _PAGE_WRITE \
175 | _PAGE_PRESENT \
176 | _PAGE_ACCESSED \
177 | _PAGE_DIRTY \
178 | _PAGE_GLOBAL)
179
180#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
181#define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
182#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
183#define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
184 | _PAGE_EXEC)
185
186#define PAGE_TABLE __pgprot(_PAGE_TABLE)
187
188#define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
189#define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP)
190
191extern pgd_t swapper_pg_dir[];
192
193#ifdef CONFIG_TRANSPARENT_HUGEPAGE
194static inline int pmd_present(pmd_t pmd)
195{
196 /*
197 * Checking for _PAGE_LEAF is needed too because:
198 * When splitting a THP, split_huge_page() will temporarily clear
199 * the present bit, in this situation, pmd_present() and
200 * pmd_trans_huge() still needs to return true.
201 */
202 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
203}
204#else
205static inline int pmd_present(pmd_t pmd)
206{
207 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
208}
209#endif
210
211static inline int pmd_none(pmd_t pmd)
212{
213 return (pmd_val(pmd) == 0);
214}
215
216static inline int pmd_bad(pmd_t pmd)
217{
218 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
219}
220
221#define pmd_leaf pmd_leaf
222static inline int pmd_leaf(pmd_t pmd)
223{
224 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
225}
226
227static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
228{
229 *pmdp = pmd;
230}
231
232static inline void pmd_clear(pmd_t *pmdp)
233{
234 set_pmd(pmdp, __pmd(0));
235}
236
237static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
238{
239 unsigned long prot_val = pgprot_val(prot);
240
241 ALT_THEAD_PMA(prot_val);
242
243 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
244}
245
246static inline unsigned long _pgd_pfn(pgd_t pgd)
247{
248 return __page_val_to_pfn(pgd_val(pgd));
249}
250
251static inline struct page *pmd_page(pmd_t pmd)
252{
253 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
254}
255
256static inline unsigned long pmd_page_vaddr(pmd_t pmd)
257{
258 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
259}
260
261static inline pte_t pmd_pte(pmd_t pmd)
262{
263 return __pte(pmd_val(pmd));
264}
265
266static inline pte_t pud_pte(pud_t pud)
267{
268 return __pte(pud_val(pud));
269}
270
271/* Yields the page frame number (PFN) of a page table entry */
272static inline unsigned long pte_pfn(pte_t pte)
273{
274 return __page_val_to_pfn(pte_val(pte));
275}
276
277#define pte_page(x) pfn_to_page(pte_pfn(x))
278
279/* Constructs a page table entry */
280static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
281{
282 unsigned long prot_val = pgprot_val(prot);
283
284 ALT_THEAD_PMA(prot_val);
285
286 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
287}
288
289#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
290
291static inline int pte_present(pte_t pte)
292{
293 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
294}
295
296static inline int pte_none(pte_t pte)
297{
298 return (pte_val(pte) == 0);
299}
300
301static inline int pte_write(pte_t pte)
302{
303 return pte_val(pte) & _PAGE_WRITE;
304}
305
306static inline int pte_exec(pte_t pte)
307{
308 return pte_val(pte) & _PAGE_EXEC;
309}
310
311static inline int pte_user(pte_t pte)
312{
313 return pte_val(pte) & _PAGE_USER;
314}
315
316static inline int pte_huge(pte_t pte)
317{
318 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
319}
320
321static inline int pte_dirty(pte_t pte)
322{
323 return pte_val(pte) & _PAGE_DIRTY;
324}
325
326static inline int pte_young(pte_t pte)
327{
328 return pte_val(pte) & _PAGE_ACCESSED;
329}
330
331static inline int pte_special(pte_t pte)
332{
333 return pte_val(pte) & _PAGE_SPECIAL;
334}
335
336/* static inline pte_t pte_rdprotect(pte_t pte) */
337
338static inline pte_t pte_wrprotect(pte_t pte)
