Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/mount.h>
24#include <linux/time.h>
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
27#include <linux/dax.h>
28#include <linux/quotaops.h>
29#include <linux/string.h>
30#include <linux/buffer_head.h>
31#include <linux/writeback.h>
32#include <linux/pagevec.h>
33#include <linux/mpage.h>
34#include <linux/namei.h>
35#include <linux/uio.h>
36#include <linux/bio.h>
37#include <linux/workqueue.h>
38#include <linux/kernel.h>
39#include <linux/printk.h>
40#include <linux/slab.h>
41#include <linux/bitops.h>
42#include <linux/iomap.h>
43#include <linux/iversion.h>
44
45#include "ext4_jbd2.h"
46#include "xattr.h"
47#include "acl.h"
48#include "truncate.h"
49
50#include <trace/events/ext4.h>
51
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u32 csum;
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
60
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
76 }
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 }
80
81 return csum;
82}
83
84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86{
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103}
104
105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107{
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120}
121
122static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124{
125 trace_ext4_begin_ordered_truncate(inode, new_size);
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
137}
138
139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 int pextents);
142
143/*
144 * Test whether an inode is a fast symlink.
145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146 */
147int ext4_inode_is_fast_symlink(struct inode *inode)
148{
149 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158 return S_ISLNK(inode->i_mode) && inode->i_size &&
159 (inode->i_size < EXT4_N_BLOCKS * 4);
160}
161
162/*
163 * Called at the last iput() if i_nlink is zero.
164 */
165void ext4_evict_inode(struct inode *inode)
166{
167 handle_t *handle;
168 int err;
169 /*
170 * Credits for final inode cleanup and freeing:
171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 */
174 int extra_credits = 6;
175 struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 bool freeze_protected = false;
177
178 trace_ext4_evict_inode(inode);
179
180 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181 ext4_evict_ea_inode(inode);
182 if (inode->i_nlink) {
183 /*
184 * When journalling data dirty buffers are tracked only in the
185 * journal. So although mm thinks everything is clean and
186 * ready for reaping the inode might still have some pages to
187 * write in the running transaction or waiting to be
188 * checkpointed. Thus calling jbd2_journal_invalidate_folio()
189 * (via truncate_inode_pages()) to discard these buffers can
190 * cause data loss. Also even if we did not discard these
191 * buffers, we would have no way to find them after the inode
192 * is reaped and thus user could see stale data if he tries to
193 * read them before the transaction is checkpointed. So be
194 * careful and force everything to disk here... We use
195 * ei->i_datasync_tid to store the newest transaction
196 * containing inode's data.
197 *
198 * Note that directories do not have this problem because they
199 * don't use page cache.
200 */
201 if (inode->i_ino != EXT4_JOURNAL_INO &&
202 ext4_should_journal_data(inode) &&
203 S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207 jbd2_complete_transaction(journal, commit_tid);
208 filemap_write_and_wait(&inode->i_data);
209 }
210 truncate_inode_pages_final(&inode->i_data);
211
212 goto no_delete;
213 }
214
215 if (is_bad_inode(inode))
216 goto no_delete;
217 dquot_initialize(inode);
218
219 if (ext4_should_order_data(inode))
220 ext4_begin_ordered_truncate(inode, 0);
221 truncate_inode_pages_final(&inode->i_data);
222
223 /*
224 * For inodes with journalled data, transaction commit could have
225 * dirtied the inode. And for inodes with dioread_nolock, unwritten
226 * extents converting worker could merge extents and also have dirtied
227 * the inode. Flush worker is ignoring it because of I_FREEING flag but
228 * we still need to remove the inode from the writeback lists.
229 */
230 if (!list_empty_careful(&inode->i_io_list))
231 inode_io_list_del(inode);
232
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it. When we are in a running transaction though,
236 * we are already protected against freezing and we cannot grab further
237 * protection due to lock ordering constraints.
238 */
239 if (!ext4_journal_current_handle()) {
240 sb_start_intwrite(inode->i_sb);
241 freeze_protected = true;
242 }
243
244 if (!IS_NOQUOTA(inode))
245 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246
247 /*
248 * Block bitmap, group descriptor, and inode are accounted in both
249 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250 */
251 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252 ext4_blocks_for_truncate(inode) + extra_credits - 3);
253 if (IS_ERR(handle)) {
254 ext4_std_error(inode->i_sb, PTR_ERR(handle));
255 /*
256 * If we're going to skip the normal cleanup, we still need to
257 * make sure that the in-core orphan linked list is properly
258 * cleaned up.
259 */
260 ext4_orphan_del(NULL, inode);
261 if (freeze_protected)
262 sb_end_intwrite(inode->i_sb);
263 goto no_delete;
264 }
265
266 if (IS_SYNC(inode))
267 ext4_handle_sync(handle);
268
269 /*
270 * Set inode->i_size to 0 before calling ext4_truncate(). We need
271 * special handling of symlinks here because i_size is used to
272 * determine whether ext4_inode_info->i_data contains symlink data or
273 * block mappings. Setting i_size to 0 will remove its fast symlink
274 * status. Erase i_data so that it becomes a valid empty block map.
275 */
276 if (ext4_inode_is_fast_symlink(inode))
277 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
278 inode->i_size = 0;
279 err = ext4_mark_inode_dirty(handle, inode);
280 if (err) {
281 ext4_warning(inode->i_sb,
282 "couldn't mark inode dirty (err %d)", err);
283 goto stop_handle;
284 }
285 if (inode->i_blocks) {
286 err = ext4_truncate(inode);
287 if (err) {
288 ext4_error_err(inode->i_sb, -err,
289 "couldn't truncate inode %lu (err %d)",
290 inode->i_ino, err);
291 goto stop_handle;
292 }
293 }
294
295 /* Remove xattr references. */
296 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297 extra_credits);
298 if (err) {
299 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300stop_handle:
301 ext4_journal_stop(handle);
302 ext4_orphan_del(NULL, inode);
303 if (freeze_protected)
304 sb_end_intwrite(inode->i_sb);
305 ext4_xattr_inode_array_free(ea_inode_array);
306 goto no_delete;
307 }
308
309 /*
310 * Kill off the orphan record which ext4_truncate created.
311 * AKPM: I think this can be inside the above `if'.
312 * Note that ext4_orphan_del() has to be able to cope with the
313 * deletion of a non-existent orphan - this is because we don't
314 * know if ext4_truncate() actually created an orphan record.
315 * (Well, we could do this if we need to, but heck - it works)
316 */
317 ext4_orphan_del(handle, inode);
318 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
319
320 /*
321 * One subtle ordering requirement: if anything has gone wrong
322 * (transaction abort, IO errors, whatever), then we can still
323 * do these next steps (the fs will already have been marked as
324 * having errors), but we can't free the inode if the mark_dirty
325 * fails.
326 */
327 if (ext4_mark_inode_dirty(handle, inode))
328 /* If that failed, just do the required in-core inode clear. */
329 ext4_clear_inode(inode);
330 else
331 ext4_free_inode(handle, inode);
332 ext4_journal_stop(handle);
333 if (freeze_protected)
334 sb_end_intwrite(inode->i_sb);
335 ext4_xattr_inode_array_free(ea_inode_array);
336 return;
337no_delete:
338 /*
339 * Check out some where else accidentally dirty the evicting inode,
340 * which may probably cause inode use-after-free issues later.
341 */
342 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
343
344 if (!list_empty(&EXT4_I(inode)->i_fc_list))
345 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
346 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
347}
348
349#ifdef CONFIG_QUOTA
350qsize_t *ext4_get_reserved_space(struct inode *inode)
351{
352 return &EXT4_I(inode)->i_reserved_quota;
353}
354#endif
355
356/*
357 * Called with i_data_sem down, which is important since we can call
358 * ext4_discard_preallocations() from here.
359 */
360void ext4_da_update_reserve_space(struct inode *inode,
361 int used, int quota_claim)
362{
363 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364 struct ext4_inode_info *ei = EXT4_I(inode);
365
366 spin_lock(&ei->i_block_reservation_lock);
367 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
368 if (unlikely(used > ei->i_reserved_data_blocks)) {
369 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
370 "with only %d reserved data blocks",
371 __func__, inode->i_ino, used,
372 ei->i_reserved_data_blocks);
373 WARN_ON(1);
374 used = ei->i_reserved_data_blocks;
375 }
376
377 /* Update per-inode reservations */
378 ei->i_reserved_data_blocks -= used;
379 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
380
381 spin_unlock(&ei->i_block_reservation_lock);
382
383 /* Update quota subsystem for data blocks */
384 if (quota_claim)
385 dquot_claim_block(inode, EXT4_C2B(sbi, used));
386 else {
387 /*
388 * We did fallocate with an offset that is already delayed
389 * allocated. So on delayed allocated writeback we should
390 * not re-claim the quota for fallocated blocks.
391 */
392 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
393 }
394
395 /*
396 * If we have done all the pending block allocations and if
397 * there aren't any writers on the inode, we can discard the
398 * inode's preallocations.
399 */
400 if ((ei->i_reserved_data_blocks == 0) &&
401 !inode_is_open_for_write(inode))
402 ext4_discard_preallocations(inode, 0);
403}
404
405static int __check_block_validity(struct inode *inode, const char *func,
406 unsigned int line,
407 struct ext4_map_blocks *map)
408{
409 if (ext4_has_feature_journal(inode->i_sb) &&
410 (inode->i_ino ==
411 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
412 return 0;
413 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock %llu "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_pblk, map->m_len);
418 return -EFSCORRUPTED;
419 }
420 return 0;
421}
422
423int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
424 ext4_lblk_t len)
425{
426 int ret;
427
428 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
429 return fscrypt_zeroout_range(inode, lblk, pblk, len);
430
431 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
432 if (ret > 0)
433 ret = 0;
434
435 return ret;
436}
437
438#define check_block_validity(inode, map) \
439 __check_block_validity((inode), __func__, __LINE__, (map))
440
441#ifdef ES_AGGRESSIVE_TEST
442static void ext4_map_blocks_es_recheck(handle_t *handle,
443 struct inode *inode,
444 struct ext4_map_blocks *es_map,
445 struct ext4_map_blocks *map,
446 int flags)
447{
448 int retval;
449
450 map->m_flags = 0;
451 /*
452 * There is a race window that the result is not the same.
453 * e.g. xfstests #223 when dioread_nolock enables. The reason
454 * is that we lookup a block mapping in extent status tree with
455 * out taking i_data_sem. So at the time the unwritten extent
456 * could be converted.
457 */
458 down_read(&EXT4_I(inode)->i_data_sem);
459 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
460 retval = ext4_ext_map_blocks(handle, inode, map, 0);
461 } else {
462 retval = ext4_ind_map_blocks(handle, inode, map, 0);
463 }
464 up_read((&EXT4_I(inode)->i_data_sem));
465
466 /*
467 * We don't check m_len because extent will be collpased in status
468 * tree. So the m_len might not equal.
469 */
470 if (es_map->m_lblk != map->m_lblk ||
471 es_map->m_flags != map->m_flags ||
472 es_map->m_pblk != map->m_pblk) {
473 printk("ES cache assertion failed for inode: %lu "
474 "es_cached ex [%d/%d/%llu/%x] != "
475 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
476 inode->i_ino, es_map->m_lblk, es_map->m_len,
477 es_map->m_pblk, es_map->m_flags, map->m_lblk,
478 map->m_len, map->m_pblk, map->m_flags,
479 retval, flags);
480 }
481}
482#endif /* ES_AGGRESSIVE_TEST */
483
484/*
485 * The ext4_map_blocks() function tries to look up the requested blocks,
486 * and returns if the blocks are already mapped.
487 *
488 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
489 * and store the allocated blocks in the result buffer head and mark it
490 * mapped.
491 *
492 * If file type is extents based, it will call ext4_ext_map_blocks(),
493 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
494 * based files
495 *
496 * On success, it returns the number of blocks being mapped or allocated. if
497 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
498 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
499 *
500 * It returns 0 if plain look up failed (blocks have not been allocated), in
501 * that case, @map is returned as unmapped but we still do fill map->m_len to
502 * indicate the length of a hole starting at map->m_lblk.
503 *
504 * It returns the error in case of allocation failure.
505 */
506int ext4_map_blocks(handle_t *handle, struct inode *inode,
507 struct ext4_map_blocks *map, int flags)
508{
509 struct extent_status es;
510 int retval;
511 int ret = 0;
512#ifdef ES_AGGRESSIVE_TEST
513 struct ext4_map_blocks orig_map;
514
515 memcpy(&orig_map, map, sizeof(*map));
516#endif
517
518 map->m_flags = 0;
519 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
520 flags, map->m_len, (unsigned long) map->m_lblk);
521
522 /*
523 * ext4_map_blocks returns an int, and m_len is an unsigned int
524 */
525 if (unlikely(map->m_len > INT_MAX))
526 map->m_len = INT_MAX;
527
528 /* We can handle the block number less than EXT_MAX_BLOCKS */
529 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
530 return -EFSCORRUPTED;
531
532 /* Lookup extent status tree firstly */
533 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
534 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
535 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
536 map->m_pblk = ext4_es_pblock(&es) +
537 map->m_lblk - es.es_lblk;
538 map->m_flags |= ext4_es_is_written(&es) ?
539 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
540 retval = es.es_len - (map->m_lblk - es.es_lblk);
541 if (retval > map->m_len)
542 retval = map->m_len;
543 map->m_len = retval;
544 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
545 map->m_pblk = 0;
546 retval = es.es_len - (map->m_lblk - es.es_lblk);
547 if (retval > map->m_len)
548 retval = map->m_len;
549 map->m_len = retval;
550 retval = 0;
551 } else {
552 BUG();
553 }
554
555 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
556 return retval;
557#ifdef ES_AGGRESSIVE_TEST
558 ext4_map_blocks_es_recheck(handle, inode, map,
559 &orig_map, flags);
560#endif
561 goto found;
562 }
563 /*
564 * In the query cache no-wait mode, nothing we can do more if we
565 * cannot find extent in the cache.
566 */
567 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
568 return 0;
569
570 /*
571 * Try to see if we can get the block without requesting a new
572 * file system block.
573 */
574 down_read(&EXT4_I(inode)->i_data_sem);
575 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
576 retval = ext4_ext_map_blocks(handle, inode, map, 0);
577 } else {
578 retval = ext4_ind_map_blocks(handle, inode, map, 0);
579 }
580 if (retval > 0) {
581 unsigned int status;
582
583 if (unlikely(retval != map->m_len)) {
584 ext4_warning(inode->i_sb,
585 "ES len assertion failed for inode "
586 "%lu: retval %d != map->m_len %d",
587 inode->i_ino, retval, map->m_len);
588 WARN_ON(1);
589 }
590
591 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
592 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
593 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
594 !(status & EXTENT_STATUS_WRITTEN) &&
595 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
596 map->m_lblk + map->m_len - 1))
597 status |= EXTENT_STATUS_DELAYED;
598 ret = ext4_es_insert_extent(inode, map->m_lblk,
599 map->m_len, map->m_pblk, status);
600 if (ret < 0)
601 retval = ret;
602 }
603 up_read((&EXT4_I(inode)->i_data_sem));
604
605found:
606 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
607 ret = check_block_validity(inode, map);
608 if (ret != 0)
609 return ret;
610 }
611
612 /* If it is only a block(s) look up */
613 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
614 return retval;
615
616 /*
617 * Returns if the blocks have already allocated
618 *
619 * Note that if blocks have been preallocated
620 * ext4_ext_get_block() returns the create = 0
621 * with buffer head unmapped.
622 */
623 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
624 /*
625 * If we need to convert extent to unwritten
626 * we continue and do the actual work in
627 * ext4_ext_map_blocks()
628 */
629 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
630 return retval;
631
632 /*
633 * Here we clear m_flags because after allocating an new extent,
634 * it will be set again.
635 */
636 map->m_flags &= ~EXT4_MAP_FLAGS;
637
638 /*
639 * New blocks allocate and/or writing to unwritten extent
640 * will possibly result in updating i_data, so we take
641 * the write lock of i_data_sem, and call get_block()
642 * with create == 1 flag.
643 */
644 down_write(&EXT4_I(inode)->i_data_sem);
645
646 /*
647 * We need to check for EXT4 here because migrate
648 * could have changed the inode type in between
649 */
650 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
651 retval = ext4_ext_map_blocks(handle, inode, map, flags);
652 } else {
653 retval = ext4_ind_map_blocks(handle, inode, map, flags);
654
655 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
656 /*
657 * We allocated new blocks which will result in
658 * i_data's format changing. Force the migrate
659 * to fail by clearing migrate flags
660 */
661 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
662 }
663
664 /*
665 * Update reserved blocks/metadata blocks after successful
666 * block allocation which had been deferred till now. We don't
667 * support fallocate for non extent files. So we can update
668 * reserve space here.
669 */
670 if ((retval > 0) &&
671 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
672 ext4_da_update_reserve_space(inode, retval, 1);
673 }
674
675 if (retval > 0) {
676 unsigned int status;
677
678 if (unlikely(retval != map->m_len)) {
679 ext4_warning(inode->i_sb,
680 "ES len assertion failed for inode "
681 "%lu: retval %d != map->m_len %d",
682 inode->i_ino, retval, map->m_len);
683 WARN_ON(1);
684 }
685
686 /*
687 * We have to zeroout blocks before inserting them into extent
688 * status tree. Otherwise someone could look them up there and
689 * use them before they are really zeroed. We also have to
690 * unmap metadata before zeroing as otherwise writeback can
691 * overwrite zeros with stale data from block device.
692 */
693 if (flags & EXT4_GET_BLOCKS_ZERO &&
694 map->m_flags & EXT4_MAP_MAPPED &&
695 map->m_flags & EXT4_MAP_NEW) {
696 ret = ext4_issue_zeroout(inode, map->m_lblk,
697 map->m_pblk, map->m_len);
698 if (ret) {
699 retval = ret;
700 goto out_sem;
701 }
702 }
703
704 /*
705 * If the extent has been zeroed out, we don't need to update
706 * extent status tree.
707 */
708 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
709 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
710 if (ext4_es_is_written(&es))
711 goto out_sem;
712 }
713 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
714 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
715 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
716 !(status & EXTENT_STATUS_WRITTEN) &&
717 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
718 map->m_lblk + map->m_len - 1))
719 status |= EXTENT_STATUS_DELAYED;
720 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
721 map->m_pblk, status);
722 if (ret < 0) {
723 retval = ret;
724 goto out_sem;
725 }
726 }
727
728out_sem:
729 up_write((&EXT4_I(inode)->i_data_sem));
730 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
731 ret = check_block_validity(inode, map);
732 if (ret != 0)
733 return ret;
734
735 /*
736 * Inodes with freshly allocated blocks where contents will be
737 * visible after transaction commit must be on transaction's
738 * ordered data list.
739 */
740 if (map->m_flags & EXT4_MAP_NEW &&
741 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
742 !(flags & EXT4_GET_BLOCKS_ZERO) &&
743 !ext4_is_quota_file(inode) &&
744 ext4_should_order_data(inode)) {
745 loff_t start_byte =
746 (loff_t)map->m_lblk << inode->i_blkbits;
747 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
748
749 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
750 ret = ext4_jbd2_inode_add_wait(handle, inode,
751 start_byte, length);
752 else
753 ret = ext4_jbd2_inode_add_write(handle, inode,
754 start_byte, length);
755 if (ret)
756 return ret;
757 }
758 }
759 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
760 map->m_flags & EXT4_MAP_MAPPED))
761 ext4_fc_track_range(handle, inode, map->m_lblk,
762 map->m_lblk + map->m_len - 1);
763 if (retval < 0)
764 ext_debug(inode, "failed with err %d\n", retval);
765 return retval;
766}
767
768/*
769 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
770 * we have to be careful as someone else may be manipulating b_state as well.
771 */
772static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
773{
774 unsigned long old_state;
775 unsigned long new_state;
776
777 flags &= EXT4_MAP_FLAGS;
778
779 /* Dummy buffer_head? Set non-atomically. */
780 if (!bh->b_page) {
781 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
782 return;
783 }
784 /*
785 * Someone else may be modifying b_state. Be careful! This is ugly but
786 * once we get rid of using bh as a container for mapping information
787 * to pass to / from get_block functions, this can go away.
788 */
789 old_state = READ_ONCE(bh->b_state);
790 do {
791 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
792 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
793}
794
795static int _ext4_get_block(struct inode *inode, sector_t iblock,
796 struct buffer_head *bh, int flags)
797{
798 struct ext4_map_blocks map;
799 int ret = 0;
800
801 if (ext4_has_inline_data(inode))
802 return -ERANGE;
803
804 map.m_lblk = iblock;
805 map.m_len = bh->b_size >> inode->i_blkbits;
806
807 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
808 flags);
809 if (ret > 0) {
810 map_bh(bh, inode->i_sb, map.m_pblk);
811 ext4_update_bh_state(bh, map.m_flags);
812 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
813 ret = 0;
814 } else if (ret == 0) {
815 /* hole case, need to fill in bh->b_size */
816 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
817 }
818 return ret;
819}
820
821int ext4_get_block(struct inode *inode, sector_t iblock,
822 struct buffer_head *bh, int create)
823{
824 return _ext4_get_block(inode, iblock, bh,
825 create ? EXT4_GET_BLOCKS_CREATE : 0);
826}
827
828/*
829 * Get block function used when preparing for buffered write if we require
830 * creating an unwritten extent if blocks haven't been allocated. The extent
831 * will be converted to written after the IO is complete.
832 */
833int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
834 struct buffer_head *bh_result, int create)
835{
836 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
837 inode->i_ino, create);
838 return _ext4_get_block(inode, iblock, bh_result,
839 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
840}
841
842/* Maximum number of blocks we map for direct IO at once. */
843#define DIO_MAX_BLOCKS 4096
844
845/*
846 * `handle' can be NULL if create is zero
847 */
848struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
849 ext4_lblk_t block, int map_flags)
850{
851 struct ext4_map_blocks map;
852 struct buffer_head *bh;
853 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
854 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
855 int err;
856
857 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
858 || handle != NULL || create == 0);
859 ASSERT(create == 0 || !nowait);
860
861 map.m_lblk = block;
862 map.m_len = 1;
863 err = ext4_map_blocks(handle, inode, &map, map_flags);
864
865 if (err == 0)
866 return create ? ERR_PTR(-ENOSPC) : NULL;
867 if (err < 0)
868 return ERR_PTR(err);
869
870 if (nowait)
871 return sb_find_get_block(inode->i_sb, map.m_pblk);
872
873 bh = sb_getblk(inode->i_sb, map.m_pblk);
874 if (unlikely(!bh))
875 return ERR_PTR(-ENOMEM);
876 if (map.m_flags & EXT4_MAP_NEW) {
877 ASSERT(create != 0);
878 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
879 || (handle != NULL));
880
881 /*
882 * Now that we do not always journal data, we should
883 * keep in mind whether this should always journal the
884 * new buffer as metadata. For now, regular file
885 * writes use ext4_get_block instead, so it's not a
886 * problem.
