Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kernel.h>
12#include <linux/kernel_stat.h>
13#include <linux/module.h>
14#include <linux/ktime.h>
15#include <linux/hrtimer.h>
16#include <linux/tick.h>
17#include <linux/slab.h>
18#include <linux/sched/cpufreq.h>
19#include <linux/list.h>
20#include <linux/cpu.h>
21#include <linux/cpufreq.h>
22#include <linux/sysfs.h>
23#include <linux/types.h>
24#include <linux/fs.h>
25#include <linux/acpi.h>
26#include <linux/vmalloc.h>
27#include <linux/pm_qos.h>
28#include <trace/events/power.h>
29
30#include <asm/cpu.h>
31#include <asm/div64.h>
32#include <asm/msr.h>
33#include <asm/cpu_device_id.h>
34#include <asm/cpufeature.h>
35#include <asm/intel-family.h>
36#include "../drivers/thermal/intel/thermal_interrupt.h"
37
38#define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
39
40#define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41#define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000
42#define INTEL_CPUFREQ_TRANSITION_DELAY 500
43
44#ifdef CONFIG_ACPI
45#include <acpi/processor.h>
46#include <acpi/cppc_acpi.h>
47#endif
48
49#define FRAC_BITS 8
50#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51#define fp_toint(X) ((X) >> FRAC_BITS)
52
53#define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54
55#define EXT_BITS 6
56#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57#define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58#define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
60static inline int32_t mul_fp(int32_t x, int32_t y)
61{
62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63}
64
65static inline int32_t div_fp(s64 x, s64 y)
66{
67 return div64_s64((int64_t)x << FRAC_BITS, y);
68}
69
70static inline int ceiling_fp(int32_t x)
71{
72 int mask, ret;
73
74 ret = fp_toint(x);
75 mask = (1 << FRAC_BITS) - 1;
76 if (x & mask)
77 ret += 1;
78 return ret;
79}
80
81static inline u64 mul_ext_fp(u64 x, u64 y)
82{
83 return (x * y) >> EXT_FRAC_BITS;
84}
85
86static inline u64 div_ext_fp(u64 x, u64 y)
87{
88 return div64_u64(x << EXT_FRAC_BITS, y);
89}
90
91/**
92 * struct sample - Store performance sample
93 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
94 * performance during last sample period
95 * @busy_scaled: Scaled busy value which is used to calculate next
96 * P state. This can be different than core_avg_perf
97 * to account for cpu idle period
98 * @aperf: Difference of actual performance frequency clock count
99 * read from APERF MSR between last and current sample
100 * @mperf: Difference of maximum performance frequency clock count
101 * read from MPERF MSR between last and current sample
102 * @tsc: Difference of time stamp counter between last and
103 * current sample
104 * @time: Current time from scheduler
105 *
106 * This structure is used in the cpudata structure to store performance sample
107 * data for choosing next P State.
108 */
109struct sample {
110 int32_t core_avg_perf;
111 int32_t busy_scaled;
112 u64 aperf;
113 u64 mperf;
114 u64 tsc;
115 u64 time;
116};
117
118/**
119 * struct pstate_data - Store P state data
120 * @current_pstate: Current requested P state
121 * @min_pstate: Min P state possible for this platform
122 * @max_pstate: Max P state possible for this platform
123 * @max_pstate_physical:This is physical Max P state for a processor
124 * This can be higher than the max_pstate which can
125 * be limited by platform thermal design power limits
126 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor
127 * @scaling: Scaling factor between performance and frequency
128 * @turbo_pstate: Max Turbo P state possible for this platform
129 * @min_freq: @min_pstate frequency in cpufreq units
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
132 *
133 * Stores the per cpu model P state limits and current P state.
134 */
135struct pstate_data {
136 int current_pstate;
137 int min_pstate;
138 int max_pstate;
139 int max_pstate_physical;
140 int perf_ctl_scaling;
141 int scaling;
142 int turbo_pstate;
143 unsigned int min_freq;
144 unsigned int max_freq;
145 unsigned int turbo_freq;
146};
147
148/**
149 * struct vid_data - Stores voltage information data
150 * @min: VID data for this platform corresponding to
151 * the lowest P state
152 * @max: VID data corresponding to the highest P State.
153 * @turbo: VID data for turbo P state
154 * @ratio: Ratio of (vid max - vid min) /
155 * (max P state - Min P State)
156 *
157 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
158 * This data is used in Atom platforms, where in addition to target P state,
159 * the voltage data needs to be specified to select next P State.
160 */
161struct vid_data {
162 int min;
163 int max;
164 int turbo;
165 int32_t ratio;
166};
167
168/**
169 * struct global_params - Global parameters, mostly tunable via sysfs.
170 * @no_turbo: Whether or not to use turbo P-states.
171 * @turbo_disabled: Whether or not turbo P-states are available at all,
172 * based on the MSR_IA32_MISC_ENABLE value and whether or
173 * not the maximum reported turbo P-state is different from
174 * the maximum reported non-turbo one.
175 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
176 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
177 * P-state capacity.
178 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
179 * P-state capacity.
180 */
181struct global_params {
182 bool no_turbo;
183 bool turbo_disabled;
184 bool turbo_disabled_mf;
185 int max_perf_pct;
186 int min_perf_pct;
187};
188
189/**
190 * struct cpudata - Per CPU instance data storage
191 * @cpu: CPU number for this instance data
192 * @policy: CPUFreq policy value
193 * @update_util: CPUFreq utility callback information
194 * @update_util_set: CPUFreq utility callback is set
195 * @iowait_boost: iowait-related boost fraction
196 * @last_update: Time of the last update.
197 * @pstate: Stores P state limits for this CPU
198 * @vid: Stores VID limits for this CPU
199 * @last_sample_time: Last Sample time
200 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference
201 * @prev_aperf: Last APERF value read from APERF MSR
202 * @prev_mperf: Last MPERF value read from MPERF MSR
203 * @prev_tsc: Last timestamp counter (TSC) value
204 * @prev_cummulative_iowait: IO Wait time difference from last and
205 * current sample
206 * @sample: Storage for storing last Sample data
207 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
208 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
209 * @acpi_perf_data: Stores ACPI perf information read from _PSS
210 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
211 * @epp_powersave: Last saved HWP energy performance preference
212 * (EPP) or energy performance bias (EPB),
213 * when policy switched to performance
214 * @epp_policy: Last saved policy used to set EPP/EPB
215 * @epp_default: Power on default HWP energy performance
216 * preference/bias
217 * @epp_cached Cached HWP energy-performance preference value
218 * @hwp_req_cached: Cached value of the last HWP Request MSR
219 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
220 * @last_io_update: Last time when IO wake flag was set
221 * @sched_flags: Store scheduler flags for possible cross CPU update
222 * @hwp_boost_min: Last HWP boosted min performance
223 * @suspended: Whether or not the driver has been suspended.
224 * @hwp_notify_work: workqueue for HWP notifications.
225 *
226 * This structure stores per CPU instance data for all CPUs.
227 */
228struct cpudata {
229 int cpu;
230
231 unsigned int policy;
232 struct update_util_data update_util;
233 bool update_util_set;
234
235 struct pstate_data pstate;
236 struct vid_data vid;
237
238 u64 last_update;
239 u64 last_sample_time;
240 u64 aperf_mperf_shift;
241 u64 prev_aperf;
242 u64 prev_mperf;
243 u64 prev_tsc;
244 u64 prev_cummulative_iowait;
245 struct sample sample;
246 int32_t min_perf_ratio;
247 int32_t max_perf_ratio;
248#ifdef CONFIG_ACPI
249 struct acpi_processor_performance acpi_perf_data;
250 bool valid_pss_table;
251#endif
252 unsigned int iowait_boost;
253 s16 epp_powersave;
254 s16 epp_policy;
255 s16 epp_default;
256 s16 epp_cached;
257 u64 hwp_req_cached;
258 u64 hwp_cap_cached;
259 u64 last_io_update;
260 unsigned int sched_flags;
261 u32 hwp_boost_min;
262 bool suspended;
263 struct delayed_work hwp_notify_work;
264};
265
266static struct cpudata **all_cpu_data;
267
268/**
269 * struct pstate_funcs - Per CPU model specific callbacks
270 * @get_max: Callback to get maximum non turbo effective P state
271 * @get_max_physical: Callback to get maximum non turbo physical P state
272 * @get_min: Callback to get minimum P state
273 * @get_turbo: Callback to get turbo P state
274 * @get_scaling: Callback to get frequency scaling factor
275 * @get_cpu_scaling: Get frequency scaling factor for a given cpu
276 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
277 * @get_val: Callback to convert P state to actual MSR write value
278 * @get_vid: Callback to get VID data for Atom platforms
279 *
280 * Core and Atom CPU models have different way to get P State limits. This
281 * structure is used to store those callbacks.
282 */
283struct pstate_funcs {
284 int (*get_max)(int cpu);
285 int (*get_max_physical)(int cpu);
286 int (*get_min)(int cpu);
287 int (*get_turbo)(int cpu);
288 int (*get_scaling)(void);
289 int (*get_cpu_scaling)(int cpu);
290 int (*get_aperf_mperf_shift)(void);
291 u64 (*get_val)(struct cpudata*, int pstate);
292 void (*get_vid)(struct cpudata *);
293};
294
295static struct pstate_funcs pstate_funcs __read_mostly;
296
297static int hwp_active __read_mostly;
298static int hwp_mode_bdw __read_mostly;
299static bool per_cpu_limits __read_mostly;
300static bool hwp_boost __read_mostly;
301static bool hwp_forced __read_mostly;
302
303static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304
305#ifdef CONFIG_ACPI
306static bool acpi_ppc;
307#endif
308
309static struct global_params global;
310
311static DEFINE_MUTEX(intel_pstate_driver_lock);
312static DEFINE_MUTEX(intel_pstate_limits_lock);
313
314#ifdef CONFIG_ACPI
315
316static bool intel_pstate_acpi_pm_profile_server(void)
317{
318 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
319 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
320 return true;
321
322 return false;
323}
324
325static bool intel_pstate_get_ppc_enable_status(void)
326{
327 if (intel_pstate_acpi_pm_profile_server())
328 return true;
329
330 return acpi_ppc;
331}
332
333#ifdef CONFIG_ACPI_CPPC_LIB
334
335/* The work item is needed to avoid CPU hotplug locking issues */
336static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
337{
338 sched_set_itmt_support();
339}
340
341static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
342
343#define CPPC_MAX_PERF U8_MAX
344
345static void intel_pstate_set_itmt_prio(int cpu)
346{
347 struct cppc_perf_caps cppc_perf;
348 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
349 int ret;
350
351 ret = cppc_get_perf_caps(cpu, &cppc_perf);
352 if (ret)
353 return;
354
355 /*
356 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
357 * In this case we can't use CPPC.highest_perf to enable ITMT.
358 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
359 */
360 if (cppc_perf.highest_perf == CPPC_MAX_PERF)
361 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
362
363 /*
364 * The priorities can be set regardless of whether or not
365 * sched_set_itmt_support(true) has been called and it is valid to
366 * update them at any time after it has been called.
367 */
368 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
369
370 if (max_highest_perf <= min_highest_perf) {
371 if (cppc_perf.highest_perf > max_highest_perf)
372 max_highest_perf = cppc_perf.highest_perf;
373
374 if (cppc_perf.highest_perf < min_highest_perf)
375 min_highest_perf = cppc_perf.highest_perf;
376
377 if (max_highest_perf > min_highest_perf) {
378 /*
379 * This code can be run during CPU online under the
380 * CPU hotplug locks, so sched_set_itmt_support()
381 * cannot be called from here. Queue up a work item
382 * to invoke it.