339{
340 return __pte(pte_val(pte) & ~(_PAGE_WRITE));
341}
342
343/* static inline pte_t pte_mkread(pte_t pte) */
344
345static inline pte_t pte_mkwrite(pte_t pte)
346{
347 return __pte(pte_val(pte) | _PAGE_WRITE);
348}
349
350/* static inline pte_t pte_mkexec(pte_t pte) */
351
352static inline pte_t pte_mkdirty(pte_t pte)
353{
354 return __pte(pte_val(pte) | _PAGE_DIRTY);
355}
356
357static inline pte_t pte_mkclean(pte_t pte)
358{
359 return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
360}
361
362static inline pte_t pte_mkyoung(pte_t pte)
363{
364 return __pte(pte_val(pte) | _PAGE_ACCESSED);
365}
366
367static inline pte_t pte_mkold(pte_t pte)
368{
369 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
370}
371
372static inline pte_t pte_mkspecial(pte_t pte)
373{
374 return __pte(pte_val(pte) | _PAGE_SPECIAL);
375}
376
377static inline pte_t pte_mkhuge(pte_t pte)
378{
379 return pte;
380}
381
382#ifdef CONFIG_NUMA_BALANCING
383/*
384 * See the comment in include/asm-generic/pgtable.h
385 */
386static inline int pte_protnone(pte_t pte)
387{
388 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
389}
390
391static inline int pmd_protnone(pmd_t pmd)
392{
393 return pte_protnone(pmd_pte(pmd));
394}
395#endif
396
397/* Modify page protection bits */
398static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
399{
400 unsigned long newprot_val = pgprot_val(newprot);
401
402 ALT_THEAD_PMA(newprot_val);
403
404 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
405}
406
407#define pgd_ERROR(e) \
408 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
409
410
411/* Commit new configuration to MMU hardware */
412static inline void update_mmu_cache(struct vm_area_struct *vma,
413 unsigned long address, pte_t *ptep)
414{
415 /*
416 * The kernel assumes that TLBs don't cache invalid entries, but
417 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
418 * cache flush; it is necessary even after writing invalid entries.
419 * Relying on flush_tlb_fix_spurious_fault would suffice, but
420 * the extra traps reduce performance. So, eagerly SFENCE.VMA.
421 */
422 local_flush_tlb_page(address);
423}
424
425#define __HAVE_ARCH_UPDATE_MMU_TLB
426#define update_mmu_tlb update_mmu_cache
427
428static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
429 unsigned long address, pmd_t *pmdp)
430{
431 pte_t *ptep = (pte_t *)pmdp;
432
433 update_mmu_cache(vma, address, ptep);
434}
435
436#define __HAVE_ARCH_PTE_SAME
437static inline int pte_same(pte_t pte_a, pte_t pte_b)
438{
439 return pte_val(pte_a) == pte_val(pte_b);
440}
441
442/*
443 * Certain architectures need to do special things when PTEs within
444 * a page table are directly modified. Thus, the following hook is
445 * made available.
446 */
447static inline void set_pte(pte_t *ptep, pte_t pteval)
448{
449 *ptep = pteval;
450}
451
452void flush_icache_pte(pte_t pte);
453
454static inline void __set_pte_at(struct mm_struct *mm,
455 unsigned long addr, pte_t *ptep, pte_t pteval)
456{
457 if (pte_present(pteval) && pte_exec(pteval))
458 flush_icache_pte(pteval);
459
460 set_pte(ptep, pteval);
461}
462
463static inline void set_pte_at(struct mm_struct *mm,
464 unsigned long addr, pte_t *ptep, pte_t pteval)
465{
466 page_table_check_pte_set(mm, addr, ptep, pteval);
467 __set_pte_at(mm, addr, ptep, pteval);
468}
469
470static inline void pte_clear(struct mm_struct *mm,
471 unsigned long addr, pte_t *ptep)
472{
473 __set_pte_at(mm, addr, ptep, __pte(0));
474}
475
476#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
477static inline int ptep_set_access_flags(struct vm_area_struct *vma,
478 unsigned long address, pte_t *ptep,
479 pte_t entry, int dirty)
480{
481 if (!pte_same(*ptep, entry))
482 set_pte_at(vma->vm_mm, address, ptep, entry);
483 /*
484 * update_mmu_cache will unconditionally execute, handling both
485 * the case that the PTE changed and the spurious fault case.