887 */
888 lock_buffer(bh);
889 BUFFER_TRACE(bh, "call get_create_access");
890 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
891 EXT4_JTR_NONE);
892 if (unlikely(err)) {
893 unlock_buffer(bh);
894 goto errout;
895 }
896 if (!buffer_uptodate(bh)) {
897 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
898 set_buffer_uptodate(bh);
899 }
900 unlock_buffer(bh);
901 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
902 err = ext4_handle_dirty_metadata(handle, inode, bh);
903 if (unlikely(err))
904 goto errout;
905 } else
906 BUFFER_TRACE(bh, "not a new buffer");
907 return bh;
908errout:
909 brelse(bh);
910 return ERR_PTR(err);
911}
912
913struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
914 ext4_lblk_t block, int map_flags)
915{
916 struct buffer_head *bh;
917 int ret;
918
919 bh = ext4_getblk(handle, inode, block, map_flags);
920 if (IS_ERR(bh))
921 return bh;
922 if (!bh || ext4_buffer_uptodate(bh))
923 return bh;
924
925 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
926 if (ret) {
927 put_bh(bh);
928 return ERR_PTR(ret);
929 }
930 return bh;
931}
932
933/* Read a contiguous batch of blocks. */
934int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
935 bool wait, struct buffer_head **bhs)
936{
937 int i, err;
938
939 for (i = 0; i < bh_count; i++) {
940 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
941 if (IS_ERR(bhs[i])) {
942 err = PTR_ERR(bhs[i]);
943 bh_count = i;
944 goto out_brelse;
945 }
946 }
947
948 for (i = 0; i < bh_count; i++)
949 /* Note that NULL bhs[i] is valid because of holes. */
950 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
951 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
952
953 if (!wait)
954 return 0;
955
956 for (i = 0; i < bh_count; i++)
957 if (bhs[i])
958 wait_on_buffer(bhs[i]);
959
960 for (i = 0; i < bh_count; i++) {
961 if (bhs[i] && !buffer_uptodate(bhs[i])) {
962 err = -EIO;
963 goto out_brelse;
964 }
965 }
966 return 0;
967
968out_brelse:
969 for (i = 0; i < bh_count; i++) {
970 brelse(bhs[i]);
971 bhs[i] = NULL;
972 }
973 return err;
974}
975
976int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
977 struct buffer_head *head,
978 unsigned from,
979 unsigned to,
980 int *partial,
981 int (*fn)(handle_t *handle, struct inode *inode,
982 struct buffer_head *bh))
983{
984 struct buffer_head *bh;
985 unsigned block_start, block_end;
986 unsigned blocksize = head->b_size;
987 int err, ret = 0;
988 struct buffer_head *next;
989
990 for (bh = head, block_start = 0;
991 ret == 0 && (bh != head || !block_start);
992 block_start = block_end, bh = next) {
993 next = bh->b_this_page;
994 block_end = block_start + blocksize;
995 if (block_end <= from || block_start >= to) {
996 if (partial && !buffer_uptodate(bh))
997 *partial = 1;
998 continue;
999 }
1000 err = (*fn)(handle, inode, bh);
1001 if (!ret)
1002 ret = err;
1003 }
1004 return ret;
1005}
1006
1007/*
1008 * To preserve ordering, it is essential that the hole instantiation and
1009 * the data write be encapsulated in a single transaction. We cannot
1010 * close off a transaction and start a new one between the ext4_get_block()
1011 * and the commit_write(). So doing the jbd2_journal_start at the start of
1012 * prepare_write() is the right place.
1013 *
1014 * Also, this function can nest inside ext4_writepage(). In that case, we
1015 * *know* that ext4_writepage() has generated enough buffer credits to do the
1016 * whole page. So we won't block on the journal in that case, which is good,
1017 * because the caller may be PF_MEMALLOC.
1018 *
1019 * By accident, ext4 can be reentered when a transaction is open via
1020 * quota file writes. If we were to commit the transaction while thus
1021 * reentered, there can be a deadlock - we would be holding a quota
1022 * lock, and the commit would never complete if another thread had a
1023 * transaction open and was blocking on the quota lock - a ranking
1024 * violation.
1025 *
1026 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1027 * will _not_ run commit under these circumstances because handle->h_ref
1028 * is elevated. We'll still have enough credits for the tiny quotafile
1029 * write.
1030 */
1031int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1032 struct buffer_head *bh)
1033{
1034 int dirty = buffer_dirty(bh);
1035 int ret;
1036
1037 if (!buffer_mapped(bh) || buffer_freed(bh))
1038 return 0;
1039 /*
1040 * __block_write_begin() could have dirtied some buffers. Clean
1041 * the dirty bit as jbd2_journal_get_write_access() could complain
1042 * otherwise about fs integrity issues. Setting of the dirty bit
1043 * by __block_write_begin() isn't a real problem here as we clear
1044 * the bit before releasing a page lock and thus writeback cannot
1045 * ever write the buffer.
1046 */
1047 if (dirty)
1048 clear_buffer_dirty(bh);
1049 BUFFER_TRACE(bh, "get write access");
1050 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1051 EXT4_JTR_NONE);
1052 if (!ret && dirty)
1053 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1054 return ret;
1055}
1056
1057#ifdef CONFIG_FS_ENCRYPTION
1058static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1059 get_block_t *get_block)
1060{
1061 unsigned from = pos & (PAGE_SIZE - 1);
1062 unsigned to = from + len;
1063 struct inode *inode = page->mapping->host;
1064 unsigned block_start, block_end;
1065 sector_t block;
1066 int err = 0;
1067 unsigned blocksize = inode->i_sb->s_blocksize;
1068 unsigned bbits;
1069 struct buffer_head *bh, *head, *wait[2];
1070 int nr_wait = 0;
1071 int i;
1072
1073 BUG_ON(!PageLocked(page));
1074 BUG_ON(from > PAGE_SIZE);
1075 BUG_ON(to > PAGE_SIZE);
1076 BUG_ON(from > to);
1077
1078 if (!page_has_buffers(page))
1079 create_empty_buffers(page, blocksize, 0);
1080 head = page_buffers(page);
1081 bbits = ilog2(blocksize);
1082 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1083
1084 for (bh = head, block_start = 0; bh != head || !block_start;
1085 block++, block_start = block_end, bh = bh->b_this_page) {
1086 block_end = block_start + blocksize;
1087 if (block_end <= from || block_start >= to) {
1088 if (PageUptodate(page)) {
1089 set_buffer_uptodate(bh);
1090 }
1091 continue;
1092 }
1093 if (buffer_new(bh))
1094 clear_buffer_new(bh);
1095 if (!buffer_mapped(bh)) {
1096 WARN_ON(bh->b_size != blocksize);
1097 err = get_block(inode, block, bh, 1);
1098 if (err)
1099 break;
1100 if (buffer_new(bh)) {
1101 if (PageUptodate(page)) {
1102 clear_buffer_new(bh);
1103 set_buffer_uptodate(bh);
1104 mark_buffer_dirty(bh);
1105 continue;
1106 }
1107 if (block_end > to || block_start < from)
1108 zero_user_segments(page, to, block_end,
1109 block_start, from);
1110 continue;
1111 }
1112 }
1113 if (PageUptodate(page)) {
1114 set_buffer_uptodate(bh);
1115 continue;
1116 }
1117 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1118 !buffer_unwritten(bh) &&
1119 (block_start < from || block_end > to)) {
1120 ext4_read_bh_lock(bh, 0, false);
1121 wait[nr_wait++] = bh;
1122 }
1123 }
1124 /*
1125 * If we issued read requests, let them complete.
1126 */
1127 for (i = 0; i < nr_wait; i++) {
1128 wait_on_buffer(wait[i]);
1129 if (!buffer_uptodate(wait[i]))
1130 err = -EIO;
1131 }
1132 if (unlikely(err)) {
1133 page_zero_new_buffers(page, from, to);
1134 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1135 for (i = 0; i < nr_wait; i++) {
1136 int err2;
1137
1138 err2 = fscrypt_decrypt_pagecache_blocks(page_folio(page),
1139 blocksize,
1140 bh_offset(wait[i]));
1141 if (err2) {
1142 clear_buffer_uptodate(wait[i]);
1143 err = err2;
1144 }
1145 }
1146 }
1147
1148 return err;
1149}
1150#endif
1151
1152static int ext4_write_begin(struct file *file, struct address_space *mapping,
1153 loff_t pos, unsigned len,
1154 struct page **pagep, void **fsdata)
1155{
1156 struct inode *inode = mapping->host;
1157 int ret, needed_blocks;
1158 handle_t *handle;
1159 int retries = 0;
1160 struct page *page;
1161 pgoff_t index;
1162 unsigned from, to;
1163
1164 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1165 return -EIO;
1166
1167 trace_ext4_write_begin(inode, pos, len);
1168 /*
1169 * Reserve one block more for addition to orphan list in case
1170 * we allocate blocks but write fails for some reason
1171 */
1172 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1173 index = pos >> PAGE_SHIFT;
1174 from = pos & (PAGE_SIZE - 1);
1175 to = from + len;
1176
1177 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1178 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1179 pagep);
1180 if (ret < 0)
1181 return ret;
1182 if (ret == 1)
1183 return 0;
1184 }
1185
1186 /*
1187 * grab_cache_page_write_begin() can take a long time if the
1188 * system is thrashing due to memory pressure, or if the page
1189 * is being written back. So grab it first before we start
1190 * the transaction handle. This also allows us to allocate
1191 * the page (if needed) without using GFP_NOFS.
1192 */
1193retry_grab:
1194 page = grab_cache_page_write_begin(mapping, index);
1195 if (!page)
1196 return -ENOMEM;
1197 /*
1198 * The same as page allocation, we prealloc buffer heads before
1199 * starting the handle.
1200 */
1201 if (!page_has_buffers(page))
1202 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1203
1204 unlock_page(page);
1205
1206retry_journal:
1207 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1208 if (IS_ERR(handle)) {
1209 put_page(page);
1210 return PTR_ERR(handle);
1211 }
1212
1213 lock_page(page);
1214 if (page->mapping != mapping) {
1215 /* The page got truncated from under us */
1216 unlock_page(page);
1217 put_page(page);
1218 ext4_journal_stop(handle);
1219 goto retry_grab;
1220 }
1221 /* In case writeback began while the page was unlocked */
1222 wait_for_stable_page(page);
1223
1224#ifdef CONFIG_FS_ENCRYPTION
1225 if (ext4_should_dioread_nolock(inode))
1226 ret = ext4_block_write_begin(page, pos, len,
1227 ext4_get_block_unwritten);
1228 else
1229 ret = ext4_block_write_begin(page, pos, len,
1230 ext4_get_block);
1231#else
1232 if (ext4_should_dioread_nolock(inode))
1233 ret = __block_write_begin(page, pos, len,
1234 ext4_get_block_unwritten);
1235 else
1236 ret = __block_write_begin(page, pos, len, ext4_get_block);
1237#endif
1238 if (!ret && ext4_should_journal_data(inode)) {
1239 ret = ext4_walk_page_buffers(handle, inode,
1240 page_buffers(page), from, to, NULL,
1241 do_journal_get_write_access);
1242 }
1243
1244 if (ret) {
1245 bool extended = (pos + len > inode->i_size) &&
1246 !ext4_verity_in_progress(inode);
1247
1248 unlock_page(page);
1249 /*
1250 * __block_write_begin may have instantiated a few blocks
1251 * outside i_size. Trim these off again. Don't need
1252 * i_size_read because we hold i_rwsem.
1253 *
1254 * Add inode to orphan list in case we crash before
1255 * truncate finishes
1256 */
1257 if (extended && ext4_can_truncate(inode))
1258 ext4_orphan_add(handle, inode);
1259
1260 ext4_journal_stop(handle);
1261 if (extended) {
1262 ext4_truncate_failed_write(inode);
1263 /*
1264 * If truncate failed early the inode might
1265 * still be on the orphan list; we need to
1266 * make sure the inode is removed from the
1267 * orphan list in that case.
1268 */
1269 if (inode->i_nlink)
1270 ext4_orphan_del(NULL, inode);
1271 }
1272
1273 if (ret == -ENOSPC &&
1274 ext4_should_retry_alloc(inode->i_sb, &retries))
1275 goto retry_journal;
1276 put_page(page);
1277 return ret;
1278 }
1279 *pagep = page;
1280 return ret;
1281}
1282
1283/* For write_end() in data=journal mode */
1284static int write_end_fn(handle_t *handle, struct inode *inode,
1285 struct buffer_head *bh)
1286{
1287 int ret;
1288 if (!buffer_mapped(bh) || buffer_freed(bh))
1289 return 0;
1290 set_buffer_uptodate(bh);
1291 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1292 clear_buffer_meta(bh);
1293 clear_buffer_prio(bh);
1294 return ret;
1295}
1296
1297/*
1298 * We need to pick up the new inode size which generic_commit_write gave us
1299 * `file' can be NULL - eg, when called from page_symlink().
1300 *
1301 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1302 * buffers are managed internally.
1303 */
1304static int ext4_write_end(struct file *file,
1305 struct address_space *mapping,
1306 loff_t pos, unsigned len, unsigned copied,
1307 struct page *page, void *fsdata)
1308{
1309 handle_t *handle = ext4_journal_current_handle();
1310 struct inode *inode = mapping->host;
1311 loff_t old_size = inode->i_size;
1312 int ret = 0, ret2;
1313 int i_size_changed = 0;
1314 bool verity = ext4_verity_in_progress(inode);
1315
1316 trace_ext4_write_end(inode, pos, len, copied);
1317
1318 if (ext4_has_inline_data(inode) &&
1319 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1320 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1321
1322 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1323 /*
1324 * it's important to update i_size while still holding page lock:
1325 * page writeout could otherwise come in and zero beyond i_size.
1326 *
1327 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1328 * blocks are being written past EOF, so skip the i_size update.
1329 */
1330 if (!verity)
1331 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1332 unlock_page(page);
1333 put_page(page);
1334
1335 if (old_size < pos && !verity)
1336 pagecache_isize_extended(inode, old_size, pos);
1337 /*
1338 * Don't mark the inode dirty under page lock. First, it unnecessarily
1339 * makes the holding time of page lock longer. Second, it forces lock
1340 * ordering of page lock and transaction start for journaling
1341 * filesystems.
1342 */
1343 if (i_size_changed)
1344 ret = ext4_mark_inode_dirty(handle, inode);
1345
1346 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1347 /* if we have allocated more blocks and copied
1348 * less. We will have blocks allocated outside
1349 * inode->i_size. So truncate them
1350 */
1351 ext4_orphan_add(handle, inode);
1352
1353 ret2 = ext4_journal_stop(handle);
1354 if (!ret)
1355 ret = ret2;
1356
1357 if (pos + len > inode->i_size && !verity) {
1358 ext4_truncate_failed_write(inode);
1359 /*
1360 * If truncate failed early the inode might still be
1361 * on the orphan list; we need to make sure the inode
1362 * is removed from the orphan list in that case.
1363 */
1364 if (inode->i_nlink)
1365 ext4_orphan_del(NULL, inode);
1366 }
1367
1368 return ret ? ret : copied;
1369}
1370
1371/*
1372 * This is a private version of page_zero_new_buffers() which doesn't
1373 * set the buffer to be dirty, since in data=journalled mode we need
1374 * to call ext4_handle_dirty_metadata() instead.
1375 */
1376static void ext4_journalled_zero_new_buffers(handle_t *handle,
1377 struct inode *inode,
1378 struct page *page,
1379 unsigned from, unsigned to)
1380{
1381 unsigned int block_start = 0, block_end;
1382 struct buffer_head *head, *bh;
1383
1384 bh = head = page_buffers(page);
1385 do {
1386 block_end = block_start + bh->b_size;
1387 if (buffer_new(bh)) {
1388 if (block_end > from && block_start < to) {
1389 if (!PageUptodate(page)) {
1390 unsigned start, size;
1391
1392 start = max(from, block_start);
1393 size = min(to, block_end) - start;
1394
1395 zero_user(page, start, size);
1396 write_end_fn(handle, inode, bh);
1397 }
1398 clear_buffer_new(bh);
1399 }
1400 }
1401 block_start = block_end;
1402 bh = bh->b_this_page;
1403 } while (bh != head);
1404}
1405
1406static int ext4_journalled_write_end(struct file *file,
1407 struct address_space *mapping,
1408 loff_t pos, unsigned len, unsigned copied,
1409 struct page *page, void *fsdata)
1410{
1411 handle_t *handle = ext4_journal_current_handle();
1412 struct inode *inode = mapping->host;
1413 loff_t old_size = inode->i_size;
1414 int ret = 0, ret2;
1415 int partial = 0;
1416 unsigned from, to;
1417 int size_changed = 0;
1418 bool verity = ext4_verity_in_progress(inode);
1419
1420 trace_ext4_journalled_write_end(inode, pos, len, copied);
1421 from = pos & (PAGE_SIZE - 1);
1422 to = from + len;
1423
1424 BUG_ON(!ext4_handle_valid(handle));
1425
1426 if (ext4_has_inline_data(inode))
1427 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1428
1429 if (unlikely(copied < len) && !PageUptodate(page)) {
1430 copied = 0;
1431 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1432 } else {
1433 if (unlikely(copied < len))
1434 ext4_journalled_zero_new_buffers(handle, inode, page,
1435 from + copied, to);
1436 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1437 from, from + copied, &partial,
1438 write_end_fn);
1439 if (!partial)
1440 SetPageUptodate(page);
1441 }
1442 if (!verity)
1443 size_changed = ext4_update_inode_size(inode, pos + copied);
1444 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1445 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1446 unlock_page(page);
1447 put_page(page);
1448
1449 if (old_size < pos && !verity)
1450 pagecache_isize_extended(inode, old_size, pos);
1451
1452 if (size_changed) {
1453 ret2 = ext4_mark_inode_dirty(handle, inode);
1454 if (!ret)
1455 ret = ret2;
1456 }
1457
1458 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1459 /* if we have allocated more blocks and copied
1460 * less. We will have blocks allocated outside
1461 * inode->i_size. So truncate them
1462 */
1463 ext4_orphan_add(handle, inode);
1464
1465 ret2 = ext4_journal_stop(handle);
1466 if (!ret)
1467 ret = ret2;
1468 if (pos + len > inode->i_size && !verity) {
1469 ext4_truncate_failed_write(inode);
1470 /*
1471 * If truncate failed early the inode might still be
1472 * on the orphan list; we need to make sure the inode
1473 * is removed from the orphan list in that case.
1474 */
1475 if (inode->i_nlink)
1476 ext4_orphan_del(NULL, inode);
1477 }
1478
1479 return ret ? ret : copied;
1480}
1481
1482/*
1483 * Reserve space for a single cluster
1484 */
1485static int ext4_da_reserve_space(struct inode *inode)
1486{
1487 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488 struct ext4_inode_info *ei = EXT4_I(inode);
1489 int ret;
1490
1491 /*
1492 * We will charge metadata quota at writeout time; this saves
1493 * us from metadata over-estimation, though we may go over by
1494 * a small amount in the end. Here we just reserve for data.
1495 */
1496 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1497 if (ret)
1498 return ret;
1499
1500 spin_lock(&ei->i_block_reservation_lock);
1501 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1502 spin_unlock(&ei->i_block_reservation_lock);
1503 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1504 return -ENOSPC;
1505 }
1506 ei->i_reserved_data_blocks++;
1507 trace_ext4_da_reserve_space(inode);
1508 spin_unlock(&ei->i_block_reservation_lock);
1509
1510 return 0; /* success */
1511}
1512
1513void ext4_da_release_space(struct inode *inode, int to_free)
1514{
1515 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1516 struct ext4_inode_info *ei = EXT4_I(inode);
1517
1518 if (!to_free)
1519 return; /* Nothing to release, exit */
1520
1521 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1522
1523 trace_ext4_da_release_space(inode, to_free);
1524 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1525 /*
1526 * if there aren't enough reserved blocks, then the
1527 * counter is messed up somewhere. Since this
1528 * function is called from invalidate page, it's
1529 * harmless to return without any action.
1530 */
1531 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1532 "ino %lu, to_free %d with only %d reserved "
1533 "data blocks", inode->i_ino, to_free,
1534 ei->i_reserved_data_blocks);
1535 WARN_ON(1);
1536 to_free = ei->i_reserved_data_blocks;
1537 }
1538 ei->i_reserved_data_blocks -= to_free;
1539
1540 /* update fs dirty data blocks counter */
1541 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1542
1543 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1544
1545 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1546}
1547
1548/*
1549 * Delayed allocation stuff
1550 */
1551
1552struct mpage_da_data {
1553 /* These are input fields for ext4_do_writepages() */
1554 struct inode *inode;
1555 struct writeback_control *wbc;
1556 unsigned int can_map:1; /* Can writepages call map blocks? */
1557
1558 /* These are internal state of ext4_do_writepages() */
1559 pgoff_t first_page; /* The first page to write */
1560 pgoff_t next_page; /* Current page to examine */
1561 pgoff_t last_page; /* Last page to examine */
1562 /*
1563 * Extent to map - this can be after first_page because that can be
1564 * fully mapped. We somewhat abuse m_flags to store whether the extent
1565 * is delalloc or unwritten.
1566 */
1567 struct ext4_map_blocks map;
1568 struct ext4_io_submit io_submit; /* IO submission data */
1569 unsigned int do_map:1;
1570 unsigned int scanned_until_end:1;
1571};
1572
1573static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1574 bool invalidate)
1575{
1576 unsigned nr, i;
1577 pgoff_t index, end;
1578 struct folio_batch fbatch;
1579 struct inode *inode = mpd->inode;
1580 struct address_space *mapping = inode->i_mapping;
1581
1582 /* This is necessary when next_page == 0. */
1583 if (mpd->first_page >= mpd->next_page)
1584 return;
1585
1586 mpd->scanned_until_end = 0;
1587 index = mpd->first_page;
1588 end = mpd->next_page - 1;
1589 if (invalidate) {
1590 ext4_lblk_t start, last;
1591 start = index << (PAGE_SHIFT - inode->i_blkbits);
1592 last = end << (PAGE_SHIFT - inode->i_blkbits);
1593
1594 /*
1595 * avoid racing with extent status tree scans made by
1596 * ext4_insert_delayed_block()
1597 */
1598 down_write(&EXT4_I(inode)->i_data_sem);
1599 ext4_es_remove_extent(inode, start, last - start + 1);
1600 up_write(&EXT4_I(inode)->i_data_sem);
1601 }
1602
1603 folio_batch_init(&fbatch);
1604 while (index <= end) {
1605 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1606 if (nr == 0)
1607 break;
1608 for (i = 0; i < nr; i++) {
1609 struct folio *folio = fbatch.folios[i];
1610
1611 if (folio->index < mpd->first_page)
1612 continue;
1613 if (folio->index + folio_nr_pages(folio) - 1 > end)
1614 continue;
1615 BUG_ON(!folio_test_locked(folio));
1616 BUG_ON(folio_test_writeback(folio));
1617 if (invalidate) {
1618 if (folio_mapped(folio))
1619 folio_clear_dirty_for_io(folio);
1620 block_invalidate_folio(folio, 0,
1621 folio_size(folio));
1622 folio_clear_uptodate(folio);
1623 }
1624 folio_unlock(folio);
1625 }
1626 folio_batch_release(&fbatch);
1627 }
1628}
1629
1630static void ext4_print_free_blocks(struct inode *inode)
1631{
1632 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1633 struct super_block *sb = inode->i_sb;
1634 struct ext4_inode_info *ei = EXT4_I(inode);
1635
1636 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1637 EXT4_C2B(EXT4_SB(inode->i_sb),
1638 ext4_count_free_clusters(sb)));
1639 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1640 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1641 (long long) EXT4_C2B(EXT4_SB(sb),
1642 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1643 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1644 (long long) EXT4_C2B(EXT4_SB(sb),
1645 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1646 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1647 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1648 ei->i_reserved_data_blocks);
1649 return;
1650}
1651
1652static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1653 struct buffer_head *bh)
1654{
1655 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1656}
1657
1658/*
1659 * ext4_insert_delayed_block - adds a delayed block to the extents status
1660 * tree, incrementing the reserved cluster/block
1661 * count or making a pending reservation
1662 * where needed
1663 *
1664 * @inode - file containing the newly added block
1665 * @lblk - logical block to be added
1666 *
1667 * Returns 0 on success, negative error code on failure.
1668 */
1669static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1670{
1671 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1672 int ret;
1673 bool allocated = false;
1674 bool reserved = false;
1675
1676 /*
1677 * If the cluster containing lblk is shared with a delayed,
1678 * written, or unwritten extent in a bigalloc file system, it's
1679 * already been accounted for and does not need to be reserved.
1680 * A pending reservation must be made for the cluster if it's
1681 * shared with a written or unwritten extent and doesn't already
1682 * have one. Written and unwritten extents can be purged from the
1683 * extents status tree if the system is under memory pressure, so
1684 * it's necessary to examine the extent tree if a search of the
1685 * extents status tree doesn't get a match.
1686 */
1687 if (sbi->s_cluster_ratio == 1) {
1688 ret = ext4_da_reserve_space(inode);
1689 if (ret != 0) /* ENOSPC */
1690 goto errout;
1691 reserved = true;
1692 } else { /* bigalloc */
1693 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1694 if (!ext4_es_scan_clu(inode,
1695 &ext4_es_is_mapped, lblk)) {
1696 ret = ext4_clu_mapped(inode,
1697 EXT4_B2C(sbi, lblk));
1698 if (ret < 0)
1699 goto errout;
1700 if (ret == 0) {
1701 ret = ext4_da_reserve_space(inode);
1702 if (ret != 0) /* ENOSPC */
1703 goto errout;
1704 reserved = true;
1705 } else {
1706 allocated = true;
1707 }
1708 } else {
1709 allocated = true;
1710 }
1711 }
1712 }
1713
1714 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1715 if (ret && reserved)
1716 ext4_da_release_space(inode, 1);
1717
1718errout:
1719 return ret;
1720}
1721
1722/*
1723 * This function is grabs code from the very beginning of
1724 * ext4_map_blocks, but assumes that the caller is from delayed write
1725 * time. This function looks up the requested blocks and sets the
1726 * buffer delay bit under the protection of i_data_sem.
