Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <trace/events/qdisc.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_netdev.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148#include <linux/indirect_call_wrapper.h>
149#include <net/devlink.h>
150#include <linux/pm_runtime.h>
151#include <linux/prandom.h>
152#include <linux/once_lite.h>
153
154#include "dev.h"
155#include "net-sysfs.h"
156
157
158static DEFINE_SPINLOCK(ptype_lock);
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
161
162static int netif_rx_internal(struct sk_buff *skb);
163static int call_netdevice_notifiers_info(unsigned long val,
164 struct netdev_notifier_info *info);
165static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170/*
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * semaphore.
173 *
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
189DEFINE_RWLOCK(dev_base_lock);
190EXPORT_SYMBOL(dev_base_lock);
191
192static DEFINE_MUTEX(ifalias_mutex);
193
194/* protects napi_hash addition/deletion and napi_gen_id */
195static DEFINE_SPINLOCK(napi_hash_lock);
196
197static unsigned int napi_gen_id = NR_CPUS;
198static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200static DECLARE_RWSEM(devnet_rename_sem);
201
202static inline void dev_base_seq_inc(struct net *net)
203{
204 while (++net->dev_base_seq == 0)
205 ;
206}
207
208static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209{
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213}
214
215static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216{
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218}
219
220static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
222{
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
227}
228
229static inline void rps_lock_irq_disable(struct softnet_data *sd)
230{
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 local_irq_disable();
235}
236
237static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
239{
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
244}
245
246static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247{
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 local_irq_enable();
252}
253
254static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 const char *name)
256{
257 struct netdev_name_node *name_node;
258
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 if (!name_node)
261 return NULL;
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
265 return name_node;
266}
267
268static struct netdev_name_node *
269netdev_name_node_head_alloc(struct net_device *dev)
270{
271 struct netdev_name_node *name_node;
272
273 name_node = netdev_name_node_alloc(dev, dev->name);
274 if (!name_node)
275 return NULL;
276 INIT_LIST_HEAD(&name_node->list);
277 return name_node;
278}
279
280static void netdev_name_node_free(struct netdev_name_node *name_node)
281{
282 kfree(name_node);
283}
284
285static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
287{
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
290}
291
292static void netdev_name_node_del(struct netdev_name_node *name_node)
293{
294 hlist_del_rcu(&name_node->hlist);
295}
296
297static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 const char *name)
299{
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
302
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
305 return name_node;
306 return NULL;
307}
308
309static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 const char *name)
311{
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
314
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
317 return name_node;
318 return NULL;
319}
320
321bool netdev_name_in_use(struct net *net, const char *name)
322{
323 return netdev_name_node_lookup(net, name);
324}
325EXPORT_SYMBOL(netdev_name_in_use);
326
327int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328{
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (name_node)
334 return -EEXIST;
335 name_node = netdev_name_node_alloc(dev, name);
336 if (!name_node)
337 return -ENOMEM;
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
341
342 return 0;
343}
344
345static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346{
347 list_del(&name_node->list);
348 netdev_name_node_del(name_node);
349 kfree(name_node->name);
350 netdev_name_node_free(name_node);
351}
352
353int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354{
355 struct netdev_name_node *name_node;
356 struct net *net = dev_net(dev);
357
358 name_node = netdev_name_node_lookup(net, name);
359 if (!name_node)
360 return -ENOENT;
361 /* lookup might have found our primary name or a name belonging
362 * to another device.
363 */
364 if (name_node == dev->name_node || name_node->dev != dev)
365 return -EINVAL;
366
367 __netdev_name_node_alt_destroy(name_node);
368
369 return 0;
370}
371
372static void netdev_name_node_alt_flush(struct net_device *dev)
373{
374 struct netdev_name_node *name_node, *tmp;
375
376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 __netdev_name_node_alt_destroy(name_node);
378}
379
380/* Device list insertion */
381static void list_netdevice(struct net_device *dev)
382{
383 struct net *net = dev_net(dev);
384
385 ASSERT_RTNL();
386
387 write_lock(&dev_base_lock);
388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 netdev_name_node_add(net, dev->name_node);
390 hlist_add_head_rcu(&dev->index_hlist,
391 dev_index_hash(net, dev->ifindex));
392 write_unlock(&dev_base_lock);
393
394 dev_base_seq_inc(net);
395}
396
397/* Device list removal
398 * caller must respect a RCU grace period before freeing/reusing dev
399 */
400static void unlist_netdevice(struct net_device *dev, bool lock)
401{
402 ASSERT_RTNL();
403
404 /* Unlink dev from the device chain */
405 if (lock)
406 write_lock(&dev_base_lock);
407 list_del_rcu(&dev->dev_list);
408 netdev_name_node_del(dev->name_node);
409 hlist_del_rcu(&dev->index_hlist);
410 if (lock)
411 write_unlock(&dev_base_lock);
412
413 dev_base_seq_inc(dev_net(dev));
414}
415
416/*
417 * Our notifier list
418 */
419
420static RAW_NOTIFIER_HEAD(netdev_chain);
421
422/*
423 * Device drivers call our routines to queue packets here. We empty the
424 * queue in the local softnet handler.
425 */
426
427DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428EXPORT_PER_CPU_SYMBOL(softnet_data);
429
430#ifdef CONFIG_LOCKDEP
431/*
432 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433 * according to dev->type
434 */
435static const unsigned short netdev_lock_type[] = {
436 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451
452static const char *const netdev_lock_name[] = {
453 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468
469static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471
472static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473{
474 int i;
475
476 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477 if (netdev_lock_type[i] == dev_type)
478 return i;
479 /* the last key is used by default */
480 return ARRAY_SIZE(netdev_lock_type) - 1;
481}
482
483static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484 unsigned short dev_type)
485{
486 int i;
487
488 i = netdev_lock_pos(dev_type);
489 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490 netdev_lock_name[i]);
491}
492
493static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494{
495 int i;
496
497 i = netdev_lock_pos(dev->type);
498 lockdep_set_class_and_name(&dev->addr_list_lock,
499 &netdev_addr_lock_key[i],
500 netdev_lock_name[i]);
501}
502#else
503static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504 unsigned short dev_type)
505{
506}
507
508static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509{
510}
511#endif
512
513/*******************************************************************************
514 *
515 * Protocol management and registration routines
516 *
517 *******************************************************************************/
518
519
520/*
521 * Add a protocol ID to the list. Now that the input handler is
522 * smarter we can dispense with all the messy stuff that used to be
523 * here.
524 *
525 * BEWARE!!! Protocol handlers, mangling input packets,
526 * MUST BE last in hash buckets and checking protocol handlers
527 * MUST start from promiscuous ptype_all chain in net_bh.
528 * It is true now, do not change it.
529 * Explanation follows: if protocol handler, mangling packet, will
530 * be the first on list, it is not able to sense, that packet
531 * is cloned and should be copied-on-write, so that it will
532 * change it and subsequent readers will get broken packet.
533 * --ANK (980803)
534 */
535
536static inline struct list_head *ptype_head(const struct packet_type *pt)
537{
538 if (pt->type == htons(ETH_P_ALL))
539 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540 else
541 return pt->dev ? &pt->dev->ptype_specific :
542 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543}
544
545/**
546 * dev_add_pack - add packet handler
547 * @pt: packet type declaration
548 *
549 * Add a protocol handler to the networking stack. The passed &packet_type
550 * is linked into kernel lists and may not be freed until it has been
551 * removed from the kernel lists.
552 *
553 * This call does not sleep therefore it can not
554 * guarantee all CPU's that are in middle of receiving packets
555 * will see the new packet type (until the next received packet).
556 */
557
558void dev_add_pack(struct packet_type *pt)
559{
560 struct list_head *head = ptype_head(pt);
561
562 spin_lock(&ptype_lock);
563 list_add_rcu(&pt->list, head);
564 spin_unlock(&ptype_lock);
565}
566EXPORT_SYMBOL(dev_add_pack);
567
568/**
569 * __dev_remove_pack - remove packet handler
570 * @pt: packet type declaration
571 *
572 * Remove a protocol handler that was previously added to the kernel
573 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
574 * from the kernel lists and can be freed or reused once this function
575 * returns.
576 *
577 * The packet type might still be in use by receivers
578 * and must not be freed until after all the CPU's have gone
579 * through a quiescent state.
580 */
581void __dev_remove_pack(struct packet_type *pt)
582{
583 struct list_head *head = ptype_head(pt);
584 struct packet_type *pt1;
585
586 spin_lock(&ptype_lock);
587
588 list_for_each_entry(pt1, head, list) {
589 if (pt == pt1) {
590 list_del_rcu(&pt->list);
591 goto out;
592 }
593 }
594
595 pr_warn("dev_remove_pack: %p not found\n", pt);
596out:
597 spin_unlock(&ptype_lock);
598}
599EXPORT_SYMBOL(__dev_remove_pack);
600
601/**
602 * dev_remove_pack - remove packet handler
603 * @pt: packet type declaration
604 *
605 * Remove a protocol handler that was previously added to the kernel
606 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
607 * from the kernel lists and can be freed or reused once this function
608 * returns.
609 *
610 * This call sleeps to guarantee that no CPU is looking at the packet
611 * type after return.
612 */
613void dev_remove_pack(struct packet_type *pt)
614{
615 __dev_remove_pack(pt);
616
617 synchronize_net();
618}
619EXPORT_SYMBOL(dev_remove_pack);
620
621
622/*******************************************************************************
623 *
624 * Device Interface Subroutines
625 *
626 *******************************************************************************/
627
628/**
629 * dev_get_iflink - get 'iflink' value of a interface
630 * @dev: targeted interface
631 *
632 * Indicates the ifindex the interface is linked to.
633 * Physical interfaces have the same 'ifindex' and 'iflink' values.
634 */
635
636int dev_get_iflink(const struct net_device *dev)
637{
638 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639 return dev->netdev_ops->ndo_get_iflink(dev);
640
641 return dev->ifindex;
642}
643EXPORT_SYMBOL(dev_get_iflink);
644
645/**
646 * dev_fill_metadata_dst - Retrieve tunnel egress information.
647 * @dev: targeted interface
648 * @skb: The packet.
649 *
650 * For better visibility of tunnel traffic OVS needs to retrieve
651 * egress tunnel information for a packet. Following API allows
652 * user to get this info.
653 */
654int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655{
656 struct ip_tunnel_info *info;
657
658 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
659 return -EINVAL;
660
661 info = skb_tunnel_info_unclone(skb);
662 if (!info)
663 return -ENOMEM;
664 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665 return -EINVAL;
666
667 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668}
669EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670
671static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672{
673 int k = stack->num_paths++;
674
675 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676 return NULL;
677
678 return &stack->path[k];
679}
680
681int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682 struct net_device_path_stack *stack)
683{
684 const struct net_device *last_dev;
685 struct net_device_path_ctx ctx = {
686 .dev = dev,
687 };
688 struct net_device_path *path;
689 int ret = 0;
690
691 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692 stack->num_paths = 0;
693 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694 last_dev = ctx.dev;
695 path = dev_fwd_path(stack);
696 if (!path)
697 return -1;
698
699 memset(path, 0, sizeof(struct net_device_path));
700 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701 if (ret < 0)
702 return -1;
703
704 if (WARN_ON_ONCE(last_dev == ctx.dev))
705 return -1;
706 }
707
708 if (!ctx.dev)
709 return ret;
710
711 path = dev_fwd_path(stack);
712 if (!path)
713 return -1;
714 path->type = DEV_PATH_ETHERNET;
715 path->dev = ctx.dev;
716
717 return ret;
718}
719EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720
721/**
722 * __dev_get_by_name - find a device by its name
723 * @net: the applicable net namespace
724 * @name: name to find
725 *
726 * Find an interface by name. Must be called under RTNL semaphore
727 * or @dev_base_lock. If the name is found a pointer to the device
728 * is returned. If the name is not found then %NULL is returned. The
729 * reference counters are not incremented so the caller must be
730 * careful with locks.
731 */
732
733struct net_device *__dev_get_by_name(struct net *net, const char *name)
734{
735 struct netdev_name_node *node_name;
736
737 node_name = netdev_name_node_lookup(net, name);
738 return node_name ? node_name->dev : NULL;
739}
740EXPORT_SYMBOL(__dev_get_by_name);
741
742/**
743 * dev_get_by_name_rcu - find a device by its name
744 * @net: the applicable net namespace
745 * @name: name to find
746 *
747 * Find an interface by name.
748 * If the name is found a pointer to the device is returned.
749 * If the name is not found then %NULL is returned.
750 * The reference counters are not incremented so the caller must be
751 * careful with locks. The caller must hold RCU lock.
752 */
753
754struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755{
756 struct netdev_name_node *node_name;
757
758 node_name = netdev_name_node_lookup_rcu(net, name);
759 return node_name ? node_name->dev : NULL;
760}
761EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763/**
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
775struct net_device *dev_get_by_name(struct net *net, const char *name)
776{
777 struct net_device *dev;
778
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
781 dev_hold(dev);
782 rcu_read_unlock();
783 return dev;
784}
785EXPORT_SYMBOL(dev_get_by_name);
786
787/**
788 * __dev_get_by_index - find a device by its ifindex
789 * @net: the applicable net namespace
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns %NULL if the device
793 * is not found or a pointer to the device. The device has not
794 * had its reference counter increased so the caller must be careful
795 * about locking. The caller must hold either the RTNL semaphore
796 * or @dev_base_lock.
797 */
798
799struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800{
801 struct net_device *dev;
802 struct hlist_head *head = dev_index_hash(net, ifindex);
803
804 hlist_for_each_entry(dev, head, index_hlist)
805 if (dev->ifindex == ifindex)
806 return dev;
807
808 return NULL;
809}
810EXPORT_SYMBOL(__dev_get_by_index);
811
812/**
813 * dev_get_by_index_rcu - find a device by its ifindex
814 * @net: the applicable net namespace
815 * @ifindex: index of device
816 *
817 * Search for an interface by index. Returns %NULL if the device
818 * is not found or a pointer to the device. The device has not
819 * had its reference counter increased so the caller must be careful
820 * about locking. The caller must hold RCU lock.
821 */
822
823struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824{
825 struct net_device *dev;
826 struct hlist_head *head = dev_index_hash(net, ifindex);
827
828 hlist_for_each_entry_rcu(dev, head, index_hlist)
829 if (dev->ifindex == ifindex)
830 return dev;
831
832 return NULL;
833}
834EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837/**
838 * dev_get_by_index - find a device by its ifindex
839 * @net: the applicable net namespace
840 * @ifindex: index of device
841 *
842 * Search for an interface by index. Returns NULL if the device
843 * is not found or a pointer to the device. The device returned has
844 * had a reference added and the pointer is safe until the user calls
845 * dev_put to indicate they have finished with it.
846 */
847
848struct net_device *dev_get_by_index(struct net *net, int ifindex)
849{
850 struct net_device *dev;
851
852 rcu_read_lock();
853 dev = dev_get_by_index_rcu(net, ifindex);
854 dev_hold(dev);
855 rcu_read_unlock();
856 return dev;
857}
858EXPORT_SYMBOL(dev_get_by_index);
859
860/**
861 * dev_get_by_napi_id - find a device by napi_id
862 * @napi_id: ID of the NAPI struct
863 *
864 * Search for an interface by NAPI ID. Returns %NULL if the device
865 * is not found or a pointer to the device. The device has not had
866 * its reference counter increased so the caller must be careful
867 * about locking. The caller must hold RCU lock.
868 */
869
870struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871{
872 struct napi_struct *napi;
873
874 WARN_ON_ONCE(!rcu_read_lock_held());
875
876 if (napi_id < MIN_NAPI_ID)
877 return NULL;
878
879 napi = napi_by_id(napi_id);
880
881 return napi ? napi->dev : NULL;
882}
883EXPORT_SYMBOL(dev_get_by_napi_id);
884
885/**
886 * netdev_get_name - get a netdevice name, knowing its ifindex.
887 * @net: network namespace
888 * @name: a pointer to the buffer where the name will be stored.
889 * @ifindex: the ifindex of the interface to get the name from.
890 */
891int netdev_get_name(struct net *net, char *name, int ifindex)
892{
893 struct net_device *dev;
894 int ret;
895
896 down_read(&devnet_rename_sem);
897 rcu_read_lock();
898
899 dev = dev_get_by_index_rcu(net, ifindex);
900 if (!dev) {
901 ret = -ENODEV;
902 goto out;
903 }
904
905 strcpy(name, dev->name);
906
907 ret = 0;
908out:
909 rcu_read_unlock();
910 up_read(&devnet_rename_sem);
911 return ret;
912}
913
914/**
915 * dev_getbyhwaddr_rcu - find a device by its hardware address
916 * @net: the applicable net namespace
917 * @type: media type of device
918 * @ha: hardware address
919 *
920 * Search for an interface by MAC address. Returns NULL if the device
921 * is not found or a pointer to the device.
922 * The caller must hold RCU or RTNL.
923 * The returned device has not had its ref count increased
924 * and the caller must therefore be careful about locking
925 *
926 */
927
928struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929 const char *ha)
930{
931 struct net_device *dev;
932
933 for_each_netdev_rcu(net, dev)
934 if (dev->type == type &&
935 !memcmp(dev->dev_addr, ha, dev->addr_len))
936 return dev;
937
938 return NULL;
939}
940EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941
942struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943{
944 struct net_device *dev, *ret = NULL;
945
946 rcu_read_lock();
947 for_each_netdev_rcu(net, dev)
948 if (dev->type == type) {
949 dev_hold(dev);
950 ret = dev;
951 break;
952 }
953 rcu_read_unlock();
954 return ret;
955}
956EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958/**
959 * __dev_get_by_flags - find any device with given flags
960 * @net: the applicable net namespace
961 * @if_flags: IFF_* values
962 * @mask: bitmask of bits in if_flags to check
963 *
964 * Search for any interface with the given flags. Returns NULL if a device
965 * is not found or a pointer to the device. Must be called inside
966 * rtnl_lock(), and result refcount is unchanged.
967 */
968
969struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 unsigned short mask)
971{
972 struct net_device *dev, *ret;
973
974 ASSERT_RTNL();
975
976 ret = NULL;
977 for_each_netdev(net, dev) {
978 if (((dev->flags ^ if_flags) & mask) == 0) {
979 ret = dev;
980 break;
981 }
982 }
983 return ret;
984}
985EXPORT_SYMBOL(__dev_get_by_flags);
986
987/**
988 * dev_valid_name - check if name is okay for network device
989 * @name: name string
990 *
991 * Network device names need to be valid file names to
992 * allow sysfs to work. We also disallow any kind of
993 * whitespace.
994 */
995bool dev_valid_name(const char *name)
996{
997 if (*name == '\0')
998 return false;
999 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000 return false;
1001 if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 return false;
1003
1004 while (*name) {
1005 if (*name == '/' || *name == ':' || isspace(*name))
1006 return false;
1007 name++;
1008 }
1009 return true;
1010}
1011EXPORT_SYMBOL(dev_valid_name);
1012
1013/**
1014 * __dev_alloc_name - allocate a name for a device
1015 * @net: network namespace to allocate the device name in
1016 * @name: name format string
1017 * @buf: scratch buffer and result name string
1018 *
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029{
1030 int i = 0;
1031 const char *p;
1032 const int max_netdevices = 8*PAGE_SIZE;
1033 unsigned long *inuse;
1034 struct net_device *d;
1035
1036 if (!dev_valid_name(name))
1037 return -EINVAL;
1038
1039 p = strchr(name, '%');
1040 if (p) {
1041 /*
1042 * Verify the string as this thing may have come from
1043 * the user. There must be either one "%d" and no other "%"
1044 * characters.
1045 */
1046 if (p[1] != 'd' || strchr(p + 2, '%'))
1047 return -EINVAL;
1048
1049 /* Use one page as a bit array of possible slots */
1050 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051 if (!inuse)
1052 return -ENOMEM;
1053
1054 for_each_netdev(net, d) {
1055 struct netdev_name_node *name_node;
1056 list_for_each_entry(name_node, &d->name_node->list, list) {
1057 if (!sscanf(name_node->name, name, &i))
1058 continue;
1059 if (i < 0 || i >= max_netdevices)
1060 continue;
1061
1062 /* avoid cases where sscanf is not exact inverse of printf */
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065 __set_bit(i, inuse);
1066 }
1067 if (!sscanf(d->name, name, &i))
1068 continue;
1069 if (i < 0 || i >= max_netdevices)
1070 continue;
1071
1072 /* avoid cases where sscanf is not exact inverse of printf */
1073 snprintf(buf, IFNAMSIZ, name, i);
1074 if (!strncmp(buf, d->name, IFNAMSIZ))
1075 __set_bit(i, inuse);
1076 }
1077
1078 i = find_first_zero_bit(inuse, max_netdevices);
1079 free_page((unsigned long) inuse);
1080 }
1081
1082 snprintf(buf, IFNAMSIZ, name, i);
1083 if (!netdev_name_in_use(net, buf))
1084 return i;
1085
1086 /* It is possible to run out of possible slots
1087 * when the name is long and there isn't enough space left
1088 * for the digits, or if all bits are used.
1089 */
1090 return -ENFILE;
1091}
1092
1093static int dev_alloc_name_ns(struct net *net,
1094 struct net_device *dev,
1095 const char *name)
1096{
1097 char buf[IFNAMSIZ];
1098 int ret;
1099
1100 BUG_ON(!net);
1101 ret = __dev_alloc_name(net, name, buf);
1102 if (ret >= 0)
1103 strscpy(dev->name, buf, IFNAMSIZ);
1104 return ret;
1105}
1106
1107/**
1108 * dev_alloc_name - allocate a name for a device
1109 * @dev: device
1110 * @name: name format string
1111 *
1112 * Passed a format string - eg "lt%d" it will try and find a suitable
1113 * id. It scans list of devices to build up a free map, then chooses
1114 * the first empty slot. The caller must hold the dev_base or rtnl lock
1115 * while allocating the name and adding the device in order to avoid
1116 * duplicates.
1117 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118 * Returns the number of the unit assigned or a negative errno code.
1119 */
1120
1121int dev_alloc_name(struct net_device *dev, const char *name)
1122{
1123 return dev_alloc_name_ns(dev_net(dev), dev, name);
1124}
1125EXPORT_SYMBOL(dev_alloc_name);
1126
1127static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128 const char *name)
1129{
1130 BUG_ON(!net);
1131
1132 if (!dev_valid_name(name))
1133 return -EINVAL;
1134
1135 if (strchr(name, '%'))
1136 return dev_alloc_name_ns(net, dev, name);
1137 else if (netdev_name_in_use(net, name))
1138 return -EEXIST;
1139 else if (dev->name != name)
1140 strscpy(dev->name, name, IFNAMSIZ);
1141
1142 return 0;
1143}
1144
1145/**
1146 * dev_change_name - change name of a device
1147 * @dev: device
1148 * @newname: name (or format string) must be at least IFNAMSIZ
1149 *
1150 * Change name of a device, can pass format strings "eth%d".
1151 * for wildcarding.
1152 */
1153int dev_change_name(struct net_device *dev, const char *newname)
1154{
1155 unsigned char old_assign_type;
1156 char oldname[IFNAMSIZ];
1157 int err = 0;
1158 int ret;
1159 struct net *net;
1160
1161 ASSERT_RTNL();
1162 BUG_ON(!dev_net(dev));
1163
1164 net = dev_net(dev);
1165
1166 down_write(&devnet_rename_sem);
1167
1168 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1169 up_write(&devnet_rename_sem);
1170 return 0;
1171 }
1172
1173 memcpy(oldname, dev->name, IFNAMSIZ);
1174
1175 err = dev_get_valid_name(net, dev, newname);
1176 if (err < 0) {
1177 up_write(&devnet_rename_sem);
1178 return err;
1179 }
1180
1181 if (oldname[0] && !strchr(oldname, '%'))
1182 netdev_info(dev, "renamed from %s%s\n", oldname,
1183 dev->flags & IFF_UP ? " (while UP)" : "");
1184
1185 old_assign_type = dev->name_assign_type;
1186 dev->name_assign_type = NET_NAME_RENAMED;
1187
1188rollback:
1189 ret = device_rename(&dev->dev, dev->name);
1190 if (ret) {
1191 memcpy(dev->name, oldname, IFNAMSIZ);
1192 dev->name_assign_type = old_assign_type;
1193 up_write(&devnet_rename_sem);
1194 return ret;
1195 }
1196
1197 up_write(&devnet_rename_sem);
1198
1199 netdev_adjacent_rename_links(dev, oldname);
1200
1201 write_lock(&dev_base_lock);
1202 netdev_name_node_del(dev->name_node);
1203 write_unlock(&dev_base_lock);
1204
1205 synchronize_rcu();
1206
1207 write_lock(&dev_base_lock);
1208 netdev_name_node_add(net, dev->name_node);
1209 write_unlock(&dev_base_lock);
1210
1211 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1212 ret = notifier_to_errno(ret);
1213
1214 if (ret) {
1215 /* err >= 0 after dev_alloc_name() or stores the first errno */
1216 if (err >= 0) {
1217 err = ret;
1218 down_write(&devnet_rename_sem);
1219 memcpy(dev->name, oldname, IFNAMSIZ);
1220 memcpy(oldname, newname, IFNAMSIZ);
1221 dev->name_assign_type = old_assign_type;
1222 old_assign_type = NET_NAME_RENAMED;
1223 goto rollback;
1224 } else {
1225 netdev_err(dev, "name change rollback failed: %d\n",
1226 ret);
1227 }
1228 }
1229
1230 return err;
1231}
1232
1233/**
1234 * dev_set_alias - change ifalias of a device
1235 * @dev: device
1236 * @alias: name up to IFALIASZ
1237 * @len: limit of bytes to copy from info
1238 *
1239 * Set ifalias for a device,
1240 */
1241int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1242{
1243 struct dev_ifalias *new_alias = NULL;
1244
1245 if (len >= IFALIASZ)
1246 return -EINVAL;
1247
1248 if (len) {
1249 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1250 if (!new_alias)
1251 return -ENOMEM;
1252
1253 memcpy(new_alias->ifalias, alias, len);
1254 new_alias->ifalias[len] = 0;
1255 }
1256
1257 mutex_lock(&ifalias_mutex);
1258 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1259 mutex_is_locked(&ifalias_mutex));
1260 mutex_unlock(&ifalias_mutex);
1261
1262 if (new_alias)
1263 kfree_rcu(new_alias, rcuhead);
1264
1265 return len;
1266}
1267EXPORT_SYMBOL(dev_set_alias);
1268
1269/**
1270 * dev_get_alias - get ifalias of a device
1271 * @dev: device
1272 * @name: buffer to store name of ifalias
1273 * @len: size of buffer
1274 *
1275 * get ifalias for a device. Caller must make sure dev cannot go
1276 * away, e.g. rcu read lock or own a reference count to device.
1277 */
1278int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1279{
1280 const struct dev_ifalias *alias;
1281 int ret = 0;
1282
1283 rcu_read_lock();
1284 alias = rcu_dereference(dev->ifalias);
1285 if (alias)
1286 ret = snprintf(name, len, "%s", alias->ifalias);
1287 rcu_read_unlock();
1288
1289 return ret;
1290}
1291
1292/**
1293 * netdev_features_change - device changes features
1294 * @dev: device to cause notification
1295 *
1296 * Called to indicate a device has changed features.
1297 */
1298void netdev_features_change(struct net_device *dev)
1299{
1300 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301}
1302EXPORT_SYMBOL(netdev_features_change);
1303
1304/**
1305 * netdev_state_change - device changes state
1306 * @dev: device to cause notification
1307 *
1308 * Called to indicate a device has changed state. This function calls
1309 * the notifier chains for netdev_chain and sends a NEWLINK message
1310 * to the routing socket.
1311 */
1312void netdev_state_change(struct net_device *dev)
1313{
1314 if (dev->flags & IFF_UP) {
1315 struct netdev_notifier_change_info change_info = {
1316 .info.dev = dev,
1317 };
1318
1319 call_netdevice_notifiers_info(NETDEV_CHANGE,
1320 &change_info.info);
1321 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1322 }
1323}
1324EXPORT_SYMBOL(netdev_state_change);
1325
1326/**
1327 * __netdev_notify_peers - notify network peers about existence of @dev,
1328 * to be called when rtnl lock is already held.
1329 * @dev: network device
1330 *
1331 * Generate traffic such that interested network peers are aware of
1332 * @dev, such as by generating a gratuitous ARP. This may be used when
1333 * a device wants to inform the rest of the network about some sort of
1334 * reconfiguration such as a failover event or virtual machine
1335 * migration.
1336 */
1337void __netdev_notify_peers(struct net_device *dev)
1338{
1339 ASSERT_RTNL();
1340 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1341 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1342}
1343EXPORT_SYMBOL(__netdev_notify_peers);
1344
1345/**
1346 * netdev_notify_peers - notify network peers about existence of @dev
1347 * @dev: network device
1348 *
1349 * Generate traffic such that interested network peers are aware of
1350 * @dev, such as by generating a gratuitous ARP. This may be used when
1351 * a device wants to inform the rest of the network about some sort of
1352 * reconfiguration such as a failover event or virtual machine
1353 * migration.
1354 */
1355void netdev_notify_peers(struct net_device *dev)
1356{
1357 rtnl_lock();
1358 __netdev_notify_peers(dev);
1359 rtnl_unlock();
1360}
1361EXPORT_SYMBOL(netdev_notify_peers);
1362
1363static int napi_threaded_poll(void *data);
1364
1365static int napi_kthread_create(struct napi_struct *n)
1366{
1367 int err = 0;
1368
1369 /* Create and wake up the kthread once to put it in
1370 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1371 * warning and work with loadavg.
1372 */
1373 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1374 n->dev->name, n->napi_id);
1375 if (IS_ERR(n->thread)) {
1376 err = PTR_ERR(n->thread);
1377 pr_err("kthread_run failed with err %d\n", err);
1378 n->thread = NULL;
1379 }
1380
1381 return err;
1382}
1383
1384static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1385{
1386 const struct net_device_ops *ops = dev->netdev_ops;
1387 int ret;
1388
1389 ASSERT_RTNL();
1390 dev_addr_check(dev);
1391
1392 if (!netif_device_present(dev)) {
1393 /* may be detached because parent is runtime-suspended */
1394 if (dev->dev.parent)
1395 pm_runtime_resume(dev->dev.parent);
1396 if (!netif_device_present(dev))
1397 return -ENODEV;
1398 }
1399
1400 /* Block netpoll from trying to do any rx path servicing.
1401 * If we don't do this there is a chance ndo_poll_controller
1402 * or ndo_poll may be running while we open the device
1403 */
1404 netpoll_poll_disable(dev);
1405
1406 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1407 ret = notifier_to_errno(ret);
1408 if (ret)
1409 return ret;
1410
1411 set_bit(__LINK_STATE_START, &dev->state);
1412
1413 if (ops->ndo_validate_addr)
1414 ret = ops->ndo_validate_addr(dev);
1415
1416 if (!ret && ops->ndo_open)
1417 ret = ops->ndo_open(dev);
1418
1419 netpoll_poll_enable(dev);
1420
1421 if (ret)
1422 clear_bit(__LINK_STATE_START, &dev->state);
1423 else {
1424 dev->flags |= IFF_UP;
1425 dev_set_rx_mode(dev);
1426 dev_activate(dev);
1427 add_device_randomness(dev->dev_addr, dev->addr_len);
1428 }
1429
1430 return ret;
1431}
1432
1433/**
1434 * dev_open - prepare an interface for use.
1435 * @dev: device to open
1436 * @extack: netlink extended ack
1437 *
1438 * Takes a device from down to up state. The device's private open
1439 * function is invoked and then the multicast lists are loaded. Finally
1440 * the device is moved into the up state and a %NETDEV_UP message is
1441 * sent to the netdev notifier chain.
1442 *
1443 * Calling this function on an active interface is a nop. On a failure
1444 * a negative errno code is returned.
1445 */
1446int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1447{
1448 int ret;
1449
1450 if (dev->flags & IFF_UP)
1451 return 0;
1452
1453 ret = __dev_open(dev, extack);
1454 if (ret < 0)
1455 return ret;
1456
1457 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1458 call_netdevice_notifiers(NETDEV_UP, dev);
1459
1460 return ret;
1461}
1462EXPORT_SYMBOL(dev_open);
1463
1464static void __dev_close_many(struct list_head *head)
1465{
1466 struct net_device *dev;
1467
1468 ASSERT_RTNL();
1469 might_sleep();
1470
1471 list_for_each_entry(dev, head, close_list) {
1472 /* Temporarily disable netpoll until the interface is down */
1473 netpoll_poll_disable(dev);
1474
1475 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1476
1477 clear_bit(__LINK_STATE_START, &dev->state);
1478
1479 /* Synchronize to scheduled poll. We cannot touch poll list, it
1480 * can be even on different cpu. So just clear netif_running().
1481 *
1482 * dev->stop() will invoke napi_disable() on all of it's
1483 * napi_struct instances on this device.
1484 */
1485 smp_mb__after_atomic(); /* Commit netif_running(). */
1486 }
1487
1488 dev_deactivate_many(head);
1489
1490 list_for_each_entry(dev, head, close_list) {
1491 const struct net_device_ops *ops = dev->netdev_ops;
1492
1493 /*
1494 * Call the device specific close. This cannot fail.
1495 * Only if device is UP
1496 *
1497 * We allow it to be called even after a DETACH hot-plug
1498 * event.
1499 */
1500 if (ops->ndo_stop)
1501 ops->ndo_stop(dev);
1502
1503 dev->flags &= ~IFF_UP;
1504 netpoll_poll_enable(dev);
1505 }
1506}
1507
1508static void __dev_close(struct net_device *dev)
1509{
1510 LIST_HEAD(single);
1511
1512 list_add(&dev->close_list, &single);
1513 __dev_close_many(&single);
1514 list_del(&single);
1515}
1516
1517void dev_close_many(struct list_head *head, bool unlink)
1518{
1519 struct net_device *dev, *tmp;
1520
1521 /* Remove the devices that don't need to be closed */
1522 list_for_each_entry_safe(dev, tmp, head, close_list)
1523 if (!(dev->flags & IFF_UP))
1524 list_del_init(&dev->close_list);
1525
1526 __dev_close_many(head);
1527
1528 list_for_each_entry_safe(dev, tmp, head, close_list) {
1529 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1530 call_netdevice_notifiers(NETDEV_DOWN, dev);
1531 if (unlink)
1532 list_del_init(&dev->close_list);
1533 }
1534}
1535EXPORT_SYMBOL(dev_close_many);
1536
1537/**
1538 * dev_close - shutdown an interface.
1539 * @dev: device to shutdown
1540 *
1541 * This function moves an active device into down state. A
1542 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1543 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1544 * chain.
1545 */
1546void dev_close(struct net_device *dev)
1547{
1548 if (dev->flags & IFF_UP) {
1549 LIST_HEAD(single);
1550
1551 list_add(&dev->close_list, &single);
1552 dev_close_many(&single, true);
1553 list_del(&single);
1554 }
1555}
1556EXPORT_SYMBOL(dev_close);
1557
1558
1559/**
1560 * dev_disable_lro - disable Large Receive Offload on a device
1561 * @dev: device
1562 *
1563 * Disable Large Receive Offload (LRO) on a net device. Must be
1564 * called under RTNL. This is needed if received packets may be
1565 * forwarded to another interface.
1566 */
1567void dev_disable_lro(struct net_device *dev)
1568{
1569 struct net_device *lower_dev;
1570 struct list_head *iter;
1571
1572 dev->wanted_features &= ~NETIF_F_LRO;
1573 netdev_update_features(dev);
1574
1575 if (unlikely(dev->features & NETIF_F_LRO))
1576 netdev_WARN(dev, "failed to disable LRO!\n");
1577
1578 netdev_for_each_lower_dev(dev, lower_dev, iter)
1579 dev_disable_lro(lower_dev);
1580}
1581EXPORT_SYMBOL(dev_disable_lro);
1582
1583/**
1584 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1585 * @dev: device
1586 *
1587 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1588 * called under RTNL. This is needed if Generic XDP is installed on
1589 * the device.
1590 */
1591static void dev_disable_gro_hw(struct net_device *dev)
1592{
1593 dev->wanted_features &= ~NETIF_F_GRO_HW;
1594 netdev_update_features(dev);
1595
1596 if (unlikely(dev->features & NETIF_F_GRO_HW))
1597 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1598}
1599
1600const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1601{
1602#define N(val) \
1603 case NETDEV_##val: \
1604 return "NETDEV_" __stringify(val);
1605 switch (cmd) {
1606 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1607 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1608 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1609 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1610 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1611 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1612 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1613 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1614 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1615 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1616 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1617 N(XDP_FEAT_CHANGE)
1618 }
1619#undef N
1620 return "UNKNOWN_NETDEV_EVENT";
1621}
1622EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1623
1624static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1625 struct net_device *dev)
1626{
1627 struct netdev_notifier_info info = {
1628 .dev = dev,
1629 };
1630
1631 return nb->notifier_call(nb, val, &info);
1632}
1633
1634static int call_netdevice_register_notifiers(struct notifier_block *nb,
1635 struct net_device *dev)
1636{
1637 int err;
1638
1639 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1640 err = notifier_to_errno(err);
1641 if (err)
1642 return err;
1643
1644 if (!(dev->flags & IFF_UP))
1645 return 0;
1646
1647 call_netdevice_notifier(nb, NETDEV_UP, dev);
1648 return 0;
1649}
1650
1651static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1652 struct net_device *dev)
1653{
1654 if (dev->flags & IFF_UP) {
1655 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1656 dev);
1657 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1658 }
1659 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1660}
1661
1662static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1663 struct net *net)
1664{
1665 struct net_device *dev;
1666 int err;
1667
1668 for_each_netdev(net, dev) {
1669 err = call_netdevice_register_notifiers(nb, dev);
1670 if (err)
1671 goto rollback;
1672 }
1673 return 0;
1674
1675rollback:
1676 for_each_netdev_continue_reverse(net, dev)
1677 call_netdevice_unregister_notifiers(nb, dev);
1678 return err;
1679}
1680
1681static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1682 struct net *net)
1683{
1684 struct net_device *dev;
1685
1686 for_each_netdev(net, dev)
1687 call_netdevice_unregister_notifiers(nb, dev);
1688}
1689
1690static int dev_boot_phase = 1;
1691
1692/**
1693 * register_netdevice_notifier - register a network notifier block
1694 * @nb: notifier
1695 *
1696 * Register a notifier to be called when network device events occur.
1697 * The notifier passed is linked into the kernel structures and must
1698 * not be reused until it has been unregistered. A negative errno code
1699 * is returned on a failure.
1700 *
1701 * When registered all registration and up events are replayed
1702 * to the new notifier to allow device to have a race free
1703 * view of the network device list.
1704 */
1705
1706int register_netdevice_notifier(struct notifier_block *nb)
1707{
1708 struct net *net;
1709 int err;
1710
1711 /* Close race with setup_net() and cleanup_net() */
1712 down_write(&pernet_ops_rwsem);
1713 rtnl_lock();
1714 err = raw_notifier_chain_register(&netdev_chain, nb);
1715 if (err)
1716 goto unlock;
1717 if (dev_boot_phase)
1718 goto unlock;
1719 for_each_net(net) {
1720 err = call_netdevice_register_net_notifiers(nb, net);
1721 if (err)
1722 goto rollback;
1723 }
1724
1725unlock:
1726 rtnl_unlock();
1727 up_write(&pernet_ops_rwsem);
1728 return err;
1729
1730rollback:
1731 for_each_net_continue_reverse(net)
1732 call_netdevice_unregister_net_notifiers(nb, net);
1733
1734 raw_notifier_chain_unregister(&netdev_chain, nb);
1735 goto unlock;
1736}
1737EXPORT_SYMBOL(register_netdevice_notifier);
1738
1739/**
1740 * unregister_netdevice_notifier - unregister a network notifier block
1741 * @nb: notifier
1742 *
1743 * Unregister a notifier previously registered by
1744 * register_netdevice_notifier(). The notifier is unlinked into the
1745 * kernel structures and may then be reused. A negative errno code
1746 * is returned on a failure.