486 */
487 return true;
488}
489
490#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
491static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
492 unsigned long address, pte_t *ptep)
493{
494 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
495
496 page_table_check_pte_clear(mm, address, pte);
497
498 return pte;
499}
500
501#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
502static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
503 unsigned long address,
504 pte_t *ptep)
505{
506 if (!pte_young(*ptep))
507 return 0;
508 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
509}
510
511#define __HAVE_ARCH_PTEP_SET_WRPROTECT
512static inline void ptep_set_wrprotect(struct mm_struct *mm,
513 unsigned long address, pte_t *ptep)
514{
515 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
516}
517
518#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
519static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
520 unsigned long address, pte_t *ptep)
521{
522 /*
523 * This comment is borrowed from x86, but applies equally to RISC-V:
524 *
525 * Clearing the accessed bit without a TLB flush
526 * doesn't cause data corruption. [ It could cause incorrect
527 * page aging and the (mistaken) reclaim of hot pages, but the
528 * chance of that should be relatively low. ]
529 *
530 * So as a performance optimization don't flush the TLB when
531 * clearing the accessed bit, it will eventually be flushed by
532 * a context switch or a VM operation anyway. [ In the rare
533 * event of it not getting flushed for a long time the delay
534 * shouldn't really matter because there's no real memory
535 * pressure for swapout to react to. ]
536 */
537 return ptep_test_and_clear_young(vma, address, ptep);
538}
539
540#define pgprot_noncached pgprot_noncached
541static inline pgprot_t pgprot_noncached(pgprot_t _prot)
542{
543 unsigned long prot = pgprot_val(_prot);
544
545 prot &= ~_PAGE_MTMASK;
546 prot |= _PAGE_IO;
547
548 return __pgprot(prot);
549}
550
551#define pgprot_writecombine pgprot_writecombine
552static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
553{
554 unsigned long prot = pgprot_val(_prot);
555
556 prot &= ~_PAGE_MTMASK;
557 prot |= _PAGE_NOCACHE;
558
559 return __pgprot(prot);
560}
561
562/*
563 * THP functions
564 */
565static inline pmd_t pte_pmd(pte_t pte)
566{
567 return __pmd(pte_val(pte));
568}
569
570static inline pmd_t pmd_mkhuge(pmd_t pmd)
571{
572 return pmd;
573}
574
575static inline pmd_t pmd_mkinvalid(pmd_t pmd)
576{
577 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
578}
579
580#define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
581
582static inline unsigned long pmd_pfn(pmd_t pmd)
583{
584 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
585}
586
587#define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
588
589static inline unsigned long pud_pfn(pud_t pud)
590{
591 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
592}
593
594static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
595{
596 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
597}
598
599#define pmd_write pmd_write
600static inline int pmd_write(pmd_t pmd)
601{
602 return pte_write(pmd_pte(pmd));
603}
604
605static inline int pmd_dirty(pmd_t pmd)
606{
607 return pte_dirty(pmd_pte(pmd));
608}
609
610#define pmd_young pmd_young
611static inline int pmd_young(pmd_t pmd)
612{
613 return pte_young(pmd_pte(pmd));
614}
615
616static inline int pmd_user(pmd_t pmd)
617{
618 return pte_user(pmd_pte(pmd));
619}
620
621static inline pmd_t pmd_mkold(pmd_t pmd)
622{
623 return pte_pmd(pte_mkold(pmd_pte(pmd)));
624}
625
626static inline pmd_t pmd_mkyoung(pmd_t pmd)
627{
628 return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
629}
630
631static inline pmd_t pmd_mkwrite(pmd_t pmd)
632{
633 return pte_pmd(pte_mkwrite(pmd_pte(pmd)));
634}
635
636static inline pmd_t pmd_wrprotect(pmd_t pmd)
637{
638 return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
639}
640
641static inline pmd_t pmd_mkclean(pmd_t pmd)
642{
643 return pte_pmd(pte_mkclean(pmd_pte(pmd)));
644}
645
646static inline pmd_t pmd_mkdirty(pmd_t pmd)
647{
648 return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
649}
650
651static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
652 pmd_t *pmdp, pmd_t pmd)
653{
654 page_table_check_pmd_set(mm, addr, pmdp, pmd);
655 return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd));
656}
657
658static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
659 pud_t *pudp, pud_t pud)
660{
661 page_table_check_pud_set(mm, addr, pudp, pud);
662 return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud));
663}
664
665#ifdef CONFIG_PAGE_TABLE_CHECK
666static inline bool pte_user_accessible_page(pte_t pte)
667{
668 return pte_present(pte) && pte_user(pte);
669}
670
671static inline bool pmd_user_accessible_page(pmd_t pmd)
672{
673 return pmd_leaf(pmd) && pmd_user(pmd);
674}
675
676static inline bool pud_user_accessible_page(pud_t pud)
677{
678 return pud_leaf(pud) && pud_user(pud);
679}
680#endif
681
682#ifdef CONFIG_TRANSPARENT_HUGEPAGE
683static inline int pmd_trans_huge(pmd_t pmd)
684{
685 return pmd_leaf(pmd);
686}
687
688#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
689static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
690 unsigned long address, pmd_t *pmdp,
691 pmd_t entry, int dirty)
692{
693 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
694}
695
696#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
697static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
698 unsigned long address, pmd_t *pmdp)
699{
700 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
701}
702
703#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
704static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
705 unsigned long address, pmd_t *pmdp)
706{
707 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
708
709 page_table_check_pmd_clear(mm, address, pmd);
710
711 return pmd;
712}
713
714#define __HAVE_ARCH_PMDP_SET_WRPROTECT
715static inline void pmdp_set_wrprotect(struct mm_struct *mm,
716 unsigned long address, pmd_t *pmdp)
717{
718 ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
719}
720
721#define pmdp_establish pmdp_establish
722static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
723 unsigned long address, pmd_t *pmdp, pmd_t pmd)
724{
725 page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd);
726 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
727}
728
729#define pmdp_collapse_flush pmdp_collapse_flush
730extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
731 unsigned long address, pmd_t *pmdp);
732#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
733
734/*
735 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
736 * are !pte_none() && !pte_present().