1727 */
1728static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1729 struct ext4_map_blocks *map,
1730 struct buffer_head *bh)
1731{
1732 struct extent_status es;
1733 int retval;
1734 sector_t invalid_block = ~((sector_t) 0xffff);
1735#ifdef ES_AGGRESSIVE_TEST
1736 struct ext4_map_blocks orig_map;
1737
1738 memcpy(&orig_map, map, sizeof(*map));
1739#endif
1740
1741 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1742 invalid_block = ~0;
1743
1744 map->m_flags = 0;
1745 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1746 (unsigned long) map->m_lblk);
1747
1748 /* Lookup extent status tree firstly */
1749 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1750 if (ext4_es_is_hole(&es)) {
1751 retval = 0;
1752 down_read(&EXT4_I(inode)->i_data_sem);
1753 goto add_delayed;
1754 }
1755
1756 /*
1757 * Delayed extent could be allocated by fallocate.
1758 * So we need to check it.
1759 */
1760 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1761 map_bh(bh, inode->i_sb, invalid_block);
1762 set_buffer_new(bh);
1763 set_buffer_delay(bh);
1764 return 0;
1765 }
1766
1767 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1768 retval = es.es_len - (iblock - es.es_lblk);
1769 if (retval > map->m_len)
1770 retval = map->m_len;
1771 map->m_len = retval;
1772 if (ext4_es_is_written(&es))
1773 map->m_flags |= EXT4_MAP_MAPPED;
1774 else if (ext4_es_is_unwritten(&es))
1775 map->m_flags |= EXT4_MAP_UNWRITTEN;
1776 else
1777 BUG();
1778
1779#ifdef ES_AGGRESSIVE_TEST
1780 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1781#endif
1782 return retval;
1783 }
1784
1785 /*
1786 * Try to see if we can get the block without requesting a new
1787 * file system block.
1788 */
1789 down_read(&EXT4_I(inode)->i_data_sem);
1790 if (ext4_has_inline_data(inode))
1791 retval = 0;
1792 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1793 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1794 else
1795 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1796
1797add_delayed:
1798 if (retval == 0) {
1799 int ret;
1800
1801 /*
1802 * XXX: __block_prepare_write() unmaps passed block,
1803 * is it OK?
1804 */
1805
1806 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1807 if (ret != 0) {
1808 retval = ret;
1809 goto out_unlock;
1810 }
1811
1812 map_bh(bh, inode->i_sb, invalid_block);
1813 set_buffer_new(bh);
1814 set_buffer_delay(bh);
1815 } else if (retval > 0) {
1816 int ret;
1817 unsigned int status;
1818
1819 if (unlikely(retval != map->m_len)) {
1820 ext4_warning(inode->i_sb,
1821 "ES len assertion failed for inode "
1822 "%lu: retval %d != map->m_len %d",
1823 inode->i_ino, retval, map->m_len);
1824 WARN_ON(1);
1825 }
1826
1827 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1828 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1829 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1830 map->m_pblk, status);
1831 if (ret != 0)
1832 retval = ret;
1833 }
1834
1835out_unlock:
1836 up_read((&EXT4_I(inode)->i_data_sem));
1837
1838 return retval;
1839}
1840
1841/*
1842 * This is a special get_block_t callback which is used by
1843 * ext4_da_write_begin(). It will either return mapped block or
1844 * reserve space for a single block.
1845 *
1846 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1847 * We also have b_blocknr = -1 and b_bdev initialized properly
1848 *
1849 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1850 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1851 * initialized properly.
1852 */
1853int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1854 struct buffer_head *bh, int create)
1855{
1856 struct ext4_map_blocks map;
1857 int ret = 0;
1858
1859 BUG_ON(create == 0);
1860 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861
1862 map.m_lblk = iblock;
1863 map.m_len = 1;
1864
1865 /*
1866 * first, we need to know whether the block is allocated already
1867 * preallocated blocks are unmapped but should treated
1868 * the same as allocated blocks.
1869 */
1870 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1871 if (ret <= 0)
1872 return ret;
1873
1874 map_bh(bh, inode->i_sb, map.m_pblk);
1875 ext4_update_bh_state(bh, map.m_flags);
1876
1877 if (buffer_unwritten(bh)) {
1878 /* A delayed write to unwritten bh should be marked
1879 * new and mapped. Mapped ensures that we don't do
1880 * get_block multiple times when we write to the same
1881 * offset and new ensures that we do proper zero out
1882 * for partial write.
1883 */
1884 set_buffer_new(bh);
1885 set_buffer_mapped(bh);
1886 }
1887 return 0;
1888}
1889
1890static int __ext4_journalled_writepage(struct page *page,
1891 unsigned int len)
1892{
1893 struct address_space *mapping = page->mapping;
1894 struct inode *inode = mapping->host;
1895 handle_t *handle = NULL;
1896 int ret = 0, err = 0;
1897 int inline_data = ext4_has_inline_data(inode);
1898 struct buffer_head *inode_bh = NULL;
1899 loff_t size;
1900
1901 ClearPageChecked(page);
1902
1903 if (inline_data) {
1904 BUG_ON(page->index != 0);
1905 BUG_ON(len > ext4_get_max_inline_size(inode));
1906 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1907 if (inode_bh == NULL)
1908 goto out;
1909 }
1910 /*
1911 * We need to release the page lock before we start the
1912 * journal, so grab a reference so the page won't disappear
1913 * out from under us.
1914 */
1915 get_page(page);
1916 unlock_page(page);
1917
1918 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1919 ext4_writepage_trans_blocks(inode));
1920 if (IS_ERR(handle)) {
1921 ret = PTR_ERR(handle);
1922 put_page(page);
1923 goto out_no_pagelock;
1924 }
1925 BUG_ON(!ext4_handle_valid(handle));
1926
1927 lock_page(page);
1928 put_page(page);
1929 size = i_size_read(inode);
1930 if (page->mapping != mapping || page_offset(page) > size) {
1931 /* The page got truncated from under us */
1932 ext4_journal_stop(handle);
1933 ret = 0;
1934 goto out;
1935 }
1936
1937 if (inline_data) {
1938 ret = ext4_mark_inode_dirty(handle, inode);
1939 } else {
1940 struct buffer_head *page_bufs = page_buffers(page);
1941
1942 if (page->index == size >> PAGE_SHIFT)
1943 len = size & ~PAGE_MASK;
1944 else
1945 len = PAGE_SIZE;
1946
1947 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1948 NULL, do_journal_get_write_access);
1949
1950 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1951 NULL, write_end_fn);
1952 }
1953 if (ret == 0)
1954 ret = err;
1955 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1956 if (ret == 0)
1957 ret = err;
1958 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1959 err = ext4_journal_stop(handle);
1960 if (!ret)
1961 ret = err;
1962
1963 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1964out:
1965 unlock_page(page);
1966out_no_pagelock:
1967 brelse(inode_bh);
1968 return ret;
1969}
1970
1971/*
1972 * Note that we don't need to start a transaction unless we're journaling data
1973 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1974 * need to file the inode to the transaction's list in ordered mode because if
1975 * we are writing back data added by write(), the inode is already there and if
1976 * we are writing back data modified via mmap(), no one guarantees in which
1977 * transaction the data will hit the disk. In case we are journaling data, we
1978 * cannot start transaction directly because transaction start ranks above page
1979 * lock so we have to do some magic.
1980 *
1981 * This function can get called via...
1982 * - ext4_writepages after taking page lock (have journal handle)
1983 * - journal_submit_inode_data_buffers (no journal handle)
1984 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1985 * - grab_page_cache when doing write_begin (have journal handle)
1986 *
1987 * We don't do any block allocation in this function. If we have page with
1988 * multiple blocks we need to write those buffer_heads that are mapped. This
1989 * is important for mmaped based write. So if we do with blocksize 1K
1990 * truncate(f, 1024);
1991 * a = mmap(f, 0, 4096);
1992 * a[0] = 'a';
1993 * truncate(f, 4096);
1994 * we have in the page first buffer_head mapped via page_mkwrite call back
1995 * but other buffer_heads would be unmapped but dirty (dirty done via the
1996 * do_wp_page). So writepage should write the first block. If we modify
1997 * the mmap area beyond 1024 we will again get a page_fault and the
1998 * page_mkwrite callback will do the block allocation and mark the
1999 * buffer_heads mapped.
2000 *
2001 * We redirty the page if we have any buffer_heads that is either delay or
2002 * unwritten in the page.
2003 *
2004 * We can get recursively called as show below.
2005 *
2006 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2007 * ext4_writepage()
2008 *
2009 * But since we don't do any block allocation we should not deadlock.
2010 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2011 */
2012static int ext4_writepage(struct page *page,
2013 struct writeback_control *wbc)
2014{
2015 struct folio *folio = page_folio(page);
2016 int ret = 0;
2017 loff_t size;
2018 unsigned int len;
2019 struct buffer_head *page_bufs = NULL;
2020 struct inode *inode = page->mapping->host;
2021 struct ext4_io_submit io_submit;
2022
2023 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2024 folio_invalidate(folio, 0, folio_size(folio));
2025 folio_unlock(folio);
2026 return -EIO;
2027 }
2028
2029 trace_ext4_writepage(page);
2030 size = i_size_read(inode);
2031 if (page->index == size >> PAGE_SHIFT &&
2032 !ext4_verity_in_progress(inode))
2033 len = size & ~PAGE_MASK;
2034 else
2035 len = PAGE_SIZE;
2036
2037 /* Should never happen but for bugs in other kernel subsystems */
2038 if (!page_has_buffers(page)) {
2039 ext4_warning_inode(inode,
2040 "page %lu does not have buffers attached", page->index);
2041 ClearPageDirty(page);
2042 unlock_page(page);
2043 return 0;
2044 }
2045
2046 page_bufs = page_buffers(page);
2047 /*
2048 * We cannot do block allocation or other extent handling in this
2049 * function. If there are buffers needing that, we have to redirty
2050 * the page. But we may reach here when we do a journal commit via
2051 * journal_submit_inode_data_buffers() and in that case we must write
2052 * allocated buffers to achieve data=ordered mode guarantees.
2053 *
2054 * Also, if there is only one buffer per page (the fs block
2055 * size == the page size), if one buffer needs block
2056 * allocation or needs to modify the extent tree to clear the
2057 * unwritten flag, we know that the page can't be written at
2058 * all, so we might as well refuse the write immediately.
2059 * Unfortunately if the block size != page size, we can't as
2060 * easily detect this case using ext4_walk_page_buffers(), but
2061 * for the extremely common case, this is an optimization that
2062 * skips a useless round trip through ext4_bio_write_page().
2063 */
2064 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2065 ext4_bh_delay_or_unwritten)) {
2066 redirty_page_for_writepage(wbc, page);
2067 if ((current->flags & PF_MEMALLOC) ||
2068 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2069 /*
2070 * For memory cleaning there's no point in writing only
2071 * some buffers. So just bail out. Warn if we came here
2072 * from direct reclaim.
2073 */
2074 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2075 == PF_MEMALLOC);
2076 unlock_page(page);
2077 return 0;
2078 }
2079 }
2080
2081 if (PageChecked(page) && ext4_should_journal_data(inode))
2082 /*
2083 * It's mmapped pagecache. Add buffers and journal it. There
2084 * doesn't seem much point in redirtying the page here.
2085 */
2086 return __ext4_journalled_writepage(page, len);
2087
2088 ext4_io_submit_init(&io_submit, wbc);
2089 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2090 if (!io_submit.io_end) {
2091 redirty_page_for_writepage(wbc, page);
2092 unlock_page(page);
2093 return -ENOMEM;
2094 }
2095 ret = ext4_bio_write_page(&io_submit, page, len);
2096 ext4_io_submit(&io_submit);
2097 /* Drop io_end reference we got from init */
2098 ext4_put_io_end_defer(io_submit.io_end);
2099 return ret;
2100}
2101
2102static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2103{
2104 int len;
2105 loff_t size;
2106 int err;
2107
2108 BUG_ON(page->index != mpd->first_page);
2109 clear_page_dirty_for_io(page);
2110 /*
2111 * We have to be very careful here! Nothing protects writeback path
2112 * against i_size changes and the page can be writeably mapped into
2113 * page tables. So an application can be growing i_size and writing
2114 * data through mmap while writeback runs. clear_page_dirty_for_io()
2115 * write-protects our page in page tables and the page cannot get
2116 * written to again until we release page lock. So only after
2117 * clear_page_dirty_for_io() we are safe to sample i_size for
2118 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2119 * on the barrier provided by TestClearPageDirty in
2120 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2121 * after page tables are updated.
2122 */
2123 size = i_size_read(mpd->inode);
2124 if (page->index == size >> PAGE_SHIFT &&
2125 !ext4_verity_in_progress(mpd->inode))
2126 len = size & ~PAGE_MASK;
2127 else
2128 len = PAGE_SIZE;
2129 err = ext4_bio_write_page(&mpd->io_submit, page, len);
2130 if (!err)
2131 mpd->wbc->nr_to_write--;
2132 mpd->first_page++;
2133
2134 return err;
2135}
2136
2137#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2138
2139/*
2140 * mballoc gives us at most this number of blocks...
2141 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2142 * The rest of mballoc seems to handle chunks up to full group size.
2143 */
2144#define MAX_WRITEPAGES_EXTENT_LEN 2048
2145
2146/*
2147 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2148 *
2149 * @mpd - extent of blocks
2150 * @lblk - logical number of the block in the file
2151 * @bh - buffer head we want to add to the extent
2152 *
2153 * The function is used to collect contig. blocks in the same state. If the
2154 * buffer doesn't require mapping for writeback and we haven't started the
2155 * extent of buffers to map yet, the function returns 'true' immediately - the
2156 * caller can write the buffer right away. Otherwise the function returns true
2157 * if the block has been added to the extent, false if the block couldn't be
2158 * added.
2159 */
2160static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2161 struct buffer_head *bh)
2162{
2163 struct ext4_map_blocks *map = &mpd->map;
2164
2165 /* Buffer that doesn't need mapping for writeback? */
2166 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2167 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2168 /* So far no extent to map => we write the buffer right away */
2169 if (map->m_len == 0)
2170 return true;
2171 return false;
2172 }
2173
2174 /* First block in the extent? */
2175 if (map->m_len == 0) {
2176 /* We cannot map unless handle is started... */
2177 if (!mpd->do_map)
2178 return false;
2179 map->m_lblk = lblk;
2180 map->m_len = 1;
2181 map->m_flags = bh->b_state & BH_FLAGS;
2182 return true;
2183 }
2184
2185 /* Don't go larger than mballoc is willing to allocate */
2186 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2187 return false;
2188
2189 /* Can we merge the block to our big extent? */
2190 if (lblk == map->m_lblk + map->m_len &&
2191 (bh->b_state & BH_FLAGS) == map->m_flags) {
2192 map->m_len++;
2193 return true;
2194 }
2195 return false;
2196}
2197
2198/*
2199 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2200 *
2201 * @mpd - extent of blocks for mapping
2202 * @head - the first buffer in the page
2203 * @bh - buffer we should start processing from
2204 * @lblk - logical number of the block in the file corresponding to @bh
2205 *
2206 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2207 * the page for IO if all buffers in this page were mapped and there's no
2208 * accumulated extent of buffers to map or add buffers in the page to the
2209 * extent of buffers to map. The function returns 1 if the caller can continue
2210 * by processing the next page, 0 if it should stop adding buffers to the
2211 * extent to map because we cannot extend it anymore. It can also return value
2212 * < 0 in case of error during IO submission.
2213 */
2214static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2215 struct buffer_head *head,
2216 struct buffer_head *bh,
2217 ext4_lblk_t lblk)
2218{
2219 struct inode *inode = mpd->inode;
2220 int err;
2221 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2222 >> inode->i_blkbits;
2223
2224 if (ext4_verity_in_progress(inode))
2225 blocks = EXT_MAX_BLOCKS;
2226
2227 do {
2228 BUG_ON(buffer_locked(bh));
2229
2230 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2231 /* Found extent to map? */
2232 if (mpd->map.m_len)
2233 return 0;
2234 /* Buffer needs mapping and handle is not started? */
2235 if (!mpd->do_map)
2236 return 0;
2237 /* Everything mapped so far and we hit EOF */
2238 break;
2239 }
2240 } while (lblk++, (bh = bh->b_this_page) != head);
2241 /* So far everything mapped? Submit the page for IO. */
2242 if (mpd->map.m_len == 0) {
2243 err = mpage_submit_page(mpd, head->b_page);
2244 if (err < 0)
2245 return err;
2246 }
2247 if (lblk >= blocks) {
2248 mpd->scanned_until_end = 1;
2249 return 0;
2250 }
2251 return 1;
2252}
2253
2254/*
2255 * mpage_process_page - update page buffers corresponding to changed extent and
2256 * may submit fully mapped page for IO
2257 *
2258 * @mpd - description of extent to map, on return next extent to map
2259 * @m_lblk - logical block mapping.
2260 * @m_pblk - corresponding physical mapping.
2261 * @map_bh - determines on return whether this page requires any further
2262 * mapping or not.
2263 * Scan given page buffers corresponding to changed extent and update buffer
2264 * state according to new extent state.
2265 * We map delalloc buffers to their physical location, clear unwritten bits.
2266 * If the given page is not fully mapped, we update @map to the next extent in
2267 * the given page that needs mapping & return @map_bh as true.
2268 */
2269static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2270 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2271 bool *map_bh)
2272{
2273 struct buffer_head *head, *bh;
2274 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2275 ext4_lblk_t lblk = *m_lblk;
2276 ext4_fsblk_t pblock = *m_pblk;
2277 int err = 0;
2278 int blkbits = mpd->inode->i_blkbits;
2279 ssize_t io_end_size = 0;
2280 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2281
2282 bh = head = page_buffers(page);
2283 do {
2284 if (lblk < mpd->map.m_lblk)
2285 continue;
2286 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2287 /*
2288 * Buffer after end of mapped extent.
2289 * Find next buffer in the page to map.
2290 */
2291 mpd->map.m_len = 0;
2292 mpd->map.m_flags = 0;
2293 io_end_vec->size += io_end_size;
2294
2295 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2296 if (err > 0)
2297 err = 0;
2298 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2299 io_end_vec = ext4_alloc_io_end_vec(io_end);
2300 if (IS_ERR(io_end_vec)) {
2301 err = PTR_ERR(io_end_vec);
2302 goto out;
2303 }
2304 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2305 }
2306 *map_bh = true;
2307 goto out;
2308 }
2309 if (buffer_delay(bh)) {
2310 clear_buffer_delay(bh);
2311 bh->b_blocknr = pblock++;
2312 }
2313 clear_buffer_unwritten(bh);
2314 io_end_size += (1 << blkbits);
2315 } while (lblk++, (bh = bh->b_this_page) != head);
2316
2317 io_end_vec->size += io_end_size;
2318 *map_bh = false;
2319out:
2320 *m_lblk = lblk;
2321 *m_pblk = pblock;
2322 return err;
2323}
2324
2325/*
2326 * mpage_map_buffers - update buffers corresponding to changed extent and
2327 * submit fully mapped pages for IO
2328 *
2329 * @mpd - description of extent to map, on return next extent to map
2330 *
2331 * Scan buffers corresponding to changed extent (we expect corresponding pages
2332 * to be already locked) and update buffer state according to new extent state.
2333 * We map delalloc buffers to their physical location, clear unwritten bits,
2334 * and mark buffers as uninit when we perform writes to unwritten extents
2335 * and do extent conversion after IO is finished. If the last page is not fully
2336 * mapped, we update @map to the next extent in the last page that needs
2337 * mapping. Otherwise we submit the page for IO.
2338 */
2339static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2340{
2341 struct folio_batch fbatch;
2342 unsigned nr, i;
2343 struct inode *inode = mpd->inode;
2344 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2345 pgoff_t start, end;
2346 ext4_lblk_t lblk;
2347 ext4_fsblk_t pblock;
2348 int err;
2349 bool map_bh = false;
2350
2351 start = mpd->map.m_lblk >> bpp_bits;
2352 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2353 lblk = start << bpp_bits;
2354 pblock = mpd->map.m_pblk;
2355
2356 folio_batch_init(&fbatch);
2357 while (start <= end) {
2358 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2359 if (nr == 0)
2360 break;
2361 for (i = 0; i < nr; i++) {
2362 struct page *page = &fbatch.folios[i]->page;
2363
2364 err = mpage_process_page(mpd, page, &lblk, &pblock,
2365 &map_bh);
2366 /*
2367 * If map_bh is true, means page may require further bh
2368 * mapping, or maybe the page was submitted for IO.
2369 * So we return to call further extent mapping.
2370 */
2371 if (err < 0 || map_bh)
2372 goto out;
2373 /* Page fully mapped - let IO run! */
2374 err = mpage_submit_page(mpd, page);
2375 if (err < 0)
2376 goto out;
2377 }
2378 folio_batch_release(&fbatch);
2379 }
2380 /* Extent fully mapped and matches with page boundary. We are done. */
2381 mpd->map.m_len = 0;
2382 mpd->map.m_flags = 0;
2383 return 0;
2384out:
2385 folio_batch_release(&fbatch);
2386 return err;
2387}
2388
2389static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2390{
2391 struct inode *inode = mpd->inode;
2392 struct ext4_map_blocks *map = &mpd->map;
2393 int get_blocks_flags;
2394 int err, dioread_nolock;
2395
2396 trace_ext4_da_write_pages_extent(inode, map);
2397 /*
2398 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2399 * to convert an unwritten extent to be initialized (in the case
2400 * where we have written into one or more preallocated blocks). It is
2401 * possible that we're going to need more metadata blocks than
2402 * previously reserved. However we must not fail because we're in
2403 * writeback and there is nothing we can do about it so it might result
2404 * in data loss. So use reserved blocks to allocate metadata if
2405 * possible.
2406 *
2407 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2408 * the blocks in question are delalloc blocks. This indicates
2409 * that the blocks and quotas has already been checked when
2410 * the data was copied into the page cache.
2411 */
2412 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2413 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2414 EXT4_GET_BLOCKS_IO_SUBMIT;
2415 dioread_nolock = ext4_should_dioread_nolock(inode);
2416 if (dioread_nolock)
2417 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2418 if (map->m_flags & BIT(BH_Delay))
2419 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2420
2421 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2422 if (err < 0)
2423 return err;
2424 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2425 if (!mpd->io_submit.io_end->handle &&
2426 ext4_handle_valid(handle)) {
2427 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2428 handle->h_rsv_handle = NULL;
2429 }
2430 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2431 }
2432
2433 BUG_ON(map->m_len == 0);
2434 return 0;
2435}
2436
2437/*
2438 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2439 * mpd->len and submit pages underlying it for IO
2440 *
2441 * @handle - handle for journal operations
2442 * @mpd - extent to map
2443 * @give_up_on_write - we set this to true iff there is a fatal error and there
2444 * is no hope of writing the data. The caller should discard
2445 * dirty pages to avoid infinite loops.
2446 *
2447 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2448 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2449 * them to initialized or split the described range from larger unwritten
2450 * extent. Note that we need not map all the described range since allocation
2451 * can return less blocks or the range is covered by more unwritten extents. We
2452 * cannot map more because we are limited by reserved transaction credits. On
2453 * the other hand we always make sure that the last touched page is fully
2454 * mapped so that it can be written out (and thus forward progress is
2455 * guaranteed). After mapping we submit all mapped pages for IO.
2456 */
2457static int mpage_map_and_submit_extent(handle_t *handle,
2458 struct mpage_da_data *mpd,
2459 bool *give_up_on_write)
2460{
2461 struct inode *inode = mpd->inode;
2462 struct ext4_map_blocks *map = &mpd->map;
2463 int err;
2464 loff_t disksize;
2465 int progress = 0;
2466 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2467 struct ext4_io_end_vec *io_end_vec;
2468
2469 io_end_vec = ext4_alloc_io_end_vec(io_end);
2470 if (IS_ERR(io_end_vec))
2471 return PTR_ERR(io_end_vec);
2472 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2473 do {
2474 err = mpage_map_one_extent(handle, mpd);
2475 if (err < 0) {
2476 struct super_block *sb = inode->i_sb;
2477
2478 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2479 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2480 goto invalidate_dirty_pages;
2481 /*
2482 * Let the uper layers retry transient errors.
2483 * In the case of ENOSPC, if ext4_count_free_blocks()
2484 * is non-zero, a commit should free up blocks.
