at v6.3-rc2 43 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Linux Socket Filter Data Structures 4 */ 5#ifndef __LINUX_FILTER_H__ 6#define __LINUX_FILTER_H__ 7 8#include <linux/atomic.h> 9#include <linux/bpf.h> 10#include <linux/refcount.h> 11#include <linux/compat.h> 12#include <linux/skbuff.h> 13#include <linux/linkage.h> 14#include <linux/printk.h> 15#include <linux/workqueue.h> 16#include <linux/sched.h> 17#include <linux/sched/clock.h> 18#include <linux/capability.h> 19#include <linux/set_memory.h> 20#include <linux/kallsyms.h> 21#include <linux/if_vlan.h> 22#include <linux/vmalloc.h> 23#include <linux/sockptr.h> 24#include <crypto/sha1.h> 25#include <linux/u64_stats_sync.h> 26 27#include <net/sch_generic.h> 28 29#include <asm/byteorder.h> 30#include <uapi/linux/filter.h> 31 32struct sk_buff; 33struct sock; 34struct seccomp_data; 35struct bpf_prog_aux; 36struct xdp_rxq_info; 37struct xdp_buff; 38struct sock_reuseport; 39struct ctl_table; 40struct ctl_table_header; 41 42/* ArgX, context and stack frame pointer register positions. Note, 43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 44 * calls in BPF_CALL instruction. 45 */ 46#define BPF_REG_ARG1 BPF_REG_1 47#define BPF_REG_ARG2 BPF_REG_2 48#define BPF_REG_ARG3 BPF_REG_3 49#define BPF_REG_ARG4 BPF_REG_4 50#define BPF_REG_ARG5 BPF_REG_5 51#define BPF_REG_CTX BPF_REG_6 52#define BPF_REG_FP BPF_REG_10 53 54/* Additional register mappings for converted user programs. */ 55#define BPF_REG_A BPF_REG_0 56#define BPF_REG_X BPF_REG_7 57#define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 58#define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 59#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 60 61/* Kernel hidden auxiliary/helper register. */ 62#define BPF_REG_AX MAX_BPF_REG 63#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 64#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 65 66/* unused opcode to mark special call to bpf_tail_call() helper */ 67#define BPF_TAIL_CALL 0xf0 68 69/* unused opcode to mark special load instruction. Same as BPF_ABS */ 70#define BPF_PROBE_MEM 0x20 71 72/* unused opcode to mark call to interpreter with arguments */ 73#define BPF_CALL_ARGS 0xe0 74 75/* unused opcode to mark speculation barrier for mitigating 76 * Speculative Store Bypass 77 */ 78#define BPF_NOSPEC 0xc0 79 80/* As per nm, we expose JITed images as text (code) section for 81 * kallsyms. That way, tools like perf can find it to match 82 * addresses. 83 */ 84#define BPF_SYM_ELF_TYPE 't' 85 86/* BPF program can access up to 512 bytes of stack space. */ 87#define MAX_BPF_STACK 512 88 89/* Helper macros for filter block array initializers. */ 90 91/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 92 93#define BPF_ALU64_REG(OP, DST, SRC) \ 94 ((struct bpf_insn) { \ 95 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 96 .dst_reg = DST, \ 97 .src_reg = SRC, \ 98 .off = 0, \ 99 .imm = 0 }) 100 101#define BPF_ALU32_REG(OP, DST, SRC) \ 102 ((struct bpf_insn) { \ 103 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 104 .dst_reg = DST, \ 105 .src_reg = SRC, \ 106 .off = 0, \ 107 .imm = 0 }) 108 109/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 110 111#define BPF_ALU64_IMM(OP, DST, IMM) \ 112 ((struct bpf_insn) { \ 113 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 114 .dst_reg = DST, \ 115 .src_reg = 0, \ 116 .off = 0, \ 117 .imm = IMM }) 118 119#define BPF_ALU32_IMM(OP, DST, IMM) \ 120 ((struct bpf_insn) { \ 121 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 122 .dst_reg = DST, \ 123 .src_reg = 0, \ 124 .off = 0, \ 125 .imm = IMM }) 126 127/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 128 129#define BPF_ENDIAN(TYPE, DST, LEN) \ 130 ((struct bpf_insn) { \ 131 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 132 .dst_reg = DST, \ 133 .src_reg = 0, \ 134 .off = 0, \ 135 .imm = LEN }) 136 137/* Short form of mov, dst_reg = src_reg */ 138 139#define BPF_MOV64_REG(DST, SRC) \ 140 ((struct bpf_insn) { \ 141 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 142 .dst_reg = DST, \ 143 .src_reg = SRC, \ 144 .off = 0, \ 145 .imm = 0 }) 146 147#define BPF_MOV32_REG(DST, SRC) \ 148 ((struct bpf_insn) { \ 149 .code = BPF_ALU | BPF_MOV | BPF_X, \ 150 .dst_reg = DST, \ 151 .src_reg = SRC, \ 152 .off = 0, \ 153 .imm = 0 }) 154 155/* Short form of mov, dst_reg = imm32 */ 156 157#define BPF_MOV64_IMM(DST, IMM) \ 158 ((struct bpf_insn) { \ 159 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 160 .dst_reg = DST, \ 161 .src_reg = 0, \ 162 .off = 0, \ 163 .imm = IMM }) 164 165#define BPF_MOV32_IMM(DST, IMM) \ 166 ((struct bpf_insn) { \ 167 .code = BPF_ALU | BPF_MOV | BPF_K, \ 168 .dst_reg = DST, \ 169 .src_reg = 0, \ 170 .off = 0, \ 171 .imm = IMM }) 172 173/* Special form of mov32, used for doing explicit zero extension on dst. */ 174#define BPF_ZEXT_REG(DST) \ 175 ((struct bpf_insn) { \ 176 .code = BPF_ALU | BPF_MOV | BPF_X, \ 177 .dst_reg = DST, \ 178 .src_reg = DST, \ 179 .off = 0, \ 180 .imm = 1 }) 181 182static inline bool insn_is_zext(const struct bpf_insn *insn) 183{ 184 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 185} 186 187/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 188#define BPF_LD_IMM64(DST, IMM) \ 189 BPF_LD_IMM64_RAW(DST, 0, IMM) 190 191#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 192 ((struct bpf_insn) { \ 193 .code = BPF_LD | BPF_DW | BPF_IMM, \ 194 .dst_reg = DST, \ 195 .src_reg = SRC, \ 196 .off = 0, \ 197 .imm = (__u32) (IMM) }), \ 198 ((struct bpf_insn) { \ 199 .code = 0, /* zero is reserved opcode */ \ 200 .dst_reg = 0, \ 201 .src_reg = 0, \ 202 .off = 0, \ 203 .imm = ((__u64) (IMM)) >> 32 }) 204 205/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 206#define BPF_LD_MAP_FD(DST, MAP_FD) \ 207 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 208 209/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 210 211#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 212 ((struct bpf_insn) { \ 213 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 214 .dst_reg = DST, \ 215 .src_reg = SRC, \ 216 .off = 0, \ 217 .imm = IMM }) 218 219#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 220 ((struct bpf_insn) { \ 221 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 222 .dst_reg = DST, \ 223 .src_reg = SRC, \ 224 .off = 0, \ 225 .imm = IMM }) 226 227/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 228 229#define BPF_LD_ABS(SIZE, IMM) \ 230 ((struct bpf_insn) { \ 231 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 232 .dst_reg = 0, \ 233 .src_reg = 0, \ 234 .off = 0, \ 235 .imm = IMM }) 236 237/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 238 239#define BPF_LD_IND(SIZE, SRC, IMM) \ 240 ((struct bpf_insn) { \ 241 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 242 .dst_reg = 0, \ 243 .src_reg = SRC, \ 244 .off = 0, \ 245 .imm = IMM }) 246 247/* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 248 249#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 250 ((struct bpf_insn) { \ 251 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 252 .dst_reg = DST, \ 253 .src_reg = SRC, \ 254 .off = OFF, \ 255 .imm = 0 }) 256 257/* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 258 259#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 260 ((struct bpf_insn) { \ 261 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 262 .dst_reg = DST, \ 263 .src_reg = SRC, \ 264 .off = OFF, \ 265 .imm = 0 }) 266 267 268/* 269 * Atomic operations: 270 * 271 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg 272 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg 273 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg 274 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg 275 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg); 276 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg); 277 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg); 278 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg); 279 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg) 280 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg) 281 */ 282 283#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \ 284 ((struct bpf_insn) { \ 285 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \ 286 .dst_reg = DST, \ 287 .src_reg = SRC, \ 288 .off = OFF, \ 289 .imm = OP }) 290 291/* Legacy alias */ 292#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF) 293 294/* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 295 296#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 297 ((struct bpf_insn) { \ 298 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 299 .dst_reg = DST, \ 300 .src_reg = 0, \ 301 .off = OFF, \ 302 .imm = IMM }) 303 304/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 305 306#define BPF_JMP_REG(OP, DST, SRC, OFF) \ 307 ((struct bpf_insn) { \ 308 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 309 .dst_reg = DST, \ 310 .src_reg = SRC, \ 311 .off = OFF, \ 312 .imm = 0 }) 313 314/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 315 316#define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 317 ((struct bpf_insn) { \ 318 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 319 .dst_reg = DST, \ 320 .src_reg = 0, \ 321 .off = OFF, \ 322 .imm = IMM }) 323 324/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 325 326#define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 327 ((struct bpf_insn) { \ 328 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 329 .dst_reg = DST, \ 330 .src_reg = SRC, \ 331 .off = OFF, \ 332 .imm = 0 }) 333 334/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 335 336#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 337 ((struct bpf_insn) { \ 338 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 339 .dst_reg = DST, \ 340 .src_reg = 0, \ 341 .off = OFF, \ 342 .imm = IMM }) 343 344/* Unconditional jumps, goto pc + off16 */ 345 346#define BPF_JMP_A(OFF) \ 347 ((struct bpf_insn) { \ 348 .code = BPF_JMP | BPF_JA, \ 349 .dst_reg = 0, \ 350 .src_reg = 0, \ 351 .off = OFF, \ 352 .imm = 0 }) 353 354/* Relative call */ 355 356#define BPF_CALL_REL(TGT) \ 357 ((struct bpf_insn) { \ 358 .code = BPF_JMP | BPF_CALL, \ 359 .dst_reg = 0, \ 360 .src_reg = BPF_PSEUDO_CALL, \ 361 .off = 0, \ 362 .imm = TGT }) 363 364/* Convert function address to BPF immediate */ 365 366#define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base) 367 368#define BPF_EMIT_CALL(FUNC) \ 369 ((struct bpf_insn) { \ 370 .code = BPF_JMP | BPF_CALL, \ 371 .dst_reg = 0, \ 372 .src_reg = 0, \ 373 .off = 0, \ 374 .imm = BPF_CALL_IMM(FUNC) }) 375 376/* Raw code statement block */ 377 378#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 379 ((struct bpf_insn) { \ 380 .code = CODE, \ 381 .dst_reg = DST, \ 382 .src_reg = SRC, \ 383 .off = OFF, \ 384 .imm = IMM }) 385 386/* Program exit */ 387 388#define BPF_EXIT_INSN() \ 389 ((struct bpf_insn) { \ 390 .code = BPF_JMP | BPF_EXIT, \ 391 .dst_reg = 0, \ 392 .src_reg = 0, \ 393 .off = 0, \ 394 .imm = 0 }) 395 396/* Speculation barrier */ 397 398#define BPF_ST_NOSPEC() \ 399 ((struct bpf_insn) { \ 400 .code = BPF_ST | BPF_NOSPEC, \ 401 .dst_reg = 0, \ 402 .src_reg = 0, \ 403 .off = 0, \ 404 .imm = 0 }) 405 406/* Internal classic blocks for