at v6.3-rc3 48 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PGTABLE_H 3#define _LINUX_PGTABLE_H 4 5#include <linux/pfn.h> 6#include <asm/pgtable.h> 7 8#ifndef __ASSEMBLY__ 9#ifdef CONFIG_MMU 10 11#include <linux/mm_types.h> 12#include <linux/bug.h> 13#include <linux/errno.h> 14#include <asm-generic/pgtable_uffd.h> 15#include <linux/page_table_check.h> 16 17#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 18 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 19#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 20#endif 21 22/* 23 * On almost all architectures and configurations, 0 can be used as the 24 * upper ceiling to free_pgtables(): on many architectures it has the same 25 * effect as using TASK_SIZE. However, there is one configuration which 26 * must impose a more careful limit, to avoid freeing kernel pgtables. 27 */ 28#ifndef USER_PGTABLES_CEILING 29#define USER_PGTABLES_CEILING 0UL 30#endif 31 32/* 33 * This defines the first usable user address. Platforms 34 * can override its value with custom FIRST_USER_ADDRESS 35 * defined in their respective <asm/pgtable.h>. 36 */ 37#ifndef FIRST_USER_ADDRESS 38#define FIRST_USER_ADDRESS 0UL 39#endif 40 41/* 42 * This defines the generic helper for accessing PMD page 43 * table page. Although platforms can still override this 44 * via their respective <asm/pgtable.h>. 45 */ 46#ifndef pmd_pgtable 47#define pmd_pgtable(pmd) pmd_page(pmd) 48#endif 49 50/* 51 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] 52 * 53 * The pXx_index() functions return the index of the entry in the page 54 * table page which would control the given virtual address 55 * 56 * As these functions may be used by the same code for different levels of 57 * the page table folding, they are always available, regardless of 58 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 59 * because in such cases PTRS_PER_PxD equals 1. 60 */ 61 62static inline unsigned long pte_index(unsigned long address) 63{ 64 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 65} 66#define pte_index pte_index 67 68#ifndef pmd_index 69static inline unsigned long pmd_index(unsigned long address) 70{ 71 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 72} 73#define pmd_index pmd_index 74#endif 75 76#ifndef pud_index 77static inline unsigned long pud_index(unsigned long address) 78{ 79 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 80} 81#define pud_index pud_index 82#endif 83 84#ifndef pgd_index 85/* Must be a compile-time constant, so implement it as a macro */ 86#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 87#endif 88 89#ifndef pte_offset_kernel 90static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 91{ 92 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 93} 94#define pte_offset_kernel pte_offset_kernel 95#endif 96 97#if defined(CONFIG_HIGHPTE) 98#define pte_offset_map(dir, address) \ 99 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \ 100 pte_index((address))) 101#define pte_unmap(pte) kunmap_atomic((pte)) 102#else 103#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address)) 104#define pte_unmap(pte) ((void)(pte)) /* NOP */ 105#endif 106 107/* Find an entry in the second-level page table.. */ 108#ifndef pmd_offset 109static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 110{ 111 return pud_pgtable(*pud) + pmd_index(address); 112} 113#define pmd_offset pmd_offset 114#endif 115 116#ifndef pud_offset 117static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 118{ 119 return p4d_pgtable(*p4d) + pud_index(address); 120} 121#define pud_offset pud_offset 122#endif 123 124static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) 125{ 126 return (pgd + pgd_index(address)); 127}; 128 129/* 130 * a shortcut to get a pgd_t in a given mm 131 */ 132#ifndef pgd_offset 133#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 134#endif 135 136/* 137 * a shortcut which implies the use of the kernel's pgd, instead 138 * of a process's 139 */ 140#ifndef pgd_offset_k 141#define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 142#endif 143 144/* 145 * In many cases it is known that a virtual address is mapped at PMD or PTE 146 * level, so instead of traversing all the page table levels, we can get a 147 * pointer to the PMD entry in user or kernel page table or translate a virtual 148 * address to the pointer in the PTE in the kernel page tables with simple 149 * helpers. 150 */ 151static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) 152{ 153 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); 154} 155 156static inline pmd_t *pmd_off_k(unsigned long va) 157{ 158 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); 159} 160 161static inline pte_t *virt_to_kpte(unsigned long vaddr) 162{ 163 pmd_t *pmd = pmd_off_k(vaddr); 164 165 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); 166} 167 168#ifndef pmd_young 169static inline int pmd_young(pmd_t pmd) 170{ 171 return 0; 172} 173#endif 174 175#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 176extern int ptep_set_access_flags(struct vm_area_struct *vma, 177 unsigned long address, pte_t *ptep, 178 pte_t entry, int dirty); 179#endif 180 181#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 182#ifdef CONFIG_TRANSPARENT_HUGEPAGE 183extern int pmdp_set_access_flags(struct vm_area_struct *vma, 184 unsigned long address, pmd_t *pmdp, 185 pmd_t entry, int dirty); 186extern int pudp_set_access_flags(struct vm_area_struct *vma, 187 unsigned long address, pud_t *pudp, 188 pud_t entry, int dirty); 189#else 190static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 191 unsigned long address, pmd_t *pmdp, 192 pmd_t entry, int dirty) 193{ 194 BUILD_BUG(); 195 return 0; 196} 197static inline int pudp_set_access_flags(struct vm_area_struct *vma, 198 unsigned long address, pud_t *pudp, 199 pud_t entry, int dirty) 200{ 201 BUILD_BUG(); 202 return 0; 203} 204#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 205#endif 206 207#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 208static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 209 unsigned long address, 210 pte_t *ptep) 211{ 212 pte_t pte = *ptep; 213 int r = 1; 214 if (!pte_young(pte)) 215 r = 0; 216 else 217 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 218 return r; 219} 220#endif 221 222#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 223#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 224static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 