2485 */
2486 if ((err == -ENOMEM) ||
2487 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2488 if (progress)
2489 goto update_disksize;
2490 return err;
2491 }
2492 ext4_msg(sb, KERN_CRIT,
2493 "Delayed block allocation failed for "
2494 "inode %lu at logical offset %llu with"
2495 " max blocks %u with error %d",
2496 inode->i_ino,
2497 (unsigned long long)map->m_lblk,
2498 (unsigned)map->m_len, -err);
2499 ext4_msg(sb, KERN_CRIT,
2500 "This should not happen!! Data will "
2501 "be lost\n");
2502 if (err == -ENOSPC)
2503 ext4_print_free_blocks(inode);
2504 invalidate_dirty_pages:
2505 *give_up_on_write = true;
2506 return err;
2507 }
2508 progress = 1;
2509 /*
2510 * Update buffer state, submit mapped pages, and get us new
2511 * extent to map
2512 */
2513 err = mpage_map_and_submit_buffers(mpd);
2514 if (err < 0)
2515 goto update_disksize;
2516 } while (map->m_len);
2517
2518update_disksize:
2519 /*
2520 * Update on-disk size after IO is submitted. Races with
2521 * truncate are avoided by checking i_size under i_data_sem.
2522 */
2523 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2524 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2525 int err2;
2526 loff_t i_size;
2527
2528 down_write(&EXT4_I(inode)->i_data_sem);
2529 i_size = i_size_read(inode);
2530 if (disksize > i_size)
2531 disksize = i_size;
2532 if (disksize > EXT4_I(inode)->i_disksize)
2533 EXT4_I(inode)->i_disksize = disksize;
2534 up_write(&EXT4_I(inode)->i_data_sem);
2535 err2 = ext4_mark_inode_dirty(handle, inode);
2536 if (err2) {
2537 ext4_error_err(inode->i_sb, -err2,
2538 "Failed to mark inode %lu dirty",
2539 inode->i_ino);
2540 }
2541 if (!err)
2542 err = err2;
2543 }
2544 return err;
2545}
2546
2547/*
2548 * Calculate the total number of credits to reserve for one writepages
2549 * iteration. This is called from ext4_writepages(). We map an extent of
2550 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2551 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2552 * bpp - 1 blocks in bpp different extents.
2553 */
2554static int ext4_da_writepages_trans_blocks(struct inode *inode)
2555{
2556 int bpp = ext4_journal_blocks_per_page(inode);
2557
2558 return ext4_meta_trans_blocks(inode,
2559 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2560}
2561
2562/* Return true if the page needs to be written as part of transaction commit */
2563static bool ext4_page_nomap_can_writeout(struct page *page)
2564{
2565 struct buffer_head *bh, *head;
2566
2567 bh = head = page_buffers(page);
2568 do {
2569 if (buffer_dirty(bh) && buffer_mapped(bh) && !buffer_delay(bh))
2570 return true;
2571 } while ((bh = bh->b_this_page) != head);
2572 return false;
2573}
2574
2575/*
2576 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2577 * needing mapping, submit mapped pages
2578 *
2579 * @mpd - where to look for pages
2580 *
2581 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2582 * IO immediately. If we cannot map blocks, we submit just already mapped
2583 * buffers in the page for IO and keep page dirty. When we can map blocks and
2584 * we find a page which isn't mapped we start accumulating extent of buffers
2585 * underlying these pages that needs mapping (formed by either delayed or
2586 * unwritten buffers). We also lock the pages containing these buffers. The
2587 * extent found is returned in @mpd structure (starting at mpd->lblk with
2588 * length mpd->len blocks).
2589 *
2590 * Note that this function can attach bios to one io_end structure which are
2591 * neither logically nor physically contiguous. Although it may seem as an
2592 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2593 * case as we need to track IO to all buffers underlying a page in one io_end.
2594 */
2595static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2596{
2597 struct address_space *mapping = mpd->inode->i_mapping;
2598 struct folio_batch fbatch;
2599 unsigned int nr_folios;
2600 long left = mpd->wbc->nr_to_write;
2601 pgoff_t index = mpd->first_page;
2602 pgoff_t end = mpd->last_page;
2603 xa_mark_t tag;
2604 int i, err = 0;
2605 int blkbits = mpd->inode->i_blkbits;
2606 ext4_lblk_t lblk;
2607 struct buffer_head *head;
2608
2609 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2610 tag = PAGECACHE_TAG_TOWRITE;
2611 else
2612 tag = PAGECACHE_TAG_DIRTY;
2613 folio_batch_init(&fbatch);
2614 mpd->map.m_len = 0;
2615 mpd->next_page = index;
2616 while (index <= end) {
2617 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2618 tag, &fbatch);
2619 if (nr_folios == 0)
2620 break;
2621
2622 for (i = 0; i < nr_folios; i++) {
2623 struct folio *folio = fbatch.folios[i];
2624
2625 /*
2626 * Accumulated enough dirty pages? This doesn't apply
2627 * to WB_SYNC_ALL mode. For integrity sync we have to
2628 * keep going because someone may be concurrently
2629 * dirtying pages, and we might have synced a lot of
2630 * newly appeared dirty pages, but have not synced all
2631 * of the old dirty pages.
2632 */
2633 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2634 goto out;
2635
2636 /* If we can't merge this page, we are done. */
2637 if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2638 goto out;
2639
2640 folio_lock(folio);
2641 /*
2642 * If the page is no longer dirty, or its mapping no
2643 * longer corresponds to inode we are writing (which
2644 * means it has been truncated or invalidated), or the
2645 * page is already under writeback and we are not doing
2646 * a data integrity writeback, skip the page
2647 */
2648 if (!folio_test_dirty(folio) ||
2649 (folio_test_writeback(folio) &&
2650 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2651 unlikely(folio->mapping != mapping)) {
2652 folio_unlock(folio);
2653 continue;
2654 }
2655
2656 folio_wait_writeback(folio);
2657 BUG_ON(folio_test_writeback(folio));
2658
2659 /*
2660 * Should never happen but for buggy code in
2661 * other subsystems that call
2662 * set_page_dirty() without properly warning
2663 * the file system first. See [1] for more
2664 * information.
2665 *
2666 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2667 */
2668 if (!folio_buffers(folio)) {
2669 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2670 folio_clear_dirty(folio);
2671 folio_unlock(folio);
2672 continue;
2673 }
2674
2675 if (mpd->map.m_len == 0)
2676 mpd->first_page = folio->index;
2677 mpd->next_page = folio->index + folio_nr_pages(folio);
2678 /*
2679 * Writeout for transaction commit where we cannot
2680 * modify metadata is simple. Just submit the page.
2681 */
2682 if (!mpd->can_map) {
2683 if (ext4_page_nomap_can_writeout(&folio->page)) {
2684 err = mpage_submit_page(mpd, &folio->page);
2685 if (err < 0)
2686 goto out;
2687 } else {
2688 folio_unlock(folio);
2689 mpd->first_page += folio_nr_pages(folio);
2690 }
2691 } else {
2692 /* Add all dirty buffers to mpd */
2693 lblk = ((ext4_lblk_t)folio->index) <<
2694 (PAGE_SHIFT - blkbits);
2695 head = folio_buffers(folio);
2696 err = mpage_process_page_bufs(mpd, head, head,
2697 lblk);
2698 if (err <= 0)
2699 goto out;
2700 err = 0;
2701 }
2702 left -= folio_nr_pages(folio);
2703 }
2704 folio_batch_release(&fbatch);
2705 cond_resched();
2706 }
2707 mpd->scanned_until_end = 1;
2708 return 0;
2709out:
2710 folio_batch_release(&fbatch);
2711 return err;
2712}
2713
2714static int ext4_writepage_cb(struct folio *folio, struct writeback_control *wbc,
2715 void *data)
2716{
2717 return ext4_writepage(&folio->page, wbc);
2718}
2719
2720static int ext4_do_writepages(struct mpage_da_data *mpd)
2721{
2722 struct writeback_control *wbc = mpd->wbc;
2723 pgoff_t writeback_index = 0;
2724 long nr_to_write = wbc->nr_to_write;
2725 int range_whole = 0;
2726 int cycled = 1;
2727 handle_t *handle = NULL;
2728 struct inode *inode = mpd->inode;
2729 struct address_space *mapping = inode->i_mapping;
2730 int needed_blocks, rsv_blocks = 0, ret = 0;
2731 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2732 struct blk_plug plug;
2733 bool give_up_on_write = false;
2734
2735 trace_ext4_writepages(inode, wbc);
2736
2737 /*
2738 * No pages to write? This is mainly a kludge to avoid starting
2739 * a transaction for special inodes like journal inode on last iput()
2740 * because that could violate lock ordering on umount
2741 */
2742 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2743 goto out_writepages;
2744
2745 if (ext4_should_journal_data(inode)) {
2746 blk_start_plug(&plug);
2747 ret = write_cache_pages(mapping, wbc, ext4_writepage_cb, NULL);
2748 blk_finish_plug(&plug);
2749 goto out_writepages;
2750 }
2751
2752 /*
2753 * If the filesystem has aborted, it is read-only, so return
2754 * right away instead of dumping stack traces later on that
2755 * will obscure the real source of the problem. We test
2756 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2757 * the latter could be true if the filesystem is mounted
2758 * read-only, and in that case, ext4_writepages should
2759 * *never* be called, so if that ever happens, we would want
2760 * the stack trace.
2761 */
2762 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2763 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2764 ret = -EROFS;
2765 goto out_writepages;
2766 }
2767
2768 /*
2769 * If we have inline data and arrive here, it means that
2770 * we will soon create the block for the 1st page, so
2771 * we'd better clear the inline data here.
2772 */
2773 if (ext4_has_inline_data(inode)) {
2774 /* Just inode will be modified... */
2775 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2776 if (IS_ERR(handle)) {
2777 ret = PTR_ERR(handle);
2778 goto out_writepages;
2779 }
2780 BUG_ON(ext4_test_inode_state(inode,
2781 EXT4_STATE_MAY_INLINE_DATA));
2782 ext4_destroy_inline_data(handle, inode);
2783 ext4_journal_stop(handle);
2784 }
2785
2786 if (ext4_should_dioread_nolock(inode)) {
2787 /*
2788 * We may need to convert up to one extent per block in
2789 * the page and we may dirty the inode.
2790 */
2791 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2792 PAGE_SIZE >> inode->i_blkbits);
2793 }
2794
2795 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2796 range_whole = 1;
2797
2798 if (wbc->range_cyclic) {
2799 writeback_index = mapping->writeback_index;
2800 if (writeback_index)
2801 cycled = 0;
2802 mpd->first_page = writeback_index;
2803 mpd->last_page = -1;
2804 } else {
2805 mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2806 mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2807 }
2808
2809 ext4_io_submit_init(&mpd->io_submit, wbc);
2810retry:
2811 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2812 tag_pages_for_writeback(mapping, mpd->first_page,
2813 mpd->last_page);
2814 blk_start_plug(&plug);
2815
2816 /*
2817 * First writeback pages that don't need mapping - we can avoid
2818 * starting a transaction unnecessarily and also avoid being blocked
2819 * in the block layer on device congestion while having transaction
2820 * started.
2821 */
2822 mpd->do_map = 0;
2823 mpd->scanned_until_end = 0;
2824 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2825 if (!mpd->io_submit.io_end) {
2826 ret = -ENOMEM;
2827 goto unplug;
2828 }
2829 ret = mpage_prepare_extent_to_map(mpd);
2830 /* Unlock pages we didn't use */
2831 mpage_release_unused_pages(mpd, false);
2832 /* Submit prepared bio */
2833 ext4_io_submit(&mpd->io_submit);
2834 ext4_put_io_end_defer(mpd->io_submit.io_end);
2835 mpd->io_submit.io_end = NULL;
2836 if (ret < 0)
2837 goto unplug;
2838
2839 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2840 /* For each extent of pages we use new io_end */
2841 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2842 if (!mpd->io_submit.io_end) {
2843 ret = -ENOMEM;
2844 break;
2845 }
2846
2847 WARN_ON_ONCE(!mpd->can_map);
2848 /*
2849 * We have two constraints: We find one extent to map and we
2850 * must always write out whole page (makes a difference when
2851 * blocksize < pagesize) so that we don't block on IO when we
2852 * try to write out the rest of the page. Journalled mode is
2853 * not supported by delalloc.
2854 */
2855 BUG_ON(ext4_should_journal_data(inode));
2856 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2857
2858 /* start a new transaction */
2859 handle = ext4_journal_start_with_reserve(inode,
2860 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2861 if (IS_ERR(handle)) {
2862 ret = PTR_ERR(handle);
2863 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2864 "%ld pages, ino %lu; err %d", __func__,
2865 wbc->nr_to_write, inode->i_ino, ret);
2866 /* Release allocated io_end */
2867 ext4_put_io_end(mpd->io_submit.io_end);
2868 mpd->io_submit.io_end = NULL;
2869 break;
2870 }
2871 mpd->do_map = 1;
2872
2873 trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2874 ret = mpage_prepare_extent_to_map(mpd);
2875 if (!ret && mpd->map.m_len)
2876 ret = mpage_map_and_submit_extent(handle, mpd,
2877 &give_up_on_write);
2878 /*
2879 * Caution: If the handle is synchronous,
2880 * ext4_journal_stop() can wait for transaction commit
2881 * to finish which may depend on writeback of pages to
2882 * complete or on page lock to be released. In that
2883 * case, we have to wait until after we have
2884 * submitted all the IO, released page locks we hold,
2885 * and dropped io_end reference (for extent conversion
2886 * to be able to complete) before stopping the handle.
2887 */
2888 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2889 ext4_journal_stop(handle);
2890 handle = NULL;
2891 mpd->do_map = 0;
2892 }
2893 /* Unlock pages we didn't use */
2894 mpage_release_unused_pages(mpd, give_up_on_write);
2895 /* Submit prepared bio */
2896 ext4_io_submit(&mpd->io_submit);
2897
2898 /*
2899 * Drop our io_end reference we got from init. We have
2900 * to be careful and use deferred io_end finishing if
2901 * we are still holding the transaction as we can
2902 * release the last reference to io_end which may end
2903 * up doing unwritten extent conversion.
2904 */
2905 if (handle) {
2906 ext4_put_io_end_defer(mpd->io_submit.io_end);
2907 ext4_journal_stop(handle);
2908 } else
2909 ext4_put_io_end(mpd->io_submit.io_end);
2910 mpd->io_submit.io_end = NULL;
2911
2912 if (ret == -ENOSPC && sbi->s_journal) {
2913 /*
2914 * Commit the transaction which would
2915 * free blocks released in the transaction
2916 * and try again
2917 */
2918 jbd2_journal_force_commit_nested(sbi->s_journal);
2919 ret = 0;
2920 continue;
2921 }
2922 /* Fatal error - ENOMEM, EIO... */
2923 if (ret)
2924 break;
2925 }
2926unplug:
2927 blk_finish_plug(&plug);
2928 if (!ret && !cycled && wbc->nr_to_write > 0) {
2929 cycled = 1;
2930 mpd->last_page = writeback_index - 1;
2931 mpd->first_page = 0;
2932 goto retry;
2933 }
2934
2935 /* Update index */
2936 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2937 /*
2938 * Set the writeback_index so that range_cyclic
2939 * mode will write it back later
2940 */
2941 mapping->writeback_index = mpd->first_page;
2942
2943out_writepages:
2944 trace_ext4_writepages_result(inode, wbc, ret,
2945 nr_to_write - wbc->nr_to_write);
2946 return ret;
2947}
2948
2949static int ext4_writepages(struct address_space *mapping,
2950 struct writeback_control *wbc)
2951{
2952 struct super_block *sb = mapping->host->i_sb;
2953 struct mpage_da_data mpd = {
2954 .inode = mapping->host,
2955 .wbc = wbc,
2956 .can_map = 1,
2957 };
2958 int ret;
2959
2960 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
2961 return -EIO;
2962
2963 percpu_down_read(&EXT4_SB(sb)->s_writepages_rwsem);
2964 ret = ext4_do_writepages(&mpd);
2965 percpu_up_read(&EXT4_SB(sb)->s_writepages_rwsem);
2966
2967 return ret;
2968}
2969
2970int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2971{
2972 struct writeback_control wbc = {
2973 .sync_mode = WB_SYNC_ALL,
2974 .nr_to_write = LONG_MAX,
2975 .range_start = jinode->i_dirty_start,
2976 .range_end = jinode->i_dirty_end,
2977 };
2978 struct mpage_da_data mpd = {
2979 .inode = jinode->i_vfs_inode,
2980 .wbc = &wbc,
2981 .can_map = 0,
2982 };
2983 return ext4_do_writepages(&mpd);
2984}
2985
2986static int ext4_dax_writepages(struct address_space *mapping,
2987 struct writeback_control *wbc)
2988{
2989 int ret;
2990 long nr_to_write = wbc->nr_to_write;
2991 struct inode *inode = mapping->host;
2992 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2993
2994 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2995 return -EIO;
2996
2997 percpu_down_read(&sbi->s_writepages_rwsem);
2998 trace_ext4_writepages(inode, wbc);
2999
3000 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
3001 trace_ext4_writepages_result(inode, wbc, ret,
3002 nr_to_write - wbc->nr_to_write);
3003 percpu_up_read(&sbi->s_writepages_rwsem);
3004 return ret;
3005}
3006
3007static int ext4_nonda_switch(struct super_block *sb)
3008{
3009 s64 free_clusters, dirty_clusters;
3010 struct ext4_sb_info *sbi = EXT4_SB(sb);
3011
3012 /*
3013 * switch to non delalloc mode if we are running low
3014 * on free block. The free block accounting via percpu
3015 * counters can get slightly wrong with percpu_counter_batch getting
3016 * accumulated on each CPU without updating global counters
3017 * Delalloc need an accurate free block accounting. So switch
3018 * to non delalloc when we are near to error range.
3019 */
3020 free_clusters =
3021 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3022 dirty_clusters =
3023 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3024 /*
3025 * Start pushing delalloc when 1/2 of free blocks are dirty.
3026 */
3027 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3028 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3029
3030 if (2 * free_clusters < 3 * dirty_clusters ||
3031 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3032 /*
3033 * free block count is less than 150% of dirty blocks
3034 * or free blocks is less than watermark
3035 */
3036 return 1;
3037 }
3038 return 0;
3039}
3040
3041static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3042 loff_t pos, unsigned len,
3043 struct page **pagep, void **fsdata)
3044{
3045 int ret, retries = 0;
3046 struct page *page;
3047 pgoff_t index;
3048 struct inode *inode = mapping->host;
3049
3050 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3051 return -EIO;
3052
3053 index = pos >> PAGE_SHIFT;
3054
3055 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
3056 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3057 return ext4_write_begin(file, mapping, pos,
3058 len, pagep, fsdata);
3059 }
3060 *fsdata = (void *)0;
3061 trace_ext4_da_write_begin(inode, pos, len);
3062
3063 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3064 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
3065 pagep, fsdata);
3066 if (ret < 0)
3067 return ret;
3068 if (ret == 1)
3069 return 0;
3070 }
3071
3072retry:
3073 page = grab_cache_page_write_begin(mapping, index);
3074 if (!page)
3075 return -ENOMEM;
3076
3077 /* In case writeback began while the page was unlocked */
3078 wait_for_stable_page(page);
3079
3080#ifdef CONFIG_FS_ENCRYPTION
3081 ret = ext4_block_write_begin(page, pos, len,
3082 ext4_da_get_block_prep);
3083#else
3084 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3085#endif
3086 if (ret < 0) {
3087 unlock_page(page);
3088 put_page(page);
3089 /*
3090 * block_write_begin may have instantiated a few blocks
3091 * outside i_size. Trim these off again. Don't need
3092 * i_size_read because we hold inode lock.
3093 */
3094 if (pos + len > inode->i_size)
3095 ext4_truncate_failed_write(inode);
3096
3097 if (ret == -ENOSPC &&
3098 ext4_should_retry_alloc(inode->i_sb, &retries))
3099 goto retry;
3100 return ret;
3101 }
3102
3103 *pagep = page;
3104 return ret;
3105}
3106
3107/*
3108 * Check if we should update i_disksize
3109 * when write to the end of file but not require block allocation
3110 */
3111static int ext4_da_should_update_i_disksize(struct page *page,
3112 unsigned long offset)
3113{
3114 struct buffer_head *bh;
3115 struct inode *inode = page->mapping->host;
3116 unsigned int idx;
3117 int i;
3118
3119 bh = page_buffers(page);
3120 idx = offset >> inode->i_blkbits;
3121
3122 for (i = 0; i < idx; i++)
3123 bh = bh->b_this_page;
3124
3125 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3126 return 0;
3127 return 1;
3128}
3129
3130static int ext4_da_write_end(struct file *file,
3131 struct address_space *mapping,
3132 loff_t pos, unsigned len, unsigned copied,
3133 struct page *page, void *fsdata)
3134{
3135 struct inode *inode = mapping->host;
3136 loff_t new_i_size;
3137 unsigned long start, end;
3138 int write_mode = (int)(unsigned long)fsdata;
3139
3140 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3141 return ext4_write_end(file, mapping, pos,
3142 len, copied, page, fsdata);
3143
3144 trace_ext4_da_write_end(inode, pos, len, copied);
3145
3146 if (write_mode != CONVERT_INLINE_DATA &&
3147 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3148 ext4_has_inline_data(inode))
3149 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3150
3151 start = pos & (PAGE_SIZE - 1);
3152 end = start + copied - 1;
3153
3154 /*
3155 * Since we are holding inode lock, we are sure i_disksize <=
3156 * i_size. We also know that if i_disksize < i_size, there are
3157 * delalloc writes pending in the range upto i_size. If the end of
3158 * the current write is <= i_size, there's no need to touch
3159 * i_disksize since writeback will push i_disksize upto i_size
3160 * eventually. If the end of the current write is > i_size and
3161 * inside an allocated block (ext4_da_should_update_i_disksize()
3162 * check), we need to update i_disksize here as neither
3163 * ext4_writepage() nor certain ext4_writepages() paths not
3164 * allocating blocks update i_disksize.
3165 *
3166 * Note that we defer inode dirtying to generic_write_end() /
3167 * ext4_da_write_inline_data_end().
3168 */
3169 new_i_size = pos + copied;
3170 if (copied && new_i_size > inode->i_size &&
3171 ext4_da_should_update_i_disksize(page, end))
3172 ext4_update_i_disksize(inode, new_i_size);
3173
3174 return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3175}
3176
3177/*
3178 * Force all delayed allocation blocks to be allocated for a given inode.
3179 */
3180int ext4_alloc_da_blocks(struct inode *inode)
3181{
3182 trace_ext4_alloc_da_blocks(inode);
3183
3184 if (!EXT4_I(inode)->i_reserved_data_blocks)
3185 return 0;
3186
3187 /*
3188 * We do something simple for now. The filemap_flush() will
3189 * also start triggering a write of the data blocks, which is
3190 * not strictly speaking necessary (and for users of
3191 * laptop_mode, not even desirable). However, to do otherwise
3192 * would require replicating code paths in:
3193 *
3194 * ext4_writepages() ->
3195 * write_cache_pages() ---> (via passed in callback function)
3196 * __mpage_da_writepage() -->
3197 * mpage_add_bh_to_extent()
3198 * mpage_da_map_blocks()
3199 *
3200 * The problem is that write_cache_pages(), located in
3201 * mm/page-writeback.c, marks pages clean in preparation for
3202 * doing I/O, which is not desirable if we're not planning on
3203 * doing I/O at all.
3204 *
3205 * We could call write_cache_pages(), and then redirty all of
3206 * the pages by calling redirty_page_for_writepage() but that
3207 * would be ugly in the extreme. So instead we would need to
3208 * replicate parts of the code in the above functions,
3209 * simplifying them because we wouldn't actually intend to
3210 * write out the pages, but rather only collect contiguous
3211 * logical block extents, call the multi-block allocator, and
3212 * then update the buffer heads with the block allocations.
3213 *
3214 * For now, though, we'll cheat by calling filemap_flush(),
3215 * which will map the blocks, and start the I/O, but not
3216 * actually wait for the I/O to complete.
3217 */
3218 return filemap_flush(inode->i_mapping);
3219}
3220
3221/*
3222 * bmap() is special. It gets used by applications such as lilo and by
3223 * the swapper to find the on-disk block of a specific piece of data.
3224 *
3225 * Naturally, this is dangerous if the block concerned is still in the
3226 * journal. If somebody makes a swapfile on an ext4 data-journaling
3227 * filesystem and enables swap, then they may get a nasty shock when the
3228 * data getting swapped to that swapfile suddenly gets overwritten by
3229 * the original zero's written out previously to the journal and
3230 * awaiting writeback in the kernel's buffer cache.
3231 *
3232 * So, if we see any bmap calls here on a modified, data-journaled file,
3233 * take extra steps to flush any blocks which might be in the cache.
