Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/highmem.h>
21#include <linux/swap.h>
22#include <linux/swapops.h>
23#include <linux/interrupt.h>
24#include <linux/pagemap.h>
25#include <linux/jiffies.h>
26#include <linux/memblock.h>
27#include <linux/compiler.h>
28#include <linux/kernel.h>
29#include <linux/kasan.h>
30#include <linux/kmsan.h>
31#include <linux/module.h>
32#include <linux/suspend.h>
33#include <linux/pagevec.h>
34#include <linux/blkdev.h>
35#include <linux/slab.h>
36#include <linux/ratelimit.h>
37#include <linux/oom.h>
38#include <linux/topology.h>
39#include <linux/sysctl.h>
40#include <linux/cpu.h>
41#include <linux/cpuset.h>
42#include <linux/memory_hotplug.h>
43#include <linux/nodemask.h>
44#include <linux/vmalloc.h>
45#include <linux/vmstat.h>
46#include <linux/mempolicy.h>
47#include <linux/memremap.h>
48#include <linux/stop_machine.h>
49#include <linux/random.h>
50#include <linux/sort.h>
51#include <linux/pfn.h>
52#include <linux/backing-dev.h>
53#include <linux/fault-inject.h>
54#include <linux/page-isolation.h>
55#include <linux/debugobjects.h>
56#include <linux/kmemleak.h>
57#include <linux/compaction.h>
58#include <trace/events/kmem.h>
59#include <trace/events/oom.h>
60#include <linux/prefetch.h>
61#include <linux/mm_inline.h>
62#include <linux/mmu_notifier.h>
63#include <linux/migrate.h>
64#include <linux/hugetlb.h>
65#include <linux/sched/rt.h>
66#include <linux/sched/mm.h>
67#include <linux/page_owner.h>
68#include <linux/page_table_check.h>
69#include <linux/kthread.h>
70#include <linux/memcontrol.h>
71#include <linux/ftrace.h>
72#include <linux/lockdep.h>
73#include <linux/nmi.h>
74#include <linux/psi.h>
75#include <linux/padata.h>
76#include <linux/khugepaged.h>
77#include <linux/buffer_head.h>
78#include <linux/delayacct.h>
79#include <asm/sections.h>
80#include <asm/tlbflush.h>
81#include <asm/div64.h>
82#include "internal.h"
83#include "shuffle.h"
84#include "page_reporting.h"
85#include "swap.h"
86
87/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88typedef int __bitwise fpi_t;
89
90/* No special request */
91#define FPI_NONE ((__force fpi_t)0)
92
93/*
94 * Skip free page reporting notification for the (possibly merged) page.
95 * This does not hinder free page reporting from grabbing the page,
96 * reporting it and marking it "reported" - it only skips notifying
97 * the free page reporting infrastructure about a newly freed page. For
98 * example, used when temporarily pulling a page from a freelist and
99 * putting it back unmodified.
100 */
101#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
102
103/*
104 * Place the (possibly merged) page to the tail of the freelist. Will ignore
105 * page shuffling (relevant code - e.g., memory onlining - is expected to
106 * shuffle the whole zone).
107 *
108 * Note: No code should rely on this flag for correctness - it's purely
109 * to allow for optimizations when handing back either fresh pages
110 * (memory onlining) or untouched pages (page isolation, free page
111 * reporting).
112 */
113#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
114
115/*
116 * Don't poison memory with KASAN (only for the tag-based modes).
117 * During boot, all non-reserved memblock memory is exposed to page_alloc.
118 * Poisoning all that memory lengthens boot time, especially on systems with
119 * large amount of RAM. This flag is used to skip that poisoning.
120 * This is only done for the tag-based KASAN modes, as those are able to
121 * detect memory corruptions with the memory tags assigned by default.
122 * All memory allocated normally after boot gets poisoned as usual.
123 */
124#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
125
126/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127static DEFINE_MUTEX(pcp_batch_high_lock);
128#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
129
130#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131/*
132 * On SMP, spin_trylock is sufficient protection.
133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134 */
135#define pcp_trylock_prepare(flags) do { } while (0)
136#define pcp_trylock_finish(flag) do { } while (0)
137#else
138
139/* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140#define pcp_trylock_prepare(flags) local_irq_save(flags)
141#define pcp_trylock_finish(flags) local_irq_restore(flags)
142#endif
143
144/*
145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146 * a migration causing the wrong PCP to be locked and remote memory being
147 * potentially allocated, pin the task to the CPU for the lookup+lock.
148 * preempt_disable is used on !RT because it is faster than migrate_disable.
149 * migrate_disable is used on RT because otherwise RT spinlock usage is
150 * interfered with and a high priority task cannot preempt the allocator.
151 */
152#ifndef CONFIG_PREEMPT_RT
153#define pcpu_task_pin() preempt_disable()
154#define pcpu_task_unpin() preempt_enable()
155#else
156#define pcpu_task_pin() migrate_disable()
157#define pcpu_task_unpin() migrate_enable()
158#endif
159
160/*
161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162 * Return value should be used with equivalent unlock helper.
163 */
164#define pcpu_spin_lock(type, member, ptr) \
165({ \
166 type *_ret; \
167 pcpu_task_pin(); \
168 _ret = this_cpu_ptr(ptr); \
169 spin_lock(&_ret->member); \
170 _ret; \
171})
172
173#define pcpu_spin_trylock(type, member, ptr) \
174({ \
175 type *_ret; \
176 pcpu_task_pin(); \
177 _ret = this_cpu_ptr(ptr); \
178 if (!spin_trylock(&_ret->member)) { \
179 pcpu_task_unpin(); \
180 _ret = NULL; \
181 } \
182 _ret; \
183})
184
185#define pcpu_spin_unlock(member, ptr) \
186({ \
187 spin_unlock(&ptr->member); \
188 pcpu_task_unpin(); \
189})
190
191/* struct per_cpu_pages specific helpers. */
192#define pcp_spin_lock(ptr) \
193 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
194
195#define pcp_spin_trylock(ptr) \
196 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
197
198#define pcp_spin_unlock(ptr) \
199 pcpu_spin_unlock(lock, ptr)
200
201#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
202DEFINE_PER_CPU(int, numa_node);
203EXPORT_PER_CPU_SYMBOL(numa_node);
204#endif
205
206DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
207
208#ifdef CONFIG_HAVE_MEMORYLESS_NODES
209/*
210 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
211 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
212 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
213 * defined in <linux/topology.h>.
214 */
215DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
216EXPORT_PER_CPU_SYMBOL(_numa_mem_);
217#endif
218
219static DEFINE_MUTEX(pcpu_drain_mutex);
220
221#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
222volatile unsigned long latent_entropy __latent_entropy;
223EXPORT_SYMBOL(latent_entropy);
224#endif
225
226/*
227 * Array of node states.
228 */
229nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
230 [N_POSSIBLE] = NODE_MASK_ALL,
231 [N_ONLINE] = { { [0] = 1UL } },
232#ifndef CONFIG_NUMA
233 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
234#ifdef CONFIG_HIGHMEM
235 [N_HIGH_MEMORY] = { { [0] = 1UL } },
236#endif
237 [N_MEMORY] = { { [0] = 1UL } },
238 [N_CPU] = { { [0] = 1UL } },
239#endif /* NUMA */
240};
241EXPORT_SYMBOL(node_states);
242
243atomic_long_t _totalram_pages __read_mostly;
244EXPORT_SYMBOL(_totalram_pages);
245unsigned long totalreserve_pages __read_mostly;
246unsigned long totalcma_pages __read_mostly;
247
248int percpu_pagelist_high_fraction;
249gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
250DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
251EXPORT_SYMBOL(init_on_alloc);
252
253DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
254EXPORT_SYMBOL(init_on_free);
255
256static bool _init_on_alloc_enabled_early __read_mostly
257 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
258static int __init early_init_on_alloc(char *buf)
259{
260
261 return kstrtobool(buf, &_init_on_alloc_enabled_early);
262}
263early_param("init_on_alloc", early_init_on_alloc);
264
265static bool _init_on_free_enabled_early __read_mostly
266 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
267static int __init early_init_on_free(char *buf)
268{
269 return kstrtobool(buf, &_init_on_free_enabled_early);
270}
271early_param("init_on_free", early_init_on_free);
272
273/*
274 * A cached value of the page's pageblock's migratetype, used when the page is
275 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
276 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
277 * Also the migratetype set in the page does not necessarily match the pcplist
278 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
279 * other index - this ensures that it will be put on the correct CMA freelist.
280 */
281static inline int get_pcppage_migratetype(struct page *page)
282{
283 return page->index;
284}
285
286static inline void set_pcppage_migratetype(struct page *page, int migratetype)
287{
288 page->index = migratetype;
289}
290
291#ifdef CONFIG_PM_SLEEP
292/*
293 * The following functions are used by the suspend/hibernate code to temporarily
294 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
295 * while devices are suspended. To avoid races with the suspend/hibernate code,
296 * they should always be called with system_transition_mutex held
297 * (gfp_allowed_mask also should only be modified with system_transition_mutex
298 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
299 * with that modification).
300 */
301
302static gfp_t saved_gfp_mask;
303
304void pm_restore_gfp_mask(void)
305{
306 WARN_ON(!mutex_is_locked(&system_transition_mutex));
307 if (saved_gfp_mask) {
308 gfp_allowed_mask = saved_gfp_mask;
309 saved_gfp_mask = 0;
310 }
311}
312
313void pm_restrict_gfp_mask(void)
314{
315 WARN_ON(!mutex_is_locked(&system_transition_mutex));
316 WARN_ON(saved_gfp_mask);
317 saved_gfp_mask = gfp_allowed_mask;
318 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
319}
320
321bool pm_suspended_storage(void)
322{
323 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
324 return false;
325 return true;
326}
327#endif /* CONFIG_PM_SLEEP */
328
329#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
330unsigned int pageblock_order __read_mostly;
331#endif
332
333static void __free_pages_ok(struct page *page, unsigned int order,
334 fpi_t fpi_flags);
335
336/*
337 * results with 256, 32 in the lowmem_reserve sysctl:
338 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
339 * 1G machine -> (16M dma, 784M normal, 224M high)
340 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
341 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
342 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
343 *
344 * TBD: should special case ZONE_DMA32 machines here - in those we normally
345 * don't need any ZONE_NORMAL reservation
346 */
347int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
348#ifdef CONFIG_ZONE_DMA
349 [ZONE_DMA] = 256,
350#endif
351#ifdef CONFIG_ZONE_DMA32
352 [ZONE_DMA32] = 256,
353#endif
354 [ZONE_NORMAL] = 32,
355#ifdef CONFIG_HIGHMEM
356 [ZONE_HIGHMEM] = 0,
357#endif
358 [ZONE_MOVABLE] = 0,
359};
360
361static char * const zone_names[MAX_NR_ZONES] = {
362#ifdef CONFIG_ZONE_DMA
363 "DMA",
364#endif
365#ifdef CONFIG_ZONE_DMA32
366 "DMA32",
367#endif
368 "Normal",
369#ifdef CONFIG_HIGHMEM
370 "HighMem",
371#endif
372 "Movable",
373#ifdef CONFIG_ZONE_DEVICE
374 "Device",
375#endif
376};
377
378const char * const migratetype_names[MIGRATE_TYPES] = {
379 "Unmovable",
380 "Movable",
381 "Reclaimable",
382 "HighAtomic",
383#ifdef CONFIG_CMA
384 "CMA",
385#endif
386#ifdef CONFIG_MEMORY_ISOLATION
387 "Isolate",
388#endif
389};
390
391compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
392 [NULL_COMPOUND_DTOR] = NULL,
393 [COMPOUND_PAGE_DTOR] = free_compound_page,
394#ifdef CONFIG_HUGETLB_PAGE
395 [HUGETLB_PAGE_DTOR] = free_huge_page,
396#endif
397#ifdef CONFIG_TRANSPARENT_HUGEPAGE
398 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
399#endif
400};
401
402int min_free_kbytes = 1024;
403int user_min_free_kbytes = -1;
404int watermark_boost_factor __read_mostly = 15000;
405int watermark_scale_factor = 10;
406
407static unsigned long nr_kernel_pages __initdata;
408static unsigned long nr_all_pages __initdata;
409static unsigned long dma_reserve __initdata;
410
411static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
412static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
413static unsigned long required_kernelcore __initdata;
414static unsigned long required_kernelcore_percent __initdata;
415static unsigned long required_movablecore __initdata;
416static unsigned long required_movablecore_percent __initdata;
417static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
418bool mirrored_kernelcore __initdata_memblock;
419
420/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
421int movable_zone;
422EXPORT_SYMBOL(movable_zone);
423
424#if MAX_NUMNODES > 1
425unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
426unsigned int nr_online_nodes __read_mostly = 1;
427EXPORT_SYMBOL(nr_node_ids);
428EXPORT_SYMBOL(nr_online_nodes);
429#endif
430
431int page_group_by_mobility_disabled __read_mostly;
432
433bool deferred_struct_pages __meminitdata;
434
435#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
436/*
437 * During boot we initialize deferred pages on-demand, as needed, but once
438 * page_alloc_init_late() has finished, the deferred pages are all initialized,
439 * and we can permanently disable that path.
440 */
441static DEFINE_STATIC_KEY_TRUE(deferred_pages);
442
443static inline bool deferred_pages_enabled(void)
444{
445 return static_branch_unlikely(&deferred_pages);
446}
447
448/* Returns true if the struct page for the pfn is initialised */
449static inline bool __meminit early_page_initialised(unsigned long pfn)
450{
451 int nid = early_pfn_to_nid(pfn);
452
453 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
454 return false;
455
456 return true;
457}
458
459/*
460 * Returns true when the remaining initialisation should be deferred until
461 * later in the boot cycle when it can be parallelised.
462 */
463static bool __meminit
464defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
465{
466 static unsigned long prev_end_pfn, nr_initialised;
467
468 if (early_page_ext_enabled())
469 return false;
470 /*
471 * prev_end_pfn static that contains the end of previous zone
472 * No need to protect because called very early in boot before smp_init.
473 */
474 if (prev_end_pfn != end_pfn) {
475 prev_end_pfn = end_pfn;
476 nr_initialised = 0;
477 }
478
479 /* Always populate low zones for address-constrained allocations */
480 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
481 return false;
482
483 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
484 return true;
485 /*
486 * We start only with one section of pages, more pages are added as
487 * needed until the rest of deferred pages are initialized.
488 */
489 nr_initialised++;
490 if ((nr_initialised > PAGES_PER_SECTION) &&
491 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
492 NODE_DATA(nid)->first_deferred_pfn = pfn;
493 return true;
494 }
495 return false;
496}
497#else
498static inline bool deferred_pages_enabled(void)
499{
500 return false;
501}
502
503static inline bool early_page_initialised(unsigned long pfn)
504{
505 return true;
506}
507
508static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
509{
510 return false;
511}
512#endif
513
514/* Return a pointer to the bitmap storing bits affecting a block of pages */
515static inline unsigned long *get_pageblock_bitmap(const struct page *page,
516 unsigned long pfn)
517{
518#ifdef CONFIG_SPARSEMEM
519 return section_to_usemap(__pfn_to_section(pfn));
520#else
521 return page_zone(page)->pageblock_flags;
522#endif /* CONFIG_SPARSEMEM */
523}
524
525static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
526{
527#ifdef CONFIG_SPARSEMEM
528 pfn &= (PAGES_PER_SECTION-1);
529#else
530 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
531#endif /* CONFIG_SPARSEMEM */
532 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
533}
534
535static __always_inline
536unsigned long __get_pfnblock_flags_mask(const struct page *page,
537 unsigned long pfn,
538 unsigned long mask)
539{
540 unsigned long *bitmap;
541 unsigned long bitidx, word_bitidx;
542 unsigned long word;
543
544 bitmap = get_pageblock_bitmap(page, pfn);
545 bitidx = pfn_to_bitidx(page, pfn);
546 word_bitidx = bitidx / BITS_PER_LONG;
547 bitidx &= (BITS_PER_LONG-1);
548 /*
549 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
550 * a consistent read of the memory array, so that results, even though
551 * racy, are not corrupted.
552 */
553 word = READ_ONCE(bitmap[word_bitidx]);
554 return (word >> bitidx) & mask;
555}
556
557/**
558 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
559 * @page: The page within the block of interest
560 * @pfn: The target page frame number
561 * @mask: mask of bits that the caller is interested in
562 *
563 * Return: pageblock_bits flags
564 */
565unsigned long get_pfnblock_flags_mask(const struct page *page,
566 unsigned long pfn, unsigned long mask)
567{
568 return __get_pfnblock_flags_mask(page, pfn, mask);
569}
570
571static __always_inline int get_pfnblock_migratetype(const struct page *page,
572 unsigned long pfn)
573{
574 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
575}
576
577/**
578 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
579 * @page: The page within the block of interest
580 * @flags: The flags to set
581 * @pfn: The target page frame number
582 * @mask: mask of bits that the caller is interested in
583 */
584void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
585 unsigned long pfn,
586 unsigned long mask)
587{
588 unsigned long *bitmap;
589 unsigned long bitidx, word_bitidx;
590 unsigned long word;
591
592 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
593 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
594
595 bitmap = get_pageblock_bitmap(page, pfn);
596 bitidx = pfn_to_bitidx(page, pfn);
597 word_bitidx = bitidx / BITS_PER_LONG;
598 bitidx &= (BITS_PER_LONG-1);
599
600 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
601
602 mask <<= bitidx;
603 flags <<= bitidx;
604
605 word = READ_ONCE(bitmap[word_bitidx]);
606 do {
607 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
608}
609
610void set_pageblock_migratetype(struct page *page, int migratetype)
611{
612 if (unlikely(page_group_by_mobility_disabled &&
613 migratetype < MIGRATE_PCPTYPES))
614 migratetype = MIGRATE_UNMOVABLE;
615
616 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
617 page_to_pfn(page), MIGRATETYPE_MASK);
618}
619
620#ifdef CONFIG_DEBUG_VM
621static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
622{
623 int ret = 0;
624 unsigned seq;
625 unsigned long pfn = page_to_pfn(page);
626 unsigned long sp, start_pfn;
627
628 do {
629 seq = zone_span_seqbegin(zone);
630 start_pfn = zone->zone_start_pfn;
631 sp = zone->spanned_pages;
632 if (!zone_spans_pfn(zone, pfn))
633 ret = 1;
634 } while (zone_span_seqretry(zone, seq));
635
636 if (ret)
637 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
638 pfn, zone_to_nid(zone), zone->name,
639 start_pfn, start_pfn + sp);
640
641 return ret;
642}
643
644static int page_is_consistent(struct zone *zone, struct page *page)
645{
646 if (zone != page_zone(page))
647 return 0;
648
649 return 1;
650}
651/*
652 * Temporary debugging check for pages not lying within a given zone.
653 */
654static int __maybe_unused bad_range(struct zone *zone, struct page *page)
655{
656 if (page_outside_zone_boundaries(zone, page))
657 return 1;
658 if (!page_is_consistent(zone, page))
659 return 1;
660
661 return 0;
662}
663#else
664static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
665{
666 return 0;
667}
668#endif
669
670static void bad_page(struct page *page, const char *reason)
671{
672 static unsigned long resume;
673 static unsigned long nr_shown;
674 static unsigned long nr_unshown;
675
676 /*
677 * Allow a burst of 60 reports, then keep quiet for that minute;
678 * or allow a steady drip of one report per second.
679 */
680 if (nr_shown == 60) {
681 if (time_before(jiffies, resume)) {
682 nr_unshown++;
683 goto out;
684 }
685 if (nr_unshown) {
686 pr_alert(
687 "BUG: Bad page state: %lu messages suppressed\n",
688 nr_unshown);
689 nr_unshown = 0;
690 }
691 nr_shown = 0;
692 }
693 if (nr_shown++ == 0)
694 resume = jiffies + 60 * HZ;
695
696 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
697 current->comm, page_to_pfn(page));
698 dump_page(page, reason);
699
700 print_modules();
701 dump_stack();
702out:
703 /* Leave bad fields for debug, except PageBuddy could make trouble */
704 page_mapcount_reset(page); /* remove PageBuddy */
705 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
706}
707
708static inline unsigned int order_to_pindex(int migratetype, int order)
709{
710 int base = order;
711
712#ifdef CONFIG_TRANSPARENT_HUGEPAGE
713 if (order > PAGE_ALLOC_COSTLY_ORDER) {
714 VM_BUG_ON(order != pageblock_order);
715 return NR_LOWORDER_PCP_LISTS;
716 }
717#else
718 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
719#endif
720
721 return (MIGRATE_PCPTYPES * base) + migratetype;
722}
723
724static inline int pindex_to_order(unsigned int pindex)
725{
726 int order = pindex / MIGRATE_PCPTYPES;
727
728#ifdef CONFIG_TRANSPARENT_HUGEPAGE
729 if (pindex == NR_LOWORDER_PCP_LISTS)
730 order = pageblock_order;
731#else
732 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
733#endif
734
735 return order;
736}
737
738static inline bool pcp_allowed_order(unsigned int order)
739{
740 if (order <= PAGE_ALLOC_COSTLY_ORDER)
741 return true;
742#ifdef CONFIG_TRANSPARENT_HUGEPAGE
743 if (order == pageblock_order)
744 return true;
745#endif
746 return false;
747}
748
749static inline void free_the_page(struct page *page, unsigned int order)
750{
751 if (pcp_allowed_order(order)) /* Via pcp? */
752 free_unref_page(page, order);
753 else
754 __free_pages_ok(page, order, FPI_NONE);
755}
756
757/*
758 * Higher-order pages are called "compound pages". They are structured thusly:
759 *
760 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
761 *
762 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
763 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
764 *
765 * The first tail page's ->compound_dtor holds the offset in array of compound
766 * page destructors. See compound_page_dtors.
767 *
768 * The first tail page's ->compound_order holds the order of allocation.
769 * This usage means that zero-order pages may not be compound.
770 */
771
772void free_compound_page(struct page *page)
773{
774 mem_cgroup_uncharge(page_folio(page));
775 free_the_page(page, compound_order(page));
776}
777
778static void prep_compound_head(struct page *page, unsigned int order)
779{
780 struct folio *folio = (struct folio *)page;
781
782 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
783 set_compound_order(page, order);
784 atomic_set(&folio->_entire_mapcount, -1);
785 atomic_set(&folio->_nr_pages_mapped, 0);
786 atomic_set(&folio->_pincount, 0);
787}
788
789static void prep_compound_tail(struct page *head, int tail_idx)
790{
791 struct page *p = head + tail_idx;
792
793 p->mapping = TAIL_MAPPING;
794 set_compound_head(p, head);
795 set_page_private(p, 0);
796}
797
798void prep_compound_page(struct page *page, unsigned int order)
799{
800 int i;
801 int nr_pages = 1 << order;
802
803 __SetPageHead(page);
804 for (i = 1; i < nr_pages; i++)
805 prep_compound_tail(page, i);
806
807 prep_compound_head(page, order);
808}
809
810void destroy_large_folio(struct folio *folio)
811{
812 enum compound_dtor_id dtor = folio->_folio_dtor;
813
814 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
815 compound_page_dtors[dtor](&folio->page);
816}
817
818#ifdef CONFIG_DEBUG_PAGEALLOC
819unsigned int _debug_guardpage_minorder;
820
821bool _debug_pagealloc_enabled_early __read_mostly
822 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
823EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
824DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
825EXPORT_SYMBOL(_debug_pagealloc_enabled);
826
827DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
828
829static int __init early_debug_pagealloc(char *buf)
830{
831 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
832}
833early_param("debug_pagealloc", early_debug_pagealloc);
834
835static int __init debug_guardpage_minorder_setup(char *buf)
836{
837 unsigned long res;
838
839 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
840 pr_err("Bad debug_guardpage_minorder value\n");
841 return 0;
842 }
843 _debug_guardpage_minorder = res;
844 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
845 return 0;
846}
847early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
848
849static inline bool set_page_guard(struct zone *zone, struct page *page,
850 unsigned int order, int migratetype)
851{
852 if (!debug_guardpage_enabled())
853 return false;
854
855 if (order >= debug_guardpage_minorder())
856 return false;
857
858 __SetPageGuard(page);
859 INIT_LIST_HEAD(&page->buddy_list);
860 set_page_private(page, order);
861 /* Guard pages are not available for any usage */
862 if (!is_migrate_isolate(migratetype))
863 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
864
865 return true;
866}
867
868static inline void clear_page_guard(struct zone *zone, struct page *page,
869 unsigned int order, int migratetype)
870{
871 if (!debug_guardpage_enabled())
872 return;
873
874 __ClearPageGuard(page);
875
876 set_page_private(page, 0);
877 if (!is_migrate_isolate(migratetype))
878 __mod_zone_freepage_state(zone, (1 << order), migratetype);
879}
880#else
881static inline bool set_page_guard(struct zone *zone, struct page *page,
882 unsigned int order, int migratetype) { return false; }
883static inline void clear_page_guard(struct zone *zone, struct page *page,
884 unsigned int order, int migratetype) {}
885#endif
886
887/*
888 * Enable static keys related to various memory debugging and hardening options.
889 * Some override others, and depend on early params that are evaluated in the
890 * order of appearance. So we need to first gather the full picture of what was
891 * enabled, and then make decisions.
892 */
893void __init init_mem_debugging_and_hardening(void)
894{
895 bool page_poisoning_requested = false;
896
897#ifdef CONFIG_PAGE_POISONING
898 /*
899 * Page poisoning is debug page alloc for some arches. If
900 * either of those options are enabled, enable poisoning.
901 */
902 if (page_poisoning_enabled() ||
903 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
904 debug_pagealloc_enabled())) {
905 static_branch_enable(&_page_poisoning_enabled);
906 page_poisoning_requested = true;
907 }
908#endif
909
910 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
911 page_poisoning_requested) {
912 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
913 "will take precedence over init_on_alloc and init_on_free\n");
914 _init_on_alloc_enabled_early = false;
915 _init_on_free_enabled_early = false;
916 }
917
918 if (_init_on_alloc_enabled_early)
919 static_branch_enable(&init_on_alloc);
920 else
921 static_branch_disable(&init_on_alloc);
922
923 if (_init_on_free_enabled_early)
924 static_branch_enable(&init_on_free);
925 else
926 static_branch_disable(&init_on_free);
927
928 if (IS_ENABLED(CONFIG_KMSAN) &&
929 (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
930 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
931
932#ifdef CONFIG_DEBUG_PAGEALLOC
933 if (!debug_pagealloc_enabled())
934 return;
935
936 static_branch_enable(&_debug_pagealloc_enabled);
937
938 if (!debug_guardpage_minorder())
939 return;
940
941 static_branch_enable(&_debug_guardpage_enabled);
942#endif
943}
944
945static inline void set_buddy_order(struct page *page, unsigned int order)
946{
947 set_page_private(page, order);
948 __SetPageBuddy(page);
949}
950
951#ifdef CONFIG_COMPACTION
952static inline struct capture_control *task_capc(struct zone *zone)
953{
954 struct capture_control *capc = current->capture_control;
955
956 return unlikely(capc) &&
957 !(current->flags & PF_KTHREAD) &&
958 !capc->page &&
959 capc->cc->zone == zone ? capc : NULL;
960}
961
962static inline bool
963compaction_capture(struct capture_control *capc, struct page *page,
964 int order, int migratetype)
965{
966 if (!capc || order != capc->cc->order)
967 return false;
968
969 /* Do not accidentally pollute CMA or isolated regions*/
970 if (is_migrate_cma(migratetype) ||
971 is_migrate_isolate(migratetype))
972 return false;
973
974 /*
975 * Do not let lower order allocations pollute a movable pageblock.
976 * This might let an unmovable request use a reclaimable pageblock
977 * and vice-versa but no more than normal fallback logic which can
978 * have trouble finding a high-order free page.
979 */
980 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
981 return false;
982
983 capc->page = page;
984 return true;
985}
986
987#else
988static inline struct capture_control *task_capc(struct zone *zone)
989{
990 return NULL;
991}
992
993static inline bool
994compaction_capture(struct capture_control *capc, struct page *page,
995 int order, int migratetype)
996{
997 return false;
998}
999#endif /* CONFIG_COMPACTION */
1000
1001/* Used for pages not on another list */
1002static inline void add_to_free_list(struct page *page, struct zone *zone,
1003 unsigned int order, int migratetype)
1004{
1005 struct free_area *area = &zone->free_area[order];
1006
1007 list_add(&page->buddy_list, &area->free_list[migratetype]);
1008 area->nr_free++;
1009}
1010
1011/* Used for pages not on another list */
1012static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1013 unsigned int order, int migratetype)
1014{
1015 struct free_area *area = &zone->free_area[order];
1016
1017 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1018 area->nr_free++;
1019}
1020
1021/*
1022 * Used for pages which are on another list. Move the pages to the tail
1023 * of the list - so the moved pages won't immediately be considered for
1024 * allocation again (e.g., optimization for memory onlining).
1025 */
1026static inline void move_to_free_list(struct page *page, struct zone *zone,
1027 unsigned int order, int migratetype)
1028{
1029 struct free_area *area = &zone->free_area[order];
1030
1031 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1032}
1033
1034static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1035 unsigned int order)
1036{
1037 /* clear reported state and update reported page count */
1038 if (page_reported(page))
1039 __ClearPageReported(page);
1040
1041 list_del(&page->buddy_list);
1042 __ClearPageBuddy(page);
1043 set_page_private(page, 0);
1044 zone->free_area[order].nr_free--;
1045}
1046
1047/*
1048 * If this is not the largest possible page, check if the buddy
1049 * of the next-highest order is free. If it is, it's possible
1050 * that pages are being freed that will coalesce soon. In case,
1051 * that is happening, add the free page to the tail of the list
1052 * so it's less likely to be used soon and more likely to be merged
1053 * as a higher order page
1054 */
1055static inline bool
1056buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1057 struct page *page, unsigned int order)
1058{
1059 unsigned long higher_page_pfn;
1060 struct page *higher_page;
1061
1062 if (order >= MAX_ORDER - 2)
1063 return false;
1064
1065 higher_page_pfn = buddy_pfn & pfn;
1066 higher_page = page + (higher_page_pfn - pfn);
1067
1068 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1069 NULL) != NULL;
1070}
1071
1072/*
1073 * Freeing function for a buddy system allocator.
1074 *
1075 * The concept of a buddy system is to maintain direct-mapped table
1076 * (containing bit values) for memory blocks of various "orders".
1077 * The bottom level table contains the map for the smallest allocatable
1078 * units of memory (here, pages), and each level above it describes
1079 * pairs of units from the levels below, hence, "buddies".
1080 * At a high level, all that happens here is marking the table entry
1081 * at the bottom level available, and propagating the changes upward
1082 * as necessary, plus some accounting needed to play nicely with other
1083 * parts of the VM system.
1084 * At each level, we keep a list of pages, which are heads of continuous
1085 * free pages of length of (1 << order) and marked with PageBuddy.
1086 * Page's order is recorded in page_private(page) field.
1087 * So when we are allocating or freeing one, we can derive the state of the
1088 * other. That is, if we allocate a small block, and both were
1089 * free, the remainder of the region must be split into blocks.
1090 * If a block is freed, and its buddy is also free, then this
1091 * triggers coalescing into a block of larger size.
1092 *
1093 * -- nyc
1094 */
1095
1096static inline void __free_one_page(struct page *page,
1097 unsigned long pfn,
1098 struct zone *zone, unsigned int order,
1099 int migratetype, fpi_t fpi_flags)
1100{
1101 struct capture_control *capc = task_capc(zone);
1102 unsigned long buddy_pfn = 0;
1103 unsigned long combined_pfn;
1104 struct page *buddy;
1105 bool to_tail;
1106
1107 VM_BUG_ON(!zone_is_initialized(zone));
1108 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1109
1110 VM_BUG_ON(migratetype == -1);
1111 if (likely(!is_migrate_isolate(migratetype)))
1112 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1113
1114 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1115 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1116
1117 while (order < MAX_ORDER - 1) {
1118 if (compaction_capture(capc, page, order, migratetype)) {
1119 __mod_zone_freepage_state(zone, -(1 << order),
1120 migratetype);
1121 return;
1122 }
1123
1124 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1125 if (!buddy)
1126 goto done_merging;
1127
1128 if (unlikely(order >= pageblock_order)) {
1129 /*
1130 * We want to prevent merge between freepages on pageblock
1131 * without fallbacks and normal pageblock. Without this,
1132 * pageblock isolation could cause incorrect freepage or CMA
1133 * accounting or HIGHATOMIC accounting.
1134 */
1135 int buddy_mt = get_pageblock_migratetype(buddy);
1136
1137 if (migratetype != buddy_mt
1138 && (!migratetype_is_mergeable(migratetype) ||
1139 !migratetype_is_mergeable(buddy_mt)))
1140 goto done_merging;
1141 }
1142
1143 /*
1144 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1145 * merge with it and move up one order.
1146 */
1147 if (page_is_guard(buddy))
1148 clear_page_guard(zone, buddy, order, migratetype);
1149 else
1150 del_page_from_free_list(buddy, zone, order);
1151 combined_pfn = buddy_pfn & pfn;
1152 page = page + (combined_pfn - pfn);
1153 pfn = combined_pfn;
1154 order++;
1155 }
1156
1157done_merging:
1158 set_buddy_order(page, order);
1159
1160 if (fpi_flags & FPI_TO_TAIL)
1161 to_tail = true;
1162 else if (is_shuffle_order(order))
1163 to_tail = shuffle_pick_tail();
1164 else
1165 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1166
1167 if (to_tail)
1168 add_to_free_list_tail(page, zone, order, migratetype);
1169 else
1170 add_to_free_list(page, zone, order, migratetype);
1171
1172 /* Notify page reporting subsystem of freed page */
1173 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1174 page_reporting_notify_free(order);
1175}
1176
1177/**
1178 * split_free_page() -- split a free page at split_pfn_offset
1179 * @free_page: the original free page
1180 * @order: the order of the page
1181 * @split_pfn_offset: split offset within the page
1182 *
1183 * Return -ENOENT if the free page is changed, otherwise 0
1184 *
1185 * It is used when the free page crosses two pageblocks with different migratetypes
1186 * at split_pfn_offset within the page. The split free page will be put into
1187 * separate migratetype lists afterwards. Otherwise, the function achieves
1188 * nothing.
1189 */
1190int split_free_page(struct page *free_page,
1191 unsigned int order, unsigned long split_pfn_offset)
1192{
1193 struct zone *zone = page_zone(free_page);
1194 unsigned long free_page_pfn = page_to_pfn(free_page);
1195 unsigned long pfn;
1196 unsigned long flags;
1197 int free_page_order;
1198 int mt;
1199 int ret = 0;
1200
1201 if (split_pfn_offset == 0)
1202 return ret;
1203
1204 spin_lock_irqsave(&zone->lock, flags);
1205
1206 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1207 ret = -ENOENT;
1208 goto out;
1209 }
1210
1211 mt = get_pageblock_migratetype(free_page);
1212 if (likely(!is_migrate_isolate(mt)))
1213 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1214
1215 del_page_from_free_list(free_page, zone, order);
1216 for (pfn = free_page_pfn;
1217 pfn < free_page_pfn + (1UL << order);) {
1218 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1219
1220 free_page_order = min_t(unsigned int,
1221 pfn ? __ffs(pfn) : order,
1222 __fls(split_pfn_offset));
1223 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1224 mt, FPI_NONE);
1225 pfn += 1UL << free_page_order;
1226 split_pfn_offset -= (1UL << free_page_order);
1227 /* we have done the first part, now switch to second part */
1228 if (split_pfn_offset == 0)
1229 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1230 }
1231out:
1232 spin_unlock_irqrestore(&zone->lock, flags);
1233 return ret;
1234}
1235/*
1236 * A bad page could be due to a number of fields. Instead of multiple branches,
1237 * try and check multiple fields with one check. The caller must do a detailed
1238 * check if necessary.