225 unsigned long address, 226 pmd_t *pmdp) 227{ 228 pmd_t pmd = *pmdp; 229 int r = 1; 230 if (!pmd_young(pmd)) 231 r = 0; 232 else 233 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 234 return r; 235} 236#else 237static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 238 unsigned long address, 239 pmd_t *pmdp) 240{ 241 BUILD_BUG(); 242 return 0; 243} 244#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ 245#endif 246 247#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 248int ptep_clear_flush_young(struct vm_area_struct *vma, 249 unsigned long address, pte_t *ptep); 250#endif 251 252#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 253#ifdef CONFIG_TRANSPARENT_HUGEPAGE 254extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 255 unsigned long address, pmd_t *pmdp); 256#else 257/* 258 * Despite relevant to THP only, this API is called from generic rmap code 259 * under PageTransHuge(), hence needs a dummy implementation for !THP 260 */ 261static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 262 unsigned long address, pmd_t *pmdp) 263{ 264 BUILD_BUG(); 265 return 0; 266} 267#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 268#endif 269 270#ifndef arch_has_hw_nonleaf_pmd_young 271/* 272 * Return whether the accessed bit in non-leaf PMD entries is supported on the 273 * local CPU. 274 */ 275static inline bool arch_has_hw_nonleaf_pmd_young(void) 276{ 277 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG); 278} 279#endif 280 281#ifndef arch_has_hw_pte_young 282/* 283 * Return whether the accessed bit is supported on the local CPU. 284 * 285 * This stub assumes accessing through an old PTE triggers a page fault. 286 * Architectures that automatically set the access bit should overwrite it. 287 */ 288static inline bool arch_has_hw_pte_young(void) 289{ 290 return false; 291} 292#endif 293 294#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 295static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 296 unsigned long address, 297 pte_t *ptep) 298{ 299 pte_t pte = *ptep; 300 pte_clear(mm, address, ptep); 301 page_table_check_pte_clear(mm, address, pte); 302 return pte; 303} 304#endif 305 306static inline void ptep_clear(struct mm_struct *mm, unsigned long addr, 307 pte_t *ptep) 308{ 309 ptep_get_and_clear(mm, addr, ptep); 310} 311 312#ifndef ptep_get 313static inline pte_t ptep_get(pte_t *ptep) 314{ 315 return READ_ONCE(*ptep); 316} 317#endif 318 319#ifndef pmdp_get 320static inline pmd_t pmdp_get(pmd_t *pmdp) 321{ 322 return READ_ONCE(*pmdp); 323} 324#endif 325 326#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH 327/* 328 * For walking the pagetables without holding any locks. Some architectures 329 * (eg x86-32 PAE) cannot load the entries atomically without using expensive 330 * instructions. We are guaranteed that a PTE will only either go from not 331 * present to present, or present to not present -- it will not switch to a 332 * completely different present page without a TLB flush inbetween; which we 333 * are blocking by holding interrupts off. 334 * 335 * Setting ptes from not present to present goes: 336 * 337 * ptep->pte_high = h; 338 * smp_wmb(); 339 * ptep->pte_low = l; 340 * 341 * And present to not present goes: 342 * 343 * ptep->pte_low = 0; 344 * smp_wmb(); 345 * ptep->pte_high = 0; 346 * 347 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 348 * We load pte_high *after* loading pte_low, which ensures we don't see an older 349 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 350 * picked up a changed pte high. We might have gotten rubbish values from 351 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 352 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 353 * operates on present ptes we're safe. 354 */ 355static inline pte_t ptep_get_lockless(pte_t *ptep) 356{ 357 pte_t pte; 358 359 do { 360 pte.pte_low = ptep->pte_low; 361 smp_rmb(); 362 pte.pte_high = ptep->pte_high; 363 smp_rmb(); 364 } while (unlikely(pte.pte_low != ptep->pte_low)); 365 366 return pte; 367} 368#define ptep_get_lockless ptep_get_lockless 369 370#if CONFIG_PGTABLE_LEVELS > 2 371static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 372{ 373 pmd_t pmd; 374 375 do { 376 pmd.pmd_low = pmdp->pmd_low; 377 smp_rmb(); 378 pmd.pmd_high = pmdp->pmd_high; 379 smp_rmb(); 380 } while (unlikely(pmd.pmd_low != pmdp->pmd_low)); 381 382 return pmd; 383} 384#define pmdp_get_lockless pmdp_get_lockless 385#endif /* CONFIG_PGTABLE_LEVELS > 2 */ 386#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */ 387 388/* 389 * We require that the PTE can be read atomically. 390 */ 391#ifndef ptep_get_lockless 392static inline pte_t ptep_get_lockless(pte_t *ptep) 393{ 394 return ptep_get(ptep); 395} 396#endif 397 398#ifndef pmdp_get_lockless 399static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 400{ 401 return pmdp_get(pmdp); 402} 403#endif 404 405#ifdef CONFIG_TRANSPARENT_HUGEPAGE 406#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 407static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 408 unsigned long address, 409 pmd_t *pmdp) 410{ 411 pmd_t pmd = *pmdp; 412 413 pmd_clear(pmdp); 414 page_table_check_pmd_clear(mm, address, pmd); 415 416 return pmd; 417} 418#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 419#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 420static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 421 unsigned long address, 422 pud_t *pudp) 423{ 424 pud_t pud = *pudp; 425 426 pud_clear(pudp); 427 page_table_check_pud_clear(mm, address, pud); 428 429 return pud; 430} 431#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 432#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 433 434#ifdef CONFIG_TRANSPARENT_HUGEPAGE 435#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 436static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 437 unsigned long address, pmd_t *pmdp, 438 int full) 439{ 440 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 441} 442#endif 443 444#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 445static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, 446 unsigned long address, pud_t *pudp, 447 int full) 448{ 449 return pudp_huge_get_and_clear(mm, address, pudp); 450} 451#endif 452#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 453 454#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 455static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 456 unsigned long address, pte_t *ptep, 457 int full) 458{ 459 return ptep_get_and_clear(mm, address, ptep); 460} 461#endif 462 463 464/* 465 * If two threads concurrently fault at the same page, the thread that 466 * won the race updates the PTE and its local TLB/Cache. The other thread 467 * gives up, simply does nothing, and continues; on architectures where 468 * software can update TLB, local TLB can be updated here to avoid next page 469 * fault. This function updates TLB only, do nothing with cache or others. 