3234 */
3235static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3236{
3237 struct inode *inode = mapping->host;
3238 journal_t *journal;
3239 sector_t ret = 0;
3240 int err;
3241
3242 inode_lock_shared(inode);
3243 /*
3244 * We can get here for an inline file via the FIBMAP ioctl
3245 */
3246 if (ext4_has_inline_data(inode))
3247 goto out;
3248
3249 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3250 test_opt(inode->i_sb, DELALLOC)) {
3251 /*
3252 * With delalloc we want to sync the file
3253 * so that we can make sure we allocate
3254 * blocks for file
3255 */
3256 filemap_write_and_wait(mapping);
3257 }
3258
3259 if (EXT4_JOURNAL(inode) &&
3260 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3261 /*
3262 * This is a REALLY heavyweight approach, but the use of
3263 * bmap on dirty files is expected to be extremely rare:
3264 * only if we run lilo or swapon on a freshly made file
3265 * do we expect this to happen.
3266 *
3267 * (bmap requires CAP_SYS_RAWIO so this does not
3268 * represent an unprivileged user DOS attack --- we'd be
3269 * in trouble if mortal users could trigger this path at
3270 * will.)
3271 *
3272 * NB. EXT4_STATE_JDATA is not set on files other than
3273 * regular files. If somebody wants to bmap a directory
3274 * or symlink and gets confused because the buffer
3275 * hasn't yet been flushed to disk, they deserve
3276 * everything they get.
3277 */
3278
3279 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3280 journal = EXT4_JOURNAL(inode);
3281 jbd2_journal_lock_updates(journal);
3282 err = jbd2_journal_flush(journal, 0);
3283 jbd2_journal_unlock_updates(journal);
3284
3285 if (err)
3286 goto out;
3287 }
3288
3289 ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3290
3291out:
3292 inode_unlock_shared(inode);
3293 return ret;
3294}
3295
3296static int ext4_read_folio(struct file *file, struct folio *folio)
3297{
3298 struct page *page = &folio->page;
3299 int ret = -EAGAIN;
3300 struct inode *inode = page->mapping->host;
3301
3302 trace_ext4_readpage(page);
3303
3304 if (ext4_has_inline_data(inode))
3305 ret = ext4_readpage_inline(inode, page);
3306
3307 if (ret == -EAGAIN)
3308 return ext4_mpage_readpages(inode, NULL, page);
3309
3310 return ret;
3311}
3312
3313static void ext4_readahead(struct readahead_control *rac)
3314{
3315 struct inode *inode = rac->mapping->host;
3316
3317 /* If the file has inline data, no need to do readahead. */
3318 if (ext4_has_inline_data(inode))
3319 return;
3320
3321 ext4_mpage_readpages(inode, rac, NULL);
3322}
3323
3324static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3325 size_t length)
3326{
3327 trace_ext4_invalidate_folio(folio, offset, length);
3328
3329 /* No journalling happens on data buffers when this function is used */
3330 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3331
3332 block_invalidate_folio(folio, offset, length);
3333}
3334
3335static int __ext4_journalled_invalidate_folio(struct folio *folio,
3336 size_t offset, size_t length)
3337{
3338 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3339
3340 trace_ext4_journalled_invalidate_folio(folio, offset, length);
3341
3342 /*
3343 * If it's a full truncate we just forget about the pending dirtying
3344 */
3345 if (offset == 0 && length == folio_size(folio))
3346 folio_clear_checked(folio);
3347
3348 return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3349}
3350
3351/* Wrapper for aops... */
3352static void ext4_journalled_invalidate_folio(struct folio *folio,
3353 size_t offset,
3354 size_t length)
3355{
3356 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3357}
3358
3359static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3360{
3361 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3362
3363 trace_ext4_releasepage(&folio->page);
3364
3365 /* Page has dirty journalled data -> cannot release */
3366 if (folio_test_checked(folio))
3367 return false;
3368 if (journal)
3369 return jbd2_journal_try_to_free_buffers(journal, folio);
3370 else
3371 return try_to_free_buffers(folio);
3372}
3373
3374static bool ext4_inode_datasync_dirty(struct inode *inode)
3375{
3376 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3377
3378 if (journal) {
3379 if (jbd2_transaction_committed(journal,
3380 EXT4_I(inode)->i_datasync_tid))
3381 return false;
3382 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3383 return !list_empty(&EXT4_I(inode)->i_fc_list);
3384 return true;
3385 }
3386
3387 /* Any metadata buffers to write? */
3388 if (!list_empty(&inode->i_mapping->private_list))
3389 return true;
3390 return inode->i_state & I_DIRTY_DATASYNC;
3391}
3392
3393static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3394 struct ext4_map_blocks *map, loff_t offset,
3395 loff_t length, unsigned int flags)
3396{
3397 u8 blkbits = inode->i_blkbits;
3398
3399 /*
3400 * Writes that span EOF might trigger an I/O size update on completion,
3401 * so consider them to be dirty for the purpose of O_DSYNC, even if
3402 * there is no other metadata changes being made or are pending.
3403 */
3404 iomap->flags = 0;
3405 if (ext4_inode_datasync_dirty(inode) ||
3406 offset + length > i_size_read(inode))
3407 iomap->flags |= IOMAP_F_DIRTY;
3408
3409 if (map->m_flags & EXT4_MAP_NEW)
3410 iomap->flags |= IOMAP_F_NEW;
3411
3412 if (flags & IOMAP_DAX)
3413 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3414 else
3415 iomap->bdev = inode->i_sb->s_bdev;
3416 iomap->offset = (u64) map->m_lblk << blkbits;
3417 iomap->length = (u64) map->m_len << blkbits;
3418
3419 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3420 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3421 iomap->flags |= IOMAP_F_MERGED;
3422
3423 /*
3424 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3425 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3426 * set. In order for any allocated unwritten extents to be converted
3427 * into written extents correctly within the ->end_io() handler, we
3428 * need to ensure that the iomap->type is set appropriately. Hence, the
3429 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3430 * been set first.
3431 */
3432 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3433 iomap->type = IOMAP_UNWRITTEN;
3434 iomap->addr = (u64) map->m_pblk << blkbits;
3435 if (flags & IOMAP_DAX)
3436 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3437 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3438 iomap->type = IOMAP_MAPPED;
3439 iomap->addr = (u64) map->m_pblk << blkbits;
3440 if (flags & IOMAP_DAX)
3441 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3442 } else {
3443 iomap->type = IOMAP_HOLE;
3444 iomap->addr = IOMAP_NULL_ADDR;
3445 }
3446}
3447
3448static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3449 unsigned int flags)
3450{
3451 handle_t *handle;
3452 u8 blkbits = inode->i_blkbits;
3453 int ret, dio_credits, m_flags = 0, retries = 0;
3454
3455 /*
3456 * Trim the mapping request to the maximum value that we can map at
3457 * once for direct I/O.
3458 */
3459 if (map->m_len > DIO_MAX_BLOCKS)
3460 map->m_len = DIO_MAX_BLOCKS;
3461 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3462
3463retry:
3464 /*
3465 * Either we allocate blocks and then don't get an unwritten extent, so
3466 * in that case we have reserved enough credits. Or, the blocks are
3467 * already allocated and unwritten. In that case, the extent conversion
3468 * fits into the credits as well.
3469 */
3470 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3471 if (IS_ERR(handle))
3472 return PTR_ERR(handle);
3473
3474 /*
3475 * DAX and direct I/O are the only two operations that are currently
3476 * supported with IOMAP_WRITE.
3477 */
3478 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3479 if (flags & IOMAP_DAX)
3480 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3481 /*
3482 * We use i_size instead of i_disksize here because delalloc writeback
3483 * can complete at any point during the I/O and subsequently push the
3484 * i_disksize out to i_size. This could be beyond where direct I/O is
3485 * happening and thus expose allocated blocks to direct I/O reads.
3486 */
3487 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3488 m_flags = EXT4_GET_BLOCKS_CREATE;
3489 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3490 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3491
3492 ret = ext4_map_blocks(handle, inode, map, m_flags);
3493
3494 /*
3495 * We cannot fill holes in indirect tree based inodes as that could
3496 * expose stale data in the case of a crash. Use the magic error code
3497 * to fallback to buffered I/O.
3498 */
3499 if (!m_flags && !ret)
3500 ret = -ENOTBLK;
3501
3502 ext4_journal_stop(handle);
3503 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3504 goto retry;
3505
3506 return ret;
3507}
3508
3509
3510static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3511 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3512{
3513 int ret;
3514 struct ext4_map_blocks map;
3515 u8 blkbits = inode->i_blkbits;
3516
3517 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3518 return -EINVAL;
3519
3520 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3521 return -ERANGE;
3522
3523 /*
3524 * Calculate the first and last logical blocks respectively.
3525 */
3526 map.m_lblk = offset >> blkbits;
3527 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3528 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3529
3530 if (flags & IOMAP_WRITE) {
3531 /*
3532 * We check here if the blocks are already allocated, then we
3533 * don't need to start a journal txn and we can directly return
3534 * the mapping information. This could boost performance
3535 * especially in multi-threaded overwrite requests.
3536 */
3537 if (offset + length <= i_size_read(inode)) {
3538 ret = ext4_map_blocks(NULL, inode, &map, 0);
3539 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3540 goto out;
3541 }
3542 ret = ext4_iomap_alloc(inode, &map, flags);
3543 } else {
3544 ret = ext4_map_blocks(NULL, inode, &map, 0);
3545 }
3546
3547 if (ret < 0)
3548 return ret;
3549out:
3550 /*
3551 * When inline encryption is enabled, sometimes I/O to an encrypted file
3552 * has to be broken up to guarantee DUN contiguity. Handle this by
3553 * limiting the length of the mapping returned.
3554 */
3555 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3556
3557 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3558
3559 return 0;
3560}
3561
3562static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3563 loff_t length, unsigned flags, struct iomap *iomap,
3564 struct iomap *srcmap)
3565{
3566 int ret;
3567
3568 /*
3569 * Even for writes we don't need to allocate blocks, so just pretend
3570 * we are reading to save overhead of starting a transaction.
3571 */
3572 flags &= ~IOMAP_WRITE;
3573 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3574 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3575 return ret;
3576}
3577
3578static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3579 ssize_t written, unsigned flags, struct iomap *iomap)
3580{
3581 /*
3582 * Check to see whether an error occurred while writing out the data to
3583 * the allocated blocks. If so, return the magic error code so that we
3584 * fallback to buffered I/O and attempt to complete the remainder of
3585 * the I/O. Any blocks that may have been allocated in preparation for
3586 * the direct I/O will be reused during buffered I/O.
3587 */
3588 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3589 return -ENOTBLK;
3590
3591 return 0;
3592}
3593
3594const struct iomap_ops ext4_iomap_ops = {
3595 .iomap_begin = ext4_iomap_begin,
3596 .iomap_end = ext4_iomap_end,
3597};
3598
3599const struct iomap_ops ext4_iomap_overwrite_ops = {
3600 .iomap_begin = ext4_iomap_overwrite_begin,
3601 .iomap_end = ext4_iomap_end,
3602};
3603
3604static bool ext4_iomap_is_delalloc(struct inode *inode,
3605 struct ext4_map_blocks *map)
3606{
3607 struct extent_status es;
3608 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3609
3610 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3611 map->m_lblk, end, &es);
3612
3613 if (!es.es_len || es.es_lblk > end)
3614 return false;
3615
3616 if (es.es_lblk > map->m_lblk) {
3617 map->m_len = es.es_lblk - map->m_lblk;
3618 return false;
3619 }
3620
3621 offset = map->m_lblk - es.es_lblk;
3622 map->m_len = es.es_len - offset;
3623
3624 return true;
3625}
3626
3627static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3628 loff_t length, unsigned int flags,
3629 struct iomap *iomap, struct iomap *srcmap)
3630{
3631 int ret;
3632 bool delalloc = false;
3633 struct ext4_map_blocks map;
3634 u8 blkbits = inode->i_blkbits;
3635
3636 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3637 return -EINVAL;
3638
3639 if (ext4_has_inline_data(inode)) {
3640 ret = ext4_inline_data_iomap(inode, iomap);
3641 if (ret != -EAGAIN) {
3642 if (ret == 0 && offset >= iomap->length)
3643 ret = -ENOENT;
3644 return ret;
3645 }
3646 }
3647
3648 /*
3649 * Calculate the first and last logical block respectively.
3650 */
3651 map.m_lblk = offset >> blkbits;
3652 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3653 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3654
3655 /*
3656 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3657 * So handle it here itself instead of querying ext4_map_blocks().
3658 * Since ext4_map_blocks() will warn about it and will return
3659 * -EIO error.
3660 */
3661 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3662 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3663
3664 if (offset >= sbi->s_bitmap_maxbytes) {
3665 map.m_flags = 0;
3666 goto set_iomap;
3667 }
3668 }
3669
3670 ret = ext4_map_blocks(NULL, inode, &map, 0);
3671 if (ret < 0)
3672 return ret;
3673 if (ret == 0)
3674 delalloc = ext4_iomap_is_delalloc(inode, &map);
3675
3676set_iomap:
3677 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3678 if (delalloc && iomap->type == IOMAP_HOLE)
3679 iomap->type = IOMAP_DELALLOC;
3680
3681 return 0;
3682}
3683
3684const struct iomap_ops ext4_iomap_report_ops = {
3685 .iomap_begin = ext4_iomap_begin_report,
3686};
3687
3688/*
3689 * Whenever the folio is being dirtied, corresponding buffers should already
3690 * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3691 * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3692 * lists here because ->dirty_folio is called under VFS locks and the folio
3693 * is not necessarily locked.
3694 *
3695 * We cannot just dirty the folio and leave attached buffers clean, because the
3696 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3697 * or jbddirty because all the journalling code will explode.
3698 *
3699 * So what we do is to mark the folio "pending dirty" and next time writepage
3700 * is called, propagate that into the buffers appropriately.
3701 */
3702static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3703 struct folio *folio)
3704{
3705 WARN_ON_ONCE(!folio_buffers(folio));
3706 folio_set_checked(folio);
3707 return filemap_dirty_folio(mapping, folio);
3708}
3709
3710static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3711{
3712 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3713 WARN_ON_ONCE(!folio_buffers(folio));
3714 return block_dirty_folio(mapping, folio);
3715}
3716
3717static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3718 struct file *file, sector_t *span)
3719{
3720 return iomap_swapfile_activate(sis, file, span,
3721 &ext4_iomap_report_ops);
3722}
3723
3724static const struct address_space_operations ext4_aops = {
3725 .read_folio = ext4_read_folio,
3726 .readahead = ext4_readahead,
3727 .writepages = ext4_writepages,
3728 .write_begin = ext4_write_begin,
3729 .write_end = ext4_write_end,
3730 .dirty_folio = ext4_dirty_folio,
3731 .bmap = ext4_bmap,
3732 .invalidate_folio = ext4_invalidate_folio,
3733 .release_folio = ext4_release_folio,
3734 .direct_IO = noop_direct_IO,
3735 .migrate_folio = buffer_migrate_folio,
3736 .is_partially_uptodate = block_is_partially_uptodate,
3737 .error_remove_page = generic_error_remove_page,
3738 .swap_activate = ext4_iomap_swap_activate,
3739};
3740
3741static const struct address_space_operations ext4_journalled_aops = {
3742 .read_folio = ext4_read_folio,
3743 .readahead = ext4_readahead,
3744 .writepages = ext4_writepages,
3745 .write_begin = ext4_write_begin,
3746 .write_end = ext4_journalled_write_end,
3747 .dirty_folio = ext4_journalled_dirty_folio,
3748 .bmap = ext4_bmap,
3749 .invalidate_folio = ext4_journalled_invalidate_folio,
3750 .release_folio = ext4_release_folio,
3751 .direct_IO = noop_direct_IO,
3752 .migrate_folio = buffer_migrate_folio_norefs,
3753 .is_partially_uptodate = block_is_partially_uptodate,
3754 .error_remove_page = generic_error_remove_page,
3755 .swap_activate = ext4_iomap_swap_activate,
3756};
3757
3758static const struct address_space_operations ext4_da_aops = {
3759 .read_folio = ext4_read_folio,
3760 .readahead = ext4_readahead,
3761 .writepages = ext4_writepages,
3762 .write_begin = ext4_da_write_begin,
3763 .write_end = ext4_da_write_end,
3764 .dirty_folio = ext4_dirty_folio,
3765 .bmap = ext4_bmap,
3766 .invalidate_folio = ext4_invalidate_folio,
3767 .release_folio = ext4_release_folio,
3768 .direct_IO = noop_direct_IO,
3769 .migrate_folio = buffer_migrate_folio,
3770 .is_partially_uptodate = block_is_partially_uptodate,
3771 .error_remove_page = generic_error_remove_page,
3772 .swap_activate = ext4_iomap_swap_activate,
3773};
3774
3775static const struct address_space_operations ext4_dax_aops = {
3776 .writepages = ext4_dax_writepages,
3777 .direct_IO = noop_direct_IO,
3778 .dirty_folio = noop_dirty_folio,
3779 .bmap = ext4_bmap,
3780 .swap_activate = ext4_iomap_swap_activate,
3781};
3782
3783void ext4_set_aops(struct inode *inode)
3784{
3785 switch (ext4_inode_journal_mode(inode)) {
3786 case EXT4_INODE_ORDERED_DATA_MODE:
3787 case EXT4_INODE_WRITEBACK_DATA_MODE:
3788 break;
3789 case EXT4_INODE_JOURNAL_DATA_MODE:
3790 inode->i_mapping->a_ops = &ext4_journalled_aops;
3791 return;
3792 default:
3793 BUG();
3794 }
3795 if (IS_DAX(inode))
3796 inode->i_mapping->a_ops = &ext4_dax_aops;
3797 else if (test_opt(inode->i_sb, DELALLOC))
3798 inode->i_mapping->a_ops = &ext4_da_aops;
3799 else
3800 inode->i_mapping->a_ops = &ext4_aops;
3801}
3802
3803static int __ext4_block_zero_page_range(handle_t *handle,
3804 struct address_space *mapping, loff_t from, loff_t length)
3805{
3806 ext4_fsblk_t index = from >> PAGE_SHIFT;
3807 unsigned offset = from & (PAGE_SIZE-1);
3808 unsigned blocksize, pos;
3809 ext4_lblk_t iblock;
3810 struct inode *inode = mapping->host;
3811 struct buffer_head *bh;
3812 struct page *page;
3813 int err = 0;
3814
3815 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3816 mapping_gfp_constraint(mapping, ~__GFP_FS));
3817 if (!page)
3818 return -ENOMEM;
3819
3820 blocksize = inode->i_sb->s_blocksize;
3821
3822 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3823
3824 if (!page_has_buffers(page))
3825 create_empty_buffers(page, blocksize, 0);
3826
3827 /* Find the buffer that contains "offset" */
3828 bh = page_buffers(page);
3829 pos = blocksize;
3830 while (offset >= pos) {
3831 bh = bh->b_this_page;
3832 iblock++;
3833 pos += blocksize;
3834 }
3835 if (buffer_freed(bh)) {
3836 BUFFER_TRACE(bh, "freed: skip");
3837 goto unlock;
3838 }
3839 if (!buffer_mapped(bh)) {
3840 BUFFER_TRACE(bh, "unmapped");
3841 ext4_get_block(inode, iblock, bh, 0);
3842 /* unmapped? It's a hole - nothing to do */
3843 if (!buffer_mapped(bh)) {
3844 BUFFER_TRACE(bh, "still unmapped");
3845 goto unlock;
3846 }
3847 }
3848
3849 /* Ok, it's mapped. Make sure it's up-to-date */
3850 if (PageUptodate(page))
3851 set_buffer_uptodate(bh);
3852
3853 if (!buffer_uptodate(bh)) {
3854 err = ext4_read_bh_lock(bh, 0, true);
3855 if (err)
3856 goto unlock;
3857 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3858 /* We expect the key to be set. */
3859 BUG_ON(!fscrypt_has_encryption_key(inode));
3860 err = fscrypt_decrypt_pagecache_blocks(page_folio(page),
3861 blocksize,
3862 bh_offset(bh));
3863 if (err) {
3864 clear_buffer_uptodate(bh);
3865 goto unlock;
3866 }
3867 }
3868 }
3869 if (ext4_should_journal_data(inode)) {
3870 BUFFER_TRACE(bh, "get write access");
3871 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3872 EXT4_JTR_NONE);
3873 if (err)
3874 goto unlock;
3875 }
3876 zero_user(page, offset, length);
3877 BUFFER_TRACE(bh, "zeroed end of block");
3878
3879 if (ext4_should_journal_data(inode)) {
3880 err = ext4_handle_dirty_metadata(handle, inode, bh);
3881 } else {
3882 err = 0;
3883 mark_buffer_dirty(bh);
3884 if (ext4_should_order_data(inode))
3885 err = ext4_jbd2_inode_add_write(handle, inode, from,
3886 length);
3887 }
3888
3889unlock:
3890 unlock_page(page);
3891 put_page(page);
3892 return err;
3893}
3894
3895/*
3896 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3897 * starting from file offset 'from'. The range to be zero'd must
3898 * be contained with in one block. If the specified range exceeds
3899 * the end of the block it will be shortened to end of the block
3900 * that corresponds to 'from'
3901 */
3902static int ext4_block_zero_page_range(handle_t *handle,
3903 struct address_space *mapping, loff_t from, loff_t length)
3904{
3905 struct inode *inode = mapping->host;
3906 unsigned offset = from & (PAGE_SIZE-1);
3907 unsigned blocksize = inode->i_sb->s_blocksize;
3908 unsigned max = blocksize - (offset & (blocksize - 1));
3909
3910 /*
3911 * correct length if it does not fall between
3912 * 'from' and the end of the block
3913 */
3914 if (length > max || length < 0)
3915 length = max;
3916
3917 if (IS_DAX(inode)) {
3918 return dax_zero_range(inode, from, length, NULL,
3919 &ext4_iomap_ops);
3920 }
3921 return __ext4_block_zero_page_range(handle, mapping, from, length);
3922}
3923
3924/*
3925 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3926 * up to the end of the block which corresponds to `from'.
3927 * This required during truncate. We need to physically zero the tail end
3928 * of that block so it doesn't yield old data if the file is later grown.
3929 */
3930static int ext4_block_truncate_page(handle_t *handle,
3931 struct address_space *mapping, loff_t from)
3932{
3933 unsigned offset = from & (PAGE_SIZE-1);
3934 unsigned length;
3935 unsigned blocksize;
3936 struct inode *inode = mapping->host;
3937
3938 /* If we are processing an encrypted inode during orphan list handling */
3939 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3940 return 0;
3941
3942 blocksize = inode->i_sb->s_blocksize;
3943 length = blocksize - (offset & (blocksize - 1));
3944
3945 return ext4_block_zero_page_range(handle, mapping, from, length);
3946}
3947
3948int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3949 loff_t lstart, loff_t length)
3950{
3951 struct super_block *sb = inode->i_sb;
3952 struct address_space *mapping = inode->i_mapping;
3953 unsigned partial_start, partial_end;
3954 ext4_fsblk_t start, end;
3955 loff_t byte_end = (lstart + length - 1);
3956 int err = 0;
3957
3958 partial_start = lstart & (sb->s_blocksize - 1);
3959 partial_end = byte_end & (sb->s_blocksize - 1);
3960
3961 start = lstart >> sb->s_blocksize_bits;
3962 end = byte_end >> sb->s_blocksize_bits;
3963
3964 /* Handle partial zero within the single block */
3965 if (start == end &&
3966 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3967 err = ext4_block_zero_page_range(handle, mapping,
3968 lstart, length);
3969 return err;
3970 }
3971 /* Handle partial zero out on the start of the range */
3972 if (partial_start) {
3973 err = ext4_block_zero_page_range(handle, mapping,
3974 lstart, sb->s_blocksize);
3975 if (err)
3976 return err;
3977 }
3978 /* Handle partial zero out on the end of the range */
3979 if (partial_end != sb->s_blocksize - 1)
3980 err = ext4_block_zero_page_range(handle, mapping,
3981 byte_end - partial_end,
3982 partial_end + 1);
3983 return err;
3984}
3985
3986int ext4_can_truncate(struct inode *inode)
3987{
3988 if (S_ISREG(inode->i_mode))
3989 return 1;
3990 if (S_ISDIR(inode->i_mode))
3991 return 1;
3992 if (S_ISLNK(inode->i_mode))
3993 return !ext4_inode_is_fast_symlink(inode);
3994 return 0;
3995}
3996
3997/*
3998 * We have to make sure i_disksize gets properly updated before we truncate
3999 * page cache due to hole punching or zero range. Otherwise i_disksize update
4000 * can get lost as it may have been postponed to submission of writeback but
4001 * that will never happen after we truncate page cache.