1239 */
1240static inline bool page_expected_state(struct page *page,
1241 unsigned long check_flags)
1242{
1243 if (unlikely(atomic_read(&page->_mapcount) != -1))
1244 return false;
1245
1246 if (unlikely((unsigned long)page->mapping |
1247 page_ref_count(page) |
1248#ifdef CONFIG_MEMCG
1249 page->memcg_data |
1250#endif
1251 (page->flags & check_flags)))
1252 return false;
1253
1254 return true;
1255}
1256
1257static const char *page_bad_reason(struct page *page, unsigned long flags)
1258{
1259 const char *bad_reason = NULL;
1260
1261 if (unlikely(atomic_read(&page->_mapcount) != -1))
1262 bad_reason = "nonzero mapcount";
1263 if (unlikely(page->mapping != NULL))
1264 bad_reason = "non-NULL mapping";
1265 if (unlikely(page_ref_count(page) != 0))
1266 bad_reason = "nonzero _refcount";
1267 if (unlikely(page->flags & flags)) {
1268 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1269 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1270 else
1271 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1272 }
1273#ifdef CONFIG_MEMCG
1274 if (unlikely(page->memcg_data))
1275 bad_reason = "page still charged to cgroup";
1276#endif
1277 return bad_reason;
1278}
1279
1280static void free_page_is_bad_report(struct page *page)
1281{
1282 bad_page(page,
1283 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1284}
1285
1286static inline bool free_page_is_bad(struct page *page)
1287{
1288 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1289 return false;
1290
1291 /* Something has gone sideways, find it */
1292 free_page_is_bad_report(page);
1293 return true;
1294}
1295
1296static int free_tail_pages_check(struct page *head_page, struct page *page)
1297{
1298 struct folio *folio = (struct folio *)head_page;
1299 int ret = 1;
1300
1301 /*
1302 * We rely page->lru.next never has bit 0 set, unless the page
1303 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1304 */
1305 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1306
1307 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1308 ret = 0;
1309 goto out;
1310 }
1311 switch (page - head_page) {
1312 case 1:
1313 /* the first tail page: these may be in place of ->mapping */
1314 if (unlikely(folio_entire_mapcount(folio))) {
1315 bad_page(page, "nonzero entire_mapcount");
1316 goto out;
1317 }
1318 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1319 bad_page(page, "nonzero nr_pages_mapped");
1320 goto out;
1321 }
1322 if (unlikely(atomic_read(&folio->_pincount))) {
1323 bad_page(page, "nonzero pincount");
1324 goto out;
1325 }
1326 break;
1327 case 2:
1328 /*
1329 * the second tail page: ->mapping is
1330 * deferred_list.next -- ignore value.
1331 */
1332 break;
1333 default:
1334 if (page->mapping != TAIL_MAPPING) {
1335 bad_page(page, "corrupted mapping in tail page");
1336 goto out;
1337 }
1338 break;
1339 }
1340 if (unlikely(!PageTail(page))) {
1341 bad_page(page, "PageTail not set");
1342 goto out;
1343 }
1344 if (unlikely(compound_head(page) != head_page)) {
1345 bad_page(page, "compound_head not consistent");
1346 goto out;
1347 }
1348 ret = 0;
1349out:
1350 page->mapping = NULL;
1351 clear_compound_head(page);
1352 return ret;
1353}
1354
1355/*
1356 * Skip KASAN memory poisoning when either:
1357 *
1358 * 1. Deferred memory initialization has not yet completed,
1359 * see the explanation below.
1360 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1361 * see the comment next to it.
1362 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1363 * see the comment next to it.
1364 * 4. The allocation is excluded from being checked due to sampling,
1365 * see the call to kasan_unpoison_pages.
1366 *
1367 * Poisoning pages during deferred memory init will greatly lengthen the
1368 * process and cause problem in large memory systems as the deferred pages
1369 * initialization is done with interrupt disabled.
1370 *
1371 * Assuming that there will be no reference to those newly initialized
1372 * pages before they are ever allocated, this should have no effect on
1373 * KASAN memory tracking as the poison will be properly inserted at page
1374 * allocation time. The only corner case is when pages are allocated by
1375 * on-demand allocation and then freed again before the deferred pages
1376 * initialization is done, but this is not likely to happen.
1377 */
1378static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1379{
1380 return deferred_pages_enabled() ||
1381 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1382 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1383 PageSkipKASanPoison(page);
1384}
1385
1386static void kernel_init_pages(struct page *page, int numpages)
1387{
1388 int i;
1389
1390 /* s390's use of memset() could override KASAN redzones. */
1391 kasan_disable_current();
1392 for (i = 0; i < numpages; i++)
1393 clear_highpage_kasan_tagged(page + i);
1394 kasan_enable_current();
1395}
1396
1397static __always_inline bool free_pages_prepare(struct page *page,
1398 unsigned int order, bool check_free, fpi_t fpi_flags)
1399{
1400 int bad = 0;
1401 bool init = want_init_on_free();
1402
1403 VM_BUG_ON_PAGE(PageTail(page), page);
1404
1405 trace_mm_page_free(page, order);
1406 kmsan_free_page(page, order);
1407
1408 if (unlikely(PageHWPoison(page)) && !order) {
1409 /*
1410 * Do not let hwpoison pages hit pcplists/buddy
1411 * Untie memcg state and reset page's owner
1412 */
1413 if (memcg_kmem_online() && PageMemcgKmem(page))
1414 __memcg_kmem_uncharge_page(page, order);
1415 reset_page_owner(page, order);
1416 page_table_check_free(page, order);
1417 return false;
1418 }
1419
1420 /*
1421 * Check tail pages before head page information is cleared to
1422 * avoid checking PageCompound for order-0 pages.
1423 */
1424 if (unlikely(order)) {
1425 bool compound = PageCompound(page);
1426 int i;
1427
1428 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1429
1430 if (compound)
1431 ClearPageHasHWPoisoned(page);
1432 for (i = 1; i < (1 << order); i++) {
1433 if (compound)
1434 bad += free_tail_pages_check(page, page + i);
1435 if (unlikely(free_page_is_bad(page + i))) {
1436 bad++;
1437 continue;
1438 }
1439 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1440 }
1441 }
1442 if (PageMappingFlags(page))
1443 page->mapping = NULL;
1444 if (memcg_kmem_online() && PageMemcgKmem(page))
1445 __memcg_kmem_uncharge_page(page, order);
1446 if (check_free && free_page_is_bad(page))
1447 bad++;
1448 if (bad)
1449 return false;
1450
1451 page_cpupid_reset_last(page);
1452 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1453 reset_page_owner(page, order);
1454 page_table_check_free(page, order);
1455
1456 if (!PageHighMem(page)) {
1457 debug_check_no_locks_freed(page_address(page),
1458 PAGE_SIZE << order);
1459 debug_check_no_obj_freed(page_address(page),
1460 PAGE_SIZE << order);
1461 }
1462
1463 kernel_poison_pages(page, 1 << order);
1464
1465 /*
1466 * As memory initialization might be integrated into KASAN,
1467 * KASAN poisoning and memory initialization code must be
1468 * kept together to avoid discrepancies in behavior.
1469 *
1470 * With hardware tag-based KASAN, memory tags must be set before the
1471 * page becomes unavailable via debug_pagealloc or arch_free_page.
1472 */
1473 if (!should_skip_kasan_poison(page, fpi_flags)) {
1474 kasan_poison_pages(page, order, init);
1475
1476 /* Memory is already initialized if KASAN did it internally. */
1477 if (kasan_has_integrated_init())
1478 init = false;
1479 }
1480 if (init)
1481 kernel_init_pages(page, 1 << order);
1482
1483 /*
1484 * arch_free_page() can make the page's contents inaccessible. s390
1485 * does this. So nothing which can access the page's contents should
1486 * happen after this.
1487 */
1488 arch_free_page(page, order);
1489
1490 debug_pagealloc_unmap_pages(page, 1 << order);
1491
1492 return true;
1493}
1494
1495#ifdef CONFIG_DEBUG_VM
1496/*
1497 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1498 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1499 * moved from pcp lists to free lists.
1500 */
1501static bool free_pcp_prepare(struct page *page, unsigned int order)
1502{
1503 return free_pages_prepare(page, order, true, FPI_NONE);
1504}
1505
1506/* return true if this page has an inappropriate state */
1507static bool bulkfree_pcp_prepare(struct page *page)
1508{
1509 if (debug_pagealloc_enabled_static())
1510 return free_page_is_bad(page);
1511 else
1512 return false;
1513}
1514#else
1515/*
1516 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1517 * moving from pcp lists to free list in order to reduce overhead. With
1518 * debug_pagealloc enabled, they are checked also immediately when being freed
1519 * to the pcp lists.
1520 */
1521static bool free_pcp_prepare(struct page *page, unsigned int order)
1522{
1523 if (debug_pagealloc_enabled_static())
1524 return free_pages_prepare(page, order, true, FPI_NONE);
1525 else
1526 return free_pages_prepare(page, order, false, FPI_NONE);
1527}
1528
1529static bool bulkfree_pcp_prepare(struct page *page)
1530{
1531 return free_page_is_bad(page);
1532}
1533#endif /* CONFIG_DEBUG_VM */
1534
1535/*
1536 * Frees a number of pages from the PCP lists
1537 * Assumes all pages on list are in same zone.
1538 * count is the number of pages to free.
1539 */
1540static void free_pcppages_bulk(struct zone *zone, int count,
1541 struct per_cpu_pages *pcp,
1542 int pindex)
1543{
1544 unsigned long flags;
1545 int min_pindex = 0;
1546 int max_pindex = NR_PCP_LISTS - 1;
1547 unsigned int order;
1548 bool isolated_pageblocks;
1549 struct page *page;
1550
1551 /*
1552 * Ensure proper count is passed which otherwise would stuck in the
1553 * below while (list_empty(list)) loop.
1554 */
1555 count = min(pcp->count, count);
1556
1557 /* Ensure requested pindex is drained first. */
1558 pindex = pindex - 1;
1559
1560 spin_lock_irqsave(&zone->lock, flags);
1561 isolated_pageblocks = has_isolate_pageblock(zone);
1562
1563 while (count > 0) {
1564 struct list_head *list;
1565 int nr_pages;
1566
1567 /* Remove pages from lists in a round-robin fashion. */
1568 do {
1569 if (++pindex > max_pindex)
1570 pindex = min_pindex;
1571 list = &pcp->lists[pindex];
1572 if (!list_empty(list))
1573 break;
1574
1575 if (pindex == max_pindex)
1576 max_pindex--;
1577 if (pindex == min_pindex)
1578 min_pindex++;
1579 } while (1);
1580
1581 order = pindex_to_order(pindex);
1582 nr_pages = 1 << order;
1583 do {
1584 int mt;
1585
1586 page = list_last_entry(list, struct page, pcp_list);
1587 mt = get_pcppage_migratetype(page);
1588
1589 /* must delete to avoid corrupting pcp list */
1590 list_del(&page->pcp_list);
1591 count -= nr_pages;
1592 pcp->count -= nr_pages;
1593
1594 if (bulkfree_pcp_prepare(page))
1595 continue;
1596
1597 /* MIGRATE_ISOLATE page should not go to pcplists */
1598 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1599 /* Pageblock could have been isolated meanwhile */
1600 if (unlikely(isolated_pageblocks))
1601 mt = get_pageblock_migratetype(page);
1602
1603 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1604 trace_mm_page_pcpu_drain(page, order, mt);
1605 } while (count > 0 && !list_empty(list));
1606 }
1607
1608 spin_unlock_irqrestore(&zone->lock, flags);
1609}
1610
1611static void free_one_page(struct zone *zone,
1612 struct page *page, unsigned long pfn,
1613 unsigned int order,
1614 int migratetype, fpi_t fpi_flags)
1615{
1616 unsigned long flags;
1617
1618 spin_lock_irqsave(&zone->lock, flags);
1619 if (unlikely(has_isolate_pageblock(zone) ||
1620 is_migrate_isolate(migratetype))) {
1621 migratetype = get_pfnblock_migratetype(page, pfn);
1622 }
1623 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1624 spin_unlock_irqrestore(&zone->lock, flags);
1625}
1626
1627static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1628 unsigned long zone, int nid)
1629{
1630 mm_zero_struct_page(page);
1631 set_page_links(page, zone, nid, pfn);
1632 init_page_count(page);
1633 page_mapcount_reset(page);
1634 page_cpupid_reset_last(page);
1635 page_kasan_tag_reset(page);
1636
1637 INIT_LIST_HEAD(&page->lru);
1638#ifdef WANT_PAGE_VIRTUAL
1639 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1640 if (!is_highmem_idx(zone))
1641 set_page_address(page, __va(pfn << PAGE_SHIFT));
1642#endif
1643}
1644
1645#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1646static void __meminit init_reserved_page(unsigned long pfn)
1647{
1648 pg_data_t *pgdat;
1649 int nid, zid;
1650
1651 if (early_page_initialised(pfn))
1652 return;
1653
1654 nid = early_pfn_to_nid(pfn);
1655 pgdat = NODE_DATA(nid);
1656
1657 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1658 struct zone *zone = &pgdat->node_zones[zid];
1659
1660 if (zone_spans_pfn(zone, pfn))
1661 break;
1662 }
1663 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1664}
1665#else
1666static inline void init_reserved_page(unsigned long pfn)
1667{
1668}
1669#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1670
1671/*
1672 * Initialised pages do not have PageReserved set. This function is
1673 * called for each range allocated by the bootmem allocator and
1674 * marks the pages PageReserved. The remaining valid pages are later
1675 * sent to the buddy page allocator.
1676 */
1677void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1678{
1679 unsigned long start_pfn = PFN_DOWN(start);
1680 unsigned long end_pfn = PFN_UP(end);
1681
1682 for (; start_pfn < end_pfn; start_pfn++) {
1683 if (pfn_valid(start_pfn)) {
1684 struct page *page = pfn_to_page(start_pfn);
1685
1686 init_reserved_page(start_pfn);
1687
1688 /* Avoid false-positive PageTail() */
1689 INIT_LIST_HEAD(&page->lru);
1690
1691 /*
1692 * no need for atomic set_bit because the struct
1693 * page is not visible yet so nobody should
1694 * access it yet.
1695 */
1696 __SetPageReserved(page);
1697 }
1698 }
1699}
1700
1701static void __free_pages_ok(struct page *page, unsigned int order,
1702 fpi_t fpi_flags)
1703{
1704 unsigned long flags;
1705 int migratetype;
1706 unsigned long pfn = page_to_pfn(page);
1707 struct zone *zone = page_zone(page);
1708
1709 if (!free_pages_prepare(page, order, true, fpi_flags))
1710 return;
1711
1712 /*
1713 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1714 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1715 * This will reduce the lock holding time.
1716 */
1717 migratetype = get_pfnblock_migratetype(page, pfn);
1718
1719 spin_lock_irqsave(&zone->lock, flags);
1720 if (unlikely(has_isolate_pageblock(zone) ||
1721 is_migrate_isolate(migratetype))) {
1722 migratetype = get_pfnblock_migratetype(page, pfn);
1723 }
1724 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1725 spin_unlock_irqrestore(&zone->lock, flags);
1726
1727 __count_vm_events(PGFREE, 1 << order);
1728}
1729
1730void __free_pages_core(struct page *page, unsigned int order)
1731{
1732 unsigned int nr_pages = 1 << order;
1733 struct page *p = page;
1734 unsigned int loop;
1735
1736 /*
1737 * When initializing the memmap, __init_single_page() sets the refcount
1738 * of all pages to 1 ("allocated"/"not free"). We have to set the
1739 * refcount of all involved pages to 0.
1740 */
1741 prefetchw(p);
1742 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1743 prefetchw(p + 1);
1744 __ClearPageReserved(p);
1745 set_page_count(p, 0);
1746 }
1747 __ClearPageReserved(p);
1748 set_page_count(p, 0);
1749
1750 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1751
1752 /*
1753 * Bypass PCP and place fresh pages right to the tail, primarily
1754 * relevant for memory onlining.
1755 */
1756 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1757}
1758
1759#ifdef CONFIG_NUMA
1760
1761/*
1762 * During memory init memblocks map pfns to nids. The search is expensive and
1763 * this caches recent lookups. The implementation of __early_pfn_to_nid
1764 * treats start/end as pfns.
1765 */
1766struct mminit_pfnnid_cache {
1767 unsigned long last_start;
1768 unsigned long last_end;
1769 int last_nid;
1770};
1771
1772static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1773
1774/*
1775 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1776 */
1777static int __meminit __early_pfn_to_nid(unsigned long pfn,
1778 struct mminit_pfnnid_cache *state)
1779{
1780 unsigned long start_pfn, end_pfn;
1781 int nid;
1782
1783 if (state->last_start <= pfn && pfn < state->last_end)
1784 return state->last_nid;
1785
1786 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1787 if (nid != NUMA_NO_NODE) {
1788 state->last_start = start_pfn;
1789 state->last_end = end_pfn;
1790 state->last_nid = nid;
1791 }
1792
1793 return nid;
1794}
1795
1796int __meminit early_pfn_to_nid(unsigned long pfn)
1797{
1798 static DEFINE_SPINLOCK(early_pfn_lock);
1799 int nid;
1800
1801 spin_lock(&early_pfn_lock);
1802 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1803 if (nid < 0)
1804 nid = first_online_node;
1805 spin_unlock(&early_pfn_lock);
1806
1807 return nid;
1808}
1809#endif /* CONFIG_NUMA */
1810
1811void __init memblock_free_pages(struct page *page, unsigned long pfn,
1812 unsigned int order)
1813{
1814 if (!early_page_initialised(pfn))
1815 return;
1816 if (!kmsan_memblock_free_pages(page, order)) {
1817 /* KMSAN will take care of these pages. */
1818 return;
1819 }
1820 __free_pages_core(page, order);
1821}
1822
1823/*
1824 * Check that the whole (or subset of) a pageblock given by the interval of
1825 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1826 * with the migration of free compaction scanner.
1827 *
1828 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1829 *
1830 * It's possible on some configurations to have a setup like node0 node1 node0
1831 * i.e. it's possible that all pages within a zones range of pages do not
1832 * belong to a single zone. We assume that a border between node0 and node1
1833 * can occur within a single pageblock, but not a node0 node1 node0
1834 * interleaving within a single pageblock. It is therefore sufficient to check
1835 * the first and last page of a pageblock and avoid checking each individual
1836 * page in a pageblock.
1837 */
1838struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1839 unsigned long end_pfn, struct zone *zone)
1840{
1841 struct page *start_page;
1842 struct page *end_page;
1843
1844 /* end_pfn is one past the range we are checking */
1845 end_pfn--;
1846
1847 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1848 return NULL;
1849
1850 start_page = pfn_to_online_page(start_pfn);
1851 if (!start_page)
1852 return NULL;
1853
1854 if (page_zone(start_page) != zone)
1855 return NULL;
1856
1857 end_page = pfn_to_page(end_pfn);
1858
1859 /* This gives a shorter code than deriving page_zone(end_page) */
1860 if (page_zone_id(start_page) != page_zone_id(end_page))
1861 return NULL;
1862
1863 return start_page;
1864}
1865
1866void set_zone_contiguous(struct zone *zone)
1867{
1868 unsigned long block_start_pfn = zone->zone_start_pfn;
1869 unsigned long block_end_pfn;
1870
1871 block_end_pfn = pageblock_end_pfn(block_start_pfn);
1872 for (; block_start_pfn < zone_end_pfn(zone);
1873 block_start_pfn = block_end_pfn,
1874 block_end_pfn += pageblock_nr_pages) {
1875
1876 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1877
1878 if (!__pageblock_pfn_to_page(block_start_pfn,
1879 block_end_pfn, zone))
1880 return;
1881 cond_resched();
1882 }
1883
1884 /* We confirm that there is no hole */
1885 zone->contiguous = true;
1886}
1887
1888void clear_zone_contiguous(struct zone *zone)
1889{
1890 zone->contiguous = false;
1891}
1892
1893#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1894static void __init deferred_free_range(unsigned long pfn,
1895 unsigned long nr_pages)
1896{
1897 struct page *page;
1898 unsigned long i;
1899
1900 if (!nr_pages)
1901 return;
1902
1903 page = pfn_to_page(pfn);
1904
1905 /* Free a large naturally-aligned chunk if possible */
1906 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1907 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1908 __free_pages_core(page, pageblock_order);
1909 return;
1910 }
1911
1912 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1913 if (pageblock_aligned(pfn))
1914 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1915 __free_pages_core(page, 0);
1916 }
1917}
1918
1919/* Completion tracking for deferred_init_memmap() threads */
1920static atomic_t pgdat_init_n_undone __initdata;
1921static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1922
1923static inline void __init pgdat_init_report_one_done(void)
1924{
1925 if (atomic_dec_and_test(&pgdat_init_n_undone))
1926 complete(&pgdat_init_all_done_comp);
1927}
1928
1929/*
1930 * Returns true if page needs to be initialized or freed to buddy allocator.
1931 *
1932 * We check if a current large page is valid by only checking the validity
1933 * of the head pfn.
1934 */
1935static inline bool __init deferred_pfn_valid(unsigned long pfn)
1936{
1937 if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1938 return false;
1939 return true;
1940}
1941
1942/*
1943 * Free pages to buddy allocator. Try to free aligned pages in
1944 * pageblock_nr_pages sizes.
1945 */
1946static void __init deferred_free_pages(unsigned long pfn,
1947 unsigned long end_pfn)
1948{
1949 unsigned long nr_free = 0;
1950
1951 for (; pfn < end_pfn; pfn++) {
1952 if (!deferred_pfn_valid(pfn)) {
1953 deferred_free_range(pfn - nr_free, nr_free);
1954 nr_free = 0;
1955 } else if (pageblock_aligned(pfn)) {
1956 deferred_free_range(pfn - nr_free, nr_free);
1957 nr_free = 1;
1958 } else {
1959 nr_free++;
1960 }
1961 }
1962 /* Free the last block of pages to allocator */
1963 deferred_free_range(pfn - nr_free, nr_free);
1964}
1965
1966/*
1967 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1968 * by performing it only once every pageblock_nr_pages.
1969 * Return number of pages initialized.
1970 */
1971static unsigned long __init deferred_init_pages(struct zone *zone,
1972 unsigned long pfn,
1973 unsigned long end_pfn)
1974{
1975 int nid = zone_to_nid(zone);
1976 unsigned long nr_pages = 0;
1977 int zid = zone_idx(zone);
1978 struct page *page = NULL;
1979
1980 for (; pfn < end_pfn; pfn++) {
1981 if (!deferred_pfn_valid(pfn)) {
1982 page = NULL;
1983 continue;
1984 } else if (!page || pageblock_aligned(pfn)) {
1985 page = pfn_to_page(pfn);
1986 } else {
1987 page++;
1988 }
1989 __init_single_page(page, pfn, zid, nid);
1990 nr_pages++;
1991 }
1992 return (nr_pages);
1993}
1994
1995/*
1996 * This function is meant to pre-load the iterator for the zone init.
1997 * Specifically it walks through the ranges until we are caught up to the
1998 * first_init_pfn value and exits there. If we never encounter the value we
1999 * return false indicating there are no valid ranges left.
2000 */
2001static bool __init
2002deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2003 unsigned long *spfn, unsigned long *epfn,
2004 unsigned long first_init_pfn)
2005{
2006 u64 j;
2007
2008 /*
2009 * Start out by walking through the ranges in this zone that have
2010 * already been initialized. We don't need to do anything with them
2011 * so we just need to flush them out of the system.
2012 */
2013 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2014 if (*epfn <= first_init_pfn)
2015 continue;
2016 if (*spfn < first_init_pfn)
2017 *spfn = first_init_pfn;
2018 *i = j;
2019 return true;
2020 }
2021
2022 return false;
2023}
2024
2025/*
2026 * Initialize and free pages. We do it in two loops: first we initialize
2027 * struct page, then free to buddy allocator, because while we are
2028 * freeing pages we can access pages that are ahead (computing buddy
2029 * page in __free_one_page()).
2030 *
2031 * In order to try and keep some memory in the cache we have the loop
2032 * broken along max page order boundaries. This way we will not cause
2033 * any issues with the buddy page computation.
2034 */
2035static unsigned long __init
2036deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2037 unsigned long *end_pfn)
2038{
2039 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2040 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2041 unsigned long nr_pages = 0;
2042 u64 j = *i;
2043
2044 /* First we loop through and initialize the page values */
2045 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2046 unsigned long t;
2047
2048 if (mo_pfn <= *start_pfn)
2049 break;
2050
2051 t = min(mo_pfn, *end_pfn);
2052 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2053
2054 if (mo_pfn < *end_pfn) {
2055 *start_pfn = mo_pfn;
2056 break;
2057 }
2058 }
2059
2060 /* Reset values and now loop through freeing pages as needed */
2061 swap(j, *i);
2062
2063 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2064 unsigned long t;
2065
2066 if (mo_pfn <= spfn)
2067 break;
2068
2069 t = min(mo_pfn, epfn);
2070 deferred_free_pages(spfn, t);
2071
2072 if (mo_pfn <= epfn)
2073 break;
2074 }
2075
2076 return nr_pages;
2077}
2078
2079static void __init
2080deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2081 void *arg)
2082{
2083 unsigned long spfn, epfn;
2084 struct zone *zone = arg;
2085 u64 i;
2086
2087 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2088
2089 /*
2090 * Initialize and free pages in MAX_ORDER sized increments so that we
2091 * can avoid introducing any issues with the buddy allocator.
2092 */
2093 while (spfn < end_pfn) {
2094 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2095 cond_resched();
2096 }
2097}
2098
2099/* An arch may override for more concurrency. */
2100__weak int __init
2101deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2102{
2103 return 1;
2104}
2105
2106/* Initialise remaining memory on a node */
2107static int __init deferred_init_memmap(void *data)
2108{
2109 pg_data_t *pgdat = data;
2110 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2111 unsigned long spfn = 0, epfn = 0;
2112 unsigned long first_init_pfn, flags;
2113 unsigned long start = jiffies;
2114 struct zone *zone;
2115 int zid, max_threads;
2116 u64 i;
2117
2118 /* Bind memory initialisation thread to a local node if possible */
2119 if (!cpumask_empty(cpumask))
2120 set_cpus_allowed_ptr(current, cpumask);
2121
2122 pgdat_resize_lock(pgdat, &flags);
2123 first_init_pfn = pgdat->first_deferred_pfn;
2124 if (first_init_pfn == ULONG_MAX) {
2125 pgdat_resize_unlock(pgdat, &flags);
2126 pgdat_init_report_one_done();
2127 return 0;
2128 }
2129
2130 /* Sanity check boundaries */
2131 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2132 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2133 pgdat->first_deferred_pfn = ULONG_MAX;
2134
2135 /*
2136 * Once we unlock here, the zone cannot be grown anymore, thus if an
2137 * interrupt thread must allocate this early in boot, zone must be
2138 * pre-grown prior to start of deferred page initialization.
2139 */
2140 pgdat_resize_unlock(pgdat, &flags);
2141
2142 /* Only the highest zone is deferred so find it */
2143 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2144 zone = pgdat->node_zones + zid;
2145 if (first_init_pfn < zone_end_pfn(zone))
2146 break;
2147 }
2148
2149 /* If the zone is empty somebody else may have cleared out the zone */
2150 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2151 first_init_pfn))
2152 goto zone_empty;
2153
2154 max_threads = deferred_page_init_max_threads(cpumask);
2155
2156 while (spfn < epfn) {
2157 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2158 struct padata_mt_job job = {
2159 .thread_fn = deferred_init_memmap_chunk,
2160 .fn_arg = zone,
2161 .start = spfn,
2162 .size = epfn_align - spfn,
2163 .align = PAGES_PER_SECTION,
2164 .min_chunk = PAGES_PER_SECTION,
2165 .max_threads = max_threads,
2166 };
2167
2168 padata_do_multithreaded(&job);
2169 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2170 epfn_align);
2171 }
2172zone_empty:
2173 /* Sanity check that the next zone really is unpopulated */
2174 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2175
2176 pr_info("node %d deferred pages initialised in %ums\n",
2177 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2178
2179 pgdat_init_report_one_done();
2180 return 0;
2181}
2182
2183/*
2184 * If this zone has deferred pages, try to grow it by initializing enough
2185 * deferred pages to satisfy the allocation specified by order, rounded up to
2186 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2187 * of SECTION_SIZE bytes by initializing struct pages in increments of
2188 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2189 *
2190 * Return true when zone was grown, otherwise return false. We return true even
2191 * when we grow less than requested, to let the caller decide if there are
2192 * enough pages to satisfy the allocation.
2193 *
2194 * Note: We use noinline because this function is needed only during boot, and
2195 * it is called from a __ref function _deferred_grow_zone. This way we are
2196 * making sure that it is not inlined into permanent text section.
2197 */
2198static noinline bool __init
2199deferred_grow_zone(struct zone *zone, unsigned int order)
2200{
2201 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2202 pg_data_t *pgdat = zone->zone_pgdat;
2203 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2204 unsigned long spfn, epfn, flags;
2205 unsigned long nr_pages = 0;
2206 u64 i;
2207
2208 /* Only the last zone may have deferred pages */
2209 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2210 return false;
2211
2212 pgdat_resize_lock(pgdat, &flags);
2213
2214 /*
2215 * If someone grew this zone while we were waiting for spinlock, return
2216 * true, as there might be enough pages already.
2217 */
2218 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2219 pgdat_resize_unlock(pgdat, &flags);
2220 return true;
2221 }
2222
2223 /* If the zone is empty somebody else may have cleared out the zone */
2224 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2225 first_deferred_pfn)) {
2226 pgdat->first_deferred_pfn = ULONG_MAX;
2227 pgdat_resize_unlock(pgdat, &flags);
2228 /* Retry only once. */
2229 return first_deferred_pfn != ULONG_MAX;
2230 }
2231
2232 /*
2233 * Initialize and free pages in MAX_ORDER sized increments so
2234 * that we can avoid introducing any issues with the buddy
2235 * allocator.
2236 */
2237 while (spfn < epfn) {
2238 /* update our first deferred PFN for this section */
2239 first_deferred_pfn = spfn;
2240
2241 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2242 touch_nmi_watchdog();
2243
2244 /* We should only stop along section boundaries */
2245 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2246 continue;
2247
2248 /* If our quota has been met we can stop here */
2249 if (nr_pages >= nr_pages_needed)
2250 break;
2251 }
2252
2253 pgdat->first_deferred_pfn = spfn;
2254 pgdat_resize_unlock(pgdat, &flags);
2255
2256 return nr_pages > 0;
2257}
2258
2259/*
2260 * deferred_grow_zone() is __init, but it is called from
2261 * get_page_from_freelist() during early boot until deferred_pages permanently
2262 * disables this call. This is why we have refdata wrapper to avoid warning,
2263 * and to ensure that the function body gets unloaded.
2264 */
2265static bool __ref
2266_deferred_grow_zone(struct zone *zone, unsigned int order)
2267{
2268 return deferred_grow_zone(zone, order);
2269}
2270
2271#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2272
2273void __init page_alloc_init_late(void)
2274{
2275 struct zone *zone;
2276 int nid;
2277
2278#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2279
2280 /* There will be num_node_state(N_MEMORY) threads */
2281 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2282 for_each_node_state(nid, N_MEMORY) {
2283 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2284 }
2285
2286 /* Block until all are initialised */
2287 wait_for_completion(&pgdat_init_all_done_comp);
2288
2289 /*
2290 * We initialized the rest of the deferred pages. Permanently disable
2291 * on-demand struct page initialization.
2292 */
2293 static_branch_disable(&deferred_pages);
2294
2295 /* Reinit limits that are based on free pages after the kernel is up */
2296 files_maxfiles_init();
2297#endif
2298
2299 buffer_init();
2300
2301 /* Discard memblock private memory */
2302 memblock_discard();
2303
2304 for_each_node_state(nid, N_MEMORY)
2305 shuffle_free_memory(NODE_DATA(nid));
2306
2307 for_each_populated_zone(zone)
2308 set_zone_contiguous(zone);
2309}
2310
2311#ifdef CONFIG_CMA
2312/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2313void __init init_cma_reserved_pageblock(struct page *page)
2314{
2315 unsigned i = pageblock_nr_pages;
2316 struct page *p = page;
2317
2318 do {
2319 __ClearPageReserved(p);
2320 set_page_count(p, 0);
2321 } while (++p, --i);
2322
2323 set_pageblock_migratetype(page, MIGRATE_CMA);
2324 set_page_refcounted(page);
2325 __free_pages(page, pageblock_order);
2326
2327 adjust_managed_page_count(page, pageblock_nr_pages);
2328 page_zone(page)->cma_pages += pageblock_nr_pages;
2329}
2330#endif
2331
2332/*
2333 * The order of subdivision here is critical for the IO subsystem.
2334 * Please do not alter this order without good reasons and regression
2335 * testing. Specifically, as large blocks of memory are subdivided,
2336 * the order in which smaller blocks are delivered depends on the order
2337 * they're subdivided in this function. This is the primary factor
2338 * influencing the order in which pages are delivered to the IO
2339 * subsystem according to empirical testing, and this is also justified
2340 * by considering the behavior of a buddy system containing a single
2341 * large block of memory acted on by a series of small allocations.
2342 * This behavior is a critical factor in sglist merging's success.
2343 *
2344 * -- nyc
2345 */
2346static inline void expand(struct zone *zone, struct page *page,
2347 int low, int high, int migratetype)
2348{
2349 unsigned long size = 1 << high;
2350
2351 while (high > low) {
2352 high--;
2353 size >>= 1;
2354 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2355
2356 /*
2357 * Mark as guard pages (or page), that will allow to
2358 * merge back to allocator when buddy will be freed.
2359 * Corresponding page table entries will not be touched,
2360 * pages will stay not present in virtual address space
2361 */
2362 if (set_page_guard(zone, &page[size], high, migratetype))
2363 continue;
2364
2365 add_to_free_list(&page[size], zone, high, migratetype);
2366 set_buddy_order(&page[size], high);
2367 }
2368}
2369
2370static void check_new_page_bad(struct page *page)
2371{
2372 if (unlikely(page->flags & __PG_HWPOISON)) {
2373 /* Don't complain about hwpoisoned pages */
2374 page_mapcount_reset(page); /* remove PageBuddy */
2375 return;
2376 }
2377
2378 bad_page(page,
2379 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2380}
2381
2382/*
2383 * This page is about to be returned from the page allocator
2384 */
2385static inline int check_new_page(struct page *page)
2386{
2387 if (likely(page_expected_state(page,
2388 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2389 return 0;
2390
2391 check_new_page_bad(page);
2392 return 1;
2393}
2394
2395static bool check_new_pages(struct page *page, unsigned int order)
2396{
2397 int i;
2398 for (i = 0; i < (1 << order); i++) {
2399 struct page *p = page + i;
2400
2401 if (unlikely(check_new_page(p)))
2402 return true;
2403 }
2404
2405 return false;
2406}
2407
2408#ifdef CONFIG_DEBUG_VM
2409/*
2410 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2411 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2412 * also checked when pcp lists are refilled from the free lists.
2413 */
2414static inline bool check_pcp_refill(struct page *page, unsigned int order)
2415{
2416 if (debug_pagealloc_enabled_static())
2417 return check_new_pages(page, order);
2418 else
2419 return false;
2420}
2421
2422static inline bool check_new_pcp(struct page *page, unsigned int order)
2423{
2424 return check_new_pages(page, order);
2425}
2426#else
2427/*
2428 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2429 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2430 * enabled, they are also checked when being allocated from the pcp lists.
2431 */
2432static inline bool check_pcp_refill(struct page *page, unsigned int order)
2433{
2434 return check_new_pages(page, order);
2435}
2436static inline bool check_new_pcp(struct page *page, unsigned int order)
2437{
2438 if (debug_pagealloc_enabled_static())
2439 return check_new_pages(page, order);
2440 else
2441 return false;
2442}
2443#endif /* CONFIG_DEBUG_VM */
2444
2445static inline bool should_skip_kasan_unpoison(gfp_t flags)
2446{
2447 /* Don't skip if a software KASAN mode is enabled. */
2448 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2449 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2450 return false;
2451
2452 /* Skip, if hardware tag-based KASAN is not enabled. */
2453 if (!kasan_hw_tags_enabled())
2454 return true;
2455
2456 /*
2457 * With hardware tag-based KASAN enabled, skip if this has been
2458 * requested via __GFP_SKIP_KASAN_UNPOISON.
2459 */
2460 return flags & __GFP_SKIP_KASAN_UNPOISON;
2461}
2462
2463static inline bool should_skip_init(gfp_t flags)
2464{
2465 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2466 if (!kasan_hw_tags_enabled())
2467 return false;
2468
2469 /* For hardware tag-based KASAN, skip if requested. */
2470 return (flags & __GFP_SKIP_ZERO);
2471}
2472
2473inline void post_alloc_hook(struct page *page, unsigned int order,
2474 gfp_t gfp_flags)
2475{
2476 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2477 !should_skip_init(gfp_flags);
2478 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2479 bool reset_tags = true;
2480 int i;
2481
2482 set_page_private(page, 0);
2483 set_page_refcounted(page);
2484
2485 arch_alloc_page(page, order);
2486 debug_pagealloc_map_pages(page, 1 << order);
2487
2488 /*
2489 * Page unpoisoning must happen before memory initialization.