470 * It is the difference with function update_mmu_cache. 471 */ 472#ifndef __HAVE_ARCH_UPDATE_MMU_TLB 473static inline void update_mmu_tlb(struct vm_area_struct *vma, 474 unsigned long address, pte_t *ptep) 475{ 476} 477#define __HAVE_ARCH_UPDATE_MMU_TLB 478#endif 479 480/* 481 * Some architectures may be able to avoid expensive synchronization 482 * primitives when modifications are made to PTE's which are already 483 * not present, or in the process of an address space destruction. 484 */ 485#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 486static inline void pte_clear_not_present_full(struct mm_struct *mm, 487 unsigned long address, 488 pte_t *ptep, 489 int full) 490{ 491 pte_clear(mm, address, ptep); 492} 493#endif 494 495#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 496extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 497 unsigned long address, 498 pte_t *ptep); 499#endif 500 501#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 502extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 503 unsigned long address, 504 pmd_t *pmdp); 505extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 506 unsigned long address, 507 pud_t *pudp); 508#endif 509 510#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 511struct mm_struct; 512static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 513{ 514 pte_t old_pte = *ptep; 515 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 516} 517#endif 518 519/* 520 * On some architectures hardware does not set page access bit when accessing 521 * memory page, it is responsibility of software setting this bit. It brings 522 * out extra page fault penalty to track page access bit. For optimization page 523 * access bit can be set during all page fault flow on these arches. 524 * To be differentiate with macro pte_mkyoung, this macro is used on platforms 525 * where software maintains page access bit. 526 */ 527#ifndef pte_sw_mkyoung 528static inline pte_t pte_sw_mkyoung(pte_t pte) 529{ 530 return pte; 531} 532#define pte_sw_mkyoung pte_sw_mkyoung 533#endif 534 535#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 536#ifdef CONFIG_TRANSPARENT_HUGEPAGE 537static inline void pmdp_set_wrprotect(struct mm_struct *mm, 538 unsigned long address, pmd_t *pmdp) 539{ 540 pmd_t old_pmd = *pmdp; 541 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 542} 543#else 544static inline void pmdp_set_wrprotect(struct mm_struct *mm, 545 unsigned long address, pmd_t *pmdp) 546{ 547 BUILD_BUG(); 548} 549#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 550#endif 551#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 552#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 553static inline void pudp_set_wrprotect(struct mm_struct *mm, 554 unsigned long address, pud_t *pudp) 555{ 556 pud_t old_pud = *pudp; 557 558 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 559} 560#else 561static inline void pudp_set_wrprotect(struct mm_struct *mm, 562 unsigned long address, pud_t *pudp) 563{ 564 BUILD_BUG(); 565} 566#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 567#endif 568 569#ifndef pmdp_collapse_flush 570#ifdef CONFIG_TRANSPARENT_HUGEPAGE 571extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 572 unsigned long address, pmd_t *pmdp); 573#else 574static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 575 unsigned long address, 576 pmd_t *pmdp) 577{ 578 BUILD_BUG(); 579 return *pmdp; 580} 581#define pmdp_collapse_flush pmdp_collapse_flush 582#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 583#endif 584 585#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 586extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 587 pgtable_t pgtable); 588#endif 589 590#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 591extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 592#endif 593 594#ifdef CONFIG_TRANSPARENT_HUGEPAGE 595/* 596 * This is an implementation of pmdp_establish() that is only suitable for an 597 * architecture that doesn't have hardware dirty/accessed bits. In this case we 598 * can't race with CPU which sets these bits and non-atomic approach is fine. 599 */ 600static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 601 unsigned long address, pmd_t *pmdp, pmd_t pmd) 602{ 603 pmd_t old_pmd = *pmdp; 604 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 605 return old_pmd; 606} 607#endif 608 609#ifndef __HAVE_ARCH_PMDP_INVALIDATE 610extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 611 pmd_t *pmdp); 612#endif 613 614#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD 615 616/* 617 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent 618 * hugepage mapping in the page tables. This function is similar to 619 * pmdp_invalidate(), but should only be used if the access and dirty bits would 620 * not be cleared by the software in the new PMD value. The function ensures 621 * that hardware changes of the access and dirty bits updates would not be lost. 622 * 623 * Doing so can allow in certain architectures to avoid a TLB flush in most 624 * cases. Yet, another TLB flush might be necessary later if the PMD update 625 * itself requires such flush (e.g., if protection was set to be stricter). Yet, 626 * even when a TLB flush is needed because of the update, the caller may be able 627 * to batch these TLB flushing operations, so fewer TLB flush operations are 628 * needed. 629 */ 630extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, 631 unsigned long address, pmd_t *pmdp); 632#endif 633 634#ifndef __HAVE_ARCH_PTE_SAME 635static inline int pte_same(pte_t pte_a, pte_t pte_b) 636{ 637 return pte_val(pte_a) == pte_val(pte_b); 638} 639#endif 640 641#ifndef __HAVE_ARCH_PTE_UNUSED 642/* 643 * Some architectures provide facilities to virtualization guests 644 * so that they can flag allocated pages as unused. This allows the 645 * host to transparently reclaim unused pages. This function returns 646 * whether the pte's page is unused. 