direct assignment */ 407 408#define __BPF_STMT(CODE, K) \ 409 ((struct sock_filter) BPF_STMT(CODE, K)) 410 411#define __BPF_JUMP(CODE, K, JT, JF) \ 412 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 413 414#define bytes_to_bpf_size(bytes) \ 415({ \ 416 int bpf_size = -EINVAL; \ 417 \ 418 if (bytes == sizeof(u8)) \ 419 bpf_size = BPF_B; \ 420 else if (bytes == sizeof(u16)) \ 421 bpf_size = BPF_H; \ 422 else if (bytes == sizeof(u32)) \ 423 bpf_size = BPF_W; \ 424 else if (bytes == sizeof(u64)) \ 425 bpf_size = BPF_DW; \ 426 \ 427 bpf_size; \ 428}) 429 430#define bpf_size_to_bytes(bpf_size) \ 431({ \ 432 int bytes = -EINVAL; \ 433 \ 434 if (bpf_size == BPF_B) \ 435 bytes = sizeof(u8); \ 436 else if (bpf_size == BPF_H) \ 437 bytes = sizeof(u16); \ 438 else if (bpf_size == BPF_W) \ 439 bytes = sizeof(u32); \ 440 else if (bpf_size == BPF_DW) \ 441 bytes = sizeof(u64); \ 442 \ 443 bytes; \ 444}) 445 446#define BPF_SIZEOF(type) \ 447 ({ \ 448 const int __size = bytes_to_bpf_size(sizeof(type)); \ 449 BUILD_BUG_ON(__size < 0); \ 450 __size; \ 451 }) 452 453#define BPF_FIELD_SIZEOF(type, field) \ 454 ({ \ 455 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 456 BUILD_BUG_ON(__size < 0); \ 457 __size; \ 458 }) 459 460#define BPF_LDST_BYTES(insn) \ 461 ({ \ 462 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 463 WARN_ON(__size < 0); \ 464 __size; \ 465 }) 466 467#define __BPF_MAP_0(m, v, ...) v 468#define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 469#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 470#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 471#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 472#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 473 474#define __BPF_REG_0(...) __BPF_PAD(5) 475#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 476#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 477#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 478#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 479#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 480 481#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 482#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 483 484#define __BPF_CAST(t, a) \ 485 (__force t) \ 486 (__force \ 487 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 488 (unsigned long)0, (t)0))) a 489#define __BPF_V void 490#define __BPF_N 491 492#define __BPF_DECL_ARGS(t, a) t a 493#define __BPF_DECL_REGS(t, a) u64 a 494 495#define __BPF_PAD(n) \ 496 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 497 u64, __ur_3, u64, __ur_4, u64, __ur_5) 498 499#define BPF_CALL_x(x, name, ...) \ 500 static __always_inline \ 501 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 502 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 503 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 504 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 505 { \ 506 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 507 } \ 508 static __always_inline \ 509 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 510 511#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) 512#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) 513#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) 514#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) 515#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) 516#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) 517 518#define bpf_ctx_range(TYPE, MEMBER) \ 519 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 520#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 521 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 522#if BITS_PER_LONG == 64 523# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 524 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 525#else 526# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 527 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 528#endif /* BITS_PER_LONG == 64 */ 529 530#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 531 ({ \ 532 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 533 *(PTR_SIZE) = (SIZE); \ 534 offsetof(TYPE, MEMBER); \ 535 }) 536 537/* A struct sock_filter is architecture independent. */ 538struct compat_sock_fprog { 539 u16 len; 540 compat_uptr_t filter; /* struct sock_filter * */ 541}; 542 543struct sock_fprog_kern { 544 u16 len; 545 struct sock_filter *filter; 546}; 547 548/* Some arches need doubleword alignment for their instructions and/or data */ 549#define BPF_IMAGE_ALIGNMENT 8 550 551struct bpf_binary_header { 552 u32 size; 553 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 554}; 555 556struct bpf_prog_stats { 557 u64_stats_t cnt; 558 u64_stats_t nsecs; 559 u64_stats_t misses; 560 struct u64_stats_sync syncp; 561} __aligned(2 * sizeof(u64)); 562 563struct sk_filter { 564 refcount_t refcnt; 565 struct rcu_head rcu; 566 struct bpf_prog *prog; 567}; 568 569DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 570 571extern struct mutex nf_conn_btf_access_lock; 572extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, 573 const struct bpf_reg_state *reg, 574 int off, int size, enum bpf_access_type atype, 575 u32 *next_btf_id, enum bpf_type_flag *flag); 576 577typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx, 578 const struct bpf_insn *insnsi, 579 unsigned int (*bpf_func)(const void *, 580 const struct bpf_insn *)); 581 582static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog, 583 const void *ctx, 584 bpf_dispatcher_fn dfunc) 585{ 586 u32 ret; 587 588 cant_migrate(); 589 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 590 struct bpf_prog_stats *stats; 