1747 *
1748 * After unregistering unregister and down device events are synthesized
1749 * for all devices on the device list to the removed notifier to remove
1750 * the need for special case cleanup code.
1751 */
1752
1753int unregister_netdevice_notifier(struct notifier_block *nb)
1754{
1755 struct net *net;
1756 int err;
1757
1758 /* Close race with setup_net() and cleanup_net() */
1759 down_write(&pernet_ops_rwsem);
1760 rtnl_lock();
1761 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1762 if (err)
1763 goto unlock;
1764
1765 for_each_net(net)
1766 call_netdevice_unregister_net_notifiers(nb, net);
1767
1768unlock:
1769 rtnl_unlock();
1770 up_write(&pernet_ops_rwsem);
1771 return err;
1772}
1773EXPORT_SYMBOL(unregister_netdevice_notifier);
1774
1775static int __register_netdevice_notifier_net(struct net *net,
1776 struct notifier_block *nb,
1777 bool ignore_call_fail)
1778{
1779 int err;
1780
1781 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1782 if (err)
1783 return err;
1784 if (dev_boot_phase)
1785 return 0;
1786
1787 err = call_netdevice_register_net_notifiers(nb, net);
1788 if (err && !ignore_call_fail)
1789 goto chain_unregister;
1790
1791 return 0;
1792
1793chain_unregister:
1794 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1795 return err;
1796}
1797
1798static int __unregister_netdevice_notifier_net(struct net *net,
1799 struct notifier_block *nb)
1800{
1801 int err;
1802
1803 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1804 if (err)
1805 return err;
1806
1807 call_netdevice_unregister_net_notifiers(nb, net);
1808 return 0;
1809}
1810
1811/**
1812 * register_netdevice_notifier_net - register a per-netns network notifier block
1813 * @net: network namespace
1814 * @nb: notifier
1815 *
1816 * Register a notifier to be called when network device events occur.
1817 * The notifier passed is linked into the kernel structures and must
1818 * not be reused until it has been unregistered. A negative errno code
1819 * is returned on a failure.
1820 *
1821 * When registered all registration and up events are replayed
1822 * to the new notifier to allow device to have a race free
1823 * view of the network device list.
1824 */
1825
1826int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1827{
1828 int err;
1829
1830 rtnl_lock();
1831 err = __register_netdevice_notifier_net(net, nb, false);
1832 rtnl_unlock();
1833 return err;
1834}
1835EXPORT_SYMBOL(register_netdevice_notifier_net);
1836
1837/**
1838 * unregister_netdevice_notifier_net - unregister a per-netns
1839 * network notifier block
1840 * @net: network namespace
1841 * @nb: notifier
1842 *
1843 * Unregister a notifier previously registered by
1844 * register_netdevice_notifier_net(). The notifier is unlinked from the
1845 * kernel structures and may then be reused. A negative errno code
1846 * is returned on a failure.
1847 *
1848 * After unregistering unregister and down device events are synthesized
1849 * for all devices on the device list to the removed notifier to remove
1850 * the need for special case cleanup code.
1851 */
1852
1853int unregister_netdevice_notifier_net(struct net *net,
1854 struct notifier_block *nb)
1855{
1856 int err;
1857
1858 rtnl_lock();
1859 err = __unregister_netdevice_notifier_net(net, nb);
1860 rtnl_unlock();
1861 return err;
1862}
1863EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1864
1865static void __move_netdevice_notifier_net(struct net *src_net,
1866 struct net *dst_net,
1867 struct notifier_block *nb)
1868{
1869 __unregister_netdevice_notifier_net(src_net, nb);
1870 __register_netdevice_notifier_net(dst_net, nb, true);
1871}
1872
1873int register_netdevice_notifier_dev_net(struct net_device *dev,
1874 struct notifier_block *nb,
1875 struct netdev_net_notifier *nn)
1876{
1877 int err;
1878
1879 rtnl_lock();
1880 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1881 if (!err) {
1882 nn->nb = nb;
1883 list_add(&nn->list, &dev->net_notifier_list);
1884 }
1885 rtnl_unlock();
1886 return err;
1887}
1888EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1889
1890int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1891 struct notifier_block *nb,
1892 struct netdev_net_notifier *nn)
1893{
1894 int err;
1895
1896 rtnl_lock();
1897 list_del(&nn->list);
1898 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1899 rtnl_unlock();
1900 return err;
1901}
1902EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1903
1904static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1905 struct net *net)
1906{
1907 struct netdev_net_notifier *nn;
1908
1909 list_for_each_entry(nn, &dev->net_notifier_list, list)
1910 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1911}
1912
1913/**
1914 * call_netdevice_notifiers_info - call all network notifier blocks
1915 * @val: value passed unmodified to notifier function
1916 * @info: notifier information data
1917 *
1918 * Call all network notifier blocks. Parameters and return value
1919 * are as for raw_notifier_call_chain().
1920 */
1921
1922static int call_netdevice_notifiers_info(unsigned long val,
1923 struct netdev_notifier_info *info)
1924{
1925 struct net *net = dev_net(info->dev);
1926 int ret;
1927
1928 ASSERT_RTNL();
1929
1930 /* Run per-netns notifier block chain first, then run the global one.
1931 * Hopefully, one day, the global one is going to be removed after
1932 * all notifier block registrators get converted to be per-netns.
1933 */
1934 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1935 if (ret & NOTIFY_STOP_MASK)
1936 return ret;
1937 return raw_notifier_call_chain(&netdev_chain, val, info);
1938}
1939
1940/**
1941 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1942 * for and rollback on error
1943 * @val_up: value passed unmodified to notifier function
1944 * @val_down: value passed unmodified to the notifier function when
1945 * recovering from an error on @val_up
1946 * @info: notifier information data
1947 *
1948 * Call all per-netns network notifier blocks, but not notifier blocks on
1949 * the global notifier chain. Parameters and return value are as for
1950 * raw_notifier_call_chain_robust().
1951 */
1952
1953static int
1954call_netdevice_notifiers_info_robust(unsigned long val_up,
1955 unsigned long val_down,
1956 struct netdev_notifier_info *info)
1957{
1958 struct net *net = dev_net(info->dev);
1959
1960 ASSERT_RTNL();
1961
1962 return raw_notifier_call_chain_robust(&net->netdev_chain,
1963 val_up, val_down, info);
1964}
1965
1966static int call_netdevice_notifiers_extack(unsigned long val,
1967 struct net_device *dev,
1968 struct netlink_ext_ack *extack)
1969{
1970 struct netdev_notifier_info info = {
1971 .dev = dev,
1972 .extack = extack,
1973 };
1974
1975 return call_netdevice_notifiers_info(val, &info);
1976}
1977
1978/**
1979 * call_netdevice_notifiers - call all network notifier blocks
1980 * @val: value passed unmodified to notifier function
1981 * @dev: net_device pointer passed unmodified to notifier function
1982 *
1983 * Call all network notifier blocks. Parameters and return value
1984 * are as for raw_notifier_call_chain().
1985 */
1986
1987int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1988{
1989 return call_netdevice_notifiers_extack(val, dev, NULL);
1990}
1991EXPORT_SYMBOL(call_netdevice_notifiers);
1992
1993/**
1994 * call_netdevice_notifiers_mtu - call all network notifier blocks
1995 * @val: value passed unmodified to notifier function
1996 * @dev: net_device pointer passed unmodified to notifier function
1997 * @arg: additional u32 argument passed to the notifier function
1998 *
1999 * Call all network notifier blocks. Parameters and return value
2000 * are as for raw_notifier_call_chain().
2001 */
2002static int call_netdevice_notifiers_mtu(unsigned long val,
2003 struct net_device *dev, u32 arg)
2004{
2005 struct netdev_notifier_info_ext info = {
2006 .info.dev = dev,
2007 .ext.mtu = arg,
2008 };
2009
2010 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2011
2012 return call_netdevice_notifiers_info(val, &info.info);
2013}
2014
2015#ifdef CONFIG_NET_INGRESS
2016static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2017
2018void net_inc_ingress_queue(void)
2019{
2020 static_branch_inc(&ingress_needed_key);
2021}
2022EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2023
2024void net_dec_ingress_queue(void)
2025{
2026 static_branch_dec(&ingress_needed_key);
2027}
2028EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2029#endif
2030
2031#ifdef CONFIG_NET_EGRESS
2032static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2033
2034void net_inc_egress_queue(void)
2035{
2036 static_branch_inc(&egress_needed_key);
2037}
2038EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2039
2040void net_dec_egress_queue(void)
2041{
2042 static_branch_dec(&egress_needed_key);
2043}
2044EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2045#endif
2046
2047DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2048EXPORT_SYMBOL(netstamp_needed_key);
2049#ifdef CONFIG_JUMP_LABEL
2050static atomic_t netstamp_needed_deferred;
2051static atomic_t netstamp_wanted;
2052static void netstamp_clear(struct work_struct *work)
2053{
2054 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2055 int wanted;
2056
2057 wanted = atomic_add_return(deferred, &netstamp_wanted);
2058 if (wanted > 0)
2059 static_branch_enable(&netstamp_needed_key);
2060 else
2061 static_branch_disable(&netstamp_needed_key);
2062}
2063static DECLARE_WORK(netstamp_work, netstamp_clear);
2064#endif
2065
2066void net_enable_timestamp(void)
2067{
2068#ifdef CONFIG_JUMP_LABEL
2069 int wanted = atomic_read(&netstamp_wanted);
2070
2071 while (wanted > 0) {
2072 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2073 return;
2074 }
2075 atomic_inc(&netstamp_needed_deferred);
2076 schedule_work(&netstamp_work);
2077#else
2078 static_branch_inc(&netstamp_needed_key);
2079#endif
2080}
2081EXPORT_SYMBOL(net_enable_timestamp);
2082
2083void net_disable_timestamp(void)
2084{
2085#ifdef CONFIG_JUMP_LABEL
2086 int wanted = atomic_read(&netstamp_wanted);
2087
2088 while (wanted > 1) {
2089 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2090 return;
2091 }
2092 atomic_dec(&netstamp_needed_deferred);
2093 schedule_work(&netstamp_work);
2094#else
2095 static_branch_dec(&netstamp_needed_key);
2096#endif
2097}
2098EXPORT_SYMBOL(net_disable_timestamp);
2099
2100static inline void net_timestamp_set(struct sk_buff *skb)
2101{
2102 skb->tstamp = 0;
2103 skb->mono_delivery_time = 0;
2104 if (static_branch_unlikely(&netstamp_needed_key))
2105 skb->tstamp = ktime_get_real();
2106}
2107
2108#define net_timestamp_check(COND, SKB) \
2109 if (static_branch_unlikely(&netstamp_needed_key)) { \
2110 if ((COND) && !(SKB)->tstamp) \
2111 (SKB)->tstamp = ktime_get_real(); \
2112 } \
2113
2114bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2115{
2116 return __is_skb_forwardable(dev, skb, true);
2117}
2118EXPORT_SYMBOL_GPL(is_skb_forwardable);
2119
2120static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2121 bool check_mtu)
2122{
2123 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2124
2125 if (likely(!ret)) {
2126 skb->protocol = eth_type_trans(skb, dev);
2127 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2128 }
2129
2130 return ret;
2131}
2132
2133int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2134{
2135 return __dev_forward_skb2(dev, skb, true);
2136}
2137EXPORT_SYMBOL_GPL(__dev_forward_skb);
2138
2139/**
2140 * dev_forward_skb - loopback an skb to another netif
2141 *
2142 * @dev: destination network device
2143 * @skb: buffer to forward
2144 *
2145 * return values:
2146 * NET_RX_SUCCESS (no congestion)
2147 * NET_RX_DROP (packet was dropped, but freed)
2148 *
2149 * dev_forward_skb can be used for injecting an skb from the
2150 * start_xmit function of one device into the receive queue
2151 * of another device.
2152 *
2153 * The receiving device may be in another namespace, so
2154 * we have to clear all information in the skb that could
2155 * impact namespace isolation.
2156 */
2157int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2158{
2159 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2160}
2161EXPORT_SYMBOL_GPL(dev_forward_skb);
2162
2163int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2164{
2165 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2166}
2167
2168static inline int deliver_skb(struct sk_buff *skb,
2169 struct packet_type *pt_prev,
2170 struct net_device *orig_dev)
2171{
2172 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2173 return -ENOMEM;
2174 refcount_inc(&skb->users);
2175 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2176}
2177
2178static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2179 struct packet_type **pt,
2180 struct net_device *orig_dev,
2181 __be16 type,
2182 struct list_head *ptype_list)
2183{
2184 struct packet_type *ptype, *pt_prev = *pt;
2185
2186 list_for_each_entry_rcu(ptype, ptype_list, list) {
2187 if (ptype->type != type)
2188 continue;
2189 if (pt_prev)
2190 deliver_skb(skb, pt_prev, orig_dev);
2191 pt_prev = ptype;
2192 }
2193 *pt = pt_prev;
2194}
2195
2196static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2197{
2198 if (!ptype->af_packet_priv || !skb->sk)
2199 return false;
2200
2201 if (ptype->id_match)
2202 return ptype->id_match(ptype, skb->sk);
2203 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2204 return true;
2205
2206 return false;
2207}
2208
2209/**
2210 * dev_nit_active - return true if any network interface taps are in use
2211 *
2212 * @dev: network device to check for the presence of taps
2213 */
2214bool dev_nit_active(struct net_device *dev)
2215{
2216 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2217}
2218EXPORT_SYMBOL_GPL(dev_nit_active);
2219
2220/*
2221 * Support routine. Sends outgoing frames to any network
2222 * taps currently in use.
2223 */
2224
2225void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2226{
2227 struct packet_type *ptype;
2228 struct sk_buff *skb2 = NULL;
2229 struct packet_type *pt_prev = NULL;
2230 struct list_head *ptype_list = &ptype_all;
2231
2232 rcu_read_lock();
2233again:
2234 list_for_each_entry_rcu(ptype, ptype_list, list) {
2235 if (ptype->ignore_outgoing)
2236 continue;
2237
2238 /* Never send packets back to the socket
2239 * they originated from - MvS (miquels@drinkel.ow.org)
2240 */
2241 if (skb_loop_sk(ptype, skb))
2242 continue;
2243
2244 if (pt_prev) {
2245 deliver_skb(skb2, pt_prev, skb->dev);
2246 pt_prev = ptype;
2247 continue;
2248 }
2249
2250 /* need to clone skb, done only once */
2251 skb2 = skb_clone(skb, GFP_ATOMIC);
2252 if (!skb2)
2253 goto out_unlock;
2254
2255 net_timestamp_set(skb2);
2256
2257 /* skb->nh should be correctly
2258 * set by sender, so that the second statement is
2259 * just protection against buggy protocols.
2260 */
2261 skb_reset_mac_header(skb2);
2262
2263 if (skb_network_header(skb2) < skb2->data ||
2264 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2265 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2266 ntohs(skb2->protocol),
2267 dev->name);
2268 skb_reset_network_header(skb2);
2269 }
2270
2271 skb2->transport_header = skb2->network_header;
2272 skb2->pkt_type = PACKET_OUTGOING;
2273 pt_prev = ptype;
2274 }
2275
2276 if (ptype_list == &ptype_all) {
2277 ptype_list = &dev->ptype_all;
2278 goto again;
2279 }
2280out_unlock:
2281 if (pt_prev) {
2282 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2283 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2284 else
2285 kfree_skb(skb2);
2286 }
2287 rcu_read_unlock();
2288}
2289EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2290
2291/**
2292 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2293 * @dev: Network device
2294 * @txq: number of queues available
2295 *
2296 * If real_num_tx_queues is changed the tc mappings may no longer be
2297 * valid. To resolve this verify the tc mapping remains valid and if
2298 * not NULL the mapping. With no priorities mapping to this
2299 * offset/count pair it will no longer be used. In the worst case TC0
2300 * is invalid nothing can be done so disable priority mappings. If is
2301 * expected that drivers will fix this mapping if they can before
2302 * calling netif_set_real_num_tx_queues.
2303 */
2304static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2305{
2306 int i;
2307 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2308
2309 /* If TC0 is invalidated disable TC mapping */
2310 if (tc->offset + tc->count > txq) {
2311 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2312 dev->num_tc = 0;
2313 return;
2314 }
2315
2316 /* Invalidated prio to tc mappings set to TC0 */
2317 for (i = 1; i < TC_BITMASK + 1; i++) {
2318 int q = netdev_get_prio_tc_map(dev, i);
2319
2320 tc = &dev->tc_to_txq[q];
2321 if (tc->offset + tc->count > txq) {
2322 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2323 i, q);
2324 netdev_set_prio_tc_map(dev, i, 0);
2325 }
2326 }
2327}
2328
2329int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2330{
2331 if (dev->num_tc) {
2332 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2333 int i;
2334
2335 /* walk through the TCs and see if it falls into any of them */
2336 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2337 if ((txq - tc->offset) < tc->count)
2338 return i;
2339 }
2340
2341 /* didn't find it, just return -1 to indicate no match */
2342 return -1;
2343 }
2344
2345 return 0;
2346}
2347EXPORT_SYMBOL(netdev_txq_to_tc);
2348
2349#ifdef CONFIG_XPS
2350static struct static_key xps_needed __read_mostly;
2351static struct static_key xps_rxqs_needed __read_mostly;
2352static DEFINE_MUTEX(xps_map_mutex);
2353#define xmap_dereference(P) \
2354 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2355
2356static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2357 struct xps_dev_maps *old_maps, int tci, u16 index)
2358{
2359 struct xps_map *map = NULL;
2360 int pos;
2361
2362 if (dev_maps)
2363 map = xmap_dereference(dev_maps->attr_map[tci]);
2364 if (!map)
2365 return false;
2366
2367 for (pos = map->len; pos--;) {
2368 if (map->queues[pos] != index)
2369 continue;
2370
2371 if (map->len > 1) {
2372 map->queues[pos] = map->queues[--map->len];
2373 break;
2374 }
2375
2376 if (old_maps)
2377 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2378 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2379 kfree_rcu(map, rcu);
2380 return false;
2381 }
2382
2383 return true;
2384}
2385
2386static bool remove_xps_queue_cpu(struct net_device *dev,
2387 struct xps_dev_maps *dev_maps,
2388 int cpu, u16 offset, u16 count)
2389{
2390 int num_tc = dev_maps->num_tc;
2391 bool active = false;
2392 int tci;
2393
2394 for (tci = cpu * num_tc; num_tc--; tci++) {
2395 int i, j;
2396
2397 for (i = count, j = offset; i--; j++) {
2398 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2399 break;
2400 }
2401
2402 active |= i < 0;
2403 }
2404
2405 return active;
2406}
2407
2408static void reset_xps_maps(struct net_device *dev,
2409 struct xps_dev_maps *dev_maps,
2410 enum xps_map_type type)
2411{
2412 static_key_slow_dec_cpuslocked(&xps_needed);
2413 if (type == XPS_RXQS)
2414 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2415
2416 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2417
2418 kfree_rcu(dev_maps, rcu);
2419}
2420
2421static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2422 u16 offset, u16 count)
2423{
2424 struct xps_dev_maps *dev_maps;
2425 bool active = false;
2426 int i, j;
2427
2428 dev_maps = xmap_dereference(dev->xps_maps[type]);
2429 if (!dev_maps)
2430 return;
2431
2432 for (j = 0; j < dev_maps->nr_ids; j++)
2433 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2434 if (!active)
2435 reset_xps_maps(dev, dev_maps, type);
2436
2437 if (type == XPS_CPUS) {
2438 for (i = offset + (count - 1); count--; i--)
2439 netdev_queue_numa_node_write(
2440 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2441 }
2442}
2443
2444static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2445 u16 count)
2446{
2447 if (!static_key_false(&xps_needed))
2448 return;
2449
2450 cpus_read_lock();
2451 mutex_lock(&xps_map_mutex);
2452
2453 if (static_key_false(&xps_rxqs_needed))
2454 clean_xps_maps(dev, XPS_RXQS, offset, count);
2455
2456 clean_xps_maps(dev, XPS_CPUS, offset, count);
2457
2458 mutex_unlock(&xps_map_mutex);
2459 cpus_read_unlock();
2460}
2461
2462static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2463{
2464 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2465}
2466
2467static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2468 u16 index, bool is_rxqs_map)
2469{
2470 struct xps_map *new_map;
2471 int alloc_len = XPS_MIN_MAP_ALLOC;
2472 int i, pos;
2473
2474 for (pos = 0; map && pos < map->len; pos++) {
2475 if (map->queues[pos] != index)
2476 continue;
2477 return map;
2478 }
2479
2480 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2481 if (map) {
2482 if (pos < map->alloc_len)
2483 return map;
2484
2485 alloc_len = map->alloc_len * 2;
2486 }
2487
2488 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2489 * map
2490 */
2491 if (is_rxqs_map)
2492 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2493 else
2494 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2495 cpu_to_node(attr_index));
2496 if (!new_map)
2497 return NULL;
2498
2499 for (i = 0; i < pos; i++)
2500 new_map->queues[i] = map->queues[i];
2501 new_map->alloc_len = alloc_len;
2502 new_map->len = pos;
2503
2504 return new_map;
2505}
2506
2507/* Copy xps maps at a given index */
2508static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2509 struct xps_dev_maps *new_dev_maps, int index,
2510 int tc, bool skip_tc)
2511{
2512 int i, tci = index * dev_maps->num_tc;
2513 struct xps_map *map;
2514
2515 /* copy maps belonging to foreign traffic classes */
2516 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2517 if (i == tc && skip_tc)
2518 continue;
2519
2520 /* fill in the new device map from the old device map */
2521 map = xmap_dereference(dev_maps->attr_map[tci]);
2522 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2523 }
2524}
2525
2526/* Must be called under cpus_read_lock */
2527int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2528 u16 index, enum xps_map_type type)
2529{
2530 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2531 const unsigned long *online_mask = NULL;
2532 bool active = false, copy = false;
2533 int i, j, tci, numa_node_id = -2;
2534 int maps_sz, num_tc = 1, tc = 0;
2535 struct xps_map *map, *new_map;
2536 unsigned int nr_ids;
2537
2538 if (dev->num_tc) {
2539 /* Do not allow XPS on subordinate device directly */
2540 num_tc = dev->num_tc;
2541 if (num_tc < 0)
2542 return -EINVAL;
2543
2544 /* If queue belongs to subordinate dev use its map */
2545 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2546
2547 tc = netdev_txq_to_tc(dev, index);
2548 if (tc < 0)
2549 return -EINVAL;
2550 }
2551
2552 mutex_lock(&xps_map_mutex);
2553
2554 dev_maps = xmap_dereference(dev->xps_maps[type]);
2555 if (type == XPS_RXQS) {
2556 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2557 nr_ids = dev->num_rx_queues;
2558 } else {
2559 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2560 if (num_possible_cpus() > 1)
2561 online_mask = cpumask_bits(cpu_online_mask);
2562 nr_ids = nr_cpu_ids;
2563 }
2564
2565 if (maps_sz < L1_CACHE_BYTES)
2566 maps_sz = L1_CACHE_BYTES;
2567
2568 /* The old dev_maps could be larger or smaller than the one we're
2569 * setting up now, as dev->num_tc or nr_ids could have been updated in
2570 * between. We could try to be smart, but let's be safe instead and only
2571 * copy foreign traffic classes if the two map sizes match.
2572 */
2573 if (dev_maps &&
2574 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2575 copy = true;
2576
2577 /* allocate memory for queue storage */
2578 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2579 j < nr_ids;) {
2580 if (!new_dev_maps) {
2581 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2582 if (!new_dev_maps) {
2583 mutex_unlock(&xps_map_mutex);
2584 return -ENOMEM;
2585 }
2586
2587 new_dev_maps->nr_ids = nr_ids;
2588 new_dev_maps->num_tc = num_tc;
2589 }
2590
2591 tci = j * num_tc + tc;
2592 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2593
2594 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2595 if (!map)
2596 goto error;
2597
2598 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2599 }
2600
2601 if (!new_dev_maps)
2602 goto out_no_new_maps;
2603
2604 if (!dev_maps) {
2605 /* Increment static keys at most once per type */
2606 static_key_slow_inc_cpuslocked(&xps_needed);
2607 if (type == XPS_RXQS)
2608 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2609 }
2610
2611 for (j = 0; j < nr_ids; j++) {
2612 bool skip_tc = false;
2613
2614 tci = j * num_tc + tc;
2615 if (netif_attr_test_mask(j, mask, nr_ids) &&
2616 netif_attr_test_online(j, online_mask, nr_ids)) {
2617 /* add tx-queue to CPU/rx-queue maps */
2618 int pos = 0;
2619
2620 skip_tc = true;
2621
2622 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2623 while ((pos < map->len) && (map->queues[pos] != index))
2624 pos++;
2625
2626 if (pos == map->len)
2627 map->queues[map->len++] = index;
2628#ifdef CONFIG_NUMA
2629 if (type == XPS_CPUS) {
2630 if (numa_node_id == -2)
2631 numa_node_id = cpu_to_node(j);
2632 else if (numa_node_id != cpu_to_node(j))
2633 numa_node_id = -1;
2634 }
2635#endif
2636 }
2637
2638 if (copy)
2639 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2640 skip_tc);
2641 }
2642
2643 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2644
2645 /* Cleanup old maps */
2646 if (!dev_maps)
2647 goto out_no_old_maps;
2648
2649 for (j = 0; j < dev_maps->nr_ids; j++) {
2650 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2651 map = xmap_dereference(dev_maps->attr_map[tci]);
2652 if (!map)
2653 continue;
2654
2655 if (copy) {
2656 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2657 if (map == new_map)
2658 continue;
2659 }
2660
2661 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2662 kfree_rcu(map, rcu);
2663 }
2664 }
2665
2666 old_dev_maps = dev_maps;
2667
2668out_no_old_maps:
2669 dev_maps = new_dev_maps;
2670 active = true;
2671
2672out_no_new_maps:
2673 if (type == XPS_CPUS)
2674 /* update Tx queue numa node */
2675 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2676 (numa_node_id >= 0) ?
2677 numa_node_id : NUMA_NO_NODE);
2678
2679 if (!dev_maps)
2680 goto out_no_maps;
2681
2682 /* removes tx-queue from unused CPUs/rx-queues */
2683 for (j = 0; j < dev_maps->nr_ids; j++) {
2684 tci = j * dev_maps->num_tc;
2685
2686 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2687 if (i == tc &&
2688 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2689 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2690 continue;
2691
2692 active |= remove_xps_queue(dev_maps,
2693 copy ? old_dev_maps : NULL,
2694 tci, index);
2695 }
2696 }
2697
2698 if (old_dev_maps)
2699 kfree_rcu(old_dev_maps, rcu);
2700
2701 /* free map if not active */
2702 if (!active)
2703 reset_xps_maps(dev, dev_maps, type);
2704
2705out_no_maps:
2706 mutex_unlock(&xps_map_mutex);
2707
2708 return 0;
2709error:
2710 /* remove any maps that we added */
2711 for (j = 0; j < nr_ids; j++) {
2712 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2713 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2714 map = copy ?
2715 xmap_dereference(dev_maps->attr_map[tci]) :
2716 NULL;
2717 if (new_map && new_map != map)
2718 kfree(new_map);
2719 }
2720 }
2721
2722 mutex_unlock(&xps_map_mutex);
2723
2724 kfree(new_dev_maps);
2725 return -ENOMEM;
2726}
2727EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2728
2729int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2730 u16 index)
2731{
2732 int ret;
2733
2734 cpus_read_lock();
2735 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2736 cpus_read_unlock();
2737
2738 return ret;
2739}
2740EXPORT_SYMBOL(netif_set_xps_queue);
2741
2742#endif
2743static void netdev_unbind_all_sb_channels(struct net_device *dev)
2744{
2745 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2746
2747 /* Unbind any subordinate channels */
2748 while (txq-- != &dev->_tx[0]) {
2749 if (txq->sb_dev)
2750 netdev_unbind_sb_channel(dev, txq->sb_dev);
2751 }
2752}
2753
2754void netdev_reset_tc(struct net_device *dev)
2755{
2756#ifdef CONFIG_XPS
2757 netif_reset_xps_queues_gt(dev, 0);
2758#endif
2759 netdev_unbind_all_sb_channels(dev);
2760
2761 /* Reset TC configuration of device */
2762 dev->num_tc = 0;
2763 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2764 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2765}
2766EXPORT_SYMBOL(netdev_reset_tc);
2767
2768int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2769{
2770 if (tc >= dev->num_tc)
2771 return -EINVAL;
2772
2773#ifdef CONFIG_XPS
2774 netif_reset_xps_queues(dev, offset, count);
2775#endif
2776 dev->tc_to_txq[tc].count = count;
2777 dev->tc_to_txq[tc].offset = offset;
2778 return 0;
2779}
2780EXPORT_SYMBOL(netdev_set_tc_queue);
2781
2782int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2783{
2784 if (num_tc > TC_MAX_QUEUE)
2785 return -EINVAL;
2786
2787#ifdef CONFIG_XPS
2788 netif_reset_xps_queues_gt(dev, 0);
2789#endif
2790 netdev_unbind_all_sb_channels(dev);
2791
2792 dev->num_tc = num_tc;
2793 return 0;
2794}
2795EXPORT_SYMBOL(netdev_set_num_tc);
2796
2797void netdev_unbind_sb_channel(struct net_device *dev,
2798 struct net_device *sb_dev)
2799{
2800 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2801
2802#ifdef CONFIG_XPS
2803 netif_reset_xps_queues_gt(sb_dev, 0);
2804#endif
2805 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2806 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2807
2808 while (txq-- != &dev->_tx[0]) {
2809 if (txq->sb_dev == sb_dev)
2810 txq->sb_dev = NULL;
2811 }
2812}
2813EXPORT_SYMBOL(netdev_unbind_sb_channel);
2814
2815int netdev_bind_sb_channel_queue(struct net_device *dev,
2816 struct net_device *sb_dev,
2817 u8 tc, u16 count, u16 offset)
2818{
2819 /* Make certain the sb_dev and dev are already configured */
2820 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2821 return -EINVAL;
2822
2823 /* We cannot hand out queues we don't have */
2824 if ((offset + count) > dev->real_num_tx_queues)
2825 return -EINVAL;
2826
2827 /* Record the mapping */
2828 sb_dev->tc_to_txq[tc].count = count;
2829 sb_dev->tc_to_txq[tc].offset = offset;
2830
2831 /* Provide a way for Tx queue to find the tc_to_txq map or
2832 * XPS map for itself.
2833 */
2834 while (count--)
2835 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2836
2837 return 0;
2838}
2839EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2840
2841int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2842{
2843 /* Do not use a multiqueue device to represent a subordinate channel */
2844 if (netif_is_multiqueue(dev))
2845 return -ENODEV;
2846
2847 /* We allow channels 1 - 32767 to be used for subordinate channels.
2848 * Channel 0 is meant to be "native" mode and used only to represent
2849 * the main root device. We allow writing 0 to reset the device back
2850 * to normal mode after being used as a subordinate channel.
2851 */
2852 if (channel > S16_MAX)
2853 return -EINVAL;
2854
2855 dev->num_tc = -channel;
2856
2857 return 0;
2858}
2859EXPORT_SYMBOL(netdev_set_sb_channel);
2860
2861/*
2862 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2863 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2864 */
2865int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2866{
2867 bool disabling;
2868 int rc;
2869
2870 disabling = txq < dev->real_num_tx_queues;
2871
2872 if (txq < 1 || txq > dev->num_tx_queues)
2873 return -EINVAL;
2874
2875 if (dev->reg_state == NETREG_REGISTERED ||
2876 dev->reg_state == NETREG_UNREGISTERING) {
2877 ASSERT_RTNL();
2878
2879 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2880 txq);
2881 if (rc)
2882 return rc;
2883
2884 if (dev->num_tc)
2885 netif_setup_tc(dev, txq);
2886
2887 dev_qdisc_change_real_num_tx(dev, txq);
2888
2889 dev->real_num_tx_queues = txq;
2890
2891 if (disabling) {
2892 synchronize_net();
2893 qdisc_reset_all_tx_gt(dev, txq);
2894#ifdef CONFIG_XPS
2895 netif_reset_xps_queues_gt(dev, txq);
2896#endif
2897 }
2898 } else {
2899 dev->real_num_tx_queues = txq;
2900 }
2901
2902 return 0;
2903}
2904EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2905
2906#ifdef CONFIG_SYSFS
2907/**
2908 * netif_set_real_num_rx_queues - set actual number of RX queues used
2909 * @dev: Network device
2910 * @rxq: Actual number of RX queues
2911 *
2912 * This must be called either with the rtnl_lock held or before
2913 * registration of the net device. Returns 0 on success, or a
2914 * negative error code. If called before registration, it always
2915 * succeeds.
2916 */
2917int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2918{
2919 int rc;
2920
2921 if (rxq < 1 || rxq > dev->num_rx_queues)
2922 return -EINVAL;
2923
2924 if (dev->reg_state == NETREG_REGISTERED) {
2925 ASSERT_RTNL();
2926
2927 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2928 rxq);
2929 if (rc)
2930 return rc;
2931 }
2932
2933 dev->real_num_rx_queues = rxq;
2934 return 0;
2935}
2936EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2937#endif
2938
2939/**
2940 * netif_set_real_num_queues - set actual number of RX and TX queues used
2941 * @dev: Network device
2942 * @txq: Actual number of TX queues
2943 * @rxq: Actual number of RX queues
2944 *
2945 * Set the real number of both TX and RX queues.
2946 * Does nothing if the number of queues is already correct.
2947 */
2948int netif_set_real_num_queues(struct net_device *dev,
2949 unsigned int txq, unsigned int rxq)
2950{
2951 unsigned int old_rxq = dev->real_num_rx_queues;
2952 int err;
2953
2954 if (txq < 1 || txq > dev->num_tx_queues ||
2955 rxq < 1 || rxq > dev->num_rx_queues)
2956 return -EINVAL;
2957
2958 /* Start from increases, so the error path only does decreases -
2959 * decreases can't fail.
2960 */
2961 if (rxq > dev->real_num_rx_queues) {
2962 err = netif_set_real_num_rx_queues(dev, rxq);
2963 if (err)
2964 return err;
2965 }
2966 if (txq > dev->real_num_tx_queues) {
2967 err = netif_set_real_num_tx_queues(dev, txq);
2968 if (err)
2969 goto undo_rx;
2970 }
2971 if (rxq < dev->real_num_rx_queues)
2972 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2973 if (txq < dev->real_num_tx_queues)
2974 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2975
2976 return 0;
2977undo_rx:
2978 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2979 return err;
2980}
2981EXPORT_SYMBOL(netif_set_real_num_queues);
2982
2983/**
2984 * netif_set_tso_max_size() - set the max size of TSO frames supported
2985 * @dev: netdev to update
2986 * @size: max skb->len of a TSO frame
2987 *
2988 * Set the limit on the size of TSO super-frames the device can handle.
2989 * Unless explicitly set the stack will assume the value of
2990 * %GSO_LEGACY_MAX_SIZE.
2991 */
2992void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
2993{
2994 dev->tso_max_size = min(GSO_MAX_SIZE, size);
2995 if (size < READ_ONCE(dev->gso_max_size))
2996 netif_set_gso_max_size(dev, size);
2997 if (size < READ_ONCE(dev->gso_ipv4_max_size))
2998 netif_set_gso_ipv4_max_size(dev, size);
2999}
3000EXPORT_SYMBOL(netif_set_tso_max_size);
3001
3002/**
3003 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3004 * @dev: netdev to update
3005 * @segs: max number of TCP segments
3006 *
3007 * Set the limit on the number of TCP segments the device can generate from
3008 * a single TSO super-frame.
3009 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3010 */
3011void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3012{
3013 dev->tso_max_segs = segs;
3014 if (segs < READ_ONCE(dev->gso_max_segs))
3015 netif_set_gso_max_segs(dev, segs);
3016}
3017EXPORT_SYMBOL(netif_set_tso_max_segs);
3018
3019/**
3020 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3021 * @to: netdev to update
3022 * @from: netdev from which to copy the limits
3023 */
3024void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3025{
3026 netif_set_tso_max_size(to, from->tso_max_size);
3027 netif_set_tso_max_segs(to, from->tso_max_segs);
3028}
3029EXPORT_SYMBOL(netif_inherit_tso_max);
3030
3031/**
3032 * netif_get_num_default_rss_queues - default number of RSS queues
3033 *
3034 * Default value is the number of physical cores if there are only 1 or 2, or
3035 * divided by 2 if there are more.
3036 */
3037int netif_get_num_default_rss_queues(void)
3038{
3039 cpumask_var_t cpus;
3040 int cpu, count = 0;
3041
3042 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3043 return 1;
3044
3045 cpumask_copy(cpus, cpu_online_mask);
3046 for_each_cpu(cpu, cpus) {
3047 ++count;
3048 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3049 }
3050 free_cpumask_var(cpus);
3051
3052 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3053}
3054EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3055
3056static void __netif_reschedule(struct Qdisc *q)
3057{
3058 struct softnet_data *sd;
3059 unsigned long flags;
3060
3061 local_irq_save(flags);
3062 sd = this_cpu_ptr(&softnet_data);
3063 q->next_sched = NULL;
3064 *sd->output_queue_tailp = q;
3065 sd->output_queue_tailp = &q->next_sched;
3066 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3067 local_irq_restore(flags);
3068}
3069
3070void __netif_schedule(struct Qdisc *q)
3071{
3072 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3073 __netif_reschedule(q);
3074}
3075EXPORT_SYMBOL(__netif_schedule);
3076
3077struct dev_kfree_skb_cb {
3078 enum skb_free_reason reason;
3079};
3080
3081static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3082{
3083 return (struct dev_kfree_skb_cb *)skb->cb;
3084}
3085
3086void netif_schedule_queue(struct netdev_queue *txq)
3087{
3088 rcu_read_lock();
3089 if (!netif_xmit_stopped(txq)) {
3090 struct Qdisc *q = rcu_dereference(txq->qdisc);
3091
3092 __netif_schedule(q);
3093 }
3094 rcu_read_unlock();
3095}
3096EXPORT_SYMBOL(netif_schedule_queue);
3097
3098void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3099{
3100 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3101 struct Qdisc *q;
3102
3103 rcu_read_lock();
3104 q = rcu_dereference(dev_queue->qdisc);
3105 __netif_schedule(q);
3106 rcu_read_unlock();
3107 }
3108}
3109EXPORT_SYMBOL(netif_tx_wake_queue);
3110
3111void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3112{
3113 unsigned long flags;
3114
3115 if (unlikely(!skb))
3116 return;
3117
3118 if (likely(refcount_read(&skb->users) == 1)) {
3119 smp_rmb();
3120 refcount_set(&skb->users, 0);
3121 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3122 return;
3123 }
3124 get_kfree_skb_cb(skb)->reason = reason;
3125 local_irq_save(flags);
3126 skb->next = __this_cpu_read(softnet_data.completion_queue);
3127 __this_cpu_write(softnet_data.completion_queue, skb);
3128 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3129 local_irq_restore(flags);
3130}
3131EXPORT_SYMBOL(__dev_kfree_skb_irq);
3132
3133void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3134{
3135 if (in_hardirq() || irqs_disabled())
3136 __dev_kfree_skb_irq(skb, reason);
3137 else if (unlikely(reason == SKB_REASON_DROPPED))
3138 kfree_skb(skb);
3139 else
3140 consume_skb(skb);
3141}
3142EXPORT_SYMBOL(__dev_kfree_skb_any);
3143
3144
3145/**
3146 * netif_device_detach - mark device as removed
3147 * @dev: network device
3148 *
3149 * Mark device as removed from system and therefore no longer available.