647 */ 648static inline int pte_unused(pte_t pte) 649{ 650 return 0; 651} 652#endif 653 654#ifndef pte_access_permitted 655#define pte_access_permitted(pte, write) \ 656 (pte_present(pte) && (!(write) || pte_write(pte))) 657#endif 658 659#ifndef pmd_access_permitted 660#define pmd_access_permitted(pmd, write) \ 661 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 662#endif 663 664#ifndef pud_access_permitted 665#define pud_access_permitted(pud, write) \ 666 (pud_present(pud) && (!(write) || pud_write(pud))) 667#endif 668 669#ifndef p4d_access_permitted 670#define p4d_access_permitted(p4d, write) \ 671 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 672#endif 673 674#ifndef pgd_access_permitted 675#define pgd_access_permitted(pgd, write) \ 676 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 677#endif 678 679#ifndef __HAVE_ARCH_PMD_SAME 680static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 681{ 682 return pmd_val(pmd_a) == pmd_val(pmd_b); 683} 684 685static inline int pud_same(pud_t pud_a, pud_t pud_b) 686{ 687 return pud_val(pud_a) == pud_val(pud_b); 688} 689#endif 690 691#ifndef __HAVE_ARCH_P4D_SAME 692static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 693{ 694 return p4d_val(p4d_a) == p4d_val(p4d_b); 695} 696#endif 697 698#ifndef __HAVE_ARCH_PGD_SAME 699static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 700{ 701 return pgd_val(pgd_a) == pgd_val(pgd_b); 702} 703#endif 704 705/* 706 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 707 * TLB flush will be required as a result of the "set". For example, use 708 * in scenarios where it is known ahead of time that the routine is 709 * setting non-present entries, or re-setting an existing entry to the 710 * same value. Otherwise, use the typical "set" helpers and flush the 711 * TLB. 712 */ 713#define set_pte_safe(ptep, pte) \ 714({ \ 715 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 716 set_pte(ptep, pte); \ 717}) 718 719#define set_pmd_safe(pmdp, pmd) \ 720({ \ 721 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 722 set_pmd(pmdp, pmd); \ 723}) 724 725#define set_pud_safe(pudp, pud) \ 726({ \ 727 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 728 set_pud(pudp, pud); \ 729}) 730 731#define set_p4d_safe(p4dp, p4d) \ 732({ \ 733 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 734 set_p4d(p4dp, p4d); \ 735}) 736 737#define set_pgd_safe(pgdp, pgd) \ 738({ \ 739 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 740 set_pgd(pgdp, pgd); \ 741}) 742 743#ifndef __HAVE_ARCH_DO_SWAP_PAGE 744/* 745 * Some architectures support metadata associated with a page. When a 746 * page is being swapped out, this metadata must be saved so it can be 747 * restored when the page is swapped back in. SPARC M7 and newer 748 * processors support an ADI (Application Data Integrity) tag for the 749 * page as metadata for the page. arch_do_swap_page() can restore this 750 * metadata when a page is swapped back in. 751 */ 752static inline void arch_do_swap_page(struct mm_struct *mm, 753 struct vm_area_struct *vma, 754 unsigned long addr, 755 pte_t pte, pte_t oldpte) 756{ 757 758} 759#endif 760 761#ifndef __HAVE_ARCH_UNMAP_ONE 762/* 763 * Some architectures support metadata associated with a page. When a 764 * page is being swapped out, this metadata must be saved so it can be 765 * restored when the page is swapped back in. SPARC M7 and newer 766 * processors support an ADI (Application Data Integrity) tag for the 767 * page as metadata for the page. arch_unmap_one() can save this 768 * metadata on a swap-out of a page. 769 */ 770static inline int arch_unmap_one(struct mm_struct *mm, 771 struct vm_area_struct *vma, 772 unsigned long addr, 773 pte_t orig_pte) 774{ 775 return 0; 776} 777#endif 778 779/* 780 * Allow architectures to preserve additional metadata associated with 781 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function 782 * prototypes must be defined in the arch-specific asm/pgtable.h file. 783 */ 784#ifndef __HAVE_ARCH_PREPARE_TO_SWAP 785static inline int arch_prepare_to_swap(struct page *page) 786{ 787 return 0; 788} 789#endif 790 791#ifndef __HAVE_ARCH_SWAP_INVALIDATE 792static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 793{ 794} 795 796static inline void arch_swap_invalidate_area(int type) 797{ 798} 799#endif 800 801#ifndef __HAVE_ARCH_SWAP_RESTORE 802static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio) 803{ 804} 805#endif 806 807#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 808#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 809#endif 810 811#ifndef __HAVE_ARCH_MOVE_PTE 812#define move_pte(pte, prot, old_addr, new_addr) (pte) 813#endif 814 815#ifndef pte_accessible 816# define pte_accessible(mm, pte) ((void)(pte), 1) 817#endif 818 819#ifndef flush_tlb_fix_spurious_fault 820#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 821#endif 822 823/* 824 * When walking page tables, get the address of the next boundary, 825 * or the end address of the range if that comes earlier. Although no 826 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 827 */ 828 829#define pgd_addr_end(addr, end) \ 830({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 831 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 832}) 833 834#ifndef p4d_addr_end 835#define p4d_addr_end(addr, end) \ 836({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 837 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 838}) 839#endif 840 841#ifndef pud_addr_end 842#define pud_addr_end(addr, end) \ 843({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 844 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 845}) 846#endif 847 848#ifndef pmd_addr_end 849#define pmd_addr_end(addr, end) \ 850({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 851 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 852}) 853#endif 854 855/* 856 * When walking page tables, we usually want to skip any p?d_none entries; 857 * and any p?d_bad entries - reporting the error before resetting to none. 858 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 859 */ 860void pgd_clear_bad(pgd_t *); 861 862#ifndef __PAGETABLE_P4D_FOLDED 863void p4d_clear_bad(p4d_t *); 864#else 865#define p4d_clear_bad(p4d) do { } while (0) 866#endif 867 868#ifndef __PAGETABLE_PUD_FOLDED 869void pud_clear_bad(pud_t *); 870#else 871#define pud_clear_bad(p4d) do { } while (0) 872#endif 873 874void pmd_clear_bad(pmd_t *); 875 876static inline int pgd_none_or_clear_bad(pgd_t *pgd) 877{ 878 if (pgd_none(*pgd)) 879 return 1; 880 if (unlikely(pgd_bad(*pgd))) { 