591 u64 start = sched_clock(); 592 unsigned long flags; 593 594 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 595 stats = this_cpu_ptr(prog->stats); 596 flags = u64_stats_update_begin_irqsave(&stats->syncp); 597 u64_stats_inc(&stats->cnt); 598 u64_stats_add(&stats->nsecs, sched_clock() - start); 599 u64_stats_update_end_irqrestore(&stats->syncp, flags); 600 } else { 601 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 602 } 603 return ret; 604} 605 606static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx) 607{ 608 return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func); 609} 610 611/* 612 * Use in preemptible and therefore migratable context to make sure that 613 * the execution of the BPF program runs on one CPU. 614 * 615 * This uses migrate_disable/enable() explicitly to document that the 616 * invocation of a BPF program does not require reentrancy protection 617 * against a BPF program which is invoked from a preempting task. 618 */ 619static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, 620 const void *ctx) 621{ 622 u32 ret; 623 624 migrate_disable(); 625 ret = bpf_prog_run(prog, ctx); 626 migrate_enable(); 627 return ret; 628} 629 630#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 631 632struct bpf_skb_data_end { 633 struct qdisc_skb_cb qdisc_cb; 634 void *data_meta; 635 void *data_end; 636}; 637 638struct bpf_nh_params { 639 u32 nh_family; 640 union { 641 u32 ipv4_nh; 642 struct in6_addr ipv6_nh; 643 }; 644}; 645 646struct bpf_redirect_info { 647 u64 tgt_index; 648 void *tgt_value; 649 struct bpf_map *map; 650 u32 flags; 651 u32 kern_flags; 652 u32 map_id; 653 enum bpf_map_type map_type; 654 struct bpf_nh_params nh; 655}; 656 657DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 658 659/* flags for bpf_redirect_info kern_flags */ 660#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 661 662/* Compute the linear packet data range [data, data_end) which 663 * will be accessed by various program types (cls_bpf, act_bpf, 664 * lwt, ...). Subsystems allowing direct data access must (!) 665 * ensure that cb[] area can be written to when BPF program is 666 * invoked (otherwise cb[] save/restore is necessary). 667 */ 668static inline void bpf_compute_data_pointers(struct sk_buff *skb) 669{ 670 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 671 672 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 673 cb->data_meta = skb->data - skb_metadata_len(skb); 674 cb->data_end = skb->data + skb_headlen(skb); 675} 676 677/* Similar to bpf_compute_data_pointers(), except that save orginal 678 * data in cb->data and cb->meta_data for restore. 679 */ 680static inline void bpf_compute_and_save_data_end( 681 struct sk_buff *skb, void **saved_data_end) 682{ 683 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 684 685 *saved_data_end = cb->data_end; 686 cb->data_end = skb->data + skb_headlen(skb); 687} 688 689/* Restore data saved by bpf_compute_data_pointers(). */ 690static inline void bpf_restore_data_end( 691 struct sk_buff *skb, void *saved_data_end) 692{ 693 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 694 695 cb->data_end = saved_data_end; 696} 697 698static inline u8 *bpf_skb_cb(const struct sk_buff *skb) 699{ 700 /* eBPF programs may read/write skb->cb[] area to transfer meta 701 * data between tail calls. Since this also needs to work with 702 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 703 * 704 * In some socket filter cases, the cb unfortunately needs to be 705 * saved/restored so that protocol specific skb->cb[] data won't 706 * be lost. In any case, due to unpriviledged eBPF programs 707 * attached to sockets, we need to clear the bpf_skb_cb() area 708 * to not leak previous contents to user space. 709 */ 710 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 711 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 712 sizeof_field(struct qdisc_skb_cb, data)); 713 714 return qdisc_skb_cb(skb)->data; 715} 716 717/* Must be invoked with migration disabled */ 718static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 719 const void *ctx) 720{ 721 const struct sk_buff *skb = ctx; 722 u8 *cb_data = bpf_skb_cb(skb); 723 u8 cb_saved[BPF_SKB_CB_LEN]; 724 u32 res; 725 726 if (unlikely(prog->cb_access)) { 727 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 728 memset(cb_data, 0, sizeof(cb_saved)); 729 } 730 731 res = bpf_prog_run(prog, skb); 732 733 if (unlikely(prog->cb_access)) 734 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 735 736 return res; 737} 738 739static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 740 struct sk_buff *skb) 741{ 742 u32 res; 743 744 migrate_disable(); 745 res = __bpf_prog_run_save_cb(prog, skb); 746 migrate_enable(); 747 return res; 748} 749 750static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 751 struct sk_buff *skb) 752{ 753 u8 *cb_data = bpf_skb_cb(skb); 754 u32 res; 755 756 if (unlikely(prog->cb_access)) 757 memset(cb_data, 0, BPF_SKB_CB_LEN); 758 759 res = bpf_prog_run_pin_on_cpu(prog, skb); 760 return res; 761} 762 763DECLARE_BPF_DISPATCHER(xdp) 764 765DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); 766 767u32 xdp_master_redirect(struct xdp_buff *xdp); 768 769static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, 770 struct xdp_buff *xdp) 771{ 772 /* Driver XDP hooks are invoked within a single NAPI poll cycle and thus 773 * under local_bh_disable(), which provides the needed RCU protection 774 * for accessing map entries. 