737 *
738 * Format of swap PTE:
739 * bit 0: _PAGE_PRESENT (zero)
740 * bit 1 to 3: _PAGE_LEAF (zero)
741 * bit 5: _PAGE_PROT_NONE (zero)
742 * bit 6: exclusive marker
743 * bits 7 to 11: swap type
744 * bits 11 to XLEN-1: swap offset
745 */
746#define __SWP_TYPE_SHIFT 7
747#define __SWP_TYPE_BITS 5
748#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
749#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
750
751#define MAX_SWAPFILES_CHECK() \
752 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
753
754#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
755#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
756#define __swp_entry(type, offset) ((swp_entry_t) \
757 { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
758 ((offset) << __SWP_OFFSET_SHIFT) })
759
760#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
761#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
762
763static inline int pte_swp_exclusive(pte_t pte)
764{
765 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
766}
767
768static inline pte_t pte_swp_mkexclusive(pte_t pte)
769{
770 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
771}
772
773static inline pte_t pte_swp_clear_exclusive(pte_t pte)
774{
775 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
776}
777
778#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
779#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
780#define __swp_entry_to_pmd(swp) __pmd((swp).val)
781#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
782
783/*
784 * In the RV64 Linux scheme, we give the user half of the virtual-address space
785 * and give the kernel the other (upper) half.
786 */
787#ifdef CONFIG_64BIT
788#define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE)
789#else
790#define KERN_VIRT_START FIXADDR_START
791#endif
792
793/*
794 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
795 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
796 * Task size is:
797 * - 0x9fc00000 (~2.5GB) for RV32.
798 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu
799 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu
800 *
801 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
802 * Instruction Set Manual Volume II: Privileged Architecture" states that
803 * "load and store effective addresses, which are 64bits, must have bits
804 * 63–48 all equal to bit 47, or else a page-fault exception will occur."
805 */
806#ifdef CONFIG_64BIT
807#define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2)
808#define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2)
809
810#ifdef CONFIG_COMPAT
811#define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE)
812#define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \
813 TASK_SIZE_32 : TASK_SIZE_64)
814#else
815#define TASK_SIZE TASK_SIZE_64
816#endif
817
818#else
819#define TASK_SIZE FIXADDR_START
820#define TASK_SIZE_MIN TASK_SIZE
821#endif
822
823#else /* CONFIG_MMU */
824
825#define PAGE_SHARED __pgprot(0)
826#define PAGE_KERNEL __pgprot(0)
827#define swapper_pg_dir NULL
828#define TASK_SIZE 0xffffffffUL
829#define VMALLOC_START 0
830#define VMALLOC_END TASK_SIZE
831
832#endif /* !CONFIG_MMU */
833
834extern char _start[];
835extern void *_dtb_early_va;
836extern uintptr_t _dtb_early_pa;
837#if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
838#define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va))
839#define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
840#else
841#define dtb_early_va _dtb_early_va
842#define dtb_early_pa _dtb_early_pa
843#endif /* CONFIG_XIP_KERNEL */
844extern u64 satp_mode;
845extern bool pgtable_l4_enabled;
846
847void paging_init(void);
848void misc_mem_init(void);
849
850/*
851 * ZERO_PAGE is a global shared page that is always zero,
852 * used for zero-mapped memory areas, etc.
853 */
854extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
855#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
856
857#endif /* !__ASSEMBLY__ */
858
859#endif /* _ASM_RISCV_PGTABLE_H */