3150 */
3151void netif_device_detach(struct net_device *dev)
3152{
3153 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3154 netif_running(dev)) {
3155 netif_tx_stop_all_queues(dev);
3156 }
3157}
3158EXPORT_SYMBOL(netif_device_detach);
3159
3160/**
3161 * netif_device_attach - mark device as attached
3162 * @dev: network device
3163 *
3164 * Mark device as attached from system and restart if needed.
3165 */
3166void netif_device_attach(struct net_device *dev)
3167{
3168 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3169 netif_running(dev)) {
3170 netif_tx_wake_all_queues(dev);
3171 __netdev_watchdog_up(dev);
3172 }
3173}
3174EXPORT_SYMBOL(netif_device_attach);
3175
3176/*
3177 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3178 * to be used as a distribution range.
3179 */
3180static u16 skb_tx_hash(const struct net_device *dev,
3181 const struct net_device *sb_dev,
3182 struct sk_buff *skb)
3183{
3184 u32 hash;
3185 u16 qoffset = 0;
3186 u16 qcount = dev->real_num_tx_queues;
3187
3188 if (dev->num_tc) {
3189 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3190
3191 qoffset = sb_dev->tc_to_txq[tc].offset;
3192 qcount = sb_dev->tc_to_txq[tc].count;
3193 if (unlikely(!qcount)) {
3194 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3195 sb_dev->name, qoffset, tc);
3196 qoffset = 0;
3197 qcount = dev->real_num_tx_queues;
3198 }
3199 }
3200
3201 if (skb_rx_queue_recorded(skb)) {
3202 hash = skb_get_rx_queue(skb);
3203 if (hash >= qoffset)
3204 hash -= qoffset;
3205 while (unlikely(hash >= qcount))
3206 hash -= qcount;
3207 return hash + qoffset;
3208 }
3209
3210 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3211}
3212
3213static void skb_warn_bad_offload(const struct sk_buff *skb)
3214{
3215 static const netdev_features_t null_features;
3216 struct net_device *dev = skb->dev;
3217 const char *name = "";
3218
3219 if (!net_ratelimit())
3220 return;
3221
3222 if (dev) {
3223 if (dev->dev.parent)
3224 name = dev_driver_string(dev->dev.parent);
3225 else
3226 name = netdev_name(dev);
3227 }
3228 skb_dump(KERN_WARNING, skb, false);
3229 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3230 name, dev ? &dev->features : &null_features,
3231 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3232}
3233
3234/*
3235 * Invalidate hardware checksum when packet is to be mangled, and
3236 * complete checksum manually on outgoing path.
3237 */
3238int skb_checksum_help(struct sk_buff *skb)
3239{
3240 __wsum csum;
3241 int ret = 0, offset;
3242
3243 if (skb->ip_summed == CHECKSUM_COMPLETE)
3244 goto out_set_summed;
3245
3246 if (unlikely(skb_is_gso(skb))) {
3247 skb_warn_bad_offload(skb);
3248 return -EINVAL;
3249 }
3250
3251 /* Before computing a checksum, we should make sure no frag could
3252 * be modified by an external entity : checksum could be wrong.
3253 */
3254 if (skb_has_shared_frag(skb)) {
3255 ret = __skb_linearize(skb);
3256 if (ret)
3257 goto out;
3258 }
3259
3260 offset = skb_checksum_start_offset(skb);
3261 ret = -EINVAL;
3262 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3263 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3264 goto out;
3265 }
3266 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3267
3268 offset += skb->csum_offset;
3269 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3270 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3271 goto out;
3272 }
3273 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3274 if (ret)
3275 goto out;
3276
3277 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3278out_set_summed:
3279 skb->ip_summed = CHECKSUM_NONE;
3280out:
3281 return ret;
3282}
3283EXPORT_SYMBOL(skb_checksum_help);
3284
3285int skb_crc32c_csum_help(struct sk_buff *skb)
3286{
3287 __le32 crc32c_csum;
3288 int ret = 0, offset, start;
3289
3290 if (skb->ip_summed != CHECKSUM_PARTIAL)
3291 goto out;
3292
3293 if (unlikely(skb_is_gso(skb)))
3294 goto out;
3295
3296 /* Before computing a checksum, we should make sure no frag could
3297 * be modified by an external entity : checksum could be wrong.
3298 */
3299 if (unlikely(skb_has_shared_frag(skb))) {
3300 ret = __skb_linearize(skb);
3301 if (ret)
3302 goto out;
3303 }
3304 start = skb_checksum_start_offset(skb);
3305 offset = start + offsetof(struct sctphdr, checksum);
3306 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3307 ret = -EINVAL;
3308 goto out;
3309 }
3310
3311 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3312 if (ret)
3313 goto out;
3314
3315 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3316 skb->len - start, ~(__u32)0,
3317 crc32c_csum_stub));
3318 *(__le32 *)(skb->data + offset) = crc32c_csum;
3319 skb->ip_summed = CHECKSUM_NONE;
3320 skb->csum_not_inet = 0;
3321out:
3322 return ret;
3323}
3324
3325__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3326{
3327 __be16 type = skb->protocol;
3328
3329 /* Tunnel gso handlers can set protocol to ethernet. */
3330 if (type == htons(ETH_P_TEB)) {
3331 struct ethhdr *eth;
3332
3333 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3334 return 0;
3335
3336 eth = (struct ethhdr *)skb->data;
3337 type = eth->h_proto;
3338 }
3339
3340 return __vlan_get_protocol(skb, type, depth);
3341}
3342
3343/* openvswitch calls this on rx path, so we need a different check.
3344 */
3345static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3346{
3347 if (tx_path)
3348 return skb->ip_summed != CHECKSUM_PARTIAL &&
3349 skb->ip_summed != CHECKSUM_UNNECESSARY;
3350
3351 return skb->ip_summed == CHECKSUM_NONE;
3352}
3353
3354/**
3355 * __skb_gso_segment - Perform segmentation on skb.
3356 * @skb: buffer to segment
3357 * @features: features for the output path (see dev->features)
3358 * @tx_path: whether it is called in TX path
3359 *
3360 * This function segments the given skb and returns a list of segments.
3361 *
3362 * It may return NULL if the skb requires no segmentation. This is
3363 * only possible when GSO is used for verifying header integrity.
3364 *
3365 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3366 */
3367struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3368 netdev_features_t features, bool tx_path)
3369{
3370 struct sk_buff *segs;
3371
3372 if (unlikely(skb_needs_check(skb, tx_path))) {
3373 int err;
3374
3375 /* We're going to init ->check field in TCP or UDP header */
3376 err = skb_cow_head(skb, 0);
3377 if (err < 0)
3378 return ERR_PTR(err);
3379 }
3380
3381 /* Only report GSO partial support if it will enable us to
3382 * support segmentation on this frame without needing additional
3383 * work.
3384 */
3385 if (features & NETIF_F_GSO_PARTIAL) {
3386 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3387 struct net_device *dev = skb->dev;
3388
3389 partial_features |= dev->features & dev->gso_partial_features;
3390 if (!skb_gso_ok(skb, features | partial_features))
3391 features &= ~NETIF_F_GSO_PARTIAL;
3392 }
3393
3394 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3395 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3396
3397 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3398 SKB_GSO_CB(skb)->encap_level = 0;
3399
3400 skb_reset_mac_header(skb);
3401 skb_reset_mac_len(skb);
3402
3403 segs = skb_mac_gso_segment(skb, features);
3404
3405 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3406 skb_warn_bad_offload(skb);
3407
3408 return segs;
3409}
3410EXPORT_SYMBOL(__skb_gso_segment);
3411
3412/* Take action when hardware reception checksum errors are detected. */
3413#ifdef CONFIG_BUG
3414static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3415{
3416 netdev_err(dev, "hw csum failure\n");
3417 skb_dump(KERN_ERR, skb, true);
3418 dump_stack();
3419}
3420
3421void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3422{
3423 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3424}
3425EXPORT_SYMBOL(netdev_rx_csum_fault);
3426#endif
3427
3428/* XXX: check that highmem exists at all on the given machine. */
3429static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3430{
3431#ifdef CONFIG_HIGHMEM
3432 int i;
3433
3434 if (!(dev->features & NETIF_F_HIGHDMA)) {
3435 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3436 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3437
3438 if (PageHighMem(skb_frag_page(frag)))
3439 return 1;
3440 }
3441 }
3442#endif
3443 return 0;
3444}
3445
3446/* If MPLS offload request, verify we are testing hardware MPLS features
3447 * instead of standard features for the netdev.
3448 */
3449#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3450static netdev_features_t net_mpls_features(struct sk_buff *skb,
3451 netdev_features_t features,
3452 __be16 type)
3453{
3454 if (eth_p_mpls(type))
3455 features &= skb->dev->mpls_features;
3456
3457 return features;
3458}
3459#else
3460static netdev_features_t net_mpls_features(struct sk_buff *skb,
3461 netdev_features_t features,
3462 __be16 type)
3463{
3464 return features;
3465}
3466#endif
3467
3468static netdev_features_t harmonize_features(struct sk_buff *skb,
3469 netdev_features_t features)
3470{
3471 __be16 type;
3472
3473 type = skb_network_protocol(skb, NULL);
3474 features = net_mpls_features(skb, features, type);
3475
3476 if (skb->ip_summed != CHECKSUM_NONE &&
3477 !can_checksum_protocol(features, type)) {
3478 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3479 }
3480 if (illegal_highdma(skb->dev, skb))
3481 features &= ~NETIF_F_SG;
3482
3483 return features;
3484}
3485
3486netdev_features_t passthru_features_check(struct sk_buff *skb,
3487 struct net_device *dev,
3488 netdev_features_t features)
3489{
3490 return features;
3491}
3492EXPORT_SYMBOL(passthru_features_check);
3493
3494static netdev_features_t dflt_features_check(struct sk_buff *skb,
3495 struct net_device *dev,
3496 netdev_features_t features)
3497{
3498 return vlan_features_check(skb, features);
3499}
3500
3501static netdev_features_t gso_features_check(const struct sk_buff *skb,
3502 struct net_device *dev,
3503 netdev_features_t features)
3504{
3505 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3506
3507 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3508 return features & ~NETIF_F_GSO_MASK;
3509
3510 if (!skb_shinfo(skb)->gso_type) {
3511 skb_warn_bad_offload(skb);
3512 return features & ~NETIF_F_GSO_MASK;
3513 }
3514
3515 /* Support for GSO partial features requires software
3516 * intervention before we can actually process the packets
3517 * so we need to strip support for any partial features now
3518 * and we can pull them back in after we have partially
3519 * segmented the frame.
3520 */
3521 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3522 features &= ~dev->gso_partial_features;
3523
3524 /* Make sure to clear the IPv4 ID mangling feature if the
3525 * IPv4 header has the potential to be fragmented.
3526 */
3527 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3528 struct iphdr *iph = skb->encapsulation ?
3529 inner_ip_hdr(skb) : ip_hdr(skb);
3530
3531 if (!(iph->frag_off & htons(IP_DF)))
3532 features &= ~NETIF_F_TSO_MANGLEID;
3533 }
3534
3535 return features;
3536}
3537
3538netdev_features_t netif_skb_features(struct sk_buff *skb)
3539{
3540 struct net_device *dev = skb->dev;
3541 netdev_features_t features = dev->features;
3542
3543 if (skb_is_gso(skb))
3544 features = gso_features_check(skb, dev, features);
3545
3546 /* If encapsulation offload request, verify we are testing
3547 * hardware encapsulation features instead of standard
3548 * features for the netdev
3549 */
3550 if (skb->encapsulation)
3551 features &= dev->hw_enc_features;
3552
3553 if (skb_vlan_tagged(skb))
3554 features = netdev_intersect_features(features,
3555 dev->vlan_features |
3556 NETIF_F_HW_VLAN_CTAG_TX |
3557 NETIF_F_HW_VLAN_STAG_TX);
3558
3559 if (dev->netdev_ops->ndo_features_check)
3560 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3561 features);
3562 else
3563 features &= dflt_features_check(skb, dev, features);
3564
3565 return harmonize_features(skb, features);
3566}
3567EXPORT_SYMBOL(netif_skb_features);
3568
3569static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3570 struct netdev_queue *txq, bool more)
3571{
3572 unsigned int len;
3573 int rc;
3574
3575 if (dev_nit_active(dev))
3576 dev_queue_xmit_nit(skb, dev);
3577
3578 len = skb->len;
3579 trace_net_dev_start_xmit(skb, dev);
3580 rc = netdev_start_xmit(skb, dev, txq, more);
3581 trace_net_dev_xmit(skb, rc, dev, len);
3582
3583 return rc;
3584}
3585
3586struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3587 struct netdev_queue *txq, int *ret)
3588{
3589 struct sk_buff *skb = first;
3590 int rc = NETDEV_TX_OK;
3591
3592 while (skb) {
3593 struct sk_buff *next = skb->next;
3594
3595 skb_mark_not_on_list(skb);
3596 rc = xmit_one(skb, dev, txq, next != NULL);
3597 if (unlikely(!dev_xmit_complete(rc))) {
3598 skb->next = next;
3599 goto out;
3600 }
3601
3602 skb = next;
3603 if (netif_tx_queue_stopped(txq) && skb) {
3604 rc = NETDEV_TX_BUSY;
3605 break;
3606 }
3607 }
3608
3609out:
3610 *ret = rc;
3611 return skb;
3612}
3613
3614static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3615 netdev_features_t features)
3616{
3617 if (skb_vlan_tag_present(skb) &&
3618 !vlan_hw_offload_capable(features, skb->vlan_proto))
3619 skb = __vlan_hwaccel_push_inside(skb);
3620 return skb;
3621}
3622
3623int skb_csum_hwoffload_help(struct sk_buff *skb,
3624 const netdev_features_t features)
3625{
3626 if (unlikely(skb_csum_is_sctp(skb)))
3627 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3628 skb_crc32c_csum_help(skb);
3629
3630 if (features & NETIF_F_HW_CSUM)
3631 return 0;
3632
3633 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3634 switch (skb->csum_offset) {
3635 case offsetof(struct tcphdr, check):
3636 case offsetof(struct udphdr, check):
3637 return 0;
3638 }
3639 }
3640
3641 return skb_checksum_help(skb);
3642}
3643EXPORT_SYMBOL(skb_csum_hwoffload_help);
3644
3645static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3646{
3647 netdev_features_t features;
3648
3649 features = netif_skb_features(skb);
3650 skb = validate_xmit_vlan(skb, features);
3651 if (unlikely(!skb))
3652 goto out_null;
3653
3654 skb = sk_validate_xmit_skb(skb, dev);
3655 if (unlikely(!skb))
3656 goto out_null;
3657
3658 if (netif_needs_gso(skb, features)) {
3659 struct sk_buff *segs;
3660
3661 segs = skb_gso_segment(skb, features);
3662 if (IS_ERR(segs)) {
3663 goto out_kfree_skb;
3664 } else if (segs) {
3665 consume_skb(skb);
3666 skb = segs;
3667 }
3668 } else {
3669 if (skb_needs_linearize(skb, features) &&
3670 __skb_linearize(skb))
3671 goto out_kfree_skb;
3672
3673 /* If packet is not checksummed and device does not
3674 * support checksumming for this protocol, complete
3675 * checksumming here.
3676 */
3677 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3678 if (skb->encapsulation)
3679 skb_set_inner_transport_header(skb,
3680 skb_checksum_start_offset(skb));
3681 else
3682 skb_set_transport_header(skb,
3683 skb_checksum_start_offset(skb));
3684 if (skb_csum_hwoffload_help(skb, features))
3685 goto out_kfree_skb;
3686 }
3687 }
3688
3689 skb = validate_xmit_xfrm(skb, features, again);
3690
3691 return skb;
3692
3693out_kfree_skb:
3694 kfree_skb(skb);
3695out_null:
3696 dev_core_stats_tx_dropped_inc(dev);
3697 return NULL;
3698}
3699
3700struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3701{
3702 struct sk_buff *next, *head = NULL, *tail;
3703
3704 for (; skb != NULL; skb = next) {
3705 next = skb->next;
3706 skb_mark_not_on_list(skb);
3707
3708 /* in case skb wont be segmented, point to itself */
3709 skb->prev = skb;
3710
3711 skb = validate_xmit_skb(skb, dev, again);
3712 if (!skb)
3713 continue;
3714
3715 if (!head)
3716 head = skb;
3717 else
3718 tail->next = skb;
3719 /* If skb was segmented, skb->prev points to
3720 * the last segment. If not, it still contains skb.
3721 */
3722 tail = skb->prev;
3723 }
3724 return head;
3725}
3726EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3727
3728static void qdisc_pkt_len_init(struct sk_buff *skb)
3729{
3730 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3731
3732 qdisc_skb_cb(skb)->pkt_len = skb->len;
3733
3734 /* To get more precise estimation of bytes sent on wire,
3735 * we add to pkt_len the headers size of all segments
3736 */
3737 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3738 unsigned int hdr_len;
3739 u16 gso_segs = shinfo->gso_segs;
3740
3741 /* mac layer + network layer */
3742 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3743
3744 /* + transport layer */
3745 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3746 const struct tcphdr *th;
3747 struct tcphdr _tcphdr;
3748
3749 th = skb_header_pointer(skb, skb_transport_offset(skb),
3750 sizeof(_tcphdr), &_tcphdr);
3751 if (likely(th))
3752 hdr_len += __tcp_hdrlen(th);
3753 } else {
3754 struct udphdr _udphdr;
3755
3756 if (skb_header_pointer(skb, skb_transport_offset(skb),
3757 sizeof(_udphdr), &_udphdr))
3758 hdr_len += sizeof(struct udphdr);
3759 }
3760
3761 if (shinfo->gso_type & SKB_GSO_DODGY)
3762 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3763 shinfo->gso_size);
3764
3765 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3766 }
3767}
3768
3769static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3770 struct sk_buff **to_free,
3771 struct netdev_queue *txq)
3772{
3773 int rc;
3774
3775 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3776 if (rc == NET_XMIT_SUCCESS)
3777 trace_qdisc_enqueue(q, txq, skb);
3778 return rc;
3779}
3780
3781static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3782 struct net_device *dev,
3783 struct netdev_queue *txq)
3784{
3785 spinlock_t *root_lock = qdisc_lock(q);
3786 struct sk_buff *to_free = NULL;
3787 bool contended;
3788 int rc;
3789
3790 qdisc_calculate_pkt_len(skb, q);
3791
3792 if (q->flags & TCQ_F_NOLOCK) {
3793 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3794 qdisc_run_begin(q)) {
3795 /* Retest nolock_qdisc_is_empty() within the protection
3796 * of q->seqlock to protect from racing with requeuing.
3797 */
3798 if (unlikely(!nolock_qdisc_is_empty(q))) {
3799 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3800 __qdisc_run(q);
3801 qdisc_run_end(q);
3802
3803 goto no_lock_out;
3804 }
3805
3806 qdisc_bstats_cpu_update(q, skb);
3807 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3808 !nolock_qdisc_is_empty(q))
3809 __qdisc_run(q);
3810
3811 qdisc_run_end(q);
3812 return NET_XMIT_SUCCESS;
3813 }
3814
3815 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3816 qdisc_run(q);
3817
3818no_lock_out:
3819 if (unlikely(to_free))
3820 kfree_skb_list_reason(to_free,
3821 SKB_DROP_REASON_QDISC_DROP);
3822 return rc;
3823 }
3824
3825 /*
3826 * Heuristic to force contended enqueues to serialize on a
3827 * separate lock before trying to get qdisc main lock.
3828 * This permits qdisc->running owner to get the lock more
3829 * often and dequeue packets faster.
3830 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3831 * and then other tasks will only enqueue packets. The packets will be
3832 * sent after the qdisc owner is scheduled again. To prevent this
3833 * scenario the task always serialize on the lock.
3834 */
3835 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3836 if (unlikely(contended))
3837 spin_lock(&q->busylock);
3838
3839 spin_lock(root_lock);
3840 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3841 __qdisc_drop(skb, &to_free);
3842 rc = NET_XMIT_DROP;
3843 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3844 qdisc_run_begin(q)) {
3845 /*
3846 * This is a work-conserving queue; there are no old skbs
3847 * waiting to be sent out; and the qdisc is not running -
3848 * xmit the skb directly.
3849 */
3850
3851 qdisc_bstats_update(q, skb);
3852
3853 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3854 if (unlikely(contended)) {
3855 spin_unlock(&q->busylock);
3856 contended = false;
3857 }
3858 __qdisc_run(q);
3859 }
3860
3861 qdisc_run_end(q);
3862 rc = NET_XMIT_SUCCESS;
3863 } else {
3864 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3865 if (qdisc_run_begin(q)) {
3866 if (unlikely(contended)) {
3867 spin_unlock(&q->busylock);
3868 contended = false;
3869 }
3870 __qdisc_run(q);
3871 qdisc_run_end(q);
3872 }
3873 }
3874 spin_unlock(root_lock);
3875 if (unlikely(to_free))
3876 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3877 if (unlikely(contended))
3878 spin_unlock(&q->busylock);
3879 return rc;
3880}
3881
3882#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3883static void skb_update_prio(struct sk_buff *skb)
3884{
3885 const struct netprio_map *map;
3886 const struct sock *sk;
3887 unsigned int prioidx;
3888
3889 if (skb->priority)
3890 return;
3891 map = rcu_dereference_bh(skb->dev->priomap);
3892 if (!map)
3893 return;
3894 sk = skb_to_full_sk(skb);
3895 if (!sk)
3896 return;
3897
3898 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3899
3900 if (prioidx < map->priomap_len)
3901 skb->priority = map->priomap[prioidx];
3902}
3903#else
3904#define skb_update_prio(skb)
3905#endif
3906
3907/**
3908 * dev_loopback_xmit - loop back @skb
3909 * @net: network namespace this loopback is happening in
3910 * @sk: sk needed to be a netfilter okfn
3911 * @skb: buffer to transmit
3912 */
3913int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3914{
3915 skb_reset_mac_header(skb);
3916 __skb_pull(skb, skb_network_offset(skb));
3917 skb->pkt_type = PACKET_LOOPBACK;
3918 if (skb->ip_summed == CHECKSUM_NONE)
3919 skb->ip_summed = CHECKSUM_UNNECESSARY;
3920 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3921 skb_dst_force(skb);
3922 netif_rx(skb);
3923 return 0;
3924}
3925EXPORT_SYMBOL(dev_loopback_xmit);
3926
3927#ifdef CONFIG_NET_EGRESS
3928static struct sk_buff *
3929sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3930{
3931#ifdef CONFIG_NET_CLS_ACT
3932 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3933 struct tcf_result cl_res;
3934
3935 if (!miniq)
3936 return skb;
3937
3938 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3939 tc_skb_cb(skb)->mru = 0;
3940 tc_skb_cb(skb)->post_ct = false;
3941 mini_qdisc_bstats_cpu_update(miniq, skb);
3942
3943 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3944 case TC_ACT_OK:
3945 case TC_ACT_RECLASSIFY:
3946 skb->tc_index = TC_H_MIN(cl_res.classid);
3947 break;
3948 case TC_ACT_SHOT:
3949 mini_qdisc_qstats_cpu_drop(miniq);
3950 *ret = NET_XMIT_DROP;
3951 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3952 return NULL;
3953 case TC_ACT_STOLEN:
3954 case TC_ACT_QUEUED:
3955 case TC_ACT_TRAP:
3956 *ret = NET_XMIT_SUCCESS;
3957 consume_skb(skb);
3958 return NULL;
3959 case TC_ACT_REDIRECT:
3960 /* No need to push/pop skb's mac_header here on egress! */
3961 skb_do_redirect(skb);
3962 *ret = NET_XMIT_SUCCESS;
3963 return NULL;
3964 default:
3965 break;
3966 }
3967#endif /* CONFIG_NET_CLS_ACT */
3968
3969 return skb;
3970}
3971
3972static struct netdev_queue *
3973netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3974{
3975 int qm = skb_get_queue_mapping(skb);
3976
3977 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3978}
3979
3980static bool netdev_xmit_txqueue_skipped(void)
3981{
3982 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3983}
3984
3985void netdev_xmit_skip_txqueue(bool skip)
3986{
3987 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3988}
3989EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3990#endif /* CONFIG_NET_EGRESS */
3991
3992#ifdef CONFIG_XPS
3993static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3994 struct xps_dev_maps *dev_maps, unsigned int tci)
3995{
3996 int tc = netdev_get_prio_tc_map(dev, skb->priority);
3997 struct xps_map *map;
3998 int queue_index = -1;
3999
4000 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4001 return queue_index;
4002
4003 tci *= dev_maps->num_tc;
4004 tci += tc;
4005
4006 map = rcu_dereference(dev_maps->attr_map[tci]);
4007 if (map) {
4008 if (map->len == 1)
4009 queue_index = map->queues[0];
4010 else
4011 queue_index = map->queues[reciprocal_scale(
4012 skb_get_hash(skb), map->len)];
4013 if (unlikely(queue_index >= dev->real_num_tx_queues))
4014 queue_index = -1;
4015 }
4016 return queue_index;
4017}
4018#endif
4019
4020static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4021 struct sk_buff *skb)
4022{
4023#ifdef CONFIG_XPS
4024 struct xps_dev_maps *dev_maps;
4025 struct sock *sk = skb->sk;
4026 int queue_index = -1;
4027
4028 if (!static_key_false(&xps_needed))
4029 return -1;
4030
4031 rcu_read_lock();
4032 if (!static_key_false(&xps_rxqs_needed))
4033 goto get_cpus_map;
4034
4035 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4036 if (dev_maps) {
4037 int tci = sk_rx_queue_get(sk);
4038
4039 if (tci >= 0)
4040 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4041 tci);
4042 }
4043
4044get_cpus_map:
4045 if (queue_index < 0) {
4046 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4047 if (dev_maps) {
4048 unsigned int tci = skb->sender_cpu - 1;
4049
4050 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4051 tci);
4052 }
4053 }
4054 rcu_read_unlock();
4055
4056 return queue_index;
4057#else
4058 return -1;
4059#endif
4060}
4061
4062u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4063 struct net_device *sb_dev)
4064{
4065 return 0;
4066}
4067EXPORT_SYMBOL(dev_pick_tx_zero);
4068
4069u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4070 struct net_device *sb_dev)
4071{
4072 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4073}
4074EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4075
4076u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4077 struct net_device *sb_dev)
4078{
4079 struct sock *sk = skb->sk;
4080 int queue_index = sk_tx_queue_get(sk);
4081
4082 sb_dev = sb_dev ? : dev;
4083
4084 if (queue_index < 0 || skb->ooo_okay ||
4085 queue_index >= dev->real_num_tx_queues) {
4086 int new_index = get_xps_queue(dev, sb_dev, skb);
4087
4088 if (new_index < 0)
4089 new_index = skb_tx_hash(dev, sb_dev, skb);
4090
4091 if (queue_index != new_index && sk &&
4092 sk_fullsock(sk) &&
4093 rcu_access_pointer(sk->sk_dst_cache))
4094 sk_tx_queue_set(sk, new_index);
4095
4096 queue_index = new_index;
4097 }
4098
4099 return queue_index;
4100}
4101EXPORT_SYMBOL(netdev_pick_tx);
4102
4103struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4104 struct sk_buff *skb,
4105 struct net_device *sb_dev)
4106{
4107 int queue_index = 0;
4108
4109#ifdef CONFIG_XPS
4110 u32 sender_cpu = skb->sender_cpu - 1;
4111
4112 if (sender_cpu >= (u32)NR_CPUS)
4113 skb->sender_cpu = raw_smp_processor_id() + 1;
4114#endif
4115
4116 if (dev->real_num_tx_queues != 1) {
4117 const struct net_device_ops *ops = dev->netdev_ops;
4118
4119 if (ops->ndo_select_queue)
4120 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4121 else
4122 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4123
4124 queue_index = netdev_cap_txqueue(dev, queue_index);
4125 }
4126
4127 skb_set_queue_mapping(skb, queue_index);
4128 return netdev_get_tx_queue(dev, queue_index);
4129}
4130
4131/**
4132 * __dev_queue_xmit() - transmit a buffer
4133 * @skb: buffer to transmit
4134 * @sb_dev: suboordinate device used for L2 forwarding offload
4135 *
4136 * Queue a buffer for transmission to a network device. The caller must
4137 * have set the device and priority and built the buffer before calling
4138 * this function. The function can be called from an interrupt.
4139 *
4140 * When calling this method, interrupts MUST be enabled. This is because
4141 * the BH enable code must have IRQs enabled so that it will not deadlock.
4142 *
4143 * Regardless of the return value, the skb is consumed, so it is currently
4144 * difficult to retry a send to this method. (You can bump the ref count
4145 * before sending to hold a reference for retry if you are careful.)
4146 *
4147 * Return:
4148 * * 0 - buffer successfully transmitted
4149 * * positive qdisc return code - NET_XMIT_DROP etc.
4150 * * negative errno - other errors
4151 */
4152int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4153{
4154 struct net_device *dev = skb->dev;
4155 struct netdev_queue *txq = NULL;
4156 struct Qdisc *q;
4157 int rc = -ENOMEM;
4158 bool again = false;
4159
4160 skb_reset_mac_header(skb);
4161 skb_assert_len(skb);
4162
4163 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4164 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4165
4166 /* Disable soft irqs for various locks below. Also
4167 * stops preemption for RCU.
4168 */
4169 rcu_read_lock_bh();
4170
4171 skb_update_prio(skb);
4172
4173 qdisc_pkt_len_init(skb);
4174#ifdef CONFIG_NET_CLS_ACT
4175 skb->tc_at_ingress = 0;
4176#endif
4177#ifdef CONFIG_NET_EGRESS
4178 if (static_branch_unlikely(&egress_needed_key)) {
4179 if (nf_hook_egress_active()) {
4180 skb = nf_hook_egress(skb, &rc, dev);
4181 if (!skb)
4182 goto out;
4183 }
4184
4185 netdev_xmit_skip_txqueue(false);
4186
4187 nf_skip_egress(skb, true);
4188 skb = sch_handle_egress(skb, &rc, dev);
4189 if (!skb)
4190 goto out;
4191 nf_skip_egress(skb, false);
4192
4193 if (netdev_xmit_txqueue_skipped())
4194 txq = netdev_tx_queue_mapping(dev, skb);
4195 }
4196#endif
4197 /* If device/qdisc don't need skb->dst, release it right now while
4198 * its hot in this cpu cache.
4199 */
4200 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4201 skb_dst_drop(skb);
4202 else
4203 skb_dst_force(skb);
4204
4205 if (!txq)
4206 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4207
4208 q = rcu_dereference_bh(txq->qdisc);
4209
4210 trace_net_dev_queue(skb);
4211 if (q->enqueue) {
4212 rc = __dev_xmit_skb(skb, q, dev, txq);
4213 goto out;
4214 }
4215
4216 /* The device has no queue. Common case for software devices:
4217 * loopback, all the sorts of tunnels...
4218
4219 * Really, it is unlikely that netif_tx_lock protection is necessary
4220 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4221 * counters.)
4222 * However, it is possible, that they rely on protection
4223 * made by us here.
4224
4225 * Check this and shot the lock. It is not prone from deadlocks.
4226 *Either shot noqueue qdisc, it is even simpler 8)
4227 */
4228 if (dev->flags & IFF_UP) {
4229 int cpu = smp_processor_id(); /* ok because BHs are off */
4230
4231 /* Other cpus might concurrently change txq->xmit_lock_owner
4232 * to -1 or to their cpu id, but not to our id.
4233 */
4234 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4235 if (dev_xmit_recursion())
4236 goto recursion_alert;
4237
4238 skb = validate_xmit_skb(skb, dev, &again);
4239 if (!skb)
4240 goto out;
4241
4242 HARD_TX_LOCK(dev, txq, cpu);
4243
4244 if (!netif_xmit_stopped(txq)) {
4245 dev_xmit_recursion_inc();
4246 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4247 dev_xmit_recursion_dec();
4248 if (dev_xmit_complete(rc)) {
4249 HARD_TX_UNLOCK(dev, txq);
4250 goto out;
4251 }
4252 }
4253 HARD_TX_UNLOCK(dev, txq);
4254 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4255 dev->name);
4256 } else {
4257 /* Recursion is detected! It is possible,
4258 * unfortunately
4259 */
4260recursion_alert:
4261 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4262 dev->name);
4263 }
4264 }
4265
4266 rc = -ENETDOWN;
4267 rcu_read_unlock_bh();
4268
4269 dev_core_stats_tx_dropped_inc(dev);
4270 kfree_skb_list(skb);
4271 return rc;
4272out:
4273 rcu_read_unlock_bh();
4274 return rc;
4275}
4276EXPORT_SYMBOL(__dev_queue_xmit);
4277
4278int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4279{
4280 struct net_device *dev = skb->dev;
4281 struct sk_buff *orig_skb = skb;
4282 struct netdev_queue *txq;
4283 int ret = NETDEV_TX_BUSY;
4284 bool again = false;
4285
4286 if (unlikely(!netif_running(dev) ||
4287 !netif_carrier_ok(dev)))
4288 goto drop;
4289
4290 skb = validate_xmit_skb_list(skb, dev, &again);
4291 if (skb != orig_skb)
4292 goto drop;
4293
4294 skb_set_queue_mapping(skb, queue_id);
4295 txq = skb_get_tx_queue(dev, skb);
4296
4297 local_bh_disable();
4298
4299 dev_xmit_recursion_inc();
4300 HARD_TX_LOCK(dev, txq, smp_processor_id());
4301 if (!netif_xmit_frozen_or_drv_stopped(txq))
4302 ret = netdev_start_xmit(skb, dev, txq, false);
4303 HARD_TX_UNLOCK(dev, txq);
4304 dev_xmit_recursion_dec();
4305
4306 local_bh_enable();
4307 return ret;
4308drop:
4309 dev_core_stats_tx_dropped_inc(dev);
4310 kfree_skb_list(skb);
4311 return NET_XMIT_DROP;
4312}
4313EXPORT_SYMBOL(__dev_direct_xmit);
4314
4315/*************************************************************************
4316 * Receiver routines
4317 *************************************************************************/
4318
4319int netdev_max_backlog __read_mostly = 1000;
4320EXPORT_SYMBOL(netdev_max_backlog);
4321
4322int netdev_tstamp_prequeue __read_mostly = 1;
4323unsigned int sysctl_skb_defer_max __read_mostly = 64;
4324int netdev_budget __read_mostly = 300;
4325/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4326unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4327int weight_p __read_mostly = 64; /* old backlog weight */
4328int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4329int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4330int dev_rx_weight __read_mostly = 64;
4331int dev_tx_weight __read_mostly = 64;
4332
4333/* Called with irq disabled */
4334static inline void ____napi_schedule(struct softnet_data *sd,
4335 struct napi_struct *napi)
4336{
4337 struct task_struct *thread;
4338
4339 lockdep_assert_irqs_disabled();
4340
4341 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4342 /* Paired with smp_mb__before_atomic() in
4343 * napi_enable()/dev_set_threaded().
4344 * Use READ_ONCE() to guarantee a complete
4345 * read on napi->thread. Only call
4346 * wake_up_process() when it's not NULL.
4347 */
4348 thread = READ_ONCE(napi->thread);
4349 if (thread) {
4350 /* Avoid doing set_bit() if the thread is in
4351 * INTERRUPTIBLE state, cause napi_thread_wait()
4352 * makes sure to proceed with napi polling
4353 * if the thread is explicitly woken from here.
4354 */
4355 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4356 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4357 wake_up_process(thread);
4358 return;
4359 }
4360 }
4361
4362 list_add_tail(&napi->poll_list, &sd->poll_list);
4363 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4364}
4365
4366#ifdef CONFIG_RPS
4367
4368/* One global table that all flow-based protocols share. */
4369struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4370EXPORT_SYMBOL(rps_sock_flow_table);
4371u32 rps_cpu_mask __read_mostly;
4372EXPORT_SYMBOL(rps_cpu_mask);
4373
4374struct static_key_false rps_needed __read_mostly;
4375EXPORT_SYMBOL(rps_needed);
4376struct static_key_false rfs_needed __read_mostly;
4377EXPORT_SYMBOL(rfs_needed);
4378
4379static struct rps_dev_flow *
4380set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4381 struct rps_dev_flow *rflow, u16 next_cpu)
4382{
4383 if (next_cpu < nr_cpu_ids) {
4384#ifdef CONFIG_RFS_ACCEL
4385 struct netdev_rx_queue *rxqueue;
4386 struct rps_dev_flow_table *flow_table;
4387 struct rps_dev_flow *old_rflow;
4388 u32 flow_id;
4389 u16 rxq_index;
4390 int rc;
4391
4392 /* Should we steer this flow to a different hardware queue? */
4393 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4394 !(dev->features & NETIF_F_NTUPLE))
4395 goto out;
4396 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4397 if (rxq_index == skb_get_rx_queue(skb))
4398 goto out;
4399
4400 rxqueue = dev->_rx + rxq_index;
4401 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4402 if (!flow_table)
4403 goto out;
4404 flow_id = skb_get_hash(skb) & flow_table->mask;
4405 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4406 rxq_index, flow_id);
4407 if (rc < 0)
4408 goto out;
4409 old_rflow = rflow;
4410 rflow = &flow_table->flows[flow_id];
4411 rflow->filter = rc;
4412 if (old_rflow->filter == rflow->filter)
4413 old_rflow->filter = RPS_NO_FILTER;
4414 out:
4415#endif
4416 rflow->last_qtail =
4417 per_cpu(softnet_data, next_cpu).input_queue_head;
4418 }
4419
4420 rflow->cpu = next_cpu;
4421 return rflow;
4422}
4423
4424/*
4425 * get_rps_cpu is called from netif_receive_skb and returns the target
4426 * CPU from the RPS map of the receiving queue for a given skb.
4427 * rcu_read_lock must be held on entry.
4428 */
4429static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4430 struct rps_dev_flow **rflowp)
4431{
4432 const struct rps_sock_flow_table *sock_flow_table;
4433 struct netdev_rx_queue *rxqueue = dev->_rx;
4434 struct rps_dev_flow_table *flow_table;
4435 struct rps_map *map;
4436 int cpu = -1;
4437 u32 tcpu;
4438 u32 hash;
4439
4440 if (skb_rx_queue_recorded(skb)) {
4441 u16 index = skb_get_rx_queue(skb);
4442
4443 if (unlikely(index >= dev->real_num_rx_queues)) {
4444 WARN_ONCE(dev->real_num_rx_queues > 1,
4445 "%s received packet on queue %u, but number "
4446 "of RX queues is %u\n",
4447 dev->name, index, dev->real_num_rx_queues);
4448 goto done;
4449 }
4450 rxqueue += index;
4451 }
4452
4453 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4454
4455 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4456 map = rcu_dereference(rxqueue->rps_map);
4457 if (!flow_table && !map)
4458 goto done;
4459
4460 skb_reset_network_header(skb);
4461 hash = skb_get_hash(skb);
4462 if (!hash)
4463 goto done;
4464
4465 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4466 if (flow_table && sock_flow_table) {
4467 struct rps_dev_flow *rflow;
4468 u32 next_cpu;
4469 u32 ident;
4470
4471 /* First check into global flow table if there is a match */
4472 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4473 if ((ident ^ hash) & ~rps_cpu_mask)
4474 goto try_rps;
4475
4476 next_cpu = ident & rps_cpu_mask;
4477
4478 /* OK, now we know there is a match,
4479 * we can look at the local (per receive queue) flow table
4480 */
4481 rflow = &flow_table->flows[hash & flow_table->mask];
4482 tcpu = rflow->cpu;
4483
4484 /*
4485 * If the desired CPU (where last recvmsg was done) is
4486 * different from current CPU (one in the rx-queue flow
4487 * table entry), switch if one of the following holds:
4488 * - Current CPU is unset (>= nr_cpu_ids).