2490 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2491 * allocations and the page unpoisoning code will complain.
2492 */
2493 kernel_unpoison_pages(page, 1 << order);
2494
2495 /*
2496 * As memory initialization might be integrated into KASAN,
2497 * KASAN unpoisoning and memory initializion code must be
2498 * kept together to avoid discrepancies in behavior.
2499 */
2500
2501 /*
2502 * If memory tags should be zeroed
2503 * (which happens only when memory should be initialized as well).
2504 */
2505 if (zero_tags) {
2506 /* Initialize both memory and memory tags. */
2507 for (i = 0; i != 1 << order; ++i)
2508 tag_clear_highpage(page + i);
2509
2510 /* Take note that memory was initialized by the loop above. */
2511 init = false;
2512 }
2513 if (!should_skip_kasan_unpoison(gfp_flags)) {
2514 /* Try unpoisoning (or setting tags) and initializing memory. */
2515 if (kasan_unpoison_pages(page, order, init)) {
2516 /* Take note that memory was initialized by KASAN. */
2517 if (kasan_has_integrated_init())
2518 init = false;
2519 /* Take note that memory tags were set by KASAN. */
2520 reset_tags = false;
2521 } else {
2522 /*
2523 * KASAN decided to exclude this allocation from being
2524 * (un)poisoned due to sampling. Make KASAN skip
2525 * poisoning when the allocation is freed.
2526 */
2527 SetPageSkipKASanPoison(page);
2528 }
2529 }
2530 /*
2531 * If memory tags have not been set by KASAN, reset the page tags to
2532 * ensure page_address() dereferencing does not fault.
2533 */
2534 if (reset_tags) {
2535 for (i = 0; i != 1 << order; ++i)
2536 page_kasan_tag_reset(page + i);
2537 }
2538 /* If memory is still not initialized, initialize it now. */
2539 if (init)
2540 kernel_init_pages(page, 1 << order);
2541 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2542 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2543 SetPageSkipKASanPoison(page);
2544
2545 set_page_owner(page, order, gfp_flags);
2546 page_table_check_alloc(page, order);
2547}
2548
2549static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2550 unsigned int alloc_flags)
2551{
2552 post_alloc_hook(page, order, gfp_flags);
2553
2554 if (order && (gfp_flags & __GFP_COMP))
2555 prep_compound_page(page, order);
2556
2557 /*
2558 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2559 * allocate the page. The expectation is that the caller is taking
2560 * steps that will free more memory. The caller should avoid the page
2561 * being used for !PFMEMALLOC purposes.
2562 */
2563 if (alloc_flags & ALLOC_NO_WATERMARKS)
2564 set_page_pfmemalloc(page);
2565 else
2566 clear_page_pfmemalloc(page);
2567}
2568
2569/*
2570 * Go through the free lists for the given migratetype and remove
2571 * the smallest available page from the freelists
2572 */
2573static __always_inline
2574struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2575 int migratetype)
2576{
2577 unsigned int current_order;
2578 struct free_area *area;
2579 struct page *page;
2580
2581 /* Find a page of the appropriate size in the preferred list */
2582 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2583 area = &(zone->free_area[current_order]);
2584 page = get_page_from_free_area(area, migratetype);
2585 if (!page)
2586 continue;
2587 del_page_from_free_list(page, zone, current_order);
2588 expand(zone, page, order, current_order, migratetype);
2589 set_pcppage_migratetype(page, migratetype);
2590 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2591 pcp_allowed_order(order) &&
2592 migratetype < MIGRATE_PCPTYPES);
2593 return page;
2594 }
2595
2596 return NULL;
2597}
2598
2599
2600/*
2601 * This array describes the order lists are fallen back to when
2602 * the free lists for the desirable migrate type are depleted
2603 *
2604 * The other migratetypes do not have fallbacks.
2605 */
2606static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
2607 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
2608 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
2609 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
2610};
2611
2612#ifdef CONFIG_CMA
2613static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2614 unsigned int order)
2615{
2616 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2617}
2618#else
2619static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2620 unsigned int order) { return NULL; }
2621#endif
2622
2623/*
2624 * Move the free pages in a range to the freelist tail of the requested type.
2625 * Note that start_page and end_pages are not aligned on a pageblock
2626 * boundary. If alignment is required, use move_freepages_block()
2627 */
2628static int move_freepages(struct zone *zone,
2629 unsigned long start_pfn, unsigned long end_pfn,
2630 int migratetype, int *num_movable)
2631{
2632 struct page *page;
2633 unsigned long pfn;
2634 unsigned int order;
2635 int pages_moved = 0;
2636
2637 for (pfn = start_pfn; pfn <= end_pfn;) {
2638 page = pfn_to_page(pfn);
2639 if (!PageBuddy(page)) {
2640 /*
2641 * We assume that pages that could be isolated for
2642 * migration are movable. But we don't actually try
2643 * isolating, as that would be expensive.
2644 */
2645 if (num_movable &&
2646 (PageLRU(page) || __PageMovable(page)))
2647 (*num_movable)++;
2648 pfn++;
2649 continue;
2650 }
2651
2652 /* Make sure we are not inadvertently changing nodes */
2653 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2654 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2655
2656 order = buddy_order(page);
2657 move_to_free_list(page, zone, order, migratetype);
2658 pfn += 1 << order;
2659 pages_moved += 1 << order;
2660 }
2661
2662 return pages_moved;
2663}
2664
2665int move_freepages_block(struct zone *zone, struct page *page,
2666 int migratetype, int *num_movable)
2667{
2668 unsigned long start_pfn, end_pfn, pfn;
2669
2670 if (num_movable)
2671 *num_movable = 0;
2672
2673 pfn = page_to_pfn(page);
2674 start_pfn = pageblock_start_pfn(pfn);
2675 end_pfn = pageblock_end_pfn(pfn) - 1;
2676
2677 /* Do not cross zone boundaries */
2678 if (!zone_spans_pfn(zone, start_pfn))
2679 start_pfn = pfn;
2680 if (!zone_spans_pfn(zone, end_pfn))
2681 return 0;
2682
2683 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2684 num_movable);
2685}
2686
2687static void change_pageblock_range(struct page *pageblock_page,
2688 int start_order, int migratetype)
2689{
2690 int nr_pageblocks = 1 << (start_order - pageblock_order);
2691
2692 while (nr_pageblocks--) {
2693 set_pageblock_migratetype(pageblock_page, migratetype);
2694 pageblock_page += pageblock_nr_pages;
2695 }
2696}
2697
2698/*
2699 * When we are falling back to another migratetype during allocation, try to
2700 * steal extra free pages from the same pageblocks to satisfy further
2701 * allocations, instead of polluting multiple pageblocks.
2702 *
2703 * If we are stealing a relatively large buddy page, it is likely there will
2704 * be more free pages in the pageblock, so try to steal them all. For
2705 * reclaimable and unmovable allocations, we steal regardless of page size,
2706 * as fragmentation caused by those allocations polluting movable pageblocks
2707 * is worse than movable allocations stealing from unmovable and reclaimable
2708 * pageblocks.
2709 */
2710static bool can_steal_fallback(unsigned int order, int start_mt)
2711{
2712 /*
2713 * Leaving this order check is intended, although there is
2714 * relaxed order check in next check. The reason is that
2715 * we can actually steal whole pageblock if this condition met,
2716 * but, below check doesn't guarantee it and that is just heuristic
2717 * so could be changed anytime.
2718 */
2719 if (order >= pageblock_order)
2720 return true;
2721
2722 if (order >= pageblock_order / 2 ||
2723 start_mt == MIGRATE_RECLAIMABLE ||
2724 start_mt == MIGRATE_UNMOVABLE ||
2725 page_group_by_mobility_disabled)
2726 return true;
2727
2728 return false;
2729}
2730
2731static inline bool boost_watermark(struct zone *zone)
2732{
2733 unsigned long max_boost;
2734
2735 if (!watermark_boost_factor)
2736 return false;
2737 /*
2738 * Don't bother in zones that are unlikely to produce results.
2739 * On small machines, including kdump capture kernels running
2740 * in a small area, boosting the watermark can cause an out of
2741 * memory situation immediately.
2742 */
2743 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2744 return false;
2745
2746 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2747 watermark_boost_factor, 10000);
2748
2749 /*
2750 * high watermark may be uninitialised if fragmentation occurs
2751 * very early in boot so do not boost. We do not fall
2752 * through and boost by pageblock_nr_pages as failing
2753 * allocations that early means that reclaim is not going
2754 * to help and it may even be impossible to reclaim the
2755 * boosted watermark resulting in a hang.
2756 */
2757 if (!max_boost)
2758 return false;
2759
2760 max_boost = max(pageblock_nr_pages, max_boost);
2761
2762 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2763 max_boost);
2764
2765 return true;
2766}
2767
2768/*
2769 * This function implements actual steal behaviour. If order is large enough,
2770 * we can steal whole pageblock. If not, we first move freepages in this
2771 * pageblock to our migratetype and determine how many already-allocated pages
2772 * are there in the pageblock with a compatible migratetype. If at least half
2773 * of pages are free or compatible, we can change migratetype of the pageblock
2774 * itself, so pages freed in the future will be put on the correct free list.
2775 */
2776static void steal_suitable_fallback(struct zone *zone, struct page *page,
2777 unsigned int alloc_flags, int start_type, bool whole_block)
2778{
2779 unsigned int current_order = buddy_order(page);
2780 int free_pages, movable_pages, alike_pages;
2781 int old_block_type;
2782
2783 old_block_type = get_pageblock_migratetype(page);
2784
2785 /*
2786 * This can happen due to races and we want to prevent broken
2787 * highatomic accounting.
2788 */
2789 if (is_migrate_highatomic(old_block_type))
2790 goto single_page;
2791
2792 /* Take ownership for orders >= pageblock_order */
2793 if (current_order >= pageblock_order) {
2794 change_pageblock_range(page, current_order, start_type);
2795 goto single_page;
2796 }
2797
2798 /*
2799 * Boost watermarks to increase reclaim pressure to reduce the
2800 * likelihood of future fallbacks. Wake kswapd now as the node
2801 * may be balanced overall and kswapd will not wake naturally.
2802 */
2803 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2804 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2805
2806 /* We are not allowed to try stealing from the whole block */
2807 if (!whole_block)
2808 goto single_page;
2809
2810 free_pages = move_freepages_block(zone, page, start_type,
2811 &movable_pages);
2812 /*
2813 * Determine how many pages are compatible with our allocation.
2814 * For movable allocation, it's the number of movable pages which
2815 * we just obtained. For other types it's a bit more tricky.
2816 */
2817 if (start_type == MIGRATE_MOVABLE) {
2818 alike_pages = movable_pages;
2819 } else {
2820 /*
2821 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2822 * to MOVABLE pageblock, consider all non-movable pages as
2823 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2824 * vice versa, be conservative since we can't distinguish the
2825 * exact migratetype of non-movable pages.
2826 */
2827 if (old_block_type == MIGRATE_MOVABLE)
2828 alike_pages = pageblock_nr_pages
2829 - (free_pages + movable_pages);
2830 else
2831 alike_pages = 0;
2832 }
2833
2834 /* moving whole block can fail due to zone boundary conditions */
2835 if (!free_pages)
2836 goto single_page;
2837
2838 /*
2839 * If a sufficient number of pages in the block are either free or of
2840 * comparable migratability as our allocation, claim the whole block.
2841 */
2842 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2843 page_group_by_mobility_disabled)
2844 set_pageblock_migratetype(page, start_type);
2845
2846 return;
2847
2848single_page:
2849 move_to_free_list(page, zone, current_order, start_type);
2850}
2851
2852/*
2853 * Check whether there is a suitable fallback freepage with requested order.
2854 * If only_stealable is true, this function returns fallback_mt only if
2855 * we can steal other freepages all together. This would help to reduce
2856 * fragmentation due to mixed migratetype pages in one pageblock.
2857 */
2858int find_suitable_fallback(struct free_area *area, unsigned int order,
2859 int migratetype, bool only_stealable, bool *can_steal)
2860{
2861 int i;
2862 int fallback_mt;
2863
2864 if (area->nr_free == 0)
2865 return -1;
2866
2867 *can_steal = false;
2868 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2869 fallback_mt = fallbacks[migratetype][i];
2870 if (free_area_empty(area, fallback_mt))
2871 continue;
2872
2873 if (can_steal_fallback(order, migratetype))
2874 *can_steal = true;
2875
2876 if (!only_stealable)
2877 return fallback_mt;
2878
2879 if (*can_steal)
2880 return fallback_mt;
2881 }
2882
2883 return -1;
2884}
2885
2886/*
2887 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2888 * there are no empty page blocks that contain a page with a suitable order
2889 */
2890static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2891 unsigned int alloc_order)
2892{
2893 int mt;
2894 unsigned long max_managed, flags;
2895
2896 /*
2897 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2898 * Check is race-prone but harmless.
2899 */
2900 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2901 if (zone->nr_reserved_highatomic >= max_managed)
2902 return;
2903
2904 spin_lock_irqsave(&zone->lock, flags);
2905
2906 /* Recheck the nr_reserved_highatomic limit under the lock */
2907 if (zone->nr_reserved_highatomic >= max_managed)
2908 goto out_unlock;
2909
2910 /* Yoink! */
2911 mt = get_pageblock_migratetype(page);
2912 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2913 if (migratetype_is_mergeable(mt)) {
2914 zone->nr_reserved_highatomic += pageblock_nr_pages;
2915 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2916 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2917 }
2918
2919out_unlock:
2920 spin_unlock_irqrestore(&zone->lock, flags);
2921}
2922
2923/*
2924 * Used when an allocation is about to fail under memory pressure. This
2925 * potentially hurts the reliability of high-order allocations when under
2926 * intense memory pressure but failed atomic allocations should be easier
2927 * to recover from than an OOM.
2928 *
2929 * If @force is true, try to unreserve a pageblock even though highatomic
2930 * pageblock is exhausted.
2931 */
2932static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2933 bool force)
2934{
2935 struct zonelist *zonelist = ac->zonelist;
2936 unsigned long flags;
2937 struct zoneref *z;
2938 struct zone *zone;
2939 struct page *page;
2940 int order;
2941 bool ret;
2942
2943 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2944 ac->nodemask) {
2945 /*
2946 * Preserve at least one pageblock unless memory pressure
2947 * is really high.
2948 */
2949 if (!force && zone->nr_reserved_highatomic <=
2950 pageblock_nr_pages)
2951 continue;
2952
2953 spin_lock_irqsave(&zone->lock, flags);
2954 for (order = 0; order < MAX_ORDER; order++) {
2955 struct free_area *area = &(zone->free_area[order]);
2956
2957 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2958 if (!page)
2959 continue;
2960
2961 /*
2962 * In page freeing path, migratetype change is racy so
2963 * we can counter several free pages in a pageblock
2964 * in this loop although we changed the pageblock type
2965 * from highatomic to ac->migratetype. So we should
2966 * adjust the count once.
2967 */
2968 if (is_migrate_highatomic_page(page)) {
2969 /*
2970 * It should never happen but changes to
2971 * locking could inadvertently allow a per-cpu
2972 * drain to add pages to MIGRATE_HIGHATOMIC
2973 * while unreserving so be safe and watch for
2974 * underflows.
2975 */
2976 zone->nr_reserved_highatomic -= min(
2977 pageblock_nr_pages,
2978 zone->nr_reserved_highatomic);
2979 }
2980
2981 /*
2982 * Convert to ac->migratetype and avoid the normal
2983 * pageblock stealing heuristics. Minimally, the caller
2984 * is doing the work and needs the pages. More
2985 * importantly, if the block was always converted to
2986 * MIGRATE_UNMOVABLE or another type then the number
2987 * of pageblocks that cannot be completely freed
2988 * may increase.
2989 */
2990 set_pageblock_migratetype(page, ac->migratetype);
2991 ret = move_freepages_block(zone, page, ac->migratetype,
2992 NULL);
2993 if (ret) {
2994 spin_unlock_irqrestore(&zone->lock, flags);
2995 return ret;
2996 }
2997 }
2998 spin_unlock_irqrestore(&zone->lock, flags);
2999 }
3000
3001 return false;
3002}
3003
3004/*
3005 * Try finding a free buddy page on the fallback list and put it on the free
3006 * list of requested migratetype, possibly along with other pages from the same
3007 * block, depending on fragmentation avoidance heuristics. Returns true if
3008 * fallback was found so that __rmqueue_smallest() can grab it.
3009 *
3010 * The use of signed ints for order and current_order is a deliberate
3011 * deviation from the rest of this file, to make the for loop
3012 * condition simpler.
3013 */
3014static __always_inline bool
3015__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3016 unsigned int alloc_flags)
3017{
3018 struct free_area *area;
3019 int current_order;
3020 int min_order = order;
3021 struct page *page;
3022 int fallback_mt;
3023 bool can_steal;
3024
3025 /*
3026 * Do not steal pages from freelists belonging to other pageblocks
3027 * i.e. orders < pageblock_order. If there are no local zones free,
3028 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3029 */
3030 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3031 min_order = pageblock_order;
3032
3033 /*
3034 * Find the largest available free page in the other list. This roughly
3035 * approximates finding the pageblock with the most free pages, which
3036 * would be too costly to do exactly.
3037 */
3038 for (current_order = MAX_ORDER - 1; current_order >= min_order;
3039 --current_order) {
3040 area = &(zone->free_area[current_order]);
3041 fallback_mt = find_suitable_fallback(area, current_order,
3042 start_migratetype, false, &can_steal);
3043 if (fallback_mt == -1)
3044 continue;
3045
3046 /*
3047 * We cannot steal all free pages from the pageblock and the
3048 * requested migratetype is movable. In that case it's better to
3049 * steal and split the smallest available page instead of the
3050 * largest available page, because even if the next movable
3051 * allocation falls back into a different pageblock than this
3052 * one, it won't cause permanent fragmentation.
3053 */
3054 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3055 && current_order > order)
3056 goto find_smallest;
3057
3058 goto do_steal;
3059 }
3060
3061 return false;
3062
3063find_smallest:
3064 for (current_order = order; current_order < MAX_ORDER;
3065 current_order++) {
3066 area = &(zone->free_area[current_order]);
3067 fallback_mt = find_suitable_fallback(area, current_order,
3068 start_migratetype, false, &can_steal);
3069 if (fallback_mt != -1)
3070 break;
3071 }
3072
3073 /*
3074 * This should not happen - we already found a suitable fallback
3075 * when looking for the largest page.
3076 */
3077 VM_BUG_ON(current_order == MAX_ORDER);
3078
3079do_steal:
3080 page = get_page_from_free_area(area, fallback_mt);
3081
3082 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3083 can_steal);
3084
3085 trace_mm_page_alloc_extfrag(page, order, current_order,
3086 start_migratetype, fallback_mt);
3087
3088 return true;
3089
3090}
3091
3092/*
3093 * Do the hard work of removing an element from the buddy allocator.
3094 * Call me with the zone->lock already held.
3095 */
3096static __always_inline struct page *
3097__rmqueue(struct zone *zone, unsigned int order, int migratetype,
3098 unsigned int alloc_flags)
3099{
3100 struct page *page;
3101
3102 if (IS_ENABLED(CONFIG_CMA)) {
3103 /*
3104 * Balance movable allocations between regular and CMA areas by
3105 * allocating from CMA when over half of the zone's free memory
3106 * is in the CMA area.
3107 */
3108 if (alloc_flags & ALLOC_CMA &&
3109 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3110 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3111 page = __rmqueue_cma_fallback(zone, order);
3112 if (page)
3113 return page;
3114 }
3115 }
3116retry:
3117 page = __rmqueue_smallest(zone, order, migratetype);
3118 if (unlikely(!page)) {
3119 if (alloc_flags & ALLOC_CMA)
3120 page = __rmqueue_cma_fallback(zone, order);
3121
3122 if (!page && __rmqueue_fallback(zone, order, migratetype,
3123 alloc_flags))
3124 goto retry;
3125 }
3126 return page;
3127}
3128
3129/*
3130 * Obtain a specified number of elements from the buddy allocator, all under
3131 * a single hold of the lock, for efficiency. Add them to the supplied list.
3132 * Returns the number of new pages which were placed at *list.
3133 */
3134static int rmqueue_bulk(struct zone *zone, unsigned int order,
3135 unsigned long count, struct list_head *list,
3136 int migratetype, unsigned int alloc_flags)
3137{
3138 unsigned long flags;
3139 int i, allocated = 0;
3140
3141 spin_lock_irqsave(&zone->lock, flags);
3142 for (i = 0; i < count; ++i) {
3143 struct page *page = __rmqueue(zone, order, migratetype,
3144 alloc_flags);
3145 if (unlikely(page == NULL))
3146 break;
3147
3148 if (unlikely(check_pcp_refill(page, order)))
3149 continue;
3150
3151 /*
3152 * Split buddy pages returned by expand() are received here in
3153 * physical page order. The page is added to the tail of
3154 * caller's list. From the callers perspective, the linked list
3155 * is ordered by page number under some conditions. This is
3156 * useful for IO devices that can forward direction from the
3157 * head, thus also in the physical page order. This is useful
3158 * for IO devices that can merge IO requests if the physical
3159 * pages are ordered properly.
3160 */
3161 list_add_tail(&page->pcp_list, list);
3162 allocated++;
3163 if (is_migrate_cma(get_pcppage_migratetype(page)))
3164 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3165 -(1 << order));
3166 }
3167
3168 /*
3169 * i pages were removed from the buddy list even if some leak due
3170 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3171 * on i. Do not confuse with 'allocated' which is the number of
3172 * pages added to the pcp list.
3173 */
3174 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3175 spin_unlock_irqrestore(&zone->lock, flags);
3176 return allocated;
3177}
3178
3179#ifdef CONFIG_NUMA
3180/*
3181 * Called from the vmstat counter updater to drain pagesets of this
3182 * currently executing processor on remote nodes after they have
3183 * expired.
3184 */
3185void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3186{
3187 int to_drain, batch;
3188
3189 batch = READ_ONCE(pcp->batch);
3190 to_drain = min(pcp->count, batch);
3191 if (to_drain > 0) {
3192 spin_lock(&pcp->lock);
3193 free_pcppages_bulk(zone, to_drain, pcp, 0);
3194 spin_unlock(&pcp->lock);
3195 }
3196}
3197#endif
3198
3199/*
3200 * Drain pcplists of the indicated processor and zone.
3201 */
3202static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3203{
3204 struct per_cpu_pages *pcp;
3205
3206 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3207 if (pcp->count) {
3208 spin_lock(&pcp->lock);
3209 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3210 spin_unlock(&pcp->lock);
3211 }
3212}
3213
3214/*
3215 * Drain pcplists of all zones on the indicated processor.
3216 */
3217static void drain_pages(unsigned int cpu)
3218{
3219 struct zone *zone;
3220
3221 for_each_populated_zone(zone) {
3222 drain_pages_zone(cpu, zone);
3223 }
3224}
3225
3226/*
3227 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3228 */
3229void drain_local_pages(struct zone *zone)
3230{
3231 int cpu = smp_processor_id();
3232
3233 if (zone)
3234 drain_pages_zone(cpu, zone);
3235 else
3236 drain_pages(cpu);
3237}
3238
3239/*
3240 * The implementation of drain_all_pages(), exposing an extra parameter to
3241 * drain on all cpus.
3242 *
3243 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3244 * not empty. The check for non-emptiness can however race with a free to
3245 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3246 * that need the guarantee that every CPU has drained can disable the
3247 * optimizing racy check.
3248 */
3249static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3250{
3251 int cpu;
3252
3253 /*
3254 * Allocate in the BSS so we won't require allocation in
3255 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3256 */
3257 static cpumask_t cpus_with_pcps;
3258
3259 /*
3260 * Do not drain if one is already in progress unless it's specific to
3261 * a zone. Such callers are primarily CMA and memory hotplug and need
3262 * the drain to be complete when the call returns.
3263 */
3264 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3265 if (!zone)
3266 return;
3267 mutex_lock(&pcpu_drain_mutex);
3268 }
3269
3270 /*
3271 * We don't care about racing with CPU hotplug event
3272 * as offline notification will cause the notified
3273 * cpu to drain that CPU pcps and on_each_cpu_mask
3274 * disables preemption as part of its processing
3275 */
3276 for_each_online_cpu(cpu) {
3277 struct per_cpu_pages *pcp;
3278 struct zone *z;
3279 bool has_pcps = false;
3280
3281 if (force_all_cpus) {
3282 /*
3283 * The pcp.count check is racy, some callers need a
3284 * guarantee that no cpu is missed.
3285 */
3286 has_pcps = true;
3287 } else if (zone) {
3288 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3289 if (pcp->count)
3290 has_pcps = true;
3291 } else {
3292 for_each_populated_zone(z) {
3293 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3294 if (pcp->count) {
3295 has_pcps = true;
3296 break;
3297 }
3298 }
3299 }
3300
3301 if (has_pcps)
3302 cpumask_set_cpu(cpu, &cpus_with_pcps);
3303 else
3304 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3305 }
3306
3307 for_each_cpu(cpu, &cpus_with_pcps) {
3308 if (zone)
3309 drain_pages_zone(cpu, zone);
3310 else
3311 drain_pages(cpu);
3312 }
3313
3314 mutex_unlock(&pcpu_drain_mutex);
3315}
3316
3317/*
3318 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3319 *
3320 * When zone parameter is non-NULL, spill just the single zone's pages.
3321 */
3322void drain_all_pages(struct zone *zone)
3323{
3324 __drain_all_pages(zone, false);
3325}
3326
3327#ifdef CONFIG_HIBERNATION
3328
3329/*
3330 * Touch the watchdog for every WD_PAGE_COUNT pages.
3331 */
3332#define WD_PAGE_COUNT (128*1024)
3333
3334void mark_free_pages(struct zone *zone)
3335{
3336 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3337 unsigned long flags;
3338 unsigned int order, t;
3339 struct page *page;
3340
3341 if (zone_is_empty(zone))
3342 return;
3343
3344 spin_lock_irqsave(&zone->lock, flags);
3345
3346 max_zone_pfn = zone_end_pfn(zone);
3347 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3348 if (pfn_valid(pfn)) {
3349 page = pfn_to_page(pfn);
3350
3351 if (!--page_count) {
3352 touch_nmi_watchdog();
3353 page_count = WD_PAGE_COUNT;
3354 }
3355
3356 if (page_zone(page) != zone)
3357 continue;
3358
3359 if (!swsusp_page_is_forbidden(page))
3360 swsusp_unset_page_free(page);
3361 }
3362
3363 for_each_migratetype_order(order, t) {
3364 list_for_each_entry(page,
3365 &zone->free_area[order].free_list[t], buddy_list) {
3366 unsigned long i;
3367
3368 pfn = page_to_pfn(page);
3369 for (i = 0; i < (1UL << order); i++) {
3370 if (!--page_count) {
3371 touch_nmi_watchdog();
3372 page_count = WD_PAGE_COUNT;
3373 }
3374 swsusp_set_page_free(pfn_to_page(pfn + i));
3375 }
3376 }
3377 }
3378 spin_unlock_irqrestore(&zone->lock, flags);
3379}
3380#endif /* CONFIG_PM */
3381
3382static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3383 unsigned int order)
3384{
3385 int migratetype;
3386
3387 if (!free_pcp_prepare(page, order))
3388 return false;
3389
3390 migratetype = get_pfnblock_migratetype(page, pfn);
3391 set_pcppage_migratetype(page, migratetype);
3392 return true;
3393}
3394
3395static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3396 bool free_high)
3397{
3398 int min_nr_free, max_nr_free;
3399
3400 /* Free everything if batch freeing high-order pages. */
3401 if (unlikely(free_high))
3402 return pcp->count;
3403
3404 /* Check for PCP disabled or boot pageset */
3405 if (unlikely(high < batch))
3406 return 1;
3407
3408 /* Leave at least pcp->batch pages on the list */
3409 min_nr_free = batch;
3410 max_nr_free = high - batch;
3411
3412 /*
3413 * Double the number of pages freed each time there is subsequent
3414 * freeing of pages without any allocation.
3415 */
3416 batch <<= pcp->free_factor;
3417 if (batch < max_nr_free)
3418 pcp->free_factor++;
3419 batch = clamp(batch, min_nr_free, max_nr_free);
3420
3421 return batch;
3422}
3423
3424static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3425 bool free_high)
3426{
3427 int high = READ_ONCE(pcp->high);
3428
3429 if (unlikely(!high || free_high))
3430 return 0;
3431
3432 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3433 return high;
3434
3435 /*
3436 * If reclaim is active, limit the number of pages that can be
3437 * stored on pcp lists
3438 */
3439 return min(READ_ONCE(pcp->batch) << 2, high);
3440}
3441
3442static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3443 struct page *page, int migratetype,
3444 unsigned int order)
3445{
3446 int high;
3447 int pindex;
3448 bool free_high;
3449
3450 __count_vm_events(PGFREE, 1 << order);
3451 pindex = order_to_pindex(migratetype, order);
3452 list_add(&page->pcp_list, &pcp->lists[pindex]);
3453 pcp->count += 1 << order;
3454
3455 /*
3456 * As high-order pages other than THP's stored on PCP can contribute
3457 * to fragmentation, limit the number stored when PCP is heavily
3458 * freeing without allocation. The remainder after bulk freeing
3459 * stops will be drained from vmstat refresh context.
3460 */
3461 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3462
3463 high = nr_pcp_high(pcp, zone, free_high);
3464 if (pcp->count >= high) {
3465 int batch = READ_ONCE(pcp->batch);
3466
3467 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3468 }
3469}
3470
3471/*
3472 * Free a pcp page
3473 */
3474void free_unref_page(struct page *page, unsigned int order)
3475{
3476 unsigned long __maybe_unused UP_flags;
3477 struct per_cpu_pages *pcp;
3478 struct zone *zone;
3479 unsigned long pfn = page_to_pfn(page);
3480 int migratetype;
3481
3482 if (!free_unref_page_prepare(page, pfn, order))
3483 return;
3484
3485 /*
3486 * We only track unmovable, reclaimable and movable on pcp lists.
3487 * Place ISOLATE pages on the isolated list because they are being
3488 * offlined but treat HIGHATOMIC as movable pages so we can get those
3489 * areas back if necessary. Otherwise, we may have to free
3490 * excessively into the page allocator
3491 */
3492 migratetype = get_pcppage_migratetype(page);
3493 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3494 if (unlikely(is_migrate_isolate(migratetype))) {
3495 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3496 return;
3497 }
3498 migratetype = MIGRATE_MOVABLE;
3499 }
3500
3501 zone = page_zone(page);
3502 pcp_trylock_prepare(UP_flags);
3503 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3504 if (pcp) {
3505 free_unref_page_commit(zone, pcp, page, migratetype, order);
3506 pcp_spin_unlock(pcp);
3507 } else {
3508 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3509 }
3510 pcp_trylock_finish(UP_flags);
3511}
3512
3513/*
3514 * Free a list of 0-order pages
3515 */
3516void free_unref_page_list(struct list_head *list)
3517{
3518 unsigned long __maybe_unused UP_flags;
3519 struct page *page, *next;
3520 struct per_cpu_pages *pcp = NULL;
3521 struct zone *locked_zone = NULL;
3522 int batch_count = 0;
3523 int migratetype;
3524
3525 /* Prepare pages for freeing */
3526 list_for_each_entry_safe(page, next, list, lru) {
3527 unsigned long pfn = page_to_pfn(page);
3528 if (!free_unref_page_prepare(page, pfn, 0)) {
3529 list_del(&page->lru);
3530 continue;
3531 }
3532
3533 /*
3534 * Free isolated pages directly to the allocator, see
3535 * comment in free_unref_page.
3536 */
3537 migratetype = get_pcppage_migratetype(page);
3538 if (unlikely(is_migrate_isolate(migratetype))) {
3539 list_del(&page->lru);
3540 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3541 continue;
3542 }
3543 }
3544
3545 list_for_each_entry_safe(page, next, list, lru) {
3546 struct zone *zone = page_zone(page);
3547
3548 list_del(&page->lru);
3549 migratetype = get_pcppage_migratetype(page);
3550
3551 /*
3552 * Either different zone requiring a different pcp lock or
3553 * excessive lock hold times when freeing a large list of
3554 * pages.
3555 */
3556 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
3557 if (pcp) {
3558 pcp_spin_unlock(pcp);
3559 pcp_trylock_finish(UP_flags);
3560 }
3561
3562 batch_count = 0;
3563
3564 /*
3565 * trylock is necessary as pages may be getting freed
3566 * from IRQ or SoftIRQ context after an IO completion.
3567 */
3568 pcp_trylock_prepare(UP_flags);
3569 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3570 if (unlikely(!pcp)) {
3571 pcp_trylock_finish(UP_flags);
3572 free_one_page(zone, page, page_to_pfn(page),
3573 0, migratetype, FPI_NONE);
3574 locked_zone = NULL;
3575 continue;
3576 }
3577 locked_zone = zone;
3578 }
3579
3580 /*
3581 * Non-isolated types over MIGRATE_PCPTYPES get added
3582 * to the MIGRATE_MOVABLE pcp list.
3583 */
3584 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3585 migratetype = MIGRATE_MOVABLE;
3586
3587 trace_mm_page_free_batched(page);
3588 free_unref_page_commit(zone, pcp, page, migratetype, 0);
3589 batch_count++;
3590 }
3591
3592 if (pcp) {
3593 pcp_spin_unlock(pcp);
3594 pcp_trylock_finish(UP_flags);
3595 }
3596}
3597
3598/*
3599 * split_page takes a non-compound higher-order page, and splits it into
3600 * n (1<<order) sub-pages: page[0..n]
3601 * Each sub-page must be freed individually.
3602 *
3603 * Note: this is probably too low level an operation for use in drivers.
3604 * Please consult with lkml before using this in your driver.
3605 */
3606void split_page(struct page *page, unsigned int order)
3607{
3608 int i;
3609
3610 VM_BUG_ON_PAGE(PageCompound(page), page);
3611 VM_BUG_ON_PAGE(!page_count(page), page);
3612
3613 for (i = 1; i < (1 << order); i++)
3614 set_page_refcounted(page + i);
3615 split_page_owner(page, 1 << order);
3616 split_page_memcg(page, 1 << order);
3617}
3618EXPORT_SYMBOL_GPL(split_page);
3619
3620int __isolate_free_page(struct page *page, unsigned int order)
3621{
3622 struct zone *zone = page_zone(page);
3623 int mt = get_pageblock_migratetype(page);
3624
3625 if (!is_migrate_isolate(mt)) {
3626 unsigned long watermark;
3627 /*
3628 * Obey watermarks as if the page was being allocated. We can
3629 * emulate a high-order watermark check with a raised order-0
3630 * watermark, because we already know our high-order page
3631 * exists.
3632 */
3633 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3634 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3635 return 0;
3636
3637 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3638 }
3639
3640 del_page_from_free_list(page, zone, order);
3641
3642 /*
3643 * Set the pageblock if the isolated page is at least half of a
3644 * pageblock
3645 */
3646 if (order >= pageblock_order - 1) {
3647 struct page *endpage = page + (1 << order) - 1;
3648 for (; page < endpage; page += pageblock_nr_pages) {
3649 int mt = get_pageblock_migratetype(page);
3650 /*
3651 * Only change normal pageblocks (i.e., they can merge
3652 * with others)
3653 */
3654 if (migratetype_is_mergeable(mt))
3655 set_pageblock_migratetype(page,
3656 MIGRATE_MOVABLE);
3657 }
3658 }
3659
3660 return 1UL << order;
3661}
3662
3663/**
3664 * __putback_isolated_page - Return a now-isolated page back where we got it
3665 * @page: Page that was isolated
3666 * @order: Order of the isolated page
3667 * @mt: The page's pageblock's migratetype
3668 *
3669 * This function is meant to return a page pulled from the free lists via
3670 * __isolate_free_page back to the free lists they were pulled from.