4002 */
4003int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4004 loff_t len)
4005{
4006 handle_t *handle;
4007 int ret;
4008
4009 loff_t size = i_size_read(inode);
4010
4011 WARN_ON(!inode_is_locked(inode));
4012 if (offset > size || offset + len < size)
4013 return 0;
4014
4015 if (EXT4_I(inode)->i_disksize >= size)
4016 return 0;
4017
4018 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4019 if (IS_ERR(handle))
4020 return PTR_ERR(handle);
4021 ext4_update_i_disksize(inode, size);
4022 ret = ext4_mark_inode_dirty(handle, inode);
4023 ext4_journal_stop(handle);
4024
4025 return ret;
4026}
4027
4028static void ext4_wait_dax_page(struct inode *inode)
4029{
4030 filemap_invalidate_unlock(inode->i_mapping);
4031 schedule();
4032 filemap_invalidate_lock(inode->i_mapping);
4033}
4034
4035int ext4_break_layouts(struct inode *inode)
4036{
4037 struct page *page;
4038 int error;
4039
4040 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
4041 return -EINVAL;
4042
4043 do {
4044 page = dax_layout_busy_page(inode->i_mapping);
4045 if (!page)
4046 return 0;
4047
4048 error = ___wait_var_event(&page->_refcount,
4049 atomic_read(&page->_refcount) == 1,
4050 TASK_INTERRUPTIBLE, 0, 0,
4051 ext4_wait_dax_page(inode));
4052 } while (error == 0);
4053
4054 return error;
4055}
4056
4057/*
4058 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4059 * associated with the given offset and length
4060 *
4061 * @inode: File inode
4062 * @offset: The offset where the hole will begin
4063 * @len: The length of the hole
4064 *
4065 * Returns: 0 on success or negative on failure
4066 */
4067
4068int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4069{
4070 struct inode *inode = file_inode(file);
4071 struct super_block *sb = inode->i_sb;
4072 ext4_lblk_t first_block, stop_block;
4073 struct address_space *mapping = inode->i_mapping;
4074 loff_t first_block_offset, last_block_offset, max_length;
4075 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4076 handle_t *handle;
4077 unsigned int credits;
4078 int ret = 0, ret2 = 0;
4079
4080 trace_ext4_punch_hole(inode, offset, length, 0);
4081
4082 /*
4083 * Write out all dirty pages to avoid race conditions
4084 * Then release them.
4085 */
4086 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4087 ret = filemap_write_and_wait_range(mapping, offset,
4088 offset + length - 1);
4089 if (ret)
4090 return ret;
4091 }
4092
4093 inode_lock(inode);
4094
4095 /* No need to punch hole beyond i_size */
4096 if (offset >= inode->i_size)
4097 goto out_mutex;
4098
4099 /*
4100 * If the hole extends beyond i_size, set the hole
4101 * to end after the page that contains i_size
4102 */
4103 if (offset + length > inode->i_size) {
4104 length = inode->i_size +
4105 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4106 offset;
4107 }
4108
4109 /*
4110 * For punch hole the length + offset needs to be within one block
4111 * before last range. Adjust the length if it goes beyond that limit.
4112 */
4113 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4114 if (offset + length > max_length)
4115 length = max_length - offset;
4116
4117 if (offset & (sb->s_blocksize - 1) ||
4118 (offset + length) & (sb->s_blocksize - 1)) {
4119 /*
4120 * Attach jinode to inode for jbd2 if we do any zeroing of
4121 * partial block
4122 */
4123 ret = ext4_inode_attach_jinode(inode);
4124 if (ret < 0)
4125 goto out_mutex;
4126
4127 }
4128
4129 /* Wait all existing dio workers, newcomers will block on i_rwsem */
4130 inode_dio_wait(inode);
4131
4132 ret = file_modified(file);
4133 if (ret)
4134 goto out_mutex;
4135
4136 /*
4137 * Prevent page faults from reinstantiating pages we have released from
4138 * page cache.
4139 */
4140 filemap_invalidate_lock(mapping);
4141
4142 ret = ext4_break_layouts(inode);
4143 if (ret)
4144 goto out_dio;
4145
4146 first_block_offset = round_up(offset, sb->s_blocksize);
4147 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4148
4149 /* Now release the pages and zero block aligned part of pages*/
4150 if (last_block_offset > first_block_offset) {
4151 ret = ext4_update_disksize_before_punch(inode, offset, length);
4152 if (ret)
4153 goto out_dio;
4154 truncate_pagecache_range(inode, first_block_offset,
4155 last_block_offset);
4156 }
4157
4158 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4159 credits = ext4_writepage_trans_blocks(inode);
4160 else
4161 credits = ext4_blocks_for_truncate(inode);
4162 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4163 if (IS_ERR(handle)) {
4164 ret = PTR_ERR(handle);
4165 ext4_std_error(sb, ret);
4166 goto out_dio;
4167 }
4168
4169 ret = ext4_zero_partial_blocks(handle, inode, offset,
4170 length);
4171 if (ret)
4172 goto out_stop;
4173
4174 first_block = (offset + sb->s_blocksize - 1) >>
4175 EXT4_BLOCK_SIZE_BITS(sb);
4176 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4177
4178 /* If there are blocks to remove, do it */
4179 if (stop_block > first_block) {
4180
4181 down_write(&EXT4_I(inode)->i_data_sem);
4182 ext4_discard_preallocations(inode, 0);
4183
4184 ret = ext4_es_remove_extent(inode, first_block,
4185 stop_block - first_block);
4186 if (ret) {
4187 up_write(&EXT4_I(inode)->i_data_sem);
4188 goto out_stop;
4189 }
4190
4191 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4192 ret = ext4_ext_remove_space(inode, first_block,
4193 stop_block - 1);
4194 else
4195 ret = ext4_ind_remove_space(handle, inode, first_block,
4196 stop_block);
4197
4198 up_write(&EXT4_I(inode)->i_data_sem);
4199 }
4200 ext4_fc_track_range(handle, inode, first_block, stop_block);
4201 if (IS_SYNC(inode))
4202 ext4_handle_sync(handle);
4203
4204 inode->i_mtime = inode->i_ctime = current_time(inode);
4205 ret2 = ext4_mark_inode_dirty(handle, inode);
4206 if (unlikely(ret2))
4207 ret = ret2;
4208 if (ret >= 0)
4209 ext4_update_inode_fsync_trans(handle, inode, 1);
4210out_stop:
4211 ext4_journal_stop(handle);
4212out_dio:
4213 filemap_invalidate_unlock(mapping);
4214out_mutex:
4215 inode_unlock(inode);
4216 return ret;
4217}
4218
4219int ext4_inode_attach_jinode(struct inode *inode)
4220{
4221 struct ext4_inode_info *ei = EXT4_I(inode);
4222 struct jbd2_inode *jinode;
4223
4224 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4225 return 0;
4226
4227 jinode = jbd2_alloc_inode(GFP_KERNEL);
4228 spin_lock(&inode->i_lock);
4229 if (!ei->jinode) {
4230 if (!jinode) {
4231 spin_unlock(&inode->i_lock);
4232 return -ENOMEM;
4233 }
4234 ei->jinode = jinode;
4235 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4236 jinode = NULL;
4237 }
4238 spin_unlock(&inode->i_lock);
4239 if (unlikely(jinode != NULL))
4240 jbd2_free_inode(jinode);
4241 return 0;
4242}
4243
4244/*
4245 * ext4_truncate()
4246 *
4247 * We block out ext4_get_block() block instantiations across the entire
4248 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4249 * simultaneously on behalf of the same inode.
4250 *
4251 * As we work through the truncate and commit bits of it to the journal there
4252 * is one core, guiding principle: the file's tree must always be consistent on
4253 * disk. We must be able to restart the truncate after a crash.
4254 *
4255 * The file's tree may be transiently inconsistent in memory (although it
4256 * probably isn't), but whenever we close off and commit a journal transaction,
4257 * the contents of (the filesystem + the journal) must be consistent and
4258 * restartable. It's pretty simple, really: bottom up, right to left (although
4259 * left-to-right works OK too).
4260 *
4261 * Note that at recovery time, journal replay occurs *before* the restart of
4262 * truncate against the orphan inode list.
4263 *
4264 * The committed inode has the new, desired i_size (which is the same as
4265 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4266 * that this inode's truncate did not complete and it will again call
4267 * ext4_truncate() to have another go. So there will be instantiated blocks
4268 * to the right of the truncation point in a crashed ext4 filesystem. But
4269 * that's fine - as long as they are linked from the inode, the post-crash
4270 * ext4_truncate() run will find them and release them.
4271 */
4272int ext4_truncate(struct inode *inode)
4273{
4274 struct ext4_inode_info *ei = EXT4_I(inode);
4275 unsigned int credits;
4276 int err = 0, err2;
4277 handle_t *handle;
4278 struct address_space *mapping = inode->i_mapping;
4279
4280 /*
4281 * There is a possibility that we're either freeing the inode
4282 * or it's a completely new inode. In those cases we might not
4283 * have i_rwsem locked because it's not necessary.
4284 */
4285 if (!(inode->i_state & (I_NEW|I_FREEING)))
4286 WARN_ON(!inode_is_locked(inode));
4287 trace_ext4_truncate_enter(inode);
4288
4289 if (!ext4_can_truncate(inode))
4290 goto out_trace;
4291
4292 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4293 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4294
4295 if (ext4_has_inline_data(inode)) {
4296 int has_inline = 1;
4297
4298 err = ext4_inline_data_truncate(inode, &has_inline);
4299 if (err || has_inline)
4300 goto out_trace;
4301 }
4302
4303 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4304 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4305 err = ext4_inode_attach_jinode(inode);
4306 if (err)
4307 goto out_trace;
4308 }
4309
4310 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4311 credits = ext4_writepage_trans_blocks(inode);
4312 else
4313 credits = ext4_blocks_for_truncate(inode);
4314
4315 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4316 if (IS_ERR(handle)) {
4317 err = PTR_ERR(handle);
4318 goto out_trace;
4319 }
4320
4321 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4322 ext4_block_truncate_page(handle, mapping, inode->i_size);
4323
4324 /*
4325 * We add the inode to the orphan list, so that if this
4326 * truncate spans multiple transactions, and we crash, we will
4327 * resume the truncate when the filesystem recovers. It also
4328 * marks the inode dirty, to catch the new size.
4329 *
4330 * Implication: the file must always be in a sane, consistent
4331 * truncatable state while each transaction commits.
4332 */
4333 err = ext4_orphan_add(handle, inode);
4334 if (err)
4335 goto out_stop;
4336
4337 down_write(&EXT4_I(inode)->i_data_sem);
4338
4339 ext4_discard_preallocations(inode, 0);
4340
4341 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4342 err = ext4_ext_truncate(handle, inode);
4343 else
4344 ext4_ind_truncate(handle, inode);
4345
4346 up_write(&ei->i_data_sem);
4347 if (err)
4348 goto out_stop;
4349
4350 if (IS_SYNC(inode))
4351 ext4_handle_sync(handle);
4352
4353out_stop:
4354 /*
4355 * If this was a simple ftruncate() and the file will remain alive,
4356 * then we need to clear up the orphan record which we created above.
4357 * However, if this was a real unlink then we were called by
4358 * ext4_evict_inode(), and we allow that function to clean up the
4359 * orphan info for us.
4360 */
4361 if (inode->i_nlink)
4362 ext4_orphan_del(handle, inode);
4363
4364 inode->i_mtime = inode->i_ctime = current_time(inode);
4365 err2 = ext4_mark_inode_dirty(handle, inode);
4366 if (unlikely(err2 && !err))
4367 err = err2;
4368 ext4_journal_stop(handle);
4369
4370out_trace:
4371 trace_ext4_truncate_exit(inode);
4372 return err;
4373}
4374
4375static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4376{
4377 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4378 return inode_peek_iversion_raw(inode);
4379 else
4380 return inode_peek_iversion(inode);
4381}
4382
4383static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4384 struct ext4_inode_info *ei)
4385{
4386 struct inode *inode = &(ei->vfs_inode);
4387 u64 i_blocks = READ_ONCE(inode->i_blocks);
4388 struct super_block *sb = inode->i_sb;
4389
4390 if (i_blocks <= ~0U) {
4391 /*
4392 * i_blocks can be represented in a 32 bit variable
4393 * as multiple of 512 bytes
4394 */
4395 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4396 raw_inode->i_blocks_high = 0;
4397 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4398 return 0;
4399 }
4400
4401 /*
4402 * This should never happen since sb->s_maxbytes should not have
4403 * allowed this, sb->s_maxbytes was set according to the huge_file
4404 * feature in ext4_fill_super().
4405 */
4406 if (!ext4_has_feature_huge_file(sb))
4407 return -EFSCORRUPTED;
4408
4409 if (i_blocks <= 0xffffffffffffULL) {
4410 /*
4411 * i_blocks can be represented in a 48 bit variable
4412 * as multiple of 512 bytes
4413 */
4414 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4415 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4416 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4417 } else {
4418 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4419 /* i_block is stored in file system block size */
4420 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4421 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4422 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4423 }
4424 return 0;
4425}
4426
4427static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4428{
4429 struct ext4_inode_info *ei = EXT4_I(inode);
4430 uid_t i_uid;
4431 gid_t i_gid;
4432 projid_t i_projid;
4433 int block;
4434 int err;
4435
4436 err = ext4_inode_blocks_set(raw_inode, ei);
4437
4438 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4439 i_uid = i_uid_read(inode);
4440 i_gid = i_gid_read(inode);
4441 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4442 if (!(test_opt(inode->i_sb, NO_UID32))) {
4443 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4444 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4445 /*
4446 * Fix up interoperability with old kernels. Otherwise,
4447 * old inodes get re-used with the upper 16 bits of the
4448 * uid/gid intact.
4449 */
4450 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4451 raw_inode->i_uid_high = 0;
4452 raw_inode->i_gid_high = 0;
4453 } else {
4454 raw_inode->i_uid_high =
4455 cpu_to_le16(high_16_bits(i_uid));
4456 raw_inode->i_gid_high =
4457 cpu_to_le16(high_16_bits(i_gid));
4458 }
4459 } else {
4460 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4461 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4462 raw_inode->i_uid_high = 0;
4463 raw_inode->i_gid_high = 0;
4464 }
4465 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4466
4467 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4468 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4469 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4470 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4471
4472 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4473 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4474 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4475 raw_inode->i_file_acl_high =
4476 cpu_to_le16(ei->i_file_acl >> 32);
4477 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4478 ext4_isize_set(raw_inode, ei->i_disksize);
4479
4480 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4481 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4482 if (old_valid_dev(inode->i_rdev)) {
4483 raw_inode->i_block[0] =
4484 cpu_to_le32(old_encode_dev(inode->i_rdev));
4485 raw_inode->i_block[1] = 0;
4486 } else {
4487 raw_inode->i_block[0] = 0;
4488 raw_inode->i_block[1] =
4489 cpu_to_le32(new_encode_dev(inode->i_rdev));
4490 raw_inode->i_block[2] = 0;
4491 }
4492 } else if (!ext4_has_inline_data(inode)) {
4493 for (block = 0; block < EXT4_N_BLOCKS; block++)
4494 raw_inode->i_block[block] = ei->i_data[block];
4495 }
4496
4497 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4498 u64 ivers = ext4_inode_peek_iversion(inode);
4499
4500 raw_inode->i_disk_version = cpu_to_le32(ivers);
4501 if (ei->i_extra_isize) {
4502 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4503 raw_inode->i_version_hi =
4504 cpu_to_le32(ivers >> 32);
4505 raw_inode->i_extra_isize =
4506 cpu_to_le16(ei->i_extra_isize);
4507 }
4508 }
4509
4510 if (i_projid != EXT4_DEF_PROJID &&
4511 !ext4_has_feature_project(inode->i_sb))
4512 err = err ?: -EFSCORRUPTED;
4513
4514 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4515 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4516 raw_inode->i_projid = cpu_to_le32(i_projid);
4517
4518 ext4_inode_csum_set(inode, raw_inode, ei);
4519 return err;
4520}
4521
4522/*
4523 * ext4_get_inode_loc returns with an extra refcount against the inode's
4524 * underlying buffer_head on success. If we pass 'inode' and it does not
4525 * have in-inode xattr, we have all inode data in memory that is needed
4526 * to recreate the on-disk version of this inode.
4527 */
4528static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4529 struct inode *inode, struct ext4_iloc *iloc,
4530 ext4_fsblk_t *ret_block)
4531{
4532 struct ext4_group_desc *gdp;
4533 struct buffer_head *bh;
4534 ext4_fsblk_t block;
4535 struct blk_plug plug;
4536 int inodes_per_block, inode_offset;
4537
4538 iloc->bh = NULL;
4539 if (ino < EXT4_ROOT_INO ||
4540 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4541 return -EFSCORRUPTED;
4542
4543 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4544 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4545 if (!gdp)
4546 return -EIO;
4547
4548 /*
4549 * Figure out the offset within the block group inode table
4550 */
4551 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4552 inode_offset = ((ino - 1) %
4553 EXT4_INODES_PER_GROUP(sb));
4554 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4555
4556 block = ext4_inode_table(sb, gdp);
4557 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4558 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4559 ext4_error(sb, "Invalid inode table block %llu in "
4560 "block_group %u", block, iloc->block_group);
4561 return -EFSCORRUPTED;
4562 }
4563 block += (inode_offset / inodes_per_block);
4564
4565 bh = sb_getblk(sb, block);
4566 if (unlikely(!bh))
4567 return -ENOMEM;
4568 if (ext4_buffer_uptodate(bh))
4569 goto has_buffer;
4570
4571 lock_buffer(bh);
4572 if (ext4_buffer_uptodate(bh)) {
4573 /* Someone brought it uptodate while we waited */
4574 unlock_buffer(bh);
4575 goto has_buffer;
4576 }
4577
4578 /*
4579 * If we have all information of the inode in memory and this
4580 * is the only valid inode in the block, we need not read the
4581 * block.
4582 */
4583 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4584 struct buffer_head *bitmap_bh;
4585 int i, start;
4586
4587 start = inode_offset & ~(inodes_per_block - 1);
4588
4589 /* Is the inode bitmap in cache? */
4590 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4591 if (unlikely(!bitmap_bh))
4592 goto make_io;
4593
4594 /*
4595 * If the inode bitmap isn't in cache then the
4596 * optimisation may end up performing two reads instead
4597 * of one, so skip it.
4598 */
4599 if (!buffer_uptodate(bitmap_bh)) {
4600 brelse(bitmap_bh);
4601 goto make_io;
4602 }
4603 for (i = start; i < start + inodes_per_block; i++) {
4604 if (i == inode_offset)
4605 continue;
4606 if (ext4_test_bit(i, bitmap_bh->b_data))
4607 break;
4608 }
4609 brelse(bitmap_bh);
4610 if (i == start + inodes_per_block) {
4611 struct ext4_inode *raw_inode =
4612 (struct ext4_inode *) (bh->b_data + iloc->offset);
4613
4614 /* all other inodes are free, so skip I/O */
4615 memset(bh->b_data, 0, bh->b_size);
4616 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4617 ext4_fill_raw_inode(inode, raw_inode);
4618 set_buffer_uptodate(bh);
4619 unlock_buffer(bh);
4620 goto has_buffer;
4621 }
4622 }
4623
4624make_io:
4625 /*
4626 * If we need to do any I/O, try to pre-readahead extra
4627 * blocks from the inode table.
4628 */
4629 blk_start_plug(&plug);
4630 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4631 ext4_fsblk_t b, end, table;
4632 unsigned num;
4633 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4634
4635 table = ext4_inode_table(sb, gdp);
4636 /* s_inode_readahead_blks is always a power of 2 */
4637 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4638 if (table > b)
4639 b = table;
4640 end = b + ra_blks;
4641 num = EXT4_INODES_PER_GROUP(sb);
4642 if (ext4_has_group_desc_csum(sb))
4643 num -= ext4_itable_unused_count(sb, gdp);
4644 table += num / inodes_per_block;
4645 if (end > table)
4646 end = table;
4647 while (b <= end)
4648 ext4_sb_breadahead_unmovable(sb, b++);
4649 }
4650
4651 /*
4652 * There are other valid inodes in the buffer, this inode
4653 * has in-inode xattrs, or we don't have this inode in memory.
4654 * Read the block from disk.
4655 */
4656 trace_ext4_load_inode(sb, ino);
4657 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4658 blk_finish_plug(&plug);
4659 wait_on_buffer(bh);
4660 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4661 if (!buffer_uptodate(bh)) {
4662 if (ret_block)
4663 *ret_block = block;
4664 brelse(bh);
4665 return -EIO;
4666 }
4667has_buffer:
4668 iloc->bh = bh;
4669 return 0;
4670}
4671
4672static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4673 struct ext4_iloc *iloc)
4674{
4675 ext4_fsblk_t err_blk = 0;
4676 int ret;
4677
4678 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4679 &err_blk);
4680
4681 if (ret == -EIO)
4682 ext4_error_inode_block(inode, err_blk, EIO,
4683 "unable to read itable block");
4684
4685 return ret;
4686}
4687
4688int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4689{
4690 ext4_fsblk_t err_blk = 0;
4691 int ret;
4692
4693 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4694 &err_blk);
4695
4696 if (ret == -EIO)
4697 ext4_error_inode_block(inode, err_blk, EIO,
4698 "unable to read itable block");
4699
4700 return ret;
4701}
4702
4703
4704int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4705 struct ext4_iloc *iloc)
4706{
4707 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4708}
4709
4710static bool ext4_should_enable_dax(struct inode *inode)
4711{
4712 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4713
4714 if (test_opt2(inode->i_sb, DAX_NEVER))
4715 return false;
4716 if (!S_ISREG(inode->i_mode))
4717 return false;
4718 if (ext4_should_journal_data(inode))
4719 return false;
4720 if (ext4_has_inline_data(inode))
4721 return false;
4722 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4723 return false;
4724 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4725 return false;
4726 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4727 return false;
4728 if (test_opt(inode->i_sb, DAX_ALWAYS))
4729 return true;
4730
4731 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4732}
4733
4734void ext4_set_inode_flags(struct inode *inode, bool init)
4735{
4736 unsigned int flags = EXT4_I(inode)->i_flags;
4737 unsigned int new_fl = 0;
4738
4739 WARN_ON_ONCE(IS_DAX(inode) && init);
4740
4741 if (flags & EXT4_SYNC_FL)
4742 new_fl |= S_SYNC;
4743 if (flags & EXT4_APPEND_FL)
4744 new_fl |= S_APPEND;
4745 if (flags & EXT4_IMMUTABLE_FL)
4746 new_fl |= S_IMMUTABLE;
4747 if (flags & EXT4_NOATIME_FL)
4748 new_fl |= S_NOATIME;
4749 if (flags & EXT4_DIRSYNC_FL)
4750 new_fl |= S_DIRSYNC;
4751
4752 /* Because of the way inode_set_flags() works we must preserve S_DAX
4753 * here if already set. */
4754 new_fl |= (inode->i_flags & S_DAX);
4755 if (init && ext4_should_enable_dax(inode))
4756 new_fl |= S_DAX;
4757
4758 if (flags & EXT4_ENCRYPT_FL)
4759 new_fl |= S_ENCRYPTED;
4760 if (flags & EXT4_CASEFOLD_FL)
4761 new_fl |= S_CASEFOLD;
4762 if (flags & EXT4_VERITY_FL)
4763 new_fl |= S_VERITY;
4764 inode_set_flags(inode, new_fl,
4765 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4766 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4767}
4768
4769static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4770 struct ext4_inode_info *ei)
4771{
4772 blkcnt_t i_blocks ;
4773 struct inode *inode = &(ei->vfs_inode);
4774 struct super_block *sb = inode->i_sb;
4775
4776 if (ext4_has_feature_huge_file(sb)) {
4777 /* we are using combined 48 bit field */
4778 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4779 le32_to_cpu(raw_inode->i_blocks_lo);
4780 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4781 /* i_blocks represent file system block size */
4782 return i_blocks << (inode->i_blkbits - 9);
4783 } else {
4784 return i_blocks;
4785 }
4786 } else {
4787 return le32_to_cpu(raw_inode->i_blocks_lo);
4788 }
4789}
4790
4791static inline int ext4_iget_extra_inode(struct inode *inode,
4792 struct ext4_inode *raw_inode,
4793 struct ext4_inode_info *ei)
4794{
4795 __le32 *magic = (void *)raw_inode +
4796 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4797
4798 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
4799 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4800 int err;
4801
4802 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4803 err = ext4_find_inline_data_nolock(inode);
4804 if (!err && ext4_has_inline_data(inode))
4805 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4806 return err;
4807 } else
4808 EXT4_I(inode)->i_inline_off = 0;
4809 return 0;
4810}
4811
4812int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4813{
4814 if (!ext4_has_feature_project(inode->i_sb))
4815 return -EOPNOTSUPP;
4816 *projid = EXT4_I(inode)->i_projid;
4817 return 0;
4818}
4819
4820/*
4821 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4822 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4823 * set.