383 */
384 schedule_work(&sched_itmt_work);
385 }
386 }
387}
388
389static int intel_pstate_get_cppc_guaranteed(int cpu)
390{
391 struct cppc_perf_caps cppc_perf;
392 int ret;
393
394 ret = cppc_get_perf_caps(cpu, &cppc_perf);
395 if (ret)
396 return ret;
397
398 if (cppc_perf.guaranteed_perf)
399 return cppc_perf.guaranteed_perf;
400
401 return cppc_perf.nominal_perf;
402}
403#else /* CONFIG_ACPI_CPPC_LIB */
404static inline void intel_pstate_set_itmt_prio(int cpu)
405{
406}
407#endif /* CONFIG_ACPI_CPPC_LIB */
408
409static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
410{
411 struct cpudata *cpu;
412 int ret;
413 int i;
414
415 if (hwp_active) {
416 intel_pstate_set_itmt_prio(policy->cpu);
417 return;
418 }
419
420 if (!intel_pstate_get_ppc_enable_status())
421 return;
422
423 cpu = all_cpu_data[policy->cpu];
424
425 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
426 policy->cpu);
427 if (ret)
428 return;
429
430 /*
431 * Check if the control value in _PSS is for PERF_CTL MSR, which should
432 * guarantee that the states returned by it map to the states in our
433 * list directly.
434 */
435 if (cpu->acpi_perf_data.control_register.space_id !=
436 ACPI_ADR_SPACE_FIXED_HARDWARE)
437 goto err;
438
439 /*
440 * If there is only one entry _PSS, simply ignore _PSS and continue as
441 * usual without taking _PSS into account
442 */
443 if (cpu->acpi_perf_data.state_count < 2)
444 goto err;
445
446 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
447 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
448 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
449 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
450 (u32) cpu->acpi_perf_data.states[i].core_frequency,
451 (u32) cpu->acpi_perf_data.states[i].power,
452 (u32) cpu->acpi_perf_data.states[i].control);
453 }
454
455 cpu->valid_pss_table = true;
456 pr_debug("_PPC limits will be enforced\n");
457
458 return;
459
460 err:
461 cpu->valid_pss_table = false;
462 acpi_processor_unregister_performance(policy->cpu);
463}
464
465static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
466{
467 struct cpudata *cpu;
468
469 cpu = all_cpu_data[policy->cpu];
470 if (!cpu->valid_pss_table)
471 return;
472
473 acpi_processor_unregister_performance(policy->cpu);
474}
475#else /* CONFIG_ACPI */
476static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
477{
478}
479
480static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
481{
482}
483
484static inline bool intel_pstate_acpi_pm_profile_server(void)
485{
486 return false;
487}
488#endif /* CONFIG_ACPI */
489
490#ifndef CONFIG_ACPI_CPPC_LIB
491static inline int intel_pstate_get_cppc_guaranteed(int cpu)
492{
493 return -ENOTSUPP;
494}
495#endif /* CONFIG_ACPI_CPPC_LIB */
496
497/**
498 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
499 * @cpu: Target CPU.
500 *
501 * On hybrid processors, HWP may expose more performance levels than there are
502 * P-states accessible through the PERF_CTL interface. If that happens, the
503 * scaling factor between HWP performance levels and CPU frequency will be less
504 * than the scaling factor between P-state values and CPU frequency.
505 *
506 * In that case, adjust the CPU parameters used in computations accordingly.
507 */
508static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
509{
510 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
511 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
512 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
513 int scaling = cpu->pstate.scaling;
514
515 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
516 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
517 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
518 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
519 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
520 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
521
522 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
523 perf_ctl_scaling);
524 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
525 perf_ctl_scaling);
526
527 cpu->pstate.max_pstate_physical =
528 DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
529 scaling);
530
531 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
532 /*
533 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
534 * the effective range of HWP performance levels.
535 */
536 cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
537}
538
539static inline void update_turbo_state(void)
540{
541 u64 misc_en;
542 struct cpudata *cpu;
543
544 cpu = all_cpu_data[0];
545 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
546 global.turbo_disabled =
547 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
548 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
549}
550
551static int min_perf_pct_min(void)
552{
553 struct cpudata *cpu = all_cpu_data[0];
554 int turbo_pstate = cpu->pstate.turbo_pstate;
555
556 return turbo_pstate ?
557 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
558}
559
560static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
561{
562 u64 epb;
563 int ret;
564
565 if (!boot_cpu_has(X86_FEATURE_EPB))
566 return -ENXIO;
567
568 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
569 if (ret)
570 return (s16)ret;
571
572 return (s16)(epb & 0x0f);
573}
574
575static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
576{
577 s16 epp;
578
579 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
580 /*
581 * When hwp_req_data is 0, means that caller didn't read
582 * MSR_HWP_REQUEST, so need to read and get EPP.
583 */
584 if (!hwp_req_data) {
585 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
586 &hwp_req_data);
587 if (epp)
588 return epp;
589 }
590 epp = (hwp_req_data >> 24) & 0xff;
591 } else {
592 /* When there is no EPP present, HWP uses EPB settings */
593 epp = intel_pstate_get_epb(cpu_data);
594 }
595
596 return epp;
597}
598
599static int intel_pstate_set_epb(int cpu, s16 pref)
600{
601 u64 epb;
602 int ret;
603
604 if (!boot_cpu_has(X86_FEATURE_EPB))
605 return -ENXIO;
606
607 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
608 if (ret)
609 return ret;
610
611 epb = (epb & ~0x0f) | pref;
612 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
613
614 return 0;
615}
616
617/*
618 * EPP/EPB display strings corresponding to EPP index in the
619 * energy_perf_strings[]
620 * index String
621 *-------------------------------------
622 * 0 default
623 * 1 performance
624 * 2 balance_performance
625 * 3 balance_power
626 * 4 power
627 */
628
629enum energy_perf_value_index {
630 EPP_INDEX_DEFAULT = 0,
631 EPP_INDEX_PERFORMANCE,
632 EPP_INDEX_BALANCE_PERFORMANCE,
633 EPP_INDEX_BALANCE_POWERSAVE,
634 EPP_INDEX_POWERSAVE,
635};
636
637static const char * const energy_perf_strings[] = {
638 [EPP_INDEX_DEFAULT] = "default",
639 [EPP_INDEX_PERFORMANCE] = "performance",
640 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
641 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
642 [EPP_INDEX_POWERSAVE] = "power",
643 NULL
644};
645static unsigned int epp_values[] = {
646 [EPP_INDEX_DEFAULT] = 0, /* Unused index */
647 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
648 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
649 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
650 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
651};
652
653static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
654{
655 s16 epp;
656 int index = -EINVAL;
657
658 *raw_epp = 0;
659 epp = intel_pstate_get_epp(cpu_data, 0);
660 if (epp < 0)
661 return epp;
662
663 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
664 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
665 return EPP_INDEX_PERFORMANCE;
666 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
667 return EPP_INDEX_BALANCE_PERFORMANCE;
668 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
669 return EPP_INDEX_BALANCE_POWERSAVE;
670 if (epp == epp_values[EPP_INDEX_POWERSAVE])
671 return EPP_INDEX_POWERSAVE;
672 *raw_epp = epp;
673 return 0;
674 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
675 /*
676 * Range:
677 * 0x00-0x03 : Performance
678 * 0x04-0x07 : Balance performance
679 * 0x08-0x0B : Balance power
680 * 0x0C-0x0F : Power
681 * The EPB is a 4 bit value, but our ranges restrict the
682 * value which can be set. Here only using top two bits
683 * effectively.
684 */
685 index = (epp >> 2) + 1;
686 }
687
688 return index;
689}
690
691static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
692{
693 int ret;
694
695 /*
696 * Use the cached HWP Request MSR value, because in the active mode the
697 * register itself may be updated by intel_pstate_hwp_boost_up() or
698 * intel_pstate_hwp_boost_down() at any time.
699 */
700 u64 value = READ_ONCE(cpu->hwp_req_cached);
701
702 value &= ~GENMASK_ULL(31, 24);
703 value |= (u64)epp << 24;
704 /*
705 * The only other updater of hwp_req_cached in the active mode,
706 * intel_pstate_hwp_set(), is called under the same lock as this
707 * function, so it cannot run in parallel with the update below.
708 */
709 WRITE_ONCE(cpu->hwp_req_cached, value);
710 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
711 if (!ret)
712 cpu->epp_cached = epp;
713
714 return ret;
715}
716
717static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
718 int pref_index, bool use_raw,
719 u32 raw_epp)
720{
721 int epp = -EINVAL;
722 int ret;
723
724 if (!pref_index)
725 epp = cpu_data->epp_default;
726
727 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
728 if (use_raw)
729 epp = raw_epp;
730 else if (epp == -EINVAL)
731 epp = epp_values[pref_index];
732
733 /*
734 * To avoid confusion, refuse to set EPP to any values different
735 * from 0 (performance) if the current policy is "performance",
736 * because those values would be overridden.
737 */
738 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
739 return -EBUSY;
740
741 ret = intel_pstate_set_epp(cpu_data, epp);
742 } else {
743 if (epp == -EINVAL)
744 epp = (pref_index - 1) << 2;
745 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
746 }
747
748 return ret;
749}
750
751static ssize_t show_energy_performance_available_preferences(
752 struct cpufreq_policy *policy, char *buf)
753{
754 int i = 0;
755 int ret = 0;
756
757 while (energy_perf_strings[i] != NULL)
758 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
759
760 ret += sprintf(&buf[ret], "\n");
761
762 return ret;
763}
764
765cpufreq_freq_attr_ro(energy_performance_available_preferences);
766
767static struct cpufreq_driver intel_pstate;
768
769static ssize_t store_energy_performance_preference(
770 struct cpufreq_policy *policy, const char *buf, size_t count)
771{
772 struct cpudata *cpu = all_cpu_data[policy->cpu];
773 char str_preference[21];
774 bool raw = false;
775 ssize_t ret;
776 u32 epp = 0;
777
778 ret = sscanf(buf, "%20s", str_preference);
779 if (ret != 1)
780 return -EINVAL;
781
782 ret = match_string(energy_perf_strings, -1, str_preference);
783 if (ret < 0) {
784 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
785 return ret;
786
787 ret = kstrtouint(buf, 10, &epp);
788 if (ret)
789 return ret;
790
791 if (epp > 255)
792 return -EINVAL;
793
794 raw = true;
795 }
796
797 /*
798 * This function runs with the policy R/W semaphore held, which
799 * guarantees that the driver pointer will not change while it is
800 * running.
801 */
802 if (!intel_pstate_driver)
803 return -EAGAIN;
804
805 mutex_lock(&intel_pstate_limits_lock);
806
807 if (intel_pstate_driver == &intel_pstate) {
808 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
809 } else {
810 /*
811 * In the passive mode the governor needs to be stopped on the
812 * target CPU before the EPP update and restarted after it,
813 * which is super-heavy-weight, so make sure it is worth doing
814 * upfront.