3671 */
3672void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3673{
3674 struct zone *zone = page_zone(page);
3675
3676 /* zone lock should be held when this function is called */
3677 lockdep_assert_held(&zone->lock);
3678
3679 /* Return isolated page to tail of freelist. */
3680 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3681 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3682}
3683
3684/*
3685 * Update NUMA hit/miss statistics
3686 */
3687static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3688 long nr_account)
3689{
3690#ifdef CONFIG_NUMA
3691 enum numa_stat_item local_stat = NUMA_LOCAL;
3692
3693 /* skip numa counters update if numa stats is disabled */
3694 if (!static_branch_likely(&vm_numa_stat_key))
3695 return;
3696
3697 if (zone_to_nid(z) != numa_node_id())
3698 local_stat = NUMA_OTHER;
3699
3700 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3701 __count_numa_events(z, NUMA_HIT, nr_account);
3702 else {
3703 __count_numa_events(z, NUMA_MISS, nr_account);
3704 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3705 }
3706 __count_numa_events(z, local_stat, nr_account);
3707#endif
3708}
3709
3710static __always_inline
3711struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3712 unsigned int order, unsigned int alloc_flags,
3713 int migratetype)
3714{
3715 struct page *page;
3716 unsigned long flags;
3717
3718 do {
3719 page = NULL;
3720 spin_lock_irqsave(&zone->lock, flags);
3721 /*
3722 * order-0 request can reach here when the pcplist is skipped
3723 * due to non-CMA allocation context. HIGHATOMIC area is
3724 * reserved for high-order atomic allocation, so order-0
3725 * request should skip it.
3726 */
3727 if (alloc_flags & ALLOC_HIGHATOMIC)
3728 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3729 if (!page) {
3730 page = __rmqueue(zone, order, migratetype, alloc_flags);
3731
3732 /*
3733 * If the allocation fails, allow OOM handling access
3734 * to HIGHATOMIC reserves as failing now is worse than
3735 * failing a high-order atomic allocation in the
3736 * future.
3737 */
3738 if (!page && (alloc_flags & ALLOC_OOM))
3739 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3740
3741 if (!page) {
3742 spin_unlock_irqrestore(&zone->lock, flags);
3743 return NULL;
3744 }
3745 }
3746 __mod_zone_freepage_state(zone, -(1 << order),
3747 get_pcppage_migratetype(page));
3748 spin_unlock_irqrestore(&zone->lock, flags);
3749 } while (check_new_pages(page, order));
3750
3751 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3752 zone_statistics(preferred_zone, zone, 1);
3753
3754 return page;
3755}
3756
3757/* Remove page from the per-cpu list, caller must protect the list */
3758static inline
3759struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3760 int migratetype,
3761 unsigned int alloc_flags,
3762 struct per_cpu_pages *pcp,
3763 struct list_head *list)
3764{
3765 struct page *page;
3766
3767 do {
3768 if (list_empty(list)) {
3769 int batch = READ_ONCE(pcp->batch);
3770 int alloced;
3771
3772 /*
3773 * Scale batch relative to order if batch implies
3774 * free pages can be stored on the PCP. Batch can
3775 * be 1 for small zones or for boot pagesets which
3776 * should never store free pages as the pages may
3777 * belong to arbitrary zones.
3778 */
3779 if (batch > 1)
3780 batch = max(batch >> order, 2);
3781 alloced = rmqueue_bulk(zone, order,
3782 batch, list,
3783 migratetype, alloc_flags);
3784
3785 pcp->count += alloced << order;
3786 if (unlikely(list_empty(list)))
3787 return NULL;
3788 }
3789
3790 page = list_first_entry(list, struct page, pcp_list);
3791 list_del(&page->pcp_list);
3792 pcp->count -= 1 << order;
3793 } while (check_new_pcp(page, order));
3794
3795 return page;
3796}
3797
3798/* Lock and remove page from the per-cpu list */
3799static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3800 struct zone *zone, unsigned int order,
3801 int migratetype, unsigned int alloc_flags)
3802{
3803 struct per_cpu_pages *pcp;
3804 struct list_head *list;
3805 struct page *page;
3806 unsigned long __maybe_unused UP_flags;
3807
3808 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3809 pcp_trylock_prepare(UP_flags);
3810 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3811 if (!pcp) {
3812 pcp_trylock_finish(UP_flags);
3813 return NULL;
3814 }
3815
3816 /*
3817 * On allocation, reduce the number of pages that are batch freed.
3818 * See nr_pcp_free() where free_factor is increased for subsequent
3819 * frees.
3820 */
3821 pcp->free_factor >>= 1;
3822 list = &pcp->lists[order_to_pindex(migratetype, order)];
3823 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3824 pcp_spin_unlock(pcp);
3825 pcp_trylock_finish(UP_flags);
3826 if (page) {
3827 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3828 zone_statistics(preferred_zone, zone, 1);
3829 }
3830 return page;
3831}
3832
3833/*
3834 * Allocate a page from the given zone.
3835 * Use pcplists for THP or "cheap" high-order allocations.
3836 */
3837
3838/*
3839 * Do not instrument rmqueue() with KMSAN. This function may call
3840 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3841 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3842 * may call rmqueue() again, which will result in a deadlock.
3843 */
3844__no_sanitize_memory
3845static inline
3846struct page *rmqueue(struct zone *preferred_zone,
3847 struct zone *zone, unsigned int order,
3848 gfp_t gfp_flags, unsigned int alloc_flags,
3849 int migratetype)
3850{
3851 struct page *page;
3852
3853 /*
3854 * We most definitely don't want callers attempting to
3855 * allocate greater than order-1 page units with __GFP_NOFAIL.
3856 */
3857 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3858
3859 if (likely(pcp_allowed_order(order))) {
3860 /*
3861 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3862 * we need to skip it when CMA area isn't allowed.
3863 */
3864 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3865 migratetype != MIGRATE_MOVABLE) {
3866 page = rmqueue_pcplist(preferred_zone, zone, order,
3867 migratetype, alloc_flags);
3868 if (likely(page))
3869 goto out;
3870 }
3871 }
3872
3873 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3874 migratetype);
3875
3876out:
3877 /* Separate test+clear to avoid unnecessary atomics */
3878 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3879 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3880 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3881 }
3882
3883 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3884 return page;
3885}
3886
3887#ifdef CONFIG_FAIL_PAGE_ALLOC
3888
3889static struct {
3890 struct fault_attr attr;
3891
3892 bool ignore_gfp_highmem;
3893 bool ignore_gfp_reclaim;
3894 u32 min_order;
3895} fail_page_alloc = {
3896 .attr = FAULT_ATTR_INITIALIZER,
3897 .ignore_gfp_reclaim = true,
3898 .ignore_gfp_highmem = true,
3899 .min_order = 1,
3900};
3901
3902static int __init setup_fail_page_alloc(char *str)
3903{
3904 return setup_fault_attr(&fail_page_alloc.attr, str);
3905}
3906__setup("fail_page_alloc=", setup_fail_page_alloc);
3907
3908static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3909{
3910 int flags = 0;
3911
3912 if (order < fail_page_alloc.min_order)
3913 return false;
3914 if (gfp_mask & __GFP_NOFAIL)
3915 return false;
3916 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3917 return false;
3918 if (fail_page_alloc.ignore_gfp_reclaim &&
3919 (gfp_mask & __GFP_DIRECT_RECLAIM))
3920 return false;
3921
3922 /* See comment in __should_failslab() */
3923 if (gfp_mask & __GFP_NOWARN)
3924 flags |= FAULT_NOWARN;
3925
3926 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3927}
3928
3929#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3930
3931static int __init fail_page_alloc_debugfs(void)
3932{
3933 umode_t mode = S_IFREG | 0600;
3934 struct dentry *dir;
3935
3936 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3937 &fail_page_alloc.attr);
3938
3939 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3940 &fail_page_alloc.ignore_gfp_reclaim);
3941 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3942 &fail_page_alloc.ignore_gfp_highmem);
3943 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3944
3945 return 0;
3946}
3947
3948late_initcall(fail_page_alloc_debugfs);
3949
3950#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3951
3952#else /* CONFIG_FAIL_PAGE_ALLOC */
3953
3954static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3955{
3956 return false;
3957}
3958
3959#endif /* CONFIG_FAIL_PAGE_ALLOC */
3960
3961noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3962{
3963 return __should_fail_alloc_page(gfp_mask, order);
3964}
3965ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3966
3967static inline long __zone_watermark_unusable_free(struct zone *z,
3968 unsigned int order, unsigned int alloc_flags)
3969{
3970 long unusable_free = (1 << order) - 1;
3971
3972 /*
3973 * If the caller does not have rights to reserves below the min
3974 * watermark then subtract the high-atomic reserves. This will
3975 * over-estimate the size of the atomic reserve but it avoids a search.
3976 */
3977 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3978 unusable_free += z->nr_reserved_highatomic;
3979
3980#ifdef CONFIG_CMA
3981 /* If allocation can't use CMA areas don't use free CMA pages */
3982 if (!(alloc_flags & ALLOC_CMA))
3983 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3984#endif
3985
3986 return unusable_free;
3987}
3988
3989/*
3990 * Return true if free base pages are above 'mark'. For high-order checks it
3991 * will return true of the order-0 watermark is reached and there is at least
3992 * one free page of a suitable size. Checking now avoids taking the zone lock
3993 * to check in the allocation paths if no pages are free.
3994 */
3995bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3996 int highest_zoneidx, unsigned int alloc_flags,
3997 long free_pages)
3998{
3999 long min = mark;
4000 int o;
4001
4002 /* free_pages may go negative - that's OK */
4003 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
4004
4005 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
4006 /*
4007 * __GFP_HIGH allows access to 50% of the min reserve as well
4008 * as OOM.
4009 */
4010 if (alloc_flags & ALLOC_MIN_RESERVE) {
4011 min -= min / 2;
4012
4013 /*
4014 * Non-blocking allocations (e.g. GFP_ATOMIC) can
4015 * access more reserves than just __GFP_HIGH. Other
4016 * non-blocking allocations requests such as GFP_NOWAIT
4017 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
4018 * access to the min reserve.
4019 */
4020 if (alloc_flags & ALLOC_NON_BLOCK)
4021 min -= min / 4;
4022 }
4023
4024 /*
4025 * OOM victims can try even harder than the normal reserve
4026 * users on the grounds that it's definitely going to be in
4027 * the exit path shortly and free memory. Any allocation it
4028 * makes during the free path will be small and short-lived.
4029 */
4030 if (alloc_flags & ALLOC_OOM)
4031 min -= min / 2;
4032 }
4033
4034 /*
4035 * Check watermarks for an order-0 allocation request. If these
4036 * are not met, then a high-order request also cannot go ahead
4037 * even if a suitable page happened to be free.
4038 */
4039 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4040 return false;
4041
4042 /* If this is an order-0 request then the watermark is fine */
4043 if (!order)
4044 return true;
4045
4046 /* For a high-order request, check at least one suitable page is free */
4047 for (o = order; o < MAX_ORDER; o++) {
4048 struct free_area *area = &z->free_area[o];
4049 int mt;
4050
4051 if (!area->nr_free)
4052 continue;
4053
4054 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4055 if (!free_area_empty(area, mt))
4056 return true;
4057 }
4058
4059#ifdef CONFIG_CMA
4060 if ((alloc_flags & ALLOC_CMA) &&
4061 !free_area_empty(area, MIGRATE_CMA)) {
4062 return true;
4063 }
4064#endif
4065 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
4066 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
4067 return true;
4068 }
4069 }
4070 return false;
4071}
4072
4073bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4074 int highest_zoneidx, unsigned int alloc_flags)
4075{
4076 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4077 zone_page_state(z, NR_FREE_PAGES));
4078}
4079
4080static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4081 unsigned long mark, int highest_zoneidx,
4082 unsigned int alloc_flags, gfp_t gfp_mask)
4083{
4084 long free_pages;
4085
4086 free_pages = zone_page_state(z, NR_FREE_PAGES);
4087
4088 /*
4089 * Fast check for order-0 only. If this fails then the reserves
4090 * need to be calculated.
4091 */
4092 if (!order) {
4093 long usable_free;
4094 long reserved;
4095
4096 usable_free = free_pages;
4097 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4098
4099 /* reserved may over estimate high-atomic reserves. */
4100 usable_free -= min(usable_free, reserved);
4101 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4102 return true;
4103 }
4104
4105 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4106 free_pages))
4107 return true;
4108
4109 /*
4110 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
4111 * when checking the min watermark. The min watermark is the
4112 * point where boosting is ignored so that kswapd is woken up
4113 * when below the low watermark.
4114 */
4115 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
4116 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4117 mark = z->_watermark[WMARK_MIN];
4118 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4119 alloc_flags, free_pages);
4120 }
4121
4122 return false;
4123}
4124
4125bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4126 unsigned long mark, int highest_zoneidx)
4127{
4128 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4129
4130 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4131 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4132
4133 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4134 free_pages);
4135}
4136
4137#ifdef CONFIG_NUMA
4138int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4139
4140static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4141{
4142 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4143 node_reclaim_distance;
4144}
4145#else /* CONFIG_NUMA */
4146static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4147{
4148 return true;
4149}
4150#endif /* CONFIG_NUMA */
4151
4152/*
4153 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4154 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4155 * premature use of a lower zone may cause lowmem pressure problems that
4156 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4157 * probably too small. It only makes sense to spread allocations to avoid
4158 * fragmentation between the Normal and DMA32 zones.
4159 */
4160static inline unsigned int
4161alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4162{
4163 unsigned int alloc_flags;
4164
4165 /*
4166 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4167 * to save a branch.
4168 */
4169 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4170
4171#ifdef CONFIG_ZONE_DMA32
4172 if (!zone)
4173 return alloc_flags;
4174
4175 if (zone_idx(zone) != ZONE_NORMAL)
4176 return alloc_flags;
4177
4178 /*
4179 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4180 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4181 * on UMA that if Normal is populated then so is DMA32.
4182 */
4183 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4184 if (nr_online_nodes > 1 && !populated_zone(--zone))
4185 return alloc_flags;
4186
4187 alloc_flags |= ALLOC_NOFRAGMENT;
4188#endif /* CONFIG_ZONE_DMA32 */
4189 return alloc_flags;
4190}
4191
4192/* Must be called after current_gfp_context() which can change gfp_mask */
4193static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4194 unsigned int alloc_flags)
4195{
4196#ifdef CONFIG_CMA
4197 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4198 alloc_flags |= ALLOC_CMA;
4199#endif
4200 return alloc_flags;
4201}
4202
4203/*
4204 * get_page_from_freelist goes through the zonelist trying to allocate
4205 * a page.
4206 */
4207static struct page *
4208get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4209 const struct alloc_context *ac)
4210{
4211 struct zoneref *z;
4212 struct zone *zone;
4213 struct pglist_data *last_pgdat = NULL;
4214 bool last_pgdat_dirty_ok = false;
4215 bool no_fallback;
4216
4217retry:
4218 /*
4219 * Scan zonelist, looking for a zone with enough free.
4220 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4221 */
4222 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4223 z = ac->preferred_zoneref;
4224 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4225 ac->nodemask) {
4226 struct page *page;
4227 unsigned long mark;
4228
4229 if (cpusets_enabled() &&
4230 (alloc_flags & ALLOC_CPUSET) &&
4231 !__cpuset_zone_allowed(zone, gfp_mask))
4232 continue;
4233 /*
4234 * When allocating a page cache page for writing, we
4235 * want to get it from a node that is within its dirty
4236 * limit, such that no single node holds more than its
4237 * proportional share of globally allowed dirty pages.
4238 * The dirty limits take into account the node's
4239 * lowmem reserves and high watermark so that kswapd
4240 * should be able to balance it without having to
4241 * write pages from its LRU list.
4242 *
4243 * XXX: For now, allow allocations to potentially
4244 * exceed the per-node dirty limit in the slowpath
4245 * (spread_dirty_pages unset) before going into reclaim,
4246 * which is important when on a NUMA setup the allowed
4247 * nodes are together not big enough to reach the
4248 * global limit. The proper fix for these situations
4249 * will require awareness of nodes in the
4250 * dirty-throttling and the flusher threads.
4251 */
4252 if (ac->spread_dirty_pages) {
4253 if (last_pgdat != zone->zone_pgdat) {
4254 last_pgdat = zone->zone_pgdat;
4255 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4256 }
4257
4258 if (!last_pgdat_dirty_ok)
4259 continue;
4260 }
4261
4262 if (no_fallback && nr_online_nodes > 1 &&
4263 zone != ac->preferred_zoneref->zone) {
4264 int local_nid;
4265
4266 /*
4267 * If moving to a remote node, retry but allow
4268 * fragmenting fallbacks. Locality is more important
4269 * than fragmentation avoidance.
4270 */
4271 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4272 if (zone_to_nid(zone) != local_nid) {
4273 alloc_flags &= ~ALLOC_NOFRAGMENT;
4274 goto retry;
4275 }
4276 }
4277
4278 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4279 if (!zone_watermark_fast(zone, order, mark,
4280 ac->highest_zoneidx, alloc_flags,
4281 gfp_mask)) {
4282 int ret;
4283
4284#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4285 /*
4286 * Watermark failed for this zone, but see if we can
4287 * grow this zone if it contains deferred pages.
4288 */
4289 if (deferred_pages_enabled()) {
4290 if (_deferred_grow_zone(zone, order))
4291 goto try_this_zone;
4292 }
4293#endif
4294 /* Checked here to keep the fast path fast */
4295 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4296 if (alloc_flags & ALLOC_NO_WATERMARKS)
4297 goto try_this_zone;
4298
4299 if (!node_reclaim_enabled() ||
4300 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4301 continue;
4302
4303 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4304 switch (ret) {
4305 case NODE_RECLAIM_NOSCAN:
4306 /* did not scan */
4307 continue;
4308 case NODE_RECLAIM_FULL:
4309 /* scanned but unreclaimable */
4310 continue;
4311 default:
4312 /* did we reclaim enough */
4313 if (zone_watermark_ok(zone, order, mark,
4314 ac->highest_zoneidx, alloc_flags))
4315 goto try_this_zone;
4316
4317 continue;
4318 }
4319 }
4320
4321try_this_zone:
4322 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4323 gfp_mask, alloc_flags, ac->migratetype);
4324 if (page) {
4325 prep_new_page(page, order, gfp_mask, alloc_flags);
4326
4327 /*
4328 * If this is a high-order atomic allocation then check
4329 * if the pageblock should be reserved for the future
4330 */
4331 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
4332 reserve_highatomic_pageblock(page, zone, order);
4333
4334 return page;
4335 } else {
4336#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4337 /* Try again if zone has deferred pages */
4338 if (deferred_pages_enabled()) {
4339 if (_deferred_grow_zone(zone, order))
4340 goto try_this_zone;
4341 }
4342#endif
4343 }
4344 }
4345
4346 /*
4347 * It's possible on a UMA machine to get through all zones that are
4348 * fragmented. If avoiding fragmentation, reset and try again.
4349 */
4350 if (no_fallback) {
4351 alloc_flags &= ~ALLOC_NOFRAGMENT;
4352 goto retry;
4353 }
4354
4355 return NULL;
4356}
4357
4358static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4359{
4360 unsigned int filter = SHOW_MEM_FILTER_NODES;
4361
4362 /*
4363 * This documents exceptions given to allocations in certain
4364 * contexts that are allowed to allocate outside current's set
4365 * of allowed nodes.
4366 */
4367 if (!(gfp_mask & __GFP_NOMEMALLOC))
4368 if (tsk_is_oom_victim(current) ||
4369 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4370 filter &= ~SHOW_MEM_FILTER_NODES;
4371 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4372 filter &= ~SHOW_MEM_FILTER_NODES;
4373
4374 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
4375}
4376
4377void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4378{
4379 struct va_format vaf;
4380 va_list args;
4381 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4382
4383 if ((gfp_mask & __GFP_NOWARN) ||
4384 !__ratelimit(&nopage_rs) ||
4385 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4386 return;
4387
4388 va_start(args, fmt);
4389 vaf.fmt = fmt;
4390 vaf.va = &args;
4391 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4392 current->comm, &vaf, gfp_mask, &gfp_mask,
4393 nodemask_pr_args(nodemask));
4394 va_end(args);
4395
4396 cpuset_print_current_mems_allowed();
4397 pr_cont("\n");
4398 dump_stack();
4399 warn_alloc_show_mem(gfp_mask, nodemask);
4400}
4401
4402static inline struct page *
4403__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4404 unsigned int alloc_flags,
4405 const struct alloc_context *ac)
4406{
4407 struct page *page;
4408
4409 page = get_page_from_freelist(gfp_mask, order,
4410 alloc_flags|ALLOC_CPUSET, ac);
4411 /*
4412 * fallback to ignore cpuset restriction if our nodes
4413 * are depleted
4414 */
4415 if (!page)
4416 page = get_page_from_freelist(gfp_mask, order,
4417 alloc_flags, ac);
4418
4419 return page;
4420}
4421
4422static inline struct page *
4423__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4424 const struct alloc_context *ac, unsigned long *did_some_progress)
4425{
4426 struct oom_control oc = {
4427 .zonelist = ac->zonelist,
4428 .nodemask = ac->nodemask,
4429 .memcg = NULL,
4430 .gfp_mask = gfp_mask,
4431 .order = order,
4432 };
4433 struct page *page;
4434
4435 *did_some_progress = 0;
4436
4437 /*
4438 * Acquire the oom lock. If that fails, somebody else is
4439 * making progress for us.
4440 */
4441 if (!mutex_trylock(&oom_lock)) {
4442 *did_some_progress = 1;
4443 schedule_timeout_uninterruptible(1);
4444 return NULL;
4445 }
4446
4447 /*
4448 * Go through the zonelist yet one more time, keep very high watermark
4449 * here, this is only to catch a parallel oom killing, we must fail if
4450 * we're still under heavy pressure. But make sure that this reclaim
4451 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4452 * allocation which will never fail due to oom_lock already held.
4453 */
4454 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4455 ~__GFP_DIRECT_RECLAIM, order,
4456 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4457 if (page)
4458 goto out;
4459
4460 /* Coredumps can quickly deplete all memory reserves */
4461 if (current->flags & PF_DUMPCORE)
4462 goto out;
4463 /* The OOM killer will not help higher order allocs */
4464 if (order > PAGE_ALLOC_COSTLY_ORDER)
4465 goto out;
4466 /*
4467 * We have already exhausted all our reclaim opportunities without any
4468 * success so it is time to admit defeat. We will skip the OOM killer
4469 * because it is very likely that the caller has a more reasonable
4470 * fallback than shooting a random task.
4471 *
4472 * The OOM killer may not free memory on a specific node.
4473 */
4474 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4475 goto out;
4476 /* The OOM killer does not needlessly kill tasks for lowmem */
4477 if (ac->highest_zoneidx < ZONE_NORMAL)
4478 goto out;
4479 if (pm_suspended_storage())
4480 goto out;
4481 /*
4482 * XXX: GFP_NOFS allocations should rather fail than rely on
4483 * other request to make a forward progress.
4484 * We are in an unfortunate situation where out_of_memory cannot
4485 * do much for this context but let's try it to at least get
4486 * access to memory reserved if the current task is killed (see
4487 * out_of_memory). Once filesystems are ready to handle allocation
4488 * failures more gracefully we should just bail out here.
4489 */
4490
4491 /* Exhausted what can be done so it's blame time */
4492 if (out_of_memory(&oc) ||
4493 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4494 *did_some_progress = 1;
4495
4496 /*
4497 * Help non-failing allocations by giving them access to memory
4498 * reserves
4499 */
4500 if (gfp_mask & __GFP_NOFAIL)
4501 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4502 ALLOC_NO_WATERMARKS, ac);
4503 }
4504out:
4505 mutex_unlock(&oom_lock);
4506 return page;
4507}
4508
4509/*
4510 * Maximum number of compaction retries with a progress before OOM
4511 * killer is consider as the only way to move forward.
4512 */
4513#define MAX_COMPACT_RETRIES 16
4514
4515#ifdef CONFIG_COMPACTION
4516/* Try memory compaction for high-order allocations before reclaim */
4517static struct page *
4518__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4519 unsigned int alloc_flags, const struct alloc_context *ac,
4520 enum compact_priority prio, enum compact_result *compact_result)
4521{
4522 struct page *page = NULL;
4523 unsigned long pflags;
4524 unsigned int noreclaim_flag;
4525
4526 if (!order)
4527 return NULL;
4528
4529 psi_memstall_enter(&pflags);
4530 delayacct_compact_start();
4531 noreclaim_flag = memalloc_noreclaim_save();
4532
4533 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4534 prio, &page);
4535
4536 memalloc_noreclaim_restore(noreclaim_flag);
4537 psi_memstall_leave(&pflags);
4538 delayacct_compact_end();
4539
4540 if (*compact_result == COMPACT_SKIPPED)
4541 return NULL;
4542 /*
4543 * At least in one zone compaction wasn't deferred or skipped, so let's
4544 * count a compaction stall
4545 */
4546 count_vm_event(COMPACTSTALL);
4547
4548 /* Prep a captured page if available */
4549 if (page)
4550 prep_new_page(page, order, gfp_mask, alloc_flags);
4551
4552 /* Try get a page from the freelist if available */
4553 if (!page)
4554 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4555
4556 if (page) {
4557 struct zone *zone = page_zone(page);
4558
4559 zone->compact_blockskip_flush = false;
4560 compaction_defer_reset(zone, order, true);
4561 count_vm_event(COMPACTSUCCESS);
4562 return page;
4563 }
4564
4565 /*
4566 * It's bad if compaction run occurs and fails. The most likely reason
4567 * is that pages exist, but not enough to satisfy watermarks.
4568 */
4569 count_vm_event(COMPACTFAIL);
4570
4571 cond_resched();
4572
4573 return NULL;
4574}
4575
4576static inline bool
4577should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4578 enum compact_result compact_result,
4579 enum compact_priority *compact_priority,
4580 int *compaction_retries)
4581{
4582 int max_retries = MAX_COMPACT_RETRIES;
4583 int min_priority;
4584 bool ret = false;
4585 int retries = *compaction_retries;
4586 enum compact_priority priority = *compact_priority;
4587
4588 if (!order)
4589 return false;
4590
4591 if (fatal_signal_pending(current))
4592 return false;
4593
4594 if (compaction_made_progress(compact_result))
4595 (*compaction_retries)++;
4596
4597 /*
4598 * compaction considers all the zone as desperately out of memory
4599 * so it doesn't really make much sense to retry except when the
4600 * failure could be caused by insufficient priority
4601 */
4602 if (compaction_failed(compact_result))
4603 goto check_priority;
4604
4605 /*
4606 * compaction was skipped because there are not enough order-0 pages
4607 * to work with, so we retry only if it looks like reclaim can help.
4608 */
4609 if (compaction_needs_reclaim(compact_result)) {
4610 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4611 goto out;
4612 }
4613
4614 /*
4615 * make sure the compaction wasn't deferred or didn't bail out early
4616 * due to locks contention before we declare that we should give up.
4617 * But the next retry should use a higher priority if allowed, so
4618 * we don't just keep bailing out endlessly.
4619 */
4620 if (compaction_withdrawn(compact_result)) {
4621 goto check_priority;
4622 }
4623
4624 /*
4625 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4626 * costly ones because they are de facto nofail and invoke OOM
4627 * killer to move on while costly can fail and users are ready
4628 * to cope with that. 1/4 retries is rather arbitrary but we
4629 * would need much more detailed feedback from compaction to
4630 * make a better decision.
4631 */
4632 if (order > PAGE_ALLOC_COSTLY_ORDER)
4633 max_retries /= 4;
4634 if (*compaction_retries <= max_retries) {
4635 ret = true;
4636 goto out;
4637 }
4638
4639 /*
4640 * Make sure there are attempts at the highest priority if we exhausted
4641 * all retries or failed at the lower priorities.
4642 */
4643check_priority:
4644 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4645 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4646
4647 if (*compact_priority > min_priority) {
4648 (*compact_priority)--;
4649 *compaction_retries = 0;
4650 ret = true;
4651 }
4652out:
4653 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4654 return ret;
4655}
4656#else
4657static inline struct page *
4658__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4659 unsigned int alloc_flags, const struct alloc_context *ac,
4660 enum compact_priority prio, enum compact_result *compact_result)
4661{
4662 *compact_result = COMPACT_SKIPPED;
4663 return NULL;
4664}
4665
4666static inline bool
4667should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4668 enum compact_result compact_result,
4669 enum compact_priority *compact_priority,
4670 int *compaction_retries)
4671{
4672 struct zone *zone;
4673 struct zoneref *z;
4674
4675 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4676 return false;
4677
4678 /*
4679 * There are setups with compaction disabled which would prefer to loop
4680 * inside the allocator rather than hit the oom killer prematurely.
4681 * Let's give them a good hope and keep retrying while the order-0
4682 * watermarks are OK.
4683 */
4684 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4685 ac->highest_zoneidx, ac->nodemask) {
4686 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4687 ac->highest_zoneidx, alloc_flags))
4688 return true;
4689 }
4690 return false;
4691}
4692#endif /* CONFIG_COMPACTION */
4693
4694#ifdef CONFIG_LOCKDEP
4695static struct lockdep_map __fs_reclaim_map =
4696 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4697
4698static bool __need_reclaim(gfp_t gfp_mask)
4699{
4700 /* no reclaim without waiting on it */
4701 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4702 return false;
4703
4704 /* this guy won't enter reclaim */
4705 if (current->flags & PF_MEMALLOC)
4706 return false;
4707
4708 if (gfp_mask & __GFP_NOLOCKDEP)
4709 return false;
4710
4711 return true;
4712}
4713
4714void __fs_reclaim_acquire(unsigned long ip)
4715{
4716 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4717}
4718
4719void __fs_reclaim_release(unsigned long ip)
4720{
4721 lock_release(&__fs_reclaim_map, ip);
4722}
4723
4724void fs_reclaim_acquire(gfp_t gfp_mask)
4725{
4726 gfp_mask = current_gfp_context(gfp_mask);
4727
4728 if (__need_reclaim(gfp_mask)) {
4729 if (gfp_mask & __GFP_FS)
4730 __fs_reclaim_acquire(_RET_IP_);
4731
4732#ifdef CONFIG_MMU_NOTIFIER
4733 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4734 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4735#endif
4736
4737 }
4738}
4739EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4740
4741void fs_reclaim_release(gfp_t gfp_mask)
4742{
4743 gfp_mask = current_gfp_context(gfp_mask);
4744
4745 if (__need_reclaim(gfp_mask)) {
4746 if (gfp_mask & __GFP_FS)
4747 __fs_reclaim_release(_RET_IP_);
4748 }
4749}
4750EXPORT_SYMBOL_GPL(fs_reclaim_release);
4751#endif
4752
4753/*
4754 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4755 * have been rebuilt so allocation retries. Reader side does not lock and
4756 * retries the allocation if zonelist changes. Writer side is protected by the
4757 * embedded spin_lock.
4758 */
4759static DEFINE_SEQLOCK(zonelist_update_seq);
4760
4761static unsigned int zonelist_iter_begin(void)
4762{
4763 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4764 return read_seqbegin(&zonelist_update_seq);
4765
4766 return 0;
4767}
4768
4769static unsigned int check_retry_zonelist(unsigned int seq)
4770{
4771 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4772 return read_seqretry(&zonelist_update_seq, seq);
4773
4774 return seq;
4775}
4776
4777/* Perform direct synchronous page reclaim */
4778static unsigned long
4779__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4780 const struct alloc_context *ac)
4781{
4782 unsigned int noreclaim_flag;
4783 unsigned long progress;
4784
4785 cond_resched();
4786
4787 /* We now go into synchronous reclaim */
4788 cpuset_memory_pressure_bump();
4789 fs_reclaim_acquire(gfp_mask);
4790 noreclaim_flag = memalloc_noreclaim_save();
4791
4792 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4793 ac->nodemask);
4794
4795 memalloc_noreclaim_restore(noreclaim_flag);
4796 fs_reclaim_release(gfp_mask);
4797
4798 cond_resched();
4799
4800 return progress;
4801}
4802
4803/* The really slow allocator path where we enter direct reclaim */
4804static inline struct page *
4805__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4806 unsigned int alloc_flags, const struct alloc_context *ac,
4807 unsigned long *did_some_progress)
4808{
4809 struct page *page = NULL;
4810 unsigned long pflags;
4811 bool drained = false;
4812
4813 psi_memstall_enter(&pflags);
4814 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4815 if (unlikely(!(*did_some_progress)))
4816 goto out;
4817
4818retry:
4819 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4820
4821 /*
4822 * If an allocation failed after direct reclaim, it could be because
4823 * pages are pinned on the per-cpu lists or in high alloc reserves.
4824 * Shrink them and try again
4825 */
4826 if (!page && !drained) {
4827 unreserve_highatomic_pageblock(ac, false);
4828 drain_all_pages(NULL);
4829 drained = true;
4830 goto retry;
4831 }
4832out:
4833 psi_memstall_leave(&pflags);
4834
4835 return page;
4836}
4837
4838static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4839 const struct alloc_context *ac)
4840{
4841 struct zoneref *z;
4842 struct zone *zone;
4843 pg_data_t *last_pgdat = NULL;
4844 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4845
4846 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4847 ac->nodemask) {
4848 if (!managed_zone(zone))
4849 continue;
4850 if (last_pgdat != zone->zone_pgdat) {
4851 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4852 last_pgdat = zone->zone_pgdat;
4853 }
4854 }
4855}
4856
4857static inline unsigned int
4858gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4859{
4860 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4861
4862 /*
4863 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4864 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4865 * to save two branches.
4866 */
4867 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4868 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4869
4870 /*
4871 * The caller may dip into page reserves a bit more if the caller
4872 * cannot run direct reclaim, or if the caller has realtime scheduling
4873 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4874 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4875 */
4876 alloc_flags |= (__force int)
4877 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4878
4879 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4880 /*
4881 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4882 * if it can't schedule.
4883 */
4884 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4885 alloc_flags |= ALLOC_NON_BLOCK;
4886
4887 if (order > 0)
4888 alloc_flags |= ALLOC_HIGHATOMIC;
4889 }
4890
4891 /*
4892 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4893 * GFP_ATOMIC) rather than fail, see the comment for
4894 * __cpuset_node_allowed().
4895 */
4896 if (alloc_flags & ALLOC_MIN_RESERVE)
4897 alloc_flags &= ~ALLOC_CPUSET;
4898 } else if (unlikely(rt_task(current)) && in_task())
4899 alloc_flags |= ALLOC_MIN_RESERVE;
4900
4901 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4902
4903 return alloc_flags;
4904}
4905
4906static bool oom_reserves_allowed(struct task_struct *tsk)
4907{
4908 if (!tsk_is_oom_victim(tsk))
4909 return false;
4910
4911 /*
4912 * !MMU doesn't have oom reaper so give access to memory reserves
4913 * only to the thread with TIF_MEMDIE set
4914 */
4915 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4916 return false;
4917
4918 return true;
4919}
4920
4921/*
4922 * Distinguish requests which really need access to full memory
4923 * reserves from oom victims which can live with a portion of it
4924 */
4925static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4926{
4927 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4928 return 0;
4929 if (gfp_mask & __GFP_MEMALLOC)
4930 return ALLOC_NO_WATERMARKS;
4931 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4932 return ALLOC_NO_WATERMARKS;
4933 if (!in_interrupt()) {
4934 if (current->flags & PF_MEMALLOC)
4935 return ALLOC_NO_WATERMARKS;
4936 else if (oom_reserves_allowed(current))
4937 return ALLOC_OOM;
4938 }
4939
4940 return 0;
4941}
4942
4943bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4944{
4945 return !!__gfp_pfmemalloc_flags(gfp_mask);
4946}
4947
4948/*
4949 * Checks whether it makes sense to retry the reclaim to make a forward progress
4950 * for the given allocation request.
4951 *
4952 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4953 * without success, or when we couldn't even meet the watermark if we
4954 * reclaimed all remaining pages on the LRU lists.
4955 *
4956 * Returns true if a retry is viable or false to enter the oom path.
4957 */
4958static inline bool
4959should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4960 struct alloc_context *ac, int alloc_flags,
4961 bool did_some_progress, int *no_progress_loops)
4962{
4963 struct zone *zone;
4964 struct zoneref *z;
4965 bool ret = false;
4966
4967 /*
4968 * Costly allocations might have made a progress but this doesn't mean
4969 * their order will become available due to high fragmentation so
4970 * always increment the no progress counter for them
4971 */
4972 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4973 *no_progress_loops = 0;
4974 else
4975 (*no_progress_loops)++;
4976
4977 /*
4978 * Make sure we converge to OOM if we cannot make any progress
4979 * several times in the row.
4980 */
4981 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4982 /* Before OOM, exhaust highatomic_reserve */
4983 return unreserve_highatomic_pageblock(ac, true);
4984 }
4985
4986 /*
4987 * Keep reclaiming pages while there is a chance this will lead
4988 * somewhere. If none of the target zones can satisfy our allocation
4989 * request even if all reclaimable pages are considered then we are
4990 * screwed and have to go OOM.
