at v6.3 13 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Based on arch/arm/include/asm/memory.h 4 * 5 * Copyright (C) 2000-2002 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * Note: this file should not be included by non-asm/.h files 9 */ 10#ifndef __ASM_MEMORY_H 11#define __ASM_MEMORY_H 12 13#include <linux/const.h> 14#include <linux/sizes.h> 15#include <asm/page-def.h> 16 17/* 18 * Size of the PCI I/O space. This must remain a power of two so that 19 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses. 20 */ 21#define PCI_IO_SIZE SZ_16M 22 23/* 24 * VMEMMAP_SIZE - allows the whole linear region to be covered by 25 * a struct page array 26 * 27 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE 28 * needs to cover the memory region from the beginning of the 52-bit 29 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to 30 * keep a constant PAGE_OFFSET and "fallback" to using the higher end 31 * of the VMEMMAP where 52-bit support is not available in hardware. 32 */ 33#define VMEMMAP_SHIFT (PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT) 34#define VMEMMAP_SIZE ((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) >> VMEMMAP_SHIFT) 35 36/* 37 * PAGE_OFFSET - the virtual address of the start of the linear map, at the 38 * start of the TTBR1 address space. 39 * PAGE_END - the end of the linear map, where all other kernel mappings begin. 40 * KIMAGE_VADDR - the virtual address of the start of the kernel image. 41 * VA_BITS - the maximum number of bits for virtual addresses. 42 */ 43#define VA_BITS (CONFIG_ARM64_VA_BITS) 44#define _PAGE_OFFSET(va) (-(UL(1) << (va))) 45#define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS)) 46#define KIMAGE_VADDR (MODULES_END) 47#define MODULES_END (MODULES_VADDR + MODULES_VSIZE) 48#define MODULES_VADDR (_PAGE_END(VA_BITS_MIN)) 49#define MODULES_VSIZE (SZ_128M) 50#define VMEMMAP_START (-(UL(1) << (VA_BITS - VMEMMAP_SHIFT))) 51#define VMEMMAP_END (VMEMMAP_START + VMEMMAP_SIZE) 52#define PCI_IO_END (VMEMMAP_START - SZ_8M) 53#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 54#define FIXADDR_TOP (VMEMMAP_START - SZ_32M) 55 56#if VA_BITS > 48 57#define VA_BITS_MIN (48) 58#else 59#define VA_BITS_MIN (VA_BITS) 60#endif 61 62#define _PAGE_END(va) (-(UL(1) << ((va) - 1))) 63 64#define KERNEL_START _text 65#define KERNEL_END _end 66 67/* 68 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual 69 * address space for the shadow region respectively. They can bloat the stack 70 * significantly, so double the (minimum) stack size when they are in use. 71 */ 72#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 73#define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL) 74#define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \ 75 + KASAN_SHADOW_OFFSET) 76#define PAGE_END (KASAN_SHADOW_END - (1UL << (vabits_actual - KASAN_SHADOW_SCALE_SHIFT))) 77#define KASAN_THREAD_SHIFT 1 78#else 79#define KASAN_THREAD_SHIFT 0 80#define PAGE_END (_PAGE_END(VA_BITS_MIN)) 81#endif /* CONFIG_KASAN */ 82 83#define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT) 84 85/* 86 * VMAP'd stacks are allocated at page granularity, so we must ensure that such 87 * stacks are a multiple of page size. 88 */ 89#if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT) 90#define THREAD_SHIFT PAGE_SHIFT 91#else 92#define THREAD_SHIFT MIN_THREAD_SHIFT 93#endif 94 95#if THREAD_SHIFT >= PAGE_SHIFT 96#define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT) 97#endif 98 99#define THREAD_SIZE (UL(1) << THREAD_SHIFT) 100 101/* 102 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by 103 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry 104 * assembly. 105 */ 106#ifdef CONFIG_VMAP_STACK 107#define THREAD_ALIGN (2 * THREAD_SIZE) 108#else 109#define THREAD_ALIGN THREAD_SIZE 110#endif 111 112#define IRQ_STACK_SIZE THREAD_SIZE 113 114#define OVERFLOW_STACK_SIZE SZ_4K 115 116/* 117 * With the minimum frame size of [x29, x30], exactly half the combined 118 * sizes of the hyp and overflow stacks is the maximum size needed to 119 * save the unwinded stacktrace; plus an additional entry to delimit the 120 * end. 121 */ 122#define NVHE_STACKTRACE_SIZE ((OVERFLOW_STACK_SIZE + PAGE_SIZE) / 2 + sizeof(long)) 123 124/* 125 * Alignment of kernel segments (e.g. .text, .data). 126 * 127 * 4 KB granule: 16 level 3 entries, with contiguous bit 128 * 16 KB granule: 4 level 3 entries, without contiguous bit 129 * 64 KB granule: 1 level 3 entry 130 */ 131#define SEGMENT_ALIGN SZ_64K 132 133/* 134 * Memory types available. 