Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <trace/events/qdisc.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_netdev.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148#include <linux/indirect_call_wrapper.h>
149#include <net/devlink.h>
150#include <linux/pm_runtime.h>
151#include <linux/prandom.h>
152#include <linux/once_lite.h>
153
154#include "dev.h"
155#include "net-sysfs.h"
156
157
158static DEFINE_SPINLOCK(ptype_lock);
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
161
162static int netif_rx_internal(struct sk_buff *skb);
163static int call_netdevice_notifiers_info(unsigned long val,
164 struct netdev_notifier_info *info);
165static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170/*
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * semaphore.
173 *
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
189DEFINE_RWLOCK(dev_base_lock);
190EXPORT_SYMBOL(dev_base_lock);
191
192static DEFINE_MUTEX(ifalias_mutex);
193
194/* protects napi_hash addition/deletion and napi_gen_id */
195static DEFINE_SPINLOCK(napi_hash_lock);
196
197static unsigned int napi_gen_id = NR_CPUS;
198static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200static DECLARE_RWSEM(devnet_rename_sem);
201
202static inline void dev_base_seq_inc(struct net *net)
203{
204 while (++net->dev_base_seq == 0)
205 ;
206}
207
208static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209{
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213}
214
215static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216{
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218}
219
220static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
222{
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
227}
228
229static inline void rps_lock_irq_disable(struct softnet_data *sd)
230{
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 local_irq_disable();
235}
236
237static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
239{
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
244}
245
246static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247{
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 local_irq_enable();
252}
253
254static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 const char *name)
256{
257 struct netdev_name_node *name_node;
258
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 if (!name_node)
261 return NULL;
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
265 return name_node;
266}
267
268static struct netdev_name_node *
269netdev_name_node_head_alloc(struct net_device *dev)
270{
271 struct netdev_name_node *name_node;
272
273 name_node = netdev_name_node_alloc(dev, dev->name);
274 if (!name_node)
275 return NULL;
276 INIT_LIST_HEAD(&name_node->list);
277 return name_node;
278}
279
280static void netdev_name_node_free(struct netdev_name_node *name_node)
281{
282 kfree(name_node);
283}
284
285static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
287{
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
290}
291
292static void netdev_name_node_del(struct netdev_name_node *name_node)
293{
294 hlist_del_rcu(&name_node->hlist);
295}
296
297static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 const char *name)
299{
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
302
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
305 return name_node;
306 return NULL;
307}
308
309static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 const char *name)
311{
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
314
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
317 return name_node;
318 return NULL;
319}
320
321bool netdev_name_in_use(struct net *net, const char *name)
322{
323 return netdev_name_node_lookup(net, name);
324}
325EXPORT_SYMBOL(netdev_name_in_use);
326
327int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328{
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (name_node)
334 return -EEXIST;
335 name_node = netdev_name_node_alloc(dev, name);
336 if (!name_node)
337 return -ENOMEM;
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
341
342 return 0;
343}
344
345static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346{
347 list_del(&name_node->list);
348 netdev_name_node_del(name_node);
349 kfree(name_node->name);
350 netdev_name_node_free(name_node);
351}
352
353int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354{
355 struct netdev_name_node *name_node;
356 struct net *net = dev_net(dev);
357
358 name_node = netdev_name_node_lookup(net, name);
359 if (!name_node)
360 return -ENOENT;
361 /* lookup might have found our primary name or a name belonging
362 * to another device.
363 */
364 if (name_node == dev->name_node || name_node->dev != dev)
365 return -EINVAL;
366
367 __netdev_name_node_alt_destroy(name_node);
368
369 return 0;
370}
371
372static void netdev_name_node_alt_flush(struct net_device *dev)
373{
374 struct netdev_name_node *name_node, *tmp;
375
376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 __netdev_name_node_alt_destroy(name_node);
378}
379
380/* Device list insertion */
381static void list_netdevice(struct net_device *dev)
382{
383 struct net *net = dev_net(dev);
384
385 ASSERT_RTNL();
386
387 write_lock(&dev_base_lock);
388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 netdev_name_node_add(net, dev->name_node);
390 hlist_add_head_rcu(&dev->index_hlist,
391 dev_index_hash(net, dev->ifindex));
392 write_unlock(&dev_base_lock);
393
394 dev_base_seq_inc(net);
395}
396
397/* Device list removal
398 * caller must respect a RCU grace period before freeing/reusing dev
399 */
400static void unlist_netdevice(struct net_device *dev, bool lock)
401{
402 ASSERT_RTNL();
403
404 /* Unlink dev from the device chain */
405 if (lock)
406 write_lock(&dev_base_lock);
407 list_del_rcu(&dev->dev_list);
408 netdev_name_node_del(dev->name_node);
409 hlist_del_rcu(&dev->index_hlist);
410 if (lock)
411 write_unlock(&dev_base_lock);
412
413 dev_base_seq_inc(dev_net(dev));
414}
415
416/*
417 * Our notifier list
418 */
419
420static RAW_NOTIFIER_HEAD(netdev_chain);
421
422/*
423 * Device drivers call our routines to queue packets here. We empty the
424 * queue in the local softnet handler.
425 */
426
427DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428EXPORT_PER_CPU_SYMBOL(softnet_data);
429
430#ifdef CONFIG_LOCKDEP
431/*
432 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433 * according to dev->type
434 */
435static const unsigned short netdev_lock_type[] = {
436 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451
452static const char *const netdev_lock_name[] = {
453 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468
469static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471
472static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473{
474 int i;
475
476 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477 if (netdev_lock_type[i] == dev_type)
478 return i;
479 /* the last key is used by default */
480 return ARRAY_SIZE(netdev_lock_type) - 1;
481}
482
483static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484 unsigned short dev_type)
485{
486 int i;
487
488 i = netdev_lock_pos(dev_type);
489 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490 netdev_lock_name[i]);
491}
492
493static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494{
495 int i;
496
497 i = netdev_lock_pos(dev->type);
498 lockdep_set_class_and_name(&dev->addr_list_lock,
499 &netdev_addr_lock_key[i],
500 netdev_lock_name[i]);
501}
502#else
503static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504 unsigned short dev_type)
505{
506}
507
508static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509{
510}
511#endif
512
513/*******************************************************************************
514 *
515 * Protocol management and registration routines
516 *
517 *******************************************************************************/
518
519
520/*
521 * Add a protocol ID to the list. Now that the input handler is
522 * smarter we can dispense with all the messy stuff that used to be
523 * here.
524 *
525 * BEWARE!!! Protocol handlers, mangling input packets,
526 * MUST BE last in hash buckets and checking protocol handlers
527 * MUST start from promiscuous ptype_all chain in net_bh.
528 * It is true now, do not change it.
529 * Explanation follows: if protocol handler, mangling packet, will
530 * be the first on list, it is not able to sense, that packet
531 * is cloned and should be copied-on-write, so that it will
532 * change it and subsequent readers will get broken packet.
533 * --ANK (980803)
534 */
535
536static inline struct list_head *ptype_head(const struct packet_type *pt)
537{
538 if (pt->type == htons(ETH_P_ALL))
539 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540 else
541 return pt->dev ? &pt->dev->ptype_specific :
542 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543}
544
545/**
546 * dev_add_pack - add packet handler
547 * @pt: packet type declaration
548 *
549 * Add a protocol handler to the networking stack. The passed &packet_type
550 * is linked into kernel lists and may not be freed until it has been
551 * removed from the kernel lists.
552 *
553 * This call does not sleep therefore it can not
554 * guarantee all CPU's that are in middle of receiving packets
555 * will see the new packet type (until the next received packet).
556 */
557
558void dev_add_pack(struct packet_type *pt)
559{
560 struct list_head *head = ptype_head(pt);
561
562 spin_lock(&ptype_lock);
563 list_add_rcu(&pt->list, head);
564 spin_unlock(&ptype_lock);
565}
566EXPORT_SYMBOL(dev_add_pack);
567
568/**
569 * __dev_remove_pack - remove packet handler
570 * @pt: packet type declaration
571 *
572 * Remove a protocol handler that was previously added to the kernel
573 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
574 * from the kernel lists and can be freed or reused once this function
575 * returns.
576 *
577 * The packet type might still be in use by receivers
578 * and must not be freed until after all the CPU's have gone
579 * through a quiescent state.
580 */
581void __dev_remove_pack(struct packet_type *pt)
582{
583 struct list_head *head = ptype_head(pt);
584 struct packet_type *pt1;
585
586 spin_lock(&ptype_lock);
587
588 list_for_each_entry(pt1, head, list) {
589 if (pt == pt1) {
590 list_del_rcu(&pt->list);
591 goto out;
592 }
593 }
594
595 pr_warn("dev_remove_pack: %p not found\n", pt);
596out:
597 spin_unlock(&ptype_lock);
598}
599EXPORT_SYMBOL(__dev_remove_pack);
600
601/**
602 * dev_remove_pack - remove packet handler
603 * @pt: packet type declaration
604 *
605 * Remove a protocol handler that was previously added to the kernel
606 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
607 * from the kernel lists and can be freed or reused once this function
608 * returns.
609 *
610 * This call sleeps to guarantee that no CPU is looking at the packet
611 * type after return.
612 */
613void dev_remove_pack(struct packet_type *pt)
614{
615 __dev_remove_pack(pt);
616
617 synchronize_net();
618}
619EXPORT_SYMBOL(dev_remove_pack);
620
621
622/*******************************************************************************
623 *
624 * Device Interface Subroutines
625 *
626 *******************************************************************************/
627
628/**
629 * dev_get_iflink - get 'iflink' value of a interface
630 * @dev: targeted interface
631 *
632 * Indicates the ifindex the interface is linked to.
633 * Physical interfaces have the same 'ifindex' and 'iflink' values.
634 */
635
636int dev_get_iflink(const struct net_device *dev)
637{
638 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639 return dev->netdev_ops->ndo_get_iflink(dev);
640
641 return dev->ifindex;
642}
643EXPORT_SYMBOL(dev_get_iflink);
644
645/**
646 * dev_fill_metadata_dst - Retrieve tunnel egress information.
647 * @dev: targeted interface
648 * @skb: The packet.
649 *
650 * For better visibility of tunnel traffic OVS needs to retrieve
651 * egress tunnel information for a packet. Following API allows
652 * user to get this info.
653 */
654int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655{
656 struct ip_tunnel_info *info;
657
658 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
659 return -EINVAL;
660
661 info = skb_tunnel_info_unclone(skb);
662 if (!info)
663 return -ENOMEM;
664 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665 return -EINVAL;
666
667 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668}
669EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670
671static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672{
673 int k = stack->num_paths++;
674
675 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676 return NULL;
677
678 return &stack->path[k];
679}
680
681int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682 struct net_device_path_stack *stack)
683{
684 const struct net_device *last_dev;
685 struct net_device_path_ctx ctx = {
686 .dev = dev,
687 };
688 struct net_device_path *path;
689 int ret = 0;
690
691 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692 stack->num_paths = 0;
693 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694 last_dev = ctx.dev;
695 path = dev_fwd_path(stack);
696 if (!path)
697 return -1;
698
699 memset(path, 0, sizeof(struct net_device_path));
700 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701 if (ret < 0)
702 return -1;
703
704 if (WARN_ON_ONCE(last_dev == ctx.dev))
705 return -1;
706 }
707
708 if (!ctx.dev)
709 return ret;
710
711 path = dev_fwd_path(stack);
712 if (!path)
713 return -1;
714 path->type = DEV_PATH_ETHERNET;
715 path->dev = ctx.dev;
716
717 return ret;
718}
719EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720
721/**
722 * __dev_get_by_name - find a device by its name
723 * @net: the applicable net namespace
724 * @name: name to find
725 *
726 * Find an interface by name. Must be called under RTNL semaphore
727 * or @dev_base_lock. If the name is found a pointer to the device
728 * is returned. If the name is not found then %NULL is returned. The
729 * reference counters are not incremented so the caller must be
730 * careful with locks.
731 */
732
733struct net_device *__dev_get_by_name(struct net *net, const char *name)
734{
735 struct netdev_name_node *node_name;
736
737 node_name = netdev_name_node_lookup(net, name);
738 return node_name ? node_name->dev : NULL;
739}
740EXPORT_SYMBOL(__dev_get_by_name);
741
742/**
743 * dev_get_by_name_rcu - find a device by its name
744 * @net: the applicable net namespace
745 * @name: name to find
746 *
747 * Find an interface by name.
748 * If the name is found a pointer to the device is returned.
749 * If the name is not found then %NULL is returned.
750 * The reference counters are not incremented so the caller must be
751 * careful with locks. The caller must hold RCU lock.
752 */
753
754struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755{
756 struct netdev_name_node *node_name;
757
758 node_name = netdev_name_node_lookup_rcu(net, name);
759 return node_name ? node_name->dev : NULL;
760}
761EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763/**
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
775struct net_device *dev_get_by_name(struct net *net, const char *name)
776{
777 struct net_device *dev;
778
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
781 dev_hold(dev);
782 rcu_read_unlock();
783 return dev;
784}
785EXPORT_SYMBOL(dev_get_by_name);
786
787/**
788 * __dev_get_by_index - find a device by its ifindex
789 * @net: the applicable net namespace
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns %NULL if the device
793 * is not found or a pointer to the device. The device has not
794 * had its reference counter increased so the caller must be careful
795 * about locking. The caller must hold either the RTNL semaphore
796 * or @dev_base_lock.
797 */
798
799struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800{
801 struct net_device *dev;
802 struct hlist_head *head = dev_index_hash(net, ifindex);
803
804 hlist_for_each_entry(dev, head, index_hlist)
805 if (dev->ifindex == ifindex)
806 return dev;
807
808 return NULL;
809}
810EXPORT_SYMBOL(__dev_get_by_index);
811
812/**
813 * dev_get_by_index_rcu - find a device by its ifindex
814 * @net: the applicable net namespace
815 * @ifindex: index of device
816 *
817 * Search for an interface by index. Returns %NULL if the device
818 * is not found or a pointer to the device. The device has not
819 * had its reference counter increased so the caller must be careful
820 * about locking. The caller must hold RCU lock.
821 */
822
823struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824{
825 struct net_device *dev;
826 struct hlist_head *head = dev_index_hash(net, ifindex);
827
828 hlist_for_each_entry_rcu(dev, head, index_hlist)
829 if (dev->ifindex == ifindex)
830 return dev;
831
832 return NULL;
833}
834EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837/**
838 * dev_get_by_index - find a device by its ifindex
839 * @net: the applicable net namespace
840 * @ifindex: index of device
841 *
842 * Search for an interface by index. Returns NULL if the device
843 * is not found or a pointer to the device. The device returned has
844 * had a reference added and the pointer is safe until the user calls
845 * dev_put to indicate they have finished with it.
846 */
847
848struct net_device *dev_get_by_index(struct net *net, int ifindex)
849{
850 struct net_device *dev;
851
852 rcu_read_lock();
853 dev = dev_get_by_index_rcu(net, ifindex);
854 dev_hold(dev);
855 rcu_read_unlock();
856 return dev;
857}
858EXPORT_SYMBOL(dev_get_by_index);
859
860/**
861 * dev_get_by_napi_id - find a device by napi_id
862 * @napi_id: ID of the NAPI struct
863 *
864 * Search for an interface by NAPI ID. Returns %NULL if the device
865 * is not found or a pointer to the device. The device has not had
866 * its reference counter increased so the caller must be careful
867 * about locking. The caller must hold RCU lock.
868 */
869
870struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871{
872 struct napi_struct *napi;
873
874 WARN_ON_ONCE(!rcu_read_lock_held());
875
876 if (napi_id < MIN_NAPI_ID)
877 return NULL;
878
879 napi = napi_by_id(napi_id);
880
881 return napi ? napi->dev : NULL;
882}
883EXPORT_SYMBOL(dev_get_by_napi_id);
884
885/**
886 * netdev_get_name - get a netdevice name, knowing its ifindex.
887 * @net: network namespace
888 * @name: a pointer to the buffer where the name will be stored.
889 * @ifindex: the ifindex of the interface to get the name from.
890 */
891int netdev_get_name(struct net *net, char *name, int ifindex)
892{
893 struct net_device *dev;
894 int ret;
895
896 down_read(&devnet_rename_sem);
897 rcu_read_lock();
898
899 dev = dev_get_by_index_rcu(net, ifindex);
900 if (!dev) {
901 ret = -ENODEV;
902 goto out;
903 }
904
905 strcpy(name, dev->name);
906
907 ret = 0;
908out:
909 rcu_read_unlock();
910 up_read(&devnet_rename_sem);
911 return ret;
912}
913
914/**
915 * dev_getbyhwaddr_rcu - find a device by its hardware address
916 * @net: the applicable net namespace
917 * @type: media type of device
918 * @ha: hardware address
919 *
920 * Search for an interface by MAC address. Returns NULL if the device
921 * is not found or a pointer to the device.
922 * The caller must hold RCU or RTNL.
923 * The returned device has not had its ref count increased
924 * and the caller must therefore be careful about locking
925 *
926 */
927
928struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929 const char *ha)
930{
931 struct net_device *dev;
932
933 for_each_netdev_rcu(net, dev)
934 if (dev->type == type &&
935 !memcmp(dev->dev_addr, ha, dev->addr_len))
936 return dev;
937
938 return NULL;
939}
940EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941
942struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943{
944 struct net_device *dev, *ret = NULL;
945
946 rcu_read_lock();
947 for_each_netdev_rcu(net, dev)
948 if (dev->type == type) {
949 dev_hold(dev);
950 ret = dev;
951 break;
952 }
953 rcu_read_unlock();
954 return ret;
955}
956EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958/**
959 * __dev_get_by_flags - find any device with given flags
960 * @net: the applicable net namespace
961 * @if_flags: IFF_* values
962 * @mask: bitmask of bits in if_flags to check
963 *
964 * Search for any interface with the given flags. Returns NULL if a device
965 * is not found or a pointer to the device. Must be called inside
966 * rtnl_lock(), and result refcount is unchanged.
967 */
968
969struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 unsigned short mask)
971{
972 struct net_device *dev, *ret;
973
974 ASSERT_RTNL();
975
976 ret = NULL;
977 for_each_netdev(net, dev) {
978 if (((dev->flags ^ if_flags) & mask) == 0) {
979 ret = dev;
980 break;
981 }
982 }
983 return ret;
984}
985EXPORT_SYMBOL(__dev_get_by_flags);
986
987/**
988 * dev_valid_name - check if name is okay for network device
989 * @name: name string
990 *
991 * Network device names need to be valid file names to
992 * allow sysfs to work. We also disallow any kind of
993 * whitespace.
994 */
995bool dev_valid_name(const char *name)
996{
997 if (*name == '\0')
998 return false;
999 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000 return false;
1001 if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 return false;
1003
1004 while (*name) {
1005 if (*name == '/' || *name == ':' || isspace(*name))
1006 return false;
1007 name++;
1008 }
1009 return true;
1010}
1011EXPORT_SYMBOL(dev_valid_name);
1012
1013/**
1014 * __dev_alloc_name - allocate a name for a device
1015 * @net: network namespace to allocate the device name in
1016 * @name: name format string
1017 * @buf: scratch buffer and result name string
1018 *
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029{
1030 int i = 0;
1031 const char *p;
1032 const int max_netdevices = 8*PAGE_SIZE;
1033 unsigned long *inuse;
1034 struct net_device *d;
1035
1036 if (!dev_valid_name(name))
1037 return -EINVAL;
1038
1039 p = strchr(name, '%');
1040 if (p) {
1041 /*
1042 * Verify the string as this thing may have come from
1043 * the user. There must be either one "%d" and no other "%"
1044 * characters.
1045 */
1046 if (p[1] != 'd' || strchr(p + 2, '%'))
1047 return -EINVAL;
1048
1049 /* Use one page as a bit array of possible slots */
1050 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051 if (!inuse)
1052 return -ENOMEM;
1053
1054 for_each_netdev(net, d) {
1055 struct netdev_name_node *name_node;
1056 list_for_each_entry(name_node, &d->name_node->list, list) {
1057 if (!sscanf(name_node->name, name, &i))
1058 continue;
1059 if (i < 0 || i >= max_netdevices)
1060 continue;
1061
1062 /* avoid cases where sscanf is not exact inverse of printf */
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065 __set_bit(i, inuse);
1066 }
1067 if (!sscanf(d->name, name, &i))
1068 continue;
1069 if (i < 0 || i >= max_netdevices)
1070 continue;
1071
1072 /* avoid cases where sscanf is not exact inverse of printf */
1073 snprintf(buf, IFNAMSIZ, name, i);
1074 if (!strncmp(buf, d->name, IFNAMSIZ))
1075 __set_bit(i, inuse);
1076 }
1077
1078 i = find_first_zero_bit(inuse, max_netdevices);
1079 free_page((unsigned long) inuse);
1080 }
1081
1082 snprintf(buf, IFNAMSIZ, name, i);
1083 if (!netdev_name_in_use(net, buf))
1084 return i;
1085
1086 /* It is possible to run out of possible slots
1087 * when the name is long and there isn't enough space left
1088 * for the digits, or if all bits are used.
1089 */
1090 return -ENFILE;
1091}
1092
1093static int dev_alloc_name_ns(struct net *net,
1094 struct net_device *dev,
1095 const char *name)
1096{
1097 char buf[IFNAMSIZ];
1098 int ret;
1099
1100 BUG_ON(!net);
1101 ret = __dev_alloc_name(net, name, buf);
1102 if (ret >= 0)
1103 strscpy(dev->name, buf, IFNAMSIZ);
1104 return ret;
1105}
1106
1107/**
1108 * dev_alloc_name - allocate a name for a device
1109 * @dev: device
1110 * @name: name format string
1111 *
1112 * Passed a format string - eg "lt%d" it will try and find a suitable
1113 * id. It scans list of devices to build up a free map, then chooses
1114 * the first empty slot. The caller must hold the dev_base or rtnl lock
1115 * while allocating the name and adding the device in order to avoid
1116 * duplicates.
1117 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118 * Returns the number of the unit assigned or a negative errno code.
1119 */
1120
1121int dev_alloc_name(struct net_device *dev, const char *name)
1122{
1123 return dev_alloc_name_ns(dev_net(dev), dev, name);
1124}
1125EXPORT_SYMBOL(dev_alloc_name);
1126
1127static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128 const char *name)
1129{
1130 BUG_ON(!net);
1131
1132 if (!dev_valid_name(name))
1133 return -EINVAL;
1134
1135 if (strchr(name, '%'))
1136 return dev_alloc_name_ns(net, dev, name);
1137 else if (netdev_name_in_use(net, name))
1138 return -EEXIST;
1139 else if (dev->name != name)
1140 strscpy(dev->name, name, IFNAMSIZ);
1141
1142 return 0;
1143}
1144
1145/**
1146 * dev_change_name - change name of a device
1147 * @dev: device
1148 * @newname: name (or format string) must be at least IFNAMSIZ
1149 *
1150 * Change name of a device, can pass format strings "eth%d".
1151 * for wildcarding.
1152 */
1153int dev_change_name(struct net_device *dev, const char *newname)
1154{
1155 unsigned char old_assign_type;
1156 char oldname[IFNAMSIZ];
1157 int err = 0;
1158 int ret;
1159 struct net *net;
1160
1161 ASSERT_RTNL();
1162 BUG_ON(!dev_net(dev));
1163
1164 net = dev_net(dev);
1165
1166 down_write(&devnet_rename_sem);
1167
1168 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1169 up_write(&devnet_rename_sem);
1170 return 0;
1171 }
1172
1173 memcpy(oldname, dev->name, IFNAMSIZ);
1174
1175 err = dev_get_valid_name(net, dev, newname);
1176 if (err < 0) {
1177 up_write(&devnet_rename_sem);
1178 return err;
1179 }
1180
1181 if (oldname[0] && !strchr(oldname, '%'))
1182 netdev_info(dev, "renamed from %s%s\n", oldname,
1183 dev->flags & IFF_UP ? " (while UP)" : "");
1184
1185 old_assign_type = dev->name_assign_type;
1186 dev->name_assign_type = NET_NAME_RENAMED;
1187
1188rollback:
1189 ret = device_rename(&dev->dev, dev->name);
1190 if (ret) {
1191 memcpy(dev->name, oldname, IFNAMSIZ);
1192 dev->name_assign_type = old_assign_type;
1193 up_write(&devnet_rename_sem);
1194 return ret;
1195 }
1196
1197 up_write(&devnet_rename_sem);
1198
1199 netdev_adjacent_rename_links(dev, oldname);
1200
1201 write_lock(&dev_base_lock);
1202 netdev_name_node_del(dev->name_node);
1203 write_unlock(&dev_base_lock);
1204
1205 synchronize_rcu();
1206
1207 write_lock(&dev_base_lock);
1208 netdev_name_node_add(net, dev->name_node);
1209 write_unlock(&dev_base_lock);
1210
1211 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1212 ret = notifier_to_errno(ret);
1213
1214 if (ret) {
1215 /* err >= 0 after dev_alloc_name() or stores the first errno */
1216 if (err >= 0) {
1217 err = ret;
1218 down_write(&devnet_rename_sem);
1219 memcpy(dev->name, oldname, IFNAMSIZ);
1220 memcpy(oldname, newname, IFNAMSIZ);
1221 dev->name_assign_type = old_assign_type;
1222 old_assign_type = NET_NAME_RENAMED;
1223 goto rollback;
1224 } else {
1225 netdev_err(dev, "name change rollback failed: %d\n",
1226 ret);
1227 }
1228 }
1229
1230 return err;
1231}
1232
1233/**
1234 * dev_set_alias - change ifalias of a device
1235 * @dev: device
1236 * @alias: name up to IFALIASZ
1237 * @len: limit of bytes to copy from info
1238 *
1239 * Set ifalias for a device,
1240 */
1241int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1242{
1243 struct dev_ifalias *new_alias = NULL;
1244
1245 if (len >= IFALIASZ)
1246 return -EINVAL;
1247
1248 if (len) {
1249 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1250 if (!new_alias)
1251 return -ENOMEM;
1252
1253 memcpy(new_alias->ifalias, alias, len);
1254 new_alias->ifalias[len] = 0;
1255 }
1256
1257 mutex_lock(&ifalias_mutex);
1258 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1259 mutex_is_locked(&ifalias_mutex));
1260 mutex_unlock(&ifalias_mutex);
1261
1262 if (new_alias)
1263 kfree_rcu(new_alias, rcuhead);
1264
1265 return len;
1266}
1267EXPORT_SYMBOL(dev_set_alias);
1268
1269/**
1270 * dev_get_alias - get ifalias of a device
1271 * @dev: device
1272 * @name: buffer to store name of ifalias
1273 * @len: size of buffer
1274 *
1275 * get ifalias for a device. Caller must make sure dev cannot go
1276 * away, e.g. rcu read lock or own a reference count to device.
1277 */
1278int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1279{
1280 const struct dev_ifalias *alias;
1281 int ret = 0;
1282
1283 rcu_read_lock();
1284 alias = rcu_dereference(dev->ifalias);
1285 if (alias)
1286 ret = snprintf(name, len, "%s", alias->ifalias);
1287 rcu_read_unlock();
1288
1289 return ret;
1290}
1291
1292/**
1293 * netdev_features_change - device changes features
1294 * @dev: device to cause notification
1295 *
1296 * Called to indicate a device has changed features.
1297 */
1298void netdev_features_change(struct net_device *dev)
1299{
1300 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301}
1302EXPORT_SYMBOL(netdev_features_change);
1303
1304/**
1305 * netdev_state_change - device changes state
1306 * @dev: device to cause notification
1307 *
1308 * Called to indicate a device has changed state. This function calls
1309 * the notifier chains for netdev_chain and sends a NEWLINK message
1310 * to the routing socket.
1311 */
1312void netdev_state_change(struct net_device *dev)
1313{
1314 if (dev->flags & IFF_UP) {
1315 struct netdev_notifier_change_info change_info = {
1316 .info.dev = dev,
1317 };
1318
1319 call_netdevice_notifiers_info(NETDEV_CHANGE,
1320 &change_info.info);
1321 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1322 }
1323}
1324EXPORT_SYMBOL(netdev_state_change);
1325
1326/**
1327 * __netdev_notify_peers - notify network peers about existence of @dev,
1328 * to be called when rtnl lock is already held.
1329 * @dev: network device
1330 *
1331 * Generate traffic such that interested network peers are aware of
1332 * @dev, such as by generating a gratuitous ARP. This may be used when
1333 * a device wants to inform the rest of the network about some sort of
1334 * reconfiguration such as a failover event or virtual machine
1335 * migration.
1336 */
1337void __netdev_notify_peers(struct net_device *dev)
1338{
1339 ASSERT_RTNL();
1340 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1341 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1342}
1343EXPORT_SYMBOL(__netdev_notify_peers);
1344
1345/**
1346 * netdev_notify_peers - notify network peers about existence of @dev
1347 * @dev: network device
1348 *
1349 * Generate traffic such that interested network peers are aware of
1350 * @dev, such as by generating a gratuitous ARP. This may be used when
1351 * a device wants to inform the rest of the network about some sort of
1352 * reconfiguration such as a failover event or virtual machine
1353 * migration.
1354 */
1355void netdev_notify_peers(struct net_device *dev)
1356{
1357 rtnl_lock();
1358 __netdev_notify_peers(dev);
1359 rtnl_unlock();
1360}
1361EXPORT_SYMBOL(netdev_notify_peers);
1362
1363static int napi_threaded_poll(void *data);
1364
1365static int napi_kthread_create(struct napi_struct *n)
1366{
1367 int err = 0;
1368
1369 /* Create and wake up the kthread once to put it in
1370 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1371 * warning and work with loadavg.
1372 */
1373 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1374 n->dev->name, n->napi_id);
1375 if (IS_ERR(n->thread)) {
1376 err = PTR_ERR(n->thread);
1377 pr_err("kthread_run failed with err %d\n", err);
1378 n->thread = NULL;
1379 }
1380
1381 return err;
1382}
1383
1384static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1385{
1386 const struct net_device_ops *ops = dev->netdev_ops;
1387 int ret;
1388
1389 ASSERT_RTNL();
1390 dev_addr_check(dev);
1391
1392 if (!netif_device_present(dev)) {
1393 /* may be detached because parent is runtime-suspended */
1394 if (dev->dev.parent)
1395 pm_runtime_resume(dev->dev.parent);
1396 if (!netif_device_present(dev))
1397 return -ENODEV;
1398 }
1399
1400 /* Block netpoll from trying to do any rx path servicing.