881 pgd_clear_bad(pgd); 882 return 1; 883 } 884 return 0; 885} 886 887static inline int p4d_none_or_clear_bad(p4d_t *p4d) 888{ 889 if (p4d_none(*p4d)) 890 return 1; 891 if (unlikely(p4d_bad(*p4d))) { 892 p4d_clear_bad(p4d); 893 return 1; 894 } 895 return 0; 896} 897 898static inline int pud_none_or_clear_bad(pud_t *pud) 899{ 900 if (pud_none(*pud)) 901 return 1; 902 if (unlikely(pud_bad(*pud))) { 903 pud_clear_bad(pud); 904 return 1; 905 } 906 return 0; 907} 908 909static inline int pmd_none_or_clear_bad(pmd_t *pmd) 910{ 911 if (pmd_none(*pmd)) 912 return 1; 913 if (unlikely(pmd_bad(*pmd))) { 914 pmd_clear_bad(pmd); 915 return 1; 916 } 917 return 0; 918} 919 920static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 921 unsigned long addr, 922 pte_t *ptep) 923{ 924 /* 925 * Get the current pte state, but zero it out to make it 926 * non-present, preventing the hardware from asynchronously 927 * updating it. 928 */ 929 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 930} 931 932static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 933 unsigned long addr, 934 pte_t *ptep, pte_t pte) 935{ 936 /* 937 * The pte is non-present, so there's no hardware state to 938 * preserve. 939 */ 940 set_pte_at(vma->vm_mm, addr, ptep, pte); 941} 942 943#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 944/* 945 * Start a pte protection read-modify-write transaction, which 946 * protects against asynchronous hardware modifications to the pte. 947 * The intention is not to prevent the hardware from making pte 948 * updates, but to prevent any updates it may make from being lost. 949 * 950 * This does not protect against other software modifications of the 951 * pte; the appropriate pte lock must be held over the transaction. 952 * 953 * Note that this interface is intended to be batchable, meaning that 954 * ptep_modify_prot_commit may not actually update the pte, but merely 955 * queue the update to be done at some later time. The update must be 956 * actually committed before the pte lock is released, however. 957 */ 958static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 959 unsigned long addr, 960 pte_t *ptep) 961{ 962 return __ptep_modify_prot_start(vma, addr, ptep); 963} 964 965/* 966 * Commit an update to a pte, leaving any hardware-controlled bits in 967 * the PTE unmodified. 968 */ 969static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 970 unsigned long addr, 971 pte_t *ptep, pte_t old_pte, pte_t pte) 972{ 973 __ptep_modify_prot_commit(vma, addr, ptep, pte); 974} 975#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 976#endif /* CONFIG_MMU */ 977 978/* 979 * No-op macros that just return the current protection value. Defined here 980 * because these macros can be used even if CONFIG_MMU is not defined. 981 */ 982 983#ifndef pgprot_nx 984#define pgprot_nx(prot) (prot) 985#endif 986 987#ifndef pgprot_noncached 988#define pgprot_noncached(prot) (prot) 989#endif 990 991#ifndef pgprot_writecombine 992#define pgprot_writecombine pgprot_noncached 993#endif 994 995#ifndef pgprot_writethrough 996#define pgprot_writethrough pgprot_noncached 997#endif 998 999#ifndef pgprot_device 1000#define pgprot_device pgprot_noncached 1001#endif 1002 1003#ifndef pgprot_mhp 1004#define pgprot_mhp(prot) (prot) 1005#endif 1006 1007#ifdef CONFIG_MMU 1008#ifndef pgprot_modify 1009#define pgprot_modify pgprot_modify 1010static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 1011{ 1012 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 1013 newprot = pgprot_noncached(newprot); 1014 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 1015 newprot = pgprot_writecombine(newprot); 1016 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 1017 newprot = pgprot_device(newprot); 1018 return newprot; 1019} 1020#endif 1021#endif /* CONFIG_MMU */ 1022 1023#ifndef pgprot_encrypted 1024#define pgprot_encrypted(prot) (prot) 1025#endif 1026 1027#ifndef pgprot_decrypted 1028#define pgprot_decrypted(prot) (prot) 1029#endif 1030 1031/* 1032 * A facility to provide lazy MMU batching. This allows PTE updates and 1033 * page invalidations to be delayed until a call to leave lazy MMU mode 1034 * is issued. Some architectures may benefit from doing this, and it is 1035 * beneficial for both shadow and direct mode hypervisors, which may batch 1036 * the PTE updates which happen during this window. Note that using this 1037 * interface requires that read hazards be removed from the code. A read 1038 * hazard could result in the direct mode hypervisor case, since the actual 1039 * write to the page tables may not yet have taken place, so reads though 1040 * a raw PTE pointer after it has been modified are not guaranteed to be 1041 * up to date. This mode can only be entered and left under the protection of 1042 * the page table locks for all page tables which may be modified. In the UP 1043 * case, this is required so that preemption is disabled, and in the SMP case, 1044 * it must synchronize the delayed page table writes properly on other CPUs. 1045 */ 1046#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 1047#define arch_enter_lazy_mmu_mode() do {} while (0) 1048#define arch_leave_lazy_mmu_mode() do {} while (0) 1049#define arch_flush_lazy_mmu_mode() do {} while (0) 1050#endif 1051 1052/* 1053 * A facility to provide batching of the reload of page tables and 1054 * other process state with the actual context switch code for 1055 * paravirtualized guests. By convention, only one of the batched 1056 * update (lazy) modes (CPU, MMU) should be active at any given time, 1057 * entry should never be nested, and entry and exits should always be 1058 * paired. This is for sanity of maintaining and reasoning about the 1059 * kernel code. In this case, the exit (end of the context switch) is 1060 * in architecture-specific code, and so doesn't need a generic 1061 * definition. 