135 * 136 * IMPORTANT: MT_NORMAL must be index 0 since vm_get_page_prot() may 'or' in 137 * the MT_NORMAL_TAGGED memory type for PROT_MTE mappings. Note 138 * that protection_map[] only contains MT_NORMAL attributes. 139 */ 140#define MT_NORMAL 0 141#define MT_NORMAL_TAGGED 1 142#define MT_NORMAL_NC 2 143#define MT_DEVICE_nGnRnE 3 144#define MT_DEVICE_nGnRE 4 145 146/* 147 * Memory types for Stage-2 translation 148 */ 149#define MT_S2_NORMAL 0xf 150#define MT_S2_DEVICE_nGnRE 0x1 151 152/* 153 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001 154 * Stage-2 enforces Normal-WB and Device-nGnRE 155 */ 156#define MT_S2_FWB_NORMAL 6 157#define MT_S2_FWB_DEVICE_nGnRE 1 158 159#ifdef CONFIG_ARM64_4K_PAGES 160#define IOREMAP_MAX_ORDER (PUD_SHIFT) 161#else 162#define IOREMAP_MAX_ORDER (PMD_SHIFT) 163#endif 164 165/* 166 * Open-coded (swapper_pg_dir - reserved_pg_dir) as this cannot be calculated 167 * until link time. 168 */ 169#define RESERVED_SWAPPER_OFFSET (PAGE_SIZE) 170 171/* 172 * Open-coded (swapper_pg_dir - tramp_pg_dir) as this cannot be calculated 173 * until link time. 174 */ 175#define TRAMP_SWAPPER_OFFSET (2 * PAGE_SIZE) 176 177#ifndef __ASSEMBLY__ 178 179#include <linux/bitops.h> 180#include <linux/compiler.h> 181#include <linux/mmdebug.h> 182#include <linux/types.h> 183#include <asm/boot.h> 184#include <asm/bug.h> 185 186#if VA_BITS > 48 187extern u64 vabits_actual; 188#else 189#define vabits_actual ((u64)VA_BITS) 190#endif 191 192extern s64 memstart_addr; 193/* PHYS_OFFSET - the physical address of the start of memory. */ 194#define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; }) 195 196/* the virtual base of the kernel image */ 197extern u64 kimage_vaddr; 198 199/* the offset between the kernel virtual and physical mappings */ 200extern u64 kimage_voffset; 201 202static inline unsigned long kaslr_offset(void) 203{ 204 return kimage_vaddr - KIMAGE_VADDR; 205} 206 207static inline bool kaslr_enabled(void) 208{ 209 /* 210 * The KASLR offset modulo MIN_KIMG_ALIGN is taken from the physical 211 * placement of the image rather than from the seed, so a displacement 212 * of less than MIN_KIMG_ALIGN means that no seed was provided. 213 */ 214 return kaslr_offset() >= MIN_KIMG_ALIGN; 215} 216 217/* 218 * Allow all memory at the discovery stage. We will clip it later. 219 */ 220#define MIN_MEMBLOCK_ADDR 0 221#define MAX_MEMBLOCK_ADDR U64_MAX 222 223/* 224 * PFNs are used to describe any physical page; this means 225 * PFN 0 == physical address 0. 226 * 227 * This is the PFN of the first RAM page in the kernel 228 * direct-mapped view. We assume this is the first page 229 * of RAM in the mem_map as well. 230 */ 231#define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT) 232 233/* 234 * When dealing with data aborts, watchpoints, or instruction traps we may end 235 * up with a tagged userland pointer. Clear the tag to get a sane pointer to 236 * pass on to access_ok(), for instance. 237 */ 238#define __untagged_addr(addr) \ 239 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55)) 240 241#define untagged_addr(addr) ({ \ 242 u64 __addr = (__force u64)(addr); \ 243 __addr &= __untagged_addr(__addr); \ 244 (__force __typeof__(addr))__addr; \ 245}) 246 247#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 248#define __tag_shifted(tag) ((u64)(tag) << 56) 249#define __tag_reset(addr) __untagged_addr(addr) 250#define __tag_get(addr) (__u8)((u64)(addr) >> 56) 251#else 252#define __tag_shifted(tag) 0UL 253#define __tag_reset(addr) (addr) 254#define __tag_get(addr) 0 255#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 256 257static inline const void *__tag_set(const void *addr, u8 tag) 258{ 259 u64 __addr = (u64)addr & ~__tag_shifted(0xff); 260 return (const void *)(__addr | __tag_shifted(tag)); 261} 262 263#ifdef CONFIG_KASAN_HW_TAGS 264#define arch_enable_tagging_sync() mte_enable_kernel_sync() 265#define arch_enable_tagging_async() mte_enable_kernel_async() 266#define arch_enable_tagging_asymm() mte_enable_kernel_asymm() 267#define arch_force_async_tag_fault() mte_check_tfsr_exit() 268#define arch_get_random_tag() mte_get_random_tag() 269#define arch_get_mem_tag(addr) mte_get_mem_tag(addr) 270#define arch_set_mem_tag_range(addr, size, tag, init) \ 271 mte_set_mem_tag_range((addr), (size), (tag), (init)) 272#endif /* CONFIG_KASAN_HW_TAGS */ 273 274/* 275 * Physical vs virtual RAM address space conversion. These are 276 * private definitions which should NOT be used outside memory.h 277 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead. 278 */ 279 280 281/* 282 * Check whether an arbitrary address is within the linear map, which 283 * lives in the [PAGE_OFFSET, PAGE_END) interval at the bottom of the 284 * kernel's TTBR1 address range. 