775 */ 776 u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp)); 777 778 if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) { 779 if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev)) 780 act = xdp_master_redirect(xdp); 781 } 782 783 return act; 784} 785 786void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); 787 788static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 789{ 790 return prog->len * sizeof(struct bpf_insn); 791} 792 793static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 794{ 795 return round_up(bpf_prog_insn_size(prog) + 796 sizeof(__be64) + 1, SHA1_BLOCK_SIZE); 797} 798 799static inline unsigned int bpf_prog_size(unsigned int proglen) 800{ 801 return max(sizeof(struct bpf_prog), 802 offsetof(struct bpf_prog, insns[proglen])); 803} 804 805static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 806{ 807 /* When classic BPF programs have been loaded and the arch 808 * does not have a classic BPF JIT (anymore), they have been 809 * converted via bpf_migrate_filter() to eBPF and thus always 810 * have an unspec program type. 811 */ 812 return prog->type == BPF_PROG_TYPE_UNSPEC; 813} 814 815static inline u32 bpf_ctx_off_adjust_machine(u32 size) 816{ 817 const u32 size_machine = sizeof(unsigned long); 818 819 if (size > size_machine && size % size_machine == 0) 820 size = size_machine; 821 822 return size; 823} 824 825static inline bool 826bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 827{ 828 return size <= size_default && (size & (size - 1)) == 0; 829} 830 831static inline u8 832bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 833{ 834 u8 access_off = off & (size_default - 1); 835 836#ifdef __LITTLE_ENDIAN 837 return access_off; 838#else 839 return size_default - (access_off + size); 840#endif 841} 842 843#define bpf_ctx_wide_access_ok(off, size, type, field) \ 844 (size == sizeof(__u64) && \ 845 off >= offsetof(type, field) && \ 846 off + sizeof(__u64) <= offsetofend(type, field) && \ 847 off % sizeof(__u64) == 0) 848 849#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 850 851static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 852{ 853#ifndef CONFIG_BPF_JIT_ALWAYS_ON 854 if (!fp->jited) { 855 set_vm_flush_reset_perms(fp); 856 set_memory_ro((unsigned long)fp, fp->pages); 857 } 858#endif 859} 860 861static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 862{ 863 set_vm_flush_reset_perms(hdr); 864 set_memory_rox((unsigned long)hdr, hdr->size >> PAGE_SHIFT); 865} 866 867int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 868static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 869{ 870 return sk_filter_trim_cap(sk, skb, 1); 871} 872 873struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 874void bpf_prog_free(struct bpf_prog *fp); 875 876bool bpf_opcode_in_insntable(u8 code); 877 878void bpf_prog_free_linfo(struct bpf_prog *prog); 879void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 880 const u32 *insn_to_jit_off); 881int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 882void bpf_prog_jit_attempt_done(struct bpf_prog *prog); 883 884struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 885struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 886struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 887 gfp_t gfp_extra_flags); 888void __bpf_prog_free(struct bpf_prog *fp); 889 890static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 891{ 892 __bpf_prog_free(fp); 893} 894 895typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 896 unsigned int flen); 897 898int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 899int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 900 bpf_aux_classic_check_t trans, bool save_orig); 901void bpf_prog_destroy(struct bpf_prog *fp); 902 903int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 904int sk_attach_bpf(u32 ufd, struct sock *sk); 905int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 906int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 907void sk_reuseport_prog_free(struct bpf_prog *prog); 908int sk_detach_filter(struct sock *sk); 909int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len); 910 911bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 912void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 913 914u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 915#define __bpf_call_base_args \ 916 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 917 (void *)__bpf_call_base) 918 919struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 920void bpf_jit_compile(struct bpf_prog *prog); 921bool bpf_jit_needs_zext(void); 922bool bpf_jit_supports_subprog_tailcalls(void); 923bool bpf_jit_supports_kfunc_call(void); 924bool bpf_helper_changes_pkt_data(void *func); 925 926static inline bool bpf_dump_raw_ok(const struct cred *cred) 927{ 928 /* Reconstruction of call-sites is dependent on kallsyms, 929 * thus make dump the same restriction. 930 */ 931 return kallsyms_show_value(cred); 932} 933 934struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 935 const struct bpf_insn *patch, u32 len); 936int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 937 938void bpf_clear_redirect_map(struct bpf_map *map); 939 940static inline bool xdp_return_frame_no_direct(void) 941{ 942 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 943 944 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 945} 946 947static inline void xdp_set_return_frame_no_direct(void) 948{ 949 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 950 951 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 952} 953 954static inline void xdp_clear_return_frame_no_direct(void) 955{ 956 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 957 958 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 959} 960 961static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 962 unsigned int pktlen) 963{ 964 unsigned int len; 965 966 if (unlikely(!