815 */
816 if (!raw)
817 epp = ret ? epp_values[ret] : cpu->epp_default;
818
819 if (cpu->epp_cached != epp) {
820 int err;
821
822 cpufreq_stop_governor(policy);
823 ret = intel_pstate_set_epp(cpu, epp);
824 err = cpufreq_start_governor(policy);
825 if (!ret)
826 ret = err;
827 }
828 }
829
830 mutex_unlock(&intel_pstate_limits_lock);
831
832 return ret ?: count;
833}
834
835static ssize_t show_energy_performance_preference(
836 struct cpufreq_policy *policy, char *buf)
837{
838 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
839 int preference, raw_epp;
840
841 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
842 if (preference < 0)
843 return preference;
844
845 if (raw_epp)
846 return sprintf(buf, "%d\n", raw_epp);
847 else
848 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
849}
850
851cpufreq_freq_attr_rw(energy_performance_preference);
852
853static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
854{
855 struct cpudata *cpu = all_cpu_data[policy->cpu];
856 int ratio, freq;
857
858 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
859 if (ratio <= 0) {
860 u64 cap;
861
862 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
863 ratio = HWP_GUARANTEED_PERF(cap);
864 }
865
866 freq = ratio * cpu->pstate.scaling;
867 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
868 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
869
870 return sprintf(buf, "%d\n", freq);
871}
872
873cpufreq_freq_attr_ro(base_frequency);
874
875static struct freq_attr *hwp_cpufreq_attrs[] = {
876 &energy_performance_preference,
877 &energy_performance_available_preferences,
878 &base_frequency,
879 NULL,
880};
881
882static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
883{
884 u64 cap;
885
886 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
887 WRITE_ONCE(cpu->hwp_cap_cached, cap);
888 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
889 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
890}
891
892static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
893{
894 int scaling = cpu->pstate.scaling;
895
896 __intel_pstate_get_hwp_cap(cpu);
897
898 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
899 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
900 if (scaling != cpu->pstate.perf_ctl_scaling) {
901 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
902
903 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
904 perf_ctl_scaling);
905 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
906 perf_ctl_scaling);
907 }
908}
909
910static void intel_pstate_hwp_set(unsigned int cpu)
911{
912 struct cpudata *cpu_data = all_cpu_data[cpu];
913 int max, min;
914 u64 value;
915 s16 epp;
916
917 max = cpu_data->max_perf_ratio;
918 min = cpu_data->min_perf_ratio;
919
920 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
921 min = max;
922
923 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
924
925 value &= ~HWP_MIN_PERF(~0L);
926 value |= HWP_MIN_PERF(min);
927
928 value &= ~HWP_MAX_PERF(~0L);
929 value |= HWP_MAX_PERF(max);
930
931 if (cpu_data->epp_policy == cpu_data->policy)
932 goto skip_epp;
933
934 cpu_data->epp_policy = cpu_data->policy;
935
936 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
937 epp = intel_pstate_get_epp(cpu_data, value);
938 cpu_data->epp_powersave = epp;
939 /* If EPP read was failed, then don't try to write */
940 if (epp < 0)
941 goto skip_epp;
942
943 epp = 0;
944 } else {
945 /* skip setting EPP, when saved value is invalid */
946 if (cpu_data->epp_powersave < 0)
947 goto skip_epp;
948
949 /*
950 * No need to restore EPP when it is not zero. This
951 * means:
952 * - Policy is not changed
953 * - user has manually changed
954 * - Error reading EPB
955 */
956 epp = intel_pstate_get_epp(cpu_data, value);
957 if (epp)
958 goto skip_epp;
959
960 epp = cpu_data->epp_powersave;
961 }
962 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
963 value &= ~GENMASK_ULL(31, 24);
964 value |= (u64)epp << 24;
965 } else {
966 intel_pstate_set_epb(cpu, epp);
967 }
968skip_epp:
969 WRITE_ONCE(cpu_data->hwp_req_cached, value);
970 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
971}
972
973static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
974
975static void intel_pstate_hwp_offline(struct cpudata *cpu)
976{
977 u64 value = READ_ONCE(cpu->hwp_req_cached);
978 int min_perf;
979
980 intel_pstate_disable_hwp_interrupt(cpu);
981
982 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
983 /*
984 * In case the EPP has been set to "performance" by the
985 * active mode "performance" scaling algorithm, replace that
986 * temporary value with the cached EPP one.
987 */
988 value &= ~GENMASK_ULL(31, 24);
989 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
990 /*
991 * However, make sure that EPP will be set to "performance" when
992 * the CPU is brought back online again and the "performance"
993 * scaling algorithm is still in effect.
994 */
995 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
996 }
997
998 /*
999 * Clear the desired perf field in the cached HWP request value to
1000 * prevent nonzero desired values from being leaked into the active
1001 * mode.
1002 */
1003 value &= ~HWP_DESIRED_PERF(~0L);
1004 WRITE_ONCE(cpu->hwp_req_cached, value);
1005
1006 value &= ~GENMASK_ULL(31, 0);
1007 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1008
1009 /* Set hwp_max = hwp_min */
1010 value |= HWP_MAX_PERF(min_perf);
1011 value |= HWP_MIN_PERF(min_perf);
1012
1013 /* Set EPP to min */
1014 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1015 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1016
1017 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1018}
1019
1020#define POWER_CTL_EE_ENABLE 1
1021#define POWER_CTL_EE_DISABLE 2
1022
1023static int power_ctl_ee_state;
1024
1025static void set_power_ctl_ee_state(bool input)
1026{
1027 u64 power_ctl;
1028
1029 mutex_lock(&intel_pstate_driver_lock);
1030 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1031 if (input) {
1032 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1033 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1034 } else {
1035 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1036 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1037 }
1038 wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1039 mutex_unlock(&intel_pstate_driver_lock);
1040}
1041
1042static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1043
1044static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1045{
1046 intel_pstate_hwp_enable(cpu);
1047 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1048}
1049
1050static int intel_pstate_suspend(struct cpufreq_policy *policy)
1051{
1052 struct cpudata *cpu = all_cpu_data[policy->cpu];
1053
1054 pr_debug("CPU %d suspending\n", cpu->cpu);
1055
1056 cpu->suspended = true;
1057
1058 /* disable HWP interrupt and cancel any pending work */
1059 intel_pstate_disable_hwp_interrupt(cpu);
1060
1061 return 0;
1062}
1063
1064static int intel_pstate_resume(struct cpufreq_policy *policy)
1065{
1066 struct cpudata *cpu = all_cpu_data[policy->cpu];
1067
1068 pr_debug("CPU %d resuming\n", cpu->cpu);
1069
1070 /* Only restore if the system default is changed */
1071 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1072 set_power_ctl_ee_state(true);
1073 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1074 set_power_ctl_ee_state(false);
1075
1076 if (cpu->suspended && hwp_active) {
1077 mutex_lock(&intel_pstate_limits_lock);
1078
1079 /* Re-enable HWP, because "online" has not done that. */
1080 intel_pstate_hwp_reenable(cpu);
1081
1082 mutex_unlock(&intel_pstate_limits_lock);
1083 }
1084
1085 cpu->suspended = false;
1086
1087 return 0;
1088}
1089
1090static void intel_pstate_update_policies(void)
1091{
1092 int cpu;
1093
1094 for_each_possible_cpu(cpu)
1095 cpufreq_update_policy(cpu);
1096}
1097
1098static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1099 struct cpufreq_policy *policy)
1100{
1101 policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1102 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1103 refresh_frequency_limits(policy);
1104}
1105
1106static void intel_pstate_update_max_freq(unsigned int cpu)
1107{
1108 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1109
1110 if (!policy)
1111 return;
1112
1113 __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1114
1115 cpufreq_cpu_release(policy);
1116}
1117
1118static void intel_pstate_update_limits(unsigned int cpu)
1119{
1120 mutex_lock(&intel_pstate_driver_lock);
1121
1122 update_turbo_state();
1123 /*
1124 * If turbo has been turned on or off globally, policy limits for
1125 * all CPUs need to be updated to reflect that.
1126 */
1127 if (global.turbo_disabled_mf != global.turbo_disabled) {
1128 global.turbo_disabled_mf = global.turbo_disabled;
1129 arch_set_max_freq_ratio(global.turbo_disabled);
1130 for_each_possible_cpu(cpu)
1131 intel_pstate_update_max_freq(cpu);
1132 } else {
1133 cpufreq_update_policy(cpu);
1134 }
1135
1136 mutex_unlock(&intel_pstate_driver_lock);
1137}
1138
1139/************************** sysfs begin ************************/
1140#define show_one(file_name, object) \
1141 static ssize_t show_##file_name \
1142 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
1143 { \
1144 return sprintf(buf, "%u\n", global.object); \
1145 }
1146
1147static ssize_t intel_pstate_show_status(char *buf);
1148static int intel_pstate_update_status(const char *buf, size_t size);
1149
1150static ssize_t show_status(struct kobject *kobj,
1151 struct kobj_attribute *attr, char *buf)
1152{
1153 ssize_t ret;
1154
1155 mutex_lock(&intel_pstate_driver_lock);
1156 ret = intel_pstate_show_status(buf);
1157 mutex_unlock(&intel_pstate_driver_lock);
1158
1159 return ret;
1160}
1161
1162static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1163 const char *buf, size_t count)
1164{
1165 char *p = memchr(buf, '\n', count);
1166 int ret;
1167
1168 mutex_lock(&intel_pstate_driver_lock);
1169 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1170 mutex_unlock(&intel_pstate_driver_lock);
1171
1172 return ret < 0 ? ret : count;
1173}
1174
1175static ssize_t show_turbo_pct(struct kobject *kobj,
1176 struct kobj_attribute *attr, char *buf)
1177{
1178 struct cpudata *cpu;
1179 int total, no_turbo, turbo_pct;
1180 uint32_t turbo_fp;
1181
1182 mutex_lock(&intel_pstate_driver_lock);
1183
1184 if (!intel_pstate_driver) {
1185 mutex_unlock(&intel_pstate_driver_lock);
1186 return -EAGAIN;
1187 }
1188
1189 cpu = all_cpu_data[0];
1190
1191 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1192 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1193 turbo_fp = div_fp(no_turbo, total);
1194 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1195
1196 mutex_unlock(&intel_pstate_driver_lock);
1197
1198 return sprintf(buf, "%u\n", turbo_pct);
1199}
1200
1201static ssize_t show_num_pstates(struct kobject *kobj,
1202 struct kobj_attribute *attr, char *buf)
1203{
1204 struct cpudata *cpu;
1205 int total;
1206
1207 mutex_lock(&intel_pstate_driver_lock);
1208
1209 if (!intel_pstate_driver) {
1210 mutex_unlock(&intel_pstate_driver_lock);
1211 return -EAGAIN;
1212 }
1213
1214 cpu = all_cpu_data[0];
1215 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1216
1217 mutex_unlock(&intel_pstate_driver_lock);
1218
1219 return sprintf(buf, "%u\n", total);
1220}
1221
1222static ssize_t show_no_turbo(struct kobject *kobj,
1223 struct kobj_attribute *attr, char *buf)
1224{
1225 ssize_t ret;
1226
1227 mutex_lock(&intel_pstate_driver_lock);
1228
1229 if (!intel_pstate_driver) {
1230 mutex_unlock(&intel_pstate_driver_lock);
1231 return -EAGAIN;
1232 }
1233
1234 update_turbo_state();
1235 if (global.turbo_disabled)
1236 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1237 else
1238 ret = sprintf(buf, "%u\n", global.no_turbo);
1239
1240 mutex_unlock(&intel_pstate_driver_lock);
1241
1242 return ret;
1243}
1244
1245static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1246 const char *buf, size_t count)
1247{
1248 unsigned int input;
1249 int ret;
1250
1251 ret = sscanf(buf, "%u", &input);
1252 if (ret != 1)
1253 return -EINVAL;
1254
1255 mutex_lock(&intel_pstate_driver_lock);
1256
1257 if (!intel_pstate_driver) {
1258 mutex_unlock(&intel_pstate_driver_lock);
1259 return -EAGAIN;
1260 }
1261
1262 mutex_lock(&intel_pstate_limits_lock);
1263
1264 update_turbo_state();
1265 if (global.turbo_disabled) {
1266 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1267 mutex_unlock(&intel_pstate_limits_lock);
1268 mutex_unlock(&intel_pstate_driver_lock);
1269 return -EPERM;
1270 }
1271
1272 global.no_turbo = clamp_t(int, input, 0, 1);
1273
1274 if (global.no_turbo) {
1275 struct cpudata *cpu = all_cpu_data[0];
1276 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1277
1278 /* Squash the global minimum into the permitted range. */
1279 if (global.min_perf_pct > pct)
1280 global.min_perf_pct = pct;
1281 }
1282
1283 mutex_unlock(&intel_pstate_limits_lock);
1284
1285 intel_pstate_update_policies();
1286 arch_set_max_freq_ratio(global.no_turbo);
1287
1288 mutex_unlock(&intel_pstate_driver_lock);
1289
1290 return count;
1291}
1292
1293static void update_qos_request(enum freq_qos_req_type type)
1294{
1295 struct freq_qos_request *req;
1296 struct cpufreq_policy *policy;
1297 int i;
1298
1299 for_each_possible_cpu(i) {
1300 struct cpudata *cpu = all_cpu_data[i];
1301 unsigned int freq, perf_pct;
1302
1303 policy = cpufreq_cpu_get(i);
1304 if (!policy)
1305 continue;
1306
1307 req = policy->driver_data;
1308 cpufreq_cpu_put(policy);
1309
1310 if (!req)
1311 continue;
1312
1313 if (hwp_active)
1314 intel_pstate_get_hwp_cap(cpu);
1315
1316 if (type == FREQ_QOS_MIN) {
1317 perf_pct = global.min_perf_pct;
1318 } else {
1319 req++;
1320 perf_pct = global.max_perf_pct;
1321 }
1322
1323 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1324
1325 if (freq_qos_update_request(req, freq) < 0)
1326 pr_warn("Failed to update freq constraint: CPU%d\n", i);
1327 }
1328}
1329
1330static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1331 const char *buf, size_t count)
1332{
1333 unsigned int input;
1334 int ret;
1335
1336 ret = sscanf(buf, "%u", &input);
1337 if (ret != 1)
1338 return -EINVAL;
1339
1340 mutex_lock(&intel_pstate_driver_lock);
1341
1342 if (!intel_pstate_driver) {
1343 mutex_unlock(&intel_pstate_driver_lock);
1344 return -EAGAIN;
1345 }
1346
1347 mutex_lock(&intel_pstate_limits_lock);
1348
1349 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1350
1351 mutex_unlock(&intel_pstate_limits_lock);
1352
1353 if (intel_pstate_driver == &intel_pstate)
1354 intel_pstate_update_policies();
1355 else
1356 update_qos_request(FREQ_QOS_MAX);
1357
1358 mutex_unlock(&intel_pstate_driver_lock);
1359
1360 return count;
1361}
1362
1363static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1364 const char *buf, size_t count)
1365{
1366 unsigned int input;
1367 int ret;
1368
1369 ret = sscanf(buf, "%u", &input);
1370 if (ret != 1)
1371 return -EINVAL;
1372
1373 mutex_lock(&intel_pstate_driver_lock);
1374
1375 if (!intel_pstate_driver) {
1376 mutex_unlock(&intel_pstate_driver_lock);
1377 return -EAGAIN;
1378 }
1379
1380 mutex_lock(&intel_pstate_limits_lock);
1381
1382 global.min_perf_pct = clamp_t(int, input,