285 */ 286#define __is_lm_address(addr) (((u64)(addr) - PAGE_OFFSET) < (PAGE_END - PAGE_OFFSET)) 287 288#define __lm_to_phys(addr) (((addr) - PAGE_OFFSET) + PHYS_OFFSET) 289#define __kimg_to_phys(addr) ((addr) - kimage_voffset) 290 291#define __virt_to_phys_nodebug(x) ({ \ 292 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \ 293 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \ 294}) 295 296#define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x)) 297 298#ifdef CONFIG_DEBUG_VIRTUAL 299extern phys_addr_t __virt_to_phys(unsigned long x); 300extern phys_addr_t __phys_addr_symbol(unsigned long x); 301#else 302#define __virt_to_phys(x) __virt_to_phys_nodebug(x) 303#define __phys_addr_symbol(x) __pa_symbol_nodebug(x) 304#endif /* CONFIG_DEBUG_VIRTUAL */ 305 306#define __phys_to_virt(x) ((unsigned long)((x) - PHYS_OFFSET) | PAGE_OFFSET) 307#define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset)) 308 309/* 310 * Convert a page to/from a physical address 311 */ 312#define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page))) 313#define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys))) 314 315/* 316 * Note: Drivers should NOT use these. They are the wrong 317 * translation for translating DMA addresses. Use the driver 318 * DMA support - see dma-mapping.h. 319 */ 320#define virt_to_phys virt_to_phys 321static inline phys_addr_t virt_to_phys(const volatile void *x) 322{ 323 return __virt_to_phys((unsigned long)(x)); 324} 325 326#define phys_to_virt phys_to_virt 327static inline void *phys_to_virt(phys_addr_t x) 328{ 329 return (void *)(__phys_to_virt(x)); 330} 331 332/* 333 * Drivers should NOT use these either. 334 */ 335#define __pa(x) __virt_to_phys((unsigned long)(x)) 336#define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0)) 337#define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x)) 338#define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x))) 339#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT) 340#define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x))) 341#define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x)) 342 343/* 344 * virt_to_page(x) convert a _valid_ virtual address to struct page * 345 * virt_addr_valid(x) indicates whether a virtual address is valid 346 */ 347#define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET) 348 349#if defined(CONFIG_DEBUG_VIRTUAL) 350#define page_to_virt(x) ({ \ 351 __typeof__(x) __page = x; \ 352 void *__addr = __va(page_to_phys(__page)); \ 353 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ 354}) 355#define virt_to_page(x) pfn_to_page(virt_to_pfn(x)) 356#else 357#define page_to_virt(x) ({ \ 358 __typeof__(x) __page = x; \ 359 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\ 360 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \ 361 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ 362}) 363 364#define virt_to_page(x) ({ \ 365 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \ 366 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \ 367 (struct page *)__addr; \ 368}) 369#endif /* CONFIG_DEBUG_VIRTUAL */ 370 371#define virt_addr_valid(addr) ({ \ 372 __typeof__(addr) __addr = __tag_reset(addr); \ 373 __is_lm_address(__addr) && pfn_is_map_memory(virt_to_pfn(__addr)); \ 374}) 375 376void dump_mem_limit(void); 377 378static inline bool defer_reserve_crashkernel(void) 379{ 380 return IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32); 381} 382#endif /* !ASSEMBLY */ 383 384/* 385 * Given that the GIC architecture permits ITS implementations that can only be 386 * configured with a LPI table address once, GICv3 systems with many CPUs may 387 * end up reserving a lot of different regions after a kexec for their LPI 388 * tables (one per CPU), as we are forced to reuse the same memory after kexec 389 * (and thus reserve it persistently with EFI beforehand) 390 */ 391#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS) 392# define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1) 393#endif 394 395/* 396 * memory regions which marked with flag MEMBLOCK_NOMAP(for example, the memory 397 * of the EFI_UNUSABLE_MEMORY type) may divide a continuous memory block into 398 * multiple parts. As a result, the number of memory regions is large. 399 */ 400#ifdef CONFIG_EFI 401#define INIT_MEMBLOCK_MEMORY_REGIONS (INIT_MEMBLOCK_REGIONS * 8) 402#endif 403 404#include <asm-generic/memory_model.h> 405 406#endif /* __ASM_MEMORY_H */