1401 * If we don't do this there is a chance ndo_poll_controller
1402 * or ndo_poll may be running while we open the device
1403 */
1404 netpoll_poll_disable(dev);
1405
1406 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1407 ret = notifier_to_errno(ret);
1408 if (ret)
1409 return ret;
1410
1411 set_bit(__LINK_STATE_START, &dev->state);
1412
1413 if (ops->ndo_validate_addr)
1414 ret = ops->ndo_validate_addr(dev);
1415
1416 if (!ret && ops->ndo_open)
1417 ret = ops->ndo_open(dev);
1418
1419 netpoll_poll_enable(dev);
1420
1421 if (ret)
1422 clear_bit(__LINK_STATE_START, &dev->state);
1423 else {
1424 dev->flags |= IFF_UP;
1425 dev_set_rx_mode(dev);
1426 dev_activate(dev);
1427 add_device_randomness(dev->dev_addr, dev->addr_len);
1428 }
1429
1430 return ret;
1431}
1432
1433/**
1434 * dev_open - prepare an interface for use.
1435 * @dev: device to open
1436 * @extack: netlink extended ack
1437 *
1438 * Takes a device from down to up state. The device's private open
1439 * function is invoked and then the multicast lists are loaded. Finally
1440 * the device is moved into the up state and a %NETDEV_UP message is
1441 * sent to the netdev notifier chain.
1442 *
1443 * Calling this function on an active interface is a nop. On a failure
1444 * a negative errno code is returned.
1445 */
1446int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1447{
1448 int ret;
1449
1450 if (dev->flags & IFF_UP)
1451 return 0;
1452
1453 ret = __dev_open(dev, extack);
1454 if (ret < 0)
1455 return ret;
1456
1457 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1458 call_netdevice_notifiers(NETDEV_UP, dev);
1459
1460 return ret;
1461}
1462EXPORT_SYMBOL(dev_open);
1463
1464static void __dev_close_many(struct list_head *head)
1465{
1466 struct net_device *dev;
1467
1468 ASSERT_RTNL();
1469 might_sleep();
1470
1471 list_for_each_entry(dev, head, close_list) {
1472 /* Temporarily disable netpoll until the interface is down */
1473 netpoll_poll_disable(dev);
1474
1475 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1476
1477 clear_bit(__LINK_STATE_START, &dev->state);
1478
1479 /* Synchronize to scheduled poll. We cannot touch poll list, it
1480 * can be even on different cpu. So just clear netif_running().
1481 *
1482 * dev->stop() will invoke napi_disable() on all of it's
1483 * napi_struct instances on this device.
1484 */
1485 smp_mb__after_atomic(); /* Commit netif_running(). */
1486 }
1487
1488 dev_deactivate_many(head);
1489
1490 list_for_each_entry(dev, head, close_list) {
1491 const struct net_device_ops *ops = dev->netdev_ops;
1492
1493 /*
1494 * Call the device specific close. This cannot fail.
1495 * Only if device is UP
1496 *
1497 * We allow it to be called even after a DETACH hot-plug
1498 * event.
1499 */
1500 if (ops->ndo_stop)
1501 ops->ndo_stop(dev);
1502
1503 dev->flags &= ~IFF_UP;
1504 netpoll_poll_enable(dev);
1505 }
1506}
1507
1508static void __dev_close(struct net_device *dev)
1509{
1510 LIST_HEAD(single);
1511
1512 list_add(&dev->close_list, &single);
1513 __dev_close_many(&single);
1514 list_del(&single);
1515}
1516
1517void dev_close_many(struct list_head *head, bool unlink)
1518{
1519 struct net_device *dev, *tmp;
1520
1521 /* Remove the devices that don't need to be closed */
1522 list_for_each_entry_safe(dev, tmp, head, close_list)
1523 if (!(dev->flags & IFF_UP))
1524 list_del_init(&dev->close_list);
1525
1526 __dev_close_many(head);
1527
1528 list_for_each_entry_safe(dev, tmp, head, close_list) {
1529 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1530 call_netdevice_notifiers(NETDEV_DOWN, dev);
1531 if (unlink)
1532 list_del_init(&dev->close_list);
1533 }
1534}
1535EXPORT_SYMBOL(dev_close_many);
1536
1537/**
1538 * dev_close - shutdown an interface.
1539 * @dev: device to shutdown
1540 *
1541 * This function moves an active device into down state. A
1542 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1543 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1544 * chain.
1545 */
1546void dev_close(struct net_device *dev)
1547{
1548 if (dev->flags & IFF_UP) {
1549 LIST_HEAD(single);
1550
1551 list_add(&dev->close_list, &single);
1552 dev_close_many(&single, true);
1553 list_del(&single);
1554 }
1555}
1556EXPORT_SYMBOL(dev_close);
1557
1558
1559/**
1560 * dev_disable_lro - disable Large Receive Offload on a device
1561 * @dev: device
1562 *
1563 * Disable Large Receive Offload (LRO) on a net device. Must be
1564 * called under RTNL. This is needed if received packets may be
1565 * forwarded to another interface.
1566 */
1567void dev_disable_lro(struct net_device *dev)
1568{
1569 struct net_device *lower_dev;
1570 struct list_head *iter;
1571
1572 dev->wanted_features &= ~NETIF_F_LRO;
1573 netdev_update_features(dev);
1574
1575 if (unlikely(dev->features & NETIF_F_LRO))
1576 netdev_WARN(dev, "failed to disable LRO!\n");
1577
1578 netdev_for_each_lower_dev(dev, lower_dev, iter)
1579 dev_disable_lro(lower_dev);
1580}
1581EXPORT_SYMBOL(dev_disable_lro);
1582
1583/**
1584 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1585 * @dev: device
1586 *
1587 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1588 * called under RTNL. This is needed if Generic XDP is installed on
1589 * the device.
1590 */
1591static void dev_disable_gro_hw(struct net_device *dev)
1592{
1593 dev->wanted_features &= ~NETIF_F_GRO_HW;
1594 netdev_update_features(dev);
1595
1596 if (unlikely(dev->features & NETIF_F_GRO_HW))
1597 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1598}
1599
1600const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1601{
1602#define N(val) \
1603 case NETDEV_##val: \
1604 return "NETDEV_" __stringify(val);
1605 switch (cmd) {
1606 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1607 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1608 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1609 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1610 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1611 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1612 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1613 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1614 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1615 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1616 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1617 }
1618#undef N
1619 return "UNKNOWN_NETDEV_EVENT";
1620}
1621EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1622
1623static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1624 struct net_device *dev)
1625{
1626 struct netdev_notifier_info info = {
1627 .dev = dev,
1628 };
1629
1630 return nb->notifier_call(nb, val, &info);
1631}
1632
1633static int call_netdevice_register_notifiers(struct notifier_block *nb,
1634 struct net_device *dev)
1635{
1636 int err;
1637
1638 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639 err = notifier_to_errno(err);
1640 if (err)
1641 return err;
1642
1643 if (!(dev->flags & IFF_UP))
1644 return 0;
1645
1646 call_netdevice_notifier(nb, NETDEV_UP, dev);
1647 return 0;
1648}
1649
1650static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1651 struct net_device *dev)
1652{
1653 if (dev->flags & IFF_UP) {
1654 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1655 dev);
1656 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1657 }
1658 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1659}
1660
1661static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1662 struct net *net)
1663{
1664 struct net_device *dev;
1665 int err;
1666
1667 for_each_netdev(net, dev) {
1668 err = call_netdevice_register_notifiers(nb, dev);
1669 if (err)
1670 goto rollback;
1671 }
1672 return 0;
1673
1674rollback:
1675 for_each_netdev_continue_reverse(net, dev)
1676 call_netdevice_unregister_notifiers(nb, dev);
1677 return err;
1678}
1679
1680static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1681 struct net *net)
1682{
1683 struct net_device *dev;
1684
1685 for_each_netdev(net, dev)
1686 call_netdevice_unregister_notifiers(nb, dev);
1687}
1688
1689static int dev_boot_phase = 1;
1690
1691/**
1692 * register_netdevice_notifier - register a network notifier block
1693 * @nb: notifier
1694 *
1695 * Register a notifier to be called when network device events occur.
1696 * The notifier passed is linked into the kernel structures and must
1697 * not be reused until it has been unregistered. A negative errno code
1698 * is returned on a failure.
1699 *
1700 * When registered all registration and up events are replayed
1701 * to the new notifier to allow device to have a race free
1702 * view of the network device list.
1703 */
1704
1705int register_netdevice_notifier(struct notifier_block *nb)
1706{
1707 struct net *net;
1708 int err;
1709
1710 /* Close race with setup_net() and cleanup_net() */
1711 down_write(&pernet_ops_rwsem);
1712 rtnl_lock();
1713 err = raw_notifier_chain_register(&netdev_chain, nb);
1714 if (err)
1715 goto unlock;
1716 if (dev_boot_phase)
1717 goto unlock;
1718 for_each_net(net) {
1719 err = call_netdevice_register_net_notifiers(nb, net);
1720 if (err)
1721 goto rollback;
1722 }
1723
1724unlock:
1725 rtnl_unlock();
1726 up_write(&pernet_ops_rwsem);
1727 return err;
1728
1729rollback:
1730 for_each_net_continue_reverse(net)
1731 call_netdevice_unregister_net_notifiers(nb, net);
1732
1733 raw_notifier_chain_unregister(&netdev_chain, nb);
1734 goto unlock;
1735}
1736EXPORT_SYMBOL(register_netdevice_notifier);
1737
1738/**
1739 * unregister_netdevice_notifier - unregister a network notifier block
1740 * @nb: notifier
1741 *
1742 * Unregister a notifier previously registered by
1743 * register_netdevice_notifier(). The notifier is unlinked into the
1744 * kernel structures and may then be reused. A negative errno code
1745 * is returned on a failure.
1746 *
1747 * After unregistering unregister and down device events are synthesized
1748 * for all devices on the device list to the removed notifier to remove
1749 * the need for special case cleanup code.
1750 */
1751
1752int unregister_netdevice_notifier(struct notifier_block *nb)
1753{
1754 struct net *net;
1755 int err;
1756
1757 /* Close race with setup_net() and cleanup_net() */
1758 down_write(&pernet_ops_rwsem);
1759 rtnl_lock();
1760 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1761 if (err)
1762 goto unlock;
1763
1764 for_each_net(net)
1765 call_netdevice_unregister_net_notifiers(nb, net);
1766
1767unlock:
1768 rtnl_unlock();
1769 up_write(&pernet_ops_rwsem);
1770 return err;
1771}
1772EXPORT_SYMBOL(unregister_netdevice_notifier);
1773
1774static int __register_netdevice_notifier_net(struct net *net,
1775 struct notifier_block *nb,
1776 bool ignore_call_fail)
1777{
1778 int err;
1779
1780 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1781 if (err)
1782 return err;
1783 if (dev_boot_phase)
1784 return 0;
1785
1786 err = call_netdevice_register_net_notifiers(nb, net);
1787 if (err && !ignore_call_fail)
1788 goto chain_unregister;
1789
1790 return 0;
1791
1792chain_unregister:
1793 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1794 return err;
1795}
1796
1797static int __unregister_netdevice_notifier_net(struct net *net,
1798 struct notifier_block *nb)
1799{
1800 int err;
1801
1802 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1803 if (err)
1804 return err;
1805
1806 call_netdevice_unregister_net_notifiers(nb, net);
1807 return 0;
1808}
1809
1810/**
1811 * register_netdevice_notifier_net - register a per-netns network notifier block
1812 * @net: network namespace
1813 * @nb: notifier
1814 *
1815 * Register a notifier to be called when network device events occur.
1816 * The notifier passed is linked into the kernel structures and must
1817 * not be reused until it has been unregistered. A negative errno code
1818 * is returned on a failure.
1819 *
1820 * When registered all registration and up events are replayed
1821 * to the new notifier to allow device to have a race free
1822 * view of the network device list.
1823 */
1824
1825int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1826{
1827 int err;
1828
1829 rtnl_lock();
1830 err = __register_netdevice_notifier_net(net, nb, false);
1831 rtnl_unlock();
1832 return err;
1833}
1834EXPORT_SYMBOL(register_netdevice_notifier_net);
1835
1836/**
1837 * unregister_netdevice_notifier_net - unregister a per-netns
1838 * network notifier block
1839 * @net: network namespace
1840 * @nb: notifier
1841 *
1842 * Unregister a notifier previously registered by
1843 * register_netdevice_notifier(). The notifier is unlinked into the
1844 * kernel structures and may then be reused. A negative errno code
1845 * is returned on a failure.
1846 *
1847 * After unregistering unregister and down device events are synthesized
1848 * for all devices on the device list to the removed notifier to remove
1849 * the need for special case cleanup code.
1850 */
1851
1852int unregister_netdevice_notifier_net(struct net *net,
1853 struct notifier_block *nb)
1854{
1855 int err;
1856
1857 rtnl_lock();
1858 err = __unregister_netdevice_notifier_net(net, nb);
1859 rtnl_unlock();
1860 return err;
1861}
1862EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1863
1864static void __move_netdevice_notifier_net(struct net *src_net,
1865 struct net *dst_net,
1866 struct notifier_block *nb)
1867{
1868 __unregister_netdevice_notifier_net(src_net, nb);
1869 __register_netdevice_notifier_net(dst_net, nb, true);
1870}
1871
1872int register_netdevice_notifier_dev_net(struct net_device *dev,
1873 struct notifier_block *nb,
1874 struct netdev_net_notifier *nn)
1875{
1876 int err;
1877
1878 rtnl_lock();
1879 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1880 if (!err) {
1881 nn->nb = nb;
1882 list_add(&nn->list, &dev->net_notifier_list);
1883 }
1884 rtnl_unlock();
1885 return err;
1886}
1887EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1888
1889int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1890 struct notifier_block *nb,
1891 struct netdev_net_notifier *nn)
1892{
1893 int err;
1894
1895 rtnl_lock();
1896 list_del(&nn->list);
1897 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1898 rtnl_unlock();
1899 return err;
1900}
1901EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1902
1903static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1904 struct net *net)
1905{
1906 struct netdev_net_notifier *nn;
1907
1908 list_for_each_entry(nn, &dev->net_notifier_list, list)
1909 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1910}
1911
1912/**
1913 * call_netdevice_notifiers_info - call all network notifier blocks
1914 * @val: value passed unmodified to notifier function
1915 * @info: notifier information data
1916 *
1917 * Call all network notifier blocks. Parameters and return value
1918 * are as for raw_notifier_call_chain().
1919 */
1920
1921static int call_netdevice_notifiers_info(unsigned long val,
1922 struct netdev_notifier_info *info)
1923{
1924 struct net *net = dev_net(info->dev);
1925 int ret;
1926
1927 ASSERT_RTNL();
1928
1929 /* Run per-netns notifier block chain first, then run the global one.
1930 * Hopefully, one day, the global one is going to be removed after
1931 * all notifier block registrators get converted to be per-netns.
1932 */
1933 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1934 if (ret & NOTIFY_STOP_MASK)
1935 return ret;
1936 return raw_notifier_call_chain(&netdev_chain, val, info);
1937}
1938
1939/**
1940 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1941 * for and rollback on error
1942 * @val_up: value passed unmodified to notifier function
1943 * @val_down: value passed unmodified to the notifier function when
1944 * recovering from an error on @val_up
1945 * @info: notifier information data
1946 *
1947 * Call all per-netns network notifier blocks, but not notifier blocks on
1948 * the global notifier chain. Parameters and return value are as for
1949 * raw_notifier_call_chain_robust().
1950 */
1951
1952static int
1953call_netdevice_notifiers_info_robust(unsigned long val_up,
1954 unsigned long val_down,
1955 struct netdev_notifier_info *info)
1956{
1957 struct net *net = dev_net(info->dev);
1958
1959 ASSERT_RTNL();
1960
1961 return raw_notifier_call_chain_robust(&net->netdev_chain,
1962 val_up, val_down, info);
1963}
1964
1965static int call_netdevice_notifiers_extack(unsigned long val,
1966 struct net_device *dev,
1967 struct netlink_ext_ack *extack)
1968{
1969 struct netdev_notifier_info info = {
1970 .dev = dev,
1971 .extack = extack,
1972 };
1973
1974 return call_netdevice_notifiers_info(val, &info);
1975}
1976
1977/**
1978 * call_netdevice_notifiers - call all network notifier blocks
1979 * @val: value passed unmodified to notifier function
1980 * @dev: net_device pointer passed unmodified to notifier function
1981 *
1982 * Call all network notifier blocks. Parameters and return value
1983 * are as for raw_notifier_call_chain().
1984 */
1985
1986int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1987{
1988 return call_netdevice_notifiers_extack(val, dev, NULL);
1989}
1990EXPORT_SYMBOL(call_netdevice_notifiers);
1991
1992/**
1993 * call_netdevice_notifiers_mtu - call all network notifier blocks
1994 * @val: value passed unmodified to notifier function
1995 * @dev: net_device pointer passed unmodified to notifier function
1996 * @arg: additional u32 argument passed to the notifier function
1997 *
1998 * Call all network notifier blocks. Parameters and return value
1999 * are as for raw_notifier_call_chain().
2000 */
2001static int call_netdevice_notifiers_mtu(unsigned long val,
2002 struct net_device *dev, u32 arg)
2003{
2004 struct netdev_notifier_info_ext info = {
2005 .info.dev = dev,
2006 .ext.mtu = arg,
2007 };
2008
2009 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2010
2011 return call_netdevice_notifiers_info(val, &info.info);
2012}
2013
2014#ifdef CONFIG_NET_INGRESS
2015static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2016
2017void net_inc_ingress_queue(void)
2018{
2019 static_branch_inc(&ingress_needed_key);
2020}
2021EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2022
2023void net_dec_ingress_queue(void)
2024{
2025 static_branch_dec(&ingress_needed_key);
2026}
2027EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2028#endif
2029
2030#ifdef CONFIG_NET_EGRESS
2031static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2032
2033void net_inc_egress_queue(void)
2034{
2035 static_branch_inc(&egress_needed_key);
2036}
2037EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2038
2039void net_dec_egress_queue(void)
2040{
2041 static_branch_dec(&egress_needed_key);
2042}
2043EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2044#endif
2045
2046DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2047EXPORT_SYMBOL(netstamp_needed_key);
2048#ifdef CONFIG_JUMP_LABEL
2049static atomic_t netstamp_needed_deferred;
2050static atomic_t netstamp_wanted;
2051static void netstamp_clear(struct work_struct *work)
2052{
2053 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2054 int wanted;
2055
2056 wanted = atomic_add_return(deferred, &netstamp_wanted);
2057 if (wanted > 0)
2058 static_branch_enable(&netstamp_needed_key);
2059 else
2060 static_branch_disable(&netstamp_needed_key);
2061}
2062static DECLARE_WORK(netstamp_work, netstamp_clear);
2063#endif
2064
2065void net_enable_timestamp(void)
2066{
2067#ifdef CONFIG_JUMP_LABEL
2068 int wanted = atomic_read(&netstamp_wanted);
2069
2070 while (wanted > 0) {
2071 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2072 return;
2073 }
2074 atomic_inc(&netstamp_needed_deferred);
2075 schedule_work(&netstamp_work);
2076#else
2077 static_branch_inc(&netstamp_needed_key);
2078#endif
2079}
2080EXPORT_SYMBOL(net_enable_timestamp);
2081
2082void net_disable_timestamp(void)
2083{
2084#ifdef CONFIG_JUMP_LABEL
2085 int wanted = atomic_read(&netstamp_wanted);
2086
2087 while (wanted > 1) {
2088 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2089 return;
2090 }
2091 atomic_dec(&netstamp_needed_deferred);
2092 schedule_work(&netstamp_work);
2093#else
2094 static_branch_dec(&netstamp_needed_key);
2095#endif
2096}
2097EXPORT_SYMBOL(net_disable_timestamp);
2098
2099static inline void net_timestamp_set(struct sk_buff *skb)
2100{
2101 skb->tstamp = 0;
2102 skb->mono_delivery_time = 0;
2103 if (static_branch_unlikely(&netstamp_needed_key))
2104 skb->tstamp = ktime_get_real();
2105}
2106
2107#define net_timestamp_check(COND, SKB) \
2108 if (static_branch_unlikely(&netstamp_needed_key)) { \
2109 if ((COND) && !(SKB)->tstamp) \
2110 (SKB)->tstamp = ktime_get_real(); \
2111 } \
2112
2113bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2114{
2115 return __is_skb_forwardable(dev, skb, true);
2116}
2117EXPORT_SYMBOL_GPL(is_skb_forwardable);
2118
2119static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2120 bool check_mtu)
2121{
2122 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2123
2124 if (likely(!ret)) {
2125 skb->protocol = eth_type_trans(skb, dev);
2126 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2127 }
2128
2129 return ret;
2130}
2131
2132int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2133{
2134 return __dev_forward_skb2(dev, skb, true);
2135}
2136EXPORT_SYMBOL_GPL(__dev_forward_skb);
2137
2138/**
2139 * dev_forward_skb - loopback an skb to another netif
2140 *
2141 * @dev: destination network device
2142 * @skb: buffer to forward
2143 *
2144 * return values:
2145 * NET_RX_SUCCESS (no congestion)
2146 * NET_RX_DROP (packet was dropped, but freed)
2147 *
2148 * dev_forward_skb can be used for injecting an skb from the
2149 * start_xmit function of one device into the receive queue
2150 * of another device.
2151 *
2152 * The receiving device may be in another namespace, so
2153 * we have to clear all information in the skb that could
2154 * impact namespace isolation.
2155 */
2156int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2157{
2158 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2159}
2160EXPORT_SYMBOL_GPL(dev_forward_skb);
2161
2162int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2163{
2164 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2165}
2166
2167static inline int deliver_skb(struct sk_buff *skb,
2168 struct packet_type *pt_prev,
2169 struct net_device *orig_dev)
2170{
2171 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2172 return -ENOMEM;
2173 refcount_inc(&skb->users);
2174 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2175}
2176
2177static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2178 struct packet_type **pt,
2179 struct net_device *orig_dev,
2180 __be16 type,
2181 struct list_head *ptype_list)
2182{
2183 struct packet_type *ptype, *pt_prev = *pt;
2184
2185 list_for_each_entry_rcu(ptype, ptype_list, list) {
2186 if (ptype->type != type)
2187 continue;
2188 if (pt_prev)
2189 deliver_skb(skb, pt_prev, orig_dev);
2190 pt_prev = ptype;
2191 }
2192 *pt = pt_prev;
2193}
2194
2195static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2196{
2197 if (!ptype->af_packet_priv || !skb->sk)
2198 return false;
2199
2200 if (ptype->id_match)
2201 return ptype->id_match(ptype, skb->sk);
2202 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2203 return true;
2204
2205 return false;
2206}
2207
2208/**
2209 * dev_nit_active - return true if any network interface taps are in use
2210 *
2211 * @dev: network device to check for the presence of taps
2212 */
2213bool dev_nit_active(struct net_device *dev)
2214{
2215 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2216}
2217EXPORT_SYMBOL_GPL(dev_nit_active);
2218
2219/*
2220 * Support routine. Sends outgoing frames to any network
2221 * taps currently in use.
2222 */
2223
2224void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2225{
2226 struct packet_type *ptype;
2227 struct sk_buff *skb2 = NULL;
2228 struct packet_type *pt_prev = NULL;
2229 struct list_head *ptype_list = &ptype_all;
2230
2231 rcu_read_lock();
2232again:
2233 list_for_each_entry_rcu(ptype, ptype_list, list) {
2234 if (ptype->ignore_outgoing)
2235 continue;
2236
2237 /* Never send packets back to the socket
2238 * they originated from - MvS (miquels@drinkel.ow.org)
2239 */
2240 if (skb_loop_sk(ptype, skb))
2241 continue;
2242
2243 if (pt_prev) {
2244 deliver_skb(skb2, pt_prev, skb->dev);
2245 pt_prev = ptype;
2246 continue;
2247 }
2248
2249 /* need to clone skb, done only once */
2250 skb2 = skb_clone(skb, GFP_ATOMIC);
2251 if (!skb2)
2252 goto out_unlock;
2253
2254 net_timestamp_set(skb2);
2255
2256 /* skb->nh should be correctly
2257 * set by sender, so that the second statement is
2258 * just protection against buggy protocols.
2259 */
2260 skb_reset_mac_header(skb2);
2261
2262 if (skb_network_header(skb2) < skb2->data ||
2263 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2264 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2265 ntohs(skb2->protocol),
2266 dev->name);
2267 skb_reset_network_header(skb2);
2268 }
2269
2270 skb2->transport_header = skb2->network_header;
2271 skb2->pkt_type = PACKET_OUTGOING;
2272 pt_prev = ptype;
2273 }
2274
2275 if (ptype_list == &ptype_all) {
2276 ptype_list = &dev->ptype_all;
2277 goto again;
2278 }
2279out_unlock:
2280 if (pt_prev) {
2281 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2282 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2283 else
2284 kfree_skb(skb2);
2285 }
2286 rcu_read_unlock();
2287}
2288EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2289
2290/**
2291 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2292 * @dev: Network device
2293 * @txq: number of queues available
2294 *
2295 * If real_num_tx_queues is changed the tc mappings may no longer be
2296 * valid. To resolve this verify the tc mapping remains valid and if
2297 * not NULL the mapping. With no priorities mapping to this
2298 * offset/count pair it will no longer be used. In the worst case TC0
2299 * is invalid nothing can be done so disable priority mappings. If is
2300 * expected that drivers will fix this mapping if they can before
2301 * calling netif_set_real_num_tx_queues.
2302 */
2303static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2304{
2305 int i;
2306 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2307
2308 /* If TC0 is invalidated disable TC mapping */
2309 if (tc->offset + tc->count > txq) {
2310 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2311 dev->num_tc = 0;
2312 return;
2313 }
2314
2315 /* Invalidated prio to tc mappings set to TC0 */
2316 for (i = 1; i < TC_BITMASK + 1; i++) {
2317 int q = netdev_get_prio_tc_map(dev, i);
2318
2319 tc = &dev->tc_to_txq[q];
2320 if (tc->offset + tc->count > txq) {
2321 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2322 i, q);
2323 netdev_set_prio_tc_map(dev, i, 0);
2324 }
2325 }
2326}
2327
2328int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2329{
2330 if (dev->num_tc) {
2331 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2332 int i;
2333
2334 /* walk through the TCs and see if it falls into any of them */
2335 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2336 if ((txq - tc->offset) < tc->count)
2337 return i;
2338 }
2339
2340 /* didn't find it, just return -1 to indicate no match */
2341 return -1;
2342 }
2343
2344 return 0;
2345}
2346EXPORT_SYMBOL(netdev_txq_to_tc);
2347
2348#ifdef CONFIG_XPS
2349static struct static_key xps_needed __read_mostly;
2350static struct static_key xps_rxqs_needed __read_mostly;
2351static DEFINE_MUTEX(xps_map_mutex);
2352#define xmap_dereference(P) \
2353 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2354
2355static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2356 struct xps_dev_maps *old_maps, int tci, u16 index)
2357{
2358 struct xps_map *map = NULL;
2359 int pos;
2360
2361 if (dev_maps)
2362 map = xmap_dereference(dev_maps->attr_map[tci]);
2363 if (!map)
2364 return false;
2365
2366 for (pos = map->len; pos--;) {
2367 if (map->queues[pos] != index)
2368 continue;
2369
2370 if (map->len > 1) {
2371 map->queues[pos] = map->queues[--map->len];
2372 break;
2373 }
2374
2375 if (old_maps)
2376 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2377 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2378 kfree_rcu(map, rcu);
2379 return false;
2380 }
2381
2382 return true;
2383}
2384
2385static bool remove_xps_queue_cpu(struct net_device *dev,
2386 struct xps_dev_maps *dev_maps,
2387 int cpu, u16 offset, u16 count)
2388{
2389 int num_tc = dev_maps->num_tc;
2390 bool active = false;
2391 int tci;
2392
2393 for (tci = cpu * num_tc; num_tc--; tci++) {
2394 int i, j;
2395
2396 for (i = count, j = offset; i--; j++) {
2397 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2398 break;
2399 }
2400
2401 active |= i < 0;
2402 }
2403
2404 return active;
2405}
2406
2407static void reset_xps_maps(struct net_device *dev,
2408 struct xps_dev_maps *dev_maps,
2409 enum xps_map_type type)
2410{
2411 static_key_slow_dec_cpuslocked(&xps_needed);
2412 if (type == XPS_RXQS)
2413 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2414
2415 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2416
2417 kfree_rcu(dev_maps, rcu);
2418}
2419
2420static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2421 u16 offset, u16 count)
2422{
2423 struct xps_dev_maps *dev_maps;
2424 bool active = false;
2425 int i, j;
2426
2427 dev_maps = xmap_dereference(dev->xps_maps[type]);
2428 if (!dev_maps)
2429 return;
2430
2431 for (j = 0; j < dev_maps->nr_ids; j++)
2432 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2433 if (!active)
2434 reset_xps_maps(dev, dev_maps, type);
2435
2436 if (type == XPS_CPUS) {
2437 for (i = offset + (count - 1); count--; i--)
2438 netdev_queue_numa_node_write(
2439 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2440 }
2441}
2442
2443static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2444 u16 count)
2445{
2446 if (!static_key_false(&xps_needed))
2447 return;
2448
2449 cpus_read_lock();
2450 mutex_lock(&xps_map_mutex);
2451
2452 if (static_key_false(&xps_rxqs_needed))
2453 clean_xps_maps(dev, XPS_RXQS, offset, count);
2454
2455 clean_xps_maps(dev, XPS_CPUS, offset, count);
2456
2457 mutex_unlock(&xps_map_mutex);
2458 cpus_read_unlock();
2459}
2460
2461static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2462{
2463 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2464}
2465
2466static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2467 u16 index, bool is_rxqs_map)
2468{
2469 struct xps_map *new_map;
2470 int alloc_len = XPS_MIN_MAP_ALLOC;
2471 int i, pos;
2472
2473 for (pos = 0; map && pos < map->len; pos++) {
2474 if (map->queues[pos] != index)
2475 continue;
2476 return map;
2477 }
2478
2479 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2480 if (map) {
2481 if (pos < map->alloc_len)
2482 return map;
2483
2484 alloc_len = map->alloc_len * 2;
2485 }
2486
2487 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2488 * map
2489 */
2490 if (is_rxqs_map)
2491 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2492 else
2493 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2494 cpu_to_node(attr_index));
2495 if (!new_map)
2496 return NULL;
2497
2498 for (i = 0; i < pos; i++)
2499 new_map->queues[i] = map->queues[i];
2500 new_map->alloc_len = alloc_len;
2501 new_map->len = pos;
2502
2503 return new_map;
2504}
2505
2506/* Copy xps maps at a given index */
2507static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2508 struct xps_dev_maps *new_dev_maps, int index,
2509 int tc, bool skip_tc)
2510{
2511 int i, tci = index * dev_maps->num_tc;
2512 struct xps_map *map;
2513
2514 /* copy maps belonging to foreign traffic classes */
2515 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2516 if (i == tc && skip_tc)
2517 continue;
2518
2519 /* fill in the new device map from the old device map */
2520 map = xmap_dereference(dev_maps->attr_map[tci]);
2521 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2522 }
2523}
2524
2525/* Must be called under cpus_read_lock */
2526int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2527 u16 index, enum xps_map_type type)
2528{
2529 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2530 const unsigned long *online_mask = NULL;
2531 bool active = false, copy = false;
2532 int i, j, tci, numa_node_id = -2;
2533 int maps_sz, num_tc = 1, tc = 0;
2534 struct xps_map *map, *new_map;
2535 unsigned int nr_ids;
2536
2537 if (dev->num_tc) {
2538 /* Do not allow XPS on subordinate device directly */
2539 num_tc = dev->num_tc;
2540 if (num_tc < 0)
2541 return -EINVAL;
2542
2543 /* If queue belongs to subordinate dev use its map */
2544 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2545
2546 tc = netdev_txq_to_tc(dev, index);
2547 if (tc < 0)
2548 return -EINVAL;
2549 }
2550
2551 mutex_lock(&xps_map_mutex);
2552
2553 dev_maps = xmap_dereference(dev->xps_maps[type]);
2554 if (type == XPS_RXQS) {
2555 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2556 nr_ids = dev->num_rx_queues;
2557 } else {
2558 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2559 if (num_possible_cpus() > 1)
2560 online_mask = cpumask_bits(cpu_online_mask);
2561 nr_ids = nr_cpu_ids;
2562 }
2563
2564 if (maps_sz < L1_CACHE_BYTES)
2565 maps_sz = L1_CACHE_BYTES;
2566
2567 /* The old dev_maps could be larger or smaller than the one we're
2568 * setting up now, as dev->num_tc or nr_ids could have been updated in
2569 * between. We could try to be smart, but let's be safe instead and only
2570 * copy foreign traffic classes if the two map sizes match.