(fwd->flags & IFF_UP))) 967 return -ENETDOWN; 968 969 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 970 if (pktlen > len) 971 return -EMSGSIZE; 972 973 return 0; 974} 975 976/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the 977 * same cpu context. Further for best results no more than a single map 978 * for the do_redirect/do_flush pair should be used. This limitation is 979 * because we only track one map and force a flush when the map changes. 980 * This does not appear to be a real limitation for existing software. 981 */ 982int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 983 struct xdp_buff *xdp, struct bpf_prog *prog); 984int xdp_do_redirect(struct net_device *dev, 985 struct xdp_buff *xdp, 986 struct bpf_prog *prog); 987int xdp_do_redirect_frame(struct net_device *dev, 988 struct xdp_buff *xdp, 989 struct xdp_frame *xdpf, 990 struct bpf_prog *prog); 991void xdp_do_flush(void); 992 993/* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as 994 * it is no longer only flushing maps. Keep this define for compatibility 995 * until all drivers are updated - do not use xdp_do_flush_map() in new code! 996 */ 997#define xdp_do_flush_map xdp_do_flush 998 999void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act); 1000 1001#ifdef CONFIG_INET 1002struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1003 struct bpf_prog *prog, struct sk_buff *skb, 1004 struct sock *migrating_sk, 1005 u32 hash); 1006#else 1007static inline struct sock * 1008bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1009 struct bpf_prog *prog, struct sk_buff *skb, 1010 struct sock *migrating_sk, 1011 u32 hash) 1012{ 1013 return NULL; 1014} 1015#endif 1016 1017#ifdef CONFIG_BPF_JIT 1018extern int bpf_jit_enable; 1019extern int bpf_jit_harden; 1020extern int bpf_jit_kallsyms; 1021extern long bpf_jit_limit; 1022extern long bpf_jit_limit_max; 1023 1024typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 1025 1026void bpf_jit_fill_hole_with_zero(void *area, unsigned int size); 1027 1028struct bpf_binary_header * 1029bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 1030 unsigned int alignment, 1031 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1032void bpf_jit_binary_free(struct bpf_binary_header *hdr); 1033u64 bpf_jit_alloc_exec_limit(void); 1034void *bpf_jit_alloc_exec(unsigned long size); 1035void bpf_jit_free_exec(void *addr); 1036void bpf_jit_free(struct bpf_prog *fp); 1037struct bpf_binary_header * 1038bpf_jit_binary_pack_hdr(const struct bpf_prog *fp); 1039 1040void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns); 1041void bpf_prog_pack_free(struct bpf_binary_header *hdr); 1042 1043static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp) 1044{ 1045 return list_empty(&fp->aux->ksym.lnode) || 1046 fp->aux->ksym.lnode.prev == LIST_POISON2; 1047} 1048 1049struct bpf_binary_header * 1050bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image, 1051 unsigned int alignment, 1052 struct bpf_binary_header **rw_hdr, 1053 u8 **rw_image, 1054 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1055int bpf_jit_binary_pack_finalize(struct bpf_prog *prog, 1056 struct bpf_binary_header *ro_header, 1057 struct bpf_binary_header *rw_header); 1058void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header, 1059 struct bpf_binary_header *rw_header); 1060 1061int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1062 struct bpf_jit_poke_descriptor *poke); 1063 1064int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1065 const struct bpf_insn *insn, bool extra_pass, 1066 u64 *func_addr, bool *func_addr_fixed); 1067 1068struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1069void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1070 1071static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1072 u32 pass, void *image) 1073{ 1074 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 1075 proglen, pass, image, current->comm, task_pid_nr(current)); 1076 1077 if (image) 1078 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1079 16, 1, image, proglen, false); 1080} 1081 1082static inline bool bpf_jit_is_ebpf(void) 1083{ 1084# ifdef CONFIG_HAVE_EBPF_JIT 1085 return true; 1086# else 1087 return false; 1088# endif 1089} 1090 1091static inline bool ebpf_jit_enabled(void) 1092{ 1093 return bpf_jit_enable && bpf_jit_is_ebpf(); 1094} 1095 1096static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1097{ 1098 return fp->jited && bpf_jit_is_ebpf(); 1099} 1100 1101static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1102{ 1103 /* These are the prerequisites, should someone ever have the 1104 * idea to call blinding outside of them, we make sure to 1105 * bail out. 1106 */ 1107 if (!bpf_jit_is_ebpf()) 1108 return false; 1109 if (!prog->jit_requested) 1110 return false; 1111 if (!bpf_jit_harden) 1112 return false; 1113 if (bpf_jit_harden == 1 && bpf_capable()) 1114 return false; 1115 1116 return true; 1117} 1118 1119static inline bool bpf_jit_kallsyms_enabled(void) 1120{ 1121 /* There are a couple of corner cases where kallsyms should 1122 * not be enabled f.e. on hardening. 