1383 min_perf_pct_min(), global.max_perf_pct);
1384
1385 mutex_unlock(&intel_pstate_limits_lock);
1386
1387 if (intel_pstate_driver == &intel_pstate)
1388 intel_pstate_update_policies();
1389 else
1390 update_qos_request(FREQ_QOS_MIN);
1391
1392 mutex_unlock(&intel_pstate_driver_lock);
1393
1394 return count;
1395}
1396
1397static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1398 struct kobj_attribute *attr, char *buf)
1399{
1400 return sprintf(buf, "%u\n", hwp_boost);
1401}
1402
1403static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1404 struct kobj_attribute *b,
1405 const char *buf, size_t count)
1406{
1407 unsigned int input;
1408 int ret;
1409
1410 ret = kstrtouint(buf, 10, &input);
1411 if (ret)
1412 return ret;
1413
1414 mutex_lock(&intel_pstate_driver_lock);
1415 hwp_boost = !!input;
1416 intel_pstate_update_policies();
1417 mutex_unlock(&intel_pstate_driver_lock);
1418
1419 return count;
1420}
1421
1422static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1423 char *buf)
1424{
1425 u64 power_ctl;
1426 int enable;
1427
1428 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1429 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1430 return sprintf(buf, "%d\n", !enable);
1431}
1432
1433static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1434 const char *buf, size_t count)
1435{
1436 bool input;
1437 int ret;
1438
1439 ret = kstrtobool(buf, &input);
1440 if (ret)
1441 return ret;
1442
1443 set_power_ctl_ee_state(input);
1444
1445 return count;
1446}
1447
1448show_one(max_perf_pct, max_perf_pct);
1449show_one(min_perf_pct, min_perf_pct);
1450
1451define_one_global_rw(status);
1452define_one_global_rw(no_turbo);
1453define_one_global_rw(max_perf_pct);
1454define_one_global_rw(min_perf_pct);
1455define_one_global_ro(turbo_pct);
1456define_one_global_ro(num_pstates);
1457define_one_global_rw(hwp_dynamic_boost);
1458define_one_global_rw(energy_efficiency);
1459
1460static struct attribute *intel_pstate_attributes[] = {
1461 &status.attr,
1462 &no_turbo.attr,
1463 NULL
1464};
1465
1466static const struct attribute_group intel_pstate_attr_group = {
1467 .attrs = intel_pstate_attributes,
1468};
1469
1470static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1471
1472static struct kobject *intel_pstate_kobject;
1473
1474static void __init intel_pstate_sysfs_expose_params(void)
1475{
1476 int rc;
1477
1478 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1479 &cpu_subsys.dev_root->kobj);
1480 if (WARN_ON(!intel_pstate_kobject))
1481 return;
1482
1483 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1484 if (WARN_ON(rc))
1485 return;
1486
1487 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1488 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1489 WARN_ON(rc);
1490
1491 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1492 WARN_ON(rc);
1493 }
1494
1495 /*
1496 * If per cpu limits are enforced there are no global limits, so
1497 * return without creating max/min_perf_pct attributes
1498 */
1499 if (per_cpu_limits)
1500 return;
1501
1502 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1503 WARN_ON(rc);
1504
1505 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1506 WARN_ON(rc);
1507
1508 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1509 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1510 WARN_ON(rc);
1511 }
1512}
1513
1514static void __init intel_pstate_sysfs_remove(void)
1515{
1516 if (!intel_pstate_kobject)
1517 return;
1518
1519 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1520
1521 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1522 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1523 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1524 }
1525
1526 if (!per_cpu_limits) {
1527 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1528 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1529
1530 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1531 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1532 }
1533
1534 kobject_put(intel_pstate_kobject);
1535}
1536
1537static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1538{
1539 int rc;
1540
1541 if (!hwp_active)
1542 return;
1543
1544 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1545 WARN_ON_ONCE(rc);
1546}
1547
1548static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1549{
1550 if (!hwp_active)
1551 return;
1552
1553 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1554}
1555
1556/************************** sysfs end ************************/
1557
1558static void intel_pstate_notify_work(struct work_struct *work)
1559{
1560 struct cpudata *cpudata =
1561 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1562 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1563
1564 if (policy) {
1565 intel_pstate_get_hwp_cap(cpudata);
1566 __intel_pstate_update_max_freq(cpudata, policy);
1567
1568 cpufreq_cpu_release(policy);
1569 }
1570
1571 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1572}
1573
1574static DEFINE_SPINLOCK(hwp_notify_lock);
1575static cpumask_t hwp_intr_enable_mask;
1576
1577void notify_hwp_interrupt(void)
1578{
1579 unsigned int this_cpu = smp_processor_id();
1580 struct cpudata *cpudata;
1581 unsigned long flags;
1582 u64 value;
1583
1584 if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1585 return;
1586
1587 rdmsrl_safe(MSR_HWP_STATUS, &value);
1588 if (!(value & 0x01))
1589 return;
1590
1591 spin_lock_irqsave(&hwp_notify_lock, flags);
1592
1593 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1594 goto ack_intr;
1595
1596 /*
1597 * Currently we never free all_cpu_data. And we can't reach here
1598 * without this allocated. But for safety for future changes, added
1599 * check.
1600 */
1601 if (unlikely(!READ_ONCE(all_cpu_data)))
1602 goto ack_intr;
1603
1604 /*
1605 * The free is done during cleanup, when cpufreq registry is failed.
1606 * We wouldn't be here if it fails on init or switch status. But for
1607 * future changes, added check.
1608 */
1609 cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1610 if (unlikely(!cpudata))
1611 goto ack_intr;
1612
1613 schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1614
1615 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1616
1617 return;
1618
1619ack_intr:
1620 wrmsrl_safe(MSR_HWP_STATUS, 0);
1621 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1622}
1623
1624static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1625{
1626 unsigned long flags;
1627
1628 if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1629 return;
1630
1631 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1632 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1633
1634 spin_lock_irqsave(&hwp_notify_lock, flags);
1635 if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1636 cancel_delayed_work(&cpudata->hwp_notify_work);
1637 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1638}
1639
1640static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1641{
1642 /* Enable HWP notification interrupt for guaranteed performance change */
1643 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1644 unsigned long flags;
1645
1646 spin_lock_irqsave(&hwp_notify_lock, flags);
1647 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1648 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1649 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1650
1651 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1652 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1653 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1654 }
1655}
1656
1657static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1658{
1659 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1660
1661 /*
1662 * If this CPU gen doesn't call for change in balance_perf
1663 * EPP return.
1664 */
1665 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1666 return;
1667
1668 /*
1669 * If the EPP is set by firmware, which means that firmware enabled HWP
1670 * - Is equal or less than 0x80 (default balance_perf EPP)
1671 * - But less performance oriented than performance EPP
1672 * then use this as new balance_perf EPP.
1673 */
1674 if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1675 cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1676 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1677 return;
1678 }
1679
1680 /*
1681 * Use hard coded value per gen to update the balance_perf
1682 * and default EPP.
1683 */
1684 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1685 intel_pstate_set_epp(cpudata, cpudata->epp_default);
1686}
1687
1688static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1689{
1690 /* First disable HWP notification interrupt till we activate again */
1691 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1692 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1693
1694 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1695
1696 intel_pstate_enable_hwp_interrupt(cpudata);
1697
1698 if (cpudata->epp_default >= 0)
1699 return;
1700
1701 intel_pstate_update_epp_defaults(cpudata);
1702}
1703
1704static int atom_get_min_pstate(int not_used)
1705{
1706 u64 value;
1707
1708 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1709 return (value >> 8) & 0x7F;
1710}
1711
1712static int atom_get_max_pstate(int not_used)
1713{
1714 u64 value;
1715
1716 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1717 return (value >> 16) & 0x7F;
1718}
1719
1720static int atom_get_turbo_pstate(int not_used)
1721{
1722 u64 value;
1723
1724 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1725 return value & 0x7F;
1726}
1727
1728static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1729{
1730 u64 val;
1731 int32_t vid_fp;
1732 u32 vid;
1733
1734 val = (u64)pstate << 8;
1735 if (global.no_turbo && !global.turbo_disabled)
1736 val |= (u64)1 << 32;
1737
1738 vid_fp = cpudata->vid.min + mul_fp(
1739 int_tofp(pstate - cpudata->pstate.min_pstate),
1740 cpudata->vid.ratio);
1741
1742 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1743 vid = ceiling_fp(vid_fp);
1744
1745 if (pstate > cpudata->pstate.max_pstate)
1746 vid = cpudata->vid.turbo;
1747
1748 return val | vid;
1749}
1750
1751static int silvermont_get_scaling(void)
1752{
1753 u64 value;
1754 int i;
1755 /* Defined in Table 35-6 from SDM (Sept 2015) */
1756 static int silvermont_freq_table[] = {
1757 83300, 100000, 133300, 116700, 80000};
1758
1759 rdmsrl(MSR_FSB_FREQ, value);
1760 i = value & 0x7;
1761 WARN_ON(i > 4);
1762
1763 return silvermont_freq_table[i];
1764}
1765
1766static int airmont_get_scaling(void)
1767{
1768 u64 value;
1769 int i;
1770 /* Defined in Table 35-10 from SDM (Sept 2015) */
1771 static int airmont_freq_table[] = {
1772 83300, 100000, 133300, 116700, 80000,
1773 93300, 90000, 88900, 87500};
1774
1775 rdmsrl(MSR_FSB_FREQ, value);
1776 i = value & 0xF;
1777 WARN_ON(i > 8);
1778
1779 return airmont_freq_table[i];
1780}
1781
1782static void atom_get_vid(struct cpudata *cpudata)
1783{
1784 u64 value;
1785
1786 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1787 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1788 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1789 cpudata->vid.ratio = div_fp(
1790 cpudata->vid.max - cpudata->vid.min,
1791 int_tofp(cpudata->pstate.max_pstate -
1792 cpudata->pstate.min_pstate));
1793
1794 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1795 cpudata->vid.turbo = value & 0x7f;
1796}
1797
1798static int core_get_min_pstate(int cpu)
1799{
1800 u64 value;
1801
1802 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1803 return (value >> 40) & 0xFF;
1804}
1805
1806static int core_get_max_pstate_physical(int cpu)
1807{
1808 u64 value;
1809
1810 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1811 return (value >> 8) & 0xFF;
1812}
1813
1814static int core_get_tdp_ratio(int cpu, u64 plat_info)
1815{
1816 /* Check how many TDP levels present */
1817 if (plat_info & 0x600000000) {
1818 u64 tdp_ctrl;
1819 u64 tdp_ratio;
1820 int tdp_msr;
1821 int err;
1822
1823 /* Get the TDP level (0, 1, 2) to get ratios */
1824 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1825 if (err)
1826 return err;
1827
1828 /* TDP MSR are continuous starting at 0x648 */
1829 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1830 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1831 if (err)
1832 return err;
1833
1834 /* For level 1 and 2, bits[23:16] contain the ratio */
1835 if (tdp_ctrl & 0x03)
1836 tdp_ratio >>= 16;
1837
1838 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1839 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1840
1841 return (int)tdp_ratio;
1842 }
1843
1844 return -ENXIO;
1845}
1846
1847static int core_get_max_pstate(int cpu)
1848{
1849 u64 tar;
1850 u64 plat_info;
1851 int max_pstate;
1852 int tdp_ratio;
1853 int err;
1854
1855 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1856 max_pstate = (plat_info >> 8) & 0xFF;
1857
1858 tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1859 if (tdp_ratio <= 0)
1860 return max_pstate;
1861
1862 if (hwp_active) {
1863 /* Turbo activation ratio is not used on HWP platforms */
1864 return tdp_ratio;
1865 }
1866
1867 err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1868 if (!err) {
1869 int tar_levels;
1870
1871 /* Do some sanity checking for safety */
1872 tar_levels = tar & 0xff;
1873 if (tdp_ratio - 1 == tar_levels) {
1874 max_pstate = tar_levels;
1875 pr_debug("max_pstate=TAC %x\n", max_pstate);
1876 }
1877 }
1878
1879 return max_pstate;
1880}
1881
1882static int core_get_turbo_pstate(int cpu)
1883{
1884 u64 value;
1885 int nont, ret;
1886
1887 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1888 nont = core_get_max_pstate(cpu);
1889 ret = (value) & 255;
1890 if (ret <= nont)
1891 ret = nont;
1892 return ret;
1893}
1894
1895static inline int core_get_scaling(void)
1896{
1897 return 100000;
1898}
1899
1900static u64 core_get_val(struct cpudata *cpudata, int pstate)
1901{
1902 u64 val;
1903
1904 val = (u64)pstate << 8;
1905 if (global.no_turbo && !global.turbo_disabled)
1906 val |= (u64)1 << 32;
1907
1908 return val;
1909}
1910
1911static int knl_get_aperf_mperf_shift(void)
1912{
1913 return 10;
1914}
1915
1916static int knl_get_turbo_pstate(int cpu)
1917{
1918 u64 value;
1919 int nont, ret;
1920
1921 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1922 nont = core_get_max_pstate(cpu);
1923 ret = (((value) >> 8) & 0xFF);
1924 if (ret <= nont)
1925 ret = nont;
1926 return ret;
1927}
1928
1929static void hybrid_get_type(void *data)
1930{
1931 u8 *cpu_type = data;
1932
1933 *cpu_type = get_this_hybrid_cpu_type();
1934}
1935
1936static int hybrid_get_cpu_scaling(int cpu)
1937{
1938 u8 cpu_type = 0;
1939
1940 smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
1941 /* P-cores have a smaller perf level-to-freqency scaling factor. */
1942 if (cpu_type == 0x40)
1943 return 78741;
1944
1945 return core_get_scaling();
1946}
1947
1948static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1949{
1950 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1951 cpu->pstate.current_pstate = pstate;
1952 /*
1953 * Generally, there is no guarantee that this code will always run on
1954 * the CPU being updated, so force the register update to run on the
1955 * right CPU.