2571 */
2572 if (dev_maps &&
2573 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2574 copy = true;
2575
2576 /* allocate memory for queue storage */
2577 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2578 j < nr_ids;) {
2579 if (!new_dev_maps) {
2580 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2581 if (!new_dev_maps) {
2582 mutex_unlock(&xps_map_mutex);
2583 return -ENOMEM;
2584 }
2585
2586 new_dev_maps->nr_ids = nr_ids;
2587 new_dev_maps->num_tc = num_tc;
2588 }
2589
2590 tci = j * num_tc + tc;
2591 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2592
2593 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2594 if (!map)
2595 goto error;
2596
2597 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2598 }
2599
2600 if (!new_dev_maps)
2601 goto out_no_new_maps;
2602
2603 if (!dev_maps) {
2604 /* Increment static keys at most once per type */
2605 static_key_slow_inc_cpuslocked(&xps_needed);
2606 if (type == XPS_RXQS)
2607 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2608 }
2609
2610 for (j = 0; j < nr_ids; j++) {
2611 bool skip_tc = false;
2612
2613 tci = j * num_tc + tc;
2614 if (netif_attr_test_mask(j, mask, nr_ids) &&
2615 netif_attr_test_online(j, online_mask, nr_ids)) {
2616 /* add tx-queue to CPU/rx-queue maps */
2617 int pos = 0;
2618
2619 skip_tc = true;
2620
2621 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2622 while ((pos < map->len) && (map->queues[pos] != index))
2623 pos++;
2624
2625 if (pos == map->len)
2626 map->queues[map->len++] = index;
2627#ifdef CONFIG_NUMA
2628 if (type == XPS_CPUS) {
2629 if (numa_node_id == -2)
2630 numa_node_id = cpu_to_node(j);
2631 else if (numa_node_id != cpu_to_node(j))
2632 numa_node_id = -1;
2633 }
2634#endif
2635 }
2636
2637 if (copy)
2638 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2639 skip_tc);
2640 }
2641
2642 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2643
2644 /* Cleanup old maps */
2645 if (!dev_maps)
2646 goto out_no_old_maps;
2647
2648 for (j = 0; j < dev_maps->nr_ids; j++) {
2649 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2650 map = xmap_dereference(dev_maps->attr_map[tci]);
2651 if (!map)
2652 continue;
2653
2654 if (copy) {
2655 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2656 if (map == new_map)
2657 continue;
2658 }
2659
2660 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2661 kfree_rcu(map, rcu);
2662 }
2663 }
2664
2665 old_dev_maps = dev_maps;
2666
2667out_no_old_maps:
2668 dev_maps = new_dev_maps;
2669 active = true;
2670
2671out_no_new_maps:
2672 if (type == XPS_CPUS)
2673 /* update Tx queue numa node */
2674 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2675 (numa_node_id >= 0) ?
2676 numa_node_id : NUMA_NO_NODE);
2677
2678 if (!dev_maps)
2679 goto out_no_maps;
2680
2681 /* removes tx-queue from unused CPUs/rx-queues */
2682 for (j = 0; j < dev_maps->nr_ids; j++) {
2683 tci = j * dev_maps->num_tc;
2684
2685 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2686 if (i == tc &&
2687 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2688 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2689 continue;
2690
2691 active |= remove_xps_queue(dev_maps,
2692 copy ? old_dev_maps : NULL,
2693 tci, index);
2694 }
2695 }
2696
2697 if (old_dev_maps)
2698 kfree_rcu(old_dev_maps, rcu);
2699
2700 /* free map if not active */
2701 if (!active)
2702 reset_xps_maps(dev, dev_maps, type);
2703
2704out_no_maps:
2705 mutex_unlock(&xps_map_mutex);
2706
2707 return 0;
2708error:
2709 /* remove any maps that we added */
2710 for (j = 0; j < nr_ids; j++) {
2711 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2712 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2713 map = copy ?
2714 xmap_dereference(dev_maps->attr_map[tci]) :
2715 NULL;
2716 if (new_map && new_map != map)
2717 kfree(new_map);
2718 }
2719 }
2720
2721 mutex_unlock(&xps_map_mutex);
2722
2723 kfree(new_dev_maps);
2724 return -ENOMEM;
2725}
2726EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2727
2728int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2729 u16 index)
2730{
2731 int ret;
2732
2733 cpus_read_lock();
2734 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2735 cpus_read_unlock();
2736
2737 return ret;
2738}
2739EXPORT_SYMBOL(netif_set_xps_queue);
2740
2741#endif
2742static void netdev_unbind_all_sb_channels(struct net_device *dev)
2743{
2744 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2745
2746 /* Unbind any subordinate channels */
2747 while (txq-- != &dev->_tx[0]) {
2748 if (txq->sb_dev)
2749 netdev_unbind_sb_channel(dev, txq->sb_dev);
2750 }
2751}
2752
2753void netdev_reset_tc(struct net_device *dev)
2754{
2755#ifdef CONFIG_XPS
2756 netif_reset_xps_queues_gt(dev, 0);
2757#endif
2758 netdev_unbind_all_sb_channels(dev);
2759
2760 /* Reset TC configuration of device */
2761 dev->num_tc = 0;
2762 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2763 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2764}
2765EXPORT_SYMBOL(netdev_reset_tc);
2766
2767int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2768{
2769 if (tc >= dev->num_tc)
2770 return -EINVAL;
2771
2772#ifdef CONFIG_XPS
2773 netif_reset_xps_queues(dev, offset, count);
2774#endif
2775 dev->tc_to_txq[tc].count = count;
2776 dev->tc_to_txq[tc].offset = offset;
2777 return 0;
2778}
2779EXPORT_SYMBOL(netdev_set_tc_queue);
2780
2781int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2782{
2783 if (num_tc > TC_MAX_QUEUE)
2784 return -EINVAL;
2785
2786#ifdef CONFIG_XPS
2787 netif_reset_xps_queues_gt(dev, 0);
2788#endif
2789 netdev_unbind_all_sb_channels(dev);
2790
2791 dev->num_tc = num_tc;
2792 return 0;
2793}
2794EXPORT_SYMBOL(netdev_set_num_tc);
2795
2796void netdev_unbind_sb_channel(struct net_device *dev,
2797 struct net_device *sb_dev)
2798{
2799 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2800
2801#ifdef CONFIG_XPS
2802 netif_reset_xps_queues_gt(sb_dev, 0);
2803#endif
2804 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2805 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2806
2807 while (txq-- != &dev->_tx[0]) {
2808 if (txq->sb_dev == sb_dev)
2809 txq->sb_dev = NULL;
2810 }
2811}
2812EXPORT_SYMBOL(netdev_unbind_sb_channel);
2813
2814int netdev_bind_sb_channel_queue(struct net_device *dev,
2815 struct net_device *sb_dev,
2816 u8 tc, u16 count, u16 offset)
2817{
2818 /* Make certain the sb_dev and dev are already configured */
2819 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2820 return -EINVAL;
2821
2822 /* We cannot hand out queues we don't have */
2823 if ((offset + count) > dev->real_num_tx_queues)
2824 return -EINVAL;
2825
2826 /* Record the mapping */
2827 sb_dev->tc_to_txq[tc].count = count;
2828 sb_dev->tc_to_txq[tc].offset = offset;
2829
2830 /* Provide a way for Tx queue to find the tc_to_txq map or
2831 * XPS map for itself.
2832 */
2833 while (count--)
2834 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2835
2836 return 0;
2837}
2838EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2839
2840int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2841{
2842 /* Do not use a multiqueue device to represent a subordinate channel */
2843 if (netif_is_multiqueue(dev))
2844 return -ENODEV;
2845
2846 /* We allow channels 1 - 32767 to be used for subordinate channels.
2847 * Channel 0 is meant to be "native" mode and used only to represent
2848 * the main root device. We allow writing 0 to reset the device back
2849 * to normal mode after being used as a subordinate channel.
2850 */
2851 if (channel > S16_MAX)
2852 return -EINVAL;
2853
2854 dev->num_tc = -channel;
2855
2856 return 0;
2857}
2858EXPORT_SYMBOL(netdev_set_sb_channel);
2859
2860/*
2861 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2862 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2863 */
2864int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2865{
2866 bool disabling;
2867 int rc;
2868
2869 disabling = txq < dev->real_num_tx_queues;
2870
2871 if (txq < 1 || txq > dev->num_tx_queues)
2872 return -EINVAL;
2873
2874 if (dev->reg_state == NETREG_REGISTERED ||
2875 dev->reg_state == NETREG_UNREGISTERING) {
2876 ASSERT_RTNL();
2877
2878 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2879 txq);
2880 if (rc)
2881 return rc;
2882
2883 if (dev->num_tc)
2884 netif_setup_tc(dev, txq);
2885
2886 dev_qdisc_change_real_num_tx(dev, txq);
2887
2888 dev->real_num_tx_queues = txq;
2889
2890 if (disabling) {
2891 synchronize_net();
2892 qdisc_reset_all_tx_gt(dev, txq);
2893#ifdef CONFIG_XPS
2894 netif_reset_xps_queues_gt(dev, txq);
2895#endif
2896 }
2897 } else {
2898 dev->real_num_tx_queues = txq;
2899 }
2900
2901 return 0;
2902}
2903EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2904
2905#ifdef CONFIG_SYSFS
2906/**
2907 * netif_set_real_num_rx_queues - set actual number of RX queues used
2908 * @dev: Network device
2909 * @rxq: Actual number of RX queues
2910 *
2911 * This must be called either with the rtnl_lock held or before
2912 * registration of the net device. Returns 0 on success, or a
2913 * negative error code. If called before registration, it always
2914 * succeeds.
2915 */
2916int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2917{
2918 int rc;
2919
2920 if (rxq < 1 || rxq > dev->num_rx_queues)
2921 return -EINVAL;
2922
2923 if (dev->reg_state == NETREG_REGISTERED) {
2924 ASSERT_RTNL();
2925
2926 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2927 rxq);
2928 if (rc)
2929 return rc;
2930 }
2931
2932 dev->real_num_rx_queues = rxq;
2933 return 0;
2934}
2935EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2936#endif
2937
2938/**
2939 * netif_set_real_num_queues - set actual number of RX and TX queues used
2940 * @dev: Network device
2941 * @txq: Actual number of TX queues
2942 * @rxq: Actual number of RX queues
2943 *
2944 * Set the real number of both TX and RX queues.
2945 * Does nothing if the number of queues is already correct.
2946 */
2947int netif_set_real_num_queues(struct net_device *dev,
2948 unsigned int txq, unsigned int rxq)
2949{
2950 unsigned int old_rxq = dev->real_num_rx_queues;
2951 int err;
2952
2953 if (txq < 1 || txq > dev->num_tx_queues ||
2954 rxq < 1 || rxq > dev->num_rx_queues)
2955 return -EINVAL;
2956
2957 /* Start from increases, so the error path only does decreases -
2958 * decreases can't fail.
2959 */
2960 if (rxq > dev->real_num_rx_queues) {
2961 err = netif_set_real_num_rx_queues(dev, rxq);
2962 if (err)
2963 return err;
2964 }
2965 if (txq > dev->real_num_tx_queues) {
2966 err = netif_set_real_num_tx_queues(dev, txq);
2967 if (err)
2968 goto undo_rx;
2969 }
2970 if (rxq < dev->real_num_rx_queues)
2971 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2972 if (txq < dev->real_num_tx_queues)
2973 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2974
2975 return 0;
2976undo_rx:
2977 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2978 return err;
2979}
2980EXPORT_SYMBOL(netif_set_real_num_queues);
2981
2982/**
2983 * netif_set_tso_max_size() - set the max size of TSO frames supported
2984 * @dev: netdev to update
2985 * @size: max skb->len of a TSO frame
2986 *
2987 * Set the limit on the size of TSO super-frames the device can handle.
2988 * Unless explicitly set the stack will assume the value of
2989 * %GSO_LEGACY_MAX_SIZE.
2990 */
2991void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
2992{
2993 dev->tso_max_size = min(GSO_MAX_SIZE, size);
2994 if (size < READ_ONCE(dev->gso_max_size))
2995 netif_set_gso_max_size(dev, size);
2996}
2997EXPORT_SYMBOL(netif_set_tso_max_size);
2998
2999/**
3000 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3001 * @dev: netdev to update
3002 * @segs: max number of TCP segments
3003 *
3004 * Set the limit on the number of TCP segments the device can generate from
3005 * a single TSO super-frame.
3006 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3007 */
3008void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3009{
3010 dev->tso_max_segs = segs;
3011 if (segs < READ_ONCE(dev->gso_max_segs))
3012 netif_set_gso_max_segs(dev, segs);
3013}
3014EXPORT_SYMBOL(netif_set_tso_max_segs);
3015
3016/**
3017 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3018 * @to: netdev to update
3019 * @from: netdev from which to copy the limits
3020 */
3021void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3022{
3023 netif_set_tso_max_size(to, from->tso_max_size);
3024 netif_set_tso_max_segs(to, from->tso_max_segs);
3025}
3026EXPORT_SYMBOL(netif_inherit_tso_max);
3027
3028/**
3029 * netif_get_num_default_rss_queues - default number of RSS queues
3030 *
3031 * Default value is the number of physical cores if there are only 1 or 2, or
3032 * divided by 2 if there are more.
3033 */
3034int netif_get_num_default_rss_queues(void)
3035{
3036 cpumask_var_t cpus;
3037 int cpu, count = 0;
3038
3039 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3040 return 1;
3041
3042 cpumask_copy(cpus, cpu_online_mask);
3043 for_each_cpu(cpu, cpus) {
3044 ++count;
3045 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3046 }
3047 free_cpumask_var(cpus);
3048
3049 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3050}
3051EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3052
3053static void __netif_reschedule(struct Qdisc *q)
3054{
3055 struct softnet_data *sd;
3056 unsigned long flags;
3057
3058 local_irq_save(flags);
3059 sd = this_cpu_ptr(&softnet_data);
3060 q->next_sched = NULL;
3061 *sd->output_queue_tailp = q;
3062 sd->output_queue_tailp = &q->next_sched;
3063 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3064 local_irq_restore(flags);
3065}
3066
3067void __netif_schedule(struct Qdisc *q)
3068{
3069 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3070 __netif_reschedule(q);
3071}
3072EXPORT_SYMBOL(__netif_schedule);
3073
3074struct dev_kfree_skb_cb {
3075 enum skb_free_reason reason;
3076};
3077
3078static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3079{
3080 return (struct dev_kfree_skb_cb *)skb->cb;
3081}
3082
3083void netif_schedule_queue(struct netdev_queue *txq)
3084{
3085 rcu_read_lock();
3086 if (!netif_xmit_stopped(txq)) {
3087 struct Qdisc *q = rcu_dereference(txq->qdisc);
3088
3089 __netif_schedule(q);
3090 }
3091 rcu_read_unlock();
3092}
3093EXPORT_SYMBOL(netif_schedule_queue);
3094
3095void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3096{
3097 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3098 struct Qdisc *q;
3099
3100 rcu_read_lock();
3101 q = rcu_dereference(dev_queue->qdisc);
3102 __netif_schedule(q);
3103 rcu_read_unlock();
3104 }
3105}
3106EXPORT_SYMBOL(netif_tx_wake_queue);
3107
3108void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3109{
3110 unsigned long flags;
3111
3112 if (unlikely(!skb))
3113 return;
3114
3115 if (likely(refcount_read(&skb->users) == 1)) {
3116 smp_rmb();
3117 refcount_set(&skb->users, 0);
3118 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3119 return;
3120 }
3121 get_kfree_skb_cb(skb)->reason = reason;
3122 local_irq_save(flags);
3123 skb->next = __this_cpu_read(softnet_data.completion_queue);
3124 __this_cpu_write(softnet_data.completion_queue, skb);
3125 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3126 local_irq_restore(flags);
3127}
3128EXPORT_SYMBOL(__dev_kfree_skb_irq);
3129
3130void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3131{
3132 if (in_hardirq() || irqs_disabled())
3133 __dev_kfree_skb_irq(skb, reason);
3134 else
3135 dev_kfree_skb(skb);
3136}
3137EXPORT_SYMBOL(__dev_kfree_skb_any);
3138
3139
3140/**
3141 * netif_device_detach - mark device as removed
3142 * @dev: network device
3143 *
3144 * Mark device as removed from system and therefore no longer available.
3145 */
3146void netif_device_detach(struct net_device *dev)
3147{
3148 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3149 netif_running(dev)) {
3150 netif_tx_stop_all_queues(dev);
3151 }
3152}
3153EXPORT_SYMBOL(netif_device_detach);
3154
3155/**
3156 * netif_device_attach - mark device as attached
3157 * @dev: network device
3158 *
3159 * Mark device as attached from system and restart if needed.
3160 */
3161void netif_device_attach(struct net_device *dev)
3162{
3163 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3164 netif_running(dev)) {
3165 netif_tx_wake_all_queues(dev);
3166 __netdev_watchdog_up(dev);
3167 }
3168}
3169EXPORT_SYMBOL(netif_device_attach);
3170
3171/*
3172 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3173 * to be used as a distribution range.
3174 */
3175static u16 skb_tx_hash(const struct net_device *dev,
3176 const struct net_device *sb_dev,
3177 struct sk_buff *skb)
3178{
3179 u32 hash;
3180 u16 qoffset = 0;
3181 u16 qcount = dev->real_num_tx_queues;
3182
3183 if (dev->num_tc) {
3184 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3185
3186 qoffset = sb_dev->tc_to_txq[tc].offset;
3187 qcount = sb_dev->tc_to_txq[tc].count;
3188 if (unlikely(!qcount)) {
3189 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3190 sb_dev->name, qoffset, tc);
3191 qoffset = 0;
3192 qcount = dev->real_num_tx_queues;
3193 }
3194 }
3195
3196 if (skb_rx_queue_recorded(skb)) {
3197 hash = skb_get_rx_queue(skb);
3198 if (hash >= qoffset)
3199 hash -= qoffset;
3200 while (unlikely(hash >= qcount))
3201 hash -= qcount;
3202 return hash + qoffset;
3203 }
3204
3205 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3206}
3207
3208static void skb_warn_bad_offload(const struct sk_buff *skb)
3209{
3210 static const netdev_features_t null_features;
3211 struct net_device *dev = skb->dev;
3212 const char *name = "";
3213
3214 if (!net_ratelimit())
3215 return;
3216
3217 if (dev) {
3218 if (dev->dev.parent)
3219 name = dev_driver_string(dev->dev.parent);
3220 else
3221 name = netdev_name(dev);
3222 }
3223 skb_dump(KERN_WARNING, skb, false);
3224 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3225 name, dev ? &dev->features : &null_features,
3226 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3227}
3228
3229/*
3230 * Invalidate hardware checksum when packet is to be mangled, and
3231 * complete checksum manually on outgoing path.
3232 */
3233int skb_checksum_help(struct sk_buff *skb)
3234{
3235 __wsum csum;
3236 int ret = 0, offset;
3237
3238 if (skb->ip_summed == CHECKSUM_COMPLETE)
3239 goto out_set_summed;
3240
3241 if (unlikely(skb_is_gso(skb))) {
3242 skb_warn_bad_offload(skb);
3243 return -EINVAL;
3244 }
3245
3246 /* Before computing a checksum, we should make sure no frag could
3247 * be modified by an external entity : checksum could be wrong.
3248 */
3249 if (skb_has_shared_frag(skb)) {
3250 ret = __skb_linearize(skb);
3251 if (ret)
3252 goto out;
3253 }
3254
3255 offset = skb_checksum_start_offset(skb);
3256 ret = -EINVAL;
3257 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3258 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3259 goto out;
3260 }
3261 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3262
3263 offset += skb->csum_offset;
3264 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3265 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3266 goto out;
3267 }
3268 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3269 if (ret)
3270 goto out;
3271
3272 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3273out_set_summed:
3274 skb->ip_summed = CHECKSUM_NONE;
3275out:
3276 return ret;
3277}
3278EXPORT_SYMBOL(skb_checksum_help);
3279
3280int skb_crc32c_csum_help(struct sk_buff *skb)
3281{
3282 __le32 crc32c_csum;
3283 int ret = 0, offset, start;
3284
3285 if (skb->ip_summed != CHECKSUM_PARTIAL)
3286 goto out;
3287
3288 if (unlikely(skb_is_gso(skb)))
3289 goto out;
3290
3291 /* Before computing a checksum, we should make sure no frag could
3292 * be modified by an external entity : checksum could be wrong.
3293 */
3294 if (unlikely(skb_has_shared_frag(skb))) {
3295 ret = __skb_linearize(skb);
3296 if (ret)
3297 goto out;
3298 }
3299 start = skb_checksum_start_offset(skb);
3300 offset = start + offsetof(struct sctphdr, checksum);
3301 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3302 ret = -EINVAL;
3303 goto out;
3304 }
3305
3306 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3307 if (ret)
3308 goto out;
3309
3310 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3311 skb->len - start, ~(__u32)0,
3312 crc32c_csum_stub));
3313 *(__le32 *)(skb->data + offset) = crc32c_csum;
3314 skb->ip_summed = CHECKSUM_NONE;
3315 skb->csum_not_inet = 0;
3316out:
3317 return ret;
3318}
3319
3320__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3321{
3322 __be16 type = skb->protocol;
3323
3324 /* Tunnel gso handlers can set protocol to ethernet. */
3325 if (type == htons(ETH_P_TEB)) {
3326 struct ethhdr *eth;
3327
3328 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3329 return 0;
3330
3331 eth = (struct ethhdr *)skb->data;
3332 type = eth->h_proto;
3333 }
3334
3335 return __vlan_get_protocol(skb, type, depth);
3336}
3337
3338/* openvswitch calls this on rx path, so we need a different check.
3339 */
3340static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3341{
3342 if (tx_path)
3343 return skb->ip_summed != CHECKSUM_PARTIAL &&
3344 skb->ip_summed != CHECKSUM_UNNECESSARY;
3345
3346 return skb->ip_summed == CHECKSUM_NONE;
3347}
3348
3349/**
3350 * __skb_gso_segment - Perform segmentation on skb.
3351 * @skb: buffer to segment
3352 * @features: features for the output path (see dev->features)
3353 * @tx_path: whether it is called in TX path
3354 *
3355 * This function segments the given skb and returns a list of segments.
3356 *
3357 * It may return NULL if the skb requires no segmentation. This is
3358 * only possible when GSO is used for verifying header integrity.
3359 *
3360 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3361 */
3362struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3363 netdev_features_t features, bool tx_path)
3364{
3365 struct sk_buff *segs;
3366
3367 if (unlikely(skb_needs_check(skb, tx_path))) {
3368 int err;
3369
3370 /* We're going to init ->check field in TCP or UDP header */
3371 err = skb_cow_head(skb, 0);
3372 if (err < 0)
3373 return ERR_PTR(err);
3374 }
3375
3376 /* Only report GSO partial support if it will enable us to
3377 * support segmentation on this frame without needing additional
3378 * work.
3379 */
3380 if (features & NETIF_F_GSO_PARTIAL) {
3381 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3382 struct net_device *dev = skb->dev;
3383
3384 partial_features |= dev->features & dev->gso_partial_features;
3385 if (!skb_gso_ok(skb, features | partial_features))
3386 features &= ~NETIF_F_GSO_PARTIAL;
3387 }
3388
3389 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3390 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3391
3392 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3393 SKB_GSO_CB(skb)->encap_level = 0;
3394
3395 skb_reset_mac_header(skb);
3396 skb_reset_mac_len(skb);
3397
3398 segs = skb_mac_gso_segment(skb, features);
3399
3400 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3401 skb_warn_bad_offload(skb);
3402
3403 return segs;
3404}
3405EXPORT_SYMBOL(__skb_gso_segment);
3406
3407/* Take action when hardware reception checksum errors are detected. */
3408#ifdef CONFIG_BUG
3409static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3410{
3411 netdev_err(dev, "hw csum failure\n");
3412 skb_dump(KERN_ERR, skb, true);
3413 dump_stack();
3414}
3415
3416void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3417{
3418 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3419}
3420EXPORT_SYMBOL(netdev_rx_csum_fault);
3421#endif
3422
3423/* XXX: check that highmem exists at all on the given machine. */
3424static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3425{
3426#ifdef CONFIG_HIGHMEM
3427 int i;
3428
3429 if (!(dev->features & NETIF_F_HIGHDMA)) {
3430 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3431 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3432
3433 if (PageHighMem(skb_frag_page(frag)))
3434 return 1;
3435 }
3436 }
3437#endif
3438 return 0;
3439}
3440
3441/* If MPLS offload request, verify we are testing hardware MPLS features
3442 * instead of standard features for the netdev.
3443 */
3444#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3445static netdev_features_t net_mpls_features(struct sk_buff *skb,
3446 netdev_features_t features,
3447 __be16 type)
3448{
3449 if (eth_p_mpls(type))
3450 features &= skb->dev->mpls_features;
3451
3452 return features;
3453}
3454#else
3455static netdev_features_t net_mpls_features(struct sk_buff *skb,
3456 netdev_features_t features,
3457 __be16 type)
3458{
3459 return features;
3460}
3461#endif
3462
3463static netdev_features_t harmonize_features(struct sk_buff *skb,
3464 netdev_features_t features)
3465{
3466 __be16 type;
3467
3468 type = skb_network_protocol(skb, NULL);
3469 features = net_mpls_features(skb, features, type);
3470
3471 if (skb->ip_summed != CHECKSUM_NONE &&
3472 !can_checksum_protocol(features, type)) {
3473 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3474 }
3475 if (illegal_highdma(skb->dev, skb))
3476 features &= ~NETIF_F_SG;
3477
3478 return features;
3479}
3480
3481netdev_features_t passthru_features_check(struct sk_buff *skb,
3482 struct net_device *dev,
3483 netdev_features_t features)
3484{
3485 return features;
3486}
3487EXPORT_SYMBOL(passthru_features_check);
3488
3489static netdev_features_t dflt_features_check(struct sk_buff *skb,
3490 struct net_device *dev,
3491 netdev_features_t features)
3492{
3493 return vlan_features_check(skb, features);
3494}
3495
3496static netdev_features_t gso_features_check(const struct sk_buff *skb,
3497 struct net_device *dev,
3498 netdev_features_t features)
3499{
3500 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3501
3502 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3503 return features & ~NETIF_F_GSO_MASK;
3504
3505 if (!skb_shinfo(skb)->gso_type) {
3506 skb_warn_bad_offload(skb);
3507 return features & ~NETIF_F_GSO_MASK;
3508 }
3509
3510 /* Support for GSO partial features requires software
3511 * intervention before we can actually process the packets
3512 * so we need to strip support for any partial features now
3513 * and we can pull them back in after we have partially
3514 * segmented the frame.
3515 */
3516 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3517 features &= ~dev->gso_partial_features;
3518
3519 /* Make sure to clear the IPv4 ID mangling feature if the
3520 * IPv4 header has the potential to be fragmented.
3521 */
3522 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3523 struct iphdr *iph = skb->encapsulation ?