4991 */
4992 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4993 ac->highest_zoneidx, ac->nodemask) {
4994 unsigned long available;
4995 unsigned long reclaimable;
4996 unsigned long min_wmark = min_wmark_pages(zone);
4997 bool wmark;
4998
4999 available = reclaimable = zone_reclaimable_pages(zone);
5000 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
5001
5002 /*
5003 * Would the allocation succeed if we reclaimed all
5004 * reclaimable pages?
5005 */
5006 wmark = __zone_watermark_ok(zone, order, min_wmark,
5007 ac->highest_zoneidx, alloc_flags, available);
5008 trace_reclaim_retry_zone(z, order, reclaimable,
5009 available, min_wmark, *no_progress_loops, wmark);
5010 if (wmark) {
5011 ret = true;
5012 break;
5013 }
5014 }
5015
5016 /*
5017 * Memory allocation/reclaim might be called from a WQ context and the
5018 * current implementation of the WQ concurrency control doesn't
5019 * recognize that a particular WQ is congested if the worker thread is
5020 * looping without ever sleeping. Therefore we have to do a short sleep
5021 * here rather than calling cond_resched().
5022 */
5023 if (current->flags & PF_WQ_WORKER)
5024 schedule_timeout_uninterruptible(1);
5025 else
5026 cond_resched();
5027 return ret;
5028}
5029
5030static inline bool
5031check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
5032{
5033 /*
5034 * It's possible that cpuset's mems_allowed and the nodemask from
5035 * mempolicy don't intersect. This should be normally dealt with by
5036 * policy_nodemask(), but it's possible to race with cpuset update in
5037 * such a way the check therein was true, and then it became false
5038 * before we got our cpuset_mems_cookie here.
5039 * This assumes that for all allocations, ac->nodemask can come only
5040 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
5041 * when it does not intersect with the cpuset restrictions) or the
5042 * caller can deal with a violated nodemask.
5043 */
5044 if (cpusets_enabled() && ac->nodemask &&
5045 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5046 ac->nodemask = NULL;
5047 return true;
5048 }
5049
5050 /*
5051 * When updating a task's mems_allowed or mempolicy nodemask, it is
5052 * possible to race with parallel threads in such a way that our
5053 * allocation can fail while the mask is being updated. If we are about
5054 * to fail, check if the cpuset changed during allocation and if so,
5055 * retry.
5056 */
5057 if (read_mems_allowed_retry(cpuset_mems_cookie))
5058 return true;
5059
5060 return false;
5061}
5062
5063static inline struct page *
5064__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5065 struct alloc_context *ac)
5066{
5067 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5068 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5069 struct page *page = NULL;
5070 unsigned int alloc_flags;
5071 unsigned long did_some_progress;
5072 enum compact_priority compact_priority;
5073 enum compact_result compact_result;
5074 int compaction_retries;
5075 int no_progress_loops;
5076 unsigned int cpuset_mems_cookie;
5077 unsigned int zonelist_iter_cookie;
5078 int reserve_flags;
5079
5080restart:
5081 compaction_retries = 0;
5082 no_progress_loops = 0;
5083 compact_priority = DEF_COMPACT_PRIORITY;
5084 cpuset_mems_cookie = read_mems_allowed_begin();
5085 zonelist_iter_cookie = zonelist_iter_begin();
5086
5087 /*
5088 * The fast path uses conservative alloc_flags to succeed only until
5089 * kswapd needs to be woken up, and to avoid the cost of setting up
5090 * alloc_flags precisely. So we do that now.
5091 */
5092 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
5093
5094 /*
5095 * We need to recalculate the starting point for the zonelist iterator
5096 * because we might have used different nodemask in the fast path, or
5097 * there was a cpuset modification and we are retrying - otherwise we
5098 * could end up iterating over non-eligible zones endlessly.
5099 */
5100 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5101 ac->highest_zoneidx, ac->nodemask);
5102 if (!ac->preferred_zoneref->zone)
5103 goto nopage;
5104
5105 /*
5106 * Check for insane configurations where the cpuset doesn't contain
5107 * any suitable zone to satisfy the request - e.g. non-movable
5108 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5109 */
5110 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5111 struct zoneref *z = first_zones_zonelist(ac->zonelist,
5112 ac->highest_zoneidx,
5113 &cpuset_current_mems_allowed);
5114 if (!z->zone)
5115 goto nopage;
5116 }
5117
5118 if (alloc_flags & ALLOC_KSWAPD)
5119 wake_all_kswapds(order, gfp_mask, ac);
5120
5121 /*
5122 * The adjusted alloc_flags might result in immediate success, so try
5123 * that first
5124 */
5125 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5126 if (page)
5127 goto got_pg;
5128
5129 /*
5130 * For costly allocations, try direct compaction first, as it's likely
5131 * that we have enough base pages and don't need to reclaim. For non-
5132 * movable high-order allocations, do that as well, as compaction will
5133 * try prevent permanent fragmentation by migrating from blocks of the
5134 * same migratetype.
5135 * Don't try this for allocations that are allowed to ignore
5136 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5137 */
5138 if (can_direct_reclaim &&
5139 (costly_order ||
5140 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5141 && !gfp_pfmemalloc_allowed(gfp_mask)) {
5142 page = __alloc_pages_direct_compact(gfp_mask, order,
5143 alloc_flags, ac,
5144 INIT_COMPACT_PRIORITY,
5145 &compact_result);
5146 if (page)
5147 goto got_pg;
5148
5149 /*
5150 * Checks for costly allocations with __GFP_NORETRY, which
5151 * includes some THP page fault allocations
5152 */
5153 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5154 /*
5155 * If allocating entire pageblock(s) and compaction
5156 * failed because all zones are below low watermarks
5157 * or is prohibited because it recently failed at this
5158 * order, fail immediately unless the allocator has
5159 * requested compaction and reclaim retry.
5160 *
5161 * Reclaim is
5162 * - potentially very expensive because zones are far
5163 * below their low watermarks or this is part of very
5164 * bursty high order allocations,
5165 * - not guaranteed to help because isolate_freepages()
5166 * may not iterate over freed pages as part of its
5167 * linear scan, and
5168 * - unlikely to make entire pageblocks free on its
5169 * own.
5170 */
5171 if (compact_result == COMPACT_SKIPPED ||
5172 compact_result == COMPACT_DEFERRED)
5173 goto nopage;
5174
5175 /*
5176 * Looks like reclaim/compaction is worth trying, but
5177 * sync compaction could be very expensive, so keep
5178 * using async compaction.
5179 */
5180 compact_priority = INIT_COMPACT_PRIORITY;
5181 }
5182 }
5183
5184retry:
5185 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5186 if (alloc_flags & ALLOC_KSWAPD)
5187 wake_all_kswapds(order, gfp_mask, ac);
5188
5189 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5190 if (reserve_flags)
5191 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5192 (alloc_flags & ALLOC_KSWAPD);
5193
5194 /*
5195 * Reset the nodemask and zonelist iterators if memory policies can be
5196 * ignored. These allocations are high priority and system rather than
5197 * user oriented.
5198 */
5199 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5200 ac->nodemask = NULL;
5201 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5202 ac->highest_zoneidx, ac->nodemask);
5203 }
5204
5205 /* Attempt with potentially adjusted zonelist and alloc_flags */
5206 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5207 if (page)
5208 goto got_pg;
5209
5210 /* Caller is not willing to reclaim, we can't balance anything */
5211 if (!can_direct_reclaim)
5212 goto nopage;
5213
5214 /* Avoid recursion of direct reclaim */
5215 if (current->flags & PF_MEMALLOC)
5216 goto nopage;
5217
5218 /* Try direct reclaim and then allocating */
5219 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5220 &did_some_progress);
5221 if (page)
5222 goto got_pg;
5223
5224 /* Try direct compaction and then allocating */
5225 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5226 compact_priority, &compact_result);
5227 if (page)
5228 goto got_pg;
5229
5230 /* Do not loop if specifically requested */
5231 if (gfp_mask & __GFP_NORETRY)
5232 goto nopage;
5233
5234 /*
5235 * Do not retry costly high order allocations unless they are
5236 * __GFP_RETRY_MAYFAIL
5237 */
5238 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5239 goto nopage;
5240
5241 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5242 did_some_progress > 0, &no_progress_loops))
5243 goto retry;
5244
5245 /*
5246 * It doesn't make any sense to retry for the compaction if the order-0
5247 * reclaim is not able to make any progress because the current
5248 * implementation of the compaction depends on the sufficient amount
5249 * of free memory (see __compaction_suitable)
5250 */
5251 if (did_some_progress > 0 &&
5252 should_compact_retry(ac, order, alloc_flags,
5253 compact_result, &compact_priority,
5254 &compaction_retries))
5255 goto retry;
5256
5257
5258 /*
5259 * Deal with possible cpuset update races or zonelist updates to avoid
5260 * a unnecessary OOM kill.
5261 */
5262 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5263 check_retry_zonelist(zonelist_iter_cookie))
5264 goto restart;
5265
5266 /* Reclaim has failed us, start killing things */
5267 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5268 if (page)
5269 goto got_pg;
5270
5271 /* Avoid allocations with no watermarks from looping endlessly */
5272 if (tsk_is_oom_victim(current) &&
5273 (alloc_flags & ALLOC_OOM ||
5274 (gfp_mask & __GFP_NOMEMALLOC)))
5275 goto nopage;
5276
5277 /* Retry as long as the OOM killer is making progress */
5278 if (did_some_progress) {
5279 no_progress_loops = 0;
5280 goto retry;
5281 }
5282
5283nopage:
5284 /*
5285 * Deal with possible cpuset update races or zonelist updates to avoid
5286 * a unnecessary OOM kill.
5287 */
5288 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5289 check_retry_zonelist(zonelist_iter_cookie))
5290 goto restart;
5291
5292 /*
5293 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5294 * we always retry
5295 */
5296 if (gfp_mask & __GFP_NOFAIL) {
5297 /*
5298 * All existing users of the __GFP_NOFAIL are blockable, so warn
5299 * of any new users that actually require GFP_NOWAIT
5300 */
5301 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5302 goto fail;
5303
5304 /*
5305 * PF_MEMALLOC request from this context is rather bizarre
5306 * because we cannot reclaim anything and only can loop waiting
5307 * for somebody to do a work for us
5308 */
5309 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5310
5311 /*
5312 * non failing costly orders are a hard requirement which we
5313 * are not prepared for much so let's warn about these users
5314 * so that we can identify them and convert them to something
5315 * else.
5316 */
5317 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5318
5319 /*
5320 * Help non-failing allocations by giving some access to memory
5321 * reserves normally used for high priority non-blocking
5322 * allocations but do not use ALLOC_NO_WATERMARKS because this
5323 * could deplete whole memory reserves which would just make
5324 * the situation worse.
5325 */
5326 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
5327 if (page)
5328 goto got_pg;
5329
5330 cond_resched();
5331 goto retry;
5332 }
5333fail:
5334 warn_alloc(gfp_mask, ac->nodemask,
5335 "page allocation failure: order:%u", order);
5336got_pg:
5337 return page;
5338}
5339
5340static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5341 int preferred_nid, nodemask_t *nodemask,
5342 struct alloc_context *ac, gfp_t *alloc_gfp,
5343 unsigned int *alloc_flags)
5344{
5345 ac->highest_zoneidx = gfp_zone(gfp_mask);
5346 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5347 ac->nodemask = nodemask;
5348 ac->migratetype = gfp_migratetype(gfp_mask);
5349
5350 if (cpusets_enabled()) {
5351 *alloc_gfp |= __GFP_HARDWALL;
5352 /*
5353 * When we are in the interrupt context, it is irrelevant
5354 * to the current task context. It means that any node ok.
5355 */
5356 if (in_task() && !ac->nodemask)
5357 ac->nodemask = &cpuset_current_mems_allowed;
5358 else
5359 *alloc_flags |= ALLOC_CPUSET;
5360 }
5361
5362 might_alloc(gfp_mask);
5363
5364 if (should_fail_alloc_page(gfp_mask, order))
5365 return false;
5366
5367 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5368
5369 /* Dirty zone balancing only done in the fast path */
5370 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5371
5372 /*
5373 * The preferred zone is used for statistics but crucially it is
5374 * also used as the starting point for the zonelist iterator. It
5375 * may get reset for allocations that ignore memory policies.
5376 */
5377 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5378 ac->highest_zoneidx, ac->nodemask);
5379
5380 return true;
5381}
5382
5383/*
5384 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5385 * @gfp: GFP flags for the allocation
5386 * @preferred_nid: The preferred NUMA node ID to allocate from
5387 * @nodemask: Set of nodes to allocate from, may be NULL
5388 * @nr_pages: The number of pages desired on the list or array
5389 * @page_list: Optional list to store the allocated pages
5390 * @page_array: Optional array to store the pages
5391 *
5392 * This is a batched version of the page allocator that attempts to
5393 * allocate nr_pages quickly. Pages are added to page_list if page_list
5394 * is not NULL, otherwise it is assumed that the page_array is valid.
5395 *
5396 * For lists, nr_pages is the number of pages that should be allocated.
5397 *
5398 * For arrays, only NULL elements are populated with pages and nr_pages
5399 * is the maximum number of pages that will be stored in the array.
5400 *
5401 * Returns the number of pages on the list or array.
5402 */
5403unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5404 nodemask_t *nodemask, int nr_pages,
5405 struct list_head *page_list,
5406 struct page **page_array)
5407{
5408 struct page *page;
5409 unsigned long __maybe_unused UP_flags;
5410 struct zone *zone;
5411 struct zoneref *z;
5412 struct per_cpu_pages *pcp;
5413 struct list_head *pcp_list;
5414 struct alloc_context ac;
5415 gfp_t alloc_gfp;
5416 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5417 int nr_populated = 0, nr_account = 0;
5418
5419 /*
5420 * Skip populated array elements to determine if any pages need
5421 * to be allocated before disabling IRQs.
5422 */
5423 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5424 nr_populated++;
5425
5426 /* No pages requested? */
5427 if (unlikely(nr_pages <= 0))
5428 goto out;
5429
5430 /* Already populated array? */
5431 if (unlikely(page_array && nr_pages - nr_populated == 0))
5432 goto out;
5433
5434 /* Bulk allocator does not support memcg accounting. */
5435 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
5436 goto failed;
5437
5438 /* Use the single page allocator for one page. */
5439 if (nr_pages - nr_populated == 1)
5440 goto failed;
5441
5442#ifdef CONFIG_PAGE_OWNER
5443 /*
5444 * PAGE_OWNER may recurse into the allocator to allocate space to
5445 * save the stack with pagesets.lock held. Releasing/reacquiring
5446 * removes much of the performance benefit of bulk allocation so
5447 * force the caller to allocate one page at a time as it'll have
5448 * similar performance to added complexity to the bulk allocator.
5449 */
5450 if (static_branch_unlikely(&page_owner_inited))
5451 goto failed;
5452#endif
5453
5454 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5455 gfp &= gfp_allowed_mask;
5456 alloc_gfp = gfp;
5457 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5458 goto out;
5459 gfp = alloc_gfp;
5460
5461 /* Find an allowed local zone that meets the low watermark. */
5462 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5463 unsigned long mark;
5464
5465 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5466 !__cpuset_zone_allowed(zone, gfp)) {
5467 continue;
5468 }
5469
5470 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5471 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5472 goto failed;
5473 }
5474
5475 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5476 if (zone_watermark_fast(zone, 0, mark,
5477 zonelist_zone_idx(ac.preferred_zoneref),
5478 alloc_flags, gfp)) {
5479 break;
5480 }
5481 }
5482
5483 /*
5484 * If there are no allowed local zones that meets the watermarks then
5485 * try to allocate a single page and reclaim if necessary.
5486 */
5487 if (unlikely(!zone))
5488 goto failed;
5489
5490 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5491 pcp_trylock_prepare(UP_flags);
5492 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5493 if (!pcp)
5494 goto failed_irq;
5495
5496 /* Attempt the batch allocation */
5497 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5498 while (nr_populated < nr_pages) {
5499
5500 /* Skip existing pages */
5501 if (page_array && page_array[nr_populated]) {
5502 nr_populated++;
5503 continue;
5504 }
5505
5506 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5507 pcp, pcp_list);
5508 if (unlikely(!page)) {
5509 /* Try and allocate at least one page */
5510 if (!nr_account) {
5511 pcp_spin_unlock(pcp);
5512 goto failed_irq;
5513 }
5514 break;
5515 }
5516 nr_account++;
5517
5518 prep_new_page(page, 0, gfp, 0);
5519 if (page_list)
5520 list_add(&page->lru, page_list);
5521 else
5522 page_array[nr_populated] = page;
5523 nr_populated++;
5524 }
5525
5526 pcp_spin_unlock(pcp);
5527 pcp_trylock_finish(UP_flags);
5528
5529 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5530 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5531
5532out:
5533 return nr_populated;
5534
5535failed_irq:
5536 pcp_trylock_finish(UP_flags);
5537
5538failed:
5539 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5540 if (page) {
5541 if (page_list)
5542 list_add(&page->lru, page_list);
5543 else
5544 page_array[nr_populated] = page;
5545 nr_populated++;
5546 }
5547
5548 goto out;
5549}
5550EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5551
5552/*
5553 * This is the 'heart' of the zoned buddy allocator.
5554 */
5555struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5556 nodemask_t *nodemask)
5557{
5558 struct page *page;
5559 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5560 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5561 struct alloc_context ac = { };
5562
5563 /*
5564 * There are several places where we assume that the order value is sane
5565 * so bail out early if the request is out of bound.
5566 */
5567 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5568 return NULL;
5569
5570 gfp &= gfp_allowed_mask;
5571 /*
5572 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5573 * resp. GFP_NOIO which has to be inherited for all allocation requests
5574 * from a particular context which has been marked by
5575 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5576 * movable zones are not used during allocation.
5577 */
5578 gfp = current_gfp_context(gfp);
5579 alloc_gfp = gfp;
5580 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5581 &alloc_gfp, &alloc_flags))
5582 return NULL;
5583
5584 /*
5585 * Forbid the first pass from falling back to types that fragment
5586 * memory until all local zones are considered.
5587 */
5588 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5589
5590 /* First allocation attempt */
5591 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5592 if (likely(page))
5593 goto out;
5594
5595 alloc_gfp = gfp;
5596 ac.spread_dirty_pages = false;
5597
5598 /*
5599 * Restore the original nodemask if it was potentially replaced with
5600 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5601 */
5602 ac.nodemask = nodemask;
5603
5604 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5605
5606out:
5607 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
5608 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5609 __free_pages(page, order);
5610 page = NULL;
5611 }
5612
5613 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5614 kmsan_alloc_page(page, order, alloc_gfp);
5615
5616 return page;
5617}
5618EXPORT_SYMBOL(__alloc_pages);
5619
5620struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5621 nodemask_t *nodemask)
5622{
5623 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5624 preferred_nid, nodemask);
5625
5626 if (page && order > 1)
5627 prep_transhuge_page(page);
5628 return (struct folio *)page;
5629}
5630EXPORT_SYMBOL(__folio_alloc);
5631
5632/*
5633 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5634 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5635 * you need to access high mem.
5636 */
5637unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5638{
5639 struct page *page;
5640
5641 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5642 if (!page)
5643 return 0;
5644 return (unsigned long) page_address(page);
5645}
5646EXPORT_SYMBOL(__get_free_pages);
5647
5648unsigned long get_zeroed_page(gfp_t gfp_mask)
5649{
5650 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5651}
5652EXPORT_SYMBOL(get_zeroed_page);
5653
5654/**
5655 * __free_pages - Free pages allocated with alloc_pages().
5656 * @page: The page pointer returned from alloc_pages().
5657 * @order: The order of the allocation.
5658 *
5659 * This function can free multi-page allocations that are not compound
5660 * pages. It does not check that the @order passed in matches that of
5661 * the allocation, so it is easy to leak memory. Freeing more memory
5662 * than was allocated will probably emit a warning.
5663 *
5664 * If the last reference to this page is speculative, it will be released
5665 * by put_page() which only frees the first page of a non-compound
5666 * allocation. To prevent the remaining pages from being leaked, we free
5667 * the subsequent pages here. If you want to use the page's reference
5668 * count to decide when to free the allocation, you should allocate a
5669 * compound page, and use put_page() instead of __free_pages().
5670 *
5671 * Context: May be called in interrupt context or while holding a normal
5672 * spinlock, but not in NMI context or while holding a raw spinlock.
5673 */
5674void __free_pages(struct page *page, unsigned int order)
5675{
5676 /* get PageHead before we drop reference */
5677 int head = PageHead(page);
5678
5679 if (put_page_testzero(page))
5680 free_the_page(page, order);
5681 else if (!head)
5682 while (order-- > 0)
5683 free_the_page(page + (1 << order), order);
5684}
5685EXPORT_SYMBOL(__free_pages);
5686
5687void free_pages(unsigned long addr, unsigned int order)
5688{
5689 if (addr != 0) {
5690 VM_BUG_ON(!virt_addr_valid((void *)addr));
5691 __free_pages(virt_to_page((void *)addr), order);
5692 }
5693}
5694
5695EXPORT_SYMBOL(free_pages);
5696
5697/*
5698 * Page Fragment:
5699 * An arbitrary-length arbitrary-offset area of memory which resides
5700 * within a 0 or higher order page. Multiple fragments within that page
5701 * are individually refcounted, in the page's reference counter.
5702 *
5703 * The page_frag functions below provide a simple allocation framework for
5704 * page fragments. This is used by the network stack and network device
5705 * drivers to provide a backing region of memory for use as either an
5706 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5707 */
5708static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5709 gfp_t gfp_mask)
5710{
5711 struct page *page = NULL;
5712 gfp_t gfp = gfp_mask;
5713
5714#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5715 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5716 __GFP_NOMEMALLOC;
5717 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5718 PAGE_FRAG_CACHE_MAX_ORDER);
5719 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5720#endif
5721 if (unlikely(!page))
5722 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5723
5724 nc->va = page ? page_address(page) : NULL;
5725
5726 return page;
5727}
5728
5729void __page_frag_cache_drain(struct page *page, unsigned int count)
5730{
5731 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5732
5733 if (page_ref_sub_and_test(page, count))
5734 free_the_page(page, compound_order(page));
5735}
5736EXPORT_SYMBOL(__page_frag_cache_drain);
5737
5738void *page_frag_alloc_align(struct page_frag_cache *nc,
5739 unsigned int fragsz, gfp_t gfp_mask,
5740 unsigned int align_mask)
5741{
5742 unsigned int size = PAGE_SIZE;
5743 struct page *page;
5744 int offset;
5745
5746 if (unlikely(!nc->va)) {
5747refill:
5748 page = __page_frag_cache_refill(nc, gfp_mask);
5749 if (!page)
5750 return NULL;
5751
5752#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5753 /* if size can vary use size else just use PAGE_SIZE */
5754 size = nc->size;
5755#endif
5756 /* Even if we own the page, we do not use atomic_set().
5757 * This would break get_page_unless_zero() users.
5758 */
5759 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5760
5761 /* reset page count bias and offset to start of new frag */
5762 nc->pfmemalloc = page_is_pfmemalloc(page);
5763 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5764 nc->offset = size;
5765 }
5766
5767 offset = nc->offset - fragsz;
5768 if (unlikely(offset < 0)) {
5769 page = virt_to_page(nc->va);
5770
5771 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5772 goto refill;
5773
5774 if (unlikely(nc->pfmemalloc)) {
5775 free_the_page(page, compound_order(page));
5776 goto refill;
5777 }
5778
5779#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5780 /* if size can vary use size else just use PAGE_SIZE */
5781 size = nc->size;
5782#endif
5783 /* OK, page count is 0, we can safely set it */
5784 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5785
5786 /* reset page count bias and offset to start of new frag */
5787 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5788 offset = size - fragsz;
5789 if (unlikely(offset < 0)) {
5790 /*
5791 * The caller is trying to allocate a fragment
5792 * with fragsz > PAGE_SIZE but the cache isn't big
5793 * enough to satisfy the request, this may
5794 * happen in low memory conditions.
5795 * We don't release the cache page because
5796 * it could make memory pressure worse
5797 * so we simply return NULL here.
5798 */
5799 return NULL;
5800 }
5801 }
5802
5803 nc->pagecnt_bias--;
5804 offset &= align_mask;
5805 nc->offset = offset;
5806
5807 return nc->va + offset;
5808}
5809EXPORT_SYMBOL(page_frag_alloc_align);
5810
5811/*
5812 * Frees a page fragment allocated out of either a compound or order 0 page.
5813 */
5814void page_frag_free(void *addr)
5815{
5816 struct page *page = virt_to_head_page(addr);
5817
5818 if (unlikely(put_page_testzero(page)))
5819 free_the_page(page, compound_order(page));
5820}
5821EXPORT_SYMBOL(page_frag_free);
5822
5823static void *make_alloc_exact(unsigned long addr, unsigned int order,
5824 size_t size)
5825{
5826 if (addr) {
5827 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5828 struct page *page = virt_to_page((void *)addr);
5829 struct page *last = page + nr;
5830
5831 split_page_owner(page, 1 << order);
5832 split_page_memcg(page, 1 << order);
5833 while (page < --last)
5834 set_page_refcounted(last);
5835
5836 last = page + (1UL << order);
5837 for (page += nr; page < last; page++)
5838 __free_pages_ok(page, 0, FPI_TO_TAIL);
5839 }
5840 return (void *)addr;
5841}
5842
5843/**
5844 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5845 * @size: the number of bytes to allocate
5846 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5847 *
5848 * This function is similar to alloc_pages(), except that it allocates the
5849 * minimum number of pages to satisfy the request. alloc_pages() can only
5850 * allocate memory in power-of-two pages.
5851 *
5852 * This function is also limited by MAX_ORDER.
5853 *
5854 * Memory allocated by this function must be released by free_pages_exact().
5855 *
5856 * Return: pointer to the allocated area or %NULL in case of error.
5857 */
5858void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5859{
5860 unsigned int order = get_order(size);
5861 unsigned long addr;
5862
5863 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5864 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5865
5866 addr = __get_free_pages(gfp_mask, order);
5867 return make_alloc_exact(addr, order, size);
5868}
5869EXPORT_SYMBOL(alloc_pages_exact);
5870
5871/**
5872 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5873 * pages on a node.
5874 * @nid: the preferred node ID where memory should be allocated
5875 * @size: the number of bytes to allocate
5876 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5877 *
5878 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5879 * back.
5880 *
5881 * Return: pointer to the allocated area or %NULL in case of error.
5882 */
5883void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5884{
5885 unsigned int order = get_order(size);
5886 struct page *p;
5887
5888 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5889 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5890
5891 p = alloc_pages_node(nid, gfp_mask, order);
5892 if (!p)
5893 return NULL;
5894 return make_alloc_exact((unsigned long)page_address(p), order, size);
5895}
5896
5897/**
5898 * free_pages_exact - release memory allocated via alloc_pages_exact()
5899 * @virt: the value returned by alloc_pages_exact.
5900 * @size: size of allocation, same value as passed to alloc_pages_exact().
5901 *
5902 * Release the memory allocated by a previous call to alloc_pages_exact.
5903 */
5904void free_pages_exact(void *virt, size_t size)
5905{
5906 unsigned long addr = (unsigned long)virt;
5907 unsigned long end = addr + PAGE_ALIGN(size);
5908
5909 while (addr < end) {
5910 free_page(addr);
5911 addr += PAGE_SIZE;
5912 }
5913}
5914EXPORT_SYMBOL(free_pages_exact);
5915
5916/**
5917 * nr_free_zone_pages - count number of pages beyond high watermark
5918 * @offset: The zone index of the highest zone
5919 *
5920 * nr_free_zone_pages() counts the number of pages which are beyond the
5921 * high watermark within all zones at or below a given zone index. For each
5922 * zone, the number of pages is calculated as:
5923 *
5924 * nr_free_zone_pages = managed_pages - high_pages
5925 *
5926 * Return: number of pages beyond high watermark.
5927 */
5928static unsigned long nr_free_zone_pages(int offset)
5929{
5930 struct zoneref *z;
5931 struct zone *zone;
5932
5933 /* Just pick one node, since fallback list is circular */
5934 unsigned long sum = 0;
5935
5936 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5937
5938 for_each_zone_zonelist(zone, z, zonelist, offset) {
5939 unsigned long size = zone_managed_pages(zone);
5940 unsigned long high = high_wmark_pages(zone);
5941 if (size > high)
5942 sum += size - high;
5943 }
5944
5945 return sum;
5946}
5947
5948/**
5949 * nr_free_buffer_pages - count number of pages beyond high watermark
5950 *
5951 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5952 * watermark within ZONE_DMA and ZONE_NORMAL.
5953 *
5954 * Return: number of pages beyond high watermark within ZONE_DMA and
5955 * ZONE_NORMAL.
5956 */
5957unsigned long nr_free_buffer_pages(void)
5958{
5959 return nr_free_zone_pages(gfp_zone(GFP_USER));
5960}
5961EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5962
5963static inline void show_node(struct zone *zone)
5964{
5965 if (IS_ENABLED(CONFIG_NUMA))
5966 printk("Node %d ", zone_to_nid(zone));
5967}
5968
5969long si_mem_available(void)
5970{
5971 long available;
5972 unsigned long pagecache;
5973 unsigned long wmark_low = 0;
5974 unsigned long pages[NR_LRU_LISTS];
5975 unsigned long reclaimable;
5976 struct zone *zone;
5977 int lru;
5978
5979 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5980 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5981
5982 for_each_zone(zone)
5983 wmark_low += low_wmark_pages(zone);
5984
5985 /*
5986 * Estimate the amount of memory available for userspace allocations,
5987 * without causing swapping or OOM.
5988 */
5989 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5990
5991 /*
5992 * Not all the page cache can be freed, otherwise the system will
5993 * start swapping or thrashing. Assume at least half of the page
5994 * cache, or the low watermark worth of cache, needs to stay.
5995 */
5996 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5997 pagecache -= min(pagecache / 2, wmark_low);
5998 available += pagecache;
5999
6000 /*
6001 * Part of the reclaimable slab and other kernel memory consists of
6002 * items that are in use, and cannot be freed. Cap this estimate at the
6003 * low watermark.
6004 */
6005 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
6006 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
6007 available += reclaimable - min(reclaimable / 2, wmark_low);
6008
6009 if (available < 0)
6010 available = 0;
6011 return available;
6012}
6013EXPORT_SYMBOL_GPL(si_mem_available);
6014
6015void si_meminfo(struct sysinfo *val)
6016{
6017 val->totalram = totalram_pages();
6018 val->sharedram = global_node_page_state(NR_SHMEM);
6019 val->freeram = global_zone_page_state(NR_FREE_PAGES);
6020 val->bufferram = nr_blockdev_pages();
6021 val->totalhigh = totalhigh_pages();
6022 val->freehigh = nr_free_highpages();
6023 val->mem_unit = PAGE_SIZE;
6024}
6025
6026EXPORT_SYMBOL(si_meminfo);
6027
6028#ifdef CONFIG_NUMA
6029void si_meminfo_node(struct sysinfo *val, int nid)
6030{
6031 int zone_type; /* needs to be signed */
6032 unsigned long managed_pages = 0;
6033 unsigned long managed_highpages = 0;
6034 unsigned long free_highpages = 0;
6035 pg_data_t *pgdat = NODE_DATA(nid);
6036
6037 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
6038 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
6039 val->totalram = managed_pages;
6040 val->sharedram = node_page_state(pgdat, NR_SHMEM);
6041 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
6042#ifdef CONFIG_HIGHMEM
6043 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6044 struct zone *zone = &pgdat->node_zones[zone_type];
6045
6046 if (is_highmem(zone)) {
6047 managed_highpages += zone_managed_pages(zone);
6048 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6049 }
6050 }
6051 val->totalhigh = managed_highpages;
6052 val->freehigh = free_highpages;
6053#else
6054 val->totalhigh = managed_highpages;
6055 val->freehigh = free_highpages;
6056#endif
6057 val->mem_unit = PAGE_SIZE;
6058}
6059#endif
6060
6061/*
6062 * Determine whether the node should be displayed or not, depending on whether
6063 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6064 */
6065static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6066{
6067 if (!(flags & SHOW_MEM_FILTER_NODES))
6068 return false;
6069
6070 /*
6071 * no node mask - aka implicit memory numa policy. Do not bother with
6072 * the synchronization - read_mems_allowed_begin - because we do not
6073 * have to be precise here.
6074 */
6075 if (!nodemask)
6076 nodemask = &cpuset_current_mems_allowed;
6077
6078 return !node_isset(nid, *nodemask);
6079}
6080
6081#define K(x) ((x) << (PAGE_SHIFT-10))
6082
6083static void show_migration_types(unsigned char type)
6084{
6085 static const char types[MIGRATE_TYPES] = {
6086 [MIGRATE_UNMOVABLE] = 'U',
6087 [MIGRATE_MOVABLE] = 'M',
6088 [MIGRATE_RECLAIMABLE] = 'E',
6089 [MIGRATE_HIGHATOMIC] = 'H',
6090#ifdef CONFIG_CMA
6091 [MIGRATE_CMA] = 'C',
6092#endif
6093#ifdef CONFIG_MEMORY_ISOLATION
6094 [MIGRATE_ISOLATE] = 'I',
6095#endif
6096 };
6097 char tmp[MIGRATE_TYPES + 1];
6098 char *p = tmp;
6099 int i;
6100
6101 for (i = 0; i < MIGRATE_TYPES; i++) {
6102 if (type & (1 << i))
6103 *p++ = types[i];
6104 }
6105
6106 *p = '\0';
6107 printk(KERN_CONT "(%s) ", tmp);
6108}
6109
6110static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6111{
6112 int zone_idx;
6113 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6114 if (zone_managed_pages(pgdat->node_zones + zone_idx))
6115 return true;
6116 return false;
6117}
6118
6119/*
6120 * Show free area list (used inside shift_scroll-lock stuff)
6121 * We also calculate the percentage fragmentation. We do this by counting the
6122 * memory on each free list with the exception of the first item on the list.
6123 *
6124 * Bits in @filter:
6125 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6126 * cpuset.