1956 */
1957 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1958 pstate_funcs.get_val(cpu, pstate));
1959}
1960
1961static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1962{
1963 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1964}
1965
1966static void intel_pstate_max_within_limits(struct cpudata *cpu)
1967{
1968 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1969
1970 update_turbo_state();
1971 intel_pstate_set_pstate(cpu, pstate);
1972}
1973
1974static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1975{
1976 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
1977 int perf_ctl_scaling = pstate_funcs.get_scaling();
1978
1979 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
1980 cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1981 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1982
1983 if (hwp_active && !hwp_mode_bdw) {
1984 __intel_pstate_get_hwp_cap(cpu);
1985
1986 if (pstate_funcs.get_cpu_scaling) {
1987 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
1988 if (cpu->pstate.scaling != perf_ctl_scaling)
1989 intel_pstate_hybrid_hwp_adjust(cpu);
1990 } else {
1991 cpu->pstate.scaling = perf_ctl_scaling;
1992 }
1993 } else {
1994 cpu->pstate.scaling = perf_ctl_scaling;
1995 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
1996 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
1997 }
1998
1999 if (cpu->pstate.scaling == perf_ctl_scaling) {
2000 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2001 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2002 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2003 }
2004
2005 if (pstate_funcs.get_aperf_mperf_shift)
2006 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2007
2008 if (pstate_funcs.get_vid)
2009 pstate_funcs.get_vid(cpu);
2010
2011 intel_pstate_set_min_pstate(cpu);
2012}
2013
2014/*
2015 * Long hold time will keep high perf limits for long time,
2016 * which negatively impacts perf/watt for some workloads,
2017 * like specpower. 3ms is based on experiements on some
2018 * workoads.
2019 */
2020static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2021
2022static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2023{
2024 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2025 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2026 u32 max_limit = (hwp_req & 0xff00) >> 8;
2027 u32 min_limit = (hwp_req & 0xff);
2028 u32 boost_level1;
2029
2030 /*
2031 * Cases to consider (User changes via sysfs or boot time):
2032 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2033 * No boost, return.
2034 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2035 * Should result in one level boost only for P0.
2036 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2037 * Should result in two level boost:
2038 * (min + p1)/2 and P1.
2039 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2040 * Should result in three level boost:
2041 * (min + p1)/2, P1 and P0.
2042 */
2043
2044 /* If max and min are equal or already at max, nothing to boost */
2045 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2046 return;
2047
2048 if (!cpu->hwp_boost_min)
2049 cpu->hwp_boost_min = min_limit;
2050
2051 /* level at half way mark between min and guranteed */
2052 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2053
2054 if (cpu->hwp_boost_min < boost_level1)
2055 cpu->hwp_boost_min = boost_level1;
2056 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2057 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2058 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2059 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2060 cpu->hwp_boost_min = max_limit;
2061 else
2062 return;
2063
2064 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2065 wrmsrl(MSR_HWP_REQUEST, hwp_req);
2066 cpu->last_update = cpu->sample.time;
2067}
2068
2069static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2070{
2071 if (cpu->hwp_boost_min) {
2072 bool expired;
2073
2074 /* Check if we are idle for hold time to boost down */
2075 expired = time_after64(cpu->sample.time, cpu->last_update +
2076 hwp_boost_hold_time_ns);
2077 if (expired) {
2078 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2079 cpu->hwp_boost_min = 0;
2080 }
2081 }
2082 cpu->last_update = cpu->sample.time;
2083}
2084
2085static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2086 u64 time)
2087{
2088 cpu->sample.time = time;
2089
2090 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2091 bool do_io = false;
2092
2093 cpu->sched_flags = 0;
2094 /*
2095 * Set iowait_boost flag and update time. Since IO WAIT flag
2096 * is set all the time, we can't just conclude that there is
2097 * some IO bound activity is scheduled on this CPU with just
2098 * one occurrence. If we receive at least two in two
2099 * consecutive ticks, then we treat as boost candidate.
2100 */
2101 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2102 do_io = true;
2103
2104 cpu->last_io_update = time;
2105
2106 if (do_io)
2107 intel_pstate_hwp_boost_up(cpu);
2108
2109 } else {
2110 intel_pstate_hwp_boost_down(cpu);
2111 }
2112}
2113
2114static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2115 u64 time, unsigned int flags)
2116{
2117 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2118
2119 cpu->sched_flags |= flags;
2120
2121 if (smp_processor_id() == cpu->cpu)
2122 intel_pstate_update_util_hwp_local(cpu, time);
2123}
2124
2125static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2126{
2127 struct sample *sample = &cpu->sample;
2128
2129 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2130}
2131
2132static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2133{
2134 u64 aperf, mperf;
2135 unsigned long flags;
2136 u64 tsc;
2137
2138 local_irq_save(flags);
2139 rdmsrl(MSR_IA32_APERF, aperf);
2140 rdmsrl(MSR_IA32_MPERF, mperf);
2141 tsc = rdtsc();
2142 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2143 local_irq_restore(flags);
2144 return false;
2145 }
2146 local_irq_restore(flags);
2147
2148 cpu->last_sample_time = cpu->sample.time;
2149 cpu->sample.time = time;
2150 cpu->sample.aperf = aperf;
2151 cpu->sample.mperf = mperf;
2152 cpu->sample.tsc = tsc;
2153 cpu->sample.aperf -= cpu->prev_aperf;
2154 cpu->sample.mperf -= cpu->prev_mperf;
2155 cpu->sample.tsc -= cpu->prev_tsc;
2156
2157 cpu->prev_aperf = aperf;
2158 cpu->prev_mperf = mperf;
2159 cpu->prev_tsc = tsc;
2160 /*
2161 * First time this function is invoked in a given cycle, all of the
2162 * previous sample data fields are equal to zero or stale and they must
2163 * be populated with meaningful numbers for things to work, so assume
2164 * that sample.time will always be reset before setting the utilization
2165 * update hook and make the caller skip the sample then.
2166 */
2167 if (cpu->last_sample_time) {
2168 intel_pstate_calc_avg_perf(cpu);
2169 return true;
2170 }
2171 return false;
2172}
2173
2174static inline int32_t get_avg_frequency(struct cpudata *cpu)
2175{
2176 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2177}
2178
2179static inline int32_t get_avg_pstate(struct cpudata *cpu)
2180{
2181 return mul_ext_fp(cpu->pstate.max_pstate_physical,
2182 cpu->sample.core_avg_perf);
2183}
2184
2185static inline int32_t get_target_pstate(struct cpudata *cpu)
2186{
2187 struct sample *sample = &cpu->sample;
2188 int32_t busy_frac;
2189 int target, avg_pstate;
2190
2191 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2192 sample->tsc);
2193
2194 if (busy_frac < cpu->iowait_boost)
2195 busy_frac = cpu->iowait_boost;
2196
2197 sample->busy_scaled = busy_frac * 100;
2198
2199 target = global.no_turbo || global.turbo_disabled ?
2200 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2201 target += target >> 2;
2202 target = mul_fp(target, busy_frac);
2203 if (target < cpu->pstate.min_pstate)
2204 target = cpu->pstate.min_pstate;
2205
2206 /*
2207 * If the average P-state during the previous cycle was higher than the
2208 * current target, add 50% of the difference to the target to reduce
2209 * possible performance oscillations and offset possible performance
2210 * loss related to moving the workload from one CPU to another within
2211 * a package/module.