3524 inner_ip_hdr(skb) : ip_hdr(skb);
3525
3526 if (!(iph->frag_off & htons(IP_DF)))
3527 features &= ~NETIF_F_TSO_MANGLEID;
3528 }
3529
3530 return features;
3531}
3532
3533netdev_features_t netif_skb_features(struct sk_buff *skb)
3534{
3535 struct net_device *dev = skb->dev;
3536 netdev_features_t features = dev->features;
3537
3538 if (skb_is_gso(skb))
3539 features = gso_features_check(skb, dev, features);
3540
3541 /* If encapsulation offload request, verify we are testing
3542 * hardware encapsulation features instead of standard
3543 * features for the netdev
3544 */
3545 if (skb->encapsulation)
3546 features &= dev->hw_enc_features;
3547
3548 if (skb_vlan_tagged(skb))
3549 features = netdev_intersect_features(features,
3550 dev->vlan_features |
3551 NETIF_F_HW_VLAN_CTAG_TX |
3552 NETIF_F_HW_VLAN_STAG_TX);
3553
3554 if (dev->netdev_ops->ndo_features_check)
3555 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3556 features);
3557 else
3558 features &= dflt_features_check(skb, dev, features);
3559
3560 return harmonize_features(skb, features);
3561}
3562EXPORT_SYMBOL(netif_skb_features);
3563
3564static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3565 struct netdev_queue *txq, bool more)
3566{
3567 unsigned int len;
3568 int rc;
3569
3570 if (dev_nit_active(dev))
3571 dev_queue_xmit_nit(skb, dev);
3572
3573 len = skb->len;
3574 trace_net_dev_start_xmit(skb, dev);
3575 rc = netdev_start_xmit(skb, dev, txq, more);
3576 trace_net_dev_xmit(skb, rc, dev, len);
3577
3578 return rc;
3579}
3580
3581struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3582 struct netdev_queue *txq, int *ret)
3583{
3584 struct sk_buff *skb = first;
3585 int rc = NETDEV_TX_OK;
3586
3587 while (skb) {
3588 struct sk_buff *next = skb->next;
3589
3590 skb_mark_not_on_list(skb);
3591 rc = xmit_one(skb, dev, txq, next != NULL);
3592 if (unlikely(!dev_xmit_complete(rc))) {
3593 skb->next = next;
3594 goto out;
3595 }
3596
3597 skb = next;
3598 if (netif_tx_queue_stopped(txq) && skb) {
3599 rc = NETDEV_TX_BUSY;
3600 break;
3601 }
3602 }
3603
3604out:
3605 *ret = rc;
3606 return skb;
3607}
3608
3609static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3610 netdev_features_t features)
3611{
3612 if (skb_vlan_tag_present(skb) &&
3613 !vlan_hw_offload_capable(features, skb->vlan_proto))
3614 skb = __vlan_hwaccel_push_inside(skb);
3615 return skb;
3616}
3617
3618int skb_csum_hwoffload_help(struct sk_buff *skb,
3619 const netdev_features_t features)
3620{
3621 if (unlikely(skb_csum_is_sctp(skb)))
3622 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3623 skb_crc32c_csum_help(skb);
3624
3625 if (features & NETIF_F_HW_CSUM)
3626 return 0;
3627
3628 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3629 switch (skb->csum_offset) {
3630 case offsetof(struct tcphdr, check):
3631 case offsetof(struct udphdr, check):
3632 return 0;
3633 }
3634 }
3635
3636 return skb_checksum_help(skb);
3637}
3638EXPORT_SYMBOL(skb_csum_hwoffload_help);
3639
3640static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3641{
3642 netdev_features_t features;
3643
3644 features = netif_skb_features(skb);
3645 skb = validate_xmit_vlan(skb, features);
3646 if (unlikely(!skb))
3647 goto out_null;
3648
3649 skb = sk_validate_xmit_skb(skb, dev);
3650 if (unlikely(!skb))
3651 goto out_null;
3652
3653 if (netif_needs_gso(skb, features)) {
3654 struct sk_buff *segs;
3655
3656 segs = skb_gso_segment(skb, features);
3657 if (IS_ERR(segs)) {
3658 goto out_kfree_skb;
3659 } else if (segs) {
3660 consume_skb(skb);
3661 skb = segs;
3662 }
3663 } else {
3664 if (skb_needs_linearize(skb, features) &&
3665 __skb_linearize(skb))
3666 goto out_kfree_skb;
3667
3668 /* If packet is not checksummed and device does not
3669 * support checksumming for this protocol, complete
3670 * checksumming here.
3671 */
3672 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3673 if (skb->encapsulation)
3674 skb_set_inner_transport_header(skb,
3675 skb_checksum_start_offset(skb));
3676 else
3677 skb_set_transport_header(skb,
3678 skb_checksum_start_offset(skb));
3679 if (skb_csum_hwoffload_help(skb, features))
3680 goto out_kfree_skb;
3681 }
3682 }
3683
3684 skb = validate_xmit_xfrm(skb, features, again);
3685
3686 return skb;
3687
3688out_kfree_skb:
3689 kfree_skb(skb);
3690out_null:
3691 dev_core_stats_tx_dropped_inc(dev);
3692 return NULL;
3693}
3694
3695struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3696{
3697 struct sk_buff *next, *head = NULL, *tail;
3698
3699 for (; skb != NULL; skb = next) {
3700 next = skb->next;
3701 skb_mark_not_on_list(skb);
3702
3703 /* in case skb wont be segmented, point to itself */
3704 skb->prev = skb;
3705
3706 skb = validate_xmit_skb(skb, dev, again);
3707 if (!skb)
3708 continue;
3709
3710 if (!head)
3711 head = skb;
3712 else
3713 tail->next = skb;
3714 /* If skb was segmented, skb->prev points to
3715 * the last segment. If not, it still contains skb.
3716 */
3717 tail = skb->prev;
3718 }
3719 return head;
3720}
3721EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3722
3723static void qdisc_pkt_len_init(struct sk_buff *skb)
3724{
3725 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3726
3727 qdisc_skb_cb(skb)->pkt_len = skb->len;
3728
3729 /* To get more precise estimation of bytes sent on wire,
3730 * we add to pkt_len the headers size of all segments
3731 */
3732 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3733 unsigned int hdr_len;
3734 u16 gso_segs = shinfo->gso_segs;
3735
3736 /* mac layer + network layer */
3737 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3738
3739 /* + transport layer */
3740 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3741 const struct tcphdr *th;
3742 struct tcphdr _tcphdr;
3743
3744 th = skb_header_pointer(skb, skb_transport_offset(skb),
3745 sizeof(_tcphdr), &_tcphdr);
3746 if (likely(th))
3747 hdr_len += __tcp_hdrlen(th);
3748 } else {
3749 struct udphdr _udphdr;
3750
3751 if (skb_header_pointer(skb, skb_transport_offset(skb),
3752 sizeof(_udphdr), &_udphdr))
3753 hdr_len += sizeof(struct udphdr);
3754 }
3755
3756 if (shinfo->gso_type & SKB_GSO_DODGY)
3757 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3758 shinfo->gso_size);
3759
3760 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3761 }
3762}
3763
3764static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3765 struct sk_buff **to_free,
3766 struct netdev_queue *txq)
3767{
3768 int rc;
3769
3770 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3771 if (rc == NET_XMIT_SUCCESS)
3772 trace_qdisc_enqueue(q, txq, skb);
3773 return rc;
3774}
3775
3776static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3777 struct net_device *dev,
3778 struct netdev_queue *txq)
3779{
3780 spinlock_t *root_lock = qdisc_lock(q);
3781 struct sk_buff *to_free = NULL;
3782 bool contended;
3783 int rc;
3784
3785 qdisc_calculate_pkt_len(skb, q);
3786
3787 if (q->flags & TCQ_F_NOLOCK) {
3788 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3789 qdisc_run_begin(q)) {
3790 /* Retest nolock_qdisc_is_empty() within the protection
3791 * of q->seqlock to protect from racing with requeuing.
3792 */
3793 if (unlikely(!nolock_qdisc_is_empty(q))) {
3794 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3795 __qdisc_run(q);
3796 qdisc_run_end(q);
3797
3798 goto no_lock_out;
3799 }
3800
3801 qdisc_bstats_cpu_update(q, skb);
3802 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3803 !nolock_qdisc_is_empty(q))
3804 __qdisc_run(q);
3805
3806 qdisc_run_end(q);
3807 return NET_XMIT_SUCCESS;
3808 }
3809
3810 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3811 qdisc_run(q);
3812
3813no_lock_out:
3814 if (unlikely(to_free))
3815 kfree_skb_list_reason(to_free,
3816 SKB_DROP_REASON_QDISC_DROP);
3817 return rc;
3818 }
3819
3820 /*
3821 * Heuristic to force contended enqueues to serialize on a
3822 * separate lock before trying to get qdisc main lock.
3823 * This permits qdisc->running owner to get the lock more
3824 * often and dequeue packets faster.
3825 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3826 * and then other tasks will only enqueue packets. The packets will be
3827 * sent after the qdisc owner is scheduled again. To prevent this
3828 * scenario the task always serialize on the lock.
3829 */
3830 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3831 if (unlikely(contended))
3832 spin_lock(&q->busylock);
3833
3834 spin_lock(root_lock);
3835 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3836 __qdisc_drop(skb, &to_free);
3837 rc = NET_XMIT_DROP;
3838 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3839 qdisc_run_begin(q)) {
3840 /*
3841 * This is a work-conserving queue; there are no old skbs
3842 * waiting to be sent out; and the qdisc is not running -
3843 * xmit the skb directly.
3844 */
3845
3846 qdisc_bstats_update(q, skb);
3847
3848 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3849 if (unlikely(contended)) {
3850 spin_unlock(&q->busylock);
3851 contended = false;
3852 }
3853 __qdisc_run(q);
3854 }
3855
3856 qdisc_run_end(q);
3857 rc = NET_XMIT_SUCCESS;
3858 } else {
3859 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3860 if (qdisc_run_begin(q)) {
3861 if (unlikely(contended)) {
3862 spin_unlock(&q->busylock);
3863 contended = false;
3864 }
3865 __qdisc_run(q);
3866 qdisc_run_end(q);
3867 }
3868 }
3869 spin_unlock(root_lock);
3870 if (unlikely(to_free))
3871 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3872 if (unlikely(contended))
3873 spin_unlock(&q->busylock);
3874 return rc;
3875}
3876
3877#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3878static void skb_update_prio(struct sk_buff *skb)
3879{
3880 const struct netprio_map *map;
3881 const struct sock *sk;
3882 unsigned int prioidx;
3883
3884 if (skb->priority)
3885 return;
3886 map = rcu_dereference_bh(skb->dev->priomap);
3887 if (!map)
3888 return;
3889 sk = skb_to_full_sk(skb);
3890 if (!sk)
3891 return;
3892
3893 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3894
3895 if (prioidx < map->priomap_len)
3896 skb->priority = map->priomap[prioidx];
3897}
3898#else
3899#define skb_update_prio(skb)
3900#endif
3901
3902/**
3903 * dev_loopback_xmit - loop back @skb
3904 * @net: network namespace this loopback is happening in
3905 * @sk: sk needed to be a netfilter okfn
3906 * @skb: buffer to transmit
3907 */
3908int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3909{
3910 skb_reset_mac_header(skb);
3911 __skb_pull(skb, skb_network_offset(skb));
3912 skb->pkt_type = PACKET_LOOPBACK;
3913 if (skb->ip_summed == CHECKSUM_NONE)
3914 skb->ip_summed = CHECKSUM_UNNECESSARY;
3915 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3916 skb_dst_force(skb);
3917 netif_rx(skb);
3918 return 0;
3919}
3920EXPORT_SYMBOL(dev_loopback_xmit);
3921
3922#ifdef CONFIG_NET_EGRESS
3923static struct sk_buff *
3924sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3925{
3926#ifdef CONFIG_NET_CLS_ACT
3927 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3928 struct tcf_result cl_res;
3929
3930 if (!miniq)
3931 return skb;
3932
3933 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3934 tc_skb_cb(skb)->mru = 0;
3935 tc_skb_cb(skb)->post_ct = false;
3936 mini_qdisc_bstats_cpu_update(miniq, skb);
3937
3938 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3939 case TC_ACT_OK:
3940 case TC_ACT_RECLASSIFY:
3941 skb->tc_index = TC_H_MIN(cl_res.classid);
3942 break;
3943 case TC_ACT_SHOT:
3944 mini_qdisc_qstats_cpu_drop(miniq);
3945 *ret = NET_XMIT_DROP;
3946 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3947 return NULL;
3948 case TC_ACT_STOLEN:
3949 case TC_ACT_QUEUED:
3950 case TC_ACT_TRAP:
3951 *ret = NET_XMIT_SUCCESS;
3952 consume_skb(skb);
3953 return NULL;
3954 case TC_ACT_REDIRECT:
3955 /* No need to push/pop skb's mac_header here on egress! */
3956 skb_do_redirect(skb);
3957 *ret = NET_XMIT_SUCCESS;
3958 return NULL;
3959 default:
3960 break;
3961 }
3962#endif /* CONFIG_NET_CLS_ACT */
3963
3964 return skb;
3965}
3966
3967static struct netdev_queue *
3968netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3969{
3970 int qm = skb_get_queue_mapping(skb);
3971
3972 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3973}
3974
3975static bool netdev_xmit_txqueue_skipped(void)
3976{
3977 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3978}
3979
3980void netdev_xmit_skip_txqueue(bool skip)
3981{
3982 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3983}
3984EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3985#endif /* CONFIG_NET_EGRESS */
3986
3987#ifdef CONFIG_XPS
3988static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3989 struct xps_dev_maps *dev_maps, unsigned int tci)
3990{
3991 int tc = netdev_get_prio_tc_map(dev, skb->priority);
3992 struct xps_map *map;
3993 int queue_index = -1;
3994
3995 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3996 return queue_index;
3997
3998 tci *= dev_maps->num_tc;
3999 tci += tc;
4000
4001 map = rcu_dereference(dev_maps->attr_map[tci]);
4002 if (map) {
4003 if (map->len == 1)
4004 queue_index = map->queues[0];
4005 else
4006 queue_index = map->queues[reciprocal_scale(
4007 skb_get_hash(skb), map->len)];
4008 if (unlikely(queue_index >= dev->real_num_tx_queues))
4009 queue_index = -1;
4010 }
4011 return queue_index;
4012}
4013#endif
4014
4015static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4016 struct sk_buff *skb)
4017{
4018#ifdef CONFIG_XPS
4019 struct xps_dev_maps *dev_maps;
4020 struct sock *sk = skb->sk;
4021 int queue_index = -1;
4022
4023 if (!static_key_false(&xps_needed))
4024 return -1;
4025
4026 rcu_read_lock();
4027 if (!static_key_false(&xps_rxqs_needed))
4028 goto get_cpus_map;
4029
4030 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4031 if (dev_maps) {
4032 int tci = sk_rx_queue_get(sk);
4033
4034 if (tci >= 0)
4035 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4036 tci);
4037 }
4038
4039get_cpus_map:
4040 if (queue_index < 0) {
4041 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4042 if (dev_maps) {
4043 unsigned int tci = skb->sender_cpu - 1;
4044
4045 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4046 tci);
4047 }
4048 }
4049 rcu_read_unlock();
4050
4051 return queue_index;
4052#else
4053 return -1;
4054#endif
4055}
4056
4057u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4058 struct net_device *sb_dev)
4059{
4060 return 0;
4061}
4062EXPORT_SYMBOL(dev_pick_tx_zero);
4063
4064u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4065 struct net_device *sb_dev)
4066{
4067 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4068}
4069EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4070
4071u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4072 struct net_device *sb_dev)
4073{
4074 struct sock *sk = skb->sk;
4075 int queue_index = sk_tx_queue_get(sk);
4076
4077 sb_dev = sb_dev ? : dev;
4078
4079 if (queue_index < 0 || skb->ooo_okay ||
4080 queue_index >= dev->real_num_tx_queues) {
4081 int new_index = get_xps_queue(dev, sb_dev, skb);
4082
4083 if (new_index < 0)
4084 new_index = skb_tx_hash(dev, sb_dev, skb);
4085
4086 if (queue_index != new_index && sk &&
4087 sk_fullsock(sk) &&
4088 rcu_access_pointer(sk->sk_dst_cache))
4089 sk_tx_queue_set(sk, new_index);
4090
4091 queue_index = new_index;
4092 }
4093
4094 return queue_index;
4095}
4096EXPORT_SYMBOL(netdev_pick_tx);
4097
4098struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4099 struct sk_buff *skb,
4100 struct net_device *sb_dev)
4101{
4102 int queue_index = 0;
4103
4104#ifdef CONFIG_XPS
4105 u32 sender_cpu = skb->sender_cpu - 1;
4106
4107 if (sender_cpu >= (u32)NR_CPUS)
4108 skb->sender_cpu = raw_smp_processor_id() + 1;
4109#endif
4110
4111 if (dev->real_num_tx_queues != 1) {
4112 const struct net_device_ops *ops = dev->netdev_ops;
4113
4114 if (ops->ndo_select_queue)
4115 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4116 else
4117 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4118
4119 queue_index = netdev_cap_txqueue(dev, queue_index);
4120 }
4121
4122 skb_set_queue_mapping(skb, queue_index);
4123 return netdev_get_tx_queue(dev, queue_index);
4124}
4125
4126/**
4127 * __dev_queue_xmit() - transmit a buffer
4128 * @skb: buffer to transmit
4129 * @sb_dev: suboordinate device used for L2 forwarding offload
4130 *
4131 * Queue a buffer for transmission to a network device. The caller must
4132 * have set the device and priority and built the buffer before calling
4133 * this function. The function can be called from an interrupt.
4134 *
4135 * When calling this method, interrupts MUST be enabled. This is because
4136 * the BH enable code must have IRQs enabled so that it will not deadlock.
4137 *
4138 * Regardless of the return value, the skb is consumed, so it is currently
4139 * difficult to retry a send to this method. (You can bump the ref count
4140 * before sending to hold a reference for retry if you are careful.)
4141 *
4142 * Return:
4143 * * 0 - buffer successfully transmitted
4144 * * positive qdisc return code - NET_XMIT_DROP etc.
4145 * * negative errno - other errors
4146 */
4147int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4148{
4149 struct net_device *dev = skb->dev;
4150 struct netdev_queue *txq = NULL;
4151 struct Qdisc *q;
4152 int rc = -ENOMEM;
4153 bool again = false;
4154
4155 skb_reset_mac_header(skb);
4156 skb_assert_len(skb);
4157
4158 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4159 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4160
4161 /* Disable soft irqs for various locks below. Also
4162 * stops preemption for RCU.
4163 */
4164 rcu_read_lock_bh();
4165
4166 skb_update_prio(skb);
4167
4168 qdisc_pkt_len_init(skb);
4169#ifdef CONFIG_NET_CLS_ACT
4170 skb->tc_at_ingress = 0;
4171#endif
4172#ifdef CONFIG_NET_EGRESS
4173 if (static_branch_unlikely(&egress_needed_key)) {
4174 if (nf_hook_egress_active()) {
4175 skb = nf_hook_egress(skb, &rc, dev);
4176 if (!skb)
4177 goto out;
4178 }
4179
4180 netdev_xmit_skip_txqueue(false);
4181
4182 nf_skip_egress(skb, true);
4183 skb = sch_handle_egress(skb, &rc, dev);
4184 if (!skb)
4185 goto out;
4186 nf_skip_egress(skb, false);
4187
4188 if (netdev_xmit_txqueue_skipped())
4189 txq = netdev_tx_queue_mapping(dev, skb);
4190 }
4191#endif
4192 /* If device/qdisc don't need skb->dst, release it right now while
4193 * its hot in this cpu cache.
4194 */
4195 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4196 skb_dst_drop(skb);
4197 else
4198 skb_dst_force(skb);
4199
4200 if (!txq)
4201 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4202
4203 q = rcu_dereference_bh(txq->qdisc);
4204
4205 trace_net_dev_queue(skb);
4206 if (q->enqueue) {
4207 rc = __dev_xmit_skb(skb, q, dev, txq);
4208 goto out;
4209 }
4210
4211 /* The device has no queue. Common case for software devices:
4212 * loopback, all the sorts of tunnels...
4213
4214 * Really, it is unlikely that netif_tx_lock protection is necessary
4215 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4216 * counters.)
4217 * However, it is possible, that they rely on protection
4218 * made by us here.
4219
4220 * Check this and shot the lock. It is not prone from deadlocks.
4221 *Either shot noqueue qdisc, it is even simpler 8)
4222 */
4223 if (dev->flags & IFF_UP) {
4224 int cpu = smp_processor_id(); /* ok because BHs are off */
4225
4226 /* Other cpus might concurrently change txq->xmit_lock_owner
4227 * to -1 or to their cpu id, but not to our id.
4228 */
4229 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4230 if (dev_xmit_recursion())
4231 goto recursion_alert;
4232
4233 skb = validate_xmit_skb(skb, dev, &again);
4234 if (!skb)
4235 goto out;
4236
4237 HARD_TX_LOCK(dev, txq, cpu);
4238
4239 if (!netif_xmit_stopped(txq)) {
4240 dev_xmit_recursion_inc();
4241 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4242 dev_xmit_recursion_dec();
4243 if (dev_xmit_complete(rc)) {
4244 HARD_TX_UNLOCK(dev, txq);
4245 goto out;
4246 }
4247 }
4248 HARD_TX_UNLOCK(dev, txq);
4249 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4250 dev->name);
4251 } else {
4252 /* Recursion is detected! It is possible,
4253 * unfortunately
4254 */
4255recursion_alert:
4256 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4257 dev->name);
4258 }
4259 }
4260
4261 rc = -ENETDOWN;
4262 rcu_read_unlock_bh();
4263
4264 dev_core_stats_tx_dropped_inc(dev);
4265 kfree_skb_list(skb);
4266 return rc;
4267out:
4268 rcu_read_unlock_bh();
4269 return rc;
4270}
4271EXPORT_SYMBOL(__dev_queue_xmit);
4272
4273int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4274{
4275 struct net_device *dev = skb->dev;
4276 struct sk_buff *orig_skb = skb;
4277 struct netdev_queue *txq;
4278 int ret = NETDEV_TX_BUSY;
4279 bool again = false;
4280
4281 if (unlikely(!netif_running(dev) ||
4282 !netif_carrier_ok(dev)))
4283 goto drop;
4284
4285 skb = validate_xmit_skb_list(skb, dev, &again);
4286 if (skb != orig_skb)
4287 goto drop;
4288
4289 skb_set_queue_mapping(skb, queue_id);
4290 txq = skb_get_tx_queue(dev, skb);
4291
4292 local_bh_disable();
4293
4294 dev_xmit_recursion_inc();
4295 HARD_TX_LOCK(dev, txq, smp_processor_id());
4296 if (!netif_xmit_frozen_or_drv_stopped(txq))
4297 ret = netdev_start_xmit(skb, dev, txq, false);
4298 HARD_TX_UNLOCK(dev, txq);
4299 dev_xmit_recursion_dec();
4300
4301 local_bh_enable();
4302 return ret;
4303drop:
4304 dev_core_stats_tx_dropped_inc(dev);
4305 kfree_skb_list(skb);
4306 return NET_XMIT_DROP;
4307}
4308EXPORT_SYMBOL(__dev_direct_xmit);
4309
4310/*************************************************************************
4311 * Receiver routines
4312 *************************************************************************/
4313
4314int netdev_max_backlog __read_mostly = 1000;
4315EXPORT_SYMBOL(netdev_max_backlog);
4316
4317int netdev_tstamp_prequeue __read_mostly = 1;
4318unsigned int sysctl_skb_defer_max __read_mostly = 64;
4319int netdev_budget __read_mostly = 300;
4320/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4321unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4322int weight_p __read_mostly = 64; /* old backlog weight */
4323int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4324int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4325int dev_rx_weight __read_mostly = 64;
4326int dev_tx_weight __read_mostly = 64;
4327
4328/* Called with irq disabled */
4329static inline void ____napi_schedule(struct softnet_data *sd,
4330 struct napi_struct *napi)
4331{
4332 struct task_struct *thread;
4333
4334 lockdep_assert_irqs_disabled();
4335
4336 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4337 /* Paired with smp_mb__before_atomic() in
4338 * napi_enable()/dev_set_threaded().
4339 * Use READ_ONCE() to guarantee a complete
4340 * read on napi->thread. Only call
4341 * wake_up_process() when it's not NULL.
4342 */
4343 thread = READ_ONCE(napi->thread);
4344 if (thread) {
4345 /* Avoid doing set_bit() if the thread is in
4346 * INTERRUPTIBLE state, cause napi_thread_wait()
4347 * makes sure to proceed with napi polling
4348 * if the thread is explicitly woken from here.
4349 */
4350 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4351 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4352 wake_up_process(thread);
4353 return;
4354 }
4355 }
4356
4357 list_add_tail(&napi->poll_list, &sd->poll_list);
4358 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4359}
4360
4361#ifdef CONFIG_RPS
4362
4363/* One global table that all flow-based protocols share. */
4364struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4365EXPORT_SYMBOL(rps_sock_flow_table);
4366u32 rps_cpu_mask __read_mostly;
4367EXPORT_SYMBOL(rps_cpu_mask);
4368
4369struct static_key_false rps_needed __read_mostly;
4370EXPORT_SYMBOL(rps_needed);
4371struct static_key_false rfs_needed __read_mostly;
4372EXPORT_SYMBOL(rfs_needed);
4373
4374static struct rps_dev_flow *
4375set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4376 struct rps_dev_flow *rflow, u16 next_cpu)
4377{
4378 if (next_cpu < nr_cpu_ids) {
4379#ifdef CONFIG_RFS_ACCEL
4380 struct netdev_rx_queue *rxqueue;
4381 struct rps_dev_flow_table *flow_table;
4382 struct rps_dev_flow *old_rflow;
4383 u32 flow_id;
4384 u16 rxq_index;
4385 int rc;
4386
4387 /* Should we steer this flow to a different hardware queue? */
4388 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4389 !(dev->features & NETIF_F_NTUPLE))
4390 goto out;
4391 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4392 if (rxq_index == skb_get_rx_queue(skb))
4393 goto out;
4394
4395 rxqueue = dev->_rx + rxq_index;
4396 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4397 if (!flow_table)
4398 goto out;
4399 flow_id = skb_get_hash(skb) & flow_table->mask;
4400 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4401 rxq_index, flow_id);
4402 if (rc < 0)
4403 goto out;
4404 old_rflow = rflow;
4405 rflow = &flow_table->flows[flow_id];
4406 rflow->filter = rc;
4407 if (old_rflow->filter == rflow->filter)
4408 old_rflow->filter = RPS_NO_FILTER;
4409 out:
4410#endif
4411 rflow->last_qtail =
4412 per_cpu(softnet_data, next_cpu).input_queue_head;
4413 }
4414
4415 rflow->cpu = next_cpu;
4416 return rflow;
4417}
4418
4419/*
4420 * get_rps_cpu is called from netif_receive_skb and returns the target
4421 * CPU from the RPS map of the receiving queue for a given skb.
4422 * rcu_read_lock must be held on entry.
4423 */
4424static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4425 struct rps_dev_flow **rflowp)
4426{
4427 const struct rps_sock_flow_table *sock_flow_table;
4428 struct netdev_rx_queue *rxqueue = dev->_rx;
4429 struct rps_dev_flow_table *flow_table;
4430 struct rps_map *map;
4431 int cpu = -1;
4432 u32 tcpu;
4433 u32 hash;
4434
4435 if (skb_rx_queue_recorded(skb)) {
4436 u16 index = skb_get_rx_queue(skb);
4437
4438 if (unlikely(index >= dev->real_num_rx_queues)) {
4439 WARN_ONCE(dev->real_num_rx_queues > 1,
4440 "%s received packet on queue %u, but number "
4441 "of RX queues is %u\n",
4442 dev->name, index, dev->real_num_rx_queues);
4443 goto done;
4444 }
4445 rxqueue += index;
4446 }
4447
4448 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4449
4450 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4451 map = rcu_dereference(rxqueue->rps_map);
4452 if (!flow_table && !map)
4453 goto done;
4454
4455 skb_reset_network_header(skb);
4456 hash = skb_get_hash(skb);
4457 if (!hash)
4458 goto done;
4459
4460 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4461 if (flow_table && sock_flow_table) {
4462 struct rps_dev_flow *rflow;
4463 u32 next_cpu;
4464 u32 ident;
4465
4466 /* First check into global flow table if there is a match */
4467 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4468 if ((ident ^ hash) & ~rps_cpu_mask)
4469 goto try_rps;
4470
4471 next_cpu = ident & rps_cpu_mask;
4472
4473 /* OK, now we know there is a match,
4474 * we can look at the local (per receive queue) flow table
4475 */
4476 rflow = &flow_table->flows[hash & flow_table->mask];
4477 tcpu = rflow->cpu;
4478
4479 /*
4480 * If the desired CPU (where last recvmsg was done) is
4481 * different from current CPU (one in the rx-queue flow
4482 * table entry), switch if one of the following holds:
4483 * - Current CPU is unset (>= nr_cpu_ids).
4484 * - Current CPU is offline.
4485 * - The current CPU's queue tail has advanced beyond the
4486 * last packet that was enqueued using this table entry.
4487 * This guarantees that all previous packets for the flow
4488 * have been dequeued, thus preserving in order delivery.
4489 */
4490 if (unlikely(tcpu != next_cpu) &&
4491 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4492 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4493 rflow->last_qtail)) >= 0)) {
4494 tcpu = next_cpu;
4495 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4496 }
4497
4498 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4499 *rflowp = rflow;
4500 cpu = tcpu;
4501 goto done;
4502 }
4503 }
4504
4505try_rps:
4506
4507 if (map) {
4508 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4509 if (cpu_online(tcpu)) {
4510 cpu = tcpu;
4511 goto done;
4512 }
4513 }
4514
4515done:
4516 return cpu;
4517}
4518
4519#ifdef CONFIG_RFS_ACCEL
4520
4521/**
4522 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4523 * @dev: Device on which the filter was set
4524 * @rxq_index: RX queue index
4525 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4526 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4527 *
4528 * Drivers that implement ndo_rx_flow_steer() should periodically call
4529 * this function for each installed filter and remove the filters for
4530 * which it returns %true.
4531 */
4532bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4533 u32 flow_id, u16 filter_id)
4534{
4535 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4536 struct rps_dev_flow_table *flow_table;
4537 struct rps_dev_flow *rflow;
4538 bool expire = true;
4539 unsigned int cpu;
4540
4541 rcu_read_lock();
4542 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4543 if (flow_table && flow_id <= flow_table->mask) {
4544 rflow = &flow_table->flows[flow_id];
4545 cpu = READ_ONCE(rflow->cpu);
4546 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4547 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4548 rflow->last_qtail) <
4549 (int)(10 * flow_table->mask)))
4550 expire = false;
4551 }
4552 rcu_read_unlock();
4553 return expire;
4554}
4555EXPORT_SYMBOL(rps_may_expire_flow);
4556
4557#endif /* CONFIG_RFS_ACCEL */
4558
4559/* Called from hardirq (IPI) context */
4560static void rps_trigger_softirq(void *data)
4561{
4562 struct softnet_data *sd = data;
4563
4564 ____napi_schedule(sd, &sd->backlog);
4565 sd->received_rps++;
4566}
4567
4568#endif /* CONFIG_RPS */
4569
4570/* Called from hardirq (IPI) context */
4571static void trigger_rx_softirq(void *data)
4572{
4573 struct softnet_data *sd = data;
4574
4575 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4576 smp_store_release(&sd->defer_ipi_scheduled, 0);
4577}
4578
4579/*
4580 * Check if this softnet_data structure is another cpu one
4581 * If yes, queue it to our IPI list and return 1
4582 * If no, return 0
4583 */
4584static int napi_schedule_rps(struct softnet_data *sd)
4585{
4586 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4587
4588#ifdef CONFIG_RPS
4589 if (sd != mysd) {
4590 sd->rps_ipi_next = mysd->rps_ipi_list;
4591 mysd->rps_ipi_list = sd;
4592
4593 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4594 return 1;
4595 }
4596#endif /* CONFIG_RPS */
4597 __napi_schedule_irqoff(&mysd->backlog);
4598 return 0;
4599}
4600
4601#ifdef CONFIG_NET_FLOW_LIMIT
4602int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4603#endif
4604
4605static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4606{
4607#ifdef CONFIG_NET_FLOW_LIMIT
4608 struct sd_flow_limit *fl;
4609 struct softnet_data *sd;
4610 unsigned int old_flow, new_flow;
4611
4612 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4613 return false;
4614
4615 sd = this_cpu_ptr(&softnet_data);
4616
4617 rcu_read_lock();
4618 fl = rcu_dereference(sd->flow_limit);
4619 if (fl) {
4620 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4621 old_flow = fl->history[fl->history_head];
4622 fl->history[fl->history_head] = new_flow;
4623
4624 fl->history_head++;
4625 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4626
4627 if (likely(fl->buckets[old_flow]))
4628 fl->buckets[old_flow]--;
4629
4630 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4631 fl->count++;
4632 rcu_read_unlock();
4633 return true;
4634 }
4635 }
4636 rcu_read_unlock();
4637#endif
4638 return false;
4639}
4640
4641/*
4642 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4643 * queue (may be a remote CPU queue).