4489 * - Current CPU is offline.
4490 * - The current CPU's queue tail has advanced beyond the
4491 * last packet that was enqueued using this table entry.
4492 * This guarantees that all previous packets for the flow
4493 * have been dequeued, thus preserving in order delivery.
4494 */
4495 if (unlikely(tcpu != next_cpu) &&
4496 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4497 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4498 rflow->last_qtail)) >= 0)) {
4499 tcpu = next_cpu;
4500 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4501 }
4502
4503 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4504 *rflowp = rflow;
4505 cpu = tcpu;
4506 goto done;
4507 }
4508 }
4509
4510try_rps:
4511
4512 if (map) {
4513 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4514 if (cpu_online(tcpu)) {
4515 cpu = tcpu;
4516 goto done;
4517 }
4518 }
4519
4520done:
4521 return cpu;
4522}
4523
4524#ifdef CONFIG_RFS_ACCEL
4525
4526/**
4527 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4528 * @dev: Device on which the filter was set
4529 * @rxq_index: RX queue index
4530 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4531 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4532 *
4533 * Drivers that implement ndo_rx_flow_steer() should periodically call
4534 * this function for each installed filter and remove the filters for
4535 * which it returns %true.
4536 */
4537bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4538 u32 flow_id, u16 filter_id)
4539{
4540 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4541 struct rps_dev_flow_table *flow_table;
4542 struct rps_dev_flow *rflow;
4543 bool expire = true;
4544 unsigned int cpu;
4545
4546 rcu_read_lock();
4547 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4548 if (flow_table && flow_id <= flow_table->mask) {
4549 rflow = &flow_table->flows[flow_id];
4550 cpu = READ_ONCE(rflow->cpu);
4551 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4552 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4553 rflow->last_qtail) <
4554 (int)(10 * flow_table->mask)))
4555 expire = false;
4556 }
4557 rcu_read_unlock();
4558 return expire;
4559}
4560EXPORT_SYMBOL(rps_may_expire_flow);
4561
4562#endif /* CONFIG_RFS_ACCEL */
4563
4564/* Called from hardirq (IPI) context */
4565static void rps_trigger_softirq(void *data)
4566{
4567 struct softnet_data *sd = data;
4568
4569 ____napi_schedule(sd, &sd->backlog);
4570 sd->received_rps++;
4571}
4572
4573#endif /* CONFIG_RPS */
4574
4575/* Called from hardirq (IPI) context */
4576static void trigger_rx_softirq(void *data)
4577{
4578 struct softnet_data *sd = data;
4579
4580 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4581 smp_store_release(&sd->defer_ipi_scheduled, 0);
4582}
4583
4584/*
4585 * Check if this softnet_data structure is another cpu one
4586 * If yes, queue it to our IPI list and return 1
4587 * If no, return 0
4588 */
4589static int napi_schedule_rps(struct softnet_data *sd)
4590{
4591 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4592
4593#ifdef CONFIG_RPS
4594 if (sd != mysd) {
4595 sd->rps_ipi_next = mysd->rps_ipi_list;
4596 mysd->rps_ipi_list = sd;
4597
4598 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4599 return 1;
4600 }
4601#endif /* CONFIG_RPS */
4602 __napi_schedule_irqoff(&mysd->backlog);
4603 return 0;
4604}
4605
4606#ifdef CONFIG_NET_FLOW_LIMIT
4607int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4608#endif
4609
4610static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4611{
4612#ifdef CONFIG_NET_FLOW_LIMIT
4613 struct sd_flow_limit *fl;
4614 struct softnet_data *sd;
4615 unsigned int old_flow, new_flow;
4616
4617 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4618 return false;
4619
4620 sd = this_cpu_ptr(&softnet_data);
4621
4622 rcu_read_lock();
4623 fl = rcu_dereference(sd->flow_limit);
4624 if (fl) {
4625 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4626 old_flow = fl->history[fl->history_head];
4627 fl->history[fl->history_head] = new_flow;
4628
4629 fl->history_head++;
4630 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4631
4632 if (likely(fl->buckets[old_flow]))
4633 fl->buckets[old_flow]--;
4634
4635 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4636 fl->count++;
4637 rcu_read_unlock();
4638 return true;
4639 }
4640 }
4641 rcu_read_unlock();
4642#endif
4643 return false;
4644}
4645
4646/*
4647 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4648 * queue (may be a remote CPU queue).
4649 */
4650static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4651 unsigned int *qtail)
4652{
4653 enum skb_drop_reason reason;
4654 struct softnet_data *sd;
4655 unsigned long flags;
4656 unsigned int qlen;
4657
4658 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4659 sd = &per_cpu(softnet_data, cpu);
4660
4661 rps_lock_irqsave(sd, &flags);
4662 if (!netif_running(skb->dev))
4663 goto drop;
4664 qlen = skb_queue_len(&sd->input_pkt_queue);
4665 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4666 if (qlen) {
4667enqueue:
4668 __skb_queue_tail(&sd->input_pkt_queue, skb);
4669 input_queue_tail_incr_save(sd, qtail);
4670 rps_unlock_irq_restore(sd, &flags);
4671 return NET_RX_SUCCESS;
4672 }
4673
4674 /* Schedule NAPI for backlog device
4675 * We can use non atomic operation since we own the queue lock
4676 */
4677 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4678 napi_schedule_rps(sd);
4679 goto enqueue;
4680 }
4681 reason = SKB_DROP_REASON_CPU_BACKLOG;
4682
4683drop:
4684 sd->dropped++;
4685 rps_unlock_irq_restore(sd, &flags);
4686
4687 dev_core_stats_rx_dropped_inc(skb->dev);
4688 kfree_skb_reason(skb, reason);
4689 return NET_RX_DROP;
4690}
4691
4692static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4693{
4694 struct net_device *dev = skb->dev;
4695 struct netdev_rx_queue *rxqueue;
4696
4697 rxqueue = dev->_rx;
4698
4699 if (skb_rx_queue_recorded(skb)) {
4700 u16 index = skb_get_rx_queue(skb);
4701
4702 if (unlikely(index >= dev->real_num_rx_queues)) {
4703 WARN_ONCE(dev->real_num_rx_queues > 1,
4704 "%s received packet on queue %u, but number "
4705 "of RX queues is %u\n",
4706 dev->name, index, dev->real_num_rx_queues);
4707
4708 return rxqueue; /* Return first rxqueue */
4709 }
4710 rxqueue += index;
4711 }
4712 return rxqueue;
4713}
4714
4715u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4716 struct bpf_prog *xdp_prog)
4717{
4718 void *orig_data, *orig_data_end, *hard_start;
4719 struct netdev_rx_queue *rxqueue;
4720 bool orig_bcast, orig_host;
4721 u32 mac_len, frame_sz;
4722 __be16 orig_eth_type;
4723 struct ethhdr *eth;
4724 u32 metalen, act;
4725 int off;
4726
4727 /* The XDP program wants to see the packet starting at the MAC
4728 * header.
4729 */
4730 mac_len = skb->data - skb_mac_header(skb);
4731 hard_start = skb->data - skb_headroom(skb);
4732
4733 /* SKB "head" area always have tailroom for skb_shared_info */
4734 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4735 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4736
4737 rxqueue = netif_get_rxqueue(skb);
4738 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4739 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4740 skb_headlen(skb) + mac_len, true);
4741
4742 orig_data_end = xdp->data_end;
4743 orig_data = xdp->data;
4744 eth = (struct ethhdr *)xdp->data;
4745 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4746 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4747 orig_eth_type = eth->h_proto;
4748
4749 act = bpf_prog_run_xdp(xdp_prog, xdp);
4750
4751 /* check if bpf_xdp_adjust_head was used */
4752 off = xdp->data - orig_data;
4753 if (off) {
4754 if (off > 0)
4755 __skb_pull(skb, off);
4756 else if (off < 0)
4757 __skb_push(skb, -off);
4758
4759 skb->mac_header += off;
4760 skb_reset_network_header(skb);
4761 }
4762
4763 /* check if bpf_xdp_adjust_tail was used */
4764 off = xdp->data_end - orig_data_end;
4765 if (off != 0) {
4766 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4767 skb->len += off; /* positive on grow, negative on shrink */
4768 }
4769
4770 /* check if XDP changed eth hdr such SKB needs update */
4771 eth = (struct ethhdr *)xdp->data;
4772 if ((orig_eth_type != eth->h_proto) ||
4773 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4774 skb->dev->dev_addr)) ||
4775 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4776 __skb_push(skb, ETH_HLEN);
4777 skb->pkt_type = PACKET_HOST;
4778 skb->protocol = eth_type_trans(skb, skb->dev);
4779 }
4780
4781 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4782 * before calling us again on redirect path. We do not call do_redirect
4783 * as we leave that up to the caller.
4784 *
4785 * Caller is responsible for managing lifetime of skb (i.e. calling
4786 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4787 */
4788 switch (act) {
4789 case XDP_REDIRECT:
4790 case XDP_TX:
4791 __skb_push(skb, mac_len);
4792 break;
4793 case XDP_PASS:
4794 metalen = xdp->data - xdp->data_meta;
4795 if (metalen)
4796 skb_metadata_set(skb, metalen);
4797 break;
4798 }
4799
4800 return act;
4801}
4802
4803static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4804 struct xdp_buff *xdp,
4805 struct bpf_prog *xdp_prog)
4806{
4807 u32 act = XDP_DROP;
4808
4809 /* Reinjected packets coming from act_mirred or similar should
4810 * not get XDP generic processing.
4811 */
4812 if (skb_is_redirected(skb))
4813 return XDP_PASS;
4814
4815 /* XDP packets must be linear and must have sufficient headroom
4816 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4817 * native XDP provides, thus we need to do it here as well.
4818 */
4819 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4820 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4821 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4822 int troom = skb->tail + skb->data_len - skb->end;
4823
4824 /* In case we have to go down the path and also linearize,
4825 * then lets do the pskb_expand_head() work just once here.
4826 */
4827 if (pskb_expand_head(skb,
4828 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4829 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4830 goto do_drop;
4831 if (skb_linearize(skb))
4832 goto do_drop;
4833 }
4834
4835 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4836 switch (act) {
4837 case XDP_REDIRECT:
4838 case XDP_TX:
4839 case XDP_PASS:
4840 break;
4841 default:
4842 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4843 fallthrough;
4844 case XDP_ABORTED:
4845 trace_xdp_exception(skb->dev, xdp_prog, act);
4846 fallthrough;
4847 case XDP_DROP:
4848 do_drop:
4849 kfree_skb(skb);
4850 break;
4851 }
4852
4853 return act;
4854}
4855
4856/* When doing generic XDP we have to bypass the qdisc layer and the
4857 * network taps in order to match in-driver-XDP behavior. This also means
4858 * that XDP packets are able to starve other packets going through a qdisc,
4859 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4860 * queues, so they do not have this starvation issue.
4861 */
4862void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4863{
4864 struct net_device *dev = skb->dev;
4865 struct netdev_queue *txq;
4866 bool free_skb = true;
4867 int cpu, rc;
4868
4869 txq = netdev_core_pick_tx(dev, skb, NULL);
4870 cpu = smp_processor_id();
4871 HARD_TX_LOCK(dev, txq, cpu);
4872 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4873 rc = netdev_start_xmit(skb, dev, txq, 0);
4874 if (dev_xmit_complete(rc))
4875 free_skb = false;
4876 }
4877 HARD_TX_UNLOCK(dev, txq);
4878 if (free_skb) {
4879 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4880 dev_core_stats_tx_dropped_inc(dev);
4881 kfree_skb(skb);
4882 }
4883}
4884
4885static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4886
4887int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4888{
4889 if (xdp_prog) {
4890 struct xdp_buff xdp;
4891 u32 act;
4892 int err;
4893
4894 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4895 if (act != XDP_PASS) {
4896 switch (act) {
4897 case XDP_REDIRECT:
4898 err = xdp_do_generic_redirect(skb->dev, skb,
4899 &xdp, xdp_prog);
4900 if (err)
4901 goto out_redir;
4902 break;
4903 case XDP_TX:
4904 generic_xdp_tx(skb, xdp_prog);
4905 break;
4906 }
4907 return XDP_DROP;
4908 }
4909 }
4910 return XDP_PASS;
4911out_redir:
4912 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4913 return XDP_DROP;
4914}
4915EXPORT_SYMBOL_GPL(do_xdp_generic);
4916
4917static int netif_rx_internal(struct sk_buff *skb)
4918{
4919 int ret;
4920
4921 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4922
4923 trace_netif_rx(skb);
4924
4925#ifdef CONFIG_RPS
4926 if (static_branch_unlikely(&rps_needed)) {
4927 struct rps_dev_flow voidflow, *rflow = &voidflow;
4928 int cpu;
4929
4930 rcu_read_lock();
4931
4932 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4933 if (cpu < 0)
4934 cpu = smp_processor_id();
4935
4936 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4937
4938 rcu_read_unlock();
4939 } else
4940#endif
4941 {
4942 unsigned int qtail;
4943
4944 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4945 }
4946 return ret;
4947}
4948
4949/**
4950 * __netif_rx - Slightly optimized version of netif_rx
4951 * @skb: buffer to post
4952 *
4953 * This behaves as netif_rx except that it does not disable bottom halves.
4954 * As a result this function may only be invoked from the interrupt context
4955 * (either hard or soft interrupt).
4956 */
4957int __netif_rx(struct sk_buff *skb)
4958{
4959 int ret;
4960
4961 lockdep_assert_once(hardirq_count() | softirq_count());
4962
4963 trace_netif_rx_entry(skb);
4964 ret = netif_rx_internal(skb);
4965 trace_netif_rx_exit(ret);
4966 return ret;
4967}
4968EXPORT_SYMBOL(__netif_rx);
4969
4970/**
4971 * netif_rx - post buffer to the network code
4972 * @skb: buffer to post
4973 *
4974 * This function receives a packet from a device driver and queues it for
4975 * the upper (protocol) levels to process via the backlog NAPI device. It
4976 * always succeeds. The buffer may be dropped during processing for
4977 * congestion control or by the protocol layers.
4978 * The network buffer is passed via the backlog NAPI device. Modern NIC
4979 * driver should use NAPI and GRO.
4980 * This function can used from interrupt and from process context. The
4981 * caller from process context must not disable interrupts before invoking
4982 * this function.
4983 *
4984 * return values:
4985 * NET_RX_SUCCESS (no congestion)
4986 * NET_RX_DROP (packet was dropped)
4987 *
4988 */
4989int netif_rx(struct sk_buff *skb)
4990{
4991 bool need_bh_off = !(hardirq_count() | softirq_count());
4992 int ret;
4993
4994 if (need_bh_off)
4995 local_bh_disable();
4996 trace_netif_rx_entry(skb);
4997 ret = netif_rx_internal(skb);
4998 trace_netif_rx_exit(ret);
4999 if (need_bh_off)
5000 local_bh_enable();
5001 return ret;
5002}
5003EXPORT_SYMBOL(netif_rx);
5004
5005static __latent_entropy void net_tx_action(struct softirq_action *h)
5006{
5007 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5008
5009 if (sd->completion_queue) {
5010 struct sk_buff *clist;
5011
5012 local_irq_disable();
5013 clist = sd->completion_queue;
5014 sd->completion_queue = NULL;
5015 local_irq_enable();
5016
5017 while (clist) {
5018 struct sk_buff *skb = clist;
5019
5020 clist = clist->next;
5021
5022 WARN_ON(refcount_read(&skb->users));
5023 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5024 trace_consume_skb(skb, net_tx_action);
5025 else
5026 trace_kfree_skb(skb, net_tx_action,
5027 SKB_DROP_REASON_NOT_SPECIFIED);
5028
5029 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5030 __kfree_skb(skb);
5031 else
5032 __kfree_skb_defer(skb);
5033 }
5034 }
5035
5036 if (sd->output_queue) {
5037 struct Qdisc *head;
5038
5039 local_irq_disable();
5040 head = sd->output_queue;
5041 sd->output_queue = NULL;
5042 sd->output_queue_tailp = &sd->output_queue;
5043 local_irq_enable();
5044
5045 rcu_read_lock();
5046
5047 while (head) {
5048 struct Qdisc *q = head;
5049 spinlock_t *root_lock = NULL;
5050
5051 head = head->next_sched;
5052
5053 /* We need to make sure head->next_sched is read
5054 * before clearing __QDISC_STATE_SCHED
5055 */
5056 smp_mb__before_atomic();
5057
5058 if (!(q->flags & TCQ_F_NOLOCK)) {
5059 root_lock = qdisc_lock(q);
5060 spin_lock(root_lock);
5061 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5062 &q->state))) {
5063 /* There is a synchronize_net() between
5064 * STATE_DEACTIVATED flag being set and
5065 * qdisc_reset()/some_qdisc_is_busy() in
5066 * dev_deactivate(), so we can safely bail out
5067 * early here to avoid data race between
5068 * qdisc_deactivate() and some_qdisc_is_busy()
5069 * for lockless qdisc.
5070 */
5071 clear_bit(__QDISC_STATE_SCHED, &q->state);
5072 continue;
5073 }
5074
5075 clear_bit(__QDISC_STATE_SCHED, &q->state);
5076 qdisc_run(q);
5077 if (root_lock)
5078 spin_unlock(root_lock);
5079 }
5080
5081 rcu_read_unlock();
5082 }
5083
5084 xfrm_dev_backlog(sd);
5085}
5086
5087#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5088/* This hook is defined here for ATM LANE */
5089int (*br_fdb_test_addr_hook)(struct net_device *dev,
5090 unsigned char *addr) __read_mostly;
5091EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5092#endif
5093
5094static inline struct sk_buff *
5095sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5096 struct net_device *orig_dev, bool *another)
5097{
5098#ifdef CONFIG_NET_CLS_ACT
5099 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5100 struct tcf_result cl_res;
5101
5102 /* If there's at least one ingress present somewhere (so
5103 * we get here via enabled static key), remaining devices
5104 * that are not configured with an ingress qdisc will bail
5105 * out here.
5106 */
5107 if (!miniq)
5108 return skb;
5109
5110 if (*pt_prev) {
5111 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5112 *pt_prev = NULL;
5113 }
5114
5115 qdisc_skb_cb(skb)->pkt_len = skb->len;
5116 tc_skb_cb(skb)->mru = 0;
5117 tc_skb_cb(skb)->post_ct = false;
5118 skb->tc_at_ingress = 1;
5119 mini_qdisc_bstats_cpu_update(miniq, skb);
5120
5121 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5122 case TC_ACT_OK:
5123 case TC_ACT_RECLASSIFY:
5124 skb->tc_index = TC_H_MIN(cl_res.classid);
5125 break;
5126 case TC_ACT_SHOT:
5127 mini_qdisc_qstats_cpu_drop(miniq);
5128 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5129 *ret = NET_RX_DROP;
5130 return NULL;
5131 case TC_ACT_STOLEN:
5132 case TC_ACT_QUEUED:
5133 case TC_ACT_TRAP:
5134 consume_skb(skb);
5135 *ret = NET_RX_SUCCESS;
5136 return NULL;
5137 case TC_ACT_REDIRECT:
5138 /* skb_mac_header check was done by cls/act_bpf, so
5139 * we can safely push the L2 header back before
5140 * redirecting to another netdev
5141 */
5142 __skb_push(skb, skb->mac_len);
5143 if (skb_do_redirect(skb) == -EAGAIN) {
5144 __skb_pull(skb, skb->mac_len);
5145 *another = true;
5146 break;
5147 }
5148 *ret = NET_RX_SUCCESS;
5149 return NULL;
5150 case TC_ACT_CONSUMED:
5151 *ret = NET_RX_SUCCESS;
5152 return NULL;
5153 default:
5154 break;
5155 }
5156#endif /* CONFIG_NET_CLS_ACT */
5157 return skb;
5158}
5159
5160/**
5161 * netdev_is_rx_handler_busy - check if receive handler is registered
5162 * @dev: device to check
5163 *
5164 * Check if a receive handler is already registered for a given device.
5165 * Return true if there one.
5166 *
5167 * The caller must hold the rtnl_mutex.
5168 */
5169bool netdev_is_rx_handler_busy(struct net_device *dev)
5170{
5171 ASSERT_RTNL();
5172 return dev && rtnl_dereference(dev->rx_handler);
5173}
5174EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5175
5176/**
5177 * netdev_rx_handler_register - register receive handler
5178 * @dev: device to register a handler for
5179 * @rx_handler: receive handler to register
5180 * @rx_handler_data: data pointer that is used by rx handler
5181 *
5182 * Register a receive handler for a device. This handler will then be
5183 * called from __netif_receive_skb. A negative errno code is returned
5184 * on a failure.
5185 *
5186 * The caller must hold the rtnl_mutex.
5187 *
5188 * For a general description of rx_handler, see enum rx_handler_result.
5189 */
5190int netdev_rx_handler_register(struct net_device *dev,
5191 rx_handler_func_t *rx_handler,
5192 void *rx_handler_data)
5193{
5194 if (netdev_is_rx_handler_busy(dev))
5195 return -EBUSY;
5196
5197 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5198 return -EINVAL;
5199
5200 /* Note: rx_handler_data must be set before rx_handler */
5201 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5202 rcu_assign_pointer(dev->rx_handler, rx_handler);
5203
5204 return 0;
5205}
5206EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5207
5208/**
5209 * netdev_rx_handler_unregister - unregister receive handler
5210 * @dev: device to unregister a handler from
5211 *
5212 * Unregister a receive handler from a device.
5213 *
5214 * The caller must hold the rtnl_mutex.
5215 */
5216void netdev_rx_handler_unregister(struct net_device *dev)
5217{
5218
5219 ASSERT_RTNL();
5220 RCU_INIT_POINTER(dev->rx_handler, NULL);
5221 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5222 * section has a guarantee to see a non NULL rx_handler_data
5223 * as well.
5224 */
5225 synchronize_net();
5226 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5227}
5228EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5229
5230/*
5231 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5232 * the special handling of PFMEMALLOC skbs.
5233 */
5234static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5235{
5236 switch (skb->protocol) {
5237 case htons(ETH_P_ARP):
5238 case htons(ETH_P_IP):
5239 case htons(ETH_P_IPV6):
5240 case htons(ETH_P_8021Q):
5241 case htons(ETH_P_8021AD):
5242 return true;
5243 default:
5244 return false;
5245 }
5246}
5247
5248static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5249 int *ret, struct net_device *orig_dev)
5250{
5251 if (nf_hook_ingress_active(skb)) {
5252 int ingress_retval;
5253
5254 if (*pt_prev) {
5255 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5256 *pt_prev = NULL;
5257 }
5258
5259 rcu_read_lock();
5260 ingress_retval = nf_hook_ingress(skb);
5261 rcu_read_unlock();
5262 return ingress_retval;
5263 }
5264 return 0;
5265}
5266
5267static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5268 struct packet_type **ppt_prev)
5269{
5270 struct packet_type *ptype, *pt_prev;
5271 rx_handler_func_t *rx_handler;
5272 struct sk_buff *skb = *pskb;
5273 struct net_device *orig_dev;
5274 bool deliver_exact = false;
5275 int ret = NET_RX_DROP;
5276 __be16 type;
5277
5278 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5279
5280 trace_netif_receive_skb(skb);
5281
5282 orig_dev = skb->dev;
5283
5284 skb_reset_network_header(skb);
5285 if (!skb_transport_header_was_set(skb))
5286 skb_reset_transport_header(skb);
5287 skb_reset_mac_len(skb);
5288
5289 pt_prev = NULL;
5290
5291another_round:
5292 skb->skb_iif = skb->dev->ifindex;
5293
5294 __this_cpu_inc(softnet_data.processed);
5295
5296 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5297 int ret2;
5298
5299 migrate_disable();
5300 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5301 migrate_enable();
5302
5303 if (ret2 != XDP_PASS) {
5304 ret = NET_RX_DROP;
5305 goto out;
5306 }
5307 }
5308
5309 if (eth_type_vlan(skb->protocol)) {
5310 skb = skb_vlan_untag(skb);
5311 if (unlikely(!skb))
5312 goto out;
5313 }
5314
5315 if (skb_skip_tc_classify(skb))
5316 goto skip_classify;
5317
5318 if (pfmemalloc)
5319 goto skip_taps;
5320
5321 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5322 if (pt_prev)
5323 ret = deliver_skb(skb, pt_prev, orig_dev);
5324 pt_prev = ptype;
5325 }
5326
5327 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5328 if (pt_prev)
5329 ret = deliver_skb(skb, pt_prev, orig_dev);
5330 pt_prev = ptype;
5331 }
5332
5333skip_taps:
5334#ifdef CONFIG_NET_INGRESS
5335 if (static_branch_unlikely(&ingress_needed_key)) {
5336 bool another = false;
5337
5338 nf_skip_egress(skb, true);
5339 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5340 &another);
5341 if (another)
5342 goto another_round;
5343 if (!skb)
5344 goto out;
5345
5346 nf_skip_egress(skb, false);
5347 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5348 goto out;
5349 }
5350#endif
5351 skb_reset_redirect(skb);
5352skip_classify:
5353 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5354 goto drop;
5355
5356 if (skb_vlan_tag_present(skb)) {
5357 if (pt_prev) {
5358 ret = deliver_skb(skb, pt_prev, orig_dev);
5359 pt_prev = NULL;
5360 }
5361 if (vlan_do_receive(&skb))
5362 goto another_round;
5363 else if (unlikely(!skb))
5364 goto out;
5365 }
5366
5367 rx_handler = rcu_dereference(skb->dev->rx_handler);
5368 if (rx_handler) {
5369 if (pt_prev) {
5370 ret = deliver_skb(skb, pt_prev, orig_dev);
5371 pt_prev = NULL;
5372 }
5373 switch (rx_handler(&skb)) {
5374 case RX_HANDLER_CONSUMED:
5375 ret = NET_RX_SUCCESS;
5376 goto out;
5377 case RX_HANDLER_ANOTHER:
5378 goto another_round;
5379 case RX_HANDLER_EXACT:
5380 deliver_exact = true;
5381 break;
5382 case RX_HANDLER_PASS:
5383 break;
5384 default:
5385 BUG();
5386 }
5387 }
5388
5389 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5390check_vlan_id:
5391 if (skb_vlan_tag_get_id(skb)) {
5392 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5393 * find vlan device.
5394 */
5395 skb->pkt_type = PACKET_OTHERHOST;
5396 } else if (eth_type_vlan(skb->protocol)) {
5397 /* Outer header is 802.1P with vlan 0, inner header is
5398 * 802.1Q or 802.1AD and vlan_do_receive() above could
5399 * not find vlan dev for vlan id 0.
5400 */
5401 __vlan_hwaccel_clear_tag(skb);
5402 skb = skb_vlan_untag(skb);
5403 if (unlikely(!skb))
5404 goto out;
5405 if (vlan_do_receive(&skb))
5406 /* After stripping off 802.1P header with vlan 0
5407 * vlan dev is found for inner header.
5408 */
5409 goto another_round;
5410 else if (unlikely(!skb))
5411 goto out;
5412 else
5413 /* We have stripped outer 802.1P vlan 0 header.
5414 * But could not find vlan dev.
5415 * check again for vlan id to set OTHERHOST.
5416 */
5417 goto check_vlan_id;
5418 }
5419 /* Note: we might in the future use prio bits
5420 * and set skb->priority like in vlan_do_receive()
5421 * For the time being, just ignore Priority Code Point
5422 */
5423 __vlan_hwaccel_clear_tag(skb);
5424 }
5425
5426 type = skb->protocol;
5427
5428 /* deliver only exact match when indicated */
5429 if (likely(!deliver_exact)) {
5430 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5431 &ptype_base[ntohs(type) &
5432 PTYPE_HASH_MASK]);
5433 }
5434
5435 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5436 &orig_dev->ptype_specific);
5437
5438 if (unlikely(skb->dev != orig_dev)) {
5439 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5440 &skb->dev->ptype_specific);
5441 }
5442
5443 if (pt_prev) {
5444 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5445 goto drop;
5446 *ppt_prev = pt_prev;
5447 } else {
5448drop:
5449 if (!deliver_exact)
5450 dev_core_stats_rx_dropped_inc(skb->dev);
5451 else
5452 dev_core_stats_rx_nohandler_inc(skb->dev);
5453 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5454 /* Jamal, now you will not able to escape explaining
5455 * me how you were going to use this. :-)
5456 */
5457 ret = NET_RX_DROP;
5458 }
5459
5460out:
5461 /* The invariant here is that if *ppt_prev is not NULL
5462 * then skb should also be non-NULL.
5463 *
5464 * Apparently *ppt_prev assignment above holds this invariant due to
5465 * skb dereferencing near it.
5466 */
5467 *pskb = skb;
5468 return ret;
5469}
5470
5471static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5472{
5473 struct net_device *orig_dev = skb->dev;
5474 struct packet_type *pt_prev = NULL;
5475 int ret;
5476
5477 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5478 if (pt_prev)
5479 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5480 skb->dev, pt_prev, orig_dev);
5481 return ret;
5482}
5483
5484/**
5485 * netif_receive_skb_core - special purpose version of netif_receive_skb
5486 * @skb: buffer to process
5487 *
5488 * More direct receive version of netif_receive_skb(). It should
5489 * only be used by callers that have a need to skip RPS and Generic XDP.
5490 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5491 *
5492 * This function may only be called from softirq context and interrupts
5493 * should be enabled.
5494 *
5495 * Return values (usually ignored):
5496 * NET_RX_SUCCESS: no congestion
5497 * NET_RX_DROP: packet was dropped
5498 */
5499int netif_receive_skb_core(struct sk_buff *skb)
5500{
5501 int ret;
5502
5503 rcu_read_lock();
5504 ret = __netif_receive_skb_one_core(skb, false);
5505 rcu_read_unlock();
5506
5507 return ret;
5508}
5509EXPORT_SYMBOL(netif_receive_skb_core);
5510
5511static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5512 struct packet_type *pt_prev,
5513 struct net_device *orig_dev)
5514{
5515 struct sk_buff *skb, *next;
5516
5517 if (!pt_prev)
5518 return;
5519 if (list_empty(head))
5520 return;
5521 if (pt_prev->list_func != NULL)
5522 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5523 ip_list_rcv, head, pt_prev, orig_dev);
5524 else
5525 list_for_each_entry_safe(skb, next, head, list) {
5526 skb_list_del_init(skb);
5527 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5528 }
5529}
5530
5531static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5532{
5533 /* Fast-path assumptions:
5534 * - There is no RX handler.
5535 * - Only one packet_type matches.
5536 * If either of these fails, we will end up doing some per-packet
5537 * processing in-line, then handling the 'last ptype' for the whole
5538 * sublist. This can't cause out-of-order delivery to any single ptype,
5539 * because the 'last ptype' must be constant across the sublist, and all
5540 * other ptypes are handled per-packet.
5541 */
5542 /* Current (common) ptype of sublist */
5543 struct packet_type *pt_curr = NULL;
5544 /* Current (common) orig_dev of sublist */
5545 struct net_device *od_curr = NULL;
5546 struct list_head sublist;
5547 struct sk_buff *skb, *next;
5548
5549 INIT_LIST_HEAD(&sublist);
5550 list_for_each_entry_safe(skb, next, head, list) {
5551 struct net_device *orig_dev = skb->dev;
5552 struct packet_type *pt_prev = NULL;
5553
5554 skb_list_del_init(skb);
5555 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5556 if (!pt_prev)
5557 continue;
5558 if (pt_curr != pt_prev || od_curr != orig_dev) {
5559 /* dispatch old sublist */
5560 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5561 /* start new sublist */
5562 INIT_LIST_HEAD(&sublist);
5563 pt_curr = pt_prev;
5564 od_curr = orig_dev;
5565 }
5566 list_add_tail(&skb->list, &sublist);
5567 }
5568
5569 /* dispatch final sublist */
5570 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5571}
5572
5573static int __netif_receive_skb(struct sk_buff *skb)
5574{
5575 int ret;
5576
5577 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5578 unsigned int noreclaim_flag;
5579
5580 /*
5581 * PFMEMALLOC skbs are special, they should
5582 * - be delivered to SOCK_MEMALLOC sockets only
5583 * - stay away from userspace
5584 * - have bounded memory usage
5585 *
5586 * Use PF_MEMALLOC as this saves us from propagating the allocation
5587 * context down to all allocation sites.
5588 */
5589 noreclaim_flag = memalloc_noreclaim_save();
5590 ret = __netif_receive_skb_one_core(skb, true);
5591 memalloc_noreclaim_restore(noreclaim_flag);
5592 } else
5593 ret = __netif_receive_skb_one_core(skb, false);
5594
5595 return ret;
5596}
5597
5598static void __netif_receive_skb_list(struct list_head *head)
5599{
5600 unsigned long noreclaim_flag = 0;
5601 struct sk_buff *skb, *next;
5602 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5603
5604 list_for_each_entry_safe(skb, next, head, list) {
5605 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5606 struct list_head sublist;
5607
5608 /* Handle the previous sublist */
5609 list_cut_before(&sublist, head, &skb->list);
5610 if (!list_empty(&sublist))
5611 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5612 pfmemalloc = !pfmemalloc;
5613 /* See comments in __netif_receive_skb */
5614 if (pfmemalloc)
5615 noreclaim_flag = memalloc_noreclaim_save();
5616 else
5617 memalloc_noreclaim_restore(noreclaim_flag);
5618 }
5619 }
5620 /* Handle the remaining sublist */
5621 if (!list_empty(head))
5622 __netif_receive_skb_list_core(head, pfmemalloc);
5623 /* Restore pflags */
5624 if (pfmemalloc)
5625 memalloc_noreclaim_restore(noreclaim_flag);
5626}
5627
5628static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5629{
5630 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5631 struct bpf_prog *new = xdp->prog;
5632 int ret = 0;
5633
5634 switch (xdp->command) {
5635 case XDP_SETUP_PROG:
5636 rcu_assign_pointer(dev->xdp_prog, new);
5637 if (old)
5638 bpf_prog_put(old);
5639
5640 if (old && !new) {
5641 static_branch_dec(&generic_xdp_needed_key);
5642 } else if (new && !old) {
5643 static_branch_inc(&generic_xdp_needed_key);
5644 dev_disable_lro(dev);
5645 dev_disable_gro_hw(dev);
5646 }
5647 break;
5648
5649 default:
5650 ret = -EINVAL;
5651 break;
5652 }
5653
5654 return ret;
5655}
5656
5657static int netif_receive_skb_internal(struct sk_buff *skb)
5658{
5659 int ret;
5660
5661 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5662
5663 if (skb_defer_rx_timestamp(skb))
5664 return NET_RX_SUCCESS;
5665
5666 rcu_read_lock();
5667#ifdef CONFIG_RPS
5668 if (static_branch_unlikely(&rps_needed)) {
5669 struct rps_dev_flow voidflow, *rflow = &voidflow;
5670 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5671
5672 if (cpu >= 0) {
5673 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5674 rcu_read_unlock();
5675 return ret;
5676 }
5677 }
5678#endif
5679 ret = __netif_receive_skb(skb);
5680 rcu_read_unlock();
5681 return ret;
5682}
5683
5684void netif_receive_skb_list_internal(struct list_head *head)
5685{
5686 struct sk_buff *skb, *next;
5687 struct list_head sublist;
5688
5689 INIT_LIST_HEAD(&sublist);
5690 list_for_each_entry_safe(skb, next, head, list) {
5691 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5692 skb_list_del_init(skb);
5693 if (!skb_defer_rx_timestamp(skb))
5694 list_add_tail(&skb->list, &sublist);
5695 }
5696 list_splice_init(&sublist, head);
5697
5698 rcu_read_lock();
5699#ifdef CONFIG_RPS
5700 if (static_branch_unlikely(&rps_needed)) {
5701 list_for_each_entry_safe(skb, next, head, list) {
5702 struct rps_dev_flow voidflow, *rflow = &voidflow;
5703 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5704
5705 if (cpu >= 0) {
5706 /* Will be handled, remove from list */
5707 skb_list_del_init(skb);
5708 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5709 }
5710 }
5711 }
5712#endif
5713 __netif_receive_skb_list(head);
5714 rcu_read_unlock();
5715}
5716
5717/**
5718 * netif_receive_skb - process receive buffer from network
5719 * @skb: buffer to process
5720 *
5721 * netif_receive_skb() is the main receive data processing function.
5722 * It always succeeds. The buffer may be dropped during processing
5723 * for congestion control or by the protocol layers.
5724 *
5725 * This function may only be called from softirq context and interrupts
5726 * should be enabled.
5727 *
5728 * Return values (usually ignored):
5729 * NET_RX_SUCCESS: no congestion
5730 * NET_RX_DROP: packet was dropped
5731 */
5732int netif_receive_skb(struct sk_buff *skb)
5733{
5734 int ret;
5735
5736 trace_netif_receive_skb_entry(skb);
5737
5738 ret = netif_receive_skb_internal(skb);
5739 trace_netif_receive_skb_exit(ret);
5740
5741 return ret;
5742}
5743EXPORT_SYMBOL(netif_receive_skb);
5744
5745/**
5746 * netif_receive_skb_list - process many receive buffers from network
5747 * @head: list of skbs to process.
5748 *
5749 * Since return value of netif_receive_skb() is normally ignored, and
5750 * wouldn't be meaningful for a list, this function returns void.
5751 *
5752 * This function may only be called from softirq context and interrupts
5753 * should be enabled.
5754 */
5755void netif_receive_skb_list(struct list_head *head)
5756{
5757 struct sk_buff *skb;
5758
5759 if (list_empty(head))
5760 return;
5761 if (trace_netif_receive_skb_list_entry_enabled()) {
5762 list_for_each_entry(skb, head, list)
5763 trace_netif_receive_skb_list_entry(skb);
5764 }
5765 netif_receive_skb_list_internal(head);
5766 trace_netif_receive_skb_list_exit(0);
5767}
5768EXPORT_SYMBOL(netif_receive_skb_list);
5769
5770static DEFINE_PER_CPU(struct work_struct, flush_works);
5771
5772/* Network device is going away, flush any packets still pending */
5773static void flush_backlog(struct work_struct *work)
5774{
5775 struct sk_buff *skb, *tmp;
5776 struct softnet_data *sd;
5777
5778 local_bh_disable();
5779 sd = this_cpu_ptr(&softnet_data);
5780
5781 rps_lock_irq_disable(sd);
5782 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5783 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5784 __skb_unlink(skb, &sd->input_pkt_queue);
5785 dev_kfree_skb_irq(skb);
5786 input_queue_head_incr(sd);
5787 }
5788 }
5789 rps_unlock_irq_enable(sd);
5790
5791 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5792 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5793 __skb_unlink(skb, &sd->process_queue);
5794 kfree_skb(skb);
5795 input_queue_head_incr(sd);
5796 }
5797 }
5798 local_bh_enable();
5799}
5800
5801static bool flush_required(int cpu)
5802{
5803#if IS_ENABLED(CONFIG_RPS)
5804 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5805 bool do_flush;
5806
5807 rps_lock_irq_disable(sd);
5808
5809 /* as insertion into process_queue happens with the rps lock held,
5810 * process_queue access may race only with dequeue
5811 */
5812 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5813 !skb_queue_empty_lockless(&sd->process_queue);
5814 rps_unlock_irq_enable(sd);
5815
5816 return do_flush;
5817#endif
5818 /* without RPS we can't safely check input_pkt_queue: during a
5819 * concurrent remote skb_queue_splice() we can detect as empty both
5820 * input_pkt_queue and process_queue even if the latter could end-up
5821 * containing a lot of packets.