2212 */
2213 avg_pstate = get_avg_pstate(cpu);
2214 if (avg_pstate > target)
2215 target += (avg_pstate - target) >> 1;
2216
2217 return target;
2218}
2219
2220static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2221{
2222 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2223 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2224
2225 return clamp_t(int, pstate, min_pstate, max_pstate);
2226}
2227
2228static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2229{
2230 if (pstate == cpu->pstate.current_pstate)
2231 return;
2232
2233 cpu->pstate.current_pstate = pstate;
2234 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2235}
2236
2237static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2238{
2239 int from = cpu->pstate.current_pstate;
2240 struct sample *sample;
2241 int target_pstate;
2242
2243 update_turbo_state();
2244
2245 target_pstate = get_target_pstate(cpu);
2246 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2247 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2248 intel_pstate_update_pstate(cpu, target_pstate);
2249
2250 sample = &cpu->sample;
2251 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2252 fp_toint(sample->busy_scaled),
2253 from,
2254 cpu->pstate.current_pstate,
2255 sample->mperf,
2256 sample->aperf,
2257 sample->tsc,
2258 get_avg_frequency(cpu),
2259 fp_toint(cpu->iowait_boost * 100));
2260}
2261
2262static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2263 unsigned int flags)
2264{
2265 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2266 u64 delta_ns;
2267
2268 /* Don't allow remote callbacks */
2269 if (smp_processor_id() != cpu->cpu)
2270 return;
2271
2272 delta_ns = time - cpu->last_update;
2273 if (flags & SCHED_CPUFREQ_IOWAIT) {
2274 /* Start over if the CPU may have been idle. */
2275 if (delta_ns > TICK_NSEC) {
2276 cpu->iowait_boost = ONE_EIGHTH_FP;
2277 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2278 cpu->iowait_boost <<= 1;
2279 if (cpu->iowait_boost > int_tofp(1))
2280 cpu->iowait_boost = int_tofp(1);
2281 } else {
2282 cpu->iowait_boost = ONE_EIGHTH_FP;
2283 }
2284 } else if (cpu->iowait_boost) {
2285 /* Clear iowait_boost if the CPU may have been idle. */
2286 if (delta_ns > TICK_NSEC)
2287 cpu->iowait_boost = 0;
2288 else
2289 cpu->iowait_boost >>= 1;
2290 }
2291 cpu->last_update = time;
2292 delta_ns = time - cpu->sample.time;
2293 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2294 return;
2295
2296 if (intel_pstate_sample(cpu, time))
2297 intel_pstate_adjust_pstate(cpu);
2298}
2299
2300static struct pstate_funcs core_funcs = {
2301 .get_max = core_get_max_pstate,
2302 .get_max_physical = core_get_max_pstate_physical,
2303 .get_min = core_get_min_pstate,
2304 .get_turbo = core_get_turbo_pstate,
2305 .get_scaling = core_get_scaling,
2306 .get_val = core_get_val,
2307};
2308
2309static const struct pstate_funcs silvermont_funcs = {
2310 .get_max = atom_get_max_pstate,
2311 .get_max_physical = atom_get_max_pstate,
2312 .get_min = atom_get_min_pstate,
2313 .get_turbo = atom_get_turbo_pstate,
2314 .get_val = atom_get_val,
2315 .get_scaling = silvermont_get_scaling,
2316 .get_vid = atom_get_vid,
2317};
2318
2319static const struct pstate_funcs airmont_funcs = {
2320 .get_max = atom_get_max_pstate,
2321 .get_max_physical = atom_get_max_pstate,
2322 .get_min = atom_get_min_pstate,
2323 .get_turbo = atom_get_turbo_pstate,
2324 .get_val = atom_get_val,
2325 .get_scaling = airmont_get_scaling,
2326 .get_vid = atom_get_vid,
2327};
2328
2329static const struct pstate_funcs knl_funcs = {
2330 .get_max = core_get_max_pstate,
2331 .get_max_physical = core_get_max_pstate_physical,
2332 .get_min = core_get_min_pstate,
2333 .get_turbo = knl_get_turbo_pstate,
2334 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2335 .get_scaling = core_get_scaling,
2336 .get_val = core_get_val,
2337};
2338
2339#define X86_MATCH(model, policy) \
2340 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2341 X86_FEATURE_APERFMPERF, &policy)
2342
2343static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2344 X86_MATCH(SANDYBRIDGE, core_funcs),
2345 X86_MATCH(SANDYBRIDGE_X, core_funcs),
2346 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs),
2347 X86_MATCH(IVYBRIDGE, core_funcs),
2348 X86_MATCH(HASWELL, core_funcs),
2349 X86_MATCH(BROADWELL, core_funcs),
2350 X86_MATCH(IVYBRIDGE_X, core_funcs),
2351 X86_MATCH(HASWELL_X, core_funcs),
2352 X86_MATCH(HASWELL_L, core_funcs),
2353 X86_MATCH(HASWELL_G, core_funcs),
2354 X86_MATCH(BROADWELL_G, core_funcs),
2355 X86_MATCH(ATOM_AIRMONT, airmont_funcs),
2356 X86_MATCH(SKYLAKE_L, core_funcs),
2357 X86_MATCH(BROADWELL_X, core_funcs),
2358 X86_MATCH(SKYLAKE, core_funcs),
2359 X86_MATCH(BROADWELL_D, core_funcs),
2360 X86_MATCH(XEON_PHI_KNL, knl_funcs),
2361 X86_MATCH(XEON_PHI_KNM, knl_funcs),
2362 X86_MATCH(ATOM_GOLDMONT, core_funcs),
2363 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs),
2364 X86_MATCH(SKYLAKE_X, core_funcs),
2365 X86_MATCH(COMETLAKE, core_funcs),
2366 X86_MATCH(ICELAKE_X, core_funcs),
2367 X86_MATCH(TIGERLAKE, core_funcs),
2368 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs),
2369 {}
2370};
2371MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2372
2373static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2374 X86_MATCH(BROADWELL_D, core_funcs),
2375 X86_MATCH(BROADWELL_X, core_funcs),
2376 X86_MATCH(SKYLAKE_X, core_funcs),
2377 X86_MATCH(ICELAKE_X, core_funcs),
2378 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs),
2379 {}
2380};
2381
2382static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2383 X86_MATCH(KABYLAKE, core_funcs),
2384 {}
2385};
2386
2387static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2388 X86_MATCH(SKYLAKE_X, core_funcs),
2389 X86_MATCH(SKYLAKE, core_funcs),
2390 {}
2391};
2392
2393static int intel_pstate_init_cpu(unsigned int cpunum)
2394{
2395 struct cpudata *cpu;
2396
2397 cpu = all_cpu_data[cpunum];
2398
2399 if (!cpu) {
2400 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2401 if (!cpu)
2402 return -ENOMEM;
2403
2404 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2405
2406 cpu->cpu = cpunum;
2407
2408 cpu->epp_default = -EINVAL;
2409
2410 if (hwp_active) {
2411 const struct x86_cpu_id *id;
2412
2413 intel_pstate_hwp_enable(cpu);
2414
2415 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2416 if (id && intel_pstate_acpi_pm_profile_server())
2417 hwp_boost = true;
2418 }
2419 } else if (hwp_active) {
2420 /*
2421 * Re-enable HWP in case this happens after a resume from ACPI
2422 * S3 if the CPU was offline during the whole system/resume
2423 * cycle.
2424 */
2425 intel_pstate_hwp_reenable(cpu);
2426 }
2427
2428 cpu->epp_powersave = -EINVAL;
2429 cpu->epp_policy = 0;
2430
2431 intel_pstate_get_cpu_pstates(cpu);
2432
2433 pr_debug("controlling: cpu %d\n", cpunum);
2434
2435 return 0;
2436}
2437
2438static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2439{
2440 struct cpudata *cpu = all_cpu_data[cpu_num];
2441
2442 if (hwp_active && !hwp_boost)
2443 return;
2444
2445 if (cpu->update_util_set)
2446 return;
2447
2448 /* Prevent intel_pstate_update_util() from using stale data. */
2449 cpu->sample.time = 0;
2450 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2451 (hwp_active ?
2452 intel_pstate_update_util_hwp :
2453 intel_pstate_update_util));
2454 cpu->update_util_set = true;
2455}
2456
2457static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2458{
2459 struct cpudata *cpu_data = all_cpu_data[cpu];
2460
2461 if (!cpu_data->update_util_set)
2462 return;
2463
2464 cpufreq_remove_update_util_hook(cpu);
2465 cpu_data->update_util_set = false;
2466 synchronize_rcu();
2467}
2468
2469static int intel_pstate_get_max_freq(struct cpudata *cpu)
2470{
2471 return global.turbo_disabled || global.no_turbo ?
2472 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2473}
2474
2475static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2476 unsigned int policy_min,
2477 unsigned int policy_max)
2478{
2479 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2480 int32_t max_policy_perf, min_policy_perf;
2481
2482 max_policy_perf = policy_max / perf_ctl_scaling;
2483 if (policy_max == policy_min) {
2484 min_policy_perf = max_policy_perf;
2485 } else {
2486 min_policy_perf = policy_min / perf_ctl_scaling;
2487 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2488 0, max_policy_perf);
2489 }
2490
2491 /*
2492 * HWP needs some special consideration, because HWP_REQUEST uses
2493 * abstract values to represent performance rather than pure ratios.
2494 */
2495 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2496 int scaling = cpu->pstate.scaling;
2497 int freq;
2498
2499 freq = max_policy_perf * perf_ctl_scaling;
2500 max_policy_perf = DIV_ROUND_UP(freq, scaling);
2501 freq = min_policy_perf * perf_ctl_scaling;
2502 min_policy_perf = DIV_ROUND_UP(freq, scaling);
2503 }
2504
2505 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2506 cpu->cpu, min_policy_perf, max_policy_perf);
2507
2508 /* Normalize user input to [min_perf, max_perf] */
2509 if (per_cpu_limits) {
2510 cpu->min_perf_ratio = min_policy_perf;
2511 cpu->max_perf_ratio = max_policy_perf;
2512 } else {
2513 int turbo_max = cpu->pstate.turbo_pstate;
2514 int32_t global_min, global_max;
2515
2516 /* Global limits are in percent of the maximum turbo P-state. */
2517 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2518 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2519 global_min = clamp_t(int32_t, global_min, 0, global_max);
2520
2521 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2522 global_min, global_max);
2523
2524 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2525 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2526 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2527 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2528
2529 /* Make sure min_perf <= max_perf */
2530 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2531 cpu->max_perf_ratio);
2532
2533 }
2534 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2535 cpu->max_perf_ratio,
2536 cpu->min_perf_ratio);
2537}
2538
2539static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2540{
2541 struct cpudata *cpu;
2542
2543 if (!policy->cpuinfo.max_freq)
2544 return -ENODEV;
2545
2546 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2547 policy->cpuinfo.max_freq, policy->max);
2548
2549 cpu = all_cpu_data[policy->cpu];
2550 cpu->policy = policy->policy;
2551
2552 mutex_lock(&intel_pstate_limits_lock);
2553
2554 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2555
2556 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2557 /*
2558 * NOHZ_FULL CPUs need this as the governor callback may not
2559 * be invoked on them.
2560 */
2561 intel_pstate_clear_update_util_hook(policy->cpu);
2562 intel_pstate_max_within_limits(cpu);
2563 } else {
2564 intel_pstate_set_update_util_hook(policy->cpu);
2565 }
2566
2567 if (hwp_active) {
2568 /*
2569 * When hwp_boost was active before and dynamically it
2570 * was turned off, in that case we need to clear the
2571 * update util hook.
2572 */
2573 if (!hwp_boost)
2574 intel_pstate_clear_update_util_hook(policy->cpu);
2575 intel_pstate_hwp_set(policy->cpu);
2576 }
2577
2578 mutex_unlock(&intel_pstate_limits_lock);
2579
2580 return 0;
2581}
2582
2583static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2584 struct cpufreq_policy_data *policy)
2585{
2586 if (!hwp_active &&
2587 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2588 policy->max < policy->cpuinfo.max_freq &&
2589 policy->max > cpu->pstate.max_freq) {
2590 pr_debug("policy->max > max non turbo frequency\n");
2591 policy->max = policy->cpuinfo.max_freq;
2592 }
2593}
2594
2595static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2596 struct cpufreq_policy_data *policy)
2597{
2598 int max_freq;
2599
2600 update_turbo_state();
2601 if (hwp_active) {
2602 intel_pstate_get_hwp_cap(cpu);
2603 max_freq = global.no_turbo || global.turbo_disabled ?
2604 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2605 } else {
2606 max_freq = intel_pstate_get_max_freq(cpu);
2607 }
2608 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2609
2610 intel_pstate_adjust_policy_max(cpu, policy);
2611}
2612
2613static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2614{
2615 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2616
2617 return 0;
2618}
2619
2620static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2621{
2622 struct cpudata *cpu = all_cpu_data[policy->cpu];
2623
2624 pr_debug("CPU %d going offline\n", cpu->cpu);
2625
2626 if (cpu->suspended)
2627 return 0;
2628
2629 /*
2630 * If the CPU is an SMT thread and it goes offline with the performance
2631 * settings different from the minimum, it will prevent its sibling
2632 * from getting to lower performance levels, so force the minimum
2633 * performance on CPU offline to prevent that from happening.