6127 */
6128void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6129{
6130 unsigned long free_pcp = 0;
6131 int cpu, nid;
6132 struct zone *zone;
6133 pg_data_t *pgdat;
6134
6135 for_each_populated_zone(zone) {
6136 if (zone_idx(zone) > max_zone_idx)
6137 continue;
6138 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6139 continue;
6140
6141 for_each_online_cpu(cpu)
6142 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6143 }
6144
6145 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6146 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6147 " unevictable:%lu dirty:%lu writeback:%lu\n"
6148 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6149 " mapped:%lu shmem:%lu pagetables:%lu\n"
6150 " sec_pagetables:%lu bounce:%lu\n"
6151 " kernel_misc_reclaimable:%lu\n"
6152 " free:%lu free_pcp:%lu free_cma:%lu\n",
6153 global_node_page_state(NR_ACTIVE_ANON),
6154 global_node_page_state(NR_INACTIVE_ANON),
6155 global_node_page_state(NR_ISOLATED_ANON),
6156 global_node_page_state(NR_ACTIVE_FILE),
6157 global_node_page_state(NR_INACTIVE_FILE),
6158 global_node_page_state(NR_ISOLATED_FILE),
6159 global_node_page_state(NR_UNEVICTABLE),
6160 global_node_page_state(NR_FILE_DIRTY),
6161 global_node_page_state(NR_WRITEBACK),
6162 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6163 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6164 global_node_page_state(NR_FILE_MAPPED),
6165 global_node_page_state(NR_SHMEM),
6166 global_node_page_state(NR_PAGETABLE),
6167 global_node_page_state(NR_SECONDARY_PAGETABLE),
6168 global_zone_page_state(NR_BOUNCE),
6169 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6170 global_zone_page_state(NR_FREE_PAGES),
6171 free_pcp,
6172 global_zone_page_state(NR_FREE_CMA_PAGES));
6173
6174 for_each_online_pgdat(pgdat) {
6175 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6176 continue;
6177 if (!node_has_managed_zones(pgdat, max_zone_idx))
6178 continue;
6179
6180 printk("Node %d"
6181 " active_anon:%lukB"
6182 " inactive_anon:%lukB"
6183 " active_file:%lukB"
6184 " inactive_file:%lukB"
6185 " unevictable:%lukB"
6186 " isolated(anon):%lukB"
6187 " isolated(file):%lukB"
6188 " mapped:%lukB"
6189 " dirty:%lukB"
6190 " writeback:%lukB"
6191 " shmem:%lukB"
6192#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6193 " shmem_thp: %lukB"
6194 " shmem_pmdmapped: %lukB"
6195 " anon_thp: %lukB"
6196#endif
6197 " writeback_tmp:%lukB"
6198 " kernel_stack:%lukB"
6199#ifdef CONFIG_SHADOW_CALL_STACK
6200 " shadow_call_stack:%lukB"
6201#endif
6202 " pagetables:%lukB"
6203 " sec_pagetables:%lukB"
6204 " all_unreclaimable? %s"
6205 "\n",
6206 pgdat->node_id,
6207 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6208 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6209 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6210 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6211 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6212 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6213 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6214 K(node_page_state(pgdat, NR_FILE_MAPPED)),
6215 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6216 K(node_page_state(pgdat, NR_WRITEBACK)),
6217 K(node_page_state(pgdat, NR_SHMEM)),
6218#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6219 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6220 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6221 K(node_page_state(pgdat, NR_ANON_THPS)),
6222#endif
6223 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6224 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6225#ifdef CONFIG_SHADOW_CALL_STACK
6226 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6227#endif
6228 K(node_page_state(pgdat, NR_PAGETABLE)),
6229 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6230 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6231 "yes" : "no");
6232 }
6233
6234 for_each_populated_zone(zone) {
6235 int i;
6236
6237 if (zone_idx(zone) > max_zone_idx)
6238 continue;
6239 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6240 continue;
6241
6242 free_pcp = 0;
6243 for_each_online_cpu(cpu)
6244 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6245
6246 show_node(zone);
6247 printk(KERN_CONT
6248 "%s"
6249 " free:%lukB"
6250 " boost:%lukB"
6251 " min:%lukB"
6252 " low:%lukB"
6253 " high:%lukB"
6254 " reserved_highatomic:%luKB"
6255 " active_anon:%lukB"
6256 " inactive_anon:%lukB"
6257 " active_file:%lukB"
6258 " inactive_file:%lukB"
6259 " unevictable:%lukB"
6260 " writepending:%lukB"
6261 " present:%lukB"
6262 " managed:%lukB"
6263 " mlocked:%lukB"
6264 " bounce:%lukB"
6265 " free_pcp:%lukB"
6266 " local_pcp:%ukB"
6267 " free_cma:%lukB"
6268 "\n",
6269 zone->name,
6270 K(zone_page_state(zone, NR_FREE_PAGES)),
6271 K(zone->watermark_boost),
6272 K(min_wmark_pages(zone)),
6273 K(low_wmark_pages(zone)),
6274 K(high_wmark_pages(zone)),
6275 K(zone->nr_reserved_highatomic),
6276 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6277 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6278 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6279 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6280 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6281 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6282 K(zone->present_pages),
6283 K(zone_managed_pages(zone)),
6284 K(zone_page_state(zone, NR_MLOCK)),
6285 K(zone_page_state(zone, NR_BOUNCE)),
6286 K(free_pcp),
6287 K(this_cpu_read(zone->per_cpu_pageset->count)),
6288 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6289 printk("lowmem_reserve[]:");
6290 for (i = 0; i < MAX_NR_ZONES; i++)
6291 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6292 printk(KERN_CONT "\n");
6293 }
6294
6295 for_each_populated_zone(zone) {
6296 unsigned int order;
6297 unsigned long nr[MAX_ORDER], flags, total = 0;
6298 unsigned char types[MAX_ORDER];
6299
6300 if (zone_idx(zone) > max_zone_idx)
6301 continue;
6302 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6303 continue;
6304 show_node(zone);
6305 printk(KERN_CONT "%s: ", zone->name);
6306
6307 spin_lock_irqsave(&zone->lock, flags);
6308 for (order = 0; order < MAX_ORDER; order++) {
6309 struct free_area *area = &zone->free_area[order];
6310 int type;
6311
6312 nr[order] = area->nr_free;
6313 total += nr[order] << order;
6314
6315 types[order] = 0;
6316 for (type = 0; type < MIGRATE_TYPES; type++) {
6317 if (!free_area_empty(area, type))
6318 types[order] |= 1 << type;
6319 }
6320 }
6321 spin_unlock_irqrestore(&zone->lock, flags);
6322 for (order = 0; order < MAX_ORDER; order++) {
6323 printk(KERN_CONT "%lu*%lukB ",
6324 nr[order], K(1UL) << order);
6325 if (nr[order])
6326 show_migration_types(types[order]);
6327 }
6328 printk(KERN_CONT "= %lukB\n", K(total));
6329 }
6330
6331 for_each_online_node(nid) {
6332 if (show_mem_node_skip(filter, nid, nodemask))
6333 continue;
6334 hugetlb_show_meminfo_node(nid);
6335 }
6336
6337 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6338
6339 show_swap_cache_info();
6340}
6341
6342static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6343{
6344 zoneref->zone = zone;
6345 zoneref->zone_idx = zone_idx(zone);
6346}
6347
6348/*
6349 * Builds allocation fallback zone lists.
6350 *
6351 * Add all populated zones of a node to the zonelist.
6352 */
6353static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6354{
6355 struct zone *zone;
6356 enum zone_type zone_type = MAX_NR_ZONES;
6357 int nr_zones = 0;
6358
6359 do {
6360 zone_type--;
6361 zone = pgdat->node_zones + zone_type;
6362 if (populated_zone(zone)) {
6363 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6364 check_highest_zone(zone_type);
6365 }
6366 } while (zone_type);
6367
6368 return nr_zones;
6369}
6370
6371#ifdef CONFIG_NUMA
6372
6373static int __parse_numa_zonelist_order(char *s)
6374{
6375 /*
6376 * We used to support different zonelists modes but they turned
6377 * out to be just not useful. Let's keep the warning in place
6378 * if somebody still use the cmd line parameter so that we do
6379 * not fail it silently
6380 */
6381 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6382 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6383 return -EINVAL;
6384 }
6385 return 0;
6386}
6387
6388char numa_zonelist_order[] = "Node";
6389
6390/*
6391 * sysctl handler for numa_zonelist_order
6392 */
6393int numa_zonelist_order_handler(struct ctl_table *table, int write,
6394 void *buffer, size_t *length, loff_t *ppos)
6395{
6396 if (write)
6397 return __parse_numa_zonelist_order(buffer);
6398 return proc_dostring(table, write, buffer, length, ppos);
6399}
6400
6401
6402static int node_load[MAX_NUMNODES];
6403
6404/**
6405 * find_next_best_node - find the next node that should appear in a given node's fallback list
6406 * @node: node whose fallback list we're appending
6407 * @used_node_mask: nodemask_t of already used nodes
6408 *
6409 * We use a number of factors to determine which is the next node that should
6410 * appear on a given node's fallback list. The node should not have appeared
6411 * already in @node's fallback list, and it should be the next closest node
6412 * according to the distance array (which contains arbitrary distance values
6413 * from each node to each node in the system), and should also prefer nodes
6414 * with no CPUs, since presumably they'll have very little allocation pressure
6415 * on them otherwise.
6416 *
6417 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6418 */
6419int find_next_best_node(int node, nodemask_t *used_node_mask)
6420{
6421 int n, val;
6422 int min_val = INT_MAX;
6423 int best_node = NUMA_NO_NODE;
6424
6425 /* Use the local node if we haven't already */
6426 if (!node_isset(node, *used_node_mask)) {
6427 node_set(node, *used_node_mask);
6428 return node;
6429 }
6430
6431 for_each_node_state(n, N_MEMORY) {
6432
6433 /* Don't want a node to appear more than once */
6434 if (node_isset(n, *used_node_mask))
6435 continue;
6436
6437 /* Use the distance array to find the distance */
6438 val = node_distance(node, n);
6439
6440 /* Penalize nodes under us ("prefer the next node") */
6441 val += (n < node);
6442
6443 /* Give preference to headless and unused nodes */
6444 if (!cpumask_empty(cpumask_of_node(n)))
6445 val += PENALTY_FOR_NODE_WITH_CPUS;
6446
6447 /* Slight preference for less loaded node */
6448 val *= MAX_NUMNODES;
6449 val += node_load[n];
6450
6451 if (val < min_val) {
6452 min_val = val;
6453 best_node = n;
6454 }
6455 }
6456
6457 if (best_node >= 0)
6458 node_set(best_node, *used_node_mask);
6459
6460 return best_node;
6461}
6462
6463
6464/*
6465 * Build zonelists ordered by node and zones within node.
6466 * This results in maximum locality--normal zone overflows into local
6467 * DMA zone, if any--but risks exhausting DMA zone.
6468 */
6469static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6470 unsigned nr_nodes)
6471{
6472 struct zoneref *zonerefs;
6473 int i;
6474
6475 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6476
6477 for (i = 0; i < nr_nodes; i++) {
6478 int nr_zones;
6479
6480 pg_data_t *node = NODE_DATA(node_order[i]);
6481
6482 nr_zones = build_zonerefs_node(node, zonerefs);
6483 zonerefs += nr_zones;
6484 }
6485 zonerefs->zone = NULL;
6486 zonerefs->zone_idx = 0;
6487}
6488
6489/*
6490 * Build gfp_thisnode zonelists
6491 */
6492static void build_thisnode_zonelists(pg_data_t *pgdat)
6493{
6494 struct zoneref *zonerefs;
6495 int nr_zones;
6496
6497 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6498 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6499 zonerefs += nr_zones;
6500 zonerefs->zone = NULL;
6501 zonerefs->zone_idx = 0;
6502}
6503
6504/*
6505 * Build zonelists ordered by zone and nodes within zones.
6506 * This results in conserving DMA zone[s] until all Normal memory is
6507 * exhausted, but results in overflowing to remote node while memory
6508 * may still exist in local DMA zone.
6509 */
6510
6511static void build_zonelists(pg_data_t *pgdat)
6512{
6513 static int node_order[MAX_NUMNODES];
6514 int node, nr_nodes = 0;
6515 nodemask_t used_mask = NODE_MASK_NONE;
6516 int local_node, prev_node;
6517
6518 /* NUMA-aware ordering of nodes */
6519 local_node = pgdat->node_id;
6520 prev_node = local_node;
6521
6522 memset(node_order, 0, sizeof(node_order));
6523 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6524 /*
6525 * We don't want to pressure a particular node.
6526 * So adding penalty to the first node in same
6527 * distance group to make it round-robin.
6528 */
6529 if (node_distance(local_node, node) !=
6530 node_distance(local_node, prev_node))
6531 node_load[node] += 1;
6532
6533 node_order[nr_nodes++] = node;
6534 prev_node = node;
6535 }
6536
6537 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6538 build_thisnode_zonelists(pgdat);
6539 pr_info("Fallback order for Node %d: ", local_node);
6540 for (node = 0; node < nr_nodes; node++)
6541 pr_cont("%d ", node_order[node]);
6542 pr_cont("\n");
6543}
6544
6545#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6546/*
6547 * Return node id of node used for "local" allocations.
6548 * I.e., first node id of first zone in arg node's generic zonelist.
6549 * Used for initializing percpu 'numa_mem', which is used primarily
6550 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6551 */
6552int local_memory_node(int node)
6553{
6554 struct zoneref *z;
6555
6556 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6557 gfp_zone(GFP_KERNEL),
6558 NULL);
6559 return zone_to_nid(z->zone);
6560}
6561#endif
6562
6563static void setup_min_unmapped_ratio(void);
6564static void setup_min_slab_ratio(void);
6565#else /* CONFIG_NUMA */
6566
6567static void build_zonelists(pg_data_t *pgdat)
6568{
6569 int node, local_node;
6570 struct zoneref *zonerefs;
6571 int nr_zones;
6572
6573 local_node = pgdat->node_id;
6574
6575 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6576 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6577 zonerefs += nr_zones;
6578
6579 /*
6580 * Now we build the zonelist so that it contains the zones
6581 * of all the other nodes.
6582 * We don't want to pressure a particular node, so when
6583 * building the zones for node N, we make sure that the
6584 * zones coming right after the local ones are those from
6585 * node N+1 (modulo N)
6586 */
6587 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6588 if (!node_online(node))
6589 continue;
6590 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6591 zonerefs += nr_zones;
6592 }
6593 for (node = 0; node < local_node; node++) {
6594 if (!node_online(node))
6595 continue;
6596 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6597 zonerefs += nr_zones;
6598 }
6599
6600 zonerefs->zone = NULL;
6601 zonerefs->zone_idx = 0;
6602}
6603
6604#endif /* CONFIG_NUMA */
6605
6606/*
6607 * Boot pageset table. One per cpu which is going to be used for all
6608 * zones and all nodes. The parameters will be set in such a way
6609 * that an item put on a list will immediately be handed over to
6610 * the buddy list. This is safe since pageset manipulation is done
6611 * with interrupts disabled.
6612 *
6613 * The boot_pagesets must be kept even after bootup is complete for
6614 * unused processors and/or zones. They do play a role for bootstrapping
6615 * hotplugged processors.
6616 *
6617 * zoneinfo_show() and maybe other functions do
6618 * not check if the processor is online before following the pageset pointer.
6619 * Other parts of the kernel may not check if the zone is available.
6620 */
6621static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6622/* These effectively disable the pcplists in the boot pageset completely */
6623#define BOOT_PAGESET_HIGH 0
6624#define BOOT_PAGESET_BATCH 1
6625static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6626static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6627static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6628
6629static void __build_all_zonelists(void *data)
6630{
6631 int nid;
6632 int __maybe_unused cpu;
6633 pg_data_t *self = data;
6634
6635 write_seqlock(&zonelist_update_seq);
6636
6637#ifdef CONFIG_NUMA
6638 memset(node_load, 0, sizeof(node_load));
6639#endif
6640
6641 /*
6642 * This node is hotadded and no memory is yet present. So just
6643 * building zonelists is fine - no need to touch other nodes.
6644 */
6645 if (self && !node_online(self->node_id)) {
6646 build_zonelists(self);
6647 } else {
6648 /*
6649 * All possible nodes have pgdat preallocated
6650 * in free_area_init
6651 */
6652 for_each_node(nid) {
6653 pg_data_t *pgdat = NODE_DATA(nid);
6654
6655 build_zonelists(pgdat);
6656 }
6657
6658#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6659 /*
6660 * We now know the "local memory node" for each node--
6661 * i.e., the node of the first zone in the generic zonelist.
6662 * Set up numa_mem percpu variable for on-line cpus. During
6663 * boot, only the boot cpu should be on-line; we'll init the
6664 * secondary cpus' numa_mem as they come on-line. During
6665 * node/memory hotplug, we'll fixup all on-line cpus.
6666 */
6667 for_each_online_cpu(cpu)
6668 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6669#endif
6670 }
6671
6672 write_sequnlock(&zonelist_update_seq);
6673}
6674
6675static noinline void __init
6676build_all_zonelists_init(void)
6677{
6678 int cpu;
6679
6680 __build_all_zonelists(NULL);
6681
6682 /*
6683 * Initialize the boot_pagesets that are going to be used
6684 * for bootstrapping processors. The real pagesets for
6685 * each zone will be allocated later when the per cpu
6686 * allocator is available.
6687 *
6688 * boot_pagesets are used also for bootstrapping offline
6689 * cpus if the system is already booted because the pagesets
6690 * are needed to initialize allocators on a specific cpu too.
6691 * F.e. the percpu allocator needs the page allocator which
6692 * needs the percpu allocator in order to allocate its pagesets
6693 * (a chicken-egg dilemma).
6694 */
6695 for_each_possible_cpu(cpu)
6696 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6697
6698 mminit_verify_zonelist();
6699 cpuset_init_current_mems_allowed();
6700}
6701
6702/*
6703 * unless system_state == SYSTEM_BOOTING.
6704 *
6705 * __ref due to call of __init annotated helper build_all_zonelists_init
6706 * [protected by SYSTEM_BOOTING].
6707 */
6708void __ref build_all_zonelists(pg_data_t *pgdat)
6709{
6710 unsigned long vm_total_pages;
6711
6712 if (system_state == SYSTEM_BOOTING) {
6713 build_all_zonelists_init();
6714 } else {
6715 __build_all_zonelists(pgdat);
6716 /* cpuset refresh routine should be here */
6717 }
6718 /* Get the number of free pages beyond high watermark in all zones. */
6719 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6720 /*
6721 * Disable grouping by mobility if the number of pages in the
6722 * system is too low to allow the mechanism to work. It would be
6723 * more accurate, but expensive to check per-zone. This check is
6724 * made on memory-hotadd so a system can start with mobility
6725 * disabled and enable it later
6726 */
6727 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6728 page_group_by_mobility_disabled = 1;
6729 else
6730 page_group_by_mobility_disabled = 0;
6731
6732 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6733 nr_online_nodes,
6734 page_group_by_mobility_disabled ? "off" : "on",
6735 vm_total_pages);
6736#ifdef CONFIG_NUMA
6737 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6738#endif
6739}
6740
6741/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6742static bool __meminit
6743overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6744{
6745 static struct memblock_region *r;
6746
6747 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6748 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6749 for_each_mem_region(r) {
6750 if (*pfn < memblock_region_memory_end_pfn(r))
6751 break;
6752 }
6753 }
6754 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6755 memblock_is_mirror(r)) {
6756 *pfn = memblock_region_memory_end_pfn(r);
6757 return true;
6758 }
6759 }
6760 return false;
6761}
6762
6763/*
6764 * Initially all pages are reserved - free ones are freed
6765 * up by memblock_free_all() once the early boot process is
6766 * done. Non-atomic initialization, single-pass.
6767 *
6768 * All aligned pageblocks are initialized to the specified migratetype
6769 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6770 * zone stats (e.g., nr_isolate_pageblock) are touched.
6771 */
6772void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6773 unsigned long start_pfn, unsigned long zone_end_pfn,
6774 enum meminit_context context,
6775 struct vmem_altmap *altmap, int migratetype)
6776{
6777 unsigned long pfn, end_pfn = start_pfn + size;
6778 struct page *page;
6779
6780 if (highest_memmap_pfn < end_pfn - 1)
6781 highest_memmap_pfn = end_pfn - 1;
6782
6783#ifdef CONFIG_ZONE_DEVICE
6784 /*
6785 * Honor reservation requested by the driver for this ZONE_DEVICE
6786 * memory. We limit the total number of pages to initialize to just
6787 * those that might contain the memory mapping. We will defer the
6788 * ZONE_DEVICE page initialization until after we have released
6789 * the hotplug lock.
6790 */
6791 if (zone == ZONE_DEVICE) {
6792 if (!altmap)
6793 return;
6794
6795 if (start_pfn == altmap->base_pfn)
6796 start_pfn += altmap->reserve;
6797 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6798 }
6799#endif
6800
6801 for (pfn = start_pfn; pfn < end_pfn; ) {
6802 /*
6803 * There can be holes in boot-time mem_map[]s handed to this
6804 * function. They do not exist on hotplugged memory.
6805 */
6806 if (context == MEMINIT_EARLY) {
6807 if (overlap_memmap_init(zone, &pfn))
6808 continue;
6809 if (defer_init(nid, pfn, zone_end_pfn)) {
6810 deferred_struct_pages = true;
6811 break;
6812 }
6813 }
6814
6815 page = pfn_to_page(pfn);
6816 __init_single_page(page, pfn, zone, nid);
6817 if (context == MEMINIT_HOTPLUG)
6818 __SetPageReserved(page);
6819
6820 /*
6821 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6822 * such that unmovable allocations won't be scattered all
6823 * over the place during system boot.
6824 */
6825 if (pageblock_aligned(pfn)) {
6826 set_pageblock_migratetype(page, migratetype);
6827 cond_resched();
6828 }
6829 pfn++;
6830 }
6831}
6832
6833#ifdef CONFIG_ZONE_DEVICE
6834static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6835 unsigned long zone_idx, int nid,
6836 struct dev_pagemap *pgmap)
6837{
6838
6839 __init_single_page(page, pfn, zone_idx, nid);
6840
6841 /*
6842 * Mark page reserved as it will need to wait for onlining
6843 * phase for it to be fully associated with a zone.
6844 *
6845 * We can use the non-atomic __set_bit operation for setting
6846 * the flag as we are still initializing the pages.
6847 */
6848 __SetPageReserved(page);
6849
6850 /*
6851 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6852 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6853 * ever freed or placed on a driver-private list.
6854 */
6855 page->pgmap = pgmap;
6856 page->zone_device_data = NULL;
6857
6858 /*
6859 * Mark the block movable so that blocks are reserved for
6860 * movable at startup. This will force kernel allocations
6861 * to reserve their blocks rather than leaking throughout
6862 * the address space during boot when many long-lived
6863 * kernel allocations are made.
6864 *
6865 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6866 * because this is done early in section_activate()
6867 */
6868 if (pageblock_aligned(pfn)) {
6869 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6870 cond_resched();
6871 }
6872
6873 /*
6874 * ZONE_DEVICE pages are released directly to the driver page allocator
6875 * which will set the page count to 1 when allocating the page.
6876 */
6877 if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6878 pgmap->type == MEMORY_DEVICE_COHERENT)
6879 set_page_count(page, 0);
6880}
6881
6882/*
6883 * With compound page geometry and when struct pages are stored in ram most
6884 * tail pages are reused. Consequently, the amount of unique struct pages to
6885 * initialize is a lot smaller that the total amount of struct pages being
6886 * mapped. This is a paired / mild layering violation with explicit knowledge
6887 * of how the sparse_vmemmap internals handle compound pages in the lack
6888 * of an altmap. See vmemmap_populate_compound_pages().
6889 */
6890static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6891 unsigned long nr_pages)
6892{
6893 return is_power_of_2(sizeof(struct page)) &&
6894 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6895}
6896
6897static void __ref memmap_init_compound(struct page *head,
6898 unsigned long head_pfn,
6899 unsigned long zone_idx, int nid,
6900 struct dev_pagemap *pgmap,
6901 unsigned long nr_pages)
6902{
6903 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6904 unsigned int order = pgmap->vmemmap_shift;
6905
6906 __SetPageHead(head);
6907 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6908 struct page *page = pfn_to_page(pfn);
6909
6910 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6911 prep_compound_tail(head, pfn - head_pfn);
6912 set_page_count(page, 0);
6913
6914 /*
6915 * The first tail page stores important compound page info.
6916 * Call prep_compound_head() after the first tail page has
6917 * been initialized, to not have the data overwritten.
6918 */
6919 if (pfn == head_pfn + 1)
6920 prep_compound_head(head, order);
6921 }
6922}
6923
6924void __ref memmap_init_zone_device(struct zone *zone,
6925 unsigned long start_pfn,
6926 unsigned long nr_pages,
6927 struct dev_pagemap *pgmap)
6928{
6929 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6930 struct pglist_data *pgdat = zone->zone_pgdat;
6931 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6932 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6933 unsigned long zone_idx = zone_idx(zone);
6934 unsigned long start = jiffies;
6935 int nid = pgdat->node_id;
6936
6937 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6938 return;
6939
6940 /*
6941 * The call to memmap_init should have already taken care
6942 * of the pages reserved for the memmap, so we can just jump to
6943 * the end of that region and start processing the device pages.
6944 */
6945 if (altmap) {
6946 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6947 nr_pages = end_pfn - start_pfn;
6948 }
6949
6950 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6951 struct page *page = pfn_to_page(pfn);
6952
6953 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6954
6955 if (pfns_per_compound == 1)
6956 continue;
6957
6958 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6959 compound_nr_pages(altmap, pfns_per_compound));
6960 }
6961
6962 pr_info("%s initialised %lu pages in %ums\n", __func__,
6963 nr_pages, jiffies_to_msecs(jiffies - start));
6964}
6965
6966#endif
6967static void __meminit zone_init_free_lists(struct zone *zone)
6968{
6969 unsigned int order, t;
6970 for_each_migratetype_order(order, t) {
6971 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6972 zone->free_area[order].nr_free = 0;
6973 }
6974}
6975
6976/*
6977 * Only struct pages that correspond to ranges defined by memblock.memory
6978 * are zeroed and initialized by going through __init_single_page() during
6979 * memmap_init_zone_range().
6980 *
6981 * But, there could be struct pages that correspond to holes in
6982 * memblock.memory. This can happen because of the following reasons:
6983 * - physical memory bank size is not necessarily the exact multiple of the
6984 * arbitrary section size
6985 * - early reserved memory may not be listed in memblock.memory
6986 * - memory layouts defined with memmap= kernel parameter may not align
6987 * nicely with memmap sections
6988 *
6989 * Explicitly initialize those struct pages so that:
6990 * - PG_Reserved is set
6991 * - zone and node links point to zone and node that span the page if the
6992 * hole is in the middle of a zone
6993 * - zone and node links point to adjacent zone/node if the hole falls on
6994 * the zone boundary; the pages in such holes will be prepended to the
6995 * zone/node above the hole except for the trailing pages in the last
6996 * section that will be appended to the zone/node below.
6997 */
6998static void __init init_unavailable_range(unsigned long spfn,
6999 unsigned long epfn,
7000 int zone, int node)
7001{
7002 unsigned long pfn;
7003 u64 pgcnt = 0;
7004
7005 for (pfn = spfn; pfn < epfn; pfn++) {
7006 if (!pfn_valid(pageblock_start_pfn(pfn))) {
7007 pfn = pageblock_end_pfn(pfn) - 1;
7008 continue;
7009 }
7010 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
7011 __SetPageReserved(pfn_to_page(pfn));
7012 pgcnt++;
7013 }
7014
7015 if (pgcnt)
7016 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
7017 node, zone_names[zone], pgcnt);
7018}
7019
7020static void __init memmap_init_zone_range(struct zone *zone,
7021 unsigned long start_pfn,
7022 unsigned long end_pfn,
7023 unsigned long *hole_pfn)
7024{
7025 unsigned long zone_start_pfn = zone->zone_start_pfn;
7026 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
7027 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
7028
7029 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
7030 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
7031
7032 if (start_pfn >= end_pfn)
7033 return;
7034
7035 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
7036 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
7037
7038 if (*hole_pfn < start_pfn)
7039 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
7040
7041 *hole_pfn = end_pfn;
7042}
7043
7044static void __init memmap_init(void)
7045{
7046 unsigned long start_pfn, end_pfn;
7047 unsigned long hole_pfn = 0;
7048 int i, j, zone_id = 0, nid;
7049
7050 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7051 struct pglist_data *node = NODE_DATA(nid);
7052
7053 for (j = 0; j < MAX_NR_ZONES; j++) {
7054 struct zone *zone = node->node_zones + j;
7055
7056 if (!populated_zone(zone))
7057 continue;
7058
7059 memmap_init_zone_range(zone, start_pfn, end_pfn,
7060 &hole_pfn);
7061 zone_id = j;
7062 }
7063 }
7064
7065#ifdef CONFIG_SPARSEMEM
7066 /*
7067 * Initialize the memory map for hole in the range [memory_end,
7068 * section_end].
7069 * Append the pages in this hole to the highest zone in the last
7070 * node.
7071 * The call to init_unavailable_range() is outside the ifdef to
7072 * silence the compiler warining about zone_id set but not used;
7073 * for FLATMEM it is a nop anyway
7074 */
7075 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7076 if (hole_pfn < end_pfn)
7077#endif
7078 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7079}
7080
7081void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7082 phys_addr_t min_addr, int nid, bool exact_nid)
7083{
7084 void *ptr;
7085
7086 if (exact_nid)
7087 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7088 MEMBLOCK_ALLOC_ACCESSIBLE,
7089 nid);
7090 else
7091 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7092 MEMBLOCK_ALLOC_ACCESSIBLE,
7093 nid);
7094
7095 if (ptr && size > 0)
7096 page_init_poison(ptr, size);
7097
7098 return ptr;
7099}
7100
7101static int zone_batchsize(struct zone *zone)
7102{
7103#ifdef CONFIG_MMU
7104 int batch;
7105
7106 /*
7107 * The number of pages to batch allocate is either ~0.1%
7108 * of the zone or 1MB, whichever is smaller. The batch
7109 * size is striking a balance between allocation latency
7110 * and zone lock contention.
7111 */
7112 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7113 batch /= 4; /* We effectively *= 4 below */
7114 if (batch < 1)
7115 batch = 1;
7116
7117 /*
7118 * Clamp the batch to a 2^n - 1 value. Having a power
7119 * of 2 value was found to be more likely to have
7120 * suboptimal cache aliasing properties in some cases.
7121 *
7122 * For example if 2 tasks are alternately allocating
7123 * batches of pages, one task can end up with a lot
7124 * of pages of one half of the possible page colors
7125 * and the other with pages of the other colors.
7126 */
7127 batch = rounddown_pow_of_two(batch + batch/2) - 1;
7128
7129 return batch;
7130
7131#else
7132 /* The deferral and batching of frees should be suppressed under NOMMU
7133 * conditions.
7134 *
7135 * The problem is that NOMMU needs to be able to allocate large chunks
7136 * of contiguous memory as there's no hardware page translation to
7137 * assemble apparent contiguous memory from discontiguous pages.
7138 *
7139 * Queueing large contiguous runs of pages for batching, however,
7140 * causes the pages to actually be freed in smaller chunks. As there
7141 * can be a significant delay between the individual batches being
7142 * recycled, this leads to the once large chunks of space being
7143 * fragmented and becoming unavailable for high-order allocations.
7144 */
7145 return 0;
7146#endif
7147}
7148
7149static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7150{
7151#ifdef CONFIG_MMU
7152 int high;
7153 int nr_split_cpus;
7154 unsigned long total_pages;
7155
7156 if (!percpu_pagelist_high_fraction) {
7157 /*
7158 * By default, the high value of the pcp is based on the zone
7159 * low watermark so that if they are full then background
7160 * reclaim will not be started prematurely.
7161 */
7162 total_pages = low_wmark_pages(zone);
7163 } else {
7164 /*
7165 * If percpu_pagelist_high_fraction is configured, the high
7166 * value is based on a fraction of the managed pages in the
7167 * zone.
7168 */
7169 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7170 }
7171
7172 /*
7173 * Split the high value across all online CPUs local to the zone. Note
7174 * that early in boot that CPUs may not be online yet and that during
7175 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7176 * onlined. For memory nodes that have no CPUs, split pcp->high across
7177 * all online CPUs to mitigate the risk that reclaim is triggered
7178 * prematurely due to pages stored on pcp lists.
7179 */
7180 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7181 if (!nr_split_cpus)
7182 nr_split_cpus = num_online_cpus();
7183 high = total_pages / nr_split_cpus;
7184
7185 /*
7186 * Ensure high is at least batch*4. The multiple is based on the
7187 * historical relationship between high and batch.
7188 */
7189 high = max(high, batch << 2);
7190
7191 return high;
7192#else
7193 return 0;
7194#endif
7195}
7196
7197/*
7198 * pcp->high and pcp->batch values are related and generally batch is lower
7199 * than high. They are also related to pcp->count such that count is lower
7200 * than high, and as soon as it reaches high, the pcplist is flushed.
7201 *
7202 * However, guaranteeing these relations at all times would require e.g. write
7203 * barriers here but also careful usage of read barriers at the read side, and
7204 * thus be prone to error and bad for performance. Thus the update only prevents
7205 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7206 * can cope with those fields changing asynchronously, and fully trust only the
7207 * pcp->count field on the local CPU with interrupts disabled.
7208 *
7209 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7210 * outside of boot time (or some other assurance that no concurrent updaters
7211 * exist).
7212 */
7213static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7214 unsigned long batch)
7215{
7216 WRITE_ONCE(pcp->batch, batch);
7217 WRITE_ONCE(pcp->high, high);
7218}
7219
7220static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7221{
7222 int pindex;
7223
7224 memset(pcp, 0, sizeof(*pcp));
7225 memset(pzstats, 0, sizeof(*pzstats));
7226
7227 spin_lock_init(&pcp->lock);
7228 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7229 INIT_LIST_HEAD(&pcp->lists[pindex]);
7230
7231 /*
7232 * Set batch and high values safe for a boot pageset. A true percpu
7233 * pageset's initialization will update them subsequently. Here we don't
7234 * need to be as careful as pageset_update() as nobody can access the
7235 * pageset yet.
7236 */
7237 pcp->high = BOOT_PAGESET_HIGH;
7238 pcp->batch = BOOT_PAGESET_BATCH;
7239 pcp->free_factor = 0;
7240}
7241
7242static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7243 unsigned long batch)
7244{
7245 struct per_cpu_pages *pcp;
7246 int cpu;
7247
7248 for_each_possible_cpu(cpu) {
7249 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7250 pageset_update(pcp, high, batch);
7251 }
7252}
7253
7254/*
7255 * Calculate and set new high and batch values for all per-cpu pagesets of a
7256 * zone based on the zone's size.
7257 */
7258static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7259{
7260 int new_high, new_batch;
7261
7262 new_batch = max(1, zone_batchsize(zone));
7263 new_high = zone_highsize(zone, new_batch, cpu_online);
7264
7265 if (zone->pageset_high == new_high &&
7266 zone->pageset_batch == new_batch)
7267 return;
7268
7269 zone->pageset_high = new_high;
7270 zone->pageset_batch = new_batch;
7271
7272 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7273}
7274
7275void __meminit setup_zone_pageset(struct zone *zone)
7276{
7277 int cpu;
7278
7279 /* Size may be 0 on !SMP && !NUMA */
7280 if (sizeof(struct per_cpu_zonestat) > 0)
7281 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7282
7283 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7284 for_each_possible_cpu(cpu) {
7285 struct per_cpu_pages *pcp;
7286 struct per_cpu_zonestat *pzstats;
7287
7288 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7289 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7290 per_cpu_pages_init(pcp, pzstats);
7291 }
7292
7293 zone_set_pageset_high_and_batch(zone, 0);
7294}
7295
7296/*
7297 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7298 * page high values need to be recalculated.
7299 */
7300static void zone_pcp_update(struct zone *zone, int cpu_online)
7301{
7302 mutex_lock(&pcp_batch_high_lock);
7303 zone_set_pageset_high_and_batch(zone, cpu_online);
7304 mutex_unlock(&pcp_batch_high_lock);
7305}
7306
7307/*
7308 * Allocate per cpu pagesets and initialize them.
7309 * Before this call only boot pagesets were available.
7310 */
7311void __init setup_per_cpu_pageset(void)
7312{
7313 struct pglist_data *pgdat;
7314 struct zone *zone;
7315 int __maybe_unused cpu;
7316
7317 for_each_populated_zone(zone)
7318 setup_zone_pageset(zone);
7319
7320#ifdef CONFIG_NUMA
7321 /*
7322 * Unpopulated zones continue using the boot pagesets.
7323 * The numa stats for these pagesets need to be reset.
7324 * Otherwise, they will end up skewing the stats of
7325 * the nodes these zones are associated with.
7326 */
7327 for_each_possible_cpu(cpu) {
7328 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7329 memset(pzstats->vm_numa_event, 0,
7330 sizeof(pzstats->vm_numa_event));
7331 }
7332#endif
7333
7334 for_each_online_pgdat(pgdat)
7335 pgdat->per_cpu_nodestats =
7336 alloc_percpu(struct per_cpu_nodestat);
7337}
7338
7339static __meminit void zone_pcp_init(struct zone *zone)
7340{
7341 /*
7342 * per cpu subsystem is not up at this point. The following code
7343 * relies on the ability of the linker to provide the
7344 * offset of a (static) per cpu variable into the per cpu area.
7345 */
7346 zone->per_cpu_pageset = &boot_pageset;
7347 zone->per_cpu_zonestats = &boot_zonestats;
7348 zone->pageset_high = BOOT_PAGESET_HIGH;
7349 zone->pageset_batch = BOOT_PAGESET_BATCH;
7350
7351 if (populated_zone(zone))
7352 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7353 zone->present_pages, zone_batchsize(zone));
7354}
7355
7356void __meminit init_currently_empty_zone(struct zone *zone,
7357 unsigned long zone_start_pfn,
7358 unsigned long size)
7359{
7360 struct pglist_data *pgdat = zone->zone_pgdat;
7361 int zone_idx = zone_idx(zone) + 1;
7362
7363 if (zone_idx > pgdat->nr_zones)
7364 pgdat->nr_zones = zone_idx;
7365
7366 zone->zone_start_pfn = zone_start_pfn;
7367
7368 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7369 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7370 pgdat->node_id,
7371 (unsigned long)zone_idx(zone),
7372 zone_start_pfn, (zone_start_pfn + size));
7373
7374 zone_init_free_lists(zone);
7375 zone->initialized = 1;
7376}
7377
7378/**
7379 * get_pfn_range_for_nid - Return the start and end page frames for a node
7380 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7381 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7382 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7383 *
7384 * It returns the start and end page frame of a node based on information
7385 * provided by memblock_set_node(). If called for a node
7386 * with no available memory, a warning is printed and the start and end
7387 * PFNs will be 0.