5822 */
5823 return true;
5824}
5825
5826static void flush_all_backlogs(void)
5827{
5828 static cpumask_t flush_cpus;
5829 unsigned int cpu;
5830
5831 /* since we are under rtnl lock protection we can use static data
5832 * for the cpumask and avoid allocating on stack the possibly
5833 * large mask
5834 */
5835 ASSERT_RTNL();
5836
5837 cpus_read_lock();
5838
5839 cpumask_clear(&flush_cpus);
5840 for_each_online_cpu(cpu) {
5841 if (flush_required(cpu)) {
5842 queue_work_on(cpu, system_highpri_wq,
5843 per_cpu_ptr(&flush_works, cpu));
5844 cpumask_set_cpu(cpu, &flush_cpus);
5845 }
5846 }
5847
5848 /* we can have in flight packet[s] on the cpus we are not flushing,
5849 * synchronize_net() in unregister_netdevice_many() will take care of
5850 * them
5851 */
5852 for_each_cpu(cpu, &flush_cpus)
5853 flush_work(per_cpu_ptr(&flush_works, cpu));
5854
5855 cpus_read_unlock();
5856}
5857
5858static void net_rps_send_ipi(struct softnet_data *remsd)
5859{
5860#ifdef CONFIG_RPS
5861 while (remsd) {
5862 struct softnet_data *next = remsd->rps_ipi_next;
5863
5864 if (cpu_online(remsd->cpu))
5865 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5866 remsd = next;
5867 }
5868#endif
5869}
5870
5871/*
5872 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5873 * Note: called with local irq disabled, but exits with local irq enabled.
5874 */
5875static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5876{
5877#ifdef CONFIG_RPS
5878 struct softnet_data *remsd = sd->rps_ipi_list;
5879
5880 if (remsd) {
5881 sd->rps_ipi_list = NULL;
5882
5883 local_irq_enable();
5884
5885 /* Send pending IPI's to kick RPS processing on remote cpus. */
5886 net_rps_send_ipi(remsd);
5887 } else
5888#endif
5889 local_irq_enable();
5890}
5891
5892static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5893{
5894#ifdef CONFIG_RPS
5895 return sd->rps_ipi_list != NULL;
5896#else
5897 return false;
5898#endif
5899}
5900
5901static int process_backlog(struct napi_struct *napi, int quota)
5902{
5903 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5904 bool again = true;
5905 int work = 0;
5906
5907 /* Check if we have pending ipi, its better to send them now,
5908 * not waiting net_rx_action() end.
5909 */
5910 if (sd_has_rps_ipi_waiting(sd)) {
5911 local_irq_disable();
5912 net_rps_action_and_irq_enable(sd);
5913 }
5914
5915 napi->weight = READ_ONCE(dev_rx_weight);
5916 while (again) {
5917 struct sk_buff *skb;
5918
5919 while ((skb = __skb_dequeue(&sd->process_queue))) {
5920 rcu_read_lock();
5921 __netif_receive_skb(skb);
5922 rcu_read_unlock();
5923 input_queue_head_incr(sd);
5924 if (++work >= quota)
5925 return work;
5926
5927 }
5928
5929 rps_lock_irq_disable(sd);
5930 if (skb_queue_empty(&sd->input_pkt_queue)) {
5931 /*
5932 * Inline a custom version of __napi_complete().
5933 * only current cpu owns and manipulates this napi,
5934 * and NAPI_STATE_SCHED is the only possible flag set
5935 * on backlog.
5936 * We can use a plain write instead of clear_bit(),
5937 * and we dont need an smp_mb() memory barrier.
5938 */
5939 napi->state = 0;
5940 again = false;
5941 } else {
5942 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5943 &sd->process_queue);
5944 }
5945 rps_unlock_irq_enable(sd);
5946 }
5947
5948 return work;
5949}
5950
5951/**
5952 * __napi_schedule - schedule for receive
5953 * @n: entry to schedule
5954 *
5955 * The entry's receive function will be scheduled to run.
5956 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5957 */
5958void __napi_schedule(struct napi_struct *n)
5959{
5960 unsigned long flags;
5961
5962 local_irq_save(flags);
5963 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5964 local_irq_restore(flags);
5965}
5966EXPORT_SYMBOL(__napi_schedule);
5967
5968/**
5969 * napi_schedule_prep - check if napi can be scheduled
5970 * @n: napi context
5971 *
5972 * Test if NAPI routine is already running, and if not mark
5973 * it as running. This is used as a condition variable to
5974 * insure only one NAPI poll instance runs. We also make
5975 * sure there is no pending NAPI disable.
5976 */
5977bool napi_schedule_prep(struct napi_struct *n)
5978{
5979 unsigned long new, val = READ_ONCE(n->state);
5980
5981 do {
5982 if (unlikely(val & NAPIF_STATE_DISABLE))
5983 return false;
5984 new = val | NAPIF_STATE_SCHED;
5985
5986 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5987 * This was suggested by Alexander Duyck, as compiler
5988 * emits better code than :
5989 * if (val & NAPIF_STATE_SCHED)
5990 * new |= NAPIF_STATE_MISSED;
5991 */
5992 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5993 NAPIF_STATE_MISSED;
5994 } while (!try_cmpxchg(&n->state, &val, new));
5995
5996 return !(val & NAPIF_STATE_SCHED);
5997}
5998EXPORT_SYMBOL(napi_schedule_prep);
5999
6000/**
6001 * __napi_schedule_irqoff - schedule for receive
6002 * @n: entry to schedule
6003 *
6004 * Variant of __napi_schedule() assuming hard irqs are masked.
6005 *
6006 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6007 * because the interrupt disabled assumption might not be true
6008 * due to force-threaded interrupts and spinlock substitution.
6009 */
6010void __napi_schedule_irqoff(struct napi_struct *n)
6011{
6012 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6013 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6014 else
6015 __napi_schedule(n);
6016}
6017EXPORT_SYMBOL(__napi_schedule_irqoff);
6018
6019bool napi_complete_done(struct napi_struct *n, int work_done)
6020{
6021 unsigned long flags, val, new, timeout = 0;
6022 bool ret = true;
6023
6024 /*
6025 * 1) Don't let napi dequeue from the cpu poll list
6026 * just in case its running on a different cpu.
6027 * 2) If we are busy polling, do nothing here, we have
6028 * the guarantee we will be called later.
6029 */
6030 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6031 NAPIF_STATE_IN_BUSY_POLL)))
6032 return false;
6033
6034 if (work_done) {
6035 if (n->gro_bitmask)
6036 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6037 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6038 }
6039 if (n->defer_hard_irqs_count > 0) {
6040 n->defer_hard_irqs_count--;
6041 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6042 if (timeout)
6043 ret = false;
6044 }
6045 if (n->gro_bitmask) {
6046 /* When the NAPI instance uses a timeout and keeps postponing
6047 * it, we need to bound somehow the time packets are kept in
6048 * the GRO layer
6049 */
6050 napi_gro_flush(n, !!timeout);
6051 }
6052
6053 gro_normal_list(n);
6054
6055 if (unlikely(!list_empty(&n->poll_list))) {
6056 /* If n->poll_list is not empty, we need to mask irqs */
6057 local_irq_save(flags);
6058 list_del_init(&n->poll_list);
6059 local_irq_restore(flags);
6060 }
6061
6062 val = READ_ONCE(n->state);
6063 do {
6064 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6065
6066 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6067 NAPIF_STATE_SCHED_THREADED |
6068 NAPIF_STATE_PREFER_BUSY_POLL);
6069
6070 /* If STATE_MISSED was set, leave STATE_SCHED set,
6071 * because we will call napi->poll() one more time.
6072 * This C code was suggested by Alexander Duyck to help gcc.
6073 */
6074 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6075 NAPIF_STATE_SCHED;
6076 } while (!try_cmpxchg(&n->state, &val, new));
6077
6078 if (unlikely(val & NAPIF_STATE_MISSED)) {
6079 __napi_schedule(n);
6080 return false;
6081 }
6082
6083 if (timeout)
6084 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6085 HRTIMER_MODE_REL_PINNED);
6086 return ret;
6087}
6088EXPORT_SYMBOL(napi_complete_done);
6089
6090/* must be called under rcu_read_lock(), as we dont take a reference */
6091static struct napi_struct *napi_by_id(unsigned int napi_id)
6092{
6093 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6094 struct napi_struct *napi;
6095
6096 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6097 if (napi->napi_id == napi_id)
6098 return napi;
6099
6100 return NULL;
6101}
6102
6103#if defined(CONFIG_NET_RX_BUSY_POLL)
6104
6105static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6106{
6107 if (!skip_schedule) {
6108 gro_normal_list(napi);
6109 __napi_schedule(napi);
6110 return;
6111 }
6112
6113 if (napi->gro_bitmask) {
6114 /* flush too old packets
6115 * If HZ < 1000, flush all packets.
6116 */
6117 napi_gro_flush(napi, HZ >= 1000);
6118 }
6119
6120 gro_normal_list(napi);
6121 clear_bit(NAPI_STATE_SCHED, &napi->state);
6122}
6123
6124static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6125 u16 budget)
6126{
6127 bool skip_schedule = false;
6128 unsigned long timeout;
6129 int rc;
6130
6131 /* Busy polling means there is a high chance device driver hard irq
6132 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6133 * set in napi_schedule_prep().
6134 * Since we are about to call napi->poll() once more, we can safely
6135 * clear NAPI_STATE_MISSED.
6136 *
6137 * Note: x86 could use a single "lock and ..." instruction
6138 * to perform these two clear_bit()
6139 */
6140 clear_bit(NAPI_STATE_MISSED, &napi->state);
6141 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6142
6143 local_bh_disable();
6144
6145 if (prefer_busy_poll) {
6146 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6147 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6148 if (napi->defer_hard_irqs_count && timeout) {
6149 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6150 skip_schedule = true;
6151 }
6152 }
6153
6154 /* All we really want here is to re-enable device interrupts.
6155 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6156 */
6157 rc = napi->poll(napi, budget);
6158 /* We can't gro_normal_list() here, because napi->poll() might have
6159 * rearmed the napi (napi_complete_done()) in which case it could
6160 * already be running on another CPU.
6161 */
6162 trace_napi_poll(napi, rc, budget);
6163 netpoll_poll_unlock(have_poll_lock);
6164 if (rc == budget)
6165 __busy_poll_stop(napi, skip_schedule);
6166 local_bh_enable();
6167}
6168
6169void napi_busy_loop(unsigned int napi_id,
6170 bool (*loop_end)(void *, unsigned long),
6171 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6172{
6173 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6174 int (*napi_poll)(struct napi_struct *napi, int budget);
6175 void *have_poll_lock = NULL;
6176 struct napi_struct *napi;
6177
6178restart:
6179 napi_poll = NULL;
6180
6181 rcu_read_lock();
6182
6183 napi = napi_by_id(napi_id);
6184 if (!napi)
6185 goto out;
6186
6187 preempt_disable();
6188 for (;;) {
6189 int work = 0;
6190
6191 local_bh_disable();
6192 if (!napi_poll) {
6193 unsigned long val = READ_ONCE(napi->state);
6194
6195 /* If multiple threads are competing for this napi,
6196 * we avoid dirtying napi->state as much as we can.
6197 */
6198 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6199 NAPIF_STATE_IN_BUSY_POLL)) {
6200 if (prefer_busy_poll)
6201 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6202 goto count;
6203 }
6204 if (cmpxchg(&napi->state, val,
6205 val | NAPIF_STATE_IN_BUSY_POLL |
6206 NAPIF_STATE_SCHED) != val) {
6207 if (prefer_busy_poll)
6208 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6209 goto count;
6210 }
6211 have_poll_lock = netpoll_poll_lock(napi);
6212 napi_poll = napi->poll;
6213 }
6214 work = napi_poll(napi, budget);
6215 trace_napi_poll(napi, work, budget);
6216 gro_normal_list(napi);
6217count:
6218 if (work > 0)
6219 __NET_ADD_STATS(dev_net(napi->dev),
6220 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6221 local_bh_enable();
6222
6223 if (!loop_end || loop_end(loop_end_arg, start_time))
6224 break;
6225
6226 if (unlikely(need_resched())) {
6227 if (napi_poll)
6228 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6229 preempt_enable();
6230 rcu_read_unlock();
6231 cond_resched();
6232 if (loop_end(loop_end_arg, start_time))
6233 return;
6234 goto restart;
6235 }
6236 cpu_relax();
6237 }
6238 if (napi_poll)
6239 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6240 preempt_enable();
6241out:
6242 rcu_read_unlock();
6243}
6244EXPORT_SYMBOL(napi_busy_loop);
6245
6246#endif /* CONFIG_NET_RX_BUSY_POLL */
6247
6248static void napi_hash_add(struct napi_struct *napi)
6249{
6250 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6251 return;
6252
6253 spin_lock(&napi_hash_lock);
6254
6255 /* 0..NR_CPUS range is reserved for sender_cpu use */
6256 do {
6257 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6258 napi_gen_id = MIN_NAPI_ID;
6259 } while (napi_by_id(napi_gen_id));
6260 napi->napi_id = napi_gen_id;
6261
6262 hlist_add_head_rcu(&napi->napi_hash_node,
6263 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6264
6265 spin_unlock(&napi_hash_lock);
6266}
6267
6268/* Warning : caller is responsible to make sure rcu grace period
6269 * is respected before freeing memory containing @napi
6270 */
6271static void napi_hash_del(struct napi_struct *napi)
6272{
6273 spin_lock(&napi_hash_lock);
6274
6275 hlist_del_init_rcu(&napi->napi_hash_node);
6276
6277 spin_unlock(&napi_hash_lock);
6278}
6279
6280static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6281{
6282 struct napi_struct *napi;
6283
6284 napi = container_of(timer, struct napi_struct, timer);
6285
6286 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6287 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6288 */
6289 if (!napi_disable_pending(napi) &&
6290 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6291 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6292 __napi_schedule_irqoff(napi);
6293 }
6294
6295 return HRTIMER_NORESTART;
6296}
6297
6298static void init_gro_hash(struct napi_struct *napi)
6299{
6300 int i;
6301
6302 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6303 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6304 napi->gro_hash[i].count = 0;
6305 }
6306 napi->gro_bitmask = 0;
6307}
6308
6309int dev_set_threaded(struct net_device *dev, bool threaded)
6310{
6311 struct napi_struct *napi;
6312 int err = 0;
6313
6314 if (dev->threaded == threaded)
6315 return 0;
6316
6317 if (threaded) {
6318 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6319 if (!napi->thread) {
6320 err = napi_kthread_create(napi);
6321 if (err) {
6322 threaded = false;
6323 break;
6324 }
6325 }
6326 }
6327 }
6328
6329 dev->threaded = threaded;
6330
6331 /* Make sure kthread is created before THREADED bit
6332 * is set.
6333 */
6334 smp_mb__before_atomic();
6335
6336 /* Setting/unsetting threaded mode on a napi might not immediately
6337 * take effect, if the current napi instance is actively being
6338 * polled. In this case, the switch between threaded mode and
6339 * softirq mode will happen in the next round of napi_schedule().
6340 * This should not cause hiccups/stalls to the live traffic.
6341 */
6342 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6343 if (threaded)
6344 set_bit(NAPI_STATE_THREADED, &napi->state);
6345 else
6346 clear_bit(NAPI_STATE_THREADED, &napi->state);
6347 }
6348
6349 return err;
6350}
6351EXPORT_SYMBOL(dev_set_threaded);
6352
6353void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6354 int (*poll)(struct napi_struct *, int), int weight)
6355{
6356 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6357 return;
6358
6359 INIT_LIST_HEAD(&napi->poll_list);
6360 INIT_HLIST_NODE(&napi->napi_hash_node);
6361 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6362 napi->timer.function = napi_watchdog;
6363 init_gro_hash(napi);
6364 napi->skb = NULL;
6365 INIT_LIST_HEAD(&napi->rx_list);
6366 napi->rx_count = 0;
6367 napi->poll = poll;
6368 if (weight > NAPI_POLL_WEIGHT)
6369 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6370 weight);
6371 napi->weight = weight;
6372 napi->dev = dev;
6373#ifdef CONFIG_NETPOLL
6374 napi->poll_owner = -1;
6375#endif
6376 set_bit(NAPI_STATE_SCHED, &napi->state);
6377 set_bit(NAPI_STATE_NPSVC, &napi->state);
6378 list_add_rcu(&napi->dev_list, &dev->napi_list);
6379 napi_hash_add(napi);
6380 napi_get_frags_check(napi);
6381 /* Create kthread for this napi if dev->threaded is set.
6382 * Clear dev->threaded if kthread creation failed so that
6383 * threaded mode will not be enabled in napi_enable().
6384 */
6385 if (dev->threaded && napi_kthread_create(napi))
6386 dev->threaded = 0;
6387}
6388EXPORT_SYMBOL(netif_napi_add_weight);
6389
6390void napi_disable(struct napi_struct *n)
6391{
6392 unsigned long val, new;
6393
6394 might_sleep();
6395 set_bit(NAPI_STATE_DISABLE, &n->state);
6396
6397 val = READ_ONCE(n->state);
6398 do {
6399 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6400 usleep_range(20, 200);
6401 val = READ_ONCE(n->state);
6402 }
6403
6404 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6405 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6406 } while (!try_cmpxchg(&n->state, &val, new));
6407
6408 hrtimer_cancel(&n->timer);
6409
6410 clear_bit(NAPI_STATE_DISABLE, &n->state);
6411}
6412EXPORT_SYMBOL(napi_disable);
6413
6414/**
6415 * napi_enable - enable NAPI scheduling
6416 * @n: NAPI context
6417 *
6418 * Resume NAPI from being scheduled on this context.
6419 * Must be paired with napi_disable.
6420 */
6421void napi_enable(struct napi_struct *n)
6422{
6423 unsigned long new, val = READ_ONCE(n->state);
6424
6425 do {
6426 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6427
6428 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6429 if (n->dev->threaded && n->thread)
6430 new |= NAPIF_STATE_THREADED;
6431 } while (!try_cmpxchg(&n->state, &val, new));
6432}
6433EXPORT_SYMBOL(napi_enable);
6434
6435static void flush_gro_hash(struct napi_struct *napi)
6436{
6437 int i;
6438
6439 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6440 struct sk_buff *skb, *n;
6441
6442 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6443 kfree_skb(skb);
6444 napi->gro_hash[i].count = 0;
6445 }
6446}
6447
6448/* Must be called in process context */
6449void __netif_napi_del(struct napi_struct *napi)
6450{
6451 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6452 return;
6453
6454 napi_hash_del(napi);
6455 list_del_rcu(&napi->dev_list);
6456 napi_free_frags(napi);
6457
6458 flush_gro_hash(napi);
6459 napi->gro_bitmask = 0;
6460
6461 if (napi->thread) {
6462 kthread_stop(napi->thread);
6463 napi->thread = NULL;
6464 }
6465}
6466EXPORT_SYMBOL(__netif_napi_del);
6467
6468static int __napi_poll(struct napi_struct *n, bool *repoll)
6469{
6470 int work, weight;
6471
6472 weight = n->weight;
6473
6474 /* This NAPI_STATE_SCHED test is for avoiding a race
6475 * with netpoll's poll_napi(). Only the entity which
6476 * obtains the lock and sees NAPI_STATE_SCHED set will
6477 * actually make the ->poll() call. Therefore we avoid
6478 * accidentally calling ->poll() when NAPI is not scheduled.
6479 */
6480 work = 0;
6481 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6482 work = n->poll(n, weight);
6483 trace_napi_poll(n, work, weight);
6484 }
6485
6486 if (unlikely(work > weight))
6487 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6488 n->poll, work, weight);
6489
6490 if (likely(work < weight))
6491 return work;
6492
6493 /* Drivers must not modify the NAPI state if they
6494 * consume the entire weight. In such cases this code
6495 * still "owns" the NAPI instance and therefore can
6496 * move the instance around on the list at-will.
6497 */
6498 if (unlikely(napi_disable_pending(n))) {
6499 napi_complete(n);
6500 return work;
6501 }
6502
6503 /* The NAPI context has more processing work, but busy-polling
6504 * is preferred. Exit early.
6505 */
6506 if (napi_prefer_busy_poll(n)) {
6507 if (napi_complete_done(n, work)) {
6508 /* If timeout is not set, we need to make sure
6509 * that the NAPI is re-scheduled.
6510 */
6511 napi_schedule(n);
6512 }
6513 return work;
6514 }
6515
6516 if (n->gro_bitmask) {
6517 /* flush too old packets
6518 * If HZ < 1000, flush all packets.
6519 */
6520 napi_gro_flush(n, HZ >= 1000);
6521 }
6522
6523 gro_normal_list(n);
6524
6525 /* Some drivers may have called napi_schedule
6526 * prior to exhausting their budget.
6527 */
6528 if (unlikely(!list_empty(&n->poll_list))) {
6529 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6530 n->dev ? n->dev->name : "backlog");
6531 return work;
6532 }
6533
6534 *repoll = true;
6535
6536 return work;
6537}
6538
6539static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6540{
6541 bool do_repoll = false;
6542 void *have;
6543 int work;
6544
6545 list_del_init(&n->poll_list);
6546
6547 have = netpoll_poll_lock(n);
6548
6549 work = __napi_poll(n, &do_repoll);
6550
6551 if (do_repoll)
6552 list_add_tail(&n->poll_list, repoll);
6553
6554 netpoll_poll_unlock(have);
6555
6556 return work;
6557}
6558
6559static int napi_thread_wait(struct napi_struct *napi)
6560{
6561 bool woken = false;
6562
6563 set_current_state(TASK_INTERRUPTIBLE);
6564
6565 while (!kthread_should_stop()) {
6566 /* Testing SCHED_THREADED bit here to make sure the current
6567 * kthread owns this napi and could poll on this napi.
6568 * Testing SCHED bit is not enough because SCHED bit might be
6569 * set by some other busy poll thread or by napi_disable().
6570 */
6571 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6572 WARN_ON(!list_empty(&napi->poll_list));
6573 __set_current_state(TASK_RUNNING);
6574 return 0;
6575 }
6576
6577 schedule();
6578 /* woken being true indicates this thread owns this napi. */
6579 woken = true;
6580 set_current_state(TASK_INTERRUPTIBLE);
6581 }
6582 __set_current_state(TASK_RUNNING);
6583
6584 return -1;
6585}
6586
6587static int napi_threaded_poll(void *data)
6588{
6589 struct napi_struct *napi = data;
6590 void *have;
6591
6592 while (!napi_thread_wait(napi)) {
6593 for (;;) {
6594 bool repoll = false;
6595
6596 local_bh_disable();
6597
6598 have = netpoll_poll_lock(napi);
6599 __napi_poll(napi, &repoll);
6600 netpoll_poll_unlock(have);
6601
6602 local_bh_enable();
6603
6604 if (!repoll)
6605 break;
6606
6607 cond_resched();
6608 }
6609 }
6610 return 0;
6611}
6612
6613static void skb_defer_free_flush(struct softnet_data *sd)
6614{
6615 struct sk_buff *skb, *next;
6616
6617 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6618 if (!READ_ONCE(sd->defer_list))
6619 return;
6620
6621 spin_lock_irq(&sd->defer_lock);
6622 skb = sd->defer_list;
6623 sd->defer_list = NULL;
6624 sd->defer_count = 0;
6625 spin_unlock_irq(&sd->defer_lock);
6626
6627 while (skb != NULL) {
6628 next = skb->next;
6629 napi_consume_skb(skb, 1);
6630 skb = next;
6631 }
6632}
6633
6634static __latent_entropy void net_rx_action(struct softirq_action *h)
6635{
6636 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6637 unsigned long time_limit = jiffies +
6638 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6639 int budget = READ_ONCE(netdev_budget);
6640 LIST_HEAD(list);
6641 LIST_HEAD(repoll);
6642
6643 local_irq_disable();
6644 list_splice_init(&sd->poll_list, &list);
6645 local_irq_enable();
6646
6647 for (;;) {
6648 struct napi_struct *n;
6649
6650 skb_defer_free_flush(sd);
6651
6652 if (list_empty(&list)) {
6653 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6654 goto end;
6655 break;
6656 }
6657
6658 n = list_first_entry(&list, struct napi_struct, poll_list);
6659 budget -= napi_poll(n, &repoll);
6660
6661 /* If softirq window is exhausted then punt.
6662 * Allow this to run for 2 jiffies since which will allow
6663 * an average latency of 1.5/HZ.
6664 */
6665 if (unlikely(budget <= 0 ||
6666 time_after_eq(jiffies, time_limit))) {
6667 sd->time_squeeze++;
6668 break;
6669 }
6670 }
6671
6672 local_irq_disable();
6673
6674 list_splice_tail_init(&sd->poll_list, &list);
6675 list_splice_tail(&repoll, &list);
6676 list_splice(&list, &sd->poll_list);
6677 if (!list_empty(&sd->poll_list))
6678 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6679
6680 net_rps_action_and_irq_enable(sd);
6681end:;
6682}
6683
6684struct netdev_adjacent {
6685 struct net_device *dev;
6686 netdevice_tracker dev_tracker;
6687
6688 /* upper master flag, there can only be one master device per list */
6689 bool master;
6690
6691 /* lookup ignore flag */
6692 bool ignore;
6693
6694 /* counter for the number of times this device was added to us */
6695 u16 ref_nr;
6696
6697 /* private field for the users */
6698 void *private;
6699
6700 struct list_head list;
6701 struct rcu_head rcu;
6702};
6703
6704static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6705 struct list_head *adj_list)
6706{
6707 struct netdev_adjacent *adj;
6708
6709 list_for_each_entry(adj, adj_list, list) {
6710 if (adj->dev == adj_dev)
6711 return adj;
6712 }
6713 return NULL;
6714}
6715
6716static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6717 struct netdev_nested_priv *priv)
6718{
6719 struct net_device *dev = (struct net_device *)priv->data;
6720
6721 return upper_dev == dev;
6722}
6723
6724/**
6725 * netdev_has_upper_dev - Check if device is linked to an upper device
6726 * @dev: device
6727 * @upper_dev: upper device to check
6728 *
6729 * Find out if a device is linked to specified upper device and return true
6730 * in case it is. Note that this checks only immediate upper device,
6731 * not through a complete stack of devices. The caller must hold the RTNL lock.
6732 */
6733bool netdev_has_upper_dev(struct net_device *dev,
6734 struct net_device *upper_dev)
6735{
6736 struct netdev_nested_priv priv = {
6737 .data = (void *)upper_dev,
6738 };
6739
6740 ASSERT_RTNL();
6741
6742 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6743 &priv);
6744}
6745EXPORT_SYMBOL(netdev_has_upper_dev);
6746
6747/**
6748 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6749 * @dev: device
6750 * @upper_dev: upper device to check
6751 *
6752 * Find out if a device is linked to specified upper device and return true
6753 * in case it is. Note that this checks the entire upper device chain.
6754 * The caller must hold rcu lock.
6755 */
6756
6757bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6758 struct net_device *upper_dev)
6759{
6760 struct netdev_nested_priv priv = {
6761 .data = (void *)upper_dev,
6762 };
6763
6764 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6765 &priv);
6766}
6767EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6768
6769/**
6770 * netdev_has_any_upper_dev - Check if device is linked to some device
6771 * @dev: device
6772 *
6773 * Find out if a device is linked to an upper device and return true in case
6774 * it is. The caller must hold the RTNL lock.
6775 */
6776bool netdev_has_any_upper_dev(struct net_device *dev)
6777{
6778 ASSERT_RTNL();
6779
6780 return !list_empty(&dev->adj_list.upper);
6781}
6782EXPORT_SYMBOL(netdev_has_any_upper_dev);
6783
6784/**
6785 * netdev_master_upper_dev_get - Get master upper device
6786 * @dev: device
6787 *
6788 * Find a master upper device and return pointer to it or NULL in case
6789 * it's not there. The caller must hold the RTNL lock.
6790 */
6791struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6792{
6793 struct netdev_adjacent *upper;
6794
6795 ASSERT_RTNL();
6796
6797 if (list_empty(&dev->adj_list.upper))
6798 return NULL;
6799
6800 upper = list_first_entry(&dev->adj_list.upper,
6801 struct netdev_adjacent, list);
6802 if (likely(upper->master))
6803 return upper->dev;
6804 return NULL;
6805}
6806EXPORT_SYMBOL(netdev_master_upper_dev_get);
6807
6808static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6809{
6810 struct netdev_adjacent *upper;
6811
6812 ASSERT_RTNL();
6813
6814 if (list_empty(&dev->adj_list.upper))
6815 return NULL;
6816
6817 upper = list_first_entry(&dev->adj_list.upper,
6818 struct netdev_adjacent, list);
6819 if (likely(upper->master) && !upper->ignore)
6820 return upper->dev;
6821 return NULL;
6822}
6823
6824/**
6825 * netdev_has_any_lower_dev - Check if device is linked to some device
6826 * @dev: device
6827 *
6828 * Find out if a device is linked to a lower device and return true in case
6829 * it is. The caller must hold the RTNL lock.
6830 */
6831static bool netdev_has_any_lower_dev(struct net_device *dev)
6832{
6833 ASSERT_RTNL();
6834
6835 return !list_empty(&dev->adj_list.lower);
6836}
6837
6838void *netdev_adjacent_get_private(struct list_head *adj_list)
6839{
6840 struct netdev_adjacent *adj;
6841
6842 adj = list_entry(adj_list, struct netdev_adjacent, list);
6843
6844 return adj->private;
6845}
6846EXPORT_SYMBOL(netdev_adjacent_get_private);
6847
6848/**
6849 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6850 * @dev: device
6851 * @iter: list_head ** of the current position
6852 *
6853 * Gets the next device from the dev's upper list, starting from iter
6854 * position. The caller must hold RCU read lock.
6855 */
6856struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6857 struct list_head **iter)
6858{
6859 struct netdev_adjacent *upper;
6860
6861 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6862
6863 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6864
6865 if (&upper->list == &dev->adj_list.upper)
6866 return NULL;
6867
6868 *iter = &upper->list;
6869
6870 return upper->dev;
6871}
6872EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6873
6874static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6875 struct list_head **iter,
6876 bool *ignore)
6877{
6878 struct netdev_adjacent *upper;
6879
6880 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6881
6882 if (&upper->list == &dev->adj_list.upper)
6883 return NULL;
6884
6885 *iter = &upper->list;
6886 *ignore = upper->ignore;
6887
6888 return upper->dev;
6889}
6890
6891static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6892 struct list_head **iter)
6893{
6894 struct netdev_adjacent *upper;
6895
6896 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6897
6898 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6899
6900 if (&upper->list == &dev->adj_list.upper)
6901 return NULL;
6902
6903 *iter = &upper->list;
6904
6905 return upper->dev;
6906}
6907
6908static int __netdev_walk_all_upper_dev(struct net_device *dev,
6909 int (*fn)(struct net_device *dev,
6910 struct netdev_nested_priv *priv),
6911 struct netdev_nested_priv *priv)
6912{
6913 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6914 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6915 int ret, cur = 0;
6916 bool ignore;
6917
6918 now = dev;
6919 iter = &dev->adj_list.upper;
6920
6921 while (1) {
6922 if (now != dev) {
6923 ret = fn(now, priv);
6924 if (ret)
6925 return ret;
6926 }
6927
6928 next = NULL;
6929 while (1) {
6930 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6931 if (!udev)
6932 break;
6933 if (ignore)
6934 continue;
6935
6936 next = udev;
6937 niter = &udev->adj_list.upper;
6938 dev_stack[cur] = now;
6939 iter_stack[cur++] = iter;
6940 break;
6941 }
6942
6943 if (!next) {
6944 if (!cur)
6945 return 0;
6946 next = dev_stack[--cur];
6947 niter = iter_stack[cur];
6948 }
6949
6950 now = next;
6951 iter = niter;
6952 }
6953
6954 return 0;
6955}
6956
6957int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6958 int (*fn)(struct net_device *dev,
6959 struct netdev_nested_priv *priv),
6960 struct netdev_nested_priv *priv)
6961{
6962 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6963 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6964 int ret, cur = 0;
6965
6966 now = dev;
6967 iter = &dev->adj_list.upper;
6968
6969 while (1) {
6970 if (now != dev) {
6971 ret = fn(now, priv);
6972 if (ret)
6973 return ret;
6974 }
6975
6976 next = NULL;
6977 while (1) {
6978 udev = netdev_next_upper_dev_rcu(now, &iter);
6979 if (!udev)
6980 break;
6981
6982 next = udev;
6983 niter = &udev->adj_list.upper;
6984 dev_stack[cur] = now;
6985 iter_stack[cur++] = iter;
6986 break;
6987 }
6988
6989 if (!next) {
6990 if (!cur)
6991 return 0;
6992 next = dev_stack[--cur];
6993 niter = iter_stack[cur];
6994 }
6995
6996 now = next;
6997 iter = niter;
6998 }
6999
7000 return 0;
7001}
7002EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7003
7004static bool __netdev_has_upper_dev(struct net_device *dev,
7005 struct net_device *upper_dev)
7006{
7007 struct netdev_nested_priv priv = {
7008 .flags = 0,
7009 .data = (void *)upper_dev,
7010 };
7011
7012 ASSERT_RTNL();
7013
7014 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7015 &priv);
7016}
7017
7018/**
7019 * netdev_lower_get_next_private - Get the next ->private from the
7020 * lower neighbour list
7021 * @dev: device
7022 * @iter: list_head ** of the current position
7023 *
7024 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7025 * list, starting from iter position. The caller must hold either hold the
7026 * RTNL lock or its own locking that guarantees that the neighbour lower
7027 * list will remain unchanged.
7028 */
7029void *netdev_lower_get_next_private(struct net_device *dev,
7030 struct list_head **iter)
7031{
7032 struct netdev_adjacent *lower;
7033
7034 lower = list_entry(*iter, struct netdev_adjacent, list);
7035
7036 if (&lower->list == &dev->adj_list.lower)
7037 return NULL;
7038
7039 *iter = lower->list.next;
7040
7041 return lower->private;
7042}
7043EXPORT_SYMBOL(netdev_lower_get_next_private);
7044
7045/**
7046 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7047 * lower neighbour list, RCU
7048 * variant
7049 * @dev: device
7050 * @iter: list_head ** of the current position
7051 *
7052 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7053 * list, starting from iter position. The caller must hold RCU read lock.
7054 */
7055void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7056 struct list_head **iter)
7057{
7058 struct netdev_adjacent *lower;
7059
7060 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7061
7062 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7063
7064 if (&lower->list == &dev->adj_list.lower)
7065 return NULL;
7066
7067 *iter = &lower->list;
7068
7069 return lower->private;
7070}
7071EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7072
7073/**
7074 * netdev_lower_get_next - Get the next device from the lower neighbour
7075 * list
7076 * @dev: device
7077 * @iter: list_head ** of the current position
7078 *
7079 * Gets the next netdev_adjacent from the dev's lower neighbour
7080 * list, starting from iter position. The caller must hold RTNL lock or
7081 * its own locking that guarantees that the neighbour lower
7082 * list will remain unchanged.
7083 */
7084void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7085{
7086 struct netdev_adjacent *lower;
7087
7088 lower = list_entry(*iter, struct netdev_adjacent, list);
7089
7090 if (&lower->list == &dev->adj_list.lower)
7091 return NULL;
7092
7093 *iter = lower->list.next;
7094
7095 return lower->dev;
7096}
7097EXPORT_SYMBOL(netdev_lower_get_next);
7098
7099static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7100 struct list_head **iter)
7101{
7102 struct netdev_adjacent *lower;
7103
7104 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7105
7106 if (&lower->list == &dev->adj_list.lower)
7107 return NULL;
7108
7109 *iter = &lower->list;
7110
7111 return lower->dev;
7112}
7113
7114static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7115 struct list_head **iter,
7116 bool *ignore)
7117{
7118 struct netdev_adjacent *lower;
7119
7120 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7121
7122 if (&lower->list == &dev->adj_list.lower)
7123 return NULL;
7124
7125 *iter = &lower->list;
7126 *ignore = lower->ignore;
7127
7128 return lower->dev;
7129}
7130
7131int netdev_walk_all_lower_dev(struct net_device *dev,
7132 int (*fn)(struct net_device *dev,
7133 struct netdev_nested_priv *priv),
7134 struct netdev_nested_priv *priv)
7135{
7136 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7137 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7138 int ret, cur = 0;
7139
7140 now = dev;
7141 iter = &dev->adj_list.lower;
7142
7143 while (1) {
7144 if (now != dev) {
7145 ret = fn(now, priv);
7146 if (ret)
7147 return ret;
7148 }
7149
7150 next = NULL;
7151 while (1) {
7152 ldev = netdev_next_lower_dev(now, &iter);
7153 if (!ldev)
7154 break;
7155
7156 next = ldev;
7157 niter = &ldev->adj_list.lower;
7158 dev_stack[cur] = now;
7159 iter_stack[cur++] = iter;
7160 break;
7161 }
7162
7163 if (!next) {
7164 if (!cur)
7165 return 0;
7166 next = dev_stack[--cur];
7167 niter = iter_stack[cur];
7168 }
7169
7170 now = next;
7171 iter = niter;
7172 }
7173
7174 return 0;
7175}
7176EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7177
7178static int __netdev_walk_all_lower_dev(struct net_device *dev,
7179 int (*fn)(struct net_device *dev,
7180 struct netdev_nested_priv *priv),
7181 struct netdev_nested_priv *priv)
7182{
7183 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7184 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7185 int ret, cur = 0;
7186 bool ignore;
7187
7188 now = dev;
7189 iter = &dev->adj_list.lower;
7190
7191 while (1) {
7192 if (now != dev) {
7193 ret = fn(now, priv);
7194 if (ret)
7195 return ret;
7196 }
7197
7198 next = NULL;
7199 while (1) {
7200 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7201 if (!ldev)
7202 break;
7203 if (ignore)
7204 continue;
7205
7206 next = ldev;
7207 niter = &ldev->adj_list.lower;
7208 dev_stack[cur] = now;
7209 iter_stack[cur++] = iter;
7210 break;
7211 }
7212
7213 if (!next) {
7214 if (!cur)
7215 return 0;
7216 next = dev_stack[--cur];
7217 niter = iter_stack[cur];
7218 }
7219
7220 now = next;
7221 iter = niter;
7222 }
7223
7224 return 0;
7225}
7226
7227struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7228 struct list_head **iter)
7229{
7230 struct netdev_adjacent *lower;
7231
7232 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7233 if (&lower->list == &dev->adj_list.lower)
7234 return NULL;
7235
7236 *iter = &lower->list;
7237
7238 return lower->dev;
7239}
7240EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7241
7242static u8 __netdev_upper_depth(struct net_device *dev)
7243{
7244 struct net_device *udev;
7245 struct list_head *iter;
7246 u8 max_depth = 0;
7247 bool ignore;
7248
7249 for (iter = &dev->adj_list.upper,
7250 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7251 udev;
7252 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7253 if (ignore)
7254 continue;
7255 if (max_depth < udev->upper_level)
7256 max_depth = udev->upper_level;
7257 }
7258
7259 return max_depth;
7260}
7261
7262static u8 __netdev_lower_depth(struct net_device *dev)
7263{
7264 struct net_device *ldev;
7265 struct list_head *iter;
7266 u8 max_depth = 0;
7267 bool ignore;
7268
7269 for (iter = &dev->adj_list.lower,
7270 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7271 ldev;
7272 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7273 if (ignore)
7274 continue;
7275 if (max_depth < ldev->lower_level)
7276 max_depth = ldev->lower_level;
7277 }
7278
7279 return max_depth;
7280}
7281
7282static int __netdev_update_upper_level(struct net_device *dev,
7283 struct netdev_nested_priv *__unused)
7284{
7285 dev->upper_level = __netdev_upper_depth(dev) + 1;
7286 return 0;
7287}
7288
7289#ifdef CONFIG_LOCKDEP
7290static LIST_HEAD(net_unlink_list);
7291
7292static void net_unlink_todo(struct net_device *dev)
7293{
7294 if (list_empty(&dev->unlink_list))
7295 list_add_tail(&dev->unlink_list, &net_unlink_list);
7296}
7297#endif
7298
7299static int __netdev_update_lower_level(struct net_device *dev,
7300 struct netdev_nested_priv *priv)
7301{
7302 dev->lower_level = __netdev_lower_depth(dev) + 1;
7303
7304#ifdef CONFIG_LOCKDEP
7305 if (!priv)
7306 return 0;
7307
7308 if (priv->flags & NESTED_SYNC_IMM)
7309 dev->nested_level = dev->lower_level - 1;
7310 if (priv->flags & NESTED_SYNC_TODO)
7311 net_unlink_todo(dev);
7312#endif
7313 return 0;
7314}
7315
7316int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7317 int (*fn)(struct net_device *dev,
7318 struct netdev_nested_priv *priv),
7319 struct netdev_nested_priv *priv)
7320{
7321 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7322 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7323 int ret, cur = 0;
7324
7325 now = dev;
7326 iter = &dev->adj_list.lower;
7327
7328 while (1) {
7329 if (now != dev) {
7330 ret = fn(now, priv);
7331 if (ret)
7332 return ret;
7333 }
7334
7335 next = NULL;
7336 while (1) {
7337 ldev = netdev_next_lower_dev_rcu(now, &iter);
7338 if (!ldev)
7339 break;
7340
7341 next = ldev;
7342 niter = &ldev->adj_list.lower;
7343 dev_stack[cur] = now;
7344 iter_stack[cur++] = iter;
7345 break;
7346 }
7347
7348 if (!next) {
7349 if (!cur)
7350 return 0;
7351 next = dev_stack[--cur];
7352 niter = iter_stack[cur];
7353 }
7354
7355 now = next;
7356 iter = niter;
7357 }
7358
7359 return 0;
7360}
7361EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7362
7363/**
7364 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7365 * lower neighbour list, RCU
7366 * variant
7367 * @dev: device
7368 *
7369 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7370 * list. The caller must hold RCU read lock.