2634 */
2635 if (hwp_active)
2636 intel_pstate_hwp_offline(cpu);
2637 else
2638 intel_pstate_set_min_pstate(cpu);
2639
2640 intel_pstate_exit_perf_limits(policy);
2641
2642 return 0;
2643}
2644
2645static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2646{
2647 struct cpudata *cpu = all_cpu_data[policy->cpu];
2648
2649 pr_debug("CPU %d going online\n", cpu->cpu);
2650
2651 intel_pstate_init_acpi_perf_limits(policy);
2652
2653 if (hwp_active) {
2654 /*
2655 * Re-enable HWP and clear the "suspended" flag to let "resume"
2656 * know that it need not do that.
2657 */
2658 intel_pstate_hwp_reenable(cpu);
2659 cpu->suspended = false;
2660 }
2661
2662 return 0;
2663}
2664
2665static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2666{
2667 intel_pstate_clear_update_util_hook(policy->cpu);
2668
2669 return intel_cpufreq_cpu_offline(policy);
2670}
2671
2672static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2673{
2674 pr_debug("CPU %d exiting\n", policy->cpu);
2675
2676 policy->fast_switch_possible = false;
2677
2678 return 0;
2679}
2680
2681static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2682{
2683 struct cpudata *cpu;
2684 int rc;
2685
2686 rc = intel_pstate_init_cpu(policy->cpu);
2687 if (rc)
2688 return rc;
2689
2690 cpu = all_cpu_data[policy->cpu];
2691
2692 cpu->max_perf_ratio = 0xFF;
2693 cpu->min_perf_ratio = 0;
2694
2695 /* cpuinfo and default policy values */
2696 policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2697 update_turbo_state();
2698 global.turbo_disabled_mf = global.turbo_disabled;
2699 policy->cpuinfo.max_freq = global.turbo_disabled ?
2700 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2701
2702 policy->min = policy->cpuinfo.min_freq;
2703 policy->max = policy->cpuinfo.max_freq;
2704
2705 intel_pstate_init_acpi_perf_limits(policy);
2706
2707 policy->fast_switch_possible = true;
2708
2709 return 0;
2710}
2711
2712static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2713{
2714 int ret = __intel_pstate_cpu_init(policy);
2715
2716 if (ret)
2717 return ret;
2718
2719 /*
2720 * Set the policy to powersave to provide a valid fallback value in case
2721 * the default cpufreq governor is neither powersave nor performance.
2722 */
2723 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2724
2725 if (hwp_active) {
2726 struct cpudata *cpu = all_cpu_data[policy->cpu];
2727
2728 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2729 }
2730
2731 return 0;
2732}
2733
2734static struct cpufreq_driver intel_pstate = {
2735 .flags = CPUFREQ_CONST_LOOPS,
2736 .verify = intel_pstate_verify_policy,
2737 .setpolicy = intel_pstate_set_policy,
2738 .suspend = intel_pstate_suspend,
2739 .resume = intel_pstate_resume,
2740 .init = intel_pstate_cpu_init,
2741 .exit = intel_pstate_cpu_exit,
2742 .offline = intel_pstate_cpu_offline,
2743 .online = intel_pstate_cpu_online,
2744 .update_limits = intel_pstate_update_limits,
2745 .name = "intel_pstate",
2746};
2747
2748static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2749{
2750 struct cpudata *cpu = all_cpu_data[policy->cpu];
2751
2752 intel_pstate_verify_cpu_policy(cpu, policy);
2753 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2754
2755 return 0;
2756}
2757
2758/* Use of trace in passive mode:
2759 *
2760 * In passive mode the trace core_busy field (also known as the
2761 * performance field, and lablelled as such on the graphs; also known as
2762 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2763 * driver call was via the normal or fast switch path. Various graphs
2764 * output from the intel_pstate_tracer.py utility that include core_busy
2765 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2766 * so we use 10 to indicate the normal path through the driver, and
2767 * 90 to indicate the fast switch path through the driver.
2768 * The scaled_busy field is not used, and is set to 0.
2769 */
2770
2771#define INTEL_PSTATE_TRACE_TARGET 10
2772#define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2773
2774static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2775{
2776 struct sample *sample;
2777
2778 if (!trace_pstate_sample_enabled())
2779 return;
2780
2781 if (!intel_pstate_sample(cpu, ktime_get()))
2782 return;
2783
2784 sample = &cpu->sample;
2785 trace_pstate_sample(trace_type,
2786 0,
2787 old_pstate,
2788 cpu->pstate.current_pstate,
2789 sample->mperf,
2790 sample->aperf,
2791 sample->tsc,
2792 get_avg_frequency(cpu),
2793 fp_toint(cpu->iowait_boost * 100));
2794}
2795
2796static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2797 u32 desired, bool fast_switch)
2798{
2799 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2800
2801 value &= ~HWP_MIN_PERF(~0L);
2802 value |= HWP_MIN_PERF(min);
2803
2804 value &= ~HWP_MAX_PERF(~0L);
2805 value |= HWP_MAX_PERF(max);
2806
2807 value &= ~HWP_DESIRED_PERF(~0L);
2808 value |= HWP_DESIRED_PERF(desired);
2809
2810 if (value == prev)
2811 return;
2812
2813 WRITE_ONCE(cpu->hwp_req_cached, value);
2814 if (fast_switch)
2815 wrmsrl(MSR_HWP_REQUEST, value);
2816 else
2817 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2818}
2819
2820static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2821 u32 target_pstate, bool fast_switch)
2822{
2823 if (fast_switch)
2824 wrmsrl(MSR_IA32_PERF_CTL,
2825 pstate_funcs.get_val(cpu, target_pstate));
2826 else
2827 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2828 pstate_funcs.get_val(cpu, target_pstate));
2829}
2830
2831static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2832 int target_pstate, bool fast_switch)
2833{
2834 struct cpudata *cpu = all_cpu_data[policy->cpu];
2835 int old_pstate = cpu->pstate.current_pstate;
2836
2837 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2838 if (hwp_active) {
2839 int max_pstate = policy->strict_target ?
2840 target_pstate : cpu->max_perf_ratio;
2841
2842 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2843 fast_switch);
2844 } else if (target_pstate != old_pstate) {
2845 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2846 }
2847
2848 cpu->pstate.current_pstate = target_pstate;
2849
2850 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2851 INTEL_PSTATE_TRACE_TARGET, old_pstate);
2852
2853 return target_pstate;
2854}
2855
2856static int intel_cpufreq_target(struct cpufreq_policy *policy,
2857 unsigned int target_freq,
2858 unsigned int relation)
2859{
2860 struct cpudata *cpu = all_cpu_data[policy->cpu];
2861 struct cpufreq_freqs freqs;
2862 int target_pstate;
2863
2864 update_turbo_state();
2865
2866 freqs.old = policy->cur;
2867 freqs.new = target_freq;
2868
2869 cpufreq_freq_transition_begin(policy, &freqs);
2870
2871 switch (relation) {
2872 case CPUFREQ_RELATION_L:
2873 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2874 break;
2875 case CPUFREQ_RELATION_H:
2876 target_pstate = freqs.new / cpu->pstate.scaling;
2877 break;
2878 default:
2879 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2880 break;
2881 }
2882
2883 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2884
2885 freqs.new = target_pstate * cpu->pstate.scaling;
2886
2887 cpufreq_freq_transition_end(policy, &freqs, false);
2888
2889 return 0;
2890}
2891
2892static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2893 unsigned int target_freq)
2894{
2895 struct cpudata *cpu = all_cpu_data[policy->cpu];
2896 int target_pstate;
2897
2898 update_turbo_state();
2899
2900 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2901
2902 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2903
2904 return target_pstate * cpu->pstate.scaling;
2905}
2906
2907static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2908 unsigned long min_perf,
2909 unsigned long target_perf,
2910 unsigned long capacity)
2911{
2912 struct cpudata *cpu = all_cpu_data[cpunum];
2913 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2914 int old_pstate = cpu->pstate.current_pstate;
2915 int cap_pstate, min_pstate, max_pstate, target_pstate;
2916
2917 update_turbo_state();
2918 cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2919 HWP_HIGHEST_PERF(hwp_cap);
2920
2921 /* Optimization: Avoid unnecessary divisions. */
2922
2923 target_pstate = cap_pstate;
2924 if (target_perf < capacity)
2925 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2926
2927 min_pstate = cap_pstate;
2928 if (min_perf < capacity)
2929 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2930
2931 if (min_pstate < cpu->pstate.min_pstate)
2932 min_pstate = cpu->pstate.min_pstate;
2933
2934 if (min_pstate < cpu->min_perf_ratio)
2935 min_pstate = cpu->min_perf_ratio;
2936
2937 max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2938 if (max_pstate < min_pstate)
2939 max_pstate = min_pstate;
2940
2941 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2942
2943 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2944
2945 cpu->pstate.current_pstate = target_pstate;
2946 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2947}
2948
2949static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2950{
2951 struct freq_qos_request *req;
2952 struct cpudata *cpu;
2953 struct device *dev;
2954 int ret, freq;
2955
2956 dev = get_cpu_device(policy->cpu);
2957 if (!dev)
2958 return -ENODEV;
2959
2960 ret = __intel_pstate_cpu_init(policy);
2961 if (ret)
2962 return ret;
2963
2964 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2965 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2966 policy->cur = policy->cpuinfo.min_freq;
2967
2968 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2969 if (!req) {
2970 ret = -ENOMEM;
2971 goto pstate_exit;
2972 }
2973
2974 cpu = all_cpu_data[policy->cpu];
2975
2976 if (hwp_active) {
2977 u64 value;
2978
2979 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2980
2981 intel_pstate_get_hwp_cap(cpu);
2982
2983 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2984 WRITE_ONCE(cpu->hwp_req_cached, value);
2985
2986 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2987 } else {
2988 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2989 }
2990
2991 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
2992
2993 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2994 freq);
2995 if (ret < 0) {
2996 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2997 goto free_req;
2998 }
2999
3000 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3001
3002 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3003 freq);
3004 if (ret < 0) {
3005 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3006 goto remove_min_req;
3007 }
3008
3009 policy->driver_data = req;
3010
3011 return 0;
3012
3013remove_min_req:
3014 freq_qos_remove_request(req);
3015free_req:
3016 kfree(req);
3017pstate_exit:
3018 intel_pstate_exit_perf_limits(policy);
3019
3020 return ret;
3021}
3022
3023static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3024{
3025 struct freq_qos_request *req;
3026
3027 req = policy->driver_data;
3028
3029 freq_qos_remove_request(req + 1);
3030 freq_qos_remove_request(req);
3031 kfree(req);
3032
3033 return intel_pstate_cpu_exit(policy);
3034}
3035
3036static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3037{
3038 intel_pstate_suspend(policy);
3039
3040 if (hwp_active) {
3041 struct cpudata *cpu = all_cpu_data[policy->cpu];
3042 u64 value = READ_ONCE(cpu->hwp_req_cached);
3043
3044 /*
3045 * Clear the desired perf field in MSR_HWP_REQUEST in case
3046 * intel_cpufreq_adjust_perf() is in use and the last value
3047 * written by it may not be suitable.