4824 */
4825static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4826{
4827 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4828 inode_set_iversion_raw(inode, val);
4829 else
4830 inode_set_iversion_queried(inode, val);
4831}
4832
4833struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4834 ext4_iget_flags flags, const char *function,
4835 unsigned int line)
4836{
4837 struct ext4_iloc iloc;
4838 struct ext4_inode *raw_inode;
4839 struct ext4_inode_info *ei;
4840 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4841 struct inode *inode;
4842 journal_t *journal = EXT4_SB(sb)->s_journal;
4843 long ret;
4844 loff_t size;
4845 int block;
4846 uid_t i_uid;
4847 gid_t i_gid;
4848 projid_t i_projid;
4849
4850 if ((!(flags & EXT4_IGET_SPECIAL) &&
4851 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4852 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4853 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4854 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4855 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4856 (ino < EXT4_ROOT_INO) ||
4857 (ino > le32_to_cpu(es->s_inodes_count))) {
4858 if (flags & EXT4_IGET_HANDLE)
4859 return ERR_PTR(-ESTALE);
4860 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4861 "inode #%lu: comm %s: iget: illegal inode #",
4862 ino, current->comm);
4863 return ERR_PTR(-EFSCORRUPTED);
4864 }
4865
4866 inode = iget_locked(sb, ino);
4867 if (!inode)
4868 return ERR_PTR(-ENOMEM);
4869 if (!(inode->i_state & I_NEW))
4870 return inode;
4871
4872 ei = EXT4_I(inode);
4873 iloc.bh = NULL;
4874
4875 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4876 if (ret < 0)
4877 goto bad_inode;
4878 raw_inode = ext4_raw_inode(&iloc);
4879
4880 if ((flags & EXT4_IGET_HANDLE) &&
4881 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4882 ret = -ESTALE;
4883 goto bad_inode;
4884 }
4885
4886 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4887 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4888 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4889 EXT4_INODE_SIZE(inode->i_sb) ||
4890 (ei->i_extra_isize & 3)) {
4891 ext4_error_inode(inode, function, line, 0,
4892 "iget: bad extra_isize %u "
4893 "(inode size %u)",
4894 ei->i_extra_isize,
4895 EXT4_INODE_SIZE(inode->i_sb));
4896 ret = -EFSCORRUPTED;
4897 goto bad_inode;
4898 }
4899 } else
4900 ei->i_extra_isize = 0;
4901
4902 /* Precompute checksum seed for inode metadata */
4903 if (ext4_has_metadata_csum(sb)) {
4904 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4905 __u32 csum;
4906 __le32 inum = cpu_to_le32(inode->i_ino);
4907 __le32 gen = raw_inode->i_generation;
4908 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4909 sizeof(inum));
4910 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4911 sizeof(gen));
4912 }
4913
4914 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4915 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4916 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4917 ext4_error_inode_err(inode, function, line, 0,
4918 EFSBADCRC, "iget: checksum invalid");
4919 ret = -EFSBADCRC;
4920 goto bad_inode;
4921 }
4922
4923 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4924 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4925 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4926 if (ext4_has_feature_project(sb) &&
4927 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4928 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4929 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4930 else
4931 i_projid = EXT4_DEF_PROJID;
4932
4933 if (!(test_opt(inode->i_sb, NO_UID32))) {
4934 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4935 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4936 }
4937 i_uid_write(inode, i_uid);
4938 i_gid_write(inode, i_gid);
4939 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4940 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4941
4942 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4943 ei->i_inline_off = 0;
4944 ei->i_dir_start_lookup = 0;
4945 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4946 /* We now have enough fields to check if the inode was active or not.
4947 * This is needed because nfsd might try to access dead inodes
4948 * the test is that same one that e2fsck uses
4949 * NeilBrown 1999oct15
4950 */
4951 if (inode->i_nlink == 0) {
4952 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4953 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4954 ino != EXT4_BOOT_LOADER_INO) {
4955 /* this inode is deleted or unallocated */
4956 if (flags & EXT4_IGET_SPECIAL) {
4957 ext4_error_inode(inode, function, line, 0,
4958 "iget: special inode unallocated");
4959 ret = -EFSCORRUPTED;
4960 } else
4961 ret = -ESTALE;
4962 goto bad_inode;
4963 }
4964 /* The only unlinked inodes we let through here have
4965 * valid i_mode and are being read by the orphan
4966 * recovery code: that's fine, we're about to complete
4967 * the process of deleting those.
4968 * OR it is the EXT4_BOOT_LOADER_INO which is
4969 * not initialized on a new filesystem. */
4970 }
4971 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4972 ext4_set_inode_flags(inode, true);
4973 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4974 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4975 if (ext4_has_feature_64bit(sb))
4976 ei->i_file_acl |=
4977 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4978 inode->i_size = ext4_isize(sb, raw_inode);
4979 if ((size = i_size_read(inode)) < 0) {
4980 ext4_error_inode(inode, function, line, 0,
4981 "iget: bad i_size value: %lld", size);
4982 ret = -EFSCORRUPTED;
4983 goto bad_inode;
4984 }
4985 /*
4986 * If dir_index is not enabled but there's dir with INDEX flag set,
4987 * we'd normally treat htree data as empty space. But with metadata
4988 * checksumming that corrupts checksums so forbid that.
4989 */
4990 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4991 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4992 ext4_error_inode(inode, function, line, 0,
4993 "iget: Dir with htree data on filesystem without dir_index feature.");
4994 ret = -EFSCORRUPTED;
4995 goto bad_inode;
4996 }
4997 ei->i_disksize = inode->i_size;
4998#ifdef CONFIG_QUOTA
4999 ei->i_reserved_quota = 0;
5000#endif
5001 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5002 ei->i_block_group = iloc.block_group;
5003 ei->i_last_alloc_group = ~0;
5004 /*
5005 * NOTE! The in-memory inode i_data array is in little-endian order
5006 * even on big-endian machines: we do NOT byteswap the block numbers!
5007 */
5008 for (block = 0; block < EXT4_N_BLOCKS; block++)
5009 ei->i_data[block] = raw_inode->i_block[block];
5010 INIT_LIST_HEAD(&ei->i_orphan);
5011 ext4_fc_init_inode(&ei->vfs_inode);
5012
5013 /*
5014 * Set transaction id's of transactions that have to be committed
5015 * to finish f[data]sync. We set them to currently running transaction
5016 * as we cannot be sure that the inode or some of its metadata isn't
5017 * part of the transaction - the inode could have been reclaimed and
5018 * now it is reread from disk.
5019 */
5020 if (journal) {
5021 transaction_t *transaction;
5022 tid_t tid;
5023
5024 read_lock(&journal->j_state_lock);
5025 if (journal->j_running_transaction)
5026 transaction = journal->j_running_transaction;
5027 else
5028 transaction = journal->j_committing_transaction;
5029 if (transaction)
5030 tid = transaction->t_tid;
5031 else
5032 tid = journal->j_commit_sequence;
5033 read_unlock(&journal->j_state_lock);
5034 ei->i_sync_tid = tid;
5035 ei->i_datasync_tid = tid;
5036 }
5037
5038 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5039 if (ei->i_extra_isize == 0) {
5040 /* The extra space is currently unused. Use it. */
5041 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5042 ei->i_extra_isize = sizeof(struct ext4_inode) -
5043 EXT4_GOOD_OLD_INODE_SIZE;
5044 } else {
5045 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5046 if (ret)
5047 goto bad_inode;
5048 }
5049 }
5050
5051 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5052 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5053 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5054 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5055
5056 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5057 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5058
5059 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5060 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5061 ivers |=
5062 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5063 }
5064 ext4_inode_set_iversion_queried(inode, ivers);
5065 }
5066
5067 ret = 0;
5068 if (ei->i_file_acl &&
5069 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5070 ext4_error_inode(inode, function, line, 0,
5071 "iget: bad extended attribute block %llu",
5072 ei->i_file_acl);
5073 ret = -EFSCORRUPTED;
5074 goto bad_inode;
5075 } else if (!ext4_has_inline_data(inode)) {
5076 /* validate the block references in the inode */
5077 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5078 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5079 (S_ISLNK(inode->i_mode) &&
5080 !ext4_inode_is_fast_symlink(inode)))) {
5081 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5082 ret = ext4_ext_check_inode(inode);
5083 else
5084 ret = ext4_ind_check_inode(inode);
5085 }
5086 }
5087 if (ret)
5088 goto bad_inode;
5089
5090 if (S_ISREG(inode->i_mode)) {
5091 inode->i_op = &ext4_file_inode_operations;
5092 inode->i_fop = &ext4_file_operations;
5093 ext4_set_aops(inode);
5094 } else if (S_ISDIR(inode->i_mode)) {
5095 inode->i_op = &ext4_dir_inode_operations;
5096 inode->i_fop = &ext4_dir_operations;
5097 } else if (S_ISLNK(inode->i_mode)) {
5098 /* VFS does not allow setting these so must be corruption */
5099 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5100 ext4_error_inode(inode, function, line, 0,
5101 "iget: immutable or append flags "
5102 "not allowed on symlinks");
5103 ret = -EFSCORRUPTED;
5104 goto bad_inode;
5105 }
5106 if (IS_ENCRYPTED(inode)) {
5107 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5108 } else if (ext4_inode_is_fast_symlink(inode)) {
5109 inode->i_link = (char *)ei->i_data;
5110 inode->i_op = &ext4_fast_symlink_inode_operations;
5111 nd_terminate_link(ei->i_data, inode->i_size,
5112 sizeof(ei->i_data) - 1);
5113 } else {
5114 inode->i_op = &ext4_symlink_inode_operations;
5115 }
5116 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5117 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5118 inode->i_op = &ext4_special_inode_operations;
5119 if (raw_inode->i_block[0])
5120 init_special_inode(inode, inode->i_mode,
5121 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5122 else
5123 init_special_inode(inode, inode->i_mode,
5124 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5125 } else if (ino == EXT4_BOOT_LOADER_INO) {
5126 make_bad_inode(inode);
5127 } else {
5128 ret = -EFSCORRUPTED;
5129 ext4_error_inode(inode, function, line, 0,
5130 "iget: bogus i_mode (%o)", inode->i_mode);
5131 goto bad_inode;
5132 }
5133 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5134 ext4_error_inode(inode, function, line, 0,
5135 "casefold flag without casefold feature");
5136 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5137 ext4_error_inode(inode, function, line, 0,
5138 "bad inode without EXT4_IGET_BAD flag");
5139 ret = -EUCLEAN;
5140 goto bad_inode;
5141 }
5142
5143 brelse(iloc.bh);
5144 unlock_new_inode(inode);
5145 return inode;
5146
5147bad_inode:
5148 brelse(iloc.bh);
5149 iget_failed(inode);
5150 return ERR_PTR(ret);
5151}
5152
5153static void __ext4_update_other_inode_time(struct super_block *sb,
5154 unsigned long orig_ino,
5155 unsigned long ino,
5156 struct ext4_inode *raw_inode)
5157{
5158 struct inode *inode;
5159
5160 inode = find_inode_by_ino_rcu(sb, ino);
5161 if (!inode)
5162 return;
5163
5164 if (!inode_is_dirtytime_only(inode))
5165 return;
5166
5167 spin_lock(&inode->i_lock);
5168 if (inode_is_dirtytime_only(inode)) {
5169 struct ext4_inode_info *ei = EXT4_I(inode);
5170
5171 inode->i_state &= ~I_DIRTY_TIME;
5172 spin_unlock(&inode->i_lock);
5173
5174 spin_lock(&ei->i_raw_lock);
5175 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5176 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5177 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5178 ext4_inode_csum_set(inode, raw_inode, ei);
5179 spin_unlock(&ei->i_raw_lock);
5180 trace_ext4_other_inode_update_time(inode, orig_ino);
5181 return;
5182 }
5183 spin_unlock(&inode->i_lock);
5184}
5185
5186/*
5187 * Opportunistically update the other time fields for other inodes in
5188 * the same inode table block.
5189 */
5190static void ext4_update_other_inodes_time(struct super_block *sb,
5191 unsigned long orig_ino, char *buf)
5192{
5193 unsigned long ino;
5194 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5195 int inode_size = EXT4_INODE_SIZE(sb);
5196
5197 /*
5198 * Calculate the first inode in the inode table block. Inode
5199 * numbers are one-based. That is, the first inode in a block
5200 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5201 */
5202 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5203 rcu_read_lock();
5204 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5205 if (ino == orig_ino)
5206 continue;
5207 __ext4_update_other_inode_time(sb, orig_ino, ino,
5208 (struct ext4_inode *)buf);
5209 }
5210 rcu_read_unlock();
5211}
5212
5213/*
5214 * Post the struct inode info into an on-disk inode location in the
5215 * buffer-cache. This gobbles the caller's reference to the
5216 * buffer_head in the inode location struct.
5217 *
5218 * The caller must have write access to iloc->bh.
5219 */
5220static int ext4_do_update_inode(handle_t *handle,
5221 struct inode *inode,
5222 struct ext4_iloc *iloc)
5223{
5224 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5225 struct ext4_inode_info *ei = EXT4_I(inode);
5226 struct buffer_head *bh = iloc->bh;
5227 struct super_block *sb = inode->i_sb;
5228 int err;
5229 int need_datasync = 0, set_large_file = 0;
5230
5231 spin_lock(&ei->i_raw_lock);
5232
5233 /*
5234 * For fields not tracked in the in-memory inode, initialise them
5235 * to zero for new inodes.
5236 */
5237 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5238 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5239
5240 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5241 need_datasync = 1;
5242 if (ei->i_disksize > 0x7fffffffULL) {
5243 if (!ext4_has_feature_large_file(sb) ||
5244 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5245 set_large_file = 1;
5246 }
5247
5248 err = ext4_fill_raw_inode(inode, raw_inode);
5249 spin_unlock(&ei->i_raw_lock);
5250 if (err) {
5251 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5252 goto out_brelse;
5253 }
5254
5255 if (inode->i_sb->s_flags & SB_LAZYTIME)
5256 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5257 bh->b_data);
5258
5259 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5260 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5261 if (err)
5262 goto out_error;
5263 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5264 if (set_large_file) {
5265 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5266 err = ext4_journal_get_write_access(handle, sb,
5267 EXT4_SB(sb)->s_sbh,
5268 EXT4_JTR_NONE);
5269 if (err)
5270 goto out_error;
5271 lock_buffer(EXT4_SB(sb)->s_sbh);
5272 ext4_set_feature_large_file(sb);
5273 ext4_superblock_csum_set(sb);
5274 unlock_buffer(EXT4_SB(sb)->s_sbh);
5275 ext4_handle_sync(handle);
5276 err = ext4_handle_dirty_metadata(handle, NULL,
5277 EXT4_SB(sb)->s_sbh);
5278 }
5279 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5280out_error:
5281 ext4_std_error(inode->i_sb, err);
5282out_brelse:
5283 brelse(bh);
5284 return err;
5285}
5286
5287/*
5288 * ext4_write_inode()
5289 *
5290 * We are called from a few places:
5291 *
5292 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5293 * Here, there will be no transaction running. We wait for any running
5294 * transaction to commit.
5295 *
5296 * - Within flush work (sys_sync(), kupdate and such).
5297 * We wait on commit, if told to.
5298 *
5299 * - Within iput_final() -> write_inode_now()
5300 * We wait on commit, if told to.
5301 *
5302 * In all cases it is actually safe for us to return without doing anything,
5303 * because the inode has been copied into a raw inode buffer in
5304 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5305 * writeback.
5306 *
5307 * Note that we are absolutely dependent upon all inode dirtiers doing the
5308 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5309 * which we are interested.
5310 *
5311 * It would be a bug for them to not do this. The code:
5312 *
5313 * mark_inode_dirty(inode)
5314 * stuff();
5315 * inode->i_size = expr;
5316 *
5317 * is in error because write_inode() could occur while `stuff()' is running,
5318 * and the new i_size will be lost. Plus the inode will no longer be on the
5319 * superblock's dirty inode list.
5320 */
5321int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5322{
5323 int err;
5324
5325 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5326 sb_rdonly(inode->i_sb))
5327 return 0;
5328
5329 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5330 return -EIO;
5331
5332 if (EXT4_SB(inode->i_sb)->s_journal) {
5333 if (ext4_journal_current_handle()) {
5334 ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5335 dump_stack();
5336 return -EIO;
5337 }
5338
5339 /*
5340 * No need to force transaction in WB_SYNC_NONE mode. Also
5341 * ext4_sync_fs() will force the commit after everything is
5342 * written.
5343 */
5344 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5345 return 0;
5346
5347 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5348 EXT4_I(inode)->i_sync_tid);
5349 } else {
5350 struct ext4_iloc iloc;
5351
5352 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5353 if (err)
5354 return err;
5355 /*
5356 * sync(2) will flush the whole buffer cache. No need to do
5357 * it here separately for each inode.
5358 */
5359 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5360 sync_dirty_buffer(iloc.bh);
5361 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5362 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5363 "IO error syncing inode");
5364 err = -EIO;
5365 }
5366 brelse(iloc.bh);
5367 }
5368 return err;
5369}
5370
5371/*
5372 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5373 * buffers that are attached to a folio straddling i_size and are undergoing
5374 * commit. In that case we have to wait for commit to finish and try again.
5375 */
5376static void ext4_wait_for_tail_page_commit(struct inode *inode)
5377{
5378 unsigned offset;
5379 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5380 tid_t commit_tid = 0;
5381 int ret;
5382
5383 offset = inode->i_size & (PAGE_SIZE - 1);
5384 /*
5385 * If the folio is fully truncated, we don't need to wait for any commit
5386 * (and we even should not as __ext4_journalled_invalidate_folio() may
5387 * strip all buffers from the folio but keep the folio dirty which can then
5388 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5389 * buffers). Also we don't need to wait for any commit if all buffers in
5390 * the folio remain valid. This is most beneficial for the common case of
5391 * blocksize == PAGESIZE.
5392 */
5393 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5394 return;
5395 while (1) {
5396 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5397 inode->i_size >> PAGE_SHIFT);
5398 if (!folio)
5399 return;
5400 ret = __ext4_journalled_invalidate_folio(folio, offset,
5401 folio_size(folio) - offset);
5402 folio_unlock(folio);
5403 folio_put(folio);
5404 if (ret != -EBUSY)
5405 return;
5406 commit_tid = 0;
5407 read_lock(&journal->j_state_lock);
5408 if (journal->j_committing_transaction)
5409 commit_tid = journal->j_committing_transaction->t_tid;
5410 read_unlock(&journal->j_state_lock);
5411 if (commit_tid)
5412 jbd2_log_wait_commit(journal, commit_tid);
5413 }
5414}
5415
5416/*
5417 * ext4_setattr()
5418 *
5419 * Called from notify_change.
5420 *
5421 * We want to trap VFS attempts to truncate the file as soon as
5422 * possible. In particular, we want to make sure that when the VFS
5423 * shrinks i_size, we put the inode on the orphan list and modify
5424 * i_disksize immediately, so that during the subsequent flushing of
5425 * dirty pages and freeing of disk blocks, we can guarantee that any
5426 * commit will leave the blocks being flushed in an unused state on
5427 * disk. (On recovery, the inode will get truncated and the blocks will
5428 * be freed, so we have a strong guarantee that no future commit will
5429 * leave these blocks visible to the user.)
5430 *
5431 * Another thing we have to assure is that if we are in ordered mode
5432 * and inode is still attached to the committing transaction, we must
5433 * we start writeout of all the dirty pages which are being truncated.
5434 * This way we are sure that all the data written in the previous
5435 * transaction are already on disk (truncate waits for pages under
5436 * writeback).
5437 *
5438 * Called with inode->i_rwsem down.
5439 */
5440int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5441 struct iattr *attr)
5442{
5443 struct inode *inode = d_inode(dentry);
5444 int error, rc = 0;
5445 int orphan = 0;
5446 const unsigned int ia_valid = attr->ia_valid;
5447 bool inc_ivers = true;
5448
5449 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5450 return -EIO;
5451
5452 if (unlikely(IS_IMMUTABLE(inode)))
5453 return -EPERM;
5454
5455 if (unlikely(IS_APPEND(inode) &&
5456 (ia_valid & (ATTR_MODE | ATTR_UID |
5457 ATTR_GID | ATTR_TIMES_SET))))
5458 return -EPERM;
5459
5460 error = setattr_prepare(idmap, dentry, attr);
5461 if (error)
5462 return error;
5463
5464 error = fscrypt_prepare_setattr(dentry, attr);
5465 if (error)
5466 return error;
5467
5468 error = fsverity_prepare_setattr(dentry, attr);
5469 if (error)
5470 return error;
5471
5472 if (is_quota_modification(idmap, inode, attr)) {
5473 error = dquot_initialize(inode);
5474 if (error)
5475 return error;
5476 }
5477
5478 if (i_uid_needs_update(idmap, attr, inode) ||
5479 i_gid_needs_update(idmap, attr, inode)) {
5480 handle_t *handle;
5481
5482 /* (user+group)*(old+new) structure, inode write (sb,
5483 * inode block, ? - but truncate inode update has it) */
5484 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5485 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5486 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5487 if (IS_ERR(handle)) {
5488 error = PTR_ERR(handle);
5489 goto err_out;
5490 }
5491
5492 /* dquot_transfer() calls back ext4_get_inode_usage() which
5493 * counts xattr inode references.
5494 */
5495 down_read(&EXT4_I(inode)->xattr_sem);
5496 error = dquot_transfer(idmap, inode, attr);
5497 up_read(&EXT4_I(inode)->xattr_sem);
5498
5499 if (error) {
5500 ext4_journal_stop(handle);
5501 return error;
5502 }
5503 /* Update corresponding info in inode so that everything is in
5504 * one transaction */
5505 i_uid_update(idmap, attr, inode);
5506 i_gid_update(idmap, attr, inode);
5507 error = ext4_mark_inode_dirty(handle, inode);
5508 ext4_journal_stop(handle);
5509 if (unlikely(error)) {
5510 return error;
5511 }
5512 }
5513
5514 if (attr->ia_valid & ATTR_SIZE) {
5515 handle_t *handle;
5516 loff_t oldsize = inode->i_size;
5517 loff_t old_disksize;
5518 int shrink = (attr->ia_size < inode->i_size);
5519
5520 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5521 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5522
5523 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5524 return -EFBIG;
5525 }
5526 }
5527 if (!S_ISREG(inode->i_mode)) {
5528 return -EINVAL;
5529 }
5530
5531 if (attr->ia_size == inode->i_size)
5532 inc_ivers = false;
5533
5534 if (shrink) {
5535 if (ext4_should_order_data(inode)) {
5536 error = ext4_begin_ordered_truncate(inode,
5537 attr->ia_size);
5538 if (error)
5539 goto err_out;
5540 }
5541 /*
5542 * Blocks are going to be removed from the inode. Wait
5543 * for dio in flight.
5544 */
5545 inode_dio_wait(inode);
5546 }
5547
5548 filemap_invalidate_lock(inode->i_mapping);
5549
5550 rc = ext4_break_layouts(inode);
5551 if (rc) {
5552 filemap_invalidate_unlock(inode->i_mapping);
5553 goto err_out;
5554 }
5555
5556 if (attr->ia_size != inode->i_size) {
5557 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5558 if (IS_ERR(handle)) {
5559 error = PTR_ERR(handle);
5560 goto out_mmap_sem;
5561 }
5562 if (ext4_handle_valid(handle) && shrink) {
5563 error = ext4_orphan_add(handle, inode);
5564 orphan = 1;
5565 }
5566 /*
5567 * Update c/mtime on truncate up, ext4_truncate() will
5568 * update c/mtime in shrink case below
5569 */
5570 if (!shrink) {
5571 inode->i_mtime = current_time(inode);
5572 inode->i_ctime = inode->i_mtime;
5573 }
5574
5575 if (shrink)
5576 ext4_fc_track_range(handle, inode,
5577 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5578 inode->i_sb->s_blocksize_bits,
5579 EXT_MAX_BLOCKS - 1);
5580 else
5581 ext4_fc_track_range(
5582 handle, inode,
5583 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5584 inode->i_sb->s_blocksize_bits,
5585 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5586 inode->i_sb->s_blocksize_bits);
5587
5588 down_write(&EXT4_I(inode)->i_data_sem);
5589 old_disksize = EXT4_I(inode)->i_disksize;
5590 EXT4_I(inode)->i_disksize = attr->ia_size;
5591 rc = ext4_mark_inode_dirty(handle, inode);
5592 if (!error)
5593 error = rc;
5594 /*
5595 * We have to update i_size under i_data_sem together
5596 * with i_disksize to avoid races with writeback code
5597 * running ext4_wb_update_i_disksize().