4644 */
4645static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4646 unsigned int *qtail)
4647{
4648 enum skb_drop_reason reason;
4649 struct softnet_data *sd;
4650 unsigned long flags;
4651 unsigned int qlen;
4652
4653 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4654 sd = &per_cpu(softnet_data, cpu);
4655
4656 rps_lock_irqsave(sd, &flags);
4657 if (!netif_running(skb->dev))
4658 goto drop;
4659 qlen = skb_queue_len(&sd->input_pkt_queue);
4660 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4661 if (qlen) {
4662enqueue:
4663 __skb_queue_tail(&sd->input_pkt_queue, skb);
4664 input_queue_tail_incr_save(sd, qtail);
4665 rps_unlock_irq_restore(sd, &flags);
4666 return NET_RX_SUCCESS;
4667 }
4668
4669 /* Schedule NAPI for backlog device
4670 * We can use non atomic operation since we own the queue lock
4671 */
4672 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4673 napi_schedule_rps(sd);
4674 goto enqueue;
4675 }
4676 reason = SKB_DROP_REASON_CPU_BACKLOG;
4677
4678drop:
4679 sd->dropped++;
4680 rps_unlock_irq_restore(sd, &flags);
4681
4682 dev_core_stats_rx_dropped_inc(skb->dev);
4683 kfree_skb_reason(skb, reason);
4684 return NET_RX_DROP;
4685}
4686
4687static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4688{
4689 struct net_device *dev = skb->dev;
4690 struct netdev_rx_queue *rxqueue;
4691
4692 rxqueue = dev->_rx;
4693
4694 if (skb_rx_queue_recorded(skb)) {
4695 u16 index = skb_get_rx_queue(skb);
4696
4697 if (unlikely(index >= dev->real_num_rx_queues)) {
4698 WARN_ONCE(dev->real_num_rx_queues > 1,
4699 "%s received packet on queue %u, but number "
4700 "of RX queues is %u\n",
4701 dev->name, index, dev->real_num_rx_queues);
4702
4703 return rxqueue; /* Return first rxqueue */
4704 }
4705 rxqueue += index;
4706 }
4707 return rxqueue;
4708}
4709
4710u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4711 struct bpf_prog *xdp_prog)
4712{
4713 void *orig_data, *orig_data_end, *hard_start;
4714 struct netdev_rx_queue *rxqueue;
4715 bool orig_bcast, orig_host;
4716 u32 mac_len, frame_sz;
4717 __be16 orig_eth_type;
4718 struct ethhdr *eth;
4719 u32 metalen, act;
4720 int off;
4721
4722 /* The XDP program wants to see the packet starting at the MAC
4723 * header.
4724 */
4725 mac_len = skb->data - skb_mac_header(skb);
4726 hard_start = skb->data - skb_headroom(skb);
4727
4728 /* SKB "head" area always have tailroom for skb_shared_info */
4729 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4730 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4731
4732 rxqueue = netif_get_rxqueue(skb);
4733 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4734 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4735 skb_headlen(skb) + mac_len, true);
4736
4737 orig_data_end = xdp->data_end;
4738 orig_data = xdp->data;
4739 eth = (struct ethhdr *)xdp->data;
4740 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4741 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4742 orig_eth_type = eth->h_proto;
4743
4744 act = bpf_prog_run_xdp(xdp_prog, xdp);
4745
4746 /* check if bpf_xdp_adjust_head was used */
4747 off = xdp->data - orig_data;
4748 if (off) {
4749 if (off > 0)
4750 __skb_pull(skb, off);
4751 else if (off < 0)
4752 __skb_push(skb, -off);
4753
4754 skb->mac_header += off;
4755 skb_reset_network_header(skb);
4756 }
4757
4758 /* check if bpf_xdp_adjust_tail was used */
4759 off = xdp->data_end - orig_data_end;
4760 if (off != 0) {
4761 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4762 skb->len += off; /* positive on grow, negative on shrink */
4763 }
4764
4765 /* check if XDP changed eth hdr such SKB needs update */
4766 eth = (struct ethhdr *)xdp->data;
4767 if ((orig_eth_type != eth->h_proto) ||
4768 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4769 skb->dev->dev_addr)) ||
4770 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4771 __skb_push(skb, ETH_HLEN);
4772 skb->pkt_type = PACKET_HOST;
4773 skb->protocol = eth_type_trans(skb, skb->dev);
4774 }
4775
4776 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4777 * before calling us again on redirect path. We do not call do_redirect
4778 * as we leave that up to the caller.
4779 *
4780 * Caller is responsible for managing lifetime of skb (i.e. calling
4781 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4782 */
4783 switch (act) {
4784 case XDP_REDIRECT:
4785 case XDP_TX:
4786 __skb_push(skb, mac_len);
4787 break;
4788 case XDP_PASS:
4789 metalen = xdp->data - xdp->data_meta;
4790 if (metalen)
4791 skb_metadata_set(skb, metalen);
4792 break;
4793 }
4794
4795 return act;
4796}
4797
4798static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4799 struct xdp_buff *xdp,
4800 struct bpf_prog *xdp_prog)
4801{
4802 u32 act = XDP_DROP;
4803
4804 /* Reinjected packets coming from act_mirred or similar should
4805 * not get XDP generic processing.
4806 */
4807 if (skb_is_redirected(skb))
4808 return XDP_PASS;
4809
4810 /* XDP packets must be linear and must have sufficient headroom
4811 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4812 * native XDP provides, thus we need to do it here as well.
4813 */
4814 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4815 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4816 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4817 int troom = skb->tail + skb->data_len - skb->end;
4818
4819 /* In case we have to go down the path and also linearize,
4820 * then lets do the pskb_expand_head() work just once here.
4821 */
4822 if (pskb_expand_head(skb,
4823 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4824 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4825 goto do_drop;
4826 if (skb_linearize(skb))
4827 goto do_drop;
4828 }
4829
4830 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4831 switch (act) {
4832 case XDP_REDIRECT:
4833 case XDP_TX:
4834 case XDP_PASS:
4835 break;
4836 default:
4837 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4838 fallthrough;
4839 case XDP_ABORTED:
4840 trace_xdp_exception(skb->dev, xdp_prog, act);
4841 fallthrough;
4842 case XDP_DROP:
4843 do_drop:
4844 kfree_skb(skb);
4845 break;
4846 }
4847
4848 return act;
4849}
4850
4851/* When doing generic XDP we have to bypass the qdisc layer and the
4852 * network taps in order to match in-driver-XDP behavior. This also means
4853 * that XDP packets are able to starve other packets going through a qdisc,
4854 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4855 * queues, so they do not have this starvation issue.
4856 */
4857void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4858{
4859 struct net_device *dev = skb->dev;
4860 struct netdev_queue *txq;
4861 bool free_skb = true;
4862 int cpu, rc;
4863
4864 txq = netdev_core_pick_tx(dev, skb, NULL);
4865 cpu = smp_processor_id();
4866 HARD_TX_LOCK(dev, txq, cpu);
4867 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4868 rc = netdev_start_xmit(skb, dev, txq, 0);
4869 if (dev_xmit_complete(rc))
4870 free_skb = false;
4871 }
4872 HARD_TX_UNLOCK(dev, txq);
4873 if (free_skb) {
4874 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4875 dev_core_stats_tx_dropped_inc(dev);
4876 kfree_skb(skb);
4877 }
4878}
4879
4880static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4881
4882int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4883{
4884 if (xdp_prog) {
4885 struct xdp_buff xdp;
4886 u32 act;
4887 int err;
4888
4889 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4890 if (act != XDP_PASS) {
4891 switch (act) {
4892 case XDP_REDIRECT:
4893 err = xdp_do_generic_redirect(skb->dev, skb,
4894 &xdp, xdp_prog);
4895 if (err)
4896 goto out_redir;
4897 break;
4898 case XDP_TX:
4899 generic_xdp_tx(skb, xdp_prog);
4900 break;
4901 }
4902 return XDP_DROP;
4903 }
4904 }
4905 return XDP_PASS;
4906out_redir:
4907 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4908 return XDP_DROP;
4909}
4910EXPORT_SYMBOL_GPL(do_xdp_generic);
4911
4912static int netif_rx_internal(struct sk_buff *skb)
4913{
4914 int ret;
4915
4916 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4917
4918 trace_netif_rx(skb);
4919
4920#ifdef CONFIG_RPS
4921 if (static_branch_unlikely(&rps_needed)) {
4922 struct rps_dev_flow voidflow, *rflow = &voidflow;
4923 int cpu;
4924
4925 rcu_read_lock();
4926
4927 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4928 if (cpu < 0)
4929 cpu = smp_processor_id();
4930
4931 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4932
4933 rcu_read_unlock();
4934 } else
4935#endif
4936 {
4937 unsigned int qtail;
4938
4939 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4940 }
4941 return ret;
4942}
4943
4944/**
4945 * __netif_rx - Slightly optimized version of netif_rx
4946 * @skb: buffer to post
4947 *
4948 * This behaves as netif_rx except that it does not disable bottom halves.
4949 * As a result this function may only be invoked from the interrupt context
4950 * (either hard or soft interrupt).
4951 */
4952int __netif_rx(struct sk_buff *skb)
4953{
4954 int ret;
4955
4956 lockdep_assert_once(hardirq_count() | softirq_count());
4957
4958 trace_netif_rx_entry(skb);
4959 ret = netif_rx_internal(skb);
4960 trace_netif_rx_exit(ret);
4961 return ret;
4962}
4963EXPORT_SYMBOL(__netif_rx);
4964
4965/**
4966 * netif_rx - post buffer to the network code
4967 * @skb: buffer to post
4968 *
4969 * This function receives a packet from a device driver and queues it for
4970 * the upper (protocol) levels to process via the backlog NAPI device. It
4971 * always succeeds. The buffer may be dropped during processing for
4972 * congestion control or by the protocol layers.
4973 * The network buffer is passed via the backlog NAPI device. Modern NIC
4974 * driver should use NAPI and GRO.
4975 * This function can used from interrupt and from process context. The
4976 * caller from process context must not disable interrupts before invoking
4977 * this function.
4978 *
4979 * return values:
4980 * NET_RX_SUCCESS (no congestion)
4981 * NET_RX_DROP (packet was dropped)
4982 *
4983 */
4984int netif_rx(struct sk_buff *skb)
4985{
4986 bool need_bh_off = !(hardirq_count() | softirq_count());
4987 int ret;
4988
4989 if (need_bh_off)
4990 local_bh_disable();
4991 trace_netif_rx_entry(skb);
4992 ret = netif_rx_internal(skb);
4993 trace_netif_rx_exit(ret);
4994 if (need_bh_off)
4995 local_bh_enable();
4996 return ret;
4997}
4998EXPORT_SYMBOL(netif_rx);
4999
5000static __latent_entropy void net_tx_action(struct softirq_action *h)
5001{
5002 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5003
5004 if (sd->completion_queue) {
5005 struct sk_buff *clist;
5006
5007 local_irq_disable();
5008 clist = sd->completion_queue;
5009 sd->completion_queue = NULL;
5010 local_irq_enable();
5011
5012 while (clist) {
5013 struct sk_buff *skb = clist;
5014
5015 clist = clist->next;
5016
5017 WARN_ON(refcount_read(&skb->users));
5018 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5019 trace_consume_skb(skb);
5020 else
5021 trace_kfree_skb(skb, net_tx_action,
5022 SKB_DROP_REASON_NOT_SPECIFIED);
5023
5024 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5025 __kfree_skb(skb);
5026 else
5027 __kfree_skb_defer(skb);
5028 }
5029 }
5030
5031 if (sd->output_queue) {
5032 struct Qdisc *head;
5033
5034 local_irq_disable();
5035 head = sd->output_queue;
5036 sd->output_queue = NULL;
5037 sd->output_queue_tailp = &sd->output_queue;
5038 local_irq_enable();
5039
5040 rcu_read_lock();
5041
5042 while (head) {
5043 struct Qdisc *q = head;
5044 spinlock_t *root_lock = NULL;
5045
5046 head = head->next_sched;
5047
5048 /* We need to make sure head->next_sched is read
5049 * before clearing __QDISC_STATE_SCHED
5050 */
5051 smp_mb__before_atomic();
5052
5053 if (!(q->flags & TCQ_F_NOLOCK)) {
5054 root_lock = qdisc_lock(q);
5055 spin_lock(root_lock);
5056 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5057 &q->state))) {
5058 /* There is a synchronize_net() between
5059 * STATE_DEACTIVATED flag being set and
5060 * qdisc_reset()/some_qdisc_is_busy() in
5061 * dev_deactivate(), so we can safely bail out
5062 * early here to avoid data race between
5063 * qdisc_deactivate() and some_qdisc_is_busy()
5064 * for lockless qdisc.
5065 */
5066 clear_bit(__QDISC_STATE_SCHED, &q->state);
5067 continue;
5068 }
5069
5070 clear_bit(__QDISC_STATE_SCHED, &q->state);
5071 qdisc_run(q);
5072 if (root_lock)
5073 spin_unlock(root_lock);
5074 }
5075
5076 rcu_read_unlock();
5077 }
5078
5079 xfrm_dev_backlog(sd);
5080}
5081
5082#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5083/* This hook is defined here for ATM LANE */
5084int (*br_fdb_test_addr_hook)(struct net_device *dev,
5085 unsigned char *addr) __read_mostly;
5086EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5087#endif
5088
5089static inline struct sk_buff *
5090sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5091 struct net_device *orig_dev, bool *another)
5092{
5093#ifdef CONFIG_NET_CLS_ACT
5094 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5095 struct tcf_result cl_res;
5096
5097 /* If there's at least one ingress present somewhere (so
5098 * we get here via enabled static key), remaining devices
5099 * that are not configured with an ingress qdisc will bail
5100 * out here.
5101 */
5102 if (!miniq)
5103 return skb;
5104
5105 if (*pt_prev) {
5106 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5107 *pt_prev = NULL;
5108 }
5109
5110 qdisc_skb_cb(skb)->pkt_len = skb->len;
5111 tc_skb_cb(skb)->mru = 0;
5112 tc_skb_cb(skb)->post_ct = false;
5113 skb->tc_at_ingress = 1;
5114 mini_qdisc_bstats_cpu_update(miniq, skb);
5115
5116 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5117 case TC_ACT_OK:
5118 case TC_ACT_RECLASSIFY:
5119 skb->tc_index = TC_H_MIN(cl_res.classid);
5120 break;
5121 case TC_ACT_SHOT:
5122 mini_qdisc_qstats_cpu_drop(miniq);
5123 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5124 *ret = NET_RX_DROP;
5125 return NULL;
5126 case TC_ACT_STOLEN:
5127 case TC_ACT_QUEUED:
5128 case TC_ACT_TRAP:
5129 consume_skb(skb);
5130 *ret = NET_RX_SUCCESS;
5131 return NULL;
5132 case TC_ACT_REDIRECT:
5133 /* skb_mac_header check was done by cls/act_bpf, so
5134 * we can safely push the L2 header back before
5135 * redirecting to another netdev
5136 */
5137 __skb_push(skb, skb->mac_len);
5138 if (skb_do_redirect(skb) == -EAGAIN) {
5139 __skb_pull(skb, skb->mac_len);
5140 *another = true;
5141 break;
5142 }
5143 *ret = NET_RX_SUCCESS;
5144 return NULL;
5145 case TC_ACT_CONSUMED:
5146 *ret = NET_RX_SUCCESS;
5147 return NULL;
5148 default:
5149 break;
5150 }
5151#endif /* CONFIG_NET_CLS_ACT */
5152 return skb;
5153}
5154
5155/**
5156 * netdev_is_rx_handler_busy - check if receive handler is registered
5157 * @dev: device to check
5158 *
5159 * Check if a receive handler is already registered for a given device.
5160 * Return true if there one.
5161 *
5162 * The caller must hold the rtnl_mutex.
5163 */
5164bool netdev_is_rx_handler_busy(struct net_device *dev)
5165{
5166 ASSERT_RTNL();
5167 return dev && rtnl_dereference(dev->rx_handler);
5168}
5169EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5170
5171/**
5172 * netdev_rx_handler_register - register receive handler
5173 * @dev: device to register a handler for
5174 * @rx_handler: receive handler to register
5175 * @rx_handler_data: data pointer that is used by rx handler
5176 *
5177 * Register a receive handler for a device. This handler will then be
5178 * called from __netif_receive_skb. A negative errno code is returned
5179 * on a failure.
5180 *
5181 * The caller must hold the rtnl_mutex.
5182 *
5183 * For a general description of rx_handler, see enum rx_handler_result.
5184 */
5185int netdev_rx_handler_register(struct net_device *dev,
5186 rx_handler_func_t *rx_handler,
5187 void *rx_handler_data)
5188{
5189 if (netdev_is_rx_handler_busy(dev))
5190 return -EBUSY;
5191
5192 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5193 return -EINVAL;
5194
5195 /* Note: rx_handler_data must be set before rx_handler */
5196 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5197 rcu_assign_pointer(dev->rx_handler, rx_handler);
5198
5199 return 0;
5200}
5201EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5202
5203/**
5204 * netdev_rx_handler_unregister - unregister receive handler
5205 * @dev: device to unregister a handler from
5206 *
5207 * Unregister a receive handler from a device.
5208 *
5209 * The caller must hold the rtnl_mutex.
5210 */
5211void netdev_rx_handler_unregister(struct net_device *dev)
5212{
5213
5214 ASSERT_RTNL();
5215 RCU_INIT_POINTER(dev->rx_handler, NULL);
5216 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5217 * section has a guarantee to see a non NULL rx_handler_data
5218 * as well.
5219 */
5220 synchronize_net();
5221 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5222}
5223EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5224
5225/*
5226 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5227 * the special handling of PFMEMALLOC skbs.
5228 */
5229static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5230{
5231 switch (skb->protocol) {
5232 case htons(ETH_P_ARP):
5233 case htons(ETH_P_IP):
5234 case htons(ETH_P_IPV6):
5235 case htons(ETH_P_8021Q):
5236 case htons(ETH_P_8021AD):
5237 return true;
5238 default:
5239 return false;
5240 }
5241}
5242
5243static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5244 int *ret, struct net_device *orig_dev)
5245{
5246 if (nf_hook_ingress_active(skb)) {
5247 int ingress_retval;
5248
5249 if (*pt_prev) {
5250 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5251 *pt_prev = NULL;
5252 }
5253
5254 rcu_read_lock();
5255 ingress_retval = nf_hook_ingress(skb);
5256 rcu_read_unlock();
5257 return ingress_retval;
5258 }
5259 return 0;
5260}
5261
5262static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5263 struct packet_type **ppt_prev)
5264{
5265 struct packet_type *ptype, *pt_prev;
5266 rx_handler_func_t *rx_handler;
5267 struct sk_buff *skb = *pskb;
5268 struct net_device *orig_dev;
5269 bool deliver_exact = false;
5270 int ret = NET_RX_DROP;
5271 __be16 type;
5272
5273 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5274
5275 trace_netif_receive_skb(skb);
5276
5277 orig_dev = skb->dev;
5278
5279 skb_reset_network_header(skb);
5280 if (!skb_transport_header_was_set(skb))
5281 skb_reset_transport_header(skb);
5282 skb_reset_mac_len(skb);
5283
5284 pt_prev = NULL;
5285
5286another_round:
5287 skb->skb_iif = skb->dev->ifindex;
5288
5289 __this_cpu_inc(softnet_data.processed);
5290
5291 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5292 int ret2;
5293
5294 migrate_disable();
5295 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5296 migrate_enable();
5297
5298 if (ret2 != XDP_PASS) {
5299 ret = NET_RX_DROP;
5300 goto out;
5301 }
5302 }
5303
5304 if (eth_type_vlan(skb->protocol)) {
5305 skb = skb_vlan_untag(skb);
5306 if (unlikely(!skb))
5307 goto out;
5308 }
5309
5310 if (skb_skip_tc_classify(skb))
5311 goto skip_classify;
5312
5313 if (pfmemalloc)
5314 goto skip_taps;
5315
5316 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5317 if (pt_prev)
5318 ret = deliver_skb(skb, pt_prev, orig_dev);
5319 pt_prev = ptype;
5320 }
5321
5322 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5323 if (pt_prev)
5324 ret = deliver_skb(skb, pt_prev, orig_dev);
5325 pt_prev = ptype;
5326 }
5327
5328skip_taps:
5329#ifdef CONFIG_NET_INGRESS
5330 if (static_branch_unlikely(&ingress_needed_key)) {
5331 bool another = false;
5332
5333 nf_skip_egress(skb, true);
5334 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5335 &another);
5336 if (another)
5337 goto another_round;
5338 if (!skb)
5339 goto out;
5340
5341 nf_skip_egress(skb, false);
5342 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5343 goto out;
5344 }
5345#endif
5346 skb_reset_redirect(skb);
5347skip_classify:
5348 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5349 goto drop;
5350
5351 if (skb_vlan_tag_present(skb)) {
5352 if (pt_prev) {
5353 ret = deliver_skb(skb, pt_prev, orig_dev);
5354 pt_prev = NULL;
5355 }
5356 if (vlan_do_receive(&skb))
5357 goto another_round;
5358 else if (unlikely(!skb))
5359 goto out;
5360 }
5361
5362 rx_handler = rcu_dereference(skb->dev->rx_handler);
5363 if (rx_handler) {
5364 if (pt_prev) {
5365 ret = deliver_skb(skb, pt_prev, orig_dev);
5366 pt_prev = NULL;
5367 }
5368 switch (rx_handler(&skb)) {
5369 case RX_HANDLER_CONSUMED:
5370 ret = NET_RX_SUCCESS;
5371 goto out;
5372 case RX_HANDLER_ANOTHER:
5373 goto another_round;
5374 case RX_HANDLER_EXACT:
5375 deliver_exact = true;
5376 break;
5377 case RX_HANDLER_PASS:
5378 break;
5379 default:
5380 BUG();
5381 }
5382 }
5383
5384 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5385check_vlan_id:
5386 if (skb_vlan_tag_get_id(skb)) {
5387 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5388 * find vlan device.
5389 */
5390 skb->pkt_type = PACKET_OTHERHOST;
5391 } else if (eth_type_vlan(skb->protocol)) {
5392 /* Outer header is 802.1P with vlan 0, inner header is
5393 * 802.1Q or 802.1AD and vlan_do_receive() above could
5394 * not find vlan dev for vlan id 0.
5395 */
5396 __vlan_hwaccel_clear_tag(skb);
5397 skb = skb_vlan_untag(skb);
5398 if (unlikely(!skb))
5399 goto out;
5400 if (vlan_do_receive(&skb))
5401 /* After stripping off 802.1P header with vlan 0
5402 * vlan dev is found for inner header.
5403 */
5404 goto another_round;
5405 else if (unlikely(!skb))
5406 goto out;
5407 else
5408 /* We have stripped outer 802.1P vlan 0 header.
5409 * But could not find vlan dev.
5410 * check again for vlan id to set OTHERHOST.
5411 */
5412 goto check_vlan_id;
5413 }
5414 /* Note: we might in the future use prio bits
5415 * and set skb->priority like in vlan_do_receive()
5416 * For the time being, just ignore Priority Code Point
5417 */
5418 __vlan_hwaccel_clear_tag(skb);
5419 }
5420
5421 type = skb->protocol;
5422
5423 /* deliver only exact match when indicated */
5424 if (likely(!deliver_exact)) {
5425 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5426 &ptype_base[ntohs(type) &
5427 PTYPE_HASH_MASK]);
5428 }
5429
5430 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5431 &orig_dev->ptype_specific);
5432
5433 if (unlikely(skb->dev != orig_dev)) {
5434 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5435 &skb->dev->ptype_specific);
5436 }
5437
5438 if (pt_prev) {
5439 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5440 goto drop;
5441 *ppt_prev = pt_prev;
5442 } else {
5443drop:
5444 if (!deliver_exact)
5445 dev_core_stats_rx_dropped_inc(skb->dev);
5446 else
5447 dev_core_stats_rx_nohandler_inc(skb->dev);
5448 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5449 /* Jamal, now you will not able to escape explaining
5450 * me how you were going to use this. :-)
5451 */
5452 ret = NET_RX_DROP;
5453 }
5454
5455out:
5456 /* The invariant here is that if *ppt_prev is not NULL
5457 * then skb should also be non-NULL.
5458 *
5459 * Apparently *ppt_prev assignment above holds this invariant due to
5460 * skb dereferencing near it.
5461 */
5462 *pskb = skb;
5463 return ret;
5464}
5465
5466static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5467{
5468 struct net_device *orig_dev = skb->dev;
5469 struct packet_type *pt_prev = NULL;
5470 int ret;
5471
5472 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5473 if (pt_prev)
5474 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5475 skb->dev, pt_prev, orig_dev);
5476 return ret;
5477}
5478
5479/**
5480 * netif_receive_skb_core - special purpose version of netif_receive_skb
5481 * @skb: buffer to process
5482 *
5483 * More direct receive version of netif_receive_skb(). It should
5484 * only be used by callers that have a need to skip RPS and Generic XDP.
5485 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5486 *
5487 * This function may only be called from softirq context and interrupts
5488 * should be enabled.
5489 *
5490 * Return values (usually ignored):
5491 * NET_RX_SUCCESS: no congestion
5492 * NET_RX_DROP: packet was dropped
5493 */
5494int netif_receive_skb_core(struct sk_buff *skb)
5495{
5496 int ret;
5497
5498 rcu_read_lock();
5499 ret = __netif_receive_skb_one_core(skb, false);
5500 rcu_read_unlock();
5501
5502 return ret;
5503}
5504EXPORT_SYMBOL(netif_receive_skb_core);
5505
5506static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5507 struct packet_type *pt_prev,
5508 struct net_device *orig_dev)
5509{
5510 struct sk_buff *skb, *next;
5511
5512 if (!pt_prev)
5513 return;
5514 if (list_empty(head))
5515 return;
5516 if (pt_prev->list_func != NULL)
5517 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5518 ip_list_rcv, head, pt_prev, orig_dev);
5519 else
5520 list_for_each_entry_safe(skb, next, head, list) {
5521 skb_list_del_init(skb);
5522 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5523 }
5524}
5525
5526static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5527{
5528 /* Fast-path assumptions:
5529 * - There is no RX handler.
5530 * - Only one packet_type matches.
5531 * If either of these fails, we will end up doing some per-packet
5532 * processing in-line, then handling the 'last ptype' for the whole
5533 * sublist. This can't cause out-of-order delivery to any single ptype,
5534 * because the 'last ptype' must be constant across the sublist, and all
5535 * other ptypes are handled per-packet.
5536 */
5537 /* Current (common) ptype of sublist */
5538 struct packet_type *pt_curr = NULL;
5539 /* Current (common) orig_dev of sublist */
5540 struct net_device *od_curr = NULL;
5541 struct list_head sublist;
5542 struct sk_buff *skb, *next;
5543
5544 INIT_LIST_HEAD(&sublist);
5545 list_for_each_entry_safe(skb, next, head, list) {
5546 struct net_device *orig_dev = skb->dev;
5547 struct packet_type *pt_prev = NULL;
5548
5549 skb_list_del_init(skb);
5550 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5551 if (!pt_prev)
5552 continue;
5553 if (pt_curr != pt_prev || od_curr != orig_dev) {
5554 /* dispatch old sublist */
5555 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5556 /* start new sublist */
5557 INIT_LIST_HEAD(&sublist);
5558 pt_curr = pt_prev;
5559 od_curr = orig_dev;
5560 }
5561 list_add_tail(&skb->list, &sublist);
5562 }
5563
5564 /* dispatch final sublist */
5565 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5566}
5567
5568static int __netif_receive_skb(struct sk_buff *skb)
5569{
5570 int ret;
5571
5572 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5573 unsigned int noreclaim_flag;
5574
5575 /*
5576 * PFMEMALLOC skbs are special, they should
5577 * - be delivered to SOCK_MEMALLOC sockets only
5578 * - stay away from userspace
5579 * - have bounded memory usage
5580 *
5581 * Use PF_MEMALLOC as this saves us from propagating the allocation
5582 * context down to all allocation sites.