1123 */ 1124 if (bpf_jit_harden) 1125 return false; 1126 if (!bpf_jit_kallsyms) 1127 return false; 1128 if (bpf_jit_kallsyms == 1) 1129 return true; 1130 1131 return false; 1132} 1133 1134const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 1135 unsigned long *off, char *sym); 1136bool is_bpf_text_address(unsigned long addr); 1137int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1138 char *sym); 1139 1140static inline const char * 1141bpf_address_lookup(unsigned long addr, unsigned long *size, 1142 unsigned long *off, char **modname, char *sym) 1143{ 1144 const char *ret = __bpf_address_lookup(addr, size, off, sym); 1145 1146 if (ret && modname) 1147 *modname = NULL; 1148 return ret; 1149} 1150 1151void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1152void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1153 1154#else /* CONFIG_BPF_JIT */ 1155 1156static inline bool ebpf_jit_enabled(void) 1157{ 1158 return false; 1159} 1160 1161static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1162{ 1163 return false; 1164} 1165 1166static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1167{ 1168 return false; 1169} 1170 1171static inline int 1172bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1173 struct bpf_jit_poke_descriptor *poke) 1174{ 1175 return -ENOTSUPP; 1176} 1177 1178static inline void bpf_jit_free(struct bpf_prog *fp) 1179{ 1180 bpf_prog_unlock_free(fp); 1181} 1182 1183static inline bool bpf_jit_kallsyms_enabled(void) 1184{ 1185 return false; 1186} 1187 1188static inline const char * 1189__bpf_address_lookup(unsigned long addr, unsigned long *size, 1190 unsigned long *off, char *sym) 1191{ 1192 return NULL; 1193} 1194 1195static inline bool is_bpf_text_address(unsigned long addr) 1196{ 1197 return false; 1198} 1199 1200static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1201 char *type, char *sym) 1202{ 1203 return -ERANGE; 1204} 1205 1206static inline const char * 1207bpf_address_lookup(unsigned long addr, unsigned long *size, 1208 unsigned long *off, char **modname, char *sym) 1209{ 1210 return NULL; 1211} 1212 1213static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1214{ 1215} 1216 1217static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1218{ 1219} 1220 1221#endif /* CONFIG_BPF_JIT */ 1222 1223void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1224 1225#define BPF_ANC BIT(15) 1226 1227static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1228{ 1229 switch (first->code) { 1230 case BPF_RET | BPF_K: 1231 case BPF_LD | BPF_W | BPF_LEN: 1232 return false; 1233 1234 case BPF_LD | BPF_W | BPF_ABS: 1235 case BPF_LD | BPF_H | BPF_ABS: 1236 case BPF_LD | BPF_B | BPF_ABS: 1237 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1238 return true; 1239 return false; 1240 1241 default: 1242 return true; 1243 } 1244} 1245 1246static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1247{ 1248 BUG_ON(ftest->code & BPF_ANC); 1249 1250 switch (ftest->code) { 1251 case BPF_LD | BPF_W | BPF_ABS: 1252 case BPF_LD | BPF_H | BPF_ABS: 1253 case BPF_LD | BPF_B | BPF_ABS: 1254#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1255 return BPF_ANC | SKF_AD_##CODE 1256 switch (ftest->k) { 1257 BPF_ANCILLARY(PROTOCOL); 1258 BPF_ANCILLARY(PKTTYPE); 1259 BPF_ANCILLARY(IFINDEX); 1260 BPF_ANCILLARY(NLATTR); 1261 BPF_ANCILLARY(NLATTR_NEST); 1262 BPF_ANCILLARY(MARK); 1263 BPF_ANCILLARY(QUEUE); 1264 BPF_ANCILLARY(HATYPE); 1265 BPF_ANCILLARY(RXHASH); 1266 BPF_ANCILLARY(CPU); 1267 BPF_ANCILLARY(ALU_XOR_X); 1268 BPF_ANCILLARY(VLAN_TAG); 1269 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1270 BPF_ANCILLARY(PAY_OFFSET); 1271 BPF_ANCILLARY(RANDOM); 1272 BPF_ANCILLARY(VLAN_TPID); 1273 } 1274 fallthrough; 1275 default: 1276 return ftest->code; 1277 } 1278} 1279 1280void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1281 int k, unsigned int size); 1282 1283static inline int bpf_tell_extensions(void) 1284{ 1285 return SKF_AD_MAX; 1286} 1287 1288struct bpf_sock_addr_kern { 1289 struct sock *sk; 1290 struct sockaddr *uaddr; 1291 /* Temporary "register" to make indirect stores to nested structures 1292 * defined above. We need three registers to make such a store, but 1293 * only two (src and dst) are available at convert_ctx_access time 1294 */ 1295 u64 tmp_reg; 1296 void *t_ctx; /* Attach type specific context. */ 1297}; 1298 1299struct bpf_sock_ops_kern { 1300 struct sock *sk; 1301 union { 1302 u32 args[4]; 1303 u32 reply; 1304 u32 replylong[4]; 1305 }; 1306 struct sk_buff *syn_skb; 1307 struct sk_buff *skb; 1308 void *skb_data_end; 1309 u8 op; 1310 u8 is_fullsock; 1311 u8 remaining_opt_len; 1312 u64 temp; /* temp and everything after is not 1313 * initialized to 0 before calling 1314 * the BPF program. New fields that 1315 * should be initialized to 0 should 1316 * be inserted before temp. 1317 * temp is scratch storage used by 1318 * sock_ops_convert_ctx_access 1319 * as temporary storage of a register. 1320 */ 1321}; 1322 1323struct bpf_sysctl_kern { 1324 struct ctl_table_header *head; 1325 struct ctl_table *table; 1326 void *cur_val; 1327 size_t cur_len; 1328 void *new_val; 1329 size_t new_len; 1330 int new_updated; 1331 int write; 1332 loff_t *ppos; 1333 /* Temporary "register" for indirect stores to ppos. */ 1334 u64 tmp_reg; 1335}; 1336 1337#define BPF_SOCKOPT_KERN_BUF_SIZE 32 1338struct bpf_sockopt_buf { 1339 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE]; 1340}; 1341 1342struct bpf_sockopt_kern { 1343 struct sock *sk; 1344 u8 *optval; 1345 u8 *optval_end; 1346 s32 level; 1347 s32 optname; 1348 s32 optlen; 1349 /* for retval in struct bpf_cg_run_ctx */ 1350 struct task_struct *current_task; 1351 /* Temporary "register" for indirect stores to ppos. */ 1352 u64 tmp_reg; 1353}; 1354 1355int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); 1356 1357struct bpf_sk_lookup_kern { 1358 u16 family; 1359 u16 protocol; 1360 __be16 sport; 1361 u16 dport; 1362 struct { 1363 __be32 saddr; 1364 __be32 daddr; 1365 } v4; 1366 struct { 1367 const struct in6_addr *saddr; 1368 const struct in6_addr *daddr; 1369 } v6; 1370 struct sock *selected_sk; 1371 u32 ingress_ifindex; 1372 bool no_reuseport; 1373}; 1374 1375extern struct static_key_false bpf_sk_lookup_enabled; 1376 1377/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. 