5598 */
5599 if (!error)
5600 i_size_write(inode, attr->ia_size);
5601 else
5602 EXT4_I(inode)->i_disksize = old_disksize;
5603 up_write(&EXT4_I(inode)->i_data_sem);
5604 ext4_journal_stop(handle);
5605 if (error)
5606 goto out_mmap_sem;
5607 if (!shrink) {
5608 pagecache_isize_extended(inode, oldsize,
5609 inode->i_size);
5610 } else if (ext4_should_journal_data(inode)) {
5611 ext4_wait_for_tail_page_commit(inode);
5612 }
5613 }
5614
5615 /*
5616 * Truncate pagecache after we've waited for commit
5617 * in data=journal mode to make pages freeable.
5618 */
5619 truncate_pagecache(inode, inode->i_size);
5620 /*
5621 * Call ext4_truncate() even if i_size didn't change to
5622 * truncate possible preallocated blocks.
5623 */
5624 if (attr->ia_size <= oldsize) {
5625 rc = ext4_truncate(inode);
5626 if (rc)
5627 error = rc;
5628 }
5629out_mmap_sem:
5630 filemap_invalidate_unlock(inode->i_mapping);
5631 }
5632
5633 if (!error) {
5634 if (inc_ivers)
5635 inode_inc_iversion(inode);
5636 setattr_copy(idmap, inode, attr);
5637 mark_inode_dirty(inode);
5638 }
5639
5640 /*
5641 * If the call to ext4_truncate failed to get a transaction handle at
5642 * all, we need to clean up the in-core orphan list manually.
5643 */
5644 if (orphan && inode->i_nlink)
5645 ext4_orphan_del(NULL, inode);
5646
5647 if (!error && (ia_valid & ATTR_MODE))
5648 rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5649
5650err_out:
5651 if (error)
5652 ext4_std_error(inode->i_sb, error);
5653 if (!error)
5654 error = rc;
5655 return error;
5656}
5657
5658u32 ext4_dio_alignment(struct inode *inode)
5659{
5660 if (fsverity_active(inode))
5661 return 0;
5662 if (ext4_should_journal_data(inode))
5663 return 0;
5664 if (ext4_has_inline_data(inode))
5665 return 0;
5666 if (IS_ENCRYPTED(inode)) {
5667 if (!fscrypt_dio_supported(inode))
5668 return 0;
5669 return i_blocksize(inode);
5670 }
5671 return 1; /* use the iomap defaults */
5672}
5673
5674int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5675 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5676{
5677 struct inode *inode = d_inode(path->dentry);
5678 struct ext4_inode *raw_inode;
5679 struct ext4_inode_info *ei = EXT4_I(inode);
5680 unsigned int flags;
5681
5682 if ((request_mask & STATX_BTIME) &&
5683 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5684 stat->result_mask |= STATX_BTIME;
5685 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5686 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5687 }
5688
5689 /*
5690 * Return the DIO alignment restrictions if requested. We only return
5691 * this information when requested, since on encrypted files it might
5692 * take a fair bit of work to get if the file wasn't opened recently.
5693 */
5694 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5695 u32 dio_align = ext4_dio_alignment(inode);
5696
5697 stat->result_mask |= STATX_DIOALIGN;
5698 if (dio_align == 1) {
5699 struct block_device *bdev = inode->i_sb->s_bdev;
5700
5701 /* iomap defaults */
5702 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5703 stat->dio_offset_align = bdev_logical_block_size(bdev);
5704 } else {
5705 stat->dio_mem_align = dio_align;
5706 stat->dio_offset_align = dio_align;
5707 }
5708 }
5709
5710 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5711 if (flags & EXT4_APPEND_FL)
5712 stat->attributes |= STATX_ATTR_APPEND;
5713 if (flags & EXT4_COMPR_FL)
5714 stat->attributes |= STATX_ATTR_COMPRESSED;
5715 if (flags & EXT4_ENCRYPT_FL)
5716 stat->attributes |= STATX_ATTR_ENCRYPTED;
5717 if (flags & EXT4_IMMUTABLE_FL)
5718 stat->attributes |= STATX_ATTR_IMMUTABLE;
5719 if (flags & EXT4_NODUMP_FL)
5720 stat->attributes |= STATX_ATTR_NODUMP;
5721 if (flags & EXT4_VERITY_FL)
5722 stat->attributes |= STATX_ATTR_VERITY;
5723
5724 stat->attributes_mask |= (STATX_ATTR_APPEND |
5725 STATX_ATTR_COMPRESSED |
5726 STATX_ATTR_ENCRYPTED |
5727 STATX_ATTR_IMMUTABLE |
5728 STATX_ATTR_NODUMP |
5729 STATX_ATTR_VERITY);
5730
5731 generic_fillattr(idmap, inode, stat);
5732 return 0;
5733}
5734
5735int ext4_file_getattr(struct mnt_idmap *idmap,
5736 const struct path *path, struct kstat *stat,
5737 u32 request_mask, unsigned int query_flags)
5738{
5739 struct inode *inode = d_inode(path->dentry);
5740 u64 delalloc_blocks;
5741
5742 ext4_getattr(idmap, path, stat, request_mask, query_flags);
5743
5744 /*
5745 * If there is inline data in the inode, the inode will normally not
5746 * have data blocks allocated (it may have an external xattr block).
5747 * Report at least one sector for such files, so tools like tar, rsync,
5748 * others don't incorrectly think the file is completely sparse.
5749 */
5750 if (unlikely(ext4_has_inline_data(inode)))
5751 stat->blocks += (stat->size + 511) >> 9;
5752
5753 /*
5754 * We can't update i_blocks if the block allocation is delayed
5755 * otherwise in the case of system crash before the real block
5756 * allocation is done, we will have i_blocks inconsistent with
5757 * on-disk file blocks.
5758 * We always keep i_blocks updated together with real
5759 * allocation. But to not confuse with user, stat
5760 * will return the blocks that include the delayed allocation
5761 * blocks for this file.
5762 */
5763 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5764 EXT4_I(inode)->i_reserved_data_blocks);
5765 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5766 return 0;
5767}
5768
5769static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5770 int pextents)
5771{
5772 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5773 return ext4_ind_trans_blocks(inode, lblocks);
5774 return ext4_ext_index_trans_blocks(inode, pextents);
5775}
5776
5777/*
5778 * Account for index blocks, block groups bitmaps and block group
5779 * descriptor blocks if modify datablocks and index blocks
5780 * worse case, the indexs blocks spread over different block groups
5781 *
5782 * If datablocks are discontiguous, they are possible to spread over
5783 * different block groups too. If they are contiguous, with flexbg,
5784 * they could still across block group boundary.
5785 *
5786 * Also account for superblock, inode, quota and xattr blocks
5787 */
5788static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5789 int pextents)
5790{
5791 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5792 int gdpblocks;
5793 int idxblocks;
5794 int ret;
5795
5796 /*
5797 * How many index blocks need to touch to map @lblocks logical blocks
5798 * to @pextents physical extents?
5799 */
5800 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5801
5802 ret = idxblocks;
5803
5804 /*
5805 * Now let's see how many group bitmaps and group descriptors need
5806 * to account
5807 */
5808 groups = idxblocks + pextents;
5809 gdpblocks = groups;
5810 if (groups > ngroups)
5811 groups = ngroups;
5812 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5813 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5814
5815 /* bitmaps and block group descriptor blocks */
5816 ret += groups + gdpblocks;
5817
5818 /* Blocks for super block, inode, quota and xattr blocks */
5819 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5820
5821 return ret;
5822}
5823
5824/*
5825 * Calculate the total number of credits to reserve to fit
5826 * the modification of a single pages into a single transaction,
5827 * which may include multiple chunks of block allocations.
5828 *
5829 * This could be called via ext4_write_begin()
5830 *
5831 * We need to consider the worse case, when
5832 * one new block per extent.
5833 */
5834int ext4_writepage_trans_blocks(struct inode *inode)
5835{
5836 int bpp = ext4_journal_blocks_per_page(inode);
5837 int ret;
5838
5839 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5840
5841 /* Account for data blocks for journalled mode */
5842 if (ext4_should_journal_data(inode))
5843 ret += bpp;
5844 return ret;
5845}
5846
5847/*
5848 * Calculate the journal credits for a chunk of data modification.
5849 *
5850 * This is called from DIO, fallocate or whoever calling
5851 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5852 *
5853 * journal buffers for data blocks are not included here, as DIO
5854 * and fallocate do no need to journal data buffers.
5855 */
5856int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5857{
5858 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5859}
5860
5861/*
5862 * The caller must have previously called ext4_reserve_inode_write().
5863 * Give this, we know that the caller already has write access to iloc->bh.
5864 */
5865int ext4_mark_iloc_dirty(handle_t *handle,
5866 struct inode *inode, struct ext4_iloc *iloc)
5867{
5868 int err = 0;
5869
5870 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5871 put_bh(iloc->bh);
5872 return -EIO;
5873 }
5874 ext4_fc_track_inode(handle, inode);
5875
5876 /* the do_update_inode consumes one bh->b_count */
5877 get_bh(iloc->bh);
5878
5879 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5880 err = ext4_do_update_inode(handle, inode, iloc);
5881 put_bh(iloc->bh);
5882 return err;
5883}
5884
5885/*
5886 * On success, We end up with an outstanding reference count against
5887 * iloc->bh. This _must_ be cleaned up later.
5888 */
5889
5890int
5891ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5892 struct ext4_iloc *iloc)
5893{
5894 int err;
5895
5896 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5897 return -EIO;
5898
5899 err = ext4_get_inode_loc(inode, iloc);
5900 if (!err) {
5901 BUFFER_TRACE(iloc->bh, "get_write_access");
5902 err = ext4_journal_get_write_access(handle, inode->i_sb,
5903 iloc->bh, EXT4_JTR_NONE);
5904 if (err) {
5905 brelse(iloc->bh);
5906 iloc->bh = NULL;
5907 }
5908 }
5909 ext4_std_error(inode->i_sb, err);
5910 return err;
5911}
5912
5913static int __ext4_expand_extra_isize(struct inode *inode,
5914 unsigned int new_extra_isize,
5915 struct ext4_iloc *iloc,
5916 handle_t *handle, int *no_expand)
5917{
5918 struct ext4_inode *raw_inode;
5919 struct ext4_xattr_ibody_header *header;
5920 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5921 struct ext4_inode_info *ei = EXT4_I(inode);
5922 int error;
5923
5924 /* this was checked at iget time, but double check for good measure */
5925 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5926 (ei->i_extra_isize & 3)) {
5927 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5928 ei->i_extra_isize,
5929 EXT4_INODE_SIZE(inode->i_sb));
5930 return -EFSCORRUPTED;
5931 }
5932 if ((new_extra_isize < ei->i_extra_isize) ||
5933 (new_extra_isize < 4) ||
5934 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5935 return -EINVAL; /* Should never happen */
5936
5937 raw_inode = ext4_raw_inode(iloc);
5938
5939 header = IHDR(inode, raw_inode);
5940
5941 /* No extended attributes present */
5942 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5943 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5944 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5945 EXT4_I(inode)->i_extra_isize, 0,
5946 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5947 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5948 return 0;
5949 }
5950
5951 /*
5952 * We may need to allocate external xattr block so we need quotas
5953 * initialized. Here we can be called with various locks held so we
5954 * cannot affort to initialize quotas ourselves. So just bail.
5955 */
5956 if (dquot_initialize_needed(inode))
5957 return -EAGAIN;
5958
5959 /* try to expand with EAs present */
5960 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5961 raw_inode, handle);
5962 if (error) {
5963 /*
5964 * Inode size expansion failed; don't try again
5965 */
5966 *no_expand = 1;
5967 }
5968
5969 return error;
5970}
5971
5972/*
5973 * Expand an inode by new_extra_isize bytes.
5974 * Returns 0 on success or negative error number on failure.
5975 */
5976static int ext4_try_to_expand_extra_isize(struct inode *inode,
5977 unsigned int new_extra_isize,
5978 struct ext4_iloc iloc,
5979 handle_t *handle)
5980{
5981 int no_expand;
5982 int error;
5983
5984 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5985 return -EOVERFLOW;
5986
5987 /*
5988 * In nojournal mode, we can immediately attempt to expand
5989 * the inode. When journaled, we first need to obtain extra
5990 * buffer credits since we may write into the EA block
5991 * with this same handle. If journal_extend fails, then it will
5992 * only result in a minor loss of functionality for that inode.
5993 * If this is felt to be critical, then e2fsck should be run to
5994 * force a large enough s_min_extra_isize.
5995 */
5996 if (ext4_journal_extend(handle,
5997 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5998 return -ENOSPC;
5999
6000 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6001 return -EBUSY;
6002
6003 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6004 handle, &no_expand);
6005 ext4_write_unlock_xattr(inode, &no_expand);
6006
6007 return error;
6008}
6009
6010int ext4_expand_extra_isize(struct inode *inode,
6011 unsigned int new_extra_isize,
6012 struct ext4_iloc *iloc)
6013{
6014 handle_t *handle;
6015 int no_expand;
6016 int error, rc;
6017
6018 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6019 brelse(iloc->bh);
6020 return -EOVERFLOW;
6021 }
6022
6023 handle = ext4_journal_start(inode, EXT4_HT_INODE,
6024 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6025 if (IS_ERR(handle)) {
6026 error = PTR_ERR(handle);
6027 brelse(iloc->bh);
6028 return error;
6029 }
6030
6031 ext4_write_lock_xattr(inode, &no_expand);
6032
6033 BUFFER_TRACE(iloc->bh, "get_write_access");
6034 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6035 EXT4_JTR_NONE);
6036 if (error) {
6037 brelse(iloc->bh);
6038 goto out_unlock;
6039 }
6040
6041 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6042 handle, &no_expand);
6043
6044 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6045 if (!error)
6046 error = rc;
6047
6048out_unlock:
6049 ext4_write_unlock_xattr(inode, &no_expand);
6050 ext4_journal_stop(handle);
6051 return error;
6052}
6053
6054/*
6055 * What we do here is to mark the in-core inode as clean with respect to inode
6056 * dirtiness (it may still be data-dirty).
6057 * This means that the in-core inode may be reaped by prune_icache
6058 * without having to perform any I/O. This is a very good thing,
6059 * because *any* task may call prune_icache - even ones which
6060 * have a transaction open against a different journal.
6061 *
6062 * Is this cheating? Not really. Sure, we haven't written the
6063 * inode out, but prune_icache isn't a user-visible syncing function.
6064 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6065 * we start and wait on commits.
6066 */
6067int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6068 const char *func, unsigned int line)
6069{
6070 struct ext4_iloc iloc;
6071 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6072 int err;
6073
6074 might_sleep();
6075 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6076 err = ext4_reserve_inode_write(handle, inode, &iloc);
6077 if (err)
6078 goto out;
6079
6080 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6081 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6082 iloc, handle);
6083
6084 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6085out:
6086 if (unlikely(err))
6087 ext4_error_inode_err(inode, func, line, 0, err,
6088 "mark_inode_dirty error");
6089 return err;
6090}
6091
6092/*
6093 * ext4_dirty_inode() is called from __mark_inode_dirty()
6094 *
6095 * We're really interested in the case where a file is being extended.
6096 * i_size has been changed by generic_commit_write() and we thus need
6097 * to include the updated inode in the current transaction.
6098 *
6099 * Also, dquot_alloc_block() will always dirty the inode when blocks
6100 * are allocated to the file.
6101 *
6102 * If the inode is marked synchronous, we don't honour that here - doing
6103 * so would cause a commit on atime updates, which we don't bother doing.
6104 * We handle synchronous inodes at the highest possible level.
6105 */
6106void ext4_dirty_inode(struct inode *inode, int flags)
6107{
6108 handle_t *handle;
6109
6110 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6111 if (IS_ERR(handle))
6112 return;
6113 ext4_mark_inode_dirty(handle, inode);
6114 ext4_journal_stop(handle);
6115}
6116
6117int ext4_change_inode_journal_flag(struct inode *inode, int val)
6118{
6119 journal_t *journal;
6120 handle_t *handle;
6121 int err;
6122 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6123
6124 /*
6125 * We have to be very careful here: changing a data block's
6126 * journaling status dynamically is dangerous. If we write a
6127 * data block to the journal, change the status and then delete
6128 * that block, we risk forgetting to revoke the old log record
6129 * from the journal and so a subsequent replay can corrupt data.
6130 * So, first we make sure that the journal is empty and that
6131 * nobody is changing anything.
6132 */
6133
6134 journal = EXT4_JOURNAL(inode);
6135 if (!journal)
6136 return 0;
6137 if (is_journal_aborted(journal))
6138 return -EROFS;
6139
6140 /* Wait for all existing dio workers */
6141 inode_dio_wait(inode);
6142
6143 /*
6144 * Before flushing the journal and switching inode's aops, we have
6145 * to flush all dirty data the inode has. There can be outstanding
6146 * delayed allocations, there can be unwritten extents created by
6147 * fallocate or buffered writes in dioread_nolock mode covered by
6148 * dirty data which can be converted only after flushing the dirty
6149 * data (and journalled aops don't know how to handle these cases).
6150 */
6151 if (val) {
6152 filemap_invalidate_lock(inode->i_mapping);
6153 err = filemap_write_and_wait(inode->i_mapping);
6154 if (err < 0) {
6155 filemap_invalidate_unlock(inode->i_mapping);
6156 return err;
6157 }
6158 }
6159
6160 percpu_down_write(&sbi->s_writepages_rwsem);
6161 jbd2_journal_lock_updates(journal);
6162
6163 /*
6164 * OK, there are no updates running now, and all cached data is
6165 * synced to disk. We are now in a completely consistent state
6166 * which doesn't have anything in the journal, and we know that
6167 * no filesystem updates are running, so it is safe to modify
6168 * the inode's in-core data-journaling state flag now.
6169 */
6170
6171 if (val)
6172 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6173 else {
6174 err = jbd2_journal_flush(journal, 0);
6175 if (err < 0) {
6176 jbd2_journal_unlock_updates(journal);
6177 percpu_up_write(&sbi->s_writepages_rwsem);
6178 return err;
6179 }
6180 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6181 }
6182 ext4_set_aops(inode);
6183
6184 jbd2_journal_unlock_updates(journal);
6185 percpu_up_write(&sbi->s_writepages_rwsem);
6186
6187 if (val)
6188 filemap_invalidate_unlock(inode->i_mapping);
6189
6190 /* Finally we can mark the inode as dirty. */
6191
6192 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6193 if (IS_ERR(handle))
6194 return PTR_ERR(handle);
6195
6196 ext4_fc_mark_ineligible(inode->i_sb,
6197 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6198 err = ext4_mark_inode_dirty(handle, inode);
6199 ext4_handle_sync(handle);
6200 ext4_journal_stop(handle);
6201 ext4_std_error(inode->i_sb, err);
6202
6203 return err;
6204}
6205
6206static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6207 struct buffer_head *bh)
6208{
6209 return !buffer_mapped(bh);
6210}
6211
6212vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6213{
6214 struct vm_area_struct *vma = vmf->vma;
6215 struct page *page = vmf->page;
6216 loff_t size;
6217 unsigned long len;
6218 int err;
6219 vm_fault_t ret;
6220 struct file *file = vma->vm_file;
6221 struct inode *inode = file_inode(file);
6222 struct address_space *mapping = inode->i_mapping;
6223 handle_t *handle;
6224 get_block_t *get_block;
6225 int retries = 0;
6226
6227 if (unlikely(IS_IMMUTABLE(inode)))
6228 return VM_FAULT_SIGBUS;
6229
6230 sb_start_pagefault(inode->i_sb);
6231 file_update_time(vma->vm_file);
6232
6233 filemap_invalidate_lock_shared(mapping);
6234
6235 err = ext4_convert_inline_data(inode);
6236 if (err)
6237 goto out_ret;
6238
6239 /*
6240 * On data journalling we skip straight to the transaction handle:
6241 * there's no delalloc; page truncated will be checked later; the
6242 * early return w/ all buffers mapped (calculates size/len) can't
6243 * be used; and there's no dioread_nolock, so only ext4_get_block.
6244 */
6245 if (ext4_should_journal_data(inode))
6246 goto retry_alloc;
6247
6248 /* Delalloc case is easy... */
6249 if (test_opt(inode->i_sb, DELALLOC) &&
6250 !ext4_nonda_switch(inode->i_sb)) {
6251 do {
6252 err = block_page_mkwrite(vma, vmf,
6253 ext4_da_get_block_prep);
6254 } while (err == -ENOSPC &&
6255 ext4_should_retry_alloc(inode->i_sb, &retries));
6256 goto out_ret;
6257 }
6258
6259 lock_page(page);
6260 size = i_size_read(inode);
6261 /* Page got truncated from under us? */
6262 if (page->mapping != mapping || page_offset(page) > size) {
6263 unlock_page(page);
6264 ret = VM_FAULT_NOPAGE;
6265 goto out;
6266 }
6267
6268 if (page->index == size >> PAGE_SHIFT)
6269 len = size & ~PAGE_MASK;
6270 else
6271 len = PAGE_SIZE;
6272 /*
6273 * Return if we have all the buffers mapped. This avoids the need to do
6274 * journal_start/journal_stop which can block and take a long time
6275 *
6276 * This cannot be done for data journalling, as we have to add the
6277 * inode to the transaction's list to writeprotect pages on commit.
6278 */
6279 if (page_has_buffers(page)) {
6280 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6281 0, len, NULL,
6282 ext4_bh_unmapped)) {
6283 /* Wait so that we don't change page under IO */
6284 wait_for_stable_page(page);
6285 ret = VM_FAULT_LOCKED;
6286 goto out;
6287 }
6288 }
6289 unlock_page(page);
6290 /* OK, we need to fill the hole... */
6291 if (ext4_should_dioread_nolock(inode))
6292 get_block = ext4_get_block_unwritten;
6293 else
6294 get_block = ext4_get_block;
6295retry_alloc:
6296 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6297 ext4_writepage_trans_blocks(inode));
6298 if (IS_ERR(handle)) {
6299 ret = VM_FAULT_SIGBUS;
6300 goto out;
6301 }
6302 /*
6303 * Data journalling can't use block_page_mkwrite() because it
6304 * will set_buffer_dirty() before do_journal_get_write_access()
6305 * thus might hit warning messages for dirty metadata buffers.
6306 */
6307 if (!ext4_should_journal_data(inode)) {
6308 err = block_page_mkwrite(vma, vmf, get_block);
6309 } else {
6310 lock_page(page);
6311 size = i_size_read(inode);
6312 /* Page got truncated from under us? */
6313 if (page->mapping != mapping || page_offset(page) > size) {
6314 ret = VM_FAULT_NOPAGE;
6315 goto out_error;
6316 }
6317
6318 if (page->index == size >> PAGE_SHIFT)
6319 len = size & ~PAGE_MASK;
6320 else
6321 len = PAGE_SIZE;
6322
6323 err = __block_write_begin(page, 0, len, ext4_get_block);
6324 if (!err) {
6325 ret = VM_FAULT_SIGBUS;
6326 if (ext4_walk_page_buffers(handle, inode,
6327 page_buffers(page), 0, len, NULL,
6328 do_journal_get_write_access))
6329 goto out_error;
6330 if (ext4_walk_page_buffers(handle, inode,
6331 page_buffers(page), 0, len, NULL,
6332 write_end_fn))
6333 goto out_error;
6334 if (ext4_jbd2_inode_add_write(handle, inode,
6335 page_offset(page), len))
6336 goto out_error;
6337 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6338 } else {
6339 unlock_page(page);
6340 }
6341 }
6342 ext4_journal_stop(handle);
6343 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6344 goto retry_alloc;
6345out_ret:
6346 ret = block_page_mkwrite_return(err);
6347out:
6348 filemap_invalidate_unlock_shared(mapping);
6349 sb_end_pagefault(inode->i_sb);
6350 return ret;
6351out_error:
6352 unlock_page(page);
6353 ext4_journal_stop(handle);
6354 goto out;
6355}