5583 */
5584 noreclaim_flag = memalloc_noreclaim_save();
5585 ret = __netif_receive_skb_one_core(skb, true);
5586 memalloc_noreclaim_restore(noreclaim_flag);
5587 } else
5588 ret = __netif_receive_skb_one_core(skb, false);
5589
5590 return ret;
5591}
5592
5593static void __netif_receive_skb_list(struct list_head *head)
5594{
5595 unsigned long noreclaim_flag = 0;
5596 struct sk_buff *skb, *next;
5597 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5598
5599 list_for_each_entry_safe(skb, next, head, list) {
5600 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5601 struct list_head sublist;
5602
5603 /* Handle the previous sublist */
5604 list_cut_before(&sublist, head, &skb->list);
5605 if (!list_empty(&sublist))
5606 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5607 pfmemalloc = !pfmemalloc;
5608 /* See comments in __netif_receive_skb */
5609 if (pfmemalloc)
5610 noreclaim_flag = memalloc_noreclaim_save();
5611 else
5612 memalloc_noreclaim_restore(noreclaim_flag);
5613 }
5614 }
5615 /* Handle the remaining sublist */
5616 if (!list_empty(head))
5617 __netif_receive_skb_list_core(head, pfmemalloc);
5618 /* Restore pflags */
5619 if (pfmemalloc)
5620 memalloc_noreclaim_restore(noreclaim_flag);
5621}
5622
5623static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5624{
5625 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5626 struct bpf_prog *new = xdp->prog;
5627 int ret = 0;
5628
5629 switch (xdp->command) {
5630 case XDP_SETUP_PROG:
5631 rcu_assign_pointer(dev->xdp_prog, new);
5632 if (old)
5633 bpf_prog_put(old);
5634
5635 if (old && !new) {
5636 static_branch_dec(&generic_xdp_needed_key);
5637 } else if (new && !old) {
5638 static_branch_inc(&generic_xdp_needed_key);
5639 dev_disable_lro(dev);
5640 dev_disable_gro_hw(dev);
5641 }
5642 break;
5643
5644 default:
5645 ret = -EINVAL;
5646 break;
5647 }
5648
5649 return ret;
5650}
5651
5652static int netif_receive_skb_internal(struct sk_buff *skb)
5653{
5654 int ret;
5655
5656 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5657
5658 if (skb_defer_rx_timestamp(skb))
5659 return NET_RX_SUCCESS;
5660
5661 rcu_read_lock();
5662#ifdef CONFIG_RPS
5663 if (static_branch_unlikely(&rps_needed)) {
5664 struct rps_dev_flow voidflow, *rflow = &voidflow;
5665 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5666
5667 if (cpu >= 0) {
5668 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5669 rcu_read_unlock();
5670 return ret;
5671 }
5672 }
5673#endif
5674 ret = __netif_receive_skb(skb);
5675 rcu_read_unlock();
5676 return ret;
5677}
5678
5679void netif_receive_skb_list_internal(struct list_head *head)
5680{
5681 struct sk_buff *skb, *next;
5682 struct list_head sublist;
5683
5684 INIT_LIST_HEAD(&sublist);
5685 list_for_each_entry_safe(skb, next, head, list) {
5686 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5687 skb_list_del_init(skb);
5688 if (!skb_defer_rx_timestamp(skb))
5689 list_add_tail(&skb->list, &sublist);
5690 }
5691 list_splice_init(&sublist, head);
5692
5693 rcu_read_lock();
5694#ifdef CONFIG_RPS
5695 if (static_branch_unlikely(&rps_needed)) {
5696 list_for_each_entry_safe(skb, next, head, list) {
5697 struct rps_dev_flow voidflow, *rflow = &voidflow;
5698 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5699
5700 if (cpu >= 0) {
5701 /* Will be handled, remove from list */
5702 skb_list_del_init(skb);
5703 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5704 }
5705 }
5706 }
5707#endif
5708 __netif_receive_skb_list(head);
5709 rcu_read_unlock();
5710}
5711
5712/**
5713 * netif_receive_skb - process receive buffer from network
5714 * @skb: buffer to process
5715 *
5716 * netif_receive_skb() is the main receive data processing function.
5717 * It always succeeds. The buffer may be dropped during processing
5718 * for congestion control or by the protocol layers.
5719 *
5720 * This function may only be called from softirq context and interrupts
5721 * should be enabled.
5722 *
5723 * Return values (usually ignored):
5724 * NET_RX_SUCCESS: no congestion
5725 * NET_RX_DROP: packet was dropped
5726 */
5727int netif_receive_skb(struct sk_buff *skb)
5728{
5729 int ret;
5730
5731 trace_netif_receive_skb_entry(skb);
5732
5733 ret = netif_receive_skb_internal(skb);
5734 trace_netif_receive_skb_exit(ret);
5735
5736 return ret;
5737}
5738EXPORT_SYMBOL(netif_receive_skb);
5739
5740/**
5741 * netif_receive_skb_list - process many receive buffers from network
5742 * @head: list of skbs to process.
5743 *
5744 * Since return value of netif_receive_skb() is normally ignored, and
5745 * wouldn't be meaningful for a list, this function returns void.
5746 *
5747 * This function may only be called from softirq context and interrupts
5748 * should be enabled.
5749 */
5750void netif_receive_skb_list(struct list_head *head)
5751{
5752 struct sk_buff *skb;
5753
5754 if (list_empty(head))
5755 return;
5756 if (trace_netif_receive_skb_list_entry_enabled()) {
5757 list_for_each_entry(skb, head, list)
5758 trace_netif_receive_skb_list_entry(skb);
5759 }
5760 netif_receive_skb_list_internal(head);
5761 trace_netif_receive_skb_list_exit(0);
5762}
5763EXPORT_SYMBOL(netif_receive_skb_list);
5764
5765static DEFINE_PER_CPU(struct work_struct, flush_works);
5766
5767/* Network device is going away, flush any packets still pending */
5768static void flush_backlog(struct work_struct *work)
5769{
5770 struct sk_buff *skb, *tmp;
5771 struct softnet_data *sd;
5772
5773 local_bh_disable();
5774 sd = this_cpu_ptr(&softnet_data);
5775
5776 rps_lock_irq_disable(sd);
5777 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5778 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5779 __skb_unlink(skb, &sd->input_pkt_queue);
5780 dev_kfree_skb_irq(skb);
5781 input_queue_head_incr(sd);
5782 }
5783 }
5784 rps_unlock_irq_enable(sd);
5785
5786 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5787 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5788 __skb_unlink(skb, &sd->process_queue);
5789 kfree_skb(skb);
5790 input_queue_head_incr(sd);
5791 }
5792 }
5793 local_bh_enable();
5794}
5795
5796static bool flush_required(int cpu)
5797{
5798#if IS_ENABLED(CONFIG_RPS)
5799 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5800 bool do_flush;
5801
5802 rps_lock_irq_disable(sd);
5803
5804 /* as insertion into process_queue happens with the rps lock held,
5805 * process_queue access may race only with dequeue
5806 */
5807 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5808 !skb_queue_empty_lockless(&sd->process_queue);
5809 rps_unlock_irq_enable(sd);
5810
5811 return do_flush;
5812#endif
5813 /* without RPS we can't safely check input_pkt_queue: during a
5814 * concurrent remote skb_queue_splice() we can detect as empty both
5815 * input_pkt_queue and process_queue even if the latter could end-up
5816 * containing a lot of packets.
5817 */
5818 return true;
5819}
5820
5821static void flush_all_backlogs(void)
5822{
5823 static cpumask_t flush_cpus;
5824 unsigned int cpu;
5825
5826 /* since we are under rtnl lock protection we can use static data
5827 * for the cpumask and avoid allocating on stack the possibly
5828 * large mask
5829 */
5830 ASSERT_RTNL();
5831
5832 cpus_read_lock();
5833
5834 cpumask_clear(&flush_cpus);
5835 for_each_online_cpu(cpu) {
5836 if (flush_required(cpu)) {
5837 queue_work_on(cpu, system_highpri_wq,
5838 per_cpu_ptr(&flush_works, cpu));
5839 cpumask_set_cpu(cpu, &flush_cpus);
5840 }
5841 }
5842
5843 /* we can have in flight packet[s] on the cpus we are not flushing,
5844 * synchronize_net() in unregister_netdevice_many() will take care of
5845 * them
5846 */
5847 for_each_cpu(cpu, &flush_cpus)
5848 flush_work(per_cpu_ptr(&flush_works, cpu));
5849
5850 cpus_read_unlock();
5851}
5852
5853static void net_rps_send_ipi(struct softnet_data *remsd)
5854{
5855#ifdef CONFIG_RPS
5856 while (remsd) {
5857 struct softnet_data *next = remsd->rps_ipi_next;
5858
5859 if (cpu_online(remsd->cpu))
5860 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5861 remsd = next;
5862 }
5863#endif
5864}
5865
5866/*
5867 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5868 * Note: called with local irq disabled, but exits with local irq enabled.
5869 */
5870static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5871{
5872#ifdef CONFIG_RPS
5873 struct softnet_data *remsd = sd->rps_ipi_list;
5874
5875 if (remsd) {
5876 sd->rps_ipi_list = NULL;
5877
5878 local_irq_enable();
5879
5880 /* Send pending IPI's to kick RPS processing on remote cpus. */
5881 net_rps_send_ipi(remsd);
5882 } else
5883#endif
5884 local_irq_enable();
5885}
5886
5887static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5888{
5889#ifdef CONFIG_RPS
5890 return sd->rps_ipi_list != NULL;
5891#else
5892 return false;
5893#endif
5894}
5895
5896static int process_backlog(struct napi_struct *napi, int quota)
5897{
5898 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5899 bool again = true;
5900 int work = 0;
5901
5902 /* Check if we have pending ipi, its better to send them now,
5903 * not waiting net_rx_action() end.
5904 */
5905 if (sd_has_rps_ipi_waiting(sd)) {
5906 local_irq_disable();
5907 net_rps_action_and_irq_enable(sd);
5908 }
5909
5910 napi->weight = READ_ONCE(dev_rx_weight);
5911 while (again) {
5912 struct sk_buff *skb;
5913
5914 while ((skb = __skb_dequeue(&sd->process_queue))) {
5915 rcu_read_lock();
5916 __netif_receive_skb(skb);
5917 rcu_read_unlock();
5918 input_queue_head_incr(sd);
5919 if (++work >= quota)
5920 return work;
5921
5922 }
5923
5924 rps_lock_irq_disable(sd);
5925 if (skb_queue_empty(&sd->input_pkt_queue)) {
5926 /*
5927 * Inline a custom version of __napi_complete().
5928 * only current cpu owns and manipulates this napi,
5929 * and NAPI_STATE_SCHED is the only possible flag set
5930 * on backlog.
5931 * We can use a plain write instead of clear_bit(),
5932 * and we dont need an smp_mb() memory barrier.
5933 */
5934 napi->state = 0;
5935 again = false;
5936 } else {
5937 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5938 &sd->process_queue);
5939 }
5940 rps_unlock_irq_enable(sd);
5941 }
5942
5943 return work;
5944}
5945
5946/**
5947 * __napi_schedule - schedule for receive
5948 * @n: entry to schedule
5949 *
5950 * The entry's receive function will be scheduled to run.
5951 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5952 */
5953void __napi_schedule(struct napi_struct *n)
5954{
5955 unsigned long flags;
5956
5957 local_irq_save(flags);
5958 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5959 local_irq_restore(flags);
5960}
5961EXPORT_SYMBOL(__napi_schedule);
5962
5963/**
5964 * napi_schedule_prep - check if napi can be scheduled
5965 * @n: napi context
5966 *
5967 * Test if NAPI routine is already running, and if not mark
5968 * it as running. This is used as a condition variable to
5969 * insure only one NAPI poll instance runs. We also make
5970 * sure there is no pending NAPI disable.
5971 */
5972bool napi_schedule_prep(struct napi_struct *n)
5973{
5974 unsigned long new, val = READ_ONCE(n->state);
5975
5976 do {
5977 if (unlikely(val & NAPIF_STATE_DISABLE))
5978 return false;
5979 new = val | NAPIF_STATE_SCHED;
5980
5981 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5982 * This was suggested by Alexander Duyck, as compiler
5983 * emits better code than :
5984 * if (val & NAPIF_STATE_SCHED)
5985 * new |= NAPIF_STATE_MISSED;
5986 */
5987 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5988 NAPIF_STATE_MISSED;
5989 } while (!try_cmpxchg(&n->state, &val, new));
5990
5991 return !(val & NAPIF_STATE_SCHED);
5992}
5993EXPORT_SYMBOL(napi_schedule_prep);
5994
5995/**
5996 * __napi_schedule_irqoff - schedule for receive
5997 * @n: entry to schedule
5998 *
5999 * Variant of __napi_schedule() assuming hard irqs are masked.
6000 *
6001 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6002 * because the interrupt disabled assumption might not be true
6003 * due to force-threaded interrupts and spinlock substitution.
6004 */
6005void __napi_schedule_irqoff(struct napi_struct *n)
6006{
6007 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6008 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6009 else
6010 __napi_schedule(n);
6011}
6012EXPORT_SYMBOL(__napi_schedule_irqoff);
6013
6014bool napi_complete_done(struct napi_struct *n, int work_done)
6015{
6016 unsigned long flags, val, new, timeout = 0;
6017 bool ret = true;
6018
6019 /*
6020 * 1) Don't let napi dequeue from the cpu poll list
6021 * just in case its running on a different cpu.
6022 * 2) If we are busy polling, do nothing here, we have
6023 * the guarantee we will be called later.
6024 */
6025 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6026 NAPIF_STATE_IN_BUSY_POLL)))
6027 return false;
6028
6029 if (work_done) {
6030 if (n->gro_bitmask)
6031 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6032 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6033 }
6034 if (n->defer_hard_irqs_count > 0) {
6035 n->defer_hard_irqs_count--;
6036 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6037 if (timeout)
6038 ret = false;
6039 }
6040 if (n->gro_bitmask) {
6041 /* When the NAPI instance uses a timeout and keeps postponing
6042 * it, we need to bound somehow the time packets are kept in
6043 * the GRO layer
6044 */
6045 napi_gro_flush(n, !!timeout);
6046 }
6047
6048 gro_normal_list(n);
6049
6050 if (unlikely(!list_empty(&n->poll_list))) {
6051 /* If n->poll_list is not empty, we need to mask irqs */
6052 local_irq_save(flags);
6053 list_del_init(&n->poll_list);
6054 local_irq_restore(flags);
6055 }
6056
6057 val = READ_ONCE(n->state);
6058 do {
6059 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6060
6061 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6062 NAPIF_STATE_SCHED_THREADED |
6063 NAPIF_STATE_PREFER_BUSY_POLL);
6064
6065 /* If STATE_MISSED was set, leave STATE_SCHED set,
6066 * because we will call napi->poll() one more time.
6067 * This C code was suggested by Alexander Duyck to help gcc.
6068 */
6069 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6070 NAPIF_STATE_SCHED;
6071 } while (!try_cmpxchg(&n->state, &val, new));
6072
6073 if (unlikely(val & NAPIF_STATE_MISSED)) {
6074 __napi_schedule(n);
6075 return false;
6076 }
6077
6078 if (timeout)
6079 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6080 HRTIMER_MODE_REL_PINNED);
6081 return ret;
6082}
6083EXPORT_SYMBOL(napi_complete_done);
6084
6085/* must be called under rcu_read_lock(), as we dont take a reference */
6086static struct napi_struct *napi_by_id(unsigned int napi_id)
6087{
6088 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6089 struct napi_struct *napi;
6090
6091 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6092 if (napi->napi_id == napi_id)
6093 return napi;
6094
6095 return NULL;
6096}
6097
6098#if defined(CONFIG_NET_RX_BUSY_POLL)
6099
6100static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6101{
6102 if (!skip_schedule) {
6103 gro_normal_list(napi);
6104 __napi_schedule(napi);
6105 return;
6106 }
6107
6108 if (napi->gro_bitmask) {
6109 /* flush too old packets
6110 * If HZ < 1000, flush all packets.
6111 */
6112 napi_gro_flush(napi, HZ >= 1000);
6113 }
6114
6115 gro_normal_list(napi);
6116 clear_bit(NAPI_STATE_SCHED, &napi->state);
6117}
6118
6119static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6120 u16 budget)
6121{
6122 bool skip_schedule = false;
6123 unsigned long timeout;
6124 int rc;
6125
6126 /* Busy polling means there is a high chance device driver hard irq
6127 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6128 * set in napi_schedule_prep().
6129 * Since we are about to call napi->poll() once more, we can safely
6130 * clear NAPI_STATE_MISSED.
6131 *
6132 * Note: x86 could use a single "lock and ..." instruction
6133 * to perform these two clear_bit()
6134 */
6135 clear_bit(NAPI_STATE_MISSED, &napi->state);
6136 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6137
6138 local_bh_disable();
6139
6140 if (prefer_busy_poll) {
6141 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6142 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6143 if (napi->defer_hard_irqs_count && timeout) {
6144 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6145 skip_schedule = true;
6146 }
6147 }
6148
6149 /* All we really want here is to re-enable device interrupts.
6150 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6151 */
6152 rc = napi->poll(napi, budget);
6153 /* We can't gro_normal_list() here, because napi->poll() might have
6154 * rearmed the napi (napi_complete_done()) in which case it could
6155 * already be running on another CPU.
6156 */
6157 trace_napi_poll(napi, rc, budget);
6158 netpoll_poll_unlock(have_poll_lock);
6159 if (rc == budget)
6160 __busy_poll_stop(napi, skip_schedule);
6161 local_bh_enable();
6162}
6163
6164void napi_busy_loop(unsigned int napi_id,
6165 bool (*loop_end)(void *, unsigned long),
6166 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6167{
6168 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6169 int (*napi_poll)(struct napi_struct *napi, int budget);
6170 void *have_poll_lock = NULL;
6171 struct napi_struct *napi;
6172
6173restart:
6174 napi_poll = NULL;
6175
6176 rcu_read_lock();
6177
6178 napi = napi_by_id(napi_id);
6179 if (!napi)
6180 goto out;
6181
6182 preempt_disable();
6183 for (;;) {
6184 int work = 0;
6185
6186 local_bh_disable();
6187 if (!napi_poll) {
6188 unsigned long val = READ_ONCE(napi->state);
6189
6190 /* If multiple threads are competing for this napi,
6191 * we avoid dirtying napi->state as much as we can.
6192 */
6193 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6194 NAPIF_STATE_IN_BUSY_POLL)) {
6195 if (prefer_busy_poll)
6196 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6197 goto count;
6198 }
6199 if (cmpxchg(&napi->state, val,
6200 val | NAPIF_STATE_IN_BUSY_POLL |
6201 NAPIF_STATE_SCHED) != val) {
6202 if (prefer_busy_poll)
6203 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6204 goto count;
6205 }
6206 have_poll_lock = netpoll_poll_lock(napi);
6207 napi_poll = napi->poll;
6208 }
6209 work = napi_poll(napi, budget);
6210 trace_napi_poll(napi, work, budget);
6211 gro_normal_list(napi);
6212count:
6213 if (work > 0)
6214 __NET_ADD_STATS(dev_net(napi->dev),
6215 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6216 local_bh_enable();
6217
6218 if (!loop_end || loop_end(loop_end_arg, start_time))
6219 break;
6220
6221 if (unlikely(need_resched())) {
6222 if (napi_poll)
6223 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6224 preempt_enable();
6225 rcu_read_unlock();
6226 cond_resched();
6227 if (loop_end(loop_end_arg, start_time))
6228 return;
6229 goto restart;
6230 }
6231 cpu_relax();
6232 }
6233 if (napi_poll)
6234 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6235 preempt_enable();
6236out:
6237 rcu_read_unlock();
6238}
6239EXPORT_SYMBOL(napi_busy_loop);
6240
6241#endif /* CONFIG_NET_RX_BUSY_POLL */
6242
6243static void napi_hash_add(struct napi_struct *napi)
6244{
6245 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6246 return;
6247
6248 spin_lock(&napi_hash_lock);
6249
6250 /* 0..NR_CPUS range is reserved for sender_cpu use */
6251 do {
6252 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6253 napi_gen_id = MIN_NAPI_ID;
6254 } while (napi_by_id(napi_gen_id));
6255 napi->napi_id = napi_gen_id;
6256
6257 hlist_add_head_rcu(&napi->napi_hash_node,
6258 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6259
6260 spin_unlock(&napi_hash_lock);
6261}
6262
6263/* Warning : caller is responsible to make sure rcu grace period
6264 * is respected before freeing memory containing @napi
6265 */
6266static void napi_hash_del(struct napi_struct *napi)
6267{
6268 spin_lock(&napi_hash_lock);
6269
6270 hlist_del_init_rcu(&napi->napi_hash_node);
6271
6272 spin_unlock(&napi_hash_lock);
6273}
6274
6275static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6276{
6277 struct napi_struct *napi;
6278
6279 napi = container_of(timer, struct napi_struct, timer);
6280
6281 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6282 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6283 */
6284 if (!napi_disable_pending(napi) &&
6285 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6286 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6287 __napi_schedule_irqoff(napi);
6288 }
6289
6290 return HRTIMER_NORESTART;
6291}
6292
6293static void init_gro_hash(struct napi_struct *napi)
6294{
6295 int i;
6296
6297 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6298 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6299 napi->gro_hash[i].count = 0;
6300 }
6301 napi->gro_bitmask = 0;
6302}
6303
6304int dev_set_threaded(struct net_device *dev, bool threaded)
6305{
6306 struct napi_struct *napi;
6307 int err = 0;
6308
6309 if (dev->threaded == threaded)
6310 return 0;
6311
6312 if (threaded) {
6313 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6314 if (!napi->thread) {
6315 err = napi_kthread_create(napi);
6316 if (err) {
6317 threaded = false;
6318 break;
6319 }
6320 }
6321 }
6322 }
6323
6324 dev->threaded = threaded;
6325
6326 /* Make sure kthread is created before THREADED bit
6327 * is set.
6328 */
6329 smp_mb__before_atomic();
6330
6331 /* Setting/unsetting threaded mode on a napi might not immediately
6332 * take effect, if the current napi instance is actively being
6333 * polled. In this case, the switch between threaded mode and
6334 * softirq mode will happen in the next round of napi_schedule().
6335 * This should not cause hiccups/stalls to the live traffic.
6336 */
6337 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6338 if (threaded)
6339 set_bit(NAPI_STATE_THREADED, &napi->state);
6340 else
6341 clear_bit(NAPI_STATE_THREADED, &napi->state);
6342 }
6343
6344 return err;
6345}
6346EXPORT_SYMBOL(dev_set_threaded);
6347
6348void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6349 int (*poll)(struct napi_struct *, int), int weight)
6350{
6351 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6352 return;
6353
6354 INIT_LIST_HEAD(&napi->poll_list);
6355 INIT_HLIST_NODE(&napi->napi_hash_node);
6356 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6357 napi->timer.function = napi_watchdog;
6358 init_gro_hash(napi);
6359 napi->skb = NULL;
6360 INIT_LIST_HEAD(&napi->rx_list);
6361 napi->rx_count = 0;
6362 napi->poll = poll;
6363 if (weight > NAPI_POLL_WEIGHT)
6364 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6365 weight);
6366 napi->weight = weight;
6367 napi->dev = dev;
6368#ifdef CONFIG_NETPOLL
6369 napi->poll_owner = -1;
6370#endif
6371 set_bit(NAPI_STATE_SCHED, &napi->state);
6372 set_bit(NAPI_STATE_NPSVC, &napi->state);
6373 list_add_rcu(&napi->dev_list, &dev->napi_list);
6374 napi_hash_add(napi);
6375 napi_get_frags_check(napi);
6376 /* Create kthread for this napi if dev->threaded is set.
6377 * Clear dev->threaded if kthread creation failed so that
6378 * threaded mode will not be enabled in napi_enable().
6379 */
6380 if (dev->threaded && napi_kthread_create(napi))
6381 dev->threaded = 0;
6382}
6383EXPORT_SYMBOL(netif_napi_add_weight);
6384
6385void napi_disable(struct napi_struct *n)
6386{
6387 unsigned long val, new;
6388
6389 might_sleep();
6390 set_bit(NAPI_STATE_DISABLE, &n->state);
6391
6392 val = READ_ONCE(n->state);
6393 do {
6394 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6395 usleep_range(20, 200);
6396 val = READ_ONCE(n->state);
6397 }
6398
6399 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6400 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6401 } while (!try_cmpxchg(&n->state, &val, new));
6402
6403 hrtimer_cancel(&n->timer);
6404
6405 clear_bit(NAPI_STATE_DISABLE, &n->state);
6406}
6407EXPORT_SYMBOL(napi_disable);
6408
6409/**
6410 * napi_enable - enable NAPI scheduling
6411 * @n: NAPI context
6412 *
6413 * Resume NAPI from being scheduled on this context.
6414 * Must be paired with napi_disable.
6415 */
6416void napi_enable(struct napi_struct *n)
6417{
6418 unsigned long new, val = READ_ONCE(n->state);
6419
6420 do {
6421 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6422
6423 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6424 if (n->dev->threaded && n->thread)
6425 new |= NAPIF_STATE_THREADED;
6426 } while (!try_cmpxchg(&n->state, &val, new));
6427}
6428EXPORT_SYMBOL(napi_enable);
6429
6430static void flush_gro_hash(struct napi_struct *napi)
6431{
6432 int i;
6433
6434 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6435 struct sk_buff *skb, *n;
6436
6437 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6438 kfree_skb(skb);
6439 napi->gro_hash[i].count = 0;
6440 }
6441}
6442
6443/* Must be called in process context */
6444void __netif_napi_del(struct napi_struct *napi)
6445{
6446 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6447 return;
6448
6449 napi_hash_del(napi);
6450 list_del_rcu(&napi->dev_list);
6451 napi_free_frags(napi);
6452
6453 flush_gro_hash(napi);
6454 napi->gro_bitmask = 0;
6455
6456 if (napi->thread) {
6457 kthread_stop(napi->thread);
6458 napi->thread = NULL;
6459 }
6460}
6461EXPORT_SYMBOL(__netif_napi_del);
6462
6463static int __napi_poll(struct napi_struct *n, bool *repoll)
6464{
6465 int work, weight;
6466
6467 weight = n->weight;
6468
6469 /* This NAPI_STATE_SCHED test is for avoiding a race
6470 * with netpoll's poll_napi(). Only the entity which
6471 * obtains the lock and sees NAPI_STATE_SCHED set will
6472 * actually make the ->poll() call. Therefore we avoid
6473 * accidentally calling ->poll() when NAPI is not scheduled.
6474 */
6475 work = 0;
6476 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6477 work = n->poll(n, weight);
6478 trace_napi_poll(n, work, weight);
6479 }
6480
6481 if (unlikely(work > weight))
6482 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6483 n->poll, work, weight);
6484
6485 if (likely(work < weight))
6486 return work;
6487
6488 /* Drivers must not modify the NAPI state if they
6489 * consume the entire weight. In such cases this code
6490 * still "owns" the NAPI instance and therefore can
6491 * move the instance around on the list at-will.
6492 */
6493 if (unlikely(napi_disable_pending(n))) {
6494 napi_complete(n);
6495 return work;
6496 }
6497
6498 /* The NAPI context has more processing work, but busy-polling
6499 * is preferred. Exit early.
6500 */
6501 if (napi_prefer_busy_poll(n)) {
6502 if (napi_complete_done(n, work)) {
6503 /* If timeout is not set, we need to make sure
6504 * that the NAPI is re-scheduled.
6505 */
6506 napi_schedule(n);
6507 }
6508 return work;
6509 }
6510
6511 if (n->gro_bitmask) {
6512 /* flush too old packets
6513 * If HZ < 1000, flush all packets.
6514 */
6515 napi_gro_flush(n, HZ >= 1000);
6516 }
6517
6518 gro_normal_list(n);
6519
6520 /* Some drivers may have called napi_schedule
6521 * prior to exhausting their budget.
6522 */
6523 if (unlikely(!list_empty(&n->poll_list))) {
6524 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6525 n->dev ? n->dev->name : "backlog");
6526 return work;
6527 }
6528
6529 *repoll = true;
6530
6531 return work;
6532}
6533
6534static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6535{
6536 bool do_repoll = false;
6537 void *have;
6538 int work;
6539
6540 list_del_init(&n->poll_list);
6541
6542 have = netpoll_poll_lock(n);
6543
6544 work = __napi_poll(n, &do_repoll);
6545
6546 if (do_repoll)
6547 list_add_tail(&n->poll_list, repoll);
6548
6549 netpoll_poll_unlock(have);
6550
6551 return work;
6552}
6553
6554static int napi_thread_wait(struct napi_struct *napi)
6555{
6556 bool woken = false;
6557
6558 set_current_state(TASK_INTERRUPTIBLE);
6559
6560 while (!kthread_should_stop()) {
6561 /* Testing SCHED_THREADED bit here to make sure the current
6562 * kthread owns this napi and could poll on this napi.
6563 * Testing SCHED bit is not enough because SCHED bit might be
6564 * set by some other busy poll thread or by napi_disable().
6565 */
6566 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6567 WARN_ON(!list_empty(&napi->poll_list));
6568 __set_current_state(TASK_RUNNING);
6569 return 0;
6570 }
6571
6572 schedule();
6573 /* woken being true indicates this thread owns this napi. */
6574 woken = true;
6575 set_current_state(TASK_INTERRUPTIBLE);
6576 }
6577 __set_current_state(TASK_RUNNING);
6578
6579 return -1;
6580}
6581
6582static int napi_threaded_poll(void *data)
6583{
6584 struct napi_struct *napi = data;
6585 void *have;
6586
6587 while (!napi_thread_wait(napi)) {
6588 for (;;) {
6589 bool repoll = false;
6590
6591 local_bh_disable();
6592
6593 have = netpoll_poll_lock(napi);
6594 __napi_poll(napi, &repoll);
6595 netpoll_poll_unlock(have);
6596
6597 local_bh_enable();
6598
6599 if (!repoll)
6600 break;
6601
6602 cond_resched();
6603 }
6604 }
6605 return 0;
6606}
6607
6608static void skb_defer_free_flush(struct softnet_data *sd)
6609{
6610 struct sk_buff *skb, *next;
6611 unsigned long flags;
6612
6613 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6614 if (!READ_ONCE(sd->defer_list))
6615 return;
6616
6617 spin_lock_irqsave(&sd->defer_lock, flags);
6618 skb = sd->defer_list;
6619 sd->defer_list = NULL;
6620 sd->defer_count = 0;
6621 spin_unlock_irqrestore(&sd->defer_lock, flags);
6622
6623 while (skb != NULL) {
6624 next = skb->next;
6625 napi_consume_skb(skb, 1);
6626 skb = next;
6627 }
6628}
6629
6630static __latent_entropy void net_rx_action(struct softirq_action *h)
6631{
6632 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6633 unsigned long time_limit = jiffies +
6634 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6635 int budget = READ_ONCE(netdev_budget);
6636 LIST_HEAD(list);
6637 LIST_HEAD(repoll);
6638
6639 local_irq_disable();
6640 list_splice_init(&sd->poll_list, &list);
6641 local_irq_enable();
6642
6643 for (;;) {
6644 struct napi_struct *n;
6645
6646 skb_defer_free_flush(sd);
6647
6648 if (list_empty(&list)) {
6649 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6650 goto end;
6651 break;
6652 }
6653
6654 n = list_first_entry(&list, struct napi_struct, poll_list);
6655 budget -= napi_poll(n, &repoll);
6656
6657 /* If softirq window is exhausted then punt.
6658 * Allow this to run for 2 jiffies since which will allow
6659 * an average latency of 1.5/HZ.