1378 * 1379 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and 1380 * SK_DROP. Their meaning is as follows: 1381 * 1382 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result 1383 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup 1384 * SK_DROP : terminate lookup with -ECONNREFUSED 1385 * 1386 * This macro aggregates return values and selected sockets from 1387 * multiple BPF programs according to following rules in order: 1388 * 1389 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, 1390 * macro result is SK_PASS and last ctx.selected_sk is used. 1391 * 2. If any program returned SK_DROP return value, 1392 * macro result is SK_DROP. 1393 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. 1394 * 1395 * Caller must ensure that the prog array is non-NULL, and that the 1396 * array as well as the programs it contains remain valid. 1397 */ 1398#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ 1399 ({ \ 1400 struct bpf_sk_lookup_kern *_ctx = &(ctx); \ 1401 struct bpf_prog_array_item *_item; \ 1402 struct sock *_selected_sk = NULL; \ 1403 bool _no_reuseport = false; \ 1404 struct bpf_prog *_prog; \ 1405 bool _all_pass = true; \ 1406 u32 _ret; \ 1407 \ 1408 migrate_disable(); \ 1409 _item = &(array)->items[0]; \ 1410 while ((_prog = READ_ONCE(_item->prog))) { \ 1411 /* restore most recent selection */ \ 1412 _ctx->selected_sk = _selected_sk; \ 1413 _ctx->no_reuseport = _no_reuseport; \ 1414 \ 1415 _ret = func(_prog, _ctx); \ 1416 if (_ret == SK_PASS && _ctx->selected_sk) { \ 1417 /* remember last non-NULL socket */ \ 1418 _selected_sk = _ctx->selected_sk; \ 1419 _no_reuseport = _ctx->no_reuseport; \ 1420 } else if (_ret == SK_DROP && _all_pass) { \ 1421 _all_pass = false; \ 1422 } \ 1423 _item++; \ 1424 } \ 1425 _ctx->selected_sk = _selected_sk; \ 1426 _ctx->no_reuseport = _no_reuseport; \ 1427 migrate_enable(); \ 1428 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ 1429 }) 1430 1431static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol, 1432 const __be32 saddr, const __be16 sport, 1433 const __be32 daddr, const u16 dport, 1434 const int ifindex, struct sock **psk) 1435{ 1436 struct bpf_prog_array *run_array; 1437 struct sock *selected_sk = NULL; 1438 bool no_reuseport = false; 1439 1440 rcu_read_lock(); 1441 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1442 if (run_array) { 1443 struct bpf_sk_lookup_kern ctx = { 1444 .family = AF_INET, 1445 .protocol = protocol, 1446 .v4.saddr = saddr, 1447 .v4.daddr = daddr, 1448 .sport = sport, 1449 .dport = dport, 1450 .ingress_ifindex = ifindex, 1451 }; 1452 u32 act; 1453 1454 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1455 if (act == SK_PASS) { 1456 selected_sk = ctx.selected_sk; 1457 no_reuseport = ctx.no_reuseport; 1458 } else { 1459 selected_sk = ERR_PTR(-ECONNREFUSED); 1460 } 1461 } 1462 rcu_read_unlock(); 1463 *psk = selected_sk; 1464 return no_reuseport; 1465} 1466 1467#if IS_ENABLED(CONFIG_IPV6) 1468static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol, 1469 const struct in6_addr *saddr, 1470 const __be16 sport, 1471 const struct in6_addr *daddr, 1472 const u16 dport, 1473 const int ifindex, struct sock **psk) 1474{ 1475 struct bpf_prog_array *run_array; 1476 struct sock *selected_sk = NULL; 1477 bool no_reuseport = false; 1478 1479 rcu_read_lock(); 1480 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1481 if (run_array) { 1482 struct bpf_sk_lookup_kern ctx = { 1483 .family = AF_INET6, 1484 .protocol = protocol, 1485 .v6.saddr = saddr, 1486 .v6.daddr = daddr, 1487 .sport = sport, 1488 .dport = dport, 1489 .ingress_ifindex = ifindex, 1490 }; 1491 u32 act; 1492 1493 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1494 if (act == SK_PASS) { 1495 selected_sk = ctx.selected_sk; 1496 no_reuseport = ctx.no_reuseport; 1497 } else { 1498 selected_sk = ERR_PTR(-ECONNREFUSED); 1499 } 1500 } 1501 rcu_read_unlock(); 1502 *psk = selected_sk; 1503 return no_reuseport; 1504} 1505#endif /* IS_ENABLED(CONFIG_IPV6) */ 1506 1507static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u64 index, 1508 u64 flags, const u64 flag_mask, 1509 void *lookup_elem(struct bpf_map *map, u32 key)) 1510{ 1511 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 1512 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX; 1513 1514 /* Lower bits of the flags are used as return code on lookup failure */ 1515 if (unlikely(flags & ~(action_mask | flag_mask))) 1516 return XDP_ABORTED; 1517 1518 ri->tgt_value = lookup_elem(map, index); 1519 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) { 1520 /* If the lookup fails we want to clear out the state in the 1521 * redirect_info struct completely, so that if an eBPF program 1522 * performs multiple lookups, the last one always takes 1523 * precedence. 1524 */ 1525 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */ 1526 ri->map_type = BPF_MAP_TYPE_UNSPEC; 1527 return flags & action_mask; 1528 } 1529 1530 ri->tgt_index = index; 1531 ri->map_id = map->id; 1532 ri->map_type = map->map_type; 1533 1534 if (flags & BPF_F_BROADCAST) { 1535 WRITE_ONCE(ri->map, map); 1536 ri->flags = flags; 1537 } else { 1538 WRITE_ONCE(ri->map, NULL); 1539 ri->flags = 0; 1540 } 1541 1542 return XDP_REDIRECT; 1543} 1544 1545#endif /* __LINUX_FILTER_H__ */