7388 */
7389void __init get_pfn_range_for_nid(unsigned int nid,
7390 unsigned long *start_pfn, unsigned long *end_pfn)
7391{
7392 unsigned long this_start_pfn, this_end_pfn;
7393 int i;
7394
7395 *start_pfn = -1UL;
7396 *end_pfn = 0;
7397
7398 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7399 *start_pfn = min(*start_pfn, this_start_pfn);
7400 *end_pfn = max(*end_pfn, this_end_pfn);
7401 }
7402
7403 if (*start_pfn == -1UL)
7404 *start_pfn = 0;
7405}
7406
7407/*
7408 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7409 * assumption is made that zones within a node are ordered in monotonic
7410 * increasing memory addresses so that the "highest" populated zone is used
7411 */
7412static void __init find_usable_zone_for_movable(void)
7413{
7414 int zone_index;
7415 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7416 if (zone_index == ZONE_MOVABLE)
7417 continue;
7418
7419 if (arch_zone_highest_possible_pfn[zone_index] >
7420 arch_zone_lowest_possible_pfn[zone_index])
7421 break;
7422 }
7423
7424 VM_BUG_ON(zone_index == -1);
7425 movable_zone = zone_index;
7426}
7427
7428/*
7429 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7430 * because it is sized independent of architecture. Unlike the other zones,
7431 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7432 * in each node depending on the size of each node and how evenly kernelcore
7433 * is distributed. This helper function adjusts the zone ranges
7434 * provided by the architecture for a given node by using the end of the
7435 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7436 * zones within a node are in order of monotonic increases memory addresses
7437 */
7438static void __init adjust_zone_range_for_zone_movable(int nid,
7439 unsigned long zone_type,
7440 unsigned long node_start_pfn,
7441 unsigned long node_end_pfn,
7442 unsigned long *zone_start_pfn,
7443 unsigned long *zone_end_pfn)
7444{
7445 /* Only adjust if ZONE_MOVABLE is on this node */
7446 if (zone_movable_pfn[nid]) {
7447 /* Size ZONE_MOVABLE */
7448 if (zone_type == ZONE_MOVABLE) {
7449 *zone_start_pfn = zone_movable_pfn[nid];
7450 *zone_end_pfn = min(node_end_pfn,
7451 arch_zone_highest_possible_pfn[movable_zone]);
7452
7453 /* Adjust for ZONE_MOVABLE starting within this range */
7454 } else if (!mirrored_kernelcore &&
7455 *zone_start_pfn < zone_movable_pfn[nid] &&
7456 *zone_end_pfn > zone_movable_pfn[nid]) {
7457 *zone_end_pfn = zone_movable_pfn[nid];
7458
7459 /* Check if this whole range is within ZONE_MOVABLE */
7460 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7461 *zone_start_pfn = *zone_end_pfn;
7462 }
7463}
7464
7465/*
7466 * Return the number of pages a zone spans in a node, including holes
7467 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7468 */
7469static unsigned long __init zone_spanned_pages_in_node(int nid,
7470 unsigned long zone_type,
7471 unsigned long node_start_pfn,
7472 unsigned long node_end_pfn,
7473 unsigned long *zone_start_pfn,
7474 unsigned long *zone_end_pfn)
7475{
7476 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7477 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7478 /* When hotadd a new node from cpu_up(), the node should be empty */
7479 if (!node_start_pfn && !node_end_pfn)
7480 return 0;
7481
7482 /* Get the start and end of the zone */
7483 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7484 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7485 adjust_zone_range_for_zone_movable(nid, zone_type,
7486 node_start_pfn, node_end_pfn,
7487 zone_start_pfn, zone_end_pfn);
7488
7489 /* Check that this node has pages within the zone's required range */
7490 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7491 return 0;
7492
7493 /* Move the zone boundaries inside the node if necessary */
7494 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7495 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7496
7497 /* Return the spanned pages */
7498 return *zone_end_pfn - *zone_start_pfn;
7499}
7500
7501/*
7502 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7503 * then all holes in the requested range will be accounted for.
7504 */
7505unsigned long __init __absent_pages_in_range(int nid,
7506 unsigned long range_start_pfn,
7507 unsigned long range_end_pfn)
7508{
7509 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7510 unsigned long start_pfn, end_pfn;
7511 int i;
7512
7513 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7514 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7515 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7516 nr_absent -= end_pfn - start_pfn;
7517 }
7518 return nr_absent;
7519}
7520
7521/**
7522 * absent_pages_in_range - Return number of page frames in holes within a range
7523 * @start_pfn: The start PFN to start searching for holes
7524 * @end_pfn: The end PFN to stop searching for holes
7525 *
7526 * Return: the number of pages frames in memory holes within a range.
7527 */
7528unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7529 unsigned long end_pfn)
7530{
7531 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7532}
7533
7534/* Return the number of page frames in holes in a zone on a node */
7535static unsigned long __init zone_absent_pages_in_node(int nid,
7536 unsigned long zone_type,
7537 unsigned long node_start_pfn,
7538 unsigned long node_end_pfn)
7539{
7540 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7541 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7542 unsigned long zone_start_pfn, zone_end_pfn;
7543 unsigned long nr_absent;
7544
7545 /* When hotadd a new node from cpu_up(), the node should be empty */
7546 if (!node_start_pfn && !node_end_pfn)
7547 return 0;
7548
7549 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7550 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7551
7552 adjust_zone_range_for_zone_movable(nid, zone_type,
7553 node_start_pfn, node_end_pfn,
7554 &zone_start_pfn, &zone_end_pfn);
7555 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7556
7557 /*
7558 * ZONE_MOVABLE handling.
7559 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7560 * and vice versa.
7561 */
7562 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7563 unsigned long start_pfn, end_pfn;
7564 struct memblock_region *r;
7565
7566 for_each_mem_region(r) {
7567 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7568 zone_start_pfn, zone_end_pfn);
7569 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7570 zone_start_pfn, zone_end_pfn);
7571
7572 if (zone_type == ZONE_MOVABLE &&
7573 memblock_is_mirror(r))
7574 nr_absent += end_pfn - start_pfn;
7575
7576 if (zone_type == ZONE_NORMAL &&
7577 !memblock_is_mirror(r))
7578 nr_absent += end_pfn - start_pfn;
7579 }
7580 }
7581
7582 return nr_absent;
7583}
7584
7585static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7586 unsigned long node_start_pfn,
7587 unsigned long node_end_pfn)
7588{
7589 unsigned long realtotalpages = 0, totalpages = 0;
7590 enum zone_type i;
7591
7592 for (i = 0; i < MAX_NR_ZONES; i++) {
7593 struct zone *zone = pgdat->node_zones + i;
7594 unsigned long zone_start_pfn, zone_end_pfn;
7595 unsigned long spanned, absent;
7596 unsigned long size, real_size;
7597
7598 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7599 node_start_pfn,
7600 node_end_pfn,
7601 &zone_start_pfn,
7602 &zone_end_pfn);
7603 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7604 node_start_pfn,
7605 node_end_pfn);
7606
7607 size = spanned;
7608 real_size = size - absent;
7609
7610 if (size)
7611 zone->zone_start_pfn = zone_start_pfn;
7612 else
7613 zone->zone_start_pfn = 0;
7614 zone->spanned_pages = size;
7615 zone->present_pages = real_size;
7616#if defined(CONFIG_MEMORY_HOTPLUG)
7617 zone->present_early_pages = real_size;
7618#endif
7619
7620 totalpages += size;
7621 realtotalpages += real_size;
7622 }
7623
7624 pgdat->node_spanned_pages = totalpages;
7625 pgdat->node_present_pages = realtotalpages;
7626 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7627}
7628
7629#ifndef CONFIG_SPARSEMEM
7630/*
7631 * Calculate the size of the zone->blockflags rounded to an unsigned long
7632 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7633 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7634 * round what is now in bits to nearest long in bits, then return it in
7635 * bytes.
7636 */
7637static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7638{
7639 unsigned long usemapsize;
7640
7641 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7642 usemapsize = roundup(zonesize, pageblock_nr_pages);
7643 usemapsize = usemapsize >> pageblock_order;
7644 usemapsize *= NR_PAGEBLOCK_BITS;
7645 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7646
7647 return usemapsize / 8;
7648}
7649
7650static void __ref setup_usemap(struct zone *zone)
7651{
7652 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7653 zone->spanned_pages);
7654 zone->pageblock_flags = NULL;
7655 if (usemapsize) {
7656 zone->pageblock_flags =
7657 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7658 zone_to_nid(zone));
7659 if (!zone->pageblock_flags)
7660 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7661 usemapsize, zone->name, zone_to_nid(zone));
7662 }
7663}
7664#else
7665static inline void setup_usemap(struct zone *zone) {}
7666#endif /* CONFIG_SPARSEMEM */
7667
7668#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7669
7670/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7671void __init set_pageblock_order(void)
7672{
7673 unsigned int order = MAX_ORDER - 1;
7674
7675 /* Check that pageblock_nr_pages has not already been setup */
7676 if (pageblock_order)
7677 return;
7678
7679 /* Don't let pageblocks exceed the maximum allocation granularity. */
7680 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7681 order = HUGETLB_PAGE_ORDER;
7682
7683 /*
7684 * Assume the largest contiguous order of interest is a huge page.
7685 * This value may be variable depending on boot parameters on IA64 and
7686 * powerpc.
7687 */
7688 pageblock_order = order;
7689}
7690#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7691
7692/*
7693 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7694 * is unused as pageblock_order is set at compile-time. See
7695 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7696 * the kernel config
7697 */
7698void __init set_pageblock_order(void)
7699{
7700}
7701
7702#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7703
7704static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7705 unsigned long present_pages)
7706{
7707 unsigned long pages = spanned_pages;
7708
7709 /*
7710 * Provide a more accurate estimation if there are holes within
7711 * the zone and SPARSEMEM is in use. If there are holes within the
7712 * zone, each populated memory region may cost us one or two extra
7713 * memmap pages due to alignment because memmap pages for each
7714 * populated regions may not be naturally aligned on page boundary.
7715 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7716 */
7717 if (spanned_pages > present_pages + (present_pages >> 4) &&
7718 IS_ENABLED(CONFIG_SPARSEMEM))
7719 pages = present_pages;
7720
7721 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7722}
7723
7724#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7725static void pgdat_init_split_queue(struct pglist_data *pgdat)
7726{
7727 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7728
7729 spin_lock_init(&ds_queue->split_queue_lock);
7730 INIT_LIST_HEAD(&ds_queue->split_queue);
7731 ds_queue->split_queue_len = 0;
7732}
7733#else
7734static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7735#endif
7736
7737#ifdef CONFIG_COMPACTION
7738static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7739{
7740 init_waitqueue_head(&pgdat->kcompactd_wait);
7741}
7742#else
7743static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7744#endif
7745
7746static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7747{
7748 int i;
7749
7750 pgdat_resize_init(pgdat);
7751 pgdat_kswapd_lock_init(pgdat);
7752
7753 pgdat_init_split_queue(pgdat);
7754 pgdat_init_kcompactd(pgdat);
7755
7756 init_waitqueue_head(&pgdat->kswapd_wait);
7757 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7758
7759 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7760 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7761
7762 pgdat_page_ext_init(pgdat);
7763 lruvec_init(&pgdat->__lruvec);
7764}
7765
7766static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7767 unsigned long remaining_pages)
7768{
7769 atomic_long_set(&zone->managed_pages, remaining_pages);
7770 zone_set_nid(zone, nid);
7771 zone->name = zone_names[idx];
7772 zone->zone_pgdat = NODE_DATA(nid);
7773 spin_lock_init(&zone->lock);
7774 zone_seqlock_init(zone);
7775 zone_pcp_init(zone);
7776}
7777
7778/*
7779 * Set up the zone data structures
7780 * - init pgdat internals
7781 * - init all zones belonging to this node
7782 *
7783 * NOTE: this function is only called during memory hotplug
7784 */
7785#ifdef CONFIG_MEMORY_HOTPLUG
7786void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7787{
7788 int nid = pgdat->node_id;
7789 enum zone_type z;
7790 int cpu;
7791
7792 pgdat_init_internals(pgdat);
7793
7794 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7795 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7796
7797 /*
7798 * Reset the nr_zones, order and highest_zoneidx before reuse.
7799 * Note that kswapd will init kswapd_highest_zoneidx properly
7800 * when it starts in the near future.
7801 */
7802 pgdat->nr_zones = 0;
7803 pgdat->kswapd_order = 0;
7804 pgdat->kswapd_highest_zoneidx = 0;
7805 pgdat->node_start_pfn = 0;
7806 for_each_online_cpu(cpu) {
7807 struct per_cpu_nodestat *p;
7808
7809 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7810 memset(p, 0, sizeof(*p));
7811 }
7812
7813 for (z = 0; z < MAX_NR_ZONES; z++)
7814 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7815}
7816#endif
7817
7818/*
7819 * Set up the zone data structures:
7820 * - mark all pages reserved
7821 * - mark all memory queues empty
7822 * - clear the memory bitmaps
7823 *
7824 * NOTE: pgdat should get zeroed by caller.
7825 * NOTE: this function is only called during early init.
7826 */
7827static void __init free_area_init_core(struct pglist_data *pgdat)
7828{
7829 enum zone_type j;
7830 int nid = pgdat->node_id;
7831
7832 pgdat_init_internals(pgdat);
7833 pgdat->per_cpu_nodestats = &boot_nodestats;
7834
7835 for (j = 0; j < MAX_NR_ZONES; j++) {
7836 struct zone *zone = pgdat->node_zones + j;
7837 unsigned long size, freesize, memmap_pages;
7838
7839 size = zone->spanned_pages;
7840 freesize = zone->present_pages;
7841
7842 /*
7843 * Adjust freesize so that it accounts for how much memory
7844 * is used by this zone for memmap. This affects the watermark
7845 * and per-cpu initialisations
7846 */
7847 memmap_pages = calc_memmap_size(size, freesize);
7848 if (!is_highmem_idx(j)) {
7849 if (freesize >= memmap_pages) {
7850 freesize -= memmap_pages;
7851 if (memmap_pages)
7852 pr_debug(" %s zone: %lu pages used for memmap\n",
7853 zone_names[j], memmap_pages);
7854 } else
7855 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7856 zone_names[j], memmap_pages, freesize);
7857 }
7858
7859 /* Account for reserved pages */
7860 if (j == 0 && freesize > dma_reserve) {
7861 freesize -= dma_reserve;
7862 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7863 }
7864
7865 if (!is_highmem_idx(j))
7866 nr_kernel_pages += freesize;
7867 /* Charge for highmem memmap if there are enough kernel pages */
7868 else if (nr_kernel_pages > memmap_pages * 2)
7869 nr_kernel_pages -= memmap_pages;
7870 nr_all_pages += freesize;
7871
7872 /*
7873 * Set an approximate value for lowmem here, it will be adjusted
7874 * when the bootmem allocator frees pages into the buddy system.
7875 * And all highmem pages will be managed by the buddy system.
7876 */
7877 zone_init_internals(zone, j, nid, freesize);
7878
7879 if (!size)
7880 continue;
7881
7882 set_pageblock_order();
7883 setup_usemap(zone);
7884 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7885 }
7886}
7887
7888#ifdef CONFIG_FLATMEM
7889static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7890{
7891 unsigned long __maybe_unused start = 0;
7892 unsigned long __maybe_unused offset = 0;
7893
7894 /* Skip empty nodes */
7895 if (!pgdat->node_spanned_pages)
7896 return;
7897
7898 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7899 offset = pgdat->node_start_pfn - start;
7900 /* ia64 gets its own node_mem_map, before this, without bootmem */
7901 if (!pgdat->node_mem_map) {
7902 unsigned long size, end;
7903 struct page *map;
7904
7905 /*
7906 * The zone's endpoints aren't required to be MAX_ORDER
7907 * aligned but the node_mem_map endpoints must be in order
7908 * for the buddy allocator to function correctly.
7909 */
7910 end = pgdat_end_pfn(pgdat);
7911 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7912 size = (end - start) * sizeof(struct page);
7913 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7914 pgdat->node_id, false);
7915 if (!map)
7916 panic("Failed to allocate %ld bytes for node %d memory map\n",
7917 size, pgdat->node_id);
7918 pgdat->node_mem_map = map + offset;
7919 }
7920 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7921 __func__, pgdat->node_id, (unsigned long)pgdat,
7922 (unsigned long)pgdat->node_mem_map);
7923#ifndef CONFIG_NUMA
7924 /*
7925 * With no DISCONTIG, the global mem_map is just set as node 0's
7926 */
7927 if (pgdat == NODE_DATA(0)) {
7928 mem_map = NODE_DATA(0)->node_mem_map;
7929 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7930 mem_map -= offset;
7931 }
7932#endif
7933}
7934#else
7935static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7936#endif /* CONFIG_FLATMEM */
7937
7938#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7939static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7940{
7941 pgdat->first_deferred_pfn = ULONG_MAX;
7942}
7943#else
7944static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7945#endif
7946
7947static void __init free_area_init_node(int nid)
7948{
7949 pg_data_t *pgdat = NODE_DATA(nid);
7950 unsigned long start_pfn = 0;
7951 unsigned long end_pfn = 0;
7952
7953 /* pg_data_t should be reset to zero when it's allocated */
7954 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7955
7956 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7957
7958 pgdat->node_id = nid;
7959 pgdat->node_start_pfn = start_pfn;
7960 pgdat->per_cpu_nodestats = NULL;
7961
7962 if (start_pfn != end_pfn) {
7963 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7964 (u64)start_pfn << PAGE_SHIFT,
7965 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7966 } else {
7967 pr_info("Initmem setup node %d as memoryless\n", nid);
7968 }
7969
7970 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7971
7972 alloc_node_mem_map(pgdat);
7973 pgdat_set_deferred_range(pgdat);
7974
7975 free_area_init_core(pgdat);
7976 lru_gen_init_pgdat(pgdat);
7977}
7978
7979static void __init free_area_init_memoryless_node(int nid)
7980{
7981 free_area_init_node(nid);
7982}
7983
7984#if MAX_NUMNODES > 1
7985/*
7986 * Figure out the number of possible node ids.
7987 */
7988void __init setup_nr_node_ids(void)
7989{
7990 unsigned int highest;
7991
7992 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7993 nr_node_ids = highest + 1;
7994}
7995#endif
7996
7997/**
7998 * node_map_pfn_alignment - determine the maximum internode alignment
7999 *
8000 * This function should be called after node map is populated and sorted.
8001 * It calculates the maximum power of two alignment which can distinguish
8002 * all the nodes.
8003 *
8004 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
8005 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
8006 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
8007 * shifted, 1GiB is enough and this function will indicate so.
8008 *
8009 * This is used to test whether pfn -> nid mapping of the chosen memory
8010 * model has fine enough granularity to avoid incorrect mapping for the
8011 * populated node map.
8012 *
8013 * Return: the determined alignment in pfn's. 0 if there is no alignment
8014 * requirement (single node).
8015 */
8016unsigned long __init node_map_pfn_alignment(void)
8017{
8018 unsigned long accl_mask = 0, last_end = 0;
8019 unsigned long start, end, mask;
8020 int last_nid = NUMA_NO_NODE;
8021 int i, nid;
8022
8023 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
8024 if (!start || last_nid < 0 || last_nid == nid) {
8025 last_nid = nid;
8026 last_end = end;
8027 continue;
8028 }
8029
8030 /*
8031 * Start with a mask granular enough to pin-point to the
8032 * start pfn and tick off bits one-by-one until it becomes
8033 * too coarse to separate the current node from the last.
8034 */
8035 mask = ~((1 << __ffs(start)) - 1);
8036 while (mask && last_end <= (start & (mask << 1)))
8037 mask <<= 1;
8038
8039 /* accumulate all internode masks */
8040 accl_mask |= mask;
8041 }
8042
8043 /* convert mask to number of pages */
8044 return ~accl_mask + 1;
8045}
8046
8047/*
8048 * early_calculate_totalpages()
8049 * Sum pages in active regions for movable zone.
8050 * Populate N_MEMORY for calculating usable_nodes.
8051 */
8052static unsigned long __init early_calculate_totalpages(void)
8053{
8054 unsigned long totalpages = 0;
8055 unsigned long start_pfn, end_pfn;
8056 int i, nid;
8057
8058 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8059 unsigned long pages = end_pfn - start_pfn;
8060
8061 totalpages += pages;
8062 if (pages)
8063 node_set_state(nid, N_MEMORY);
8064 }
8065 return totalpages;
8066}
8067
8068/*
8069 * Find the PFN the Movable zone begins in each node. Kernel memory
8070 * is spread evenly between nodes as long as the nodes have enough
8071 * memory. When they don't, some nodes will have more kernelcore than
8072 * others
8073 */
8074static void __init find_zone_movable_pfns_for_nodes(void)
8075{
8076 int i, nid;
8077 unsigned long usable_startpfn;
8078 unsigned long kernelcore_node, kernelcore_remaining;
8079 /* save the state before borrow the nodemask */
8080 nodemask_t saved_node_state = node_states[N_MEMORY];
8081 unsigned long totalpages = early_calculate_totalpages();
8082 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8083 struct memblock_region *r;
8084
8085 /* Need to find movable_zone earlier when movable_node is specified. */
8086 find_usable_zone_for_movable();
8087
8088 /*
8089 * If movable_node is specified, ignore kernelcore and movablecore
8090 * options.
8091 */
8092 if (movable_node_is_enabled()) {
8093 for_each_mem_region(r) {
8094 if (!memblock_is_hotpluggable(r))
8095 continue;
8096
8097 nid = memblock_get_region_node(r);
8098
8099 usable_startpfn = PFN_DOWN(r->base);
8100 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8101 min(usable_startpfn, zone_movable_pfn[nid]) :
8102 usable_startpfn;
8103 }
8104
8105 goto out2;
8106 }
8107
8108 /*
8109 * If kernelcore=mirror is specified, ignore movablecore option
8110 */
8111 if (mirrored_kernelcore) {
8112 bool mem_below_4gb_not_mirrored = false;
8113
8114 for_each_mem_region(r) {
8115 if (memblock_is_mirror(r))
8116 continue;
8117
8118 nid = memblock_get_region_node(r);
8119
8120 usable_startpfn = memblock_region_memory_base_pfn(r);
8121
8122 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8123 mem_below_4gb_not_mirrored = true;
8124 continue;
8125 }
8126
8127 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8128 min(usable_startpfn, zone_movable_pfn[nid]) :
8129 usable_startpfn;
8130 }
8131
8132 if (mem_below_4gb_not_mirrored)
8133 pr_warn("This configuration results in unmirrored kernel memory.\n");
8134
8135 goto out2;
8136 }
8137
8138 /*
8139 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8140 * amount of necessary memory.
8141 */
8142 if (required_kernelcore_percent)
8143 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8144 10000UL;
8145 if (required_movablecore_percent)
8146 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8147 10000UL;
8148
8149 /*
8150 * If movablecore= was specified, calculate what size of
8151 * kernelcore that corresponds so that memory usable for
8152 * any allocation type is evenly spread. If both kernelcore
8153 * and movablecore are specified, then the value of kernelcore
8154 * will be used for required_kernelcore if it's greater than
8155 * what movablecore would have allowed.
8156 */
8157 if (required_movablecore) {
8158 unsigned long corepages;
8159
8160 /*
8161 * Round-up so that ZONE_MOVABLE is at least as large as what
8162 * was requested by the user
8163 */
8164 required_movablecore =
8165 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8166 required_movablecore = min(totalpages, required_movablecore);
8167 corepages = totalpages - required_movablecore;
8168
8169 required_kernelcore = max(required_kernelcore, corepages);
8170 }
8171
8172 /*
8173 * If kernelcore was not specified or kernelcore size is larger
8174 * than totalpages, there is no ZONE_MOVABLE.
8175 */
8176 if (!required_kernelcore || required_kernelcore >= totalpages)
8177 goto out;
8178
8179 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8180 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8181
8182restart:
8183 /* Spread kernelcore memory as evenly as possible throughout nodes */
8184 kernelcore_node = required_kernelcore / usable_nodes;
8185 for_each_node_state(nid, N_MEMORY) {
8186 unsigned long start_pfn, end_pfn;
8187
8188 /*
8189 * Recalculate kernelcore_node if the division per node
8190 * now exceeds what is necessary to satisfy the requested
8191 * amount of memory for the kernel
8192 */
8193 if (required_kernelcore < kernelcore_node)
8194 kernelcore_node = required_kernelcore / usable_nodes;
8195
8196 /*
8197 * As the map is walked, we track how much memory is usable
8198 * by the kernel using kernelcore_remaining. When it is
8199 * 0, the rest of the node is usable by ZONE_MOVABLE
8200 */
8201 kernelcore_remaining = kernelcore_node;
8202
8203 /* Go through each range of PFNs within this node */
8204 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8205 unsigned long size_pages;
8206
8207 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8208 if (start_pfn >= end_pfn)
8209 continue;
8210
8211 /* Account for what is only usable for kernelcore */
8212 if (start_pfn < usable_startpfn) {
8213 unsigned long kernel_pages;
8214 kernel_pages = min(end_pfn, usable_startpfn)
8215 - start_pfn;
8216
8217 kernelcore_remaining -= min(kernel_pages,
8218 kernelcore_remaining);
8219 required_kernelcore -= min(kernel_pages,
8220 required_kernelcore);
8221
8222 /* Continue if range is now fully accounted */
8223 if (end_pfn <= usable_startpfn) {
8224
8225 /*
8226 * Push zone_movable_pfn to the end so
8227 * that if we have to rebalance
8228 * kernelcore across nodes, we will
8229 * not double account here
8230 */
8231 zone_movable_pfn[nid] = end_pfn;
8232 continue;
8233 }
8234 start_pfn = usable_startpfn;
8235 }
8236
8237 /*
8238 * The usable PFN range for ZONE_MOVABLE is from
8239 * start_pfn->end_pfn. Calculate size_pages as the
8240 * number of pages used as kernelcore
8241 */
8242 size_pages = end_pfn - start_pfn;
8243 if (size_pages > kernelcore_remaining)
8244 size_pages = kernelcore_remaining;
8245 zone_movable_pfn[nid] = start_pfn + size_pages;
8246
8247 /*
8248 * Some kernelcore has been met, update counts and
8249 * break if the kernelcore for this node has been
8250 * satisfied
8251 */
8252 required_kernelcore -= min(required_kernelcore,
8253 size_pages);
8254 kernelcore_remaining -= size_pages;
8255 if (!kernelcore_remaining)
8256 break;
8257 }
8258 }
8259
8260 /*
8261 * If there is still required_kernelcore, we do another pass with one
8262 * less node in the count. This will push zone_movable_pfn[nid] further
8263 * along on the nodes that still have memory until kernelcore is
8264 * satisfied
8265 */
8266 usable_nodes--;
8267 if (usable_nodes && required_kernelcore > usable_nodes)
8268 goto restart;
8269
8270out2:
8271 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8272 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8273 unsigned long start_pfn, end_pfn;
8274
8275 zone_movable_pfn[nid] =
8276 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8277
8278 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8279 if (zone_movable_pfn[nid] >= end_pfn)
8280 zone_movable_pfn[nid] = 0;
8281 }
8282
8283out:
8284 /* restore the node_state */
8285 node_states[N_MEMORY] = saved_node_state;
8286}
8287
8288/* Any regular or high memory on that node ? */
8289static void check_for_memory(pg_data_t *pgdat, int nid)
8290{
8291 enum zone_type zone_type;
8292
8293 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8294 struct zone *zone = &pgdat->node_zones[zone_type];
8295 if (populated_zone(zone)) {
8296 if (IS_ENABLED(CONFIG_HIGHMEM))
8297 node_set_state(nid, N_HIGH_MEMORY);
8298 if (zone_type <= ZONE_NORMAL)
8299 node_set_state(nid, N_NORMAL_MEMORY);
8300 break;
8301 }
8302 }
8303}
8304
8305/*
8306 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8307 * such cases we allow max_zone_pfn sorted in the descending order
8308 */
8309bool __weak arch_has_descending_max_zone_pfns(void)
8310{
8311 return false;
8312}
8313
8314/**
8315 * free_area_init - Initialise all pg_data_t and zone data
8316 * @max_zone_pfn: an array of max PFNs for each zone
8317 *
8318 * This will call free_area_init_node() for each active node in the system.
8319 * Using the page ranges provided by memblock_set_node(), the size of each
8320 * zone in each node and their holes is calculated. If the maximum PFN
8321 * between two adjacent zones match, it is assumed that the zone is empty.
8322 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8323 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8324 * starts where the previous one ended. For example, ZONE_DMA32 starts
8325 * at arch_max_dma_pfn.
8326 */
8327void __init free_area_init(unsigned long *max_zone_pfn)
8328{
8329 unsigned long start_pfn, end_pfn;
8330 int i, nid, zone;
8331 bool descending;
8332
8333 /* Record where the zone boundaries are */
8334 memset(arch_zone_lowest_possible_pfn, 0,
8335 sizeof(arch_zone_lowest_possible_pfn));
8336 memset(arch_zone_highest_possible_pfn, 0,
8337 sizeof(arch_zone_highest_possible_pfn));
8338
8339 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8340 descending = arch_has_descending_max_zone_pfns();
8341
8342 for (i = 0; i < MAX_NR_ZONES; i++) {
8343 if (descending)
8344 zone = MAX_NR_ZONES - i - 1;
8345 else
8346 zone = i;
8347
8348 if (zone == ZONE_MOVABLE)
8349 continue;
8350
8351 end_pfn = max(max_zone_pfn[zone], start_pfn);
8352 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8353 arch_zone_highest_possible_pfn[zone] = end_pfn;
8354
8355 start_pfn = end_pfn;
8356 }
8357
8358 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8359 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8360 find_zone_movable_pfns_for_nodes();
8361
8362 /* Print out the zone ranges */
8363 pr_info("Zone ranges:\n");
8364 for (i = 0; i < MAX_NR_ZONES; i++) {
8365 if (i == ZONE_MOVABLE)
8366 continue;
8367 pr_info(" %-8s ", zone_names[i]);
8368 if (arch_zone_lowest_possible_pfn[i] ==
8369 arch_zone_highest_possible_pfn[i])
8370 pr_cont("empty\n");
8371 else
8372 pr_cont("[mem %#018Lx-%#018Lx]\n",
8373 (u64)arch_zone_lowest_possible_pfn[i]
8374 << PAGE_SHIFT,
8375 ((u64)arch_zone_highest_possible_pfn[i]
8376 << PAGE_SHIFT) - 1);
8377 }
8378
8379 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8380 pr_info("Movable zone start for each node\n");
8381 for (i = 0; i < MAX_NUMNODES; i++) {
8382 if (zone_movable_pfn[i])
8383 pr_info(" Node %d: %#018Lx\n", i,
8384 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8385 }
8386
8387 /*
8388 * Print out the early node map, and initialize the
8389 * subsection-map relative to active online memory ranges to
8390 * enable future "sub-section" extensions of the memory map.
8391 */
8392 pr_info("Early memory node ranges\n");
8393 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8394 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8395 (u64)start_pfn << PAGE_SHIFT,
8396 ((u64)end_pfn << PAGE_SHIFT) - 1);
8397 subsection_map_init(start_pfn, end_pfn - start_pfn);
8398 }
8399
8400 /* Initialise every node */
8401 mminit_verify_pageflags_layout();
8402 setup_nr_node_ids();
8403 for_each_node(nid) {
8404 pg_data_t *pgdat;
8405
8406 if (!node_online(nid)) {
8407 pr_info("Initializing node %d as memoryless\n", nid);
8408
8409 /* Allocator not initialized yet */
8410 pgdat = arch_alloc_nodedata(nid);
8411 if (!pgdat)
8412 panic("Cannot allocate %zuB for node %d.\n",
8413 sizeof(*pgdat), nid);
8414 arch_refresh_nodedata(nid, pgdat);
8415 free_area_init_memoryless_node(nid);
8416
8417 /*
8418 * We do not want to confuse userspace by sysfs
8419 * files/directories for node without any memory
8420 * attached to it, so this node is not marked as
8421 * N_MEMORY and not marked online so that no sysfs
8422 * hierarchy will be created via register_one_node for
8423 * it. The pgdat will get fully initialized by
8424 * hotadd_init_pgdat() when memory is hotplugged into
8425 * this node.
8426 */
8427 continue;
8428 }
8429
8430 pgdat = NODE_DATA(nid);
8431 free_area_init_node(nid);
8432
8433 /* Any memory on that node */
8434 if (pgdat->node_present_pages)
8435 node_set_state(nid, N_MEMORY);
8436 check_for_memory(pgdat, nid);
8437 }
8438
8439 memmap_init();
8440}
8441
8442static int __init cmdline_parse_core(char *p, unsigned long *core,
8443 unsigned long *percent)
8444{
8445 unsigned long long coremem;
8446 char *endptr;
8447
8448 if (!p)
8449 return -EINVAL;
8450
8451 /* Value may be a percentage of total memory, otherwise bytes */
8452 coremem = simple_strtoull(p, &endptr, 0);
8453 if (*endptr == '%') {
8454 /* Paranoid check for percent values greater than 100 */
8455 WARN_ON(coremem > 100);
8456
8457 *percent = coremem;
8458 } else {
8459 coremem = memparse(p, &p);
8460 /* Paranoid check that UL is enough for the coremem value */
8461 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8462
8463 *core = coremem >> PAGE_SHIFT;
8464 *percent = 0UL;
8465 }
8466 return 0;
8467}
8468
8469/*
8470 * kernelcore=size sets the amount of memory for use for allocations that
8471 * cannot be reclaimed or migrated.
8472 */
8473static int __init cmdline_parse_kernelcore(char *p)
8474{
8475 /* parse kernelcore=mirror */
8476 if (parse_option_str(p, "mirror")) {
8477 mirrored_kernelcore = true;
8478 return 0;
8479 }
8480
8481 return cmdline_parse_core(p, &required_kernelcore,
8482 &required_kernelcore_percent);
8483}
8484
8485/*
8486 * movablecore=size sets the amount of memory for use for allocations that
8487 * can be reclaimed or migrated.
8488 */
8489static int __init cmdline_parse_movablecore(char *p)
8490{
8491 return cmdline_parse_core(p, &required_movablecore,
8492 &required_movablecore_percent);
8493}
8494
8495early_param("kernelcore", cmdline_parse_kernelcore);
8496early_param("movablecore", cmdline_parse_movablecore);
8497
8498void adjust_managed_page_count(struct page *page, long count)
8499{
8500 atomic_long_add(count, &page_zone(page)->managed_pages);
8501 totalram_pages_add(count);
8502#ifdef CONFIG_HIGHMEM
8503 if (PageHighMem(page))
8504 totalhigh_pages_add(count);
8505#endif
8506}
8507EXPORT_SYMBOL(adjust_managed_page_count);
8508
8509unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8510{
8511 void *pos;
8512 unsigned long pages = 0;
8513
8514 start = (void *)PAGE_ALIGN((unsigned long)start);
8515 end = (void *)((unsigned long)end & PAGE_MASK);
8516 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8517 struct page *page = virt_to_page(pos);
8518 void *direct_map_addr;
8519
8520 /*
8521 * 'direct_map_addr' might be different from 'pos'
8522 * because some architectures' virt_to_page()
8523 * work with aliases. Getting the direct map
8524 * address ensures that we get a _writeable_
8525 * alias for the memset().
8526 */
8527 direct_map_addr = page_address(page);
8528 /*
8529 * Perform a kasan-unchecked memset() since this memory
8530 * has not been initialized.
8531 */
8532 direct_map_addr = kasan_reset_tag(direct_map_addr);
8533 if ((unsigned int)poison <= 0xFF)
8534 memset(direct_map_addr, poison, PAGE_SIZE);
8535
8536 free_reserved_page(page);
8537 }
8538
8539 if (pages && s)
8540 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8541
8542 return pages;
8543}
8544
8545void __init mem_init_print_info(void)
8546{
8547 unsigned long physpages, codesize, datasize, rosize, bss_size;
8548 unsigned long init_code_size, init_data_size;
8549
8550 physpages = get_num_physpages();
8551 codesize = _etext - _stext;
8552 datasize = _edata - _sdata;
8553 rosize = __end_rodata - __start_rodata;
8554 bss_size = __bss_stop - __bss_start;
8555 init_data_size = __init_end - __init_begin;
8556 init_code_size = _einittext - _sinittext;
8557
8558 /*
8559 * Detect special cases and adjust section sizes accordingly:
8560 * 1) .init.* may be embedded into .data sections
8561 * 2) .init.text.* may be out of [__init_begin, __init_end],
8562 * please refer to arch/tile/kernel/vmlinux.lds.S.