1062 */ 1063#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 1064#define arch_start_context_switch(prev) do {} while (0) 1065#endif 1066 1067#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1068#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 1069static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1070{ 1071 return pmd; 1072} 1073 1074static inline int pmd_swp_soft_dirty(pmd_t pmd) 1075{ 1076 return 0; 1077} 1078 1079static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1080{ 1081 return pmd; 1082} 1083#endif 1084#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 1085static inline int pte_soft_dirty(pte_t pte) 1086{ 1087 return 0; 1088} 1089 1090static inline int pmd_soft_dirty(pmd_t pmd) 1091{ 1092 return 0; 1093} 1094 1095static inline pte_t pte_mksoft_dirty(pte_t pte) 1096{ 1097 return pte; 1098} 1099 1100static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 1101{ 1102 return pmd; 1103} 1104 1105static inline pte_t pte_clear_soft_dirty(pte_t pte) 1106{ 1107 return pte; 1108} 1109 1110static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 1111{ 1112 return pmd; 1113} 1114 1115static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1116{ 1117 return pte; 1118} 1119 1120static inline int pte_swp_soft_dirty(pte_t pte) 1121{ 1122 return 0; 1123} 1124 1125static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1126{ 1127 return pte; 1128} 1129 1130static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1131{ 1132 return pmd; 1133} 1134 1135static inline int pmd_swp_soft_dirty(pmd_t pmd) 1136{ 1137 return 0; 1138} 1139 1140static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1141{ 1142 return pmd; 1143} 1144#endif 1145 1146#ifndef __HAVE_PFNMAP_TRACKING 1147/* 1148 * Interfaces that can be used by architecture code to keep track of 1149 * memory type of pfn mappings specified by the remap_pfn_range, 1150 * vmf_insert_pfn. 1151 */ 1152 1153/* 1154 * track_pfn_remap is called when a _new_ pfn mapping is being established 1155 * by remap_pfn_range() for physical range indicated by pfn and size. 1156 */ 1157static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1158 unsigned long pfn, unsigned long addr, 1159 unsigned long size) 1160{ 1161 return 0; 1162} 1163 1164/* 1165 * track_pfn_insert is called when a _new_ single pfn is established 1166 * by vmf_insert_pfn(). 1167 */ 1168static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1169 pfn_t pfn) 1170{ 1171} 1172 1173/* 1174 * track_pfn_copy is called when vma that is covering the pfnmap gets 1175 * copied through copy_page_range(). 1176 */ 1177static inline int track_pfn_copy(struct vm_area_struct *vma) 1178{ 1179 return 0; 1180} 1181 1182/* 1183 * untrack_pfn is called while unmapping a pfnmap for a region. 1184 * untrack can be called for a specific region indicated by pfn and size or 1185 * can be for the entire vma (in which case pfn, size are zero). 1186 */ 1187static inline void untrack_pfn(struct vm_area_struct *vma, 1188 unsigned long pfn, unsigned long size, 1189 bool mm_wr_locked) 1190{ 1191} 1192 1193/* 1194 * untrack_pfn_moved is called while mremapping a pfnmap for a new region. 1195 */ 1196static inline void untrack_pfn_moved(struct vm_area_struct *vma) 1197{ 1198} 1199#else 1200extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1201 unsigned long pfn, unsigned long addr, 1202 unsigned long size); 1203extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1204 pfn_t pfn); 1205extern int track_pfn_copy(struct vm_area_struct *vma); 1206extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 1207 unsigned long size, bool mm_wr_locked); 1208extern void untrack_pfn_moved(struct vm_area_struct *vma); 1209#endif 1210 1211#ifdef CONFIG_MMU 1212#ifdef __HAVE_COLOR_ZERO_PAGE 1213static inline int is_zero_pfn(unsigned long pfn) 1214{ 1215 extern unsigned long zero_pfn; 1216 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 1217 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 1218} 1219 1220#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 1221 1222#else 1223static inline int is_zero_pfn(unsigned long pfn) 1224{ 1225 extern unsigned long zero_pfn; 1226 return pfn == zero_pfn; 1227} 1228 1229static inline unsigned long my_zero_pfn(unsigned long addr) 1230{ 1231 extern unsigned long zero_pfn; 1232 return zero_pfn; 1233} 1234#endif 1235#else 1236static inline int is_zero_pfn(unsigned long pfn) 1237{ 1238 return 0; 1239} 1240 1241static inline unsigned long my_zero_pfn(unsigned long addr) 1242{ 1243 return 0; 1244} 1245#endif /* CONFIG_MMU */ 1246 1247#ifdef CONFIG_MMU 1248 1249#ifndef CONFIG_TRANSPARENT_HUGEPAGE 1250static inline int pmd_trans_huge(pmd_t pmd) 1251{ 1252 return 0; 1253} 1254#ifndef pmd_write 1255static inline int pmd_write(pmd_t pmd) 1256{ 1257 BUG(); 1258 return 0; 1259} 1260#endif /* pmd_write */ 1261#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1262 1263#ifndef pud_write 1264static inline int pud_write(pud_t pud) 1265{ 1266 BUG(); 1267 return 0; 1268} 1269#endif /* pud_write */ 1270 1271#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 1272static inline int pmd_devmap(pmd_t pmd) 1273{ 1274 return 0; 1275} 1276static inline int pud_devmap(pud_t pud) 1277{ 1278 return 0; 1279} 1280static inline int pgd_devmap(pgd_t pgd) 1281{ 1282 return 0; 1283} 1284#endif 1285 1286#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 1287 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1288static inline int pud_trans_huge(pud_t pud) 1289{ 1290 return 0; 1291} 1292#endif 1293 1294/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ 1295static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) 1296{ 1297 pud_t pudval = READ_ONCE(*pud); 1298 1299 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 1300 return 1; 1301 if (unlikely(pud_bad(pudval))) { 1302 pud_clear_bad(pud); 1303 return 1; 1304 } 1305 return 0; 1306} 1307 1308/* See pmd_trans_unstable for discussion. */ 1309static inline int pud_trans_unstable(pud_t *pud) 1310{ 1311#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1312 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1313 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); 1314#else 1315 return 0; 1316#endif 1317} 1318 1319#ifndef arch_needs_pgtable_deposit 1320#define arch_needs_pgtable_deposit() (false) 1321#endif 1322/* 1323 * This function is meant to be used by sites walking pagetables with 1324 * the mmap_lock held in read mode to protect against MADV_DONTNEED and 1325 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 1326 * into a null pmd and the transhuge page fault can convert a null pmd 1327 * into an hugepmd or into a regular pmd (if the hugepage allocation 1328 * fails). While holding the mmap_lock in read mode the pmd becomes 1329 * stable and stops changing under us only if it's not null and not a 1330 * transhuge pmd. When those races occurs and this function makes a 1331 * difference vs the standard pmd_none_or_clear_bad, the result is 1332 * undefined so behaving like if the pmd was none is safe (because it 1333 * can return none anyway). The compiler level barrier() is critically 1334 * important to compute the two checks atomically on the same pmdval. 