3048 */
3049 value &= ~HWP_DESIRED_PERF(~0L);
3050 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3051 WRITE_ONCE(cpu->hwp_req_cached, value);
3052 }
3053
3054 return 0;
3055}
3056
3057static struct cpufreq_driver intel_cpufreq = {
3058 .flags = CPUFREQ_CONST_LOOPS,
3059 .verify = intel_cpufreq_verify_policy,
3060 .target = intel_cpufreq_target,
3061 .fast_switch = intel_cpufreq_fast_switch,
3062 .init = intel_cpufreq_cpu_init,
3063 .exit = intel_cpufreq_cpu_exit,
3064 .offline = intel_cpufreq_cpu_offline,
3065 .online = intel_pstate_cpu_online,
3066 .suspend = intel_cpufreq_suspend,
3067 .resume = intel_pstate_resume,
3068 .update_limits = intel_pstate_update_limits,
3069 .name = "intel_cpufreq",
3070};
3071
3072static struct cpufreq_driver *default_driver;
3073
3074static void intel_pstate_driver_cleanup(void)
3075{
3076 unsigned int cpu;
3077
3078 cpus_read_lock();
3079 for_each_online_cpu(cpu) {
3080 if (all_cpu_data[cpu]) {
3081 if (intel_pstate_driver == &intel_pstate)
3082 intel_pstate_clear_update_util_hook(cpu);
3083
3084 spin_lock(&hwp_notify_lock);
3085 kfree(all_cpu_data[cpu]);
3086 WRITE_ONCE(all_cpu_data[cpu], NULL);
3087 spin_unlock(&hwp_notify_lock);
3088 }
3089 }
3090 cpus_read_unlock();
3091
3092 intel_pstate_driver = NULL;
3093}
3094
3095static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3096{
3097 int ret;
3098
3099 if (driver == &intel_pstate)
3100 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3101
3102 memset(&global, 0, sizeof(global));
3103 global.max_perf_pct = 100;
3104
3105 intel_pstate_driver = driver;
3106 ret = cpufreq_register_driver(intel_pstate_driver);
3107 if (ret) {
3108 intel_pstate_driver_cleanup();
3109 return ret;
3110 }
3111
3112 global.min_perf_pct = min_perf_pct_min();
3113
3114 return 0;
3115}
3116
3117static ssize_t intel_pstate_show_status(char *buf)
3118{
3119 if (!intel_pstate_driver)
3120 return sprintf(buf, "off\n");
3121
3122 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3123 "active" : "passive");
3124}
3125
3126static int intel_pstate_update_status(const char *buf, size_t size)
3127{
3128 if (size == 3 && !strncmp(buf, "off", size)) {
3129 if (!intel_pstate_driver)
3130 return -EINVAL;
3131
3132 if (hwp_active)
3133 return -EBUSY;
3134
3135 cpufreq_unregister_driver(intel_pstate_driver);
3136 intel_pstate_driver_cleanup();
3137 return 0;
3138 }
3139
3140 if (size == 6 && !strncmp(buf, "active", size)) {
3141 if (intel_pstate_driver) {
3142 if (intel_pstate_driver == &intel_pstate)
3143 return 0;
3144
3145 cpufreq_unregister_driver(intel_pstate_driver);
3146 }
3147
3148 return intel_pstate_register_driver(&intel_pstate);
3149 }
3150
3151 if (size == 7 && !strncmp(buf, "passive", size)) {
3152 if (intel_pstate_driver) {
3153 if (intel_pstate_driver == &intel_cpufreq)
3154 return 0;
3155
3156 cpufreq_unregister_driver(intel_pstate_driver);
3157 intel_pstate_sysfs_hide_hwp_dynamic_boost();
3158 }
3159
3160 return intel_pstate_register_driver(&intel_cpufreq);
3161 }
3162
3163 return -EINVAL;
3164}
3165
3166static int no_load __initdata;
3167static int no_hwp __initdata;
3168static int hwp_only __initdata;
3169static unsigned int force_load __initdata;
3170
3171static int __init intel_pstate_msrs_not_valid(void)
3172{
3173 if (!pstate_funcs.get_max(0) ||
3174 !pstate_funcs.get_min(0) ||
3175 !pstate_funcs.get_turbo(0))
3176 return -ENODEV;
3177
3178 return 0;
3179}
3180
3181static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3182{
3183 pstate_funcs.get_max = funcs->get_max;
3184 pstate_funcs.get_max_physical = funcs->get_max_physical;
3185 pstate_funcs.get_min = funcs->get_min;
3186 pstate_funcs.get_turbo = funcs->get_turbo;
3187 pstate_funcs.get_scaling = funcs->get_scaling;
3188 pstate_funcs.get_val = funcs->get_val;
3189 pstate_funcs.get_vid = funcs->get_vid;
3190 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3191}
3192
3193#ifdef CONFIG_ACPI
3194
3195static bool __init intel_pstate_no_acpi_pss(void)
3196{
3197 int i;
3198
3199 for_each_possible_cpu(i) {
3200 acpi_status status;
3201 union acpi_object *pss;
3202 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3203 struct acpi_processor *pr = per_cpu(processors, i);
3204
3205 if (!pr)
3206 continue;
3207
3208 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3209 if (ACPI_FAILURE(status))
3210 continue;
3211
3212 pss = buffer.pointer;
3213 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3214 kfree(pss);
3215 return false;
3216 }
3217
3218 kfree(pss);
3219 }
3220
3221 pr_debug("ACPI _PSS not found\n");
3222 return true;
3223}
3224
3225static bool __init intel_pstate_no_acpi_pcch(void)
3226{
3227 acpi_status status;
3228 acpi_handle handle;
3229
3230 status = acpi_get_handle(NULL, "\\_SB", &handle);
3231 if (ACPI_FAILURE(status))
3232 goto not_found;
3233
3234 if (acpi_has_method(handle, "PCCH"))
3235 return false;
3236
3237not_found:
3238 pr_debug("ACPI PCCH not found\n");
3239 return true;
3240}
3241
3242static bool __init intel_pstate_has_acpi_ppc(void)
3243{
3244 int i;
3245
3246 for_each_possible_cpu(i) {
3247 struct acpi_processor *pr = per_cpu(processors, i);
3248
3249 if (!pr)
3250 continue;
3251 if (acpi_has_method(pr->handle, "_PPC"))
3252 return true;
3253 }
3254 pr_debug("ACPI _PPC not found\n");
3255 return false;
3256}
3257
3258enum {
3259 PSS,
3260 PPC,
3261};
3262
3263/* Hardware vendor-specific info that has its own power management modes */
3264static struct acpi_platform_list plat_info[] __initdata = {
3265 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3266 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3267 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3268 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3269 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3270 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3271 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3272 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3273 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3274 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3275 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3276 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3277 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3278 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3279 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3280 { } /* End */
3281};
3282
3283#define BITMASK_OOB (BIT(8) | BIT(18))
3284
3285static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3286{
3287 const struct x86_cpu_id *id;
3288 u64 misc_pwr;
3289 int idx;
3290
3291 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3292 if (id) {
3293 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3294 if (misc_pwr & BITMASK_OOB) {
3295 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3296 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3297 return true;
3298 }
3299 }
3300
3301 idx = acpi_match_platform_list(plat_info);
3302 if (idx < 0)
3303 return false;
3304
3305 switch (plat_info[idx].data) {
3306 case PSS:
3307 if (!intel_pstate_no_acpi_pss())
3308 return false;
3309
3310 return intel_pstate_no_acpi_pcch();
3311 case PPC:
3312 return intel_pstate_has_acpi_ppc() && !force_load;
3313 }
3314
3315 return false;
3316}
3317
3318static void intel_pstate_request_control_from_smm(void)
3319{
3320 /*
3321 * It may be unsafe to request P-states control from SMM if _PPC support
3322 * has not been enabled.
3323 */
3324 if (acpi_ppc)
3325 acpi_processor_pstate_control();
3326}
3327#else /* CONFIG_ACPI not enabled */
3328static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3329static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3330static inline void intel_pstate_request_control_from_smm(void) {}
3331#endif /* CONFIG_ACPI */
3332
3333#define INTEL_PSTATE_HWP_BROADWELL 0x01
3334
3335#define X86_MATCH_HWP(model, hwp_mode) \
3336 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3337 X86_FEATURE_HWP, hwp_mode)
3338
3339static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3340 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
3341 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
3342 X86_MATCH_HWP(ANY, 0),
3343 {}
3344};
3345
3346static bool intel_pstate_hwp_is_enabled(void)
3347{
3348 u64 value;
3349
3350 rdmsrl(MSR_PM_ENABLE, value);
3351 return !!(value & 0x1);
3352}
3353
3354static const struct x86_cpu_id intel_epp_balance_perf[] = {
3355 /*
3356 * Set EPP value as 102, this is the max suggested EPP
3357 * which can result in one core turbo frequency for
3358 * AlderLake Mobile CPUs.
3359 */
3360 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
3361 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 32),
3362 {}
3363};
3364
3365static int __init intel_pstate_init(void)
3366{
3367 static struct cpudata **_all_cpu_data;
3368 const struct x86_cpu_id *id;
3369 int rc;
3370
3371 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3372 return -ENODEV;
3373
3374 id = x86_match_cpu(hwp_support_ids);
3375 if (id) {
3376 hwp_forced = intel_pstate_hwp_is_enabled();
3377
3378 if (hwp_forced)
3379 pr_info("HWP enabled by BIOS\n");
3380 else if (no_load)
3381 return -ENODEV;
3382
3383 copy_cpu_funcs(&core_funcs);
3384 /*
3385 * Avoid enabling HWP for processors without EPP support,
3386 * because that means incomplete HWP implementation which is a
3387 * corner case and supporting it is generally problematic.
3388 *
3389 * If HWP is enabled already, though, there is no choice but to
3390 * deal with it.
3391 */
3392 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3393 WRITE_ONCE(hwp_active, 1);
3394 hwp_mode_bdw = id->driver_data;
3395 intel_pstate.attr = hwp_cpufreq_attrs;
3396 intel_cpufreq.attr = hwp_cpufreq_attrs;
3397 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3398 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3399 if (!default_driver)
3400 default_driver = &intel_pstate;
3401
3402 if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
3403 pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
3404
3405 goto hwp_cpu_matched;
3406 }
3407 pr_info("HWP not enabled\n");
3408 } else {
3409 if (no_load)
3410 return -ENODEV;
3411
3412 id = x86_match_cpu(intel_pstate_cpu_ids);
3413 if (!id) {
3414 pr_info("CPU model not supported\n");
3415 return -ENODEV;
3416 }
3417
3418 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3419 }
3420
3421 if (intel_pstate_msrs_not_valid()) {
3422 pr_info("Invalid MSRs\n");
3423 return -ENODEV;
3424 }
3425 /* Without HWP start in the passive mode. */
3426 if (!default_driver)
3427 default_driver = &intel_cpufreq;
3428
3429hwp_cpu_matched:
3430 /*
3431 * The Intel pstate driver will be ignored if the platform
3432 * firmware has its own power management modes.
3433 */
3434 if (intel_pstate_platform_pwr_mgmt_exists()) {
3435 pr_info("P-states controlled by the platform\n");
3436 return -ENODEV;
3437 }
3438
3439 if (!hwp_active && hwp_only)
3440 return -ENOTSUPP;
3441
3442 pr_info("Intel P-state driver initializing\n");
3443
3444 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3445 if (!_all_cpu_data)
3446 return -ENOMEM;
3447
3448 WRITE_ONCE(all_cpu_data, _all_cpu_data);
3449
3450 intel_pstate_request_control_from_smm();
3451
3452 intel_pstate_sysfs_expose_params();
3453
3454 if (hwp_active) {
3455 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
3456
3457 if (id)
3458 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
3459 }
3460
3461 mutex_lock(&intel_pstate_driver_lock);
3462 rc = intel_pstate_register_driver(default_driver);
3463 mutex_unlock(&intel_pstate_driver_lock);
3464 if (rc) {
3465 intel_pstate_sysfs_remove();
3466 return rc;
3467 }
3468
3469 if (hwp_active) {
3470 const struct x86_cpu_id *id;
3471
3472 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3473 if (id) {
3474 set_power_ctl_ee_state(false);
3475 pr_info("Disabling energy efficiency optimization\n");
3476 }
3477
3478 pr_info("HWP enabled\n");
3479 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3480 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3481 }
3482
3483 return 0;
3484}
3485device_initcall(intel_pstate_init);
3486
3487static int __init intel_pstate_setup(char *str)
3488{
3489 if (!str)
3490 return -EINVAL;
3491
3492 if (!strcmp(str, "disable"))
3493 no_load = 1;
3494 else if (!strcmp(str, "active"))
3495 default_driver = &intel_pstate;
3496 else if (!strcmp(str, "passive"))
3497 default_driver = &intel_cpufreq;
3498
3499 if (!strcmp(str, "no_hwp"))
3500 no_hwp = 1;
3501
3502 if (!strcmp(str, "force"))
3503 force_load = 1;
3504 if (!strcmp(str, "hwp_only"))
3505 hwp_only = 1;
3506 if (!strcmp(str, "per_cpu_perf_limits"))
3507 per_cpu_limits = true;
3508
3509#ifdef CONFIG_ACPI
3510 if (!strcmp(str, "support_acpi_ppc"))
3511 acpi_ppc = true;
3512#endif
3513
3514 return 0;
3515}
3516early_param("intel_pstate", intel_pstate_setup);
3517
3518MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3519MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");