7371 */
7372void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7373{
7374 struct netdev_adjacent *lower;
7375
7376 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7377 struct netdev_adjacent, list);
7378 if (lower)
7379 return lower->private;
7380 return NULL;
7381}
7382EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7383
7384/**
7385 * netdev_master_upper_dev_get_rcu - Get master upper device
7386 * @dev: device
7387 *
7388 * Find a master upper device and return pointer to it or NULL in case
7389 * it's not there. The caller must hold the RCU read lock.
7390 */
7391struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7392{
7393 struct netdev_adjacent *upper;
7394
7395 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7396 struct netdev_adjacent, list);
7397 if (upper && likely(upper->master))
7398 return upper->dev;
7399 return NULL;
7400}
7401EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7402
7403static int netdev_adjacent_sysfs_add(struct net_device *dev,
7404 struct net_device *adj_dev,
7405 struct list_head *dev_list)
7406{
7407 char linkname[IFNAMSIZ+7];
7408
7409 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7410 "upper_%s" : "lower_%s", adj_dev->name);
7411 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7412 linkname);
7413}
7414static void netdev_adjacent_sysfs_del(struct net_device *dev,
7415 char *name,
7416 struct list_head *dev_list)
7417{
7418 char linkname[IFNAMSIZ+7];
7419
7420 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7421 "upper_%s" : "lower_%s", name);
7422 sysfs_remove_link(&(dev->dev.kobj), linkname);
7423}
7424
7425static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7426 struct net_device *adj_dev,
7427 struct list_head *dev_list)
7428{
7429 return (dev_list == &dev->adj_list.upper ||
7430 dev_list == &dev->adj_list.lower) &&
7431 net_eq(dev_net(dev), dev_net(adj_dev));
7432}
7433
7434static int __netdev_adjacent_dev_insert(struct net_device *dev,
7435 struct net_device *adj_dev,
7436 struct list_head *dev_list,
7437 void *private, bool master)
7438{
7439 struct netdev_adjacent *adj;
7440 int ret;
7441
7442 adj = __netdev_find_adj(adj_dev, dev_list);
7443
7444 if (adj) {
7445 adj->ref_nr += 1;
7446 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7447 dev->name, adj_dev->name, adj->ref_nr);
7448
7449 return 0;
7450 }
7451
7452 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7453 if (!adj)
7454 return -ENOMEM;
7455
7456 adj->dev = adj_dev;
7457 adj->master = master;
7458 adj->ref_nr = 1;
7459 adj->private = private;
7460 adj->ignore = false;
7461 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7462
7463 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7464 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7465
7466 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7467 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7468 if (ret)
7469 goto free_adj;
7470 }
7471
7472 /* Ensure that master link is always the first item in list. */
7473 if (master) {
7474 ret = sysfs_create_link(&(dev->dev.kobj),
7475 &(adj_dev->dev.kobj), "master");
7476 if (ret)
7477 goto remove_symlinks;
7478
7479 list_add_rcu(&adj->list, dev_list);
7480 } else {
7481 list_add_tail_rcu(&adj->list, dev_list);
7482 }
7483
7484 return 0;
7485
7486remove_symlinks:
7487 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7488 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7489free_adj:
7490 netdev_put(adj_dev, &adj->dev_tracker);
7491 kfree(adj);
7492
7493 return ret;
7494}
7495
7496static void __netdev_adjacent_dev_remove(struct net_device *dev,
7497 struct net_device *adj_dev,
7498 u16 ref_nr,
7499 struct list_head *dev_list)
7500{
7501 struct netdev_adjacent *adj;
7502
7503 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7504 dev->name, adj_dev->name, ref_nr);
7505
7506 adj = __netdev_find_adj(adj_dev, dev_list);
7507
7508 if (!adj) {
7509 pr_err("Adjacency does not exist for device %s from %s\n",
7510 dev->name, adj_dev->name);
7511 WARN_ON(1);
7512 return;
7513 }
7514
7515 if (adj->ref_nr > ref_nr) {
7516 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7517 dev->name, adj_dev->name, ref_nr,
7518 adj->ref_nr - ref_nr);
7519 adj->ref_nr -= ref_nr;
7520 return;
7521 }
7522
7523 if (adj->master)
7524 sysfs_remove_link(&(dev->dev.kobj), "master");
7525
7526 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7527 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7528
7529 list_del_rcu(&adj->list);
7530 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7531 adj_dev->name, dev->name, adj_dev->name);
7532 netdev_put(adj_dev, &adj->dev_tracker);
7533 kfree_rcu(adj, rcu);
7534}
7535
7536static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7537 struct net_device *upper_dev,
7538 struct list_head *up_list,
7539 struct list_head *down_list,
7540 void *private, bool master)
7541{
7542 int ret;
7543
7544 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7545 private, master);
7546 if (ret)
7547 return ret;
7548
7549 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7550 private, false);
7551 if (ret) {
7552 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7553 return ret;
7554 }
7555
7556 return 0;
7557}
7558
7559static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7560 struct net_device *upper_dev,
7561 u16 ref_nr,
7562 struct list_head *up_list,
7563 struct list_head *down_list)
7564{
7565 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7566 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7567}
7568
7569static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7570 struct net_device *upper_dev,
7571 void *private, bool master)
7572{
7573 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7574 &dev->adj_list.upper,
7575 &upper_dev->adj_list.lower,
7576 private, master);
7577}
7578
7579static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7580 struct net_device *upper_dev)
7581{
7582 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7583 &dev->adj_list.upper,
7584 &upper_dev->adj_list.lower);
7585}
7586
7587static int __netdev_upper_dev_link(struct net_device *dev,
7588 struct net_device *upper_dev, bool master,
7589 void *upper_priv, void *upper_info,
7590 struct netdev_nested_priv *priv,
7591 struct netlink_ext_ack *extack)
7592{
7593 struct netdev_notifier_changeupper_info changeupper_info = {
7594 .info = {
7595 .dev = dev,
7596 .extack = extack,
7597 },
7598 .upper_dev = upper_dev,
7599 .master = master,
7600 .linking = true,
7601 .upper_info = upper_info,
7602 };
7603 struct net_device *master_dev;
7604 int ret = 0;
7605
7606 ASSERT_RTNL();
7607
7608 if (dev == upper_dev)
7609 return -EBUSY;
7610
7611 /* To prevent loops, check if dev is not upper device to upper_dev. */
7612 if (__netdev_has_upper_dev(upper_dev, dev))
7613 return -EBUSY;
7614
7615 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7616 return -EMLINK;
7617
7618 if (!master) {
7619 if (__netdev_has_upper_dev(dev, upper_dev))
7620 return -EEXIST;
7621 } else {
7622 master_dev = __netdev_master_upper_dev_get(dev);
7623 if (master_dev)
7624 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7625 }
7626
7627 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7628 &changeupper_info.info);
7629 ret = notifier_to_errno(ret);
7630 if (ret)
7631 return ret;
7632
7633 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7634 master);
7635 if (ret)
7636 return ret;
7637
7638 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7639 &changeupper_info.info);
7640 ret = notifier_to_errno(ret);
7641 if (ret)
7642 goto rollback;
7643
7644 __netdev_update_upper_level(dev, NULL);
7645 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7646
7647 __netdev_update_lower_level(upper_dev, priv);
7648 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7649 priv);
7650
7651 return 0;
7652
7653rollback:
7654 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7655
7656 return ret;
7657}
7658
7659/**
7660 * netdev_upper_dev_link - Add a link to the upper device
7661 * @dev: device
7662 * @upper_dev: new upper device
7663 * @extack: netlink extended ack
7664 *
7665 * Adds a link to device which is upper to this one. The caller must hold
7666 * the RTNL lock. On a failure a negative errno code is returned.
7667 * On success the reference counts are adjusted and the function
7668 * returns zero.
7669 */
7670int netdev_upper_dev_link(struct net_device *dev,
7671 struct net_device *upper_dev,
7672 struct netlink_ext_ack *extack)
7673{
7674 struct netdev_nested_priv priv = {
7675 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7676 .data = NULL,
7677 };
7678
7679 return __netdev_upper_dev_link(dev, upper_dev, false,
7680 NULL, NULL, &priv, extack);
7681}
7682EXPORT_SYMBOL(netdev_upper_dev_link);
7683
7684/**
7685 * netdev_master_upper_dev_link - Add a master link to the upper device
7686 * @dev: device
7687 * @upper_dev: new upper device
7688 * @upper_priv: upper device private
7689 * @upper_info: upper info to be passed down via notifier
7690 * @extack: netlink extended ack
7691 *
7692 * Adds a link to device which is upper to this one. In this case, only
7693 * one master upper device can be linked, although other non-master devices
7694 * might be linked as well. The caller must hold the RTNL lock.
7695 * On a failure a negative errno code is returned. On success the reference
7696 * counts are adjusted and the function returns zero.
7697 */
7698int netdev_master_upper_dev_link(struct net_device *dev,
7699 struct net_device *upper_dev,
7700 void *upper_priv, void *upper_info,
7701 struct netlink_ext_ack *extack)
7702{
7703 struct netdev_nested_priv priv = {
7704 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7705 .data = NULL,
7706 };
7707
7708 return __netdev_upper_dev_link(dev, upper_dev, true,
7709 upper_priv, upper_info, &priv, extack);
7710}
7711EXPORT_SYMBOL(netdev_master_upper_dev_link);
7712
7713static void __netdev_upper_dev_unlink(struct net_device *dev,
7714 struct net_device *upper_dev,
7715 struct netdev_nested_priv *priv)
7716{
7717 struct netdev_notifier_changeupper_info changeupper_info = {
7718 .info = {
7719 .dev = dev,
7720 },
7721 .upper_dev = upper_dev,
7722 .linking = false,
7723 };
7724
7725 ASSERT_RTNL();
7726
7727 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7728
7729 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7730 &changeupper_info.info);
7731
7732 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7733
7734 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7735 &changeupper_info.info);
7736
7737 __netdev_update_upper_level(dev, NULL);
7738 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7739
7740 __netdev_update_lower_level(upper_dev, priv);
7741 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7742 priv);
7743}
7744
7745/**
7746 * netdev_upper_dev_unlink - Removes a link to upper device
7747 * @dev: device
7748 * @upper_dev: new upper device
7749 *
7750 * Removes a link to device which is upper to this one. The caller must hold
7751 * the RTNL lock.
7752 */
7753void netdev_upper_dev_unlink(struct net_device *dev,
7754 struct net_device *upper_dev)
7755{
7756 struct netdev_nested_priv priv = {
7757 .flags = NESTED_SYNC_TODO,
7758 .data = NULL,
7759 };
7760
7761 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7762}
7763EXPORT_SYMBOL(netdev_upper_dev_unlink);
7764
7765static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7766 struct net_device *lower_dev,
7767 bool val)
7768{
7769 struct netdev_adjacent *adj;
7770
7771 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7772 if (adj)
7773 adj->ignore = val;
7774
7775 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7776 if (adj)
7777 adj->ignore = val;
7778}
7779
7780static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7781 struct net_device *lower_dev)
7782{
7783 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7784}
7785
7786static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7787 struct net_device *lower_dev)
7788{
7789 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7790}
7791
7792int netdev_adjacent_change_prepare(struct net_device *old_dev,
7793 struct net_device *new_dev,
7794 struct net_device *dev,
7795 struct netlink_ext_ack *extack)
7796{
7797 struct netdev_nested_priv priv = {
7798 .flags = 0,
7799 .data = NULL,
7800 };
7801 int err;
7802
7803 if (!new_dev)
7804 return 0;
7805
7806 if (old_dev && new_dev != old_dev)
7807 netdev_adjacent_dev_disable(dev, old_dev);
7808 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7809 extack);
7810 if (err) {
7811 if (old_dev && new_dev != old_dev)
7812 netdev_adjacent_dev_enable(dev, old_dev);
7813 return err;
7814 }
7815
7816 return 0;
7817}
7818EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7819
7820void netdev_adjacent_change_commit(struct net_device *old_dev,
7821 struct net_device *new_dev,
7822 struct net_device *dev)
7823{
7824 struct netdev_nested_priv priv = {
7825 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7826 .data = NULL,
7827 };
7828
7829 if (!new_dev || !old_dev)
7830 return;
7831
7832 if (new_dev == old_dev)
7833 return;
7834
7835 netdev_adjacent_dev_enable(dev, old_dev);
7836 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7837}
7838EXPORT_SYMBOL(netdev_adjacent_change_commit);
7839
7840void netdev_adjacent_change_abort(struct net_device *old_dev,
7841 struct net_device *new_dev,
7842 struct net_device *dev)
7843{
7844 struct netdev_nested_priv priv = {
7845 .flags = 0,
7846 .data = NULL,
7847 };
7848
7849 if (!new_dev)
7850 return;
7851
7852 if (old_dev && new_dev != old_dev)
7853 netdev_adjacent_dev_enable(dev, old_dev);
7854
7855 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7856}
7857EXPORT_SYMBOL(netdev_adjacent_change_abort);
7858
7859/**
7860 * netdev_bonding_info_change - Dispatch event about slave change
7861 * @dev: device
7862 * @bonding_info: info to dispatch
7863 *
7864 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7865 * The caller must hold the RTNL lock.
7866 */
7867void netdev_bonding_info_change(struct net_device *dev,
7868 struct netdev_bonding_info *bonding_info)
7869{
7870 struct netdev_notifier_bonding_info info = {
7871 .info.dev = dev,
7872 };
7873
7874 memcpy(&info.bonding_info, bonding_info,
7875 sizeof(struct netdev_bonding_info));
7876 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7877 &info.info);
7878}
7879EXPORT_SYMBOL(netdev_bonding_info_change);
7880
7881static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7882 struct netlink_ext_ack *extack)
7883{
7884 struct netdev_notifier_offload_xstats_info info = {
7885 .info.dev = dev,
7886 .info.extack = extack,
7887 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7888 };
7889 int err;
7890 int rc;
7891
7892 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7893 GFP_KERNEL);
7894 if (!dev->offload_xstats_l3)
7895 return -ENOMEM;
7896
7897 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7898 NETDEV_OFFLOAD_XSTATS_DISABLE,
7899 &info.info);
7900 err = notifier_to_errno(rc);
7901 if (err)
7902 goto free_stats;
7903
7904 return 0;
7905
7906free_stats:
7907 kfree(dev->offload_xstats_l3);
7908 dev->offload_xstats_l3 = NULL;
7909 return err;
7910}
7911
7912int netdev_offload_xstats_enable(struct net_device *dev,
7913 enum netdev_offload_xstats_type type,
7914 struct netlink_ext_ack *extack)
7915{
7916 ASSERT_RTNL();
7917
7918 if (netdev_offload_xstats_enabled(dev, type))
7919 return -EALREADY;
7920
7921 switch (type) {
7922 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7923 return netdev_offload_xstats_enable_l3(dev, extack);
7924 }
7925
7926 WARN_ON(1);
7927 return -EINVAL;
7928}
7929EXPORT_SYMBOL(netdev_offload_xstats_enable);
7930
7931static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7932{
7933 struct netdev_notifier_offload_xstats_info info = {
7934 .info.dev = dev,
7935 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7936 };
7937
7938 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7939 &info.info);
7940 kfree(dev->offload_xstats_l3);
7941 dev->offload_xstats_l3 = NULL;
7942}
7943
7944int netdev_offload_xstats_disable(struct net_device *dev,
7945 enum netdev_offload_xstats_type type)
7946{
7947 ASSERT_RTNL();
7948
7949 if (!netdev_offload_xstats_enabled(dev, type))
7950 return -EALREADY;
7951
7952 switch (type) {
7953 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7954 netdev_offload_xstats_disable_l3(dev);
7955 return 0;
7956 }
7957
7958 WARN_ON(1);
7959 return -EINVAL;
7960}
7961EXPORT_SYMBOL(netdev_offload_xstats_disable);
7962
7963static void netdev_offload_xstats_disable_all(struct net_device *dev)
7964{
7965 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7966}
7967
7968static struct rtnl_hw_stats64 *
7969netdev_offload_xstats_get_ptr(const struct net_device *dev,
7970 enum netdev_offload_xstats_type type)
7971{
7972 switch (type) {
7973 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7974 return dev->offload_xstats_l3;
7975 }
7976
7977 WARN_ON(1);
7978 return NULL;
7979}
7980
7981bool netdev_offload_xstats_enabled(const struct net_device *dev,
7982 enum netdev_offload_xstats_type type)
7983{
7984 ASSERT_RTNL();
7985
7986 return netdev_offload_xstats_get_ptr(dev, type);
7987}
7988EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7989
7990struct netdev_notifier_offload_xstats_ru {
7991 bool used;
7992};
7993
7994struct netdev_notifier_offload_xstats_rd {
7995 struct rtnl_hw_stats64 stats;
7996 bool used;
7997};
7998
7999static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8000 const struct rtnl_hw_stats64 *src)
8001{
8002 dest->rx_packets += src->rx_packets;
8003 dest->tx_packets += src->tx_packets;
8004 dest->rx_bytes += src->rx_bytes;
8005 dest->tx_bytes += src->tx_bytes;
8006 dest->rx_errors += src->rx_errors;
8007 dest->tx_errors += src->tx_errors;
8008 dest->rx_dropped += src->rx_dropped;
8009 dest->tx_dropped += src->tx_dropped;
8010 dest->multicast += src->multicast;
8011}
8012
8013static int netdev_offload_xstats_get_used(struct net_device *dev,
8014 enum netdev_offload_xstats_type type,
8015 bool *p_used,
8016 struct netlink_ext_ack *extack)
8017{
8018 struct netdev_notifier_offload_xstats_ru report_used = {};
8019 struct netdev_notifier_offload_xstats_info info = {
8020 .info.dev = dev,
8021 .info.extack = extack,
8022 .type = type,
8023 .report_used = &report_used,
8024 };
8025 int rc;
8026
8027 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8028 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8029 &info.info);
8030 *p_used = report_used.used;
8031 return notifier_to_errno(rc);
8032}
8033
8034static int netdev_offload_xstats_get_stats(struct net_device *dev,
8035 enum netdev_offload_xstats_type type,
8036 struct rtnl_hw_stats64 *p_stats,
8037 bool *p_used,
8038 struct netlink_ext_ack *extack)
8039{
8040 struct netdev_notifier_offload_xstats_rd report_delta = {};
8041 struct netdev_notifier_offload_xstats_info info = {
8042 .info.dev = dev,
8043 .info.extack = extack,
8044 .type = type,
8045 .report_delta = &report_delta,
8046 };
8047 struct rtnl_hw_stats64 *stats;
8048 int rc;
8049
8050 stats = netdev_offload_xstats_get_ptr(dev, type);
8051 if (WARN_ON(!stats))
8052 return -EINVAL;
8053
8054 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8055 &info.info);
8056
8057 /* Cache whatever we got, even if there was an error, otherwise the
8058 * successful stats retrievals would get lost.
8059 */
8060 netdev_hw_stats64_add(stats, &report_delta.stats);
8061
8062 if (p_stats)
8063 *p_stats = *stats;
8064 *p_used = report_delta.used;
8065
8066 return notifier_to_errno(rc);
8067}
8068
8069int netdev_offload_xstats_get(struct net_device *dev,
8070 enum netdev_offload_xstats_type type,
8071 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8072 struct netlink_ext_ack *extack)
8073{
8074 ASSERT_RTNL();
8075
8076 if (p_stats)
8077 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8078 p_used, extack);
8079 else
8080 return netdev_offload_xstats_get_used(dev, type, p_used,
8081 extack);
8082}
8083EXPORT_SYMBOL(netdev_offload_xstats_get);
8084
8085void
8086netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8087 const struct rtnl_hw_stats64 *stats)
8088{
8089 report_delta->used = true;
8090 netdev_hw_stats64_add(&report_delta->stats, stats);
8091}
8092EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8093
8094void
8095netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8096{
8097 report_used->used = true;
8098}
8099EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8100
8101void netdev_offload_xstats_push_delta(struct net_device *dev,
8102 enum netdev_offload_xstats_type type,
8103 const struct rtnl_hw_stats64 *p_stats)
8104{
8105 struct rtnl_hw_stats64 *stats;
8106
8107 ASSERT_RTNL();
8108
8109 stats = netdev_offload_xstats_get_ptr(dev, type);
8110 if (WARN_ON(!stats))
8111 return;
8112
8113 netdev_hw_stats64_add(stats, p_stats);
8114}
8115EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8116
8117/**
8118 * netdev_get_xmit_slave - Get the xmit slave of master device
8119 * @dev: device
8120 * @skb: The packet
8121 * @all_slaves: assume all the slaves are active
8122 *
8123 * The reference counters are not incremented so the caller must be
8124 * careful with locks. The caller must hold RCU lock.
8125 * %NULL is returned if no slave is found.
8126 */
8127
8128struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8129 struct sk_buff *skb,
8130 bool all_slaves)
8131{
8132 const struct net_device_ops *ops = dev->netdev_ops;
8133
8134 if (!ops->ndo_get_xmit_slave)
8135 return NULL;
8136 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8137}
8138EXPORT_SYMBOL(netdev_get_xmit_slave);
8139
8140static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8141 struct sock *sk)
8142{
8143 const struct net_device_ops *ops = dev->netdev_ops;
8144
8145 if (!ops->ndo_sk_get_lower_dev)
8146 return NULL;
8147 return ops->ndo_sk_get_lower_dev(dev, sk);
8148}
8149
8150/**
8151 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8152 * @dev: device
8153 * @sk: the socket
8154 *
8155 * %NULL is returned if no lower device is found.
8156 */
8157
8158struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8159 struct sock *sk)
8160{
8161 struct net_device *lower;
8162
8163 lower = netdev_sk_get_lower_dev(dev, sk);
8164 while (lower) {
8165 dev = lower;
8166 lower = netdev_sk_get_lower_dev(dev, sk);
8167 }
8168
8169 return dev;
8170}
8171EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8172
8173static void netdev_adjacent_add_links(struct net_device *dev)
8174{
8175 struct netdev_adjacent *iter;
8176
8177 struct net *net = dev_net(dev);
8178
8179 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8180 if (!net_eq(net, dev_net(iter->dev)))
8181 continue;
8182 netdev_adjacent_sysfs_add(iter->dev, dev,
8183 &iter->dev->adj_list.lower);
8184 netdev_adjacent_sysfs_add(dev, iter->dev,
8185 &dev->adj_list.upper);
8186 }
8187
8188 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8189 if (!net_eq(net, dev_net(iter->dev)))
8190 continue;
8191 netdev_adjacent_sysfs_add(iter->dev, dev,
8192 &iter->dev->adj_list.upper);
8193 netdev_adjacent_sysfs_add(dev, iter->dev,
8194 &dev->adj_list.lower);
8195 }
8196}
8197
8198static void netdev_adjacent_del_links(struct net_device *dev)
8199{
8200 struct netdev_adjacent *iter;
8201
8202 struct net *net = dev_net(dev);
8203
8204 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8205 if (!net_eq(net, dev_net(iter->dev)))
8206 continue;
8207 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8208 &iter->dev->adj_list.lower);
8209 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8210 &dev->adj_list.upper);
8211 }
8212
8213 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8214 if (!net_eq(net, dev_net(iter->dev)))
8215 continue;
8216 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8217 &iter->dev->adj_list.upper);
8218 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8219 &dev->adj_list.lower);
8220 }
8221}
8222
8223void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8224{
8225 struct netdev_adjacent *iter;
8226
8227 struct net *net = dev_net(dev);
8228
8229 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8230 if (!net_eq(net, dev_net(iter->dev)))
8231 continue;
8232 netdev_adjacent_sysfs_del(iter->dev, oldname,
8233 &iter->dev->adj_list.lower);
8234 netdev_adjacent_sysfs_add(iter->dev, dev,
8235 &iter->dev->adj_list.lower);
8236 }
8237
8238 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8239 if (!net_eq(net, dev_net(iter->dev)))
8240 continue;
8241 netdev_adjacent_sysfs_del(iter->dev, oldname,
8242 &iter->dev->adj_list.upper);
8243 netdev_adjacent_sysfs_add(iter->dev, dev,
8244 &iter->dev->adj_list.upper);
8245 }
8246}
8247
8248void *netdev_lower_dev_get_private(struct net_device *dev,
8249 struct net_device *lower_dev)
8250{
8251 struct netdev_adjacent *lower;
8252
8253 if (!lower_dev)
8254 return NULL;
8255 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8256 if (!lower)
8257 return NULL;
8258
8259 return lower->private;
8260}
8261EXPORT_SYMBOL(netdev_lower_dev_get_private);
8262
8263
8264/**
8265 * netdev_lower_state_changed - Dispatch event about lower device state change
8266 * @lower_dev: device
8267 * @lower_state_info: state to dispatch
8268 *
8269 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8270 * The caller must hold the RTNL lock.
8271 */
8272void netdev_lower_state_changed(struct net_device *lower_dev,
8273 void *lower_state_info)
8274{
8275 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8276 .info.dev = lower_dev,
8277 };
8278
8279 ASSERT_RTNL();
8280 changelowerstate_info.lower_state_info = lower_state_info;
8281 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8282 &changelowerstate_info.info);
8283}
8284EXPORT_SYMBOL(netdev_lower_state_changed);
8285
8286static void dev_change_rx_flags(struct net_device *dev, int flags)
8287{
8288 const struct net_device_ops *ops = dev->netdev_ops;
8289
8290 if (ops->ndo_change_rx_flags)
8291 ops->ndo_change_rx_flags(dev, flags);
8292}
8293
8294static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8295{
8296 unsigned int old_flags = dev->flags;
8297 kuid_t uid;
8298 kgid_t gid;
8299
8300 ASSERT_RTNL();
8301
8302 dev->flags |= IFF_PROMISC;
8303 dev->promiscuity += inc;
8304 if (dev->promiscuity == 0) {
8305 /*
8306 * Avoid overflow.
8307 * If inc causes overflow, untouch promisc and return error.
8308 */
8309 if (inc < 0)
8310 dev->flags &= ~IFF_PROMISC;
8311 else {
8312 dev->promiscuity -= inc;
8313 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8314 return -EOVERFLOW;
8315 }
8316 }
8317 if (dev->flags != old_flags) {
8318 netdev_info(dev, "%s promiscuous mode\n",
8319 dev->flags & IFF_PROMISC ? "entered" : "left");
8320 if (audit_enabled) {
8321 current_uid_gid(&uid, &gid);
8322 audit_log(audit_context(), GFP_ATOMIC,
8323 AUDIT_ANOM_PROMISCUOUS,
8324 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8325 dev->name, (dev->flags & IFF_PROMISC),
8326 (old_flags & IFF_PROMISC),
8327 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8328 from_kuid(&init_user_ns, uid),
8329 from_kgid(&init_user_ns, gid),
8330 audit_get_sessionid(current));
8331 }
8332
8333 dev_change_rx_flags(dev, IFF_PROMISC);
8334 }
8335 if (notify)
8336 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8337 return 0;
8338}
8339
8340/**
8341 * dev_set_promiscuity - update promiscuity count on a device
8342 * @dev: device
8343 * @inc: modifier
8344 *
8345 * Add or remove promiscuity from a device. While the count in the device
8346 * remains above zero the interface remains promiscuous. Once it hits zero
8347 * the device reverts back to normal filtering operation. A negative inc
8348 * value is used to drop promiscuity on the device.
8349 * Return 0 if successful or a negative errno code on error.
8350 */
8351int dev_set_promiscuity(struct net_device *dev, int inc)
8352{
8353 unsigned int old_flags = dev->flags;
8354 int err;
8355
8356 err = __dev_set_promiscuity(dev, inc, true);
8357 if (err < 0)
8358 return err;
8359 if (dev->flags != old_flags)
8360 dev_set_rx_mode(dev);
8361 return err;
8362}
8363EXPORT_SYMBOL(dev_set_promiscuity);
8364
8365static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8366{
8367 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8368
8369 ASSERT_RTNL();
8370
8371 dev->flags |= IFF_ALLMULTI;
8372 dev->allmulti += inc;
8373 if (dev->allmulti == 0) {
8374 /*
8375 * Avoid overflow.
8376 * If inc causes overflow, untouch allmulti and return error.
8377 */
8378 if (inc < 0)
8379 dev->flags &= ~IFF_ALLMULTI;
8380 else {
8381 dev->allmulti -= inc;
8382 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8383 return -EOVERFLOW;
8384 }
8385 }
8386 if (dev->flags ^ old_flags) {
8387 netdev_info(dev, "%s allmulticast mode\n",
8388 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8389 dev_change_rx_flags(dev, IFF_ALLMULTI);
8390 dev_set_rx_mode(dev);
8391 if (notify)
8392 __dev_notify_flags(dev, old_flags,
8393 dev->gflags ^ old_gflags, 0, NULL);
8394 }
8395 return 0;
8396}
8397
8398/**
8399 * dev_set_allmulti - update allmulti count on a device
8400 * @dev: device
8401 * @inc: modifier
8402 *
8403 * Add or remove reception of all multicast frames to a device. While the
8404 * count in the device remains above zero the interface remains listening
8405 * to all interfaces. Once it hits zero the device reverts back to normal
8406 * filtering operation. A negative @inc value is used to drop the counter
8407 * when releasing a resource needing all multicasts.
8408 * Return 0 if successful or a negative errno code on error.
8409 */
8410
8411int dev_set_allmulti(struct net_device *dev, int inc)
8412{
8413 return __dev_set_allmulti(dev, inc, true);
8414}
8415EXPORT_SYMBOL(dev_set_allmulti);
8416
8417/*
8418 * Upload unicast and multicast address lists to device and
8419 * configure RX filtering. When the device doesn't support unicast
8420 * filtering it is put in promiscuous mode while unicast addresses
8421 * are present.
8422 */
8423void __dev_set_rx_mode(struct net_device *dev)
8424{
8425 const struct net_device_ops *ops = dev->netdev_ops;
8426
8427 /* dev_open will call this function so the list will stay sane. */
8428 if (!(dev->flags&IFF_UP))
8429 return;
8430
8431 if (!netif_device_present(dev))
8432 return;
8433
8434 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8435 /* Unicast addresses changes may only happen under the rtnl,
8436 * therefore calling __dev_set_promiscuity here is safe.
8437 */
8438 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8439 __dev_set_promiscuity(dev, 1, false);
8440 dev->uc_promisc = true;
8441 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8442 __dev_set_promiscuity(dev, -1, false);
8443 dev->uc_promisc = false;
8444 }
8445 }
8446
8447 if (ops->ndo_set_rx_mode)
8448 ops->ndo_set_rx_mode(dev);
8449}
8450
8451void dev_set_rx_mode(struct net_device *dev)
8452{
8453 netif_addr_lock_bh(dev);
8454 __dev_set_rx_mode(dev);
8455 netif_addr_unlock_bh(dev);
8456}
8457
8458/**
8459 * dev_get_flags - get flags reported to userspace
8460 * @dev: device
8461 *
8462 * Get the combination of flag bits exported through APIs to userspace.
8463 */
8464unsigned int dev_get_flags(const struct net_device *dev)
8465{
8466 unsigned int flags;
8467
8468 flags = (dev->flags & ~(IFF_PROMISC |
8469 IFF_ALLMULTI |
8470 IFF_RUNNING |
8471 IFF_LOWER_UP |
8472 IFF_DORMANT)) |
8473 (dev->gflags & (IFF_PROMISC |
8474 IFF_ALLMULTI));
8475
8476 if (netif_running(dev)) {
8477 if (netif_oper_up(dev))
8478 flags |= IFF_RUNNING;
8479 if (netif_carrier_ok(dev))
8480 flags |= IFF_LOWER_UP;
8481 if (netif_dormant(dev))
8482 flags |= IFF_DORMANT;
8483 }
8484
8485 return flags;
8486}
8487EXPORT_SYMBOL(dev_get_flags);
8488
8489int __dev_change_flags(struct net_device *dev, unsigned int flags,
8490 struct netlink_ext_ack *extack)
8491{
8492 unsigned int old_flags = dev->flags;
8493 int ret;
8494
8495 ASSERT_RTNL();
8496
8497 /*
8498 * Set the flags on our device.
8499 */
8500
8501 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8502 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8503 IFF_AUTOMEDIA)) |
8504 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8505 IFF_ALLMULTI));
8506
8507 /*
8508 * Load in the correct multicast list now the flags have changed.
8509 */
8510
8511 if ((old_flags ^ flags) & IFF_MULTICAST)
8512 dev_change_rx_flags(dev, IFF_MULTICAST);
8513
8514 dev_set_rx_mode(dev);
8515
8516 /*
8517 * Have we downed the interface. We handle IFF_UP ourselves
8518 * according to user attempts to set it, rather than blindly
8519 * setting it.
8520 */
8521
8522 ret = 0;
8523 if ((old_flags ^ flags) & IFF_UP) {
8524 if (old_flags & IFF_UP)
8525 __dev_close(dev);
8526 else
8527 ret = __dev_open(dev, extack);
8528 }
8529
8530 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8531 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8532 unsigned int old_flags = dev->flags;
8533
8534 dev->gflags ^= IFF_PROMISC;
8535
8536 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8537 if (dev->flags != old_flags)
8538 dev_set_rx_mode(dev);
8539 }
8540
8541 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8542 * is important. Some (broken) drivers set IFF_PROMISC, when
8543 * IFF_ALLMULTI is requested not asking us and not reporting.
8544 */
8545 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8546 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8547
8548 dev->gflags ^= IFF_ALLMULTI;
8549 __dev_set_allmulti(dev, inc, false);
8550 }
8551
8552 return ret;
8553}
8554
8555void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8556 unsigned int gchanges, u32 portid,
8557 const struct nlmsghdr *nlh)
8558{
8559 unsigned int changes = dev->flags ^ old_flags;
8560
8561 if (gchanges)
8562 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8563
8564 if (changes & IFF_UP) {
8565 if (dev->flags & IFF_UP)
8566 call_netdevice_notifiers(NETDEV_UP, dev);
8567 else
8568 call_netdevice_notifiers(NETDEV_DOWN, dev);
8569 }
8570
8571 if (dev->flags & IFF_UP &&
8572 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8573 struct netdev_notifier_change_info change_info = {
8574 .info = {
8575 .dev = dev,
8576 },
8577 .flags_changed = changes,
8578 };
8579
8580 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8581 }
8582}
8583
8584/**
8585 * dev_change_flags - change device settings
8586 * @dev: device
8587 * @flags: device state flags
8588 * @extack: netlink extended ack
8589 *
8590 * Change settings on device based state flags. The flags are
8591 * in the userspace exported format.
8592 */
8593int dev_change_flags(struct net_device *dev, unsigned int flags,
8594 struct netlink_ext_ack *extack)
8595{
8596 int ret;
8597 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8598
8599 ret = __dev_change_flags(dev, flags, extack);
8600 if (ret < 0)
8601 return ret;
8602
8603 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8604 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8605 return ret;
8606}
8607EXPORT_SYMBOL(dev_change_flags);
8608
8609int __dev_set_mtu(struct net_device *dev, int new_mtu)
8610{
8611 const struct net_device_ops *ops = dev->netdev_ops;
8612
8613 if (ops->ndo_change_mtu)
8614 return ops->ndo_change_mtu(dev, new_mtu);
8615
8616 /* Pairs with all the lockless reads of dev->mtu in the stack */
8617 WRITE_ONCE(dev->mtu, new_mtu);
8618 return 0;
8619}
8620EXPORT_SYMBOL(__dev_set_mtu);
8621
8622int dev_validate_mtu(struct net_device *dev, int new_mtu,
8623 struct netlink_ext_ack *extack)
8624{
8625 /* MTU must be positive, and in range */
8626 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8627 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8628 return -EINVAL;
8629 }
8630
8631 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8632 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8633 return -EINVAL;
8634 }
8635 return 0;
8636}
8637
8638/**
8639 * dev_set_mtu_ext - Change maximum transfer unit
8640 * @dev: device
8641 * @new_mtu: new transfer unit
8642 * @extack: netlink extended ack
8643 *
8644 * Change the maximum transfer size of the network device.
8645 */
8646int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8647 struct netlink_ext_ack *extack)
8648{
8649 int err, orig_mtu;
8650
8651 if (new_mtu == dev->mtu)
8652 return 0;
8653
8654 err = dev_validate_mtu(dev, new_mtu, extack);
8655 if (err)
8656 return err;
8657
8658 if (!netif_device_present(dev))
8659 return -ENODEV;
8660
8661 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8662 err = notifier_to_errno(err);
8663 if (err)
8664 return err;
8665
8666 orig_mtu = dev->mtu;
8667 err = __dev_set_mtu(dev, new_mtu);
8668
8669 if (!err) {
8670 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8671 orig_mtu);
8672 err = notifier_to_errno(err);
8673 if (err) {
8674 /* setting mtu back and notifying everyone again,
8675 * so that they have a chance to revert changes.