1335 * 1336 * For 32bit kernels with a 64bit large pmd_t this automatically takes 1337 * care of reading the pmd atomically to avoid SMP race conditions 1338 * against pmd_populate() when the mmap_lock is hold for reading by the 1339 * caller (a special atomic read not done by "gcc" as in the generic 1340 * version above, is also needed when THP is disabled because the page 1341 * fault can populate the pmd from under us). 1342 */ 1343static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 1344{ 1345 pmd_t pmdval = pmdp_get_lockless(pmd); 1346 /* 1347 * The barrier will stabilize the pmdval in a register or on 1348 * the stack so that it will stop changing under the code. 1349 * 1350 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 1351 * pmdp_get_lockless is allowed to return a not atomic pmdval 1352 * (for example pointing to an hugepage that has never been 1353 * mapped in the pmd). The below checks will only care about 1354 * the low part of the pmd with 32bit PAE x86 anyway, with the 1355 * exception of pmd_none(). So the important thing is that if 1356 * the low part of the pmd is found null, the high part will 1357 * be also null or the pmd_none() check below would be 1358 * confused. 1359 */ 1360#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1361 barrier(); 1362#endif 1363 /* 1364 * !pmd_present() checks for pmd migration entries 1365 * 1366 * The complete check uses is_pmd_migration_entry() in linux/swapops.h 1367 * But using that requires moving current function and pmd_trans_unstable() 1368 * to linux/swapops.h to resolve dependency, which is too much code move. 1369 * 1370 * !pmd_present() is equivalent to is_pmd_migration_entry() currently, 1371 * because !pmd_present() pages can only be under migration not swapped 1372 * out. 1373 * 1374 * pmd_none() is preserved for future condition checks on pmd migration 1375 * entries and not confusing with this function name, although it is 1376 * redundant with !pmd_present(). 1377 */ 1378 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || 1379 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) 1380 return 1; 1381 if (unlikely(pmd_bad(pmdval))) { 1382 pmd_clear_bad(pmd); 1383 return 1; 1384 } 1385 return 0; 1386} 1387 1388/* 1389 * This is a noop if Transparent Hugepage Support is not built into 1390 * the kernel. Otherwise it is equivalent to 1391 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 1392 * places that already verified the pmd is not none and they want to 1393 * walk ptes while holding the mmap sem in read mode (write mode don't 1394 * need this). If THP is not enabled, the pmd can't go away under the 1395 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 1396 * run a pmd_trans_unstable before walking the ptes after 1397 * split_huge_pmd returns (because it may have run when the pmd become 1398 * null, but then a page fault can map in a THP and not a regular page). 1399 */ 1400static inline int pmd_trans_unstable(pmd_t *pmd) 1401{ 1402#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1403 return pmd_none_or_trans_huge_or_clear_bad(pmd); 1404#else 1405 return 0; 1406#endif 1407} 1408 1409/* 1410 * the ordering of these checks is important for pmds with _page_devmap set. 1411 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check 1412 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly 1413 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 1414 */ 1415static inline int pmd_devmap_trans_unstable(pmd_t *pmd) 1416{ 1417 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 1418} 1419 1420#ifndef CONFIG_NUMA_BALANCING 1421/* 1422 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but 1423 * the only case the kernel cares is for NUMA balancing and is only ever set 1424 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked 1425 * _PAGE_PROTNONE so by default, implement the helper as "always no". It 1426 * is the responsibility of the caller to distinguish between PROT_NONE 1427 * protections and NUMA hinting fault protections. 1428 */ 1429static inline int pte_protnone(pte_t pte) 1430{ 1431 return 0; 1432} 1433 1434static inline int pmd_protnone(pmd_t pmd) 1435{ 1436 return 0; 1437} 1438#endif /* CONFIG_NUMA_BALANCING */ 1439 1440#endif /* CONFIG_MMU */ 1441 1442#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1443 1444#ifndef __PAGETABLE_P4D_FOLDED 1445int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1446void p4d_clear_huge(p4d_t *p4d); 1447#else 1448static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1449{ 1450 return 0; 1451} 1452static inline void p4d_clear_huge(p4d_t *p4d) { } 1453#endif /* !__PAGETABLE_P4D_FOLDED */ 1454 1455int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1456int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1457int pud_clear_huge(pud_t *pud); 1458int pmd_clear_huge(pmd_t *pmd); 1459int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1460int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1461int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1462#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1463static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1464{ 1465 return 0; 1466} 1467static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1468{ 1469 return 0; 1470} 1471static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1472{ 1473 return 0; 1474} 1475static inline void p4d_clear_huge(p4d_t *p4d) { } 1476static inline int pud_clear_huge(pud_t *pud) 1477{ 1478 return 0; 1479} 1480static inline int pmd_clear_huge(pmd_t *pmd) 1481{ 1482 return 0; 1483} 1484static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1485{ 1486 return 0; 1487} 1488static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1489{ 1490 return 0; 1491} 1492static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1493{ 1494 return 0; 1495} 1496#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1497 1498#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1499#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1500/* 1501 * ARCHes with special requirements for evicting THP backing TLB entries can 1502 * implement this. Otherwise also, it can help optimize normal TLB flush in 1503 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the 1504 * entire TLB if flush span is greater than a threshold, which will 1505 * likely be true for a single huge page. Thus a single THP flush will 1506 * invalidate the entire TLB which is not desirable. 