8563 * 3) .rodata.* may be embedded into .text or .data sections.
8564 */
8565#define adj_init_size(start, end, size, pos, adj) \
8566 do { \
8567 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8568 size -= adj; \
8569 } while (0)
8570
8571 adj_init_size(__init_begin, __init_end, init_data_size,
8572 _sinittext, init_code_size);
8573 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8574 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8575 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8576 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8577
8578#undef adj_init_size
8579
8580 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8581#ifdef CONFIG_HIGHMEM
8582 ", %luK highmem"
8583#endif
8584 ")\n",
8585 K(nr_free_pages()), K(physpages),
8586 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8587 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8588 K(physpages - totalram_pages() - totalcma_pages),
8589 K(totalcma_pages)
8590#ifdef CONFIG_HIGHMEM
8591 , K(totalhigh_pages())
8592#endif
8593 );
8594}
8595
8596/**
8597 * set_dma_reserve - set the specified number of pages reserved in the first zone
8598 * @new_dma_reserve: The number of pages to mark reserved
8599 *
8600 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8601 * In the DMA zone, a significant percentage may be consumed by kernel image
8602 * and other unfreeable allocations which can skew the watermarks badly. This
8603 * function may optionally be used to account for unfreeable pages in the
8604 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8605 * smaller per-cpu batchsize.
8606 */
8607void __init set_dma_reserve(unsigned long new_dma_reserve)
8608{
8609 dma_reserve = new_dma_reserve;
8610}
8611
8612static int page_alloc_cpu_dead(unsigned int cpu)
8613{
8614 struct zone *zone;
8615
8616 lru_add_drain_cpu(cpu);
8617 mlock_drain_remote(cpu);
8618 drain_pages(cpu);
8619
8620 /*
8621 * Spill the event counters of the dead processor
8622 * into the current processors event counters.
8623 * This artificially elevates the count of the current
8624 * processor.
8625 */
8626 vm_events_fold_cpu(cpu);
8627
8628 /*
8629 * Zero the differential counters of the dead processor
8630 * so that the vm statistics are consistent.
8631 *
8632 * This is only okay since the processor is dead and cannot
8633 * race with what we are doing.
8634 */
8635 cpu_vm_stats_fold(cpu);
8636
8637 for_each_populated_zone(zone)
8638 zone_pcp_update(zone, 0);
8639
8640 return 0;
8641}
8642
8643static int page_alloc_cpu_online(unsigned int cpu)
8644{
8645 struct zone *zone;
8646
8647 for_each_populated_zone(zone)
8648 zone_pcp_update(zone, 1);
8649 return 0;
8650}
8651
8652#ifdef CONFIG_NUMA
8653int hashdist = HASHDIST_DEFAULT;
8654
8655static int __init set_hashdist(char *str)
8656{
8657 if (!str)
8658 return 0;
8659 hashdist = simple_strtoul(str, &str, 0);
8660 return 1;
8661}
8662__setup("hashdist=", set_hashdist);
8663#endif
8664
8665void __init page_alloc_init(void)
8666{
8667 int ret;
8668
8669#ifdef CONFIG_NUMA
8670 if (num_node_state(N_MEMORY) == 1)
8671 hashdist = 0;
8672#endif
8673
8674 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8675 "mm/page_alloc:pcp",
8676 page_alloc_cpu_online,
8677 page_alloc_cpu_dead);
8678 WARN_ON(ret < 0);
8679}
8680
8681/*
8682 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8683 * or min_free_kbytes changes.
8684 */
8685static void calculate_totalreserve_pages(void)
8686{
8687 struct pglist_data *pgdat;
8688 unsigned long reserve_pages = 0;
8689 enum zone_type i, j;
8690
8691 for_each_online_pgdat(pgdat) {
8692
8693 pgdat->totalreserve_pages = 0;
8694
8695 for (i = 0; i < MAX_NR_ZONES; i++) {
8696 struct zone *zone = pgdat->node_zones + i;
8697 long max = 0;
8698 unsigned long managed_pages = zone_managed_pages(zone);
8699
8700 /* Find valid and maximum lowmem_reserve in the zone */
8701 for (j = i; j < MAX_NR_ZONES; j++) {
8702 if (zone->lowmem_reserve[j] > max)
8703 max = zone->lowmem_reserve[j];
8704 }
8705
8706 /* we treat the high watermark as reserved pages. */
8707 max += high_wmark_pages(zone);
8708
8709 if (max > managed_pages)
8710 max = managed_pages;
8711
8712 pgdat->totalreserve_pages += max;
8713
8714 reserve_pages += max;
8715 }
8716 }
8717 totalreserve_pages = reserve_pages;
8718}
8719
8720/*
8721 * setup_per_zone_lowmem_reserve - called whenever
8722 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8723 * has a correct pages reserved value, so an adequate number of
8724 * pages are left in the zone after a successful __alloc_pages().
8725 */
8726static void setup_per_zone_lowmem_reserve(void)
8727{
8728 struct pglist_data *pgdat;
8729 enum zone_type i, j;
8730
8731 for_each_online_pgdat(pgdat) {
8732 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8733 struct zone *zone = &pgdat->node_zones[i];
8734 int ratio = sysctl_lowmem_reserve_ratio[i];
8735 bool clear = !ratio || !zone_managed_pages(zone);
8736 unsigned long managed_pages = 0;
8737
8738 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8739 struct zone *upper_zone = &pgdat->node_zones[j];
8740
8741 managed_pages += zone_managed_pages(upper_zone);
8742
8743 if (clear)
8744 zone->lowmem_reserve[j] = 0;
8745 else
8746 zone->lowmem_reserve[j] = managed_pages / ratio;
8747 }
8748 }
8749 }
8750
8751 /* update totalreserve_pages */
8752 calculate_totalreserve_pages();
8753}
8754
8755static void __setup_per_zone_wmarks(void)
8756{
8757 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8758 unsigned long lowmem_pages = 0;
8759 struct zone *zone;
8760 unsigned long flags;
8761
8762 /* Calculate total number of !ZONE_HIGHMEM pages */
8763 for_each_zone(zone) {
8764 if (!is_highmem(zone))
8765 lowmem_pages += zone_managed_pages(zone);
8766 }
8767
8768 for_each_zone(zone) {
8769 u64 tmp;
8770
8771 spin_lock_irqsave(&zone->lock, flags);
8772 tmp = (u64)pages_min * zone_managed_pages(zone);
8773 do_div(tmp, lowmem_pages);
8774 if (is_highmem(zone)) {
8775 /*
8776 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8777 * need highmem pages, so cap pages_min to a small
8778 * value here.
8779 *
8780 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8781 * deltas control async page reclaim, and so should
8782 * not be capped for highmem.
8783 */
8784 unsigned long min_pages;
8785
8786 min_pages = zone_managed_pages(zone) / 1024;
8787 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8788 zone->_watermark[WMARK_MIN] = min_pages;
8789 } else {
8790 /*
8791 * If it's a lowmem zone, reserve a number of pages
8792 * proportionate to the zone's size.
8793 */
8794 zone->_watermark[WMARK_MIN] = tmp;
8795 }
8796
8797 /*
8798 * Set the kswapd watermarks distance according to the
8799 * scale factor in proportion to available memory, but
8800 * ensure a minimum size on small systems.
8801 */
8802 tmp = max_t(u64, tmp >> 2,
8803 mult_frac(zone_managed_pages(zone),
8804 watermark_scale_factor, 10000));
8805
8806 zone->watermark_boost = 0;
8807 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8808 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8809 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8810
8811 spin_unlock_irqrestore(&zone->lock, flags);
8812 }
8813
8814 /* update totalreserve_pages */
8815 calculate_totalreserve_pages();
8816}
8817
8818/**
8819 * setup_per_zone_wmarks - called when min_free_kbytes changes
8820 * or when memory is hot-{added|removed}
8821 *
8822 * Ensures that the watermark[min,low,high] values for each zone are set
8823 * correctly with respect to min_free_kbytes.
8824 */
8825void setup_per_zone_wmarks(void)
8826{
8827 struct zone *zone;
8828 static DEFINE_SPINLOCK(lock);
8829
8830 spin_lock(&lock);
8831 __setup_per_zone_wmarks();
8832 spin_unlock(&lock);
8833
8834 /*
8835 * The watermark size have changed so update the pcpu batch
8836 * and high limits or the limits may be inappropriate.
8837 */
8838 for_each_zone(zone)
8839 zone_pcp_update(zone, 0);
8840}
8841
8842/*
8843 * Initialise min_free_kbytes.
8844 *
8845 * For small machines we want it small (128k min). For large machines
8846 * we want it large (256MB max). But it is not linear, because network
8847 * bandwidth does not increase linearly with machine size. We use
8848 *
8849 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8850 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8851 *
8852 * which yields
8853 *
8854 * 16MB: 512k
8855 * 32MB: 724k
8856 * 64MB: 1024k
8857 * 128MB: 1448k
8858 * 256MB: 2048k
8859 * 512MB: 2896k
8860 * 1024MB: 4096k
8861 * 2048MB: 5792k
8862 * 4096MB: 8192k
8863 * 8192MB: 11584k
8864 * 16384MB: 16384k
8865 */
8866void calculate_min_free_kbytes(void)
8867{
8868 unsigned long lowmem_kbytes;
8869 int new_min_free_kbytes;
8870
8871 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8872 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8873
8874 if (new_min_free_kbytes > user_min_free_kbytes)
8875 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8876 else
8877 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8878 new_min_free_kbytes, user_min_free_kbytes);
8879
8880}
8881
8882int __meminit init_per_zone_wmark_min(void)
8883{
8884 calculate_min_free_kbytes();
8885 setup_per_zone_wmarks();
8886 refresh_zone_stat_thresholds();
8887 setup_per_zone_lowmem_reserve();
8888
8889#ifdef CONFIG_NUMA
8890 setup_min_unmapped_ratio();
8891 setup_min_slab_ratio();
8892#endif
8893
8894 khugepaged_min_free_kbytes_update();
8895
8896 return 0;
8897}
8898postcore_initcall(init_per_zone_wmark_min)
8899
8900/*
8901 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8902 * that we can call two helper functions whenever min_free_kbytes
8903 * changes.
8904 */
8905int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8906 void *buffer, size_t *length, loff_t *ppos)
8907{
8908 int rc;
8909
8910 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8911 if (rc)
8912 return rc;
8913
8914 if (write) {
8915 user_min_free_kbytes = min_free_kbytes;
8916 setup_per_zone_wmarks();
8917 }
8918 return 0;
8919}
8920
8921int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8922 void *buffer, size_t *length, loff_t *ppos)
8923{
8924 int rc;
8925
8926 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8927 if (rc)
8928 return rc;
8929
8930 if (write)
8931 setup_per_zone_wmarks();
8932
8933 return 0;
8934}
8935
8936#ifdef CONFIG_NUMA
8937static void setup_min_unmapped_ratio(void)
8938{
8939 pg_data_t *pgdat;
8940 struct zone *zone;
8941
8942 for_each_online_pgdat(pgdat)
8943 pgdat->min_unmapped_pages = 0;
8944
8945 for_each_zone(zone)
8946 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8947 sysctl_min_unmapped_ratio) / 100;
8948}
8949
8950
8951int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8952 void *buffer, size_t *length, loff_t *ppos)
8953{
8954 int rc;
8955
8956 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8957 if (rc)
8958 return rc;
8959
8960 setup_min_unmapped_ratio();
8961
8962 return 0;
8963}
8964
8965static void setup_min_slab_ratio(void)
8966{
8967 pg_data_t *pgdat;
8968 struct zone *zone;
8969
8970 for_each_online_pgdat(pgdat)
8971 pgdat->min_slab_pages = 0;
8972
8973 for_each_zone(zone)
8974 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8975 sysctl_min_slab_ratio) / 100;
8976}
8977
8978int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8979 void *buffer, size_t *length, loff_t *ppos)
8980{
8981 int rc;
8982
8983 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8984 if (rc)
8985 return rc;
8986
8987 setup_min_slab_ratio();
8988
8989 return 0;
8990}
8991#endif
8992
8993/*
8994 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8995 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8996 * whenever sysctl_lowmem_reserve_ratio changes.
8997 *
8998 * The reserve ratio obviously has absolutely no relation with the
8999 * minimum watermarks. The lowmem reserve ratio can only make sense
9000 * if in function of the boot time zone sizes.
9001 */
9002int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
9003 void *buffer, size_t *length, loff_t *ppos)
9004{
9005 int i;
9006
9007 proc_dointvec_minmax(table, write, buffer, length, ppos);
9008
9009 for (i = 0; i < MAX_NR_ZONES; i++) {
9010 if (sysctl_lowmem_reserve_ratio[i] < 1)
9011 sysctl_lowmem_reserve_ratio[i] = 0;
9012 }
9013
9014 setup_per_zone_lowmem_reserve();
9015 return 0;
9016}
9017
9018/*
9019 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
9020 * cpu. It is the fraction of total pages in each zone that a hot per cpu
9021 * pagelist can have before it gets flushed back to buddy allocator.
9022 */
9023int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
9024 int write, void *buffer, size_t *length, loff_t *ppos)
9025{
9026 struct zone *zone;
9027 int old_percpu_pagelist_high_fraction;
9028 int ret;
9029
9030 mutex_lock(&pcp_batch_high_lock);
9031 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
9032
9033 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
9034 if (!write || ret < 0)
9035 goto out;
9036
9037 /* Sanity checking to avoid pcp imbalance */
9038 if (percpu_pagelist_high_fraction &&
9039 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
9040 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
9041 ret = -EINVAL;
9042 goto out;
9043 }
9044
9045 /* No change? */
9046 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
9047 goto out;
9048
9049 for_each_populated_zone(zone)
9050 zone_set_pageset_high_and_batch(zone, 0);
9051out:
9052 mutex_unlock(&pcp_batch_high_lock);
9053 return ret;
9054}
9055
9056#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9057/*
9058 * Returns the number of pages that arch has reserved but
9059 * is not known to alloc_large_system_hash().
9060 */
9061static unsigned long __init arch_reserved_kernel_pages(void)
9062{
9063 return 0;
9064}
9065#endif
9066
9067/*
9068 * Adaptive scale is meant to reduce sizes of hash tables on large memory
9069 * machines. As memory size is increased the scale is also increased but at
9070 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
9071 * quadruples the scale is increased by one, which means the size of hash table
9072 * only doubles, instead of quadrupling as well.
9073 * Because 32-bit systems cannot have large physical memory, where this scaling
9074 * makes sense, it is disabled on such platforms.
9075 */
9076#if __BITS_PER_LONG > 32
9077#define ADAPT_SCALE_BASE (64ul << 30)
9078#define ADAPT_SCALE_SHIFT 2
9079#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
9080#endif
9081
9082/*
9083 * allocate a large system hash table from bootmem
9084 * - it is assumed that the hash table must contain an exact power-of-2
9085 * quantity of entries
9086 * - limit is the number of hash buckets, not the total allocation size
9087 */
9088void *__init alloc_large_system_hash(const char *tablename,
9089 unsigned long bucketsize,
9090 unsigned long numentries,
9091 int scale,
9092 int flags,
9093 unsigned int *_hash_shift,
9094 unsigned int *_hash_mask,
9095 unsigned long low_limit,
9096 unsigned long high_limit)
9097{
9098 unsigned long long max = high_limit;
9099 unsigned long log2qty, size;
9100 void *table;
9101 gfp_t gfp_flags;
9102 bool virt;
9103 bool huge;
9104
9105 /* allow the kernel cmdline to have a say */
9106 if (!numentries) {
9107 /* round applicable memory size up to nearest megabyte */
9108 numentries = nr_kernel_pages;
9109 numentries -= arch_reserved_kernel_pages();
9110
9111 /* It isn't necessary when PAGE_SIZE >= 1MB */
9112 if (PAGE_SIZE < SZ_1M)
9113 numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9114
9115#if __BITS_PER_LONG > 32
9116 if (!high_limit) {
9117 unsigned long adapt;
9118
9119 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9120 adapt <<= ADAPT_SCALE_SHIFT)
9121 scale++;
9122 }
9123#endif
9124
9125 /* limit to 1 bucket per 2^scale bytes of low memory */
9126 if (scale > PAGE_SHIFT)
9127 numentries >>= (scale - PAGE_SHIFT);
9128 else
9129 numentries <<= (PAGE_SHIFT - scale);
9130
9131 /* Make sure we've got at least a 0-order allocation.. */
9132 if (unlikely(flags & HASH_SMALL)) {
9133 /* Makes no sense without HASH_EARLY */
9134 WARN_ON(!(flags & HASH_EARLY));
9135 if (!(numentries >> *_hash_shift)) {
9136 numentries = 1UL << *_hash_shift;
9137 BUG_ON(!numentries);
9138 }
9139 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9140 numentries = PAGE_SIZE / bucketsize;
9141 }
9142 numentries = roundup_pow_of_two(numentries);
9143
9144 /* limit allocation size to 1/16 total memory by default */
9145 if (max == 0) {
9146 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9147 do_div(max, bucketsize);
9148 }
9149 max = min(max, 0x80000000ULL);
9150
9151 if (numentries < low_limit)
9152 numentries = low_limit;
9153 if (numentries > max)
9154 numentries = max;
9155
9156 log2qty = ilog2(numentries);
9157
9158 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9159 do {
9160 virt = false;
9161 size = bucketsize << log2qty;
9162 if (flags & HASH_EARLY) {
9163 if (flags & HASH_ZERO)
9164 table = memblock_alloc(size, SMP_CACHE_BYTES);
9165 else
9166 table = memblock_alloc_raw(size,
9167 SMP_CACHE_BYTES);
9168 } else if (get_order(size) >= MAX_ORDER || hashdist) {
9169 table = vmalloc_huge(size, gfp_flags);
9170 virt = true;
9171 if (table)
9172 huge = is_vm_area_hugepages(table);
9173 } else {
9174 /*
9175 * If bucketsize is not a power-of-two, we may free
9176 * some pages at the end of hash table which
9177 * alloc_pages_exact() automatically does
9178 */
9179 table = alloc_pages_exact(size, gfp_flags);
9180 kmemleak_alloc(table, size, 1, gfp_flags);
9181 }
9182 } while (!table && size > PAGE_SIZE && --log2qty);
9183
9184 if (!table)
9185 panic("Failed to allocate %s hash table\n", tablename);
9186
9187 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9188 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9189 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9190
9191 if (_hash_shift)
9192 *_hash_shift = log2qty;
9193 if (_hash_mask)
9194 *_hash_mask = (1 << log2qty) - 1;
9195
9196 return table;
9197}
9198
9199#ifdef CONFIG_CONTIG_ALLOC
9200#if defined(CONFIG_DYNAMIC_DEBUG) || \
9201 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9202/* Usage: See admin-guide/dynamic-debug-howto.rst */
9203static void alloc_contig_dump_pages(struct list_head *page_list)
9204{
9205 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9206
9207 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9208 struct page *page;
9209
9210 dump_stack();
9211 list_for_each_entry(page, page_list, lru)
9212 dump_page(page, "migration failure");
9213 }
9214}
9215#else
9216static inline void alloc_contig_dump_pages(struct list_head *page_list)
9217{
9218}
9219#endif
9220
9221/* [start, end) must belong to a single zone. */
9222int __alloc_contig_migrate_range(struct compact_control *cc,
9223 unsigned long start, unsigned long end)
9224{
9225 /* This function is based on compact_zone() from compaction.c. */
9226 unsigned int nr_reclaimed;
9227 unsigned long pfn = start;
9228 unsigned int tries = 0;
9229 int ret = 0;
9230 struct migration_target_control mtc = {
9231 .nid = zone_to_nid(cc->zone),
9232 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9233 };
9234
9235 lru_cache_disable();
9236
9237 while (pfn < end || !list_empty(&cc->migratepages)) {
9238 if (fatal_signal_pending(current)) {
9239 ret = -EINTR;
9240 break;
9241 }
9242
9243 if (list_empty(&cc->migratepages)) {
9244 cc->nr_migratepages = 0;
9245 ret = isolate_migratepages_range(cc, pfn, end);
9246 if (ret && ret != -EAGAIN)
9247 break;
9248 pfn = cc->migrate_pfn;
9249 tries = 0;
9250 } else if (++tries == 5) {
9251 ret = -EBUSY;
9252 break;
9253 }
9254
9255 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9256 &cc->migratepages);
9257 cc->nr_migratepages -= nr_reclaimed;
9258
9259 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9260 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9261
9262 /*
9263 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9264 * to retry again over this error, so do the same here.
9265 */
9266 if (ret == -ENOMEM)
9267 break;
9268 }
9269
9270 lru_cache_enable();
9271 if (ret < 0) {
9272 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9273 alloc_contig_dump_pages(&cc->migratepages);
9274 putback_movable_pages(&cc->migratepages);
9275 return ret;
9276 }
9277 return 0;
9278}
9279
9280/**
9281 * alloc_contig_range() -- tries to allocate given range of pages
9282 * @start: start PFN to allocate
9283 * @end: one-past-the-last PFN to allocate
9284 * @migratetype: migratetype of the underlying pageblocks (either
9285 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9286 * in range must have the same migratetype and it must
9287 * be either of the two.
9288 * @gfp_mask: GFP mask to use during compaction
9289 *
9290 * The PFN range does not have to be pageblock aligned. The PFN range must
9291 * belong to a single zone.
9292 *
9293 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9294 * pageblocks in the range. Once isolated, the pageblocks should not
9295 * be modified by others.
9296 *
9297 * Return: zero on success or negative error code. On success all
9298 * pages which PFN is in [start, end) are allocated for the caller and
9299 * need to be freed with free_contig_range().
9300 */
9301int alloc_contig_range(unsigned long start, unsigned long end,
9302 unsigned migratetype, gfp_t gfp_mask)
9303{
9304 unsigned long outer_start, outer_end;
9305 int order;
9306 int ret = 0;
9307
9308 struct compact_control cc = {
9309 .nr_migratepages = 0,
9310 .order = -1,
9311 .zone = page_zone(pfn_to_page(start)),
9312 .mode = MIGRATE_SYNC,
9313 .ignore_skip_hint = true,
9314 .no_set_skip_hint = true,
9315 .gfp_mask = current_gfp_context(gfp_mask),
9316 .alloc_contig = true,
9317 };
9318 INIT_LIST_HEAD(&cc.migratepages);
9319
9320 /*
9321 * What we do here is we mark all pageblocks in range as
9322 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9323 * have different sizes, and due to the way page allocator
9324 * work, start_isolate_page_range() has special handlings for this.
9325 *
9326 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9327 * migrate the pages from an unaligned range (ie. pages that
9328 * we are interested in). This will put all the pages in
9329 * range back to page allocator as MIGRATE_ISOLATE.
9330 *
9331 * When this is done, we take the pages in range from page
9332 * allocator removing them from the buddy system. This way
9333 * page allocator will never consider using them.
9334 *
9335 * This lets us mark the pageblocks back as
9336 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9337 * aligned range but not in the unaligned, original range are
9338 * put back to page allocator so that buddy can use them.
9339 */
9340
9341 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9342 if (ret)
9343 goto done;
9344
9345 drain_all_pages(cc.zone);
9346
9347 /*
9348 * In case of -EBUSY, we'd like to know which page causes problem.
9349 * So, just fall through. test_pages_isolated() has a tracepoint
9350 * which will report the busy page.
9351 *
9352 * It is possible that busy pages could become available before
9353 * the call to test_pages_isolated, and the range will actually be
9354 * allocated. So, if we fall through be sure to clear ret so that
9355 * -EBUSY is not accidentally used or returned to caller.
9356 */
9357 ret = __alloc_contig_migrate_range(&cc, start, end);
9358 if (ret && ret != -EBUSY)
9359 goto done;
9360 ret = 0;
9361
9362 /*
9363 * Pages from [start, end) are within a pageblock_nr_pages
9364 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9365 * more, all pages in [start, end) are free in page allocator.
9366 * What we are going to do is to allocate all pages from
9367 * [start, end) (that is remove them from page allocator).
9368 *
9369 * The only problem is that pages at the beginning and at the
9370 * end of interesting range may be not aligned with pages that
9371 * page allocator holds, ie. they can be part of higher order
9372 * pages. Because of this, we reserve the bigger range and
9373 * once this is done free the pages we are not interested in.
9374 *
9375 * We don't have to hold zone->lock here because the pages are
9376 * isolated thus they won't get removed from buddy.
9377 */
9378
9379 order = 0;
9380 outer_start = start;
9381 while (!PageBuddy(pfn_to_page(outer_start))) {
9382 if (++order >= MAX_ORDER) {
9383 outer_start = start;
9384 break;
9385 }
9386 outer_start &= ~0UL << order;
9387 }
9388
9389 if (outer_start != start) {
9390 order = buddy_order(pfn_to_page(outer_start));
9391
9392 /*
9393 * outer_start page could be small order buddy page and
9394 * it doesn't include start page. Adjust outer_start
9395 * in this case to report failed page properly
9396 * on tracepoint in test_pages_isolated()
9397 */
9398 if (outer_start + (1UL << order) <= start)
9399 outer_start = start;
9400 }
9401
9402 /* Make sure the range is really isolated. */
9403 if (test_pages_isolated(outer_start, end, 0)) {
9404 ret = -EBUSY;
9405 goto done;
9406 }
9407
9408 /* Grab isolated pages from freelists. */
9409 outer_end = isolate_freepages_range(&cc, outer_start, end);
9410 if (!outer_end) {
9411 ret = -EBUSY;
9412 goto done;
9413 }
9414
9415 /* Free head and tail (if any) */
9416 if (start != outer_start)
9417 free_contig_range(outer_start, start - outer_start);
9418 if (end != outer_end)
9419 free_contig_range(end, outer_end - end);
9420
9421done:
9422 undo_isolate_page_range(start, end, migratetype);
9423 return ret;
9424}
9425EXPORT_SYMBOL(alloc_contig_range);
9426
9427static int __alloc_contig_pages(unsigned long start_pfn,
9428 unsigned long nr_pages, gfp_t gfp_mask)
9429{
9430 unsigned long end_pfn = start_pfn + nr_pages;
9431
9432 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9433 gfp_mask);
9434}
9435
9436static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9437 unsigned long nr_pages)
9438{
9439 unsigned long i, end_pfn = start_pfn + nr_pages;
9440 struct page *page;
9441
9442 for (i = start_pfn; i < end_pfn; i++) {
9443 page = pfn_to_online_page(i);
9444 if (!page)
9445 return false;
9446
9447 if (page_zone(page) != z)
9448 return false;
9449
9450 if (PageReserved(page))
9451 return false;
9452 }
9453 return true;
9454}
9455
9456static bool zone_spans_last_pfn(const struct zone *zone,
9457 unsigned long start_pfn, unsigned long nr_pages)
9458{
9459 unsigned long last_pfn = start_pfn + nr_pages - 1;
9460
9461 return zone_spans_pfn(zone, last_pfn);
9462}
9463
9464/**
9465 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9466 * @nr_pages: Number of contiguous pages to allocate
9467 * @gfp_mask: GFP mask to limit search and used during compaction
9468 * @nid: Target node
9469 * @nodemask: Mask for other possible nodes
9470 *
9471 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9472 * on an applicable zonelist to find a contiguous pfn range which can then be
9473 * tried for allocation with alloc_contig_range(). This routine is intended
9474 * for allocation requests which can not be fulfilled with the buddy allocator.
9475 *
9476 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9477 * power of two, then allocated range is also guaranteed to be aligned to same
9478 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9479 *
9480 * Allocated pages can be freed with free_contig_range() or by manually calling
9481 * __free_page() on each allocated page.
9482 *
9483 * Return: pointer to contiguous pages on success, or NULL if not successful.
9484 */
9485struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9486 int nid, nodemask_t *nodemask)
9487{
9488 unsigned long ret, pfn, flags;
9489 struct zonelist *zonelist;
9490 struct zone *zone;
9491 struct zoneref *z;
9492
9493 zonelist = node_zonelist(nid, gfp_mask);
9494 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9495 gfp_zone(gfp_mask), nodemask) {
9496 spin_lock_irqsave(&zone->lock, flags);
9497
9498 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9499 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9500 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9501 /*
9502 * We release the zone lock here because
9503 * alloc_contig_range() will also lock the zone
9504 * at some point. If there's an allocation
9505 * spinning on this lock, it may win the race
9506 * and cause alloc_contig_range() to fail...
9507 */
9508 spin_unlock_irqrestore(&zone->lock, flags);
9509 ret = __alloc_contig_pages(pfn, nr_pages,
9510 gfp_mask);
9511 if (!ret)
9512 return pfn_to_page(pfn);
9513 spin_lock_irqsave(&zone->lock, flags);
9514 }
9515 pfn += nr_pages;
9516 }
9517 spin_unlock_irqrestore(&zone->lock, flags);
9518 }
9519 return NULL;
9520}
9521#endif /* CONFIG_CONTIG_ALLOC */
9522
9523void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9524{
9525 unsigned long count = 0;
9526
9527 for (; nr_pages--; pfn++) {
9528 struct page *page = pfn_to_page(pfn);
9529
9530 count += page_count(page) != 1;
9531 __free_page(page);
9532 }
9533 WARN(count != 0, "%lu pages are still in use!\n", count);
9534}
9535EXPORT_SYMBOL(free_contig_range);
9536
9537/*
9538 * Effectively disable pcplists for the zone by setting the high limit to 0
9539 * and draining all cpus. A concurrent page freeing on another CPU that's about
9540 * to put the page on pcplist will either finish before the drain and the page
9541 * will be drained, or observe the new high limit and skip the pcplist.
9542 *
9543 * Must be paired with a call to zone_pcp_enable().
9544 */
9545void zone_pcp_disable(struct zone *zone)
9546{
9547 mutex_lock(&pcp_batch_high_lock);
9548 __zone_set_pageset_high_and_batch(zone, 0, 1);
9549 __drain_all_pages(zone, true);
9550}
9551
9552void zone_pcp_enable(struct zone *zone)
9553{
9554 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9555 mutex_unlock(&pcp_batch_high_lock);
9556}
9557
9558void zone_pcp_reset(struct zone *zone)
9559{
9560 int cpu;
9561 struct per_cpu_zonestat *pzstats;
9562
9563 if (zone->per_cpu_pageset != &boot_pageset) {
9564 for_each_online_cpu(cpu) {
9565 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9566 drain_zonestat(zone, pzstats);
9567 }
9568 free_percpu(zone->per_cpu_pageset);
9569 zone->per_cpu_pageset = &boot_pageset;
9570 if (zone->per_cpu_zonestats != &boot_zonestats) {
9571 free_percpu(zone->per_cpu_zonestats);
9572 zone->per_cpu_zonestats = &boot_zonestats;
9573 }
9574 }
9575}
9576
9577#ifdef CONFIG_MEMORY_HOTREMOVE
9578/*
9579 * All pages in the range must be in a single zone, must not contain holes,
9580 * must span full sections, and must be isolated before calling this function.
9581 */
9582void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9583{
9584 unsigned long pfn = start_pfn;
9585 struct page *page;
9586 struct zone *zone;
9587 unsigned int order;
9588 unsigned long flags;
9589
9590 offline_mem_sections(pfn, end_pfn);
9591 zone = page_zone(pfn_to_page(pfn));
9592 spin_lock_irqsave(&zone->lock, flags);
9593 while (pfn < end_pfn) {
9594 page = pfn_to_page(pfn);
9595 /*
9596 * The HWPoisoned page may be not in buddy system, and
9597 * page_count() is not 0.
9598 */
9599 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9600 pfn++;
9601 continue;
9602 }
9603 /*
9604 * At this point all remaining PageOffline() pages have a
9605 * reference count of 0 and can simply be skipped.
9606 */
9607 if (PageOffline(page)) {
9608 BUG_ON(page_count(page));
9609 BUG_ON(PageBuddy(page));
9610 pfn++;
9611 continue;
9612 }
9613
9614 BUG_ON(page_count(page));
9615 BUG_ON(!PageBuddy(page));
9616 order = buddy_order(page);
9617 del_page_from_free_list(page, zone, order);
9618 pfn += (1 << order);
9619 }
9620 spin_unlock_irqrestore(&zone->lock, flags);
9621}
9622#endif
9623
9624/*
9625 * This function returns a stable result only if called under zone lock.
9626 */
9627bool is_free_buddy_page(struct page *page)
9628{
9629 unsigned long pfn = page_to_pfn(page);
9630 unsigned int order;
9631
9632 for (order = 0; order < MAX_ORDER; order++) {
9633 struct page *page_head = page - (pfn & ((1 << order) - 1));
9634
9635 if (PageBuddy(page_head) &&
9636 buddy_order_unsafe(page_head) >= order)
9637 break;
9638 }
9639
9640 return order < MAX_ORDER;
9641}
9642EXPORT_SYMBOL(is_free_buddy_page);
9643
9644#ifdef CONFIG_MEMORY_FAILURE
9645/*
9646 * Break down a higher-order page in sub-pages, and keep our target out of
9647 * buddy allocator.
9648 */
9649static void break_down_buddy_pages(struct zone *zone, struct page *page,
9650 struct page *target, int low, int high,
9651 int migratetype)
9652{
9653 unsigned long size = 1 << high;
9654 struct page *current_buddy, *next_page;
9655
9656 while (high > low) {
9657 high--;
9658 size >>= 1;
9659
9660 if (target >= &page[size]) {
9661 next_page = page + size;
9662 current_buddy = page;
9663 } else {
9664 next_page = page;
9665 current_buddy = page + size;
9666 }
9667
9668 if (set_page_guard(zone, current_buddy, high, migratetype))
9669 continue;
9670
9671 if (current_buddy != target) {
9672 add_to_free_list(current_buddy, zone, high, migratetype);
9673 set_buddy_order(current_buddy, high);
9674 page = next_page;
9675 }
9676 }
9677}
9678
9679/*
9680 * Take a page that will be marked as poisoned off the buddy allocator.
9681 */
9682bool take_page_off_buddy(struct page *page)
9683{
9684 struct zone *zone = page_zone(page);
9685 unsigned long pfn = page_to_pfn(page);
9686 unsigned long flags;
9687 unsigned int order;
9688 bool ret = false;
9689
9690 spin_lock_irqsave(&zone->lock, flags);
9691 for (order = 0; order < MAX_ORDER; order++) {
9692 struct page *page_head = page - (pfn & ((1 << order) - 1));
9693 int page_order = buddy_order(page_head);
9694
9695 if (PageBuddy(page_head) && page_order >= order) {
9696 unsigned long pfn_head = page_to_pfn(page_head);
9697 int migratetype = get_pfnblock_migratetype(page_head,
9698 pfn_head);
9699
9700 del_page_from_free_list(page_head, zone, page_order);
9701 break_down_buddy_pages(zone, page_head, page, 0,
9702 page_order, migratetype);
9703 SetPageHWPoisonTakenOff(page);
9704 if (!is_migrate_isolate(migratetype))
9705 __mod_zone_freepage_state(zone, -1, migratetype);
9706 ret = true;
9707 break;
9708 }
9709 if (page_count(page_head) > 0)
9710 break;
9711 }
9712 spin_unlock_irqrestore(&zone->lock, flags);
9713 return ret;
9714}
9715
9716/*
9717 * Cancel takeoff done by take_page_off_buddy().
9718 */
9719bool put_page_back_buddy(struct page *page)
9720{
9721 struct zone *zone = page_zone(page);
9722 unsigned long pfn = page_to_pfn(page);
9723 unsigned long flags;
9724 int migratetype = get_pfnblock_migratetype(page, pfn);
9725 bool ret = false;
9726
9727 spin_lock_irqsave(&zone->lock, flags);
9728 if (put_page_testzero(page)) {
9729 ClearPageHWPoisonTakenOff(page);
9730 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9731 if (TestClearPageHWPoison(page)) {
9732 ret = true;
9733 }
9734 }
9735 spin_unlock_irqrestore(&zone->lock, flags);
9736
9737 return ret;
9738}
9739#endif
9740
9741#ifdef CONFIG_ZONE_DMA
9742bool has_managed_dma(void)
9743{
9744 struct pglist_data *pgdat;
9745
9746 for_each_online_pgdat(pgdat) {
9747 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9748
9749 if (managed_zone(zone))
9750 return true;
9751 }
9752 return false;
9753}
9754#endif /* CONFIG_ZONE_DMA */