8676 */
8677 __dev_set_mtu(dev, orig_mtu);
8678 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8679 new_mtu);
8680 }
8681 }
8682 return err;
8683}
8684
8685int dev_set_mtu(struct net_device *dev, int new_mtu)
8686{
8687 struct netlink_ext_ack extack;
8688 int err;
8689
8690 memset(&extack, 0, sizeof(extack));
8691 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8692 if (err && extack._msg)
8693 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8694 return err;
8695}
8696EXPORT_SYMBOL(dev_set_mtu);
8697
8698/**
8699 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8700 * @dev: device
8701 * @new_len: new tx queue length
8702 */
8703int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8704{
8705 unsigned int orig_len = dev->tx_queue_len;
8706 int res;
8707
8708 if (new_len != (unsigned int)new_len)
8709 return -ERANGE;
8710
8711 if (new_len != orig_len) {
8712 dev->tx_queue_len = new_len;
8713 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8714 res = notifier_to_errno(res);
8715 if (res)
8716 goto err_rollback;
8717 res = dev_qdisc_change_tx_queue_len(dev);
8718 if (res)
8719 goto err_rollback;
8720 }
8721
8722 return 0;
8723
8724err_rollback:
8725 netdev_err(dev, "refused to change device tx_queue_len\n");
8726 dev->tx_queue_len = orig_len;
8727 return res;
8728}
8729
8730/**
8731 * dev_set_group - Change group this device belongs to
8732 * @dev: device
8733 * @new_group: group this device should belong to
8734 */
8735void dev_set_group(struct net_device *dev, int new_group)
8736{
8737 dev->group = new_group;
8738}
8739
8740/**
8741 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8742 * @dev: device
8743 * @addr: new address
8744 * @extack: netlink extended ack
8745 */
8746int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8747 struct netlink_ext_ack *extack)
8748{
8749 struct netdev_notifier_pre_changeaddr_info info = {
8750 .info.dev = dev,
8751 .info.extack = extack,
8752 .dev_addr = addr,
8753 };
8754 int rc;
8755
8756 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8757 return notifier_to_errno(rc);
8758}
8759EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8760
8761/**
8762 * dev_set_mac_address - Change Media Access Control Address
8763 * @dev: device
8764 * @sa: new address
8765 * @extack: netlink extended ack
8766 *
8767 * Change the hardware (MAC) address of the device
8768 */
8769int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8770 struct netlink_ext_ack *extack)
8771{
8772 const struct net_device_ops *ops = dev->netdev_ops;
8773 int err;
8774
8775 if (!ops->ndo_set_mac_address)
8776 return -EOPNOTSUPP;
8777 if (sa->sa_family != dev->type)
8778 return -EINVAL;
8779 if (!netif_device_present(dev))
8780 return -ENODEV;
8781 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8782 if (err)
8783 return err;
8784 err = ops->ndo_set_mac_address(dev, sa);
8785 if (err)
8786 return err;
8787 dev->addr_assign_type = NET_ADDR_SET;
8788 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8789 add_device_randomness(dev->dev_addr, dev->addr_len);
8790 return 0;
8791}
8792EXPORT_SYMBOL(dev_set_mac_address);
8793
8794static DECLARE_RWSEM(dev_addr_sem);
8795
8796int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8797 struct netlink_ext_ack *extack)
8798{
8799 int ret;
8800
8801 down_write(&dev_addr_sem);
8802 ret = dev_set_mac_address(dev, sa, extack);
8803 up_write(&dev_addr_sem);
8804 return ret;
8805}
8806EXPORT_SYMBOL(dev_set_mac_address_user);
8807
8808int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8809{
8810 size_t size = sizeof(sa->sa_data_min);
8811 struct net_device *dev;
8812 int ret = 0;
8813
8814 down_read(&dev_addr_sem);
8815 rcu_read_lock();
8816
8817 dev = dev_get_by_name_rcu(net, dev_name);
8818 if (!dev) {
8819 ret = -ENODEV;
8820 goto unlock;
8821 }
8822 if (!dev->addr_len)
8823 memset(sa->sa_data, 0, size);
8824 else
8825 memcpy(sa->sa_data, dev->dev_addr,
8826 min_t(size_t, size, dev->addr_len));
8827 sa->sa_family = dev->type;
8828
8829unlock:
8830 rcu_read_unlock();
8831 up_read(&dev_addr_sem);
8832 return ret;
8833}
8834EXPORT_SYMBOL(dev_get_mac_address);
8835
8836/**
8837 * dev_change_carrier - Change device carrier
8838 * @dev: device
8839 * @new_carrier: new value
8840 *
8841 * Change device carrier
8842 */
8843int dev_change_carrier(struct net_device *dev, bool new_carrier)
8844{
8845 const struct net_device_ops *ops = dev->netdev_ops;
8846
8847 if (!ops->ndo_change_carrier)
8848 return -EOPNOTSUPP;
8849 if (!netif_device_present(dev))
8850 return -ENODEV;
8851 return ops->ndo_change_carrier(dev, new_carrier);
8852}
8853
8854/**
8855 * dev_get_phys_port_id - Get device physical port ID
8856 * @dev: device
8857 * @ppid: port ID
8858 *
8859 * Get device physical port ID
8860 */
8861int dev_get_phys_port_id(struct net_device *dev,
8862 struct netdev_phys_item_id *ppid)
8863{
8864 const struct net_device_ops *ops = dev->netdev_ops;
8865
8866 if (!ops->ndo_get_phys_port_id)
8867 return -EOPNOTSUPP;
8868 return ops->ndo_get_phys_port_id(dev, ppid);
8869}
8870
8871/**
8872 * dev_get_phys_port_name - Get device physical port name
8873 * @dev: device
8874 * @name: port name
8875 * @len: limit of bytes to copy to name
8876 *
8877 * Get device physical port name
8878 */
8879int dev_get_phys_port_name(struct net_device *dev,
8880 char *name, size_t len)
8881{
8882 const struct net_device_ops *ops = dev->netdev_ops;
8883 int err;
8884
8885 if (ops->ndo_get_phys_port_name) {
8886 err = ops->ndo_get_phys_port_name(dev, name, len);
8887 if (err != -EOPNOTSUPP)
8888 return err;
8889 }
8890 return devlink_compat_phys_port_name_get(dev, name, len);
8891}
8892
8893/**
8894 * dev_get_port_parent_id - Get the device's port parent identifier
8895 * @dev: network device
8896 * @ppid: pointer to a storage for the port's parent identifier
8897 * @recurse: allow/disallow recursion to lower devices
8898 *
8899 * Get the devices's port parent identifier
8900 */
8901int dev_get_port_parent_id(struct net_device *dev,
8902 struct netdev_phys_item_id *ppid,
8903 bool recurse)
8904{
8905 const struct net_device_ops *ops = dev->netdev_ops;
8906 struct netdev_phys_item_id first = { };
8907 struct net_device *lower_dev;
8908 struct list_head *iter;
8909 int err;
8910
8911 if (ops->ndo_get_port_parent_id) {
8912 err = ops->ndo_get_port_parent_id(dev, ppid);
8913 if (err != -EOPNOTSUPP)
8914 return err;
8915 }
8916
8917 err = devlink_compat_switch_id_get(dev, ppid);
8918 if (!recurse || err != -EOPNOTSUPP)
8919 return err;
8920
8921 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8922 err = dev_get_port_parent_id(lower_dev, ppid, true);
8923 if (err)
8924 break;
8925 if (!first.id_len)
8926 first = *ppid;
8927 else if (memcmp(&first, ppid, sizeof(*ppid)))
8928 return -EOPNOTSUPP;
8929 }
8930
8931 return err;
8932}
8933EXPORT_SYMBOL(dev_get_port_parent_id);
8934
8935/**
8936 * netdev_port_same_parent_id - Indicate if two network devices have
8937 * the same port parent identifier
8938 * @a: first network device
8939 * @b: second network device
8940 */
8941bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8942{
8943 struct netdev_phys_item_id a_id = { };
8944 struct netdev_phys_item_id b_id = { };
8945
8946 if (dev_get_port_parent_id(a, &a_id, true) ||
8947 dev_get_port_parent_id(b, &b_id, true))
8948 return false;
8949
8950 return netdev_phys_item_id_same(&a_id, &b_id);
8951}
8952EXPORT_SYMBOL(netdev_port_same_parent_id);
8953
8954/**
8955 * dev_change_proto_down - set carrier according to proto_down.
8956 *
8957 * @dev: device
8958 * @proto_down: new value
8959 */
8960int dev_change_proto_down(struct net_device *dev, bool proto_down)
8961{
8962 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8963 return -EOPNOTSUPP;
8964 if (!netif_device_present(dev))
8965 return -ENODEV;
8966 if (proto_down)
8967 netif_carrier_off(dev);
8968 else
8969 netif_carrier_on(dev);
8970 dev->proto_down = proto_down;
8971 return 0;
8972}
8973
8974/**
8975 * dev_change_proto_down_reason - proto down reason
8976 *
8977 * @dev: device
8978 * @mask: proto down mask
8979 * @value: proto down value
8980 */
8981void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8982 u32 value)
8983{
8984 int b;
8985
8986 if (!mask) {
8987 dev->proto_down_reason = value;
8988 } else {
8989 for_each_set_bit(b, &mask, 32) {
8990 if (value & (1 << b))
8991 dev->proto_down_reason |= BIT(b);
8992 else
8993 dev->proto_down_reason &= ~BIT(b);
8994 }
8995 }
8996}
8997
8998struct bpf_xdp_link {
8999 struct bpf_link link;
9000 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9001 int flags;
9002};
9003
9004static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9005{
9006 if (flags & XDP_FLAGS_HW_MODE)
9007 return XDP_MODE_HW;
9008 if (flags & XDP_FLAGS_DRV_MODE)
9009 return XDP_MODE_DRV;
9010 if (flags & XDP_FLAGS_SKB_MODE)
9011 return XDP_MODE_SKB;
9012 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9013}
9014
9015static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9016{
9017 switch (mode) {
9018 case XDP_MODE_SKB:
9019 return generic_xdp_install;
9020 case XDP_MODE_DRV:
9021 case XDP_MODE_HW:
9022 return dev->netdev_ops->ndo_bpf;
9023 default:
9024 return NULL;
9025 }
9026}
9027
9028static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9029 enum bpf_xdp_mode mode)
9030{
9031 return dev->xdp_state[mode].link;
9032}
9033
9034static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9035 enum bpf_xdp_mode mode)
9036{
9037 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9038
9039 if (link)
9040 return link->link.prog;
9041 return dev->xdp_state[mode].prog;
9042}
9043
9044u8 dev_xdp_prog_count(struct net_device *dev)
9045{
9046 u8 count = 0;
9047 int i;
9048
9049 for (i = 0; i < __MAX_XDP_MODE; i++)
9050 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9051 count++;
9052 return count;
9053}
9054EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9055
9056u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9057{
9058 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9059
9060 return prog ? prog->aux->id : 0;
9061}
9062
9063static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9064 struct bpf_xdp_link *link)
9065{
9066 dev->xdp_state[mode].link = link;
9067 dev->xdp_state[mode].prog = NULL;
9068}
9069
9070static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9071 struct bpf_prog *prog)
9072{
9073 dev->xdp_state[mode].link = NULL;
9074 dev->xdp_state[mode].prog = prog;
9075}
9076
9077static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9078 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9079 u32 flags, struct bpf_prog *prog)
9080{
9081 struct netdev_bpf xdp;
9082 int err;
9083
9084 memset(&xdp, 0, sizeof(xdp));
9085 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9086 xdp.extack = extack;
9087 xdp.flags = flags;
9088 xdp.prog = prog;
9089
9090 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9091 * "moved" into driver), so they don't increment it on their own, but
9092 * they do decrement refcnt when program is detached or replaced.
9093 * Given net_device also owns link/prog, we need to bump refcnt here
9094 * to prevent drivers from underflowing it.
9095 */
9096 if (prog)
9097 bpf_prog_inc(prog);
9098 err = bpf_op(dev, &xdp);
9099 if (err) {
9100 if (prog)
9101 bpf_prog_put(prog);
9102 return err;
9103 }
9104
9105 if (mode != XDP_MODE_HW)
9106 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9107
9108 return 0;
9109}
9110
9111static void dev_xdp_uninstall(struct net_device *dev)
9112{
9113 struct bpf_xdp_link *link;
9114 struct bpf_prog *prog;
9115 enum bpf_xdp_mode mode;
9116 bpf_op_t bpf_op;
9117
9118 ASSERT_RTNL();
9119
9120 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9121 prog = dev_xdp_prog(dev, mode);
9122 if (!prog)
9123 continue;
9124
9125 bpf_op = dev_xdp_bpf_op(dev, mode);
9126 if (!bpf_op)
9127 continue;
9128
9129 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9130
9131 /* auto-detach link from net device */
9132 link = dev_xdp_link(dev, mode);
9133 if (link)
9134 link->dev = NULL;
9135 else
9136 bpf_prog_put(prog);
9137
9138 dev_xdp_set_link(dev, mode, NULL);
9139 }
9140}
9141
9142static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9143 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9144 struct bpf_prog *old_prog, u32 flags)
9145{
9146 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9147 struct bpf_prog *cur_prog;
9148 struct net_device *upper;
9149 struct list_head *iter;
9150 enum bpf_xdp_mode mode;
9151 bpf_op_t bpf_op;
9152 int err;
9153
9154 ASSERT_RTNL();
9155
9156 /* either link or prog attachment, never both */
9157 if (link && (new_prog || old_prog))
9158 return -EINVAL;
9159 /* link supports only XDP mode flags */
9160 if (link && (flags & ~XDP_FLAGS_MODES)) {
9161 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9162 return -EINVAL;
9163 }
9164 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9165 if (num_modes > 1) {
9166 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9167 return -EINVAL;
9168 }
9169 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9170 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9171 NL_SET_ERR_MSG(extack,
9172 "More than one program loaded, unset mode is ambiguous");
9173 return -EINVAL;
9174 }
9175 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9176 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9177 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9178 return -EINVAL;
9179 }
9180
9181 mode = dev_xdp_mode(dev, flags);
9182 /* can't replace attached link */
9183 if (dev_xdp_link(dev, mode)) {
9184 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9185 return -EBUSY;
9186 }
9187
9188 /* don't allow if an upper device already has a program */
9189 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9190 if (dev_xdp_prog_count(upper) > 0) {
9191 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9192 return -EEXIST;
9193 }
9194 }
9195
9196 cur_prog = dev_xdp_prog(dev, mode);
9197 /* can't replace attached prog with link */
9198 if (link && cur_prog) {
9199 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9200 return -EBUSY;
9201 }
9202 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9203 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9204 return -EEXIST;
9205 }
9206
9207 /* put effective new program into new_prog */
9208 if (link)
9209 new_prog = link->link.prog;
9210
9211 if (new_prog) {
9212 bool offload = mode == XDP_MODE_HW;
9213 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9214 ? XDP_MODE_DRV : XDP_MODE_SKB;
9215
9216 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9217 NL_SET_ERR_MSG(extack, "XDP program already attached");
9218 return -EBUSY;
9219 }
9220 if (!offload && dev_xdp_prog(dev, other_mode)) {
9221 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9222 return -EEXIST;
9223 }
9224 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9225 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9226 return -EINVAL;
9227 }
9228 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9229 NL_SET_ERR_MSG(extack, "Program bound to different device");
9230 return -EINVAL;
9231 }
9232 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9233 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9234 return -EINVAL;
9235 }
9236 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9237 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9238 return -EINVAL;
9239 }
9240 }
9241
9242 /* don't call drivers if the effective program didn't change */
9243 if (new_prog != cur_prog) {
9244 bpf_op = dev_xdp_bpf_op(dev, mode);
9245 if (!bpf_op) {
9246 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9247 return -EOPNOTSUPP;
9248 }
9249
9250 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9251 if (err)
9252 return err;
9253 }
9254
9255 if (link)
9256 dev_xdp_set_link(dev, mode, link);
9257 else
9258 dev_xdp_set_prog(dev, mode, new_prog);
9259 if (cur_prog)
9260 bpf_prog_put(cur_prog);
9261
9262 return 0;
9263}
9264
9265static int dev_xdp_attach_link(struct net_device *dev,
9266 struct netlink_ext_ack *extack,
9267 struct bpf_xdp_link *link)
9268{
9269 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9270}
9271
9272static int dev_xdp_detach_link(struct net_device *dev,
9273 struct netlink_ext_ack *extack,
9274 struct bpf_xdp_link *link)
9275{
9276 enum bpf_xdp_mode mode;
9277 bpf_op_t bpf_op;
9278
9279 ASSERT_RTNL();
9280
9281 mode = dev_xdp_mode(dev, link->flags);
9282 if (dev_xdp_link(dev, mode) != link)
9283 return -EINVAL;
9284
9285 bpf_op = dev_xdp_bpf_op(dev, mode);
9286 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9287 dev_xdp_set_link(dev, mode, NULL);
9288 return 0;
9289}
9290
9291static void bpf_xdp_link_release(struct bpf_link *link)
9292{
9293 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9294
9295 rtnl_lock();
9296
9297 /* if racing with net_device's tear down, xdp_link->dev might be
9298 * already NULL, in which case link was already auto-detached
9299 */
9300 if (xdp_link->dev) {
9301 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9302 xdp_link->dev = NULL;
9303 }
9304
9305 rtnl_unlock();
9306}
9307
9308static int bpf_xdp_link_detach(struct bpf_link *link)
9309{
9310 bpf_xdp_link_release(link);
9311 return 0;
9312}
9313
9314static void bpf_xdp_link_dealloc(struct bpf_link *link)
9315{
9316 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9317
9318 kfree(xdp_link);
9319}
9320
9321static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9322 struct seq_file *seq)
9323{
9324 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9325 u32 ifindex = 0;
9326
9327 rtnl_lock();
9328 if (xdp_link->dev)
9329 ifindex = xdp_link->dev->ifindex;
9330 rtnl_unlock();
9331
9332 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9333}
9334
9335static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9336 struct bpf_link_info *info)
9337{
9338 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9339 u32 ifindex = 0;
9340
9341 rtnl_lock();
9342 if (xdp_link->dev)
9343 ifindex = xdp_link->dev->ifindex;
9344 rtnl_unlock();
9345
9346 info->xdp.ifindex = ifindex;
9347 return 0;
9348}
9349
9350static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9351 struct bpf_prog *old_prog)
9352{
9353 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9354 enum bpf_xdp_mode mode;
9355 bpf_op_t bpf_op;
9356 int err = 0;
9357
9358 rtnl_lock();
9359
9360 /* link might have been auto-released already, so fail */
9361 if (!xdp_link->dev) {
9362 err = -ENOLINK;
9363 goto out_unlock;
9364 }
9365
9366 if (old_prog && link->prog != old_prog) {
9367 err = -EPERM;
9368 goto out_unlock;
9369 }
9370 old_prog = link->prog;
9371 if (old_prog->type != new_prog->type ||
9372 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9373 err = -EINVAL;
9374 goto out_unlock;
9375 }
9376
9377 if (old_prog == new_prog) {
9378 /* no-op, don't disturb drivers */
9379 bpf_prog_put(new_prog);
9380 goto out_unlock;
9381 }
9382
9383 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9384 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9385 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9386 xdp_link->flags, new_prog);
9387 if (err)
9388 goto out_unlock;
9389
9390 old_prog = xchg(&link->prog, new_prog);
9391 bpf_prog_put(old_prog);
9392
9393out_unlock:
9394 rtnl_unlock();
9395 return err;
9396}
9397
9398static const struct bpf_link_ops bpf_xdp_link_lops = {
9399 .release = bpf_xdp_link_release,
9400 .dealloc = bpf_xdp_link_dealloc,
9401 .detach = bpf_xdp_link_detach,
9402 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9403 .fill_link_info = bpf_xdp_link_fill_link_info,
9404 .update_prog = bpf_xdp_link_update,
9405};
9406
9407int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9408{
9409 struct net *net = current->nsproxy->net_ns;
9410 struct bpf_link_primer link_primer;
9411 struct bpf_xdp_link *link;
9412 struct net_device *dev;
9413 int err, fd;
9414
9415 rtnl_lock();
9416 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9417 if (!dev) {
9418 rtnl_unlock();
9419 return -EINVAL;
9420 }
9421
9422 link = kzalloc(sizeof(*link), GFP_USER);
9423 if (!link) {
9424 err = -ENOMEM;
9425 goto unlock;
9426 }
9427
9428 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9429 link->dev = dev;
9430 link->flags = attr->link_create.flags;
9431
9432 err = bpf_link_prime(&link->link, &link_primer);
9433 if (err) {
9434 kfree(link);
9435 goto unlock;
9436 }
9437
9438 err = dev_xdp_attach_link(dev, NULL, link);
9439 rtnl_unlock();
9440
9441 if (err) {
9442 link->dev = NULL;
9443 bpf_link_cleanup(&link_primer);
9444 goto out_put_dev;
9445 }
9446
9447 fd = bpf_link_settle(&link_primer);
9448 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9449 dev_put(dev);
9450 return fd;
9451
9452unlock:
9453 rtnl_unlock();
9454
9455out_put_dev:
9456 dev_put(dev);
9457 return err;
9458}
9459
9460/**
9461 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9462 * @dev: device
9463 * @extack: netlink extended ack
9464 * @fd: new program fd or negative value to clear
9465 * @expected_fd: old program fd that userspace expects to replace or clear
9466 * @flags: xdp-related flags
9467 *
9468 * Set or clear a bpf program for a device
9469 */
9470int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9471 int fd, int expected_fd, u32 flags)
9472{
9473 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9474 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9475 int err;
9476
9477 ASSERT_RTNL();
9478
9479 if (fd >= 0) {
9480 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9481 mode != XDP_MODE_SKB);
9482 if (IS_ERR(new_prog))
9483 return PTR_ERR(new_prog);
9484 }
9485
9486 if (expected_fd >= 0) {
9487 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9488 mode != XDP_MODE_SKB);
9489 if (IS_ERR(old_prog)) {
9490 err = PTR_ERR(old_prog);
9491 old_prog = NULL;
9492 goto err_out;
9493 }
9494 }
9495
9496 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9497
9498err_out:
9499 if (err && new_prog)
9500 bpf_prog_put(new_prog);
9501 if (old_prog)
9502 bpf_prog_put(old_prog);
9503 return err;
9504}
9505
9506/**
9507 * dev_new_index - allocate an ifindex
9508 * @net: the applicable net namespace
9509 *
9510 * Returns a suitable unique value for a new device interface
9511 * number. The caller must hold the rtnl semaphore or the
9512 * dev_base_lock to be sure it remains unique.
9513 */
9514static int dev_new_index(struct net *net)
9515{
9516 int ifindex = net->ifindex;
9517
9518 for (;;) {
9519 if (++ifindex <= 0)
9520 ifindex = 1;
9521 if (!__dev_get_by_index(net, ifindex))
9522 return net->ifindex = ifindex;
9523 }
9524}
9525
9526/* Delayed registration/unregisteration */
9527LIST_HEAD(net_todo_list);
9528DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9529
9530static void net_set_todo(struct net_device *dev)
9531{
9532 list_add_tail(&dev->todo_list, &net_todo_list);
9533 atomic_inc(&dev_net(dev)->dev_unreg_count);
9534}
9535
9536static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9537 struct net_device *upper, netdev_features_t features)
9538{
9539 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9540 netdev_features_t feature;
9541 int feature_bit;
9542
9543 for_each_netdev_feature(upper_disables, feature_bit) {
9544 feature = __NETIF_F_BIT(feature_bit);
9545 if (!(upper->wanted_features & feature)
9546 && (features & feature)) {
9547 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9548 &feature, upper->name);
9549 features &= ~feature;
9550 }
9551 }
9552
9553 return features;
9554}
9555
9556static void netdev_sync_lower_features(struct net_device *upper,
9557 struct net_device *lower, netdev_features_t features)
9558{
9559 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9560 netdev_features_t feature;
9561 int feature_bit;
9562
9563 for_each_netdev_feature(upper_disables, feature_bit) {
9564 feature = __NETIF_F_BIT(feature_bit);
9565 if (!(features & feature) && (lower->features & feature)) {
9566 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9567 &feature, lower->name);
9568 lower->wanted_features &= ~feature;
9569 __netdev_update_features(lower);
9570
9571 if (unlikely(lower->features & feature))
9572 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9573 &feature, lower->name);
9574 else
9575 netdev_features_change(lower);
9576 }
9577 }
9578}
9579
9580static netdev_features_t netdev_fix_features(struct net_device *dev,
9581 netdev_features_t features)
9582{
9583 /* Fix illegal checksum combinations */
9584 if ((features & NETIF_F_HW_CSUM) &&
9585 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9586 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9587 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9588 }
9589
9590 /* TSO requires that SG is present as well. */
9591 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9592 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9593 features &= ~NETIF_F_ALL_TSO;
9594 }
9595
9596 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9597 !(features & NETIF_F_IP_CSUM)) {
9598 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9599 features &= ~NETIF_F_TSO;
9600 features &= ~NETIF_F_TSO_ECN;
9601 }
9602
9603 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9604 !(features & NETIF_F_IPV6_CSUM)) {
9605 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9606 features &= ~NETIF_F_TSO6;
9607 }
9608
9609 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9610 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9611 features &= ~NETIF_F_TSO_MANGLEID;
9612
9613 /* TSO ECN requires that TSO is present as well. */
9614 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9615 features &= ~NETIF_F_TSO_ECN;
9616
9617 /* Software GSO depends on SG. */
9618 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9619 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9620 features &= ~NETIF_F_GSO;
9621 }
9622
9623 /* GSO partial features require GSO partial be set */
9624 if ((features & dev->gso_partial_features) &&
9625 !(features & NETIF_F_GSO_PARTIAL)) {
9626 netdev_dbg(dev,
9627 "Dropping partially supported GSO features since no GSO partial.\n");
9628 features &= ~dev->gso_partial_features;
9629 }
9630
9631 if (!(features & NETIF_F_RXCSUM)) {
9632 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9633 * successfully merged by hardware must also have the
9634 * checksum verified by hardware. If the user does not
9635 * want to enable RXCSUM, logically, we should disable GRO_HW.
9636 */
9637 if (features & NETIF_F_GRO_HW) {
9638 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9639 features &= ~NETIF_F_GRO_HW;
9640 }
9641 }
9642
9643 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9644 if (features & NETIF_F_RXFCS) {
9645 if (features & NETIF_F_LRO) {
9646 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9647 features &= ~NETIF_F_LRO;
9648 }
9649
9650 if (features & NETIF_F_GRO_HW) {
9651 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9652 features &= ~NETIF_F_GRO_HW;
9653 }
9654 }
9655
9656 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9657 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9658 features &= ~NETIF_F_LRO;
9659 }
9660
9661 if (features & NETIF_F_HW_TLS_TX) {
9662 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9663 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9664 bool hw_csum = features & NETIF_F_HW_CSUM;
9665
9666 if (!ip_csum && !hw_csum) {
9667 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9668 features &= ~NETIF_F_HW_TLS_TX;
9669 }
9670 }
9671
9672 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9673 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9674 features &= ~NETIF_F_HW_TLS_RX;
9675 }
9676
9677 return features;
9678}
9679
9680int __netdev_update_features(struct net_device *dev)
9681{
9682 struct net_device *upper, *lower;
9683 netdev_features_t features;
9684 struct list_head *iter;
9685 int err = -1;
9686
9687 ASSERT_RTNL();
9688
9689 features = netdev_get_wanted_features(dev);
9690
9691 if (dev->netdev_ops->ndo_fix_features)
9692 features = dev->netdev_ops->ndo_fix_features(dev, features);
9693
9694 /* driver might be less strict about feature dependencies */
9695 features = netdev_fix_features(dev, features);
9696
9697 /* some features can't be enabled if they're off on an upper device */
9698 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9699 features = netdev_sync_upper_features(dev, upper, features);
9700
9701 if (dev->features == features)
9702 goto sync_lower;
9703
9704 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9705 &dev->features, &features);
9706
9707 if (dev->netdev_ops->ndo_set_features)
9708 err = dev->netdev_ops->ndo_set_features(dev, features);
9709 else
9710 err = 0;
9711
9712 if (unlikely(err < 0)) {
9713 netdev_err(dev,
9714 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9715 err, &features, &dev->features);
9716 /* return non-0 since some features might have changed and
9717 * it's better to fire a spurious notification than miss it
9718 */
9719 return -1;
9720 }
9721
9722sync_lower:
9723 /* some features must be disabled on lower devices when disabled
9724 * on an upper device (think: bonding master or bridge)
9725 */
9726 netdev_for_each_lower_dev(dev, lower, iter)
9727 netdev_sync_lower_features(dev, lower, features);
9728
9729 if (!err) {
9730 netdev_features_t diff = features ^ dev->features;
9731
9732 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9733 /* udp_tunnel_{get,drop}_rx_info both need
9734 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9735 * device, or they won't do anything.
9736 * Thus we need to update dev->features
9737 * *before* calling udp_tunnel_get_rx_info,
9738 * but *after* calling udp_tunnel_drop_rx_info.
9739 */
9740 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9741 dev->features = features;
9742 udp_tunnel_get_rx_info(dev);
9743 } else {
9744 udp_tunnel_drop_rx_info(dev);
9745 }
9746 }
9747
9748 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9749 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9750 dev->features = features;
9751 err |= vlan_get_rx_ctag_filter_info(dev);
9752 } else {
9753 vlan_drop_rx_ctag_filter_info(dev);
9754 }
9755 }
9756
9757 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9758 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9759 dev->features = features;
9760 err |= vlan_get_rx_stag_filter_info(dev);
9761 } else {
9762 vlan_drop_rx_stag_filter_info(dev);
9763 }
9764 }
9765
9766 dev->features = features;
9767 }
9768
9769 return err < 0 ? 0 : 1;
9770}
9771
9772/**
9773 * netdev_update_features - recalculate device features
9774 * @dev: the device to check
9775 *
9776 * Recalculate dev->features set and send notifications if it
9777 * has changed. Should be called after driver or hardware dependent
9778 * conditions might have changed that influence the features.
9779 */
9780void netdev_update_features(struct net_device *dev)
9781{
9782 if (__netdev_update_features(dev))
9783 netdev_features_change(dev);
9784}
9785EXPORT_SYMBOL(netdev_update_features);
9786
9787/**
9788 * netdev_change_features - recalculate device features
9789 * @dev: the device to check
9790 *
9791 * Recalculate dev->features set and send notifications even
9792 * if they have not changed. Should be called instead of
9793 * netdev_update_features() if also dev->vlan_features might
9794 * have changed to allow the changes to be propagated to stacked
9795 * VLAN devices.
9796 */
9797void netdev_change_features(struct net_device *dev)
9798{
9799 __netdev_update_features(dev);
9800 netdev_features_change(dev);
9801}
9802EXPORT_SYMBOL(netdev_change_features);
9803
9804/**
9805 * netif_stacked_transfer_operstate - transfer operstate
9806 * @rootdev: the root or lower level device to transfer state from
9807 * @dev: the device to transfer operstate to
9808 *
9809 * Transfer operational state from root to device. This is normally
9810 * called when a stacking relationship exists between the root
9811 * device and the device(a leaf device).
9812 */
9813void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9814 struct net_device *dev)
9815{
9816 if (rootdev->operstate == IF_OPER_DORMANT)
9817 netif_dormant_on(dev);
9818 else
9819 netif_dormant_off(dev);
9820
9821 if (rootdev->operstate == IF_OPER_TESTING)
9822 netif_testing_on(dev);
9823 else
9824 netif_testing_off(dev);
9825
9826 if (netif_carrier_ok(rootdev))
9827 netif_carrier_on(dev);
9828 else
9829 netif_carrier_off(dev);
9830}
9831EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9832
9833static int netif_alloc_rx_queues(struct net_device *dev)
9834{
9835 unsigned int i, count = dev->num_rx_queues;
9836 struct netdev_rx_queue *rx;
9837 size_t sz = count * sizeof(*rx);
9838 int err = 0;
9839
9840 BUG_ON(count < 1);
9841
9842 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9843 if (!rx)
9844 return -ENOMEM;
9845
9846 dev->_rx = rx;
9847
9848 for (i = 0; i < count; i++) {
9849 rx[i].dev = dev;
9850
9851 /* XDP RX-queue setup */
9852 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9853 if (err < 0)
9854 goto err_rxq_info;
9855 }
9856 return 0;
9857
9858err_rxq_info:
9859 /* Rollback successful reg's and free other resources */
9860 while (i--)
9861 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9862 kvfree(dev->_rx);
9863 dev->_rx = NULL;
9864 return err;
9865}
9866
9867static void netif_free_rx_queues(struct net_device *dev)
9868{
9869 unsigned int i, count = dev->num_rx_queues;
9870
9871 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9872 if (!dev->_rx)
9873 return;
9874
9875 for (i = 0; i < count; i++)
9876 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9877
9878 kvfree(dev->_rx);
9879}
9880
9881static void netdev_init_one_queue(struct net_device *dev,
9882 struct netdev_queue *queue, void *_unused)
9883{
9884 /* Initialize queue lock */
9885 spin_lock_init(&queue->_xmit_lock);
9886 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9887 queue->xmit_lock_owner = -1;
9888 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9889 queue->dev = dev;
9890#ifdef CONFIG_BQL
9891 dql_init(&queue->dql, HZ);
9892#endif
9893}
9894
9895static void netif_free_tx_queues(struct net_device *dev)
9896{
9897 kvfree(dev->_tx);
9898}
9899
9900static int netif_alloc_netdev_queues(struct net_device *dev)
9901{
9902 unsigned int count = dev->num_tx_queues;
9903 struct netdev_queue *tx;
9904 size_t sz = count * sizeof(*tx);
9905
9906 if (count < 1 || count > 0xffff)
9907 return -EINVAL;
9908
9909 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9910 if (!tx)
9911 return -ENOMEM;
9912
9913 dev->_tx = tx;
9914
9915 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9916 spin_lock_init(&dev->tx_global_lock);
9917
9918 return 0;
9919}
9920
9921void netif_tx_stop_all_queues(struct net_device *dev)
9922{
9923 unsigned int i;
9924
9925 for (i = 0; i < dev->num_tx_queues; i++) {
9926 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9927
9928 netif_tx_stop_queue(txq);
9929 }
9930}
9931EXPORT_SYMBOL(netif_tx_stop_all_queues);
9932
9933/**
9934 * register_netdevice() - register a network device
9935 * @dev: device to register
9936 *
9937 * Take a prepared network device structure and make it externally accessible.
9938 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9939 * Callers must hold the rtnl lock - you may want register_netdev()
9940 * instead of this.
9941 */
9942int register_netdevice(struct net_device *dev)
9943{
9944 int ret;
9945 struct net *net = dev_net(dev);
9946
9947 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9948 NETDEV_FEATURE_COUNT);
9949 BUG_ON(dev_boot_phase);
9950 ASSERT_RTNL();
9951
9952 might_sleep();
9953
9954 /* When net_device's are persistent, this will be fatal. */
9955 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9956 BUG_ON(!net);
9957
9958 ret = ethtool_check_ops(dev->ethtool_ops);
9959 if (ret)
9960 return ret;
9961
9962 spin_lock_init(&dev->addr_list_lock);
9963 netdev_set_addr_lockdep_class(dev);
9964
9965 ret = dev_get_valid_name(net, dev, dev->name);
9966 if (ret < 0)
9967 goto out;
9968
9969 ret = -ENOMEM;
9970 dev->name_node = netdev_name_node_head_alloc(dev);
9971 if (!dev->name_node)
9972 goto out;
9973
9974 /* Init, if this function is available */
9975 if (dev->netdev_ops->ndo_init) {
9976 ret = dev->netdev_ops->ndo_init(dev);
9977 if (ret) {
9978 if (ret > 0)
9979 ret = -EIO;
9980 goto err_free_name;
9981 }
9982 }
9983
9984 if (((dev->hw_features | dev->features) &
9985 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9986 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9987 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9988 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9989 ret = -EINVAL;
9990 goto err_uninit;
9991 }
9992
9993 ret = -EBUSY;
9994 if (!dev->ifindex)
9995 dev->ifindex = dev_new_index(net);
9996 else if (__dev_get_by_index(net, dev->ifindex))
9997 goto err_uninit;
9998
9999 /* Transfer changeable features to wanted_features and enable
10000 * software offloads (GSO and GRO).
10001 */
10002 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10003 dev->features |= NETIF_F_SOFT_FEATURES;
10004
10005 if (dev->udp_tunnel_nic_info) {
10006 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10007 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10008 }
10009
10010 dev->wanted_features = dev->features & dev->hw_features;
10011
10012 if (!(dev->flags & IFF_LOOPBACK))
10013 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10014
10015 /* If IPv4 TCP segmentation offload is supported we should also
10016 * allow the device to enable segmenting the frame with the option
10017 * of ignoring a static IP ID value. This doesn't enable the
10018 * feature itself but allows the user to enable it later.
10019 */
10020 if (dev->hw_features & NETIF_F_TSO)
10021 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10022 if (dev->vlan_features & NETIF_F_TSO)
10023 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10024 if (dev->mpls_features & NETIF_F_TSO)
10025 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10026 if (dev->hw_enc_features & NETIF_F_TSO)
10027 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10028
10029 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10030 */
10031 dev->vlan_features |= NETIF_F_HIGHDMA;
10032
10033 /* Make NETIF_F_SG inheritable to tunnel devices.
10034 */
10035 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10036
10037 /* Make NETIF_F_SG inheritable to MPLS.
10038 */
10039 dev->mpls_features |= NETIF_F_SG;
10040
10041 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10042 ret = notifier_to_errno(ret);
10043 if (ret)
10044 goto err_uninit;
10045
10046 ret = netdev_register_kobject(dev);
10047 write_lock(&dev_base_lock);
10048 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10049 write_unlock(&dev_base_lock);
10050 if (ret)
10051 goto err_uninit_notify;
10052
10053 __netdev_update_features(dev);
10054
10055 /*
10056 * Default initial state at registry is that the
10057 * device is present.
10058 */
10059
10060 set_bit(__LINK_STATE_PRESENT, &dev->state);
10061
10062 linkwatch_init_dev(dev);
10063
10064 dev_init_scheduler(dev);
10065
10066 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10067 list_netdevice(dev);
10068
10069 add_device_randomness(dev->dev_addr, dev->addr_len);
10070
10071 /* If the device has permanent device address, driver should
10072 * set dev_addr and also addr_assign_type should be set to
10073 * NET_ADDR_PERM (default value).
10074 */
10075 if (dev->addr_assign_type == NET_ADDR_PERM)
10076 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10077
10078 /* Notify protocols, that a new device appeared. */
10079 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10080 ret = notifier_to_errno(ret);
10081 if (ret) {
10082 /* Expect explicit free_netdev() on failure */
10083 dev->needs_free_netdev = false;
10084 unregister_netdevice_queue(dev, NULL);
10085 goto out;
10086 }
10087 /*
10088 * Prevent userspace races by waiting until the network
10089 * device is fully setup before sending notifications.
10090 */
10091 if (!dev->rtnl_link_ops ||
10092 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10093 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10094
10095out:
10096 return ret;
10097
10098err_uninit_notify:
10099 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10100err_uninit:
10101 if (dev->netdev_ops->ndo_uninit)
10102 dev->netdev_ops->ndo_uninit(dev);
10103 if (dev->priv_destructor)
10104 dev->priv_destructor(dev);
10105err_free_name:
10106 netdev_name_node_free(dev->name_node);
10107 goto out;
10108}
10109EXPORT_SYMBOL(register_netdevice);
10110
10111/**
10112 * init_dummy_netdev - init a dummy network device for NAPI
10113 * @dev: device to init
10114 *
10115 * This takes a network device structure and initialize the minimum
10116 * amount of fields so it can be used to schedule NAPI polls without
10117 * registering a full blown interface. This is to be used by drivers
10118 * that need to tie several hardware interfaces to a single NAPI
10119 * poll scheduler due to HW limitations.
10120 */
10121int init_dummy_netdev(struct net_device *dev)
10122{
10123 /* Clear everything. Note we don't initialize spinlocks
10124 * are they aren't supposed to be taken by any of the
10125 * NAPI code and this dummy netdev is supposed to be
10126 * only ever used for NAPI polls
10127 */
10128 memset(dev, 0, sizeof(struct net_device));
10129
10130 /* make sure we BUG if trying to hit standard
10131 * register/unregister code path
10132 */
10133 dev->reg_state = NETREG_DUMMY;
10134
10135 /* NAPI wants this */
10136 INIT_LIST_HEAD(&dev->napi_list);
10137
10138 /* a dummy interface is started by default */
10139 set_bit(__LINK_STATE_PRESENT, &dev->state);
10140 set_bit(__LINK_STATE_START, &dev->state);
10141
10142 /* napi_busy_loop stats accounting wants this */
10143 dev_net_set(dev, &init_net);
10144
10145 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10146 * because users of this 'device' dont need to change
10147 * its refcount.