1507 * e.g. see arch/arc: flush_pmd_tlb_range 1508 */ 1509#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1510#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1511#else 1512#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1513#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1514#endif 1515#endif 1516 1517struct file; 1518int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1519 unsigned long size, pgprot_t *vma_prot); 1520 1521#ifndef CONFIG_X86_ESPFIX64 1522static inline void init_espfix_bsp(void) { } 1523#endif 1524 1525extern void __init pgtable_cache_init(void); 1526 1527#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1528static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1529{ 1530 return true; 1531} 1532 1533static inline bool arch_has_pfn_modify_check(void) 1534{ 1535 return false; 1536} 1537#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1538 1539/* 1540 * Architecture PAGE_KERNEL_* fallbacks 1541 * 1542 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1543 * because they really don't support them, or the port needs to be updated to 1544 * reflect the required functionality. Below are a set of relatively safe 1545 * fallbacks, as best effort, which we can count on in lieu of the architectures 1546 * not defining them on their own yet. 1547 */ 1548 1549#ifndef PAGE_KERNEL_RO 1550# define PAGE_KERNEL_RO PAGE_KERNEL 1551#endif 1552 1553#ifndef PAGE_KERNEL_EXEC 1554# define PAGE_KERNEL_EXEC PAGE_KERNEL 1555#endif 1556 1557/* 1558 * Page Table Modification bits for pgtbl_mod_mask. 1559 * 1560 * These are used by the p?d_alloc_track*() set of functions an in the generic 1561 * vmalloc/ioremap code to track at which page-table levels entries have been 1562 * modified. Based on that the code can better decide when vmalloc and ioremap 1563 * mapping changes need to be synchronized to other page-tables in the system. 1564 */ 1565#define __PGTBL_PGD_MODIFIED 0 1566#define __PGTBL_P4D_MODIFIED 1 1567#define __PGTBL_PUD_MODIFIED 2 1568#define __PGTBL_PMD_MODIFIED 3 1569#define __PGTBL_PTE_MODIFIED 4 1570 1571#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) 1572#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) 1573#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) 1574#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) 1575#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) 1576 1577/* Page-Table Modification Mask */ 1578typedef unsigned int pgtbl_mod_mask; 1579 1580#endif /* !__ASSEMBLY__ */ 1581 1582#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) 1583#ifdef CONFIG_PHYS_ADDR_T_64BIT 1584/* 1585 * ZSMALLOC needs to know the highest PFN on 32-bit architectures 1586 * with physical address space extension, but falls back to 1587 * BITS_PER_LONG otherwise. 1588 */ 1589#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition 1590#else 1591#define MAX_POSSIBLE_PHYSMEM_BITS 32 1592#endif 1593#endif 1594 1595#ifndef has_transparent_hugepage 1596#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE) 1597#endif 1598 1599/* 1600 * On some architectures it depends on the mm if the p4d/pud or pmd 1601 * layer of the page table hierarchy is folded or not. 1602 */ 1603#ifndef mm_p4d_folded 1604#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1605#endif 1606 1607#ifndef mm_pud_folded 1608#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1609#endif 1610 1611#ifndef mm_pmd_folded 1612#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1613#endif 1614 1615#ifndef p4d_offset_lockless 1616#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) 1617#endif 1618#ifndef pud_offset_lockless 1619#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) 1620#endif 1621#ifndef pmd_offset_lockless 1622#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) 1623#endif 1624 1625/* 1626 * p?d_leaf() - true if this entry is a final mapping to a physical address. 1627 * This differs from p?d_huge() by the fact that they are always available (if 1628 * the architecture supports large pages at the appropriate level) even 1629 * if CONFIG_HUGETLB_PAGE is not defined. 1630 * Only meaningful when called on a valid entry. 1631 */ 1632#ifndef pgd_leaf 1633#define pgd_leaf(x) 0 1634#endif 1635#ifndef p4d_leaf 1636#define p4d_leaf(x) 0 1637#endif 1638#ifndef pud_leaf 1639#define pud_leaf(x) 0 1640#endif 1641#ifndef pmd_leaf 1642#define pmd_leaf(x) 0 1643#endif 1644 1645#ifndef pgd_leaf_size 1646#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) 1647#endif 1648#ifndef p4d_leaf_size 1649#define p4d_leaf_size(x) P4D_SIZE 1650#endif 1651#ifndef pud_leaf_size 1652#define pud_leaf_size(x) PUD_SIZE 1653#endif 1654#ifndef pmd_leaf_size 1655#define pmd_leaf_size(x) PMD_SIZE 1656#endif 1657#ifndef pte_leaf_size 1658#define pte_leaf_size(x) PAGE_SIZE 1659#endif 1660 1661/* 1662 * Some architectures have MMUs that are configurable or selectable at boot 1663 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it 1664 * helps to have a static maximum value. 1665 */ 1666 1667#ifndef MAX_PTRS_PER_PTE 1668#define MAX_PTRS_PER_PTE PTRS_PER_PTE 1669#endif 1670 1671#ifndef MAX_PTRS_PER_PMD 1672#define MAX_PTRS_PER_PMD PTRS_PER_PMD 1673#endif 1674 1675#ifndef MAX_PTRS_PER_PUD 1676#define MAX_PTRS_PER_PUD PTRS_PER_PUD 1677#endif 1678 1679#ifndef MAX_PTRS_PER_P4D 1680#define MAX_PTRS_PER_P4D PTRS_PER_P4D 1681#endif 1682 1683/* description of effects of mapping type and prot in current implementation. 1684 * this is due to the limited x86 page protection hardware. The expected 1685 * behavior is in parens: 1686 * 1687 * map_type prot 1688 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 1689 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 1690 * w: (no) no w: (no) no w: (yes) yes w: (no) no 1691 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 1692 * 1693 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 1694 * w: (no) no w: (no) no w: (copy) copy w: (no) no 1695 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 1696 * 1697 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 1698 * MAP_PRIVATE (with Enhanced PAN supported): 1699 * r: (no) no 1700 * w: (no) no 1701 * x: (yes) yes 1702 */ 1703#define DECLARE_VM_GET_PAGE_PROT \ 1704pgprot_t vm_get_page_prot(unsigned long vm_flags) \ 1705{ \ 1706 return protection_map[vm_flags & \ 1707 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \ 1708} \ 1709EXPORT_SYMBOL(vm_get_page_prot); 1710 1711#endif /* _LINUX_PGTABLE_H */