6660 */
6661 if (unlikely(budget <= 0 ||
6662 time_after_eq(jiffies, time_limit))) {
6663 sd->time_squeeze++;
6664 break;
6665 }
6666 }
6667
6668 local_irq_disable();
6669
6670 list_splice_tail_init(&sd->poll_list, &list);
6671 list_splice_tail(&repoll, &list);
6672 list_splice(&list, &sd->poll_list);
6673 if (!list_empty(&sd->poll_list))
6674 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6675
6676 net_rps_action_and_irq_enable(sd);
6677end:;
6678}
6679
6680struct netdev_adjacent {
6681 struct net_device *dev;
6682 netdevice_tracker dev_tracker;
6683
6684 /* upper master flag, there can only be one master device per list */
6685 bool master;
6686
6687 /* lookup ignore flag */
6688 bool ignore;
6689
6690 /* counter for the number of times this device was added to us */
6691 u16 ref_nr;
6692
6693 /* private field for the users */
6694 void *private;
6695
6696 struct list_head list;
6697 struct rcu_head rcu;
6698};
6699
6700static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6701 struct list_head *adj_list)
6702{
6703 struct netdev_adjacent *adj;
6704
6705 list_for_each_entry(adj, adj_list, list) {
6706 if (adj->dev == adj_dev)
6707 return adj;
6708 }
6709 return NULL;
6710}
6711
6712static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6713 struct netdev_nested_priv *priv)
6714{
6715 struct net_device *dev = (struct net_device *)priv->data;
6716
6717 return upper_dev == dev;
6718}
6719
6720/**
6721 * netdev_has_upper_dev - Check if device is linked to an upper device
6722 * @dev: device
6723 * @upper_dev: upper device to check
6724 *
6725 * Find out if a device is linked to specified upper device and return true
6726 * in case it is. Note that this checks only immediate upper device,
6727 * not through a complete stack of devices. The caller must hold the RTNL lock.
6728 */
6729bool netdev_has_upper_dev(struct net_device *dev,
6730 struct net_device *upper_dev)
6731{
6732 struct netdev_nested_priv priv = {
6733 .data = (void *)upper_dev,
6734 };
6735
6736 ASSERT_RTNL();
6737
6738 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6739 &priv);
6740}
6741EXPORT_SYMBOL(netdev_has_upper_dev);
6742
6743/**
6744 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6745 * @dev: device
6746 * @upper_dev: upper device to check
6747 *
6748 * Find out if a device is linked to specified upper device and return true
6749 * in case it is. Note that this checks the entire upper device chain.
6750 * The caller must hold rcu lock.
6751 */
6752
6753bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6754 struct net_device *upper_dev)
6755{
6756 struct netdev_nested_priv priv = {
6757 .data = (void *)upper_dev,
6758 };
6759
6760 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6761 &priv);
6762}
6763EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6764
6765/**
6766 * netdev_has_any_upper_dev - Check if device is linked to some device
6767 * @dev: device
6768 *
6769 * Find out if a device is linked to an upper device and return true in case
6770 * it is. The caller must hold the RTNL lock.
6771 */
6772bool netdev_has_any_upper_dev(struct net_device *dev)
6773{
6774 ASSERT_RTNL();
6775
6776 return !list_empty(&dev->adj_list.upper);
6777}
6778EXPORT_SYMBOL(netdev_has_any_upper_dev);
6779
6780/**
6781 * netdev_master_upper_dev_get - Get master upper device
6782 * @dev: device
6783 *
6784 * Find a master upper device and return pointer to it or NULL in case
6785 * it's not there. The caller must hold the RTNL lock.
6786 */
6787struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6788{
6789 struct netdev_adjacent *upper;
6790
6791 ASSERT_RTNL();
6792
6793 if (list_empty(&dev->adj_list.upper))
6794 return NULL;
6795
6796 upper = list_first_entry(&dev->adj_list.upper,
6797 struct netdev_adjacent, list);
6798 if (likely(upper->master))
6799 return upper->dev;
6800 return NULL;
6801}
6802EXPORT_SYMBOL(netdev_master_upper_dev_get);
6803
6804static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6805{
6806 struct netdev_adjacent *upper;
6807
6808 ASSERT_RTNL();
6809
6810 if (list_empty(&dev->adj_list.upper))
6811 return NULL;
6812
6813 upper = list_first_entry(&dev->adj_list.upper,
6814 struct netdev_adjacent, list);
6815 if (likely(upper->master) && !upper->ignore)
6816 return upper->dev;
6817 return NULL;
6818}
6819
6820/**
6821 * netdev_has_any_lower_dev - Check if device is linked to some device
6822 * @dev: device
6823 *
6824 * Find out if a device is linked to a lower device and return true in case
6825 * it is. The caller must hold the RTNL lock.
6826 */
6827static bool netdev_has_any_lower_dev(struct net_device *dev)
6828{
6829 ASSERT_RTNL();
6830
6831 return !list_empty(&dev->adj_list.lower);
6832}
6833
6834void *netdev_adjacent_get_private(struct list_head *adj_list)
6835{
6836 struct netdev_adjacent *adj;
6837
6838 adj = list_entry(adj_list, struct netdev_adjacent, list);
6839
6840 return adj->private;
6841}
6842EXPORT_SYMBOL(netdev_adjacent_get_private);
6843
6844/**
6845 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6846 * @dev: device
6847 * @iter: list_head ** of the current position
6848 *
6849 * Gets the next device from the dev's upper list, starting from iter
6850 * position. The caller must hold RCU read lock.
6851 */
6852struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6853 struct list_head **iter)
6854{
6855 struct netdev_adjacent *upper;
6856
6857 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6858
6859 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6860
6861 if (&upper->list == &dev->adj_list.upper)
6862 return NULL;
6863
6864 *iter = &upper->list;
6865
6866 return upper->dev;
6867}
6868EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6869
6870static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6871 struct list_head **iter,
6872 bool *ignore)
6873{
6874 struct netdev_adjacent *upper;
6875
6876 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6877
6878 if (&upper->list == &dev->adj_list.upper)
6879 return NULL;
6880
6881 *iter = &upper->list;
6882 *ignore = upper->ignore;
6883
6884 return upper->dev;
6885}
6886
6887static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6888 struct list_head **iter)
6889{
6890 struct netdev_adjacent *upper;
6891
6892 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6893
6894 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6895
6896 if (&upper->list == &dev->adj_list.upper)
6897 return NULL;
6898
6899 *iter = &upper->list;
6900
6901 return upper->dev;
6902}
6903
6904static int __netdev_walk_all_upper_dev(struct net_device *dev,
6905 int (*fn)(struct net_device *dev,
6906 struct netdev_nested_priv *priv),
6907 struct netdev_nested_priv *priv)
6908{
6909 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6910 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6911 int ret, cur = 0;
6912 bool ignore;
6913
6914 now = dev;
6915 iter = &dev->adj_list.upper;
6916
6917 while (1) {
6918 if (now != dev) {
6919 ret = fn(now, priv);
6920 if (ret)
6921 return ret;
6922 }
6923
6924 next = NULL;
6925 while (1) {
6926 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6927 if (!udev)
6928 break;
6929 if (ignore)
6930 continue;
6931
6932 next = udev;
6933 niter = &udev->adj_list.upper;
6934 dev_stack[cur] = now;
6935 iter_stack[cur++] = iter;
6936 break;
6937 }
6938
6939 if (!next) {
6940 if (!cur)
6941 return 0;
6942 next = dev_stack[--cur];
6943 niter = iter_stack[cur];
6944 }
6945
6946 now = next;
6947 iter = niter;
6948 }
6949
6950 return 0;
6951}
6952
6953int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6954 int (*fn)(struct net_device *dev,
6955 struct netdev_nested_priv *priv),
6956 struct netdev_nested_priv *priv)
6957{
6958 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6959 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6960 int ret, cur = 0;
6961
6962 now = dev;
6963 iter = &dev->adj_list.upper;
6964
6965 while (1) {
6966 if (now != dev) {
6967 ret = fn(now, priv);
6968 if (ret)
6969 return ret;
6970 }
6971
6972 next = NULL;
6973 while (1) {
6974 udev = netdev_next_upper_dev_rcu(now, &iter);
6975 if (!udev)
6976 break;
6977
6978 next = udev;
6979 niter = &udev->adj_list.upper;
6980 dev_stack[cur] = now;
6981 iter_stack[cur++] = iter;
6982 break;
6983 }
6984
6985 if (!next) {
6986 if (!cur)
6987 return 0;
6988 next = dev_stack[--cur];
6989 niter = iter_stack[cur];
6990 }
6991
6992 now = next;
6993 iter = niter;
6994 }
6995
6996 return 0;
6997}
6998EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6999
7000static bool __netdev_has_upper_dev(struct net_device *dev,
7001 struct net_device *upper_dev)
7002{
7003 struct netdev_nested_priv priv = {
7004 .flags = 0,
7005 .data = (void *)upper_dev,
7006 };
7007
7008 ASSERT_RTNL();
7009
7010 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7011 &priv);
7012}
7013
7014/**
7015 * netdev_lower_get_next_private - Get the next ->private from the
7016 * lower neighbour list
7017 * @dev: device
7018 * @iter: list_head ** of the current position
7019 *
7020 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7021 * list, starting from iter position. The caller must hold either hold the
7022 * RTNL lock or its own locking that guarantees that the neighbour lower
7023 * list will remain unchanged.
7024 */
7025void *netdev_lower_get_next_private(struct net_device *dev,
7026 struct list_head **iter)
7027{
7028 struct netdev_adjacent *lower;
7029
7030 lower = list_entry(*iter, struct netdev_adjacent, list);
7031
7032 if (&lower->list == &dev->adj_list.lower)
7033 return NULL;
7034
7035 *iter = lower->list.next;
7036
7037 return lower->private;
7038}
7039EXPORT_SYMBOL(netdev_lower_get_next_private);
7040
7041/**
7042 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7043 * lower neighbour list, RCU
7044 * variant
7045 * @dev: device
7046 * @iter: list_head ** of the current position
7047 *
7048 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7049 * list, starting from iter position. The caller must hold RCU read lock.
7050 */
7051void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7052 struct list_head **iter)
7053{
7054 struct netdev_adjacent *lower;
7055
7056 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7057
7058 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7059
7060 if (&lower->list == &dev->adj_list.lower)
7061 return NULL;
7062
7063 *iter = &lower->list;
7064
7065 return lower->private;
7066}
7067EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7068
7069/**
7070 * netdev_lower_get_next - Get the next device from the lower neighbour
7071 * list
7072 * @dev: device
7073 * @iter: list_head ** of the current position
7074 *
7075 * Gets the next netdev_adjacent from the dev's lower neighbour
7076 * list, starting from iter position. The caller must hold RTNL lock or
7077 * its own locking that guarantees that the neighbour lower
7078 * list will remain unchanged.
7079 */
7080void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7081{
7082 struct netdev_adjacent *lower;
7083
7084 lower = list_entry(*iter, struct netdev_adjacent, list);
7085
7086 if (&lower->list == &dev->adj_list.lower)
7087 return NULL;
7088
7089 *iter = lower->list.next;
7090
7091 return lower->dev;
7092}
7093EXPORT_SYMBOL(netdev_lower_get_next);
7094
7095static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7096 struct list_head **iter)
7097{
7098 struct netdev_adjacent *lower;
7099
7100 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7101
7102 if (&lower->list == &dev->adj_list.lower)
7103 return NULL;
7104
7105 *iter = &lower->list;
7106
7107 return lower->dev;
7108}
7109
7110static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7111 struct list_head **iter,
7112 bool *ignore)
7113{
7114 struct netdev_adjacent *lower;
7115
7116 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7117
7118 if (&lower->list == &dev->adj_list.lower)
7119 return NULL;
7120
7121 *iter = &lower->list;
7122 *ignore = lower->ignore;
7123
7124 return lower->dev;
7125}
7126
7127int netdev_walk_all_lower_dev(struct net_device *dev,
7128 int (*fn)(struct net_device *dev,
7129 struct netdev_nested_priv *priv),
7130 struct netdev_nested_priv *priv)
7131{
7132 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7133 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7134 int ret, cur = 0;
7135
7136 now = dev;
7137 iter = &dev->adj_list.lower;
7138
7139 while (1) {
7140 if (now != dev) {
7141 ret = fn(now, priv);
7142 if (ret)
7143 return ret;
7144 }
7145
7146 next = NULL;
7147 while (1) {
7148 ldev = netdev_next_lower_dev(now, &iter);
7149 if (!ldev)
7150 break;
7151
7152 next = ldev;
7153 niter = &ldev->adj_list.lower;
7154 dev_stack[cur] = now;
7155 iter_stack[cur++] = iter;
7156 break;
7157 }
7158
7159 if (!next) {
7160 if (!cur)
7161 return 0;
7162 next = dev_stack[--cur];
7163 niter = iter_stack[cur];
7164 }
7165
7166 now = next;
7167 iter = niter;
7168 }
7169
7170 return 0;
7171}
7172EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7173
7174static int __netdev_walk_all_lower_dev(struct net_device *dev,
7175 int (*fn)(struct net_device *dev,
7176 struct netdev_nested_priv *priv),
7177 struct netdev_nested_priv *priv)
7178{
7179 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7180 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7181 int ret, cur = 0;
7182 bool ignore;
7183
7184 now = dev;
7185 iter = &dev->adj_list.lower;
7186
7187 while (1) {
7188 if (now != dev) {
7189 ret = fn(now, priv);
7190 if (ret)
7191 return ret;
7192 }
7193
7194 next = NULL;
7195 while (1) {
7196 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7197 if (!ldev)
7198 break;
7199 if (ignore)
7200 continue;
7201
7202 next = ldev;
7203 niter = &ldev->adj_list.lower;
7204 dev_stack[cur] = now;
7205 iter_stack[cur++] = iter;
7206 break;
7207 }
7208
7209 if (!next) {
7210 if (!cur)
7211 return 0;
7212 next = dev_stack[--cur];
7213 niter = iter_stack[cur];
7214 }
7215
7216 now = next;
7217 iter = niter;
7218 }
7219
7220 return 0;
7221}
7222
7223struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7224 struct list_head **iter)
7225{
7226 struct netdev_adjacent *lower;
7227
7228 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7229 if (&lower->list == &dev->adj_list.lower)
7230 return NULL;
7231
7232 *iter = &lower->list;
7233
7234 return lower->dev;
7235}
7236EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7237
7238static u8 __netdev_upper_depth(struct net_device *dev)
7239{
7240 struct net_device *udev;
7241 struct list_head *iter;
7242 u8 max_depth = 0;
7243 bool ignore;
7244
7245 for (iter = &dev->adj_list.upper,
7246 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7247 udev;
7248 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7249 if (ignore)
7250 continue;
7251 if (max_depth < udev->upper_level)
7252 max_depth = udev->upper_level;
7253 }
7254
7255 return max_depth;
7256}
7257
7258static u8 __netdev_lower_depth(struct net_device *dev)
7259{
7260 struct net_device *ldev;
7261 struct list_head *iter;
7262 u8 max_depth = 0;
7263 bool ignore;
7264
7265 for (iter = &dev->adj_list.lower,
7266 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7267 ldev;
7268 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7269 if (ignore)
7270 continue;
7271 if (max_depth < ldev->lower_level)
7272 max_depth = ldev->lower_level;
7273 }
7274
7275 return max_depth;
7276}
7277
7278static int __netdev_update_upper_level(struct net_device *dev,
7279 struct netdev_nested_priv *__unused)
7280{
7281 dev->upper_level = __netdev_upper_depth(dev) + 1;
7282 return 0;
7283}
7284
7285#ifdef CONFIG_LOCKDEP
7286static LIST_HEAD(net_unlink_list);
7287
7288static void net_unlink_todo(struct net_device *dev)
7289{
7290 if (list_empty(&dev->unlink_list))
7291 list_add_tail(&dev->unlink_list, &net_unlink_list);
7292}
7293#endif
7294
7295static int __netdev_update_lower_level(struct net_device *dev,
7296 struct netdev_nested_priv *priv)
7297{
7298 dev->lower_level = __netdev_lower_depth(dev) + 1;
7299
7300#ifdef CONFIG_LOCKDEP
7301 if (!priv)
7302 return 0;
7303
7304 if (priv->flags & NESTED_SYNC_IMM)
7305 dev->nested_level = dev->lower_level - 1;
7306 if (priv->flags & NESTED_SYNC_TODO)
7307 net_unlink_todo(dev);
7308#endif
7309 return 0;
7310}
7311
7312int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7313 int (*fn)(struct net_device *dev,
7314 struct netdev_nested_priv *priv),
7315 struct netdev_nested_priv *priv)
7316{
7317 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7318 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7319 int ret, cur = 0;
7320
7321 now = dev;
7322 iter = &dev->adj_list.lower;
7323
7324 while (1) {
7325 if (now != dev) {
7326 ret = fn(now, priv);
7327 if (ret)
7328 return ret;
7329 }
7330
7331 next = NULL;
7332 while (1) {
7333 ldev = netdev_next_lower_dev_rcu(now, &iter);
7334 if (!ldev)
7335 break;
7336
7337 next = ldev;
7338 niter = &ldev->adj_list.lower;
7339 dev_stack[cur] = now;
7340 iter_stack[cur++] = iter;
7341 break;
7342 }
7343
7344 if (!next) {
7345 if (!cur)
7346 return 0;
7347 next = dev_stack[--cur];
7348 niter = iter_stack[cur];
7349 }
7350
7351 now = next;
7352 iter = niter;
7353 }
7354
7355 return 0;
7356}
7357EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7358
7359/**
7360 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7361 * lower neighbour list, RCU
7362 * variant
7363 * @dev: device
7364 *
7365 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7366 * list. The caller must hold RCU read lock.
7367 */
7368void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7369{
7370 struct netdev_adjacent *lower;
7371
7372 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7373 struct netdev_adjacent, list);
7374 if (lower)
7375 return lower->private;
7376 return NULL;
7377}
7378EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7379
7380/**
7381 * netdev_master_upper_dev_get_rcu - Get master upper device
7382 * @dev: device
7383 *
7384 * Find a master upper device and return pointer to it or NULL in case
7385 * it's not there. The caller must hold the RCU read lock.
7386 */
7387struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7388{
7389 struct netdev_adjacent *upper;
7390
7391 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7392 struct netdev_adjacent, list);
7393 if (upper && likely(upper->master))
7394 return upper->dev;
7395 return NULL;
7396}
7397EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7398
7399static int netdev_adjacent_sysfs_add(struct net_device *dev,
7400 struct net_device *adj_dev,
7401 struct list_head *dev_list)
7402{
7403 char linkname[IFNAMSIZ+7];
7404
7405 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7406 "upper_%s" : "lower_%s", adj_dev->name);
7407 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7408 linkname);
7409}
7410static void netdev_adjacent_sysfs_del(struct net_device *dev,
7411 char *name,
7412 struct list_head *dev_list)
7413{
7414 char linkname[IFNAMSIZ+7];
7415
7416 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7417 "upper_%s" : "lower_%s", name);
7418 sysfs_remove_link(&(dev->dev.kobj), linkname);
7419}
7420
7421static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7422 struct net_device *adj_dev,
7423 struct list_head *dev_list)
7424{
7425 return (dev_list == &dev->adj_list.upper ||
7426 dev_list == &dev->adj_list.lower) &&
7427 net_eq(dev_net(dev), dev_net(adj_dev));
7428}
7429
7430static int __netdev_adjacent_dev_insert(struct net_device *dev,
7431 struct net_device *adj_dev,
7432 struct list_head *dev_list,
7433 void *private, bool master)
7434{
7435 struct netdev_adjacent *adj;
7436 int ret;
7437
7438 adj = __netdev_find_adj(adj_dev, dev_list);
7439
7440 if (adj) {
7441 adj->ref_nr += 1;
7442 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7443 dev->name, adj_dev->name, adj->ref_nr);
7444
7445 return 0;
7446 }
7447
7448 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7449 if (!adj)
7450 return -ENOMEM;
7451
7452 adj->dev = adj_dev;
7453 adj->master = master;
7454 adj->ref_nr = 1;
7455 adj->private = private;
7456 adj->ignore = false;
7457 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7458
7459 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7460 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7461
7462 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7463 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7464 if (ret)
7465 goto free_adj;
7466 }
7467
7468 /* Ensure that master link is always the first item in list. */
7469 if (master) {
7470 ret = sysfs_create_link(&(dev->dev.kobj),
7471 &(adj_dev->dev.kobj), "master");
7472 if (ret)
7473 goto remove_symlinks;
7474
7475 list_add_rcu(&adj->list, dev_list);
7476 } else {
7477 list_add_tail_rcu(&adj->list, dev_list);
7478 }
7479
7480 return 0;
7481
7482remove_symlinks:
7483 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7484 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7485free_adj:
7486 netdev_put(adj_dev, &adj->dev_tracker);
7487 kfree(adj);
7488
7489 return ret;
7490}
7491
7492static void __netdev_adjacent_dev_remove(struct net_device *dev,
7493 struct net_device *adj_dev,
7494 u16 ref_nr,
7495 struct list_head *dev_list)
7496{
7497 struct netdev_adjacent *adj;
7498
7499 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7500 dev->name, adj_dev->name, ref_nr);
7501
7502 adj = __netdev_find_adj(adj_dev, dev_list);
7503
7504 if (!adj) {
7505 pr_err("Adjacency does not exist for device %s from %s\n",
7506 dev->name, adj_dev->name);
7507 WARN_ON(1);
7508 return;
7509 }
7510
7511 if (adj->ref_nr > ref_nr) {
7512 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7513 dev->name, adj_dev->name, ref_nr,
7514 adj->ref_nr - ref_nr);
7515 adj->ref_nr -= ref_nr;
7516 return;
7517 }
7518
7519 if (adj->master)
7520 sysfs_remove_link(&(dev->dev.kobj), "master");
7521
7522 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7523 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7524
7525 list_del_rcu(&adj->list);
7526 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7527 adj_dev->name, dev->name, adj_dev->name);
7528 netdev_put(adj_dev, &adj->dev_tracker);
7529 kfree_rcu(adj, rcu);
7530}
7531
7532static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7533 struct net_device *upper_dev,
7534 struct list_head *up_list,
7535 struct list_head *down_list,
7536 void *private, bool master)
7537{
7538 int ret;
7539
7540 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7541 private, master);
7542 if (ret)
7543 return ret;
7544
7545 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7546 private, false);
7547 if (ret) {
7548 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7549 return ret;
7550 }
7551
7552 return 0;
7553}
7554
7555static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7556 struct net_device *upper_dev,
7557 u16 ref_nr,
7558 struct list_head *up_list,
7559 struct list_head *down_list)
7560{
7561 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7562 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7563}
7564
7565static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7566 struct net_device *upper_dev,
7567 void *private, bool master)
7568{
7569 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7570 &dev->adj_list.upper,
7571 &upper_dev->adj_list.lower,
7572 private, master);
7573}
7574
7575static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7576 struct net_device *upper_dev)
7577{
7578 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7579 &dev->adj_list.upper,
7580 &upper_dev->adj_list.lower);
7581}
7582
7583static int __netdev_upper_dev_link(struct net_device *dev,
7584 struct net_device *upper_dev, bool master,
7585 void *upper_priv, void *upper_info,
7586 struct netdev_nested_priv *priv,
7587 struct netlink_ext_ack *extack)
7588{
7589 struct netdev_notifier_changeupper_info changeupper_info = {
7590 .info = {
7591 .dev = dev,
7592 .extack = extack,
7593 },
7594 .upper_dev = upper_dev,
7595 .master = master,
7596 .linking = true,
7597 .upper_info = upper_info,
7598 };
7599 struct net_device *master_dev;
7600 int ret = 0;
7601
7602 ASSERT_RTNL();
7603
7604 if (dev == upper_dev)
7605 return -EBUSY;
7606
7607 /* To prevent loops, check if dev is not upper device to upper_dev. */
7608 if (__netdev_has_upper_dev(upper_dev, dev))
7609 return -EBUSY;
7610
7611 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7612 return -EMLINK;
7613
7614 if (!master) {
7615 if (__netdev_has_upper_dev(dev, upper_dev))
7616 return -EEXIST;
7617 } else {
7618 master_dev = __netdev_master_upper_dev_get(dev);
7619 if (master_dev)
7620 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7621 }
7622
7623 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7624 &changeupper_info.info);
7625 ret = notifier_to_errno(ret);
7626 if (ret)
7627 return ret;
7628
7629 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7630 master);
7631 if (ret)
7632 return ret;
7633
7634 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7635 &changeupper_info.info);
7636 ret = notifier_to_errno(ret);
7637 if (ret)
7638 goto rollback;
7639
7640 __netdev_update_upper_level(dev, NULL);
7641 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7642
7643 __netdev_update_lower_level(upper_dev, priv);
7644 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7645 priv);
7646
7647 return 0;
7648
7649rollback:
7650 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7651
7652 return ret;
7653}
7654
7655/**
7656 * netdev_upper_dev_link - Add a link to the upper device
7657 * @dev: device
7658 * @upper_dev: new upper device
7659 * @extack: netlink extended ack
7660 *
7661 * Adds a link to device which is upper to this one. The caller must hold
7662 * the RTNL lock. On a failure a negative errno code is returned.
7663 * On success the reference counts are adjusted and the function
7664 * returns zero.
7665 */
7666int netdev_upper_dev_link(struct net_device *dev,
7667 struct net_device *upper_dev,
7668 struct netlink_ext_ack *extack)
7669{
7670 struct netdev_nested_priv priv = {
7671 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7672 .data = NULL,
7673 };
7674
7675 return __netdev_upper_dev_link(dev, upper_dev, false,
7676 NULL, NULL, &priv, extack);
7677}
7678EXPORT_SYMBOL(netdev_upper_dev_link);
7679
7680/**
7681 * netdev_master_upper_dev_link - Add a master link to the upper device
7682 * @dev: device
7683 * @upper_dev: new upper device
7684 * @upper_priv: upper device private
7685 * @upper_info: upper info to be passed down via notifier
7686 * @extack: netlink extended ack
7687 *
7688 * Adds a link to device which is upper to this one. In this case, only
7689 * one master upper device can be linked, although other non-master devices
7690 * might be linked as well. The caller must hold the RTNL lock.
7691 * On a failure a negative errno code is returned. On success the reference
7692 * counts are adjusted and the function returns zero.
7693 */
7694int netdev_master_upper_dev_link(struct net_device *dev,
7695 struct net_device *upper_dev,
7696 void *upper_priv, void *upper_info,
7697 struct netlink_ext_ack *extack)
7698{
7699 struct netdev_nested_priv priv = {
7700 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7701 .data = NULL,
7702 };
7703
7704 return __netdev_upper_dev_link(dev, upper_dev, true,
7705 upper_priv, upper_info, &priv, extack);
7706}
7707EXPORT_SYMBOL(netdev_master_upper_dev_link);
7708
7709static void __netdev_upper_dev_unlink(struct net_device *dev,
7710 struct net_device *upper_dev,
7711 struct netdev_nested_priv *priv)
7712{
7713 struct netdev_notifier_changeupper_info changeupper_info = {
7714 .info = {
7715 .dev = dev,
7716 },
7717 .upper_dev = upper_dev,
7718 .linking = false,
7719 };
7720
7721 ASSERT_RTNL();
7722
7723 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7724
7725 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7726 &changeupper_info.info);
7727
7728 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7729
7730 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7731 &changeupper_info.info);
7732
7733 __netdev_update_upper_level(dev, NULL);
7734 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7735
7736 __netdev_update_lower_level(upper_dev, priv);
7737 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7738 priv);
7739}
7740
7741/**
7742 * netdev_upper_dev_unlink - Removes a link to upper device
7743 * @dev: device
7744 * @upper_dev: new upper device
7745 *
7746 * Removes a link to device which is upper to this one. The caller must hold
7747 * the RTNL lock.
7748 */
7749void netdev_upper_dev_unlink(struct net_device *dev,
7750 struct net_device *upper_dev)
7751{
7752 struct netdev_nested_priv priv = {
7753 .flags = NESTED_SYNC_TODO,
7754 .data = NULL,
7755 };
7756
7757 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7758}
7759EXPORT_SYMBOL(netdev_upper_dev_unlink);
7760
7761static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7762 struct net_device *lower_dev,
7763 bool val)
7764{
7765 struct netdev_adjacent *adj;
7766
7767 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7768 if (adj)
7769 adj->ignore = val;
7770
7771 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7772 if (adj)
7773 adj->ignore = val;
7774}
7775
7776static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7777 struct net_device *lower_dev)
7778{
7779 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7780}
7781
7782static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7783 struct net_device *lower_dev)
7784{
7785 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7786}
7787
7788int netdev_adjacent_change_prepare(struct net_device *old_dev,
7789 struct net_device *new_dev,
7790 struct net_device *dev,
7791 struct netlink_ext_ack *extack)
7792{
7793 struct netdev_nested_priv priv = {
7794 .flags = 0,
7795 .data = NULL,
7796 };
7797 int err;
7798
7799 if (!new_dev)
7800 return 0;
7801
7802 if (old_dev && new_dev != old_dev)
7803 netdev_adjacent_dev_disable(dev, old_dev);
7804 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7805 extack);
7806 if (err) {
7807 if (old_dev && new_dev != old_dev)
7808 netdev_adjacent_dev_enable(dev, old_dev);
7809 return err;
7810 }
7811
7812 return 0;
7813}
7814EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7815
7816void netdev_adjacent_change_commit(struct net_device *old_dev,
7817 struct net_device *new_dev,
7818 struct net_device *dev)
7819{
7820 struct netdev_nested_priv priv = {
7821 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7822 .data = NULL,
7823 };
7824
7825 if (!new_dev || !old_dev)
7826 return;
7827
7828 if (new_dev == old_dev)
7829 return;
7830
7831 netdev_adjacent_dev_enable(dev, old_dev);
7832 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7833}
7834EXPORT_SYMBOL(netdev_adjacent_change_commit);
7835
7836void netdev_adjacent_change_abort(struct net_device *old_dev,
7837 struct net_device *new_dev,
7838 struct net_device *dev)
7839{
7840 struct netdev_nested_priv priv = {
7841 .flags = 0,
7842 .data = NULL,
7843 };
7844
7845 if (!new_dev)
7846 return;
7847
7848 if (old_dev && new_dev != old_dev)
7849 netdev_adjacent_dev_enable(dev, old_dev);
7850
7851 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7852}
7853EXPORT_SYMBOL(netdev_adjacent_change_abort);
7854
7855/**
7856 * netdev_bonding_info_change - Dispatch event about slave change
7857 * @dev: device
7858 * @bonding_info: info to dispatch
7859 *
7860 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7861 * The caller must hold the RTNL lock.