10148 */
10149
10150 return 0;
10151}
10152EXPORT_SYMBOL_GPL(init_dummy_netdev);
10153
10154
10155/**
10156 * register_netdev - register a network device
10157 * @dev: device to register
10158 *
10159 * Take a completed network device structure and add it to the kernel
10160 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10161 * chain. 0 is returned on success. A negative errno code is returned
10162 * on a failure to set up the device, or if the name is a duplicate.
10163 *
10164 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10165 * and expands the device name if you passed a format string to
10166 * alloc_netdev.
10167 */
10168int register_netdev(struct net_device *dev)
10169{
10170 int err;
10171
10172 if (rtnl_lock_killable())
10173 return -EINTR;
10174 err = register_netdevice(dev);
10175 rtnl_unlock();
10176 return err;
10177}
10178EXPORT_SYMBOL(register_netdev);
10179
10180int netdev_refcnt_read(const struct net_device *dev)
10181{
10182#ifdef CONFIG_PCPU_DEV_REFCNT
10183 int i, refcnt = 0;
10184
10185 for_each_possible_cpu(i)
10186 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10187 return refcnt;
10188#else
10189 return refcount_read(&dev->dev_refcnt);
10190#endif
10191}
10192EXPORT_SYMBOL(netdev_refcnt_read);
10193
10194int netdev_unregister_timeout_secs __read_mostly = 10;
10195
10196#define WAIT_REFS_MIN_MSECS 1
10197#define WAIT_REFS_MAX_MSECS 250
10198/**
10199 * netdev_wait_allrefs_any - wait until all references are gone.
10200 * @list: list of net_devices to wait on
10201 *
10202 * This is called when unregistering network devices.
10203 *
10204 * Any protocol or device that holds a reference should register
10205 * for netdevice notification, and cleanup and put back the
10206 * reference if they receive an UNREGISTER event.
10207 * We can get stuck here if buggy protocols don't correctly
10208 * call dev_put.
10209 */
10210static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10211{
10212 unsigned long rebroadcast_time, warning_time;
10213 struct net_device *dev;
10214 int wait = 0;
10215
10216 rebroadcast_time = warning_time = jiffies;
10217
10218 list_for_each_entry(dev, list, todo_list)
10219 if (netdev_refcnt_read(dev) == 1)
10220 return dev;
10221
10222 while (true) {
10223 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10224 rtnl_lock();
10225
10226 /* Rebroadcast unregister notification */
10227 list_for_each_entry(dev, list, todo_list)
10228 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10229
10230 __rtnl_unlock();
10231 rcu_barrier();
10232 rtnl_lock();
10233
10234 list_for_each_entry(dev, list, todo_list)
10235 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10236 &dev->state)) {
10237 /* We must not have linkwatch events
10238 * pending on unregister. If this
10239 * happens, we simply run the queue
10240 * unscheduled, resulting in a noop
10241 * for this device.
10242 */
10243 linkwatch_run_queue();
10244 break;
10245 }
10246
10247 __rtnl_unlock();
10248
10249 rebroadcast_time = jiffies;
10250 }
10251
10252 if (!wait) {
10253 rcu_barrier();
10254 wait = WAIT_REFS_MIN_MSECS;
10255 } else {
10256 msleep(wait);
10257 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10258 }
10259
10260 list_for_each_entry(dev, list, todo_list)
10261 if (netdev_refcnt_read(dev) == 1)
10262 return dev;
10263
10264 if (time_after(jiffies, warning_time +
10265 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10266 list_for_each_entry(dev, list, todo_list) {
10267 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10268 dev->name, netdev_refcnt_read(dev));
10269 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10270 }
10271
10272 warning_time = jiffies;
10273 }
10274 }
10275}
10276
10277/* The sequence is:
10278 *
10279 * rtnl_lock();
10280 * ...
10281 * register_netdevice(x1);
10282 * register_netdevice(x2);
10283 * ...
10284 * unregister_netdevice(y1);
10285 * unregister_netdevice(y2);
10286 * ...
10287 * rtnl_unlock();
10288 * free_netdev(y1);
10289 * free_netdev(y2);
10290 *
10291 * We are invoked by rtnl_unlock().
10292 * This allows us to deal with problems:
10293 * 1) We can delete sysfs objects which invoke hotplug
10294 * without deadlocking with linkwatch via keventd.
10295 * 2) Since we run with the RTNL semaphore not held, we can sleep
10296 * safely in order to wait for the netdev refcnt to drop to zero.
10297 *
10298 * We must not return until all unregister events added during
10299 * the interval the lock was held have been completed.
10300 */
10301void netdev_run_todo(void)
10302{
10303 struct net_device *dev, *tmp;
10304 struct list_head list;
10305#ifdef CONFIG_LOCKDEP
10306 struct list_head unlink_list;
10307
10308 list_replace_init(&net_unlink_list, &unlink_list);
10309
10310 while (!list_empty(&unlink_list)) {
10311 struct net_device *dev = list_first_entry(&unlink_list,
10312 struct net_device,
10313 unlink_list);
10314 list_del_init(&dev->unlink_list);
10315 dev->nested_level = dev->lower_level - 1;
10316 }
10317#endif
10318
10319 /* Snapshot list, allow later requests */
10320 list_replace_init(&net_todo_list, &list);
10321
10322 __rtnl_unlock();
10323
10324 /* Wait for rcu callbacks to finish before next phase */
10325 if (!list_empty(&list))
10326 rcu_barrier();
10327
10328 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10329 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10330 netdev_WARN(dev, "run_todo but not unregistering\n");
10331 list_del(&dev->todo_list);
10332 continue;
10333 }
10334
10335 write_lock(&dev_base_lock);
10336 dev->reg_state = NETREG_UNREGISTERED;
10337 write_unlock(&dev_base_lock);
10338 linkwatch_forget_dev(dev);
10339 }
10340
10341 while (!list_empty(&list)) {
10342 dev = netdev_wait_allrefs_any(&list);
10343 list_del(&dev->todo_list);
10344
10345 /* paranoia */
10346 BUG_ON(netdev_refcnt_read(dev) != 1);
10347 BUG_ON(!list_empty(&dev->ptype_all));
10348 BUG_ON(!list_empty(&dev->ptype_specific));
10349 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10350 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10351
10352 if (dev->priv_destructor)
10353 dev->priv_destructor(dev);
10354 if (dev->needs_free_netdev)
10355 free_netdev(dev);
10356
10357 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10358 wake_up(&netdev_unregistering_wq);
10359
10360 /* Free network device */
10361 kobject_put(&dev->dev.kobj);
10362 }
10363}
10364
10365/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10366 * all the same fields in the same order as net_device_stats, with only
10367 * the type differing, but rtnl_link_stats64 may have additional fields
10368 * at the end for newer counters.
10369 */
10370void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10371 const struct net_device_stats *netdev_stats)
10372{
10373 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10374 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10375 u64 *dst = (u64 *)stats64;
10376
10377 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10378 for (i = 0; i < n; i++)
10379 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10380 /* zero out counters that only exist in rtnl_link_stats64 */
10381 memset((char *)stats64 + n * sizeof(u64), 0,
10382 sizeof(*stats64) - n * sizeof(u64));
10383}
10384EXPORT_SYMBOL(netdev_stats_to_stats64);
10385
10386struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10387{
10388 struct net_device_core_stats __percpu *p;
10389
10390 p = alloc_percpu_gfp(struct net_device_core_stats,
10391 GFP_ATOMIC | __GFP_NOWARN);
10392
10393 if (p && cmpxchg(&dev->core_stats, NULL, p))
10394 free_percpu(p);
10395
10396 /* This READ_ONCE() pairs with the cmpxchg() above */
10397 return READ_ONCE(dev->core_stats);
10398}
10399EXPORT_SYMBOL(netdev_core_stats_alloc);
10400
10401/**
10402 * dev_get_stats - get network device statistics
10403 * @dev: device to get statistics from
10404 * @storage: place to store stats
10405 *
10406 * Get network statistics from device. Return @storage.
10407 * The device driver may provide its own method by setting
10408 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10409 * otherwise the internal statistics structure is used.
10410 */
10411struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10412 struct rtnl_link_stats64 *storage)
10413{
10414 const struct net_device_ops *ops = dev->netdev_ops;
10415 const struct net_device_core_stats __percpu *p;
10416
10417 if (ops->ndo_get_stats64) {
10418 memset(storage, 0, sizeof(*storage));
10419 ops->ndo_get_stats64(dev, storage);
10420 } else if (ops->ndo_get_stats) {
10421 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10422 } else {
10423 netdev_stats_to_stats64(storage, &dev->stats);
10424 }
10425
10426 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10427 p = READ_ONCE(dev->core_stats);
10428 if (p) {
10429 const struct net_device_core_stats *core_stats;
10430 int i;
10431
10432 for_each_possible_cpu(i) {
10433 core_stats = per_cpu_ptr(p, i);
10434 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10435 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10436 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10437 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10438 }
10439 }
10440 return storage;
10441}
10442EXPORT_SYMBOL(dev_get_stats);
10443
10444/**
10445 * dev_fetch_sw_netstats - get per-cpu network device statistics
10446 * @s: place to store stats
10447 * @netstats: per-cpu network stats to read from
10448 *
10449 * Read per-cpu network statistics and populate the related fields in @s.
10450 */
10451void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10452 const struct pcpu_sw_netstats __percpu *netstats)
10453{
10454 int cpu;
10455
10456 for_each_possible_cpu(cpu) {
10457 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10458 const struct pcpu_sw_netstats *stats;
10459 unsigned int start;
10460
10461 stats = per_cpu_ptr(netstats, cpu);
10462 do {
10463 start = u64_stats_fetch_begin(&stats->syncp);
10464 rx_packets = u64_stats_read(&stats->rx_packets);
10465 rx_bytes = u64_stats_read(&stats->rx_bytes);
10466 tx_packets = u64_stats_read(&stats->tx_packets);
10467 tx_bytes = u64_stats_read(&stats->tx_bytes);
10468 } while (u64_stats_fetch_retry(&stats->syncp, start));
10469
10470 s->rx_packets += rx_packets;
10471 s->rx_bytes += rx_bytes;
10472 s->tx_packets += tx_packets;
10473 s->tx_bytes += tx_bytes;
10474 }
10475}
10476EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10477
10478/**
10479 * dev_get_tstats64 - ndo_get_stats64 implementation
10480 * @dev: device to get statistics from
10481 * @s: place to store stats
10482 *
10483 * Populate @s from dev->stats and dev->tstats. Can be used as
10484 * ndo_get_stats64() callback.
10485 */
10486void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10487{
10488 netdev_stats_to_stats64(s, &dev->stats);
10489 dev_fetch_sw_netstats(s, dev->tstats);
10490}
10491EXPORT_SYMBOL_GPL(dev_get_tstats64);
10492
10493struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10494{
10495 struct netdev_queue *queue = dev_ingress_queue(dev);
10496
10497#ifdef CONFIG_NET_CLS_ACT
10498 if (queue)
10499 return queue;
10500 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10501 if (!queue)
10502 return NULL;
10503 netdev_init_one_queue(dev, queue, NULL);
10504 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10505 queue->qdisc_sleeping = &noop_qdisc;
10506 rcu_assign_pointer(dev->ingress_queue, queue);
10507#endif
10508 return queue;
10509}
10510
10511static const struct ethtool_ops default_ethtool_ops;
10512
10513void netdev_set_default_ethtool_ops(struct net_device *dev,
10514 const struct ethtool_ops *ops)
10515{
10516 if (dev->ethtool_ops == &default_ethtool_ops)
10517 dev->ethtool_ops = ops;
10518}
10519EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10520
10521/**
10522 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10523 * @dev: netdev to enable the IRQ coalescing on
10524 *
10525 * Sets a conservative default for SW IRQ coalescing. Users can use
10526 * sysfs attributes to override the default values.
10527 */
10528void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10529{
10530 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10531
10532 dev->gro_flush_timeout = 20000;
10533 dev->napi_defer_hard_irqs = 1;
10534}
10535EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10536
10537void netdev_freemem(struct net_device *dev)
10538{
10539 char *addr = (char *)dev - dev->padded;
10540
10541 kvfree(addr);
10542}
10543
10544/**
10545 * alloc_netdev_mqs - allocate network device
10546 * @sizeof_priv: size of private data to allocate space for
10547 * @name: device name format string
10548 * @name_assign_type: origin of device name
10549 * @setup: callback to initialize device
10550 * @txqs: the number of TX subqueues to allocate
10551 * @rxqs: the number of RX subqueues to allocate
10552 *
10553 * Allocates a struct net_device with private data area for driver use
10554 * and performs basic initialization. Also allocates subqueue structs
10555 * for each queue on the device.
10556 */
10557struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10558 unsigned char name_assign_type,
10559 void (*setup)(struct net_device *),
10560 unsigned int txqs, unsigned int rxqs)
10561{
10562 struct net_device *dev;
10563 unsigned int alloc_size;
10564 struct net_device *p;
10565
10566 BUG_ON(strlen(name) >= sizeof(dev->name));
10567
10568 if (txqs < 1) {
10569 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10570 return NULL;
10571 }
10572
10573 if (rxqs < 1) {
10574 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10575 return NULL;
10576 }
10577
10578 alloc_size = sizeof(struct net_device);
10579 if (sizeof_priv) {
10580 /* ensure 32-byte alignment of private area */
10581 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10582 alloc_size += sizeof_priv;
10583 }
10584 /* ensure 32-byte alignment of whole construct */
10585 alloc_size += NETDEV_ALIGN - 1;
10586
10587 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10588 if (!p)
10589 return NULL;
10590
10591 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10592 dev->padded = (char *)dev - (char *)p;
10593
10594 ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10595#ifdef CONFIG_PCPU_DEV_REFCNT
10596 dev->pcpu_refcnt = alloc_percpu(int);
10597 if (!dev->pcpu_refcnt)
10598 goto free_dev;
10599 __dev_hold(dev);
10600#else
10601 refcount_set(&dev->dev_refcnt, 1);
10602#endif
10603
10604 if (dev_addr_init(dev))
10605 goto free_pcpu;
10606
10607 dev_mc_init(dev);
10608 dev_uc_init(dev);
10609
10610 dev_net_set(dev, &init_net);
10611
10612 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10613 dev->gso_max_segs = GSO_MAX_SEGS;
10614 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10615 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10616 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10617 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10618 dev->tso_max_segs = TSO_MAX_SEGS;
10619 dev->upper_level = 1;
10620 dev->lower_level = 1;
10621#ifdef CONFIG_LOCKDEP
10622 dev->nested_level = 0;
10623 INIT_LIST_HEAD(&dev->unlink_list);
10624#endif
10625
10626 INIT_LIST_HEAD(&dev->napi_list);
10627 INIT_LIST_HEAD(&dev->unreg_list);
10628 INIT_LIST_HEAD(&dev->close_list);
10629 INIT_LIST_HEAD(&dev->link_watch_list);
10630 INIT_LIST_HEAD(&dev->adj_list.upper);
10631 INIT_LIST_HEAD(&dev->adj_list.lower);
10632 INIT_LIST_HEAD(&dev->ptype_all);
10633 INIT_LIST_HEAD(&dev->ptype_specific);
10634 INIT_LIST_HEAD(&dev->net_notifier_list);
10635#ifdef CONFIG_NET_SCHED
10636 hash_init(dev->qdisc_hash);
10637#endif
10638 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10639 setup(dev);
10640
10641 if (!dev->tx_queue_len) {
10642 dev->priv_flags |= IFF_NO_QUEUE;
10643 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10644 }
10645
10646 dev->num_tx_queues = txqs;
10647 dev->real_num_tx_queues = txqs;
10648 if (netif_alloc_netdev_queues(dev))
10649 goto free_all;
10650
10651 dev->num_rx_queues = rxqs;
10652 dev->real_num_rx_queues = rxqs;
10653 if (netif_alloc_rx_queues(dev))
10654 goto free_all;
10655
10656 strcpy(dev->name, name);
10657 dev->name_assign_type = name_assign_type;
10658 dev->group = INIT_NETDEV_GROUP;
10659 if (!dev->ethtool_ops)
10660 dev->ethtool_ops = &default_ethtool_ops;
10661
10662 nf_hook_netdev_init(dev);
10663
10664 return dev;
10665
10666free_all:
10667 free_netdev(dev);
10668 return NULL;
10669
10670free_pcpu:
10671#ifdef CONFIG_PCPU_DEV_REFCNT
10672 free_percpu(dev->pcpu_refcnt);
10673free_dev:
10674#endif
10675 netdev_freemem(dev);
10676 return NULL;
10677}
10678EXPORT_SYMBOL(alloc_netdev_mqs);
10679
10680/**
10681 * free_netdev - free network device
10682 * @dev: device
10683 *
10684 * This function does the last stage of destroying an allocated device
10685 * interface. The reference to the device object is released. If this
10686 * is the last reference then it will be freed.Must be called in process
10687 * context.
10688 */
10689void free_netdev(struct net_device *dev)
10690{
10691 struct napi_struct *p, *n;
10692
10693 might_sleep();
10694
10695 /* When called immediately after register_netdevice() failed the unwind
10696 * handling may still be dismantling the device. Handle that case by
10697 * deferring the free.
10698 */
10699 if (dev->reg_state == NETREG_UNREGISTERING) {
10700 ASSERT_RTNL();
10701 dev->needs_free_netdev = true;
10702 return;
10703 }
10704
10705 netif_free_tx_queues(dev);
10706 netif_free_rx_queues(dev);
10707
10708 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10709
10710 /* Flush device addresses */
10711 dev_addr_flush(dev);
10712
10713 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10714 netif_napi_del(p);
10715
10716 ref_tracker_dir_exit(&dev->refcnt_tracker);
10717#ifdef CONFIG_PCPU_DEV_REFCNT
10718 free_percpu(dev->pcpu_refcnt);
10719 dev->pcpu_refcnt = NULL;
10720#endif
10721 free_percpu(dev->core_stats);
10722 dev->core_stats = NULL;
10723 free_percpu(dev->xdp_bulkq);
10724 dev->xdp_bulkq = NULL;
10725
10726 /* Compatibility with error handling in drivers */
10727 if (dev->reg_state == NETREG_UNINITIALIZED) {
10728 netdev_freemem(dev);
10729 return;
10730 }
10731
10732 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10733 dev->reg_state = NETREG_RELEASED;
10734
10735 /* will free via device release */
10736 put_device(&dev->dev);
10737}
10738EXPORT_SYMBOL(free_netdev);
10739
10740/**
10741 * synchronize_net - Synchronize with packet receive processing
10742 *
10743 * Wait for packets currently being received to be done.
10744 * Does not block later packets from starting.
10745 */
10746void synchronize_net(void)
10747{
10748 might_sleep();
10749 if (rtnl_is_locked())
10750 synchronize_rcu_expedited();
10751 else
10752 synchronize_rcu();
10753}
10754EXPORT_SYMBOL(synchronize_net);
10755
10756/**
10757 * unregister_netdevice_queue - remove device from the kernel
10758 * @dev: device
10759 * @head: list
10760 *
10761 * This function shuts down a device interface and removes it
10762 * from the kernel tables.
10763 * If head not NULL, device is queued to be unregistered later.
10764 *
10765 * Callers must hold the rtnl semaphore. You may want
10766 * unregister_netdev() instead of this.
10767 */
10768
10769void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10770{
10771 ASSERT_RTNL();
10772
10773 if (head) {
10774 list_move_tail(&dev->unreg_list, head);
10775 } else {
10776 LIST_HEAD(single);
10777
10778 list_add(&dev->unreg_list, &single);
10779 unregister_netdevice_many(&single);
10780 }
10781}
10782EXPORT_SYMBOL(unregister_netdevice_queue);
10783
10784void unregister_netdevice_many_notify(struct list_head *head,
10785 u32 portid, const struct nlmsghdr *nlh)
10786{
10787 struct net_device *dev, *tmp;
10788 LIST_HEAD(close_head);
10789
10790 BUG_ON(dev_boot_phase);
10791 ASSERT_RTNL();
10792
10793 if (list_empty(head))
10794 return;
10795
10796 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10797 /* Some devices call without registering
10798 * for initialization unwind. Remove those
10799 * devices and proceed with the remaining.
10800 */
10801 if (dev->reg_state == NETREG_UNINITIALIZED) {
10802 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10803 dev->name, dev);
10804
10805 WARN_ON(1);
10806 list_del(&dev->unreg_list);
10807 continue;
10808 }
10809 dev->dismantle = true;
10810 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10811 }
10812
10813 /* If device is running, close it first. */
10814 list_for_each_entry(dev, head, unreg_list)
10815 list_add_tail(&dev->close_list, &close_head);
10816 dev_close_many(&close_head, true);
10817
10818 list_for_each_entry(dev, head, unreg_list) {
10819 /* And unlink it from device chain. */
10820 write_lock(&dev_base_lock);
10821 unlist_netdevice(dev, false);
10822 dev->reg_state = NETREG_UNREGISTERING;
10823 write_unlock(&dev_base_lock);
10824 }
10825 flush_all_backlogs();
10826
10827 synchronize_net();
10828
10829 list_for_each_entry(dev, head, unreg_list) {
10830 struct sk_buff *skb = NULL;
10831
10832 /* Shutdown queueing discipline. */
10833 dev_shutdown(dev);
10834
10835 dev_xdp_uninstall(dev);
10836 bpf_dev_bound_netdev_unregister(dev);
10837
10838 netdev_offload_xstats_disable_all(dev);
10839
10840 /* Notify protocols, that we are about to destroy
10841 * this device. They should clean all the things.
10842 */
10843 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10844
10845 if (!dev->rtnl_link_ops ||
10846 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10847 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10848 GFP_KERNEL, NULL, 0,
10849 portid, nlmsg_seq(nlh));
10850
10851 /*
10852 * Flush the unicast and multicast chains
10853 */
10854 dev_uc_flush(dev);
10855 dev_mc_flush(dev);
10856
10857 netdev_name_node_alt_flush(dev);
10858 netdev_name_node_free(dev->name_node);
10859
10860 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10861
10862 if (dev->netdev_ops->ndo_uninit)
10863 dev->netdev_ops->ndo_uninit(dev);
10864
10865 if (skb)
10866 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10867
10868 /* Notifier chain MUST detach us all upper devices. */
10869 WARN_ON(netdev_has_any_upper_dev(dev));
10870 WARN_ON(netdev_has_any_lower_dev(dev));
10871
10872 /* Remove entries from kobject tree */
10873 netdev_unregister_kobject(dev);
10874#ifdef CONFIG_XPS
10875 /* Remove XPS queueing entries */
10876 netif_reset_xps_queues_gt(dev, 0);
10877#endif
10878 }
10879
10880 synchronize_net();
10881
10882 list_for_each_entry(dev, head, unreg_list) {
10883 netdev_put(dev, &dev->dev_registered_tracker);
10884 net_set_todo(dev);
10885 }
10886
10887 list_del(head);
10888}
10889
10890/**
10891 * unregister_netdevice_many - unregister many devices
10892 * @head: list of devices
10893 *
10894 * Note: As most callers use a stack allocated list_head,
10895 * we force a list_del() to make sure stack wont be corrupted later.
10896 */
10897void unregister_netdevice_many(struct list_head *head)
10898{
10899 unregister_netdevice_many_notify(head, 0, NULL);
10900}
10901EXPORT_SYMBOL(unregister_netdevice_many);
10902
10903/**
10904 * unregister_netdev - remove device from the kernel
10905 * @dev: device
10906 *
10907 * This function shuts down a device interface and removes it
10908 * from the kernel tables.
10909 *
10910 * This is just a wrapper for unregister_netdevice that takes
10911 * the rtnl semaphore. In general you want to use this and not
10912 * unregister_netdevice.
10913 */
10914void unregister_netdev(struct net_device *dev)
10915{
10916 rtnl_lock();
10917 unregister_netdevice(dev);
10918 rtnl_unlock();
10919}
10920EXPORT_SYMBOL(unregister_netdev);
10921
10922/**
10923 * __dev_change_net_namespace - move device to different nethost namespace
10924 * @dev: device
10925 * @net: network namespace
10926 * @pat: If not NULL name pattern to try if the current device name
10927 * is already taken in the destination network namespace.
10928 * @new_ifindex: If not zero, specifies device index in the target
10929 * namespace.
10930 *
10931 * This function shuts down a device interface and moves it
10932 * to a new network namespace. On success 0 is returned, on
10933 * a failure a netagive errno code is returned.
10934 *
10935 * Callers must hold the rtnl semaphore.
10936 */
10937
10938int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10939 const char *pat, int new_ifindex)
10940{
10941 struct net *net_old = dev_net(dev);
10942 int err, new_nsid;
10943
10944 ASSERT_RTNL();
10945
10946 /* Don't allow namespace local devices to be moved. */
10947 err = -EINVAL;
10948 if (dev->features & NETIF_F_NETNS_LOCAL)
10949 goto out;
10950
10951 /* Ensure the device has been registrered */
10952 if (dev->reg_state != NETREG_REGISTERED)
10953 goto out;
10954
10955 /* Get out if there is nothing todo */
10956 err = 0;
10957 if (net_eq(net_old, net))
10958 goto out;
10959
10960 /* Pick the destination device name, and ensure
10961 * we can use it in the destination network namespace.
10962 */
10963 err = -EEXIST;
10964 if (netdev_name_in_use(net, dev->name)) {
10965 /* We get here if we can't use the current device name */
10966 if (!pat)
10967 goto out;
10968 err = dev_get_valid_name(net, dev, pat);
10969 if (err < 0)
10970 goto out;
10971 }
10972
10973 /* Check that new_ifindex isn't used yet. */
10974 err = -EBUSY;
10975 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10976 goto out;
10977
10978 /*
10979 * And now a mini version of register_netdevice unregister_netdevice.
10980 */
10981
10982 /* If device is running close it first. */
10983 dev_close(dev);
10984
10985 /* And unlink it from device chain */
10986 unlist_netdevice(dev, true);
10987
10988 synchronize_net();
10989
10990 /* Shutdown queueing discipline. */
10991 dev_shutdown(dev);
10992
10993 /* Notify protocols, that we are about to destroy
10994 * this device. They should clean all the things.
10995 *
10996 * Note that dev->reg_state stays at NETREG_REGISTERED.
10997 * This is wanted because this way 8021q and macvlan know
10998 * the device is just moving and can keep their slaves up.
10999 */
11000 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11001 rcu_barrier();
11002
11003 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11004 /* If there is an ifindex conflict assign a new one */
11005 if (!new_ifindex) {
11006 if (__dev_get_by_index(net, dev->ifindex))
11007 new_ifindex = dev_new_index(net);
11008 else
11009 new_ifindex = dev->ifindex;
11010 }
11011
11012 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11013 new_ifindex);
11014
11015 /*
11016 * Flush the unicast and multicast chains
11017 */
11018 dev_uc_flush(dev);
11019 dev_mc_flush(dev);
11020
11021 /* Send a netdev-removed uevent to the old namespace */
11022 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11023 netdev_adjacent_del_links(dev);
11024
11025 /* Move per-net netdevice notifiers that are following the netdevice */
11026 move_netdevice_notifiers_dev_net(dev, net);
11027
11028 /* Actually switch the network namespace */
11029 dev_net_set(dev, net);
11030 dev->ifindex = new_ifindex;
11031
11032 /* Send a netdev-add uevent to the new namespace */
11033 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11034 netdev_adjacent_add_links(dev);
11035
11036 /* Fixup kobjects */
11037 err = device_rename(&dev->dev, dev->name);
11038 WARN_ON(err);
11039
11040 /* Adapt owner in case owning user namespace of target network
11041 * namespace is different from the original one.
11042 */
11043 err = netdev_change_owner(dev, net_old, net);
11044 WARN_ON(err);
11045
11046 /* Add the device back in the hashes */
11047 list_netdevice(dev);
11048
11049 /* Notify protocols, that a new device appeared. */
11050 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11051
11052 /*
11053 * Prevent userspace races by waiting until the network
11054 * device is fully setup before sending notifications.
11055 */
11056 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11057
11058 synchronize_net();
11059 err = 0;
11060out:
11061 return err;
11062}
11063EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11064
11065static int dev_cpu_dead(unsigned int oldcpu)
11066{
11067 struct sk_buff **list_skb;
11068 struct sk_buff *skb;
11069 unsigned int cpu;
11070 struct softnet_data *sd, *oldsd, *remsd = NULL;
11071
11072 local_irq_disable();
11073 cpu = smp_processor_id();
11074 sd = &per_cpu(softnet_data, cpu);
11075 oldsd = &per_cpu(softnet_data, oldcpu);
11076
11077 /* Find end of our completion_queue. */
11078 list_skb = &sd->completion_queue;
11079 while (*list_skb)
11080 list_skb = &(*list_skb)->next;
11081 /* Append completion queue from offline CPU. */
11082 *list_skb = oldsd->completion_queue;
11083 oldsd->completion_queue = NULL;
11084
11085 /* Append output queue from offline CPU. */
11086 if (oldsd->output_queue) {
11087 *sd->output_queue_tailp = oldsd->output_queue;
11088 sd->output_queue_tailp = oldsd->output_queue_tailp;
11089 oldsd->output_queue = NULL;
11090 oldsd->output_queue_tailp = &oldsd->output_queue;
11091 }
11092 /* Append NAPI poll list from offline CPU, with one exception :
11093 * process_backlog() must be called by cpu owning percpu backlog.
11094 * We properly handle process_queue & input_pkt_queue later.
11095 */
11096 while (!list_empty(&oldsd->poll_list)) {
11097 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11098 struct napi_struct,
11099 poll_list);
11100
11101 list_del_init(&napi->poll_list);
11102 if (napi->poll == process_backlog)
11103 napi->state = 0;
11104 else
11105 ____napi_schedule(sd, napi);
11106 }
11107
11108 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11109 local_irq_enable();
11110
11111#ifdef CONFIG_RPS
11112 remsd = oldsd->rps_ipi_list;
11113 oldsd->rps_ipi_list = NULL;
11114#endif
11115 /* send out pending IPI's on offline CPU */
11116 net_rps_send_ipi(remsd);
11117
11118 /* Process offline CPU's input_pkt_queue */
11119 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11120 netif_rx(skb);
11121 input_queue_head_incr(oldsd);
11122 }
11123 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11124 netif_rx(skb);
11125 input_queue_head_incr(oldsd);
11126 }
11127
11128 return 0;
11129}
11130
11131/**
11132 * netdev_increment_features - increment feature set by one
11133 * @all: current feature set
11134 * @one: new feature set
11135 * @mask: mask feature set
11136 *
11137 * Computes a new feature set after adding a device with feature set
11138 * @one to the master device with current feature set @all. Will not
11139 * enable anything that is off in @mask. Returns the new feature set.
11140 */
11141netdev_features_t netdev_increment_features(netdev_features_t all,
11142 netdev_features_t one, netdev_features_t mask)
11143{
11144 if (mask & NETIF_F_HW_CSUM)
11145 mask |= NETIF_F_CSUM_MASK;
11146 mask |= NETIF_F_VLAN_CHALLENGED;
11147
11148 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11149 all &= one | ~NETIF_F_ALL_FOR_ALL;
11150
11151 /* If one device supports hw checksumming, set for all. */
11152 if (all & NETIF_F_HW_CSUM)
11153 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11154
11155 return all;
11156}
11157EXPORT_SYMBOL(netdev_increment_features);
11158
11159static struct hlist_head * __net_init netdev_create_hash(void)
11160{
11161 int i;
11162 struct hlist_head *hash;
11163
11164 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11165 if (hash != NULL)
11166 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11167 INIT_HLIST_HEAD(&hash[i]);
11168
11169 return hash;
11170}
11171
11172/* Initialize per network namespace state */
11173static int __net_init netdev_init(struct net *net)
11174{
11175 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11176 8 * sizeof_field(struct napi_struct, gro_bitmask));
11177
11178 INIT_LIST_HEAD(&net->dev_base_head);
11179
11180 net->dev_name_head = netdev_create_hash();
11181 if (net->dev_name_head == NULL)
11182 goto err_name;
11183
11184 net->dev_index_head = netdev_create_hash();
11185 if (net->dev_index_head == NULL)
11186 goto err_idx;
11187
11188 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11189
11190 return 0;
11191
11192err_idx:
11193 kfree(net->dev_name_head);
11194err_name:
11195 return -ENOMEM;
11196}
11197
11198/**
11199 * netdev_drivername - network driver for the device
11200 * @dev: network device
11201 *
11202 * Determine network driver for device.
11203 */
11204const char *netdev_drivername(const struct net_device *dev)
11205{
11206 const struct device_driver *driver;
11207 const struct device *parent;
11208 const char *empty = "";
11209
11210 parent = dev->dev.parent;
11211 if (!parent)
11212 return empty;
11213
11214 driver = parent->driver;
11215 if (driver && driver->name)
11216 return driver->name;
11217 return empty;
11218}
11219
11220static void __netdev_printk(const char *level, const struct net_device *dev,
11221 struct va_format *vaf)
11222{
11223 if (dev && dev->dev.parent) {
11224 dev_printk_emit(level[1] - '0',
11225 dev->dev.parent,
11226 "%s %s %s%s: %pV",
11227 dev_driver_string(dev->dev.parent),
11228 dev_name(dev->dev.parent),
11229 netdev_name(dev), netdev_reg_state(dev),
11230 vaf);
11231 } else if (dev) {
11232 printk("%s%s%s: %pV",
11233 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11234 } else {
11235 printk("%s(NULL net_device): %pV", level, vaf);
11236 }
11237}
11238
11239void netdev_printk(const char *level, const struct net_device *dev,
11240 const char *format, ...)
11241{
11242 struct va_format vaf;
11243 va_list args;
11244
11245 va_start(args, format);
11246
11247 vaf.fmt = format;
11248 vaf.va = &args;
11249
11250 __netdev_printk(level, dev, &vaf);
11251
11252 va_end(args);
11253}
11254EXPORT_SYMBOL(netdev_printk);
11255
11256#define define_netdev_printk_level(func, level) \
11257void func(const struct net_device *dev, const char *fmt, ...) \
11258{ \
11259 struct va_format vaf; \
11260 va_list args; \
11261 \
11262 va_start(args, fmt); \
11263 \
11264 vaf.fmt = fmt; \
11265 vaf.va = &args; \
11266 \
11267 __netdev_printk(level, dev, &vaf); \
11268 \
11269 va_end(args); \
11270} \
11271EXPORT_SYMBOL(func);
11272
11273define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11274define_netdev_printk_level(netdev_alert, KERN_ALERT);
11275define_netdev_printk_level(netdev_crit, KERN_CRIT);
11276define_netdev_printk_level(netdev_err, KERN_ERR);
11277define_netdev_printk_level(netdev_warn, KERN_WARNING);
11278define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11279define_netdev_printk_level(netdev_info, KERN_INFO);
11280
11281static void __net_exit netdev_exit(struct net *net)
11282{
11283 kfree(net->dev_name_head);
11284 kfree(net->dev_index_head);
11285 if (net != &init_net)
11286 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11287}
11288
11289static struct pernet_operations __net_initdata netdev_net_ops = {
11290 .init = netdev_init,
11291 .exit = netdev_exit,
11292};
11293
11294static void __net_exit default_device_exit_net(struct net *net)
11295{
11296 struct net_device *dev, *aux;
11297 /*
11298 * Push all migratable network devices back to the
11299 * initial network namespace
11300 */
11301 ASSERT_RTNL();
11302 for_each_netdev_safe(net, dev, aux) {
11303 int err;
11304 char fb_name[IFNAMSIZ];
11305
11306 /* Ignore unmoveable devices (i.e. loopback) */
11307 if (dev->features & NETIF_F_NETNS_LOCAL)
11308 continue;
11309
11310 /* Leave virtual devices for the generic cleanup */
11311 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11312 continue;
11313
11314 /* Push remaining network devices to init_net */
11315 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11316 if (netdev_name_in_use(&init_net, fb_name))
11317 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11318 err = dev_change_net_namespace(dev, &init_net, fb_name);
11319 if (err) {
11320 pr_emerg("%s: failed to move %s to init_net: %d\n",
11321 __func__, dev->name, err);
11322 BUG();
11323 }
11324 }
11325}
11326
11327static void __net_exit default_device_exit_batch(struct list_head *net_list)
11328{
11329 /* At exit all network devices most be removed from a network
11330 * namespace. Do this in the reverse order of registration.
11331 * Do this across as many network namespaces as possible to
11332 * improve batching efficiency.
11333 */
11334 struct net_device *dev;
11335 struct net *net;
11336 LIST_HEAD(dev_kill_list);
11337
11338 rtnl_lock();
11339 list_for_each_entry(net, net_list, exit_list) {
11340 default_device_exit_net(net);
11341 cond_resched();
11342 }
11343
11344 list_for_each_entry(net, net_list, exit_list) {
11345 for_each_netdev_reverse(net, dev) {
11346 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11347 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11348 else
11349 unregister_netdevice_queue(dev, &dev_kill_list);
11350 }
11351 }
11352 unregister_netdevice_many(&dev_kill_list);
11353 rtnl_unlock();
11354}
11355
11356static struct pernet_operations __net_initdata default_device_ops = {
11357 .exit_batch = default_device_exit_batch,
11358};
11359
11360/*
11361 * Initialize the DEV module. At boot time this walks the device list and
11362 * unhooks any devices that fail to initialise (normally hardware not
11363 * present) and leaves us with a valid list of present and active devices.
11364 *
11365 */
11366
11367/*
11368 * This is called single threaded during boot, so no need
11369 * to take the rtnl semaphore.
11370 */
11371static int __init net_dev_init(void)
11372{
11373 int i, rc = -ENOMEM;
11374
11375 BUG_ON(!dev_boot_phase);
11376
11377 if (dev_proc_init())
11378 goto out;
11379
11380 if (netdev_kobject_init())
11381 goto out;
11382
11383 INIT_LIST_HEAD(&ptype_all);
11384 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11385 INIT_LIST_HEAD(&ptype_base[i]);
11386
11387 if (register_pernet_subsys(&netdev_net_ops))
11388 goto out;
11389
11390 /*
11391 * Initialise the packet receive queues.
11392 */
11393
11394 for_each_possible_cpu(i) {
11395 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11396 struct softnet_data *sd = &per_cpu(softnet_data, i);
11397
11398 INIT_WORK(flush, flush_backlog);
11399
11400 skb_queue_head_init(&sd->input_pkt_queue);
11401 skb_queue_head_init(&sd->process_queue);
11402#ifdef CONFIG_XFRM_OFFLOAD
11403 skb_queue_head_init(&sd->xfrm_backlog);
11404#endif
11405 INIT_LIST_HEAD(&sd->poll_list);
11406 sd->output_queue_tailp = &sd->output_queue;
11407#ifdef CONFIG_RPS
11408 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11409 sd->cpu = i;
11410#endif
11411 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11412 spin_lock_init(&sd->defer_lock);
11413
11414 init_gro_hash(&sd->backlog);
11415 sd->backlog.poll = process_backlog;
11416 sd->backlog.weight = weight_p;
11417 }
11418
11419 dev_boot_phase = 0;
11420
11421 /* The loopback device is special if any other network devices
11422 * is present in a network namespace the loopback device must
11423 * be present. Since we now dynamically allocate and free the
11424 * loopback device ensure this invariant is maintained by
11425 * keeping the loopback device as the first device on the
11426 * list of network devices. Ensuring the loopback devices
11427 * is the first device that appears and the last network device
11428 * that disappears.
11429 */
11430 if (register_pernet_device(&loopback_net_ops))
11431 goto out;
11432
11433 if (register_pernet_device(&default_device_ops))
11434 goto out;
11435
11436 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11437 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11438
11439 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11440 NULL, dev_cpu_dead);
11441 WARN_ON(rc < 0);
11442 rc = 0;
11443out:
11444 return rc;
11445}
11446
11447subsys_initcall(net_dev_init);