7862 */
7863void netdev_bonding_info_change(struct net_device *dev,
7864 struct netdev_bonding_info *bonding_info)
7865{
7866 struct netdev_notifier_bonding_info info = {
7867 .info.dev = dev,
7868 };
7869
7870 memcpy(&info.bonding_info, bonding_info,
7871 sizeof(struct netdev_bonding_info));
7872 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7873 &info.info);
7874}
7875EXPORT_SYMBOL(netdev_bonding_info_change);
7876
7877static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7878 struct netlink_ext_ack *extack)
7879{
7880 struct netdev_notifier_offload_xstats_info info = {
7881 .info.dev = dev,
7882 .info.extack = extack,
7883 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7884 };
7885 int err;
7886 int rc;
7887
7888 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7889 GFP_KERNEL);
7890 if (!dev->offload_xstats_l3)
7891 return -ENOMEM;
7892
7893 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7894 NETDEV_OFFLOAD_XSTATS_DISABLE,
7895 &info.info);
7896 err = notifier_to_errno(rc);
7897 if (err)
7898 goto free_stats;
7899
7900 return 0;
7901
7902free_stats:
7903 kfree(dev->offload_xstats_l3);
7904 dev->offload_xstats_l3 = NULL;
7905 return err;
7906}
7907
7908int netdev_offload_xstats_enable(struct net_device *dev,
7909 enum netdev_offload_xstats_type type,
7910 struct netlink_ext_ack *extack)
7911{
7912 ASSERT_RTNL();
7913
7914 if (netdev_offload_xstats_enabled(dev, type))
7915 return -EALREADY;
7916
7917 switch (type) {
7918 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7919 return netdev_offload_xstats_enable_l3(dev, extack);
7920 }
7921
7922 WARN_ON(1);
7923 return -EINVAL;
7924}
7925EXPORT_SYMBOL(netdev_offload_xstats_enable);
7926
7927static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7928{
7929 struct netdev_notifier_offload_xstats_info info = {
7930 .info.dev = dev,
7931 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7932 };
7933
7934 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7935 &info.info);
7936 kfree(dev->offload_xstats_l3);
7937 dev->offload_xstats_l3 = NULL;
7938}
7939
7940int netdev_offload_xstats_disable(struct net_device *dev,
7941 enum netdev_offload_xstats_type type)
7942{
7943 ASSERT_RTNL();
7944
7945 if (!netdev_offload_xstats_enabled(dev, type))
7946 return -EALREADY;
7947
7948 switch (type) {
7949 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7950 netdev_offload_xstats_disable_l3(dev);
7951 return 0;
7952 }
7953
7954 WARN_ON(1);
7955 return -EINVAL;
7956}
7957EXPORT_SYMBOL(netdev_offload_xstats_disable);
7958
7959static void netdev_offload_xstats_disable_all(struct net_device *dev)
7960{
7961 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7962}
7963
7964static struct rtnl_hw_stats64 *
7965netdev_offload_xstats_get_ptr(const struct net_device *dev,
7966 enum netdev_offload_xstats_type type)
7967{
7968 switch (type) {
7969 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7970 return dev->offload_xstats_l3;
7971 }
7972
7973 WARN_ON(1);
7974 return NULL;
7975}
7976
7977bool netdev_offload_xstats_enabled(const struct net_device *dev,
7978 enum netdev_offload_xstats_type type)
7979{
7980 ASSERT_RTNL();
7981
7982 return netdev_offload_xstats_get_ptr(dev, type);
7983}
7984EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7985
7986struct netdev_notifier_offload_xstats_ru {
7987 bool used;
7988};
7989
7990struct netdev_notifier_offload_xstats_rd {
7991 struct rtnl_hw_stats64 stats;
7992 bool used;
7993};
7994
7995static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
7996 const struct rtnl_hw_stats64 *src)
7997{
7998 dest->rx_packets += src->rx_packets;
7999 dest->tx_packets += src->tx_packets;
8000 dest->rx_bytes += src->rx_bytes;
8001 dest->tx_bytes += src->tx_bytes;
8002 dest->rx_errors += src->rx_errors;
8003 dest->tx_errors += src->tx_errors;
8004 dest->rx_dropped += src->rx_dropped;
8005 dest->tx_dropped += src->tx_dropped;
8006 dest->multicast += src->multicast;
8007}
8008
8009static int netdev_offload_xstats_get_used(struct net_device *dev,
8010 enum netdev_offload_xstats_type type,
8011 bool *p_used,
8012 struct netlink_ext_ack *extack)
8013{
8014 struct netdev_notifier_offload_xstats_ru report_used = {};
8015 struct netdev_notifier_offload_xstats_info info = {
8016 .info.dev = dev,
8017 .info.extack = extack,
8018 .type = type,
8019 .report_used = &report_used,
8020 };
8021 int rc;
8022
8023 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8024 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8025 &info.info);
8026 *p_used = report_used.used;
8027 return notifier_to_errno(rc);
8028}
8029
8030static int netdev_offload_xstats_get_stats(struct net_device *dev,
8031 enum netdev_offload_xstats_type type,
8032 struct rtnl_hw_stats64 *p_stats,
8033 bool *p_used,
8034 struct netlink_ext_ack *extack)
8035{
8036 struct netdev_notifier_offload_xstats_rd report_delta = {};
8037 struct netdev_notifier_offload_xstats_info info = {
8038 .info.dev = dev,
8039 .info.extack = extack,
8040 .type = type,
8041 .report_delta = &report_delta,
8042 };
8043 struct rtnl_hw_stats64 *stats;
8044 int rc;
8045
8046 stats = netdev_offload_xstats_get_ptr(dev, type);
8047 if (WARN_ON(!stats))
8048 return -EINVAL;
8049
8050 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8051 &info.info);
8052
8053 /* Cache whatever we got, even if there was an error, otherwise the
8054 * successful stats retrievals would get lost.
8055 */
8056 netdev_hw_stats64_add(stats, &report_delta.stats);
8057
8058 if (p_stats)
8059 *p_stats = *stats;
8060 *p_used = report_delta.used;
8061
8062 return notifier_to_errno(rc);
8063}
8064
8065int netdev_offload_xstats_get(struct net_device *dev,
8066 enum netdev_offload_xstats_type type,
8067 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8068 struct netlink_ext_ack *extack)
8069{
8070 ASSERT_RTNL();
8071
8072 if (p_stats)
8073 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8074 p_used, extack);
8075 else
8076 return netdev_offload_xstats_get_used(dev, type, p_used,
8077 extack);
8078}
8079EXPORT_SYMBOL(netdev_offload_xstats_get);
8080
8081void
8082netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8083 const struct rtnl_hw_stats64 *stats)
8084{
8085 report_delta->used = true;
8086 netdev_hw_stats64_add(&report_delta->stats, stats);
8087}
8088EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8089
8090void
8091netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8092{
8093 report_used->used = true;
8094}
8095EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8096
8097void netdev_offload_xstats_push_delta(struct net_device *dev,
8098 enum netdev_offload_xstats_type type,
8099 const struct rtnl_hw_stats64 *p_stats)
8100{
8101 struct rtnl_hw_stats64 *stats;
8102
8103 ASSERT_RTNL();
8104
8105 stats = netdev_offload_xstats_get_ptr(dev, type);
8106 if (WARN_ON(!stats))
8107 return;
8108
8109 netdev_hw_stats64_add(stats, p_stats);
8110}
8111EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8112
8113/**
8114 * netdev_get_xmit_slave - Get the xmit slave of master device
8115 * @dev: device
8116 * @skb: The packet
8117 * @all_slaves: assume all the slaves are active
8118 *
8119 * The reference counters are not incremented so the caller must be
8120 * careful with locks. The caller must hold RCU lock.
8121 * %NULL is returned if no slave is found.
8122 */
8123
8124struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8125 struct sk_buff *skb,
8126 bool all_slaves)
8127{
8128 const struct net_device_ops *ops = dev->netdev_ops;
8129
8130 if (!ops->ndo_get_xmit_slave)
8131 return NULL;
8132 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8133}
8134EXPORT_SYMBOL(netdev_get_xmit_slave);
8135
8136static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8137 struct sock *sk)
8138{
8139 const struct net_device_ops *ops = dev->netdev_ops;
8140
8141 if (!ops->ndo_sk_get_lower_dev)
8142 return NULL;
8143 return ops->ndo_sk_get_lower_dev(dev, sk);
8144}
8145
8146/**
8147 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8148 * @dev: device
8149 * @sk: the socket
8150 *
8151 * %NULL is returned if no lower device is found.
8152 */
8153
8154struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8155 struct sock *sk)
8156{
8157 struct net_device *lower;
8158
8159 lower = netdev_sk_get_lower_dev(dev, sk);
8160 while (lower) {
8161 dev = lower;
8162 lower = netdev_sk_get_lower_dev(dev, sk);
8163 }
8164
8165 return dev;
8166}
8167EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8168
8169static void netdev_adjacent_add_links(struct net_device *dev)
8170{
8171 struct netdev_adjacent *iter;
8172
8173 struct net *net = dev_net(dev);
8174
8175 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8176 if (!net_eq(net, dev_net(iter->dev)))
8177 continue;
8178 netdev_adjacent_sysfs_add(iter->dev, dev,
8179 &iter->dev->adj_list.lower);
8180 netdev_adjacent_sysfs_add(dev, iter->dev,
8181 &dev->adj_list.upper);
8182 }
8183
8184 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8185 if (!net_eq(net, dev_net(iter->dev)))
8186 continue;
8187 netdev_adjacent_sysfs_add(iter->dev, dev,
8188 &iter->dev->adj_list.upper);
8189 netdev_adjacent_sysfs_add(dev, iter->dev,
8190 &dev->adj_list.lower);
8191 }
8192}
8193
8194static void netdev_adjacent_del_links(struct net_device *dev)
8195{
8196 struct netdev_adjacent *iter;
8197
8198 struct net *net = dev_net(dev);
8199
8200 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8201 if (!net_eq(net, dev_net(iter->dev)))
8202 continue;
8203 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8204 &iter->dev->adj_list.lower);
8205 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8206 &dev->adj_list.upper);
8207 }
8208
8209 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8210 if (!net_eq(net, dev_net(iter->dev)))
8211 continue;
8212 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8213 &iter->dev->adj_list.upper);
8214 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8215 &dev->adj_list.lower);
8216 }
8217}
8218
8219void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8220{
8221 struct netdev_adjacent *iter;
8222
8223 struct net *net = dev_net(dev);
8224
8225 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8226 if (!net_eq(net, dev_net(iter->dev)))
8227 continue;
8228 netdev_adjacent_sysfs_del(iter->dev, oldname,
8229 &iter->dev->adj_list.lower);
8230 netdev_adjacent_sysfs_add(iter->dev, dev,
8231 &iter->dev->adj_list.lower);
8232 }
8233
8234 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8235 if (!net_eq(net, dev_net(iter->dev)))
8236 continue;
8237 netdev_adjacent_sysfs_del(iter->dev, oldname,
8238 &iter->dev->adj_list.upper);
8239 netdev_adjacent_sysfs_add(iter->dev, dev,
8240 &iter->dev->adj_list.upper);
8241 }
8242}
8243
8244void *netdev_lower_dev_get_private(struct net_device *dev,
8245 struct net_device *lower_dev)
8246{
8247 struct netdev_adjacent *lower;
8248
8249 if (!lower_dev)
8250 return NULL;
8251 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8252 if (!lower)
8253 return NULL;
8254
8255 return lower->private;
8256}
8257EXPORT_SYMBOL(netdev_lower_dev_get_private);
8258
8259
8260/**
8261 * netdev_lower_state_changed - Dispatch event about lower device state change
8262 * @lower_dev: device
8263 * @lower_state_info: state to dispatch
8264 *
8265 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8266 * The caller must hold the RTNL lock.
8267 */
8268void netdev_lower_state_changed(struct net_device *lower_dev,
8269 void *lower_state_info)
8270{
8271 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8272 .info.dev = lower_dev,
8273 };
8274
8275 ASSERT_RTNL();
8276 changelowerstate_info.lower_state_info = lower_state_info;
8277 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8278 &changelowerstate_info.info);
8279}
8280EXPORT_SYMBOL(netdev_lower_state_changed);
8281
8282static void dev_change_rx_flags(struct net_device *dev, int flags)
8283{
8284 const struct net_device_ops *ops = dev->netdev_ops;
8285
8286 if (ops->ndo_change_rx_flags)
8287 ops->ndo_change_rx_flags(dev, flags);
8288}
8289
8290static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8291{
8292 unsigned int old_flags = dev->flags;
8293 kuid_t uid;
8294 kgid_t gid;
8295
8296 ASSERT_RTNL();
8297
8298 dev->flags |= IFF_PROMISC;
8299 dev->promiscuity += inc;
8300 if (dev->promiscuity == 0) {
8301 /*
8302 * Avoid overflow.
8303 * If inc causes overflow, untouch promisc and return error.
8304 */
8305 if (inc < 0)
8306 dev->flags &= ~IFF_PROMISC;
8307 else {
8308 dev->promiscuity -= inc;
8309 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8310 return -EOVERFLOW;
8311 }
8312 }
8313 if (dev->flags != old_flags) {
8314 pr_info("device %s %s promiscuous mode\n",
8315 dev->name,
8316 dev->flags & IFF_PROMISC ? "entered" : "left");
8317 if (audit_enabled) {
8318 current_uid_gid(&uid, &gid);
8319 audit_log(audit_context(), GFP_ATOMIC,
8320 AUDIT_ANOM_PROMISCUOUS,
8321 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8322 dev->name, (dev->flags & IFF_PROMISC),
8323 (old_flags & IFF_PROMISC),
8324 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8325 from_kuid(&init_user_ns, uid),
8326 from_kgid(&init_user_ns, gid),
8327 audit_get_sessionid(current));
8328 }
8329
8330 dev_change_rx_flags(dev, IFF_PROMISC);
8331 }
8332 if (notify)
8333 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8334 return 0;
8335}
8336
8337/**
8338 * dev_set_promiscuity - update promiscuity count on a device
8339 * @dev: device
8340 * @inc: modifier
8341 *
8342 * Add or remove promiscuity from a device. While the count in the device
8343 * remains above zero the interface remains promiscuous. Once it hits zero
8344 * the device reverts back to normal filtering operation. A negative inc
8345 * value is used to drop promiscuity on the device.
8346 * Return 0 if successful or a negative errno code on error.
8347 */
8348int dev_set_promiscuity(struct net_device *dev, int inc)
8349{
8350 unsigned int old_flags = dev->flags;
8351 int err;
8352
8353 err = __dev_set_promiscuity(dev, inc, true);
8354 if (err < 0)
8355 return err;
8356 if (dev->flags != old_flags)
8357 dev_set_rx_mode(dev);
8358 return err;
8359}
8360EXPORT_SYMBOL(dev_set_promiscuity);
8361
8362static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8363{
8364 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8365
8366 ASSERT_RTNL();
8367
8368 dev->flags |= IFF_ALLMULTI;
8369 dev->allmulti += inc;
8370 if (dev->allmulti == 0) {
8371 /*
8372 * Avoid overflow.
8373 * If inc causes overflow, untouch allmulti and return error.
8374 */
8375 if (inc < 0)
8376 dev->flags &= ~IFF_ALLMULTI;
8377 else {
8378 dev->allmulti -= inc;
8379 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8380 return -EOVERFLOW;
8381 }
8382 }
8383 if (dev->flags ^ old_flags) {
8384 dev_change_rx_flags(dev, IFF_ALLMULTI);
8385 dev_set_rx_mode(dev);
8386 if (notify)
8387 __dev_notify_flags(dev, old_flags,
8388 dev->gflags ^ old_gflags, 0, NULL);
8389 }
8390 return 0;
8391}
8392
8393/**
8394 * dev_set_allmulti - update allmulti count on a device
8395 * @dev: device
8396 * @inc: modifier
8397 *
8398 * Add or remove reception of all multicast frames to a device. While the
8399 * count in the device remains above zero the interface remains listening
8400 * to all interfaces. Once it hits zero the device reverts back to normal
8401 * filtering operation. A negative @inc value is used to drop the counter
8402 * when releasing a resource needing all multicasts.
8403 * Return 0 if successful or a negative errno code on error.
8404 */
8405
8406int dev_set_allmulti(struct net_device *dev, int inc)
8407{
8408 return __dev_set_allmulti(dev, inc, true);
8409}
8410EXPORT_SYMBOL(dev_set_allmulti);
8411
8412/*
8413 * Upload unicast and multicast address lists to device and
8414 * configure RX filtering. When the device doesn't support unicast
8415 * filtering it is put in promiscuous mode while unicast addresses
8416 * are present.
8417 */
8418void __dev_set_rx_mode(struct net_device *dev)
8419{
8420 const struct net_device_ops *ops = dev->netdev_ops;
8421
8422 /* dev_open will call this function so the list will stay sane. */
8423 if (!(dev->flags&IFF_UP))
8424 return;
8425
8426 if (!netif_device_present(dev))
8427 return;
8428
8429 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8430 /* Unicast addresses changes may only happen under the rtnl,
8431 * therefore calling __dev_set_promiscuity here is safe.
8432 */
8433 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8434 __dev_set_promiscuity(dev, 1, false);
8435 dev->uc_promisc = true;
8436 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8437 __dev_set_promiscuity(dev, -1, false);
8438 dev->uc_promisc = false;
8439 }
8440 }
8441
8442 if (ops->ndo_set_rx_mode)
8443 ops->ndo_set_rx_mode(dev);
8444}
8445
8446void dev_set_rx_mode(struct net_device *dev)
8447{
8448 netif_addr_lock_bh(dev);
8449 __dev_set_rx_mode(dev);
8450 netif_addr_unlock_bh(dev);
8451}
8452
8453/**
8454 * dev_get_flags - get flags reported to userspace
8455 * @dev: device
8456 *
8457 * Get the combination of flag bits exported through APIs to userspace.
8458 */
8459unsigned int dev_get_flags(const struct net_device *dev)
8460{
8461 unsigned int flags;
8462
8463 flags = (dev->flags & ~(IFF_PROMISC |
8464 IFF_ALLMULTI |
8465 IFF_RUNNING |
8466 IFF_LOWER_UP |
8467 IFF_DORMANT)) |
8468 (dev->gflags & (IFF_PROMISC |
8469 IFF_ALLMULTI));
8470
8471 if (netif_running(dev)) {
8472 if (netif_oper_up(dev))
8473 flags |= IFF_RUNNING;
8474 if (netif_carrier_ok(dev))
8475 flags |= IFF_LOWER_UP;
8476 if (netif_dormant(dev))
8477 flags |= IFF_DORMANT;
8478 }
8479
8480 return flags;
8481}
8482EXPORT_SYMBOL(dev_get_flags);
8483
8484int __dev_change_flags(struct net_device *dev, unsigned int flags,
8485 struct netlink_ext_ack *extack)
8486{
8487 unsigned int old_flags = dev->flags;
8488 int ret;
8489
8490 ASSERT_RTNL();
8491
8492 /*
8493 * Set the flags on our device.
8494 */
8495
8496 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8497 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8498 IFF_AUTOMEDIA)) |
8499 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8500 IFF_ALLMULTI));
8501
8502 /*
8503 * Load in the correct multicast list now the flags have changed.
8504 */
8505
8506 if ((old_flags ^ flags) & IFF_MULTICAST)
8507 dev_change_rx_flags(dev, IFF_MULTICAST);
8508
8509 dev_set_rx_mode(dev);
8510
8511 /*
8512 * Have we downed the interface. We handle IFF_UP ourselves
8513 * according to user attempts to set it, rather than blindly
8514 * setting it.
8515 */
8516
8517 ret = 0;
8518 if ((old_flags ^ flags) & IFF_UP) {
8519 if (old_flags & IFF_UP)
8520 __dev_close(dev);
8521 else
8522 ret = __dev_open(dev, extack);
8523 }
8524
8525 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8526 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8527 unsigned int old_flags = dev->flags;
8528
8529 dev->gflags ^= IFF_PROMISC;
8530
8531 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8532 if (dev->flags != old_flags)
8533 dev_set_rx_mode(dev);
8534 }
8535
8536 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8537 * is important. Some (broken) drivers set IFF_PROMISC, when
8538 * IFF_ALLMULTI is requested not asking us and not reporting.
8539 */
8540 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8541 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8542
8543 dev->gflags ^= IFF_ALLMULTI;
8544 __dev_set_allmulti(dev, inc, false);
8545 }
8546
8547 return ret;
8548}
8549
8550void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8551 unsigned int gchanges, u32 portid,
8552 const struct nlmsghdr *nlh)
8553{
8554 unsigned int changes = dev->flags ^ old_flags;
8555
8556 if (gchanges)
8557 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8558
8559 if (changes & IFF_UP) {
8560 if (dev->flags & IFF_UP)
8561 call_netdevice_notifiers(NETDEV_UP, dev);
8562 else
8563 call_netdevice_notifiers(NETDEV_DOWN, dev);
8564 }
8565
8566 if (dev->flags & IFF_UP &&
8567 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8568 struct netdev_notifier_change_info change_info = {
8569 .info = {
8570 .dev = dev,
8571 },
8572 .flags_changed = changes,
8573 };
8574
8575 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8576 }
8577}
8578
8579/**
8580 * dev_change_flags - change device settings
8581 * @dev: device
8582 * @flags: device state flags
8583 * @extack: netlink extended ack
8584 *
8585 * Change settings on device based state flags. The flags are
8586 * in the userspace exported format.
8587 */
8588int dev_change_flags(struct net_device *dev, unsigned int flags,
8589 struct netlink_ext_ack *extack)
8590{
8591 int ret;
8592 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8593
8594 ret = __dev_change_flags(dev, flags, extack);
8595 if (ret < 0)
8596 return ret;
8597
8598 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8599 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8600 return ret;
8601}
8602EXPORT_SYMBOL(dev_change_flags);
8603
8604int __dev_set_mtu(struct net_device *dev, int new_mtu)
8605{
8606 const struct net_device_ops *ops = dev->netdev_ops;
8607
8608 if (ops->ndo_change_mtu)
8609 return ops->ndo_change_mtu(dev, new_mtu);
8610
8611 /* Pairs with all the lockless reads of dev->mtu in the stack */
8612 WRITE_ONCE(dev->mtu, new_mtu);
8613 return 0;
8614}
8615EXPORT_SYMBOL(__dev_set_mtu);
8616
8617int dev_validate_mtu(struct net_device *dev, int new_mtu,
8618 struct netlink_ext_ack *extack)
8619{
8620 /* MTU must be positive, and in range */
8621 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8622 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8623 return -EINVAL;
8624 }
8625
8626 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8627 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8628 return -EINVAL;
8629 }
8630 return 0;
8631}
8632
8633/**
8634 * dev_set_mtu_ext - Change maximum transfer unit
8635 * @dev: device
8636 * @new_mtu: new transfer unit
8637 * @extack: netlink extended ack
8638 *
8639 * Change the maximum transfer size of the network device.
8640 */
8641int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8642 struct netlink_ext_ack *extack)
8643{
8644 int err, orig_mtu;
8645
8646 if (new_mtu == dev->mtu)
8647 return 0;
8648
8649 err = dev_validate_mtu(dev, new_mtu, extack);
8650 if (err)
8651 return err;
8652
8653 if (!netif_device_present(dev))
8654 return -ENODEV;
8655
8656 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8657 err = notifier_to_errno(err);
8658 if (err)
8659 return err;
8660
8661 orig_mtu = dev->mtu;
8662 err = __dev_set_mtu(dev, new_mtu);
8663
8664 if (!err) {
8665 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8666 orig_mtu);
8667 err = notifier_to_errno(err);
8668 if (err) {
8669 /* setting mtu back and notifying everyone again,
8670 * so that they have a chance to revert changes.
8671 */
8672 __dev_set_mtu(dev, orig_mtu);
8673 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8674 new_mtu);
8675 }
8676 }
8677 return err;
8678}
8679
8680int dev_set_mtu(struct net_device *dev, int new_mtu)
8681{
8682 struct netlink_ext_ack extack;
8683 int err;
8684
8685 memset(&extack, 0, sizeof(extack));
8686 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8687 if (err && extack._msg)
8688 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8689 return err;
8690}
8691EXPORT_SYMBOL(dev_set_mtu);
8692
8693/**
8694 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8695 * @dev: device
8696 * @new_len: new tx queue length
8697 */
8698int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8699{
8700 unsigned int orig_len = dev->tx_queue_len;
8701 int res;
8702
8703 if (new_len != (unsigned int)new_len)
8704 return -ERANGE;
8705
8706 if (new_len != orig_len) {
8707 dev->tx_queue_len = new_len;
8708 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8709 res = notifier_to_errno(res);
8710 if (res)
8711 goto err_rollback;
8712 res = dev_qdisc_change_tx_queue_len(dev);
8713 if (res)
8714 goto err_rollback;
8715 }
8716
8717 return 0;
8718
8719err_rollback:
8720 netdev_err(dev, "refused to change device tx_queue_len\n");
8721 dev->tx_queue_len = orig_len;
8722 return res;
8723}
8724
8725/**
8726 * dev_set_group - Change group this device belongs to
8727 * @dev: device
8728 * @new_group: group this device should belong to
8729 */
8730void dev_set_group(struct net_device *dev, int new_group)
8731{
8732 dev->group = new_group;
8733}
8734
8735/**
8736 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8737 * @dev: device
8738 * @addr: new address
8739 * @extack: netlink extended ack
8740 */
8741int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8742 struct netlink_ext_ack *extack)
8743{
8744 struct netdev_notifier_pre_changeaddr_info info = {
8745 .info.dev = dev,
8746 .info.extack = extack,
8747 .dev_addr = addr,
8748 };
8749 int rc;
8750
8751 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8752 return notifier_to_errno(rc);
8753}
8754EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8755
8756/**
8757 * dev_set_mac_address - Change Media Access Control Address
8758 * @dev: device
8759 * @sa: new address
8760 * @extack: netlink extended ack
8761 *
8762 * Change the hardware (MAC) address of the device
8763 */
8764int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8765 struct netlink_ext_ack *extack)
8766{
8767 const struct net_device_ops *ops = dev->netdev_ops;
8768 int err;
8769
8770 if (!ops->ndo_set_mac_address)
8771 return -EOPNOTSUPP;
8772 if (sa->sa_family != dev->type)
8773 return -EINVAL;
8774 if (!netif_device_present(dev))
8775 return -ENODEV;
8776 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8777 if (err)
8778 return err;
8779 err = ops->ndo_set_mac_address(dev, sa);
8780 if (err)
8781 return err;
8782 dev->addr_assign_type = NET_ADDR_SET;
8783 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8784 add_device_randomness(dev->dev_addr, dev->addr_len);
8785 return 0;
8786}
8787EXPORT_SYMBOL(dev_set_mac_address);
8788
8789static DECLARE_RWSEM(dev_addr_sem);
8790
8791int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8792 struct netlink_ext_ack *extack)
8793{
8794 int ret;
8795
8796 down_write(&dev_addr_sem);
8797 ret = dev_set_mac_address(dev, sa, extack);
8798 up_write(&dev_addr_sem);
8799 return ret;
8800}
8801EXPORT_SYMBOL(dev_set_mac_address_user);
8802
8803int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8804{
8805 size_t size = sizeof(sa->sa_data_min);
8806 struct net_device *dev;
8807 int ret = 0;
8808
8809 down_read(&dev_addr_sem);
8810 rcu_read_lock();
8811
8812 dev = dev_get_by_name_rcu(net, dev_name);
8813 if (!dev) {
8814 ret = -ENODEV;
8815 goto unlock;
8816 }
8817 if (!dev->addr_len)
8818 memset(sa->sa_data, 0, size);
8819 else
8820 memcpy(sa->sa_data, dev->dev_addr,
8821 min_t(size_t, size, dev->addr_len));
8822 sa->sa_family = dev->type;
8823
8824unlock:
8825 rcu_read_unlock();
8826 up_read(&dev_addr_sem);
8827 return ret;
8828}
8829EXPORT_SYMBOL(dev_get_mac_address);
8830
8831/**
8832 * dev_change_carrier - Change device carrier
8833 * @dev: device
8834 * @new_carrier: new value
8835 *
8836 * Change device carrier
8837 */
8838int dev_change_carrier(struct net_device *dev, bool new_carrier)
8839{
8840 const struct net_device_ops *ops = dev->netdev_ops;
8841
8842 if (!ops->ndo_change_carrier)
8843 return -EOPNOTSUPP;
8844 if (!netif_device_present(dev))
8845 return -ENODEV;
8846 return ops->ndo_change_carrier(dev, new_carrier);
8847}
8848
8849/**
8850 * dev_get_phys_port_id - Get device physical port ID
8851 * @dev: device
8852 * @ppid: port ID
8853 *
8854 * Get device physical port ID
8855 */
8856int dev_get_phys_port_id(struct net_device *dev,
8857 struct netdev_phys_item_id *ppid)
8858{
8859 const struct net_device_ops *ops = dev->netdev_ops;
8860
8861 if (!ops->ndo_get_phys_port_id)
8862 return -EOPNOTSUPP;
8863 return ops->ndo_get_phys_port_id(dev, ppid);
8864}
8865
8866/**
8867 * dev_get_phys_port_name - Get device physical port name
8868 * @dev: device
8869 * @name: port name
8870 * @len: limit of bytes to copy to name
8871 *
8872 * Get device physical port name
8873 */
8874int dev_get_phys_port_name(struct net_device *dev,
8875 char *name, size_t len)
8876{
8877 const struct net_device_ops *ops = dev->netdev_ops;
8878 int err;
8879
8880 if (ops->ndo_get_phys_port_name) {
8881 err = ops->ndo_get_phys_port_name(dev, name, len);
8882 if (err != -EOPNOTSUPP)
8883 return err;
8884 }
8885 return devlink_compat_phys_port_name_get(dev, name, len);
8886}
8887
8888/**
8889 * dev_get_port_parent_id - Get the device's port parent identifier
8890 * @dev: network device
8891 * @ppid: pointer to a storage for the port's parent identifier
8892 * @recurse: allow/disallow recursion to lower devices
8893 *
8894 * Get the devices's port parent identifier
8895 */
8896int dev_get_port_parent_id(struct net_device *dev,
8897 struct netdev_phys_item_id *ppid,
8898 bool recurse)
8899{
8900 const struct net_device_ops *ops = dev->netdev_ops;
8901 struct netdev_phys_item_id first = { };
8902 struct net_device *lower_dev;
8903 struct list_head *iter;
8904 int err;
8905
8906 if (ops->ndo_get_port_parent_id) {
8907 err = ops->ndo_get_port_parent_id(dev, ppid);
8908 if (err != -EOPNOTSUPP)
8909 return err;
8910 }
8911
8912 err = devlink_compat_switch_id_get(dev, ppid);
8913 if (!recurse || err != -EOPNOTSUPP)
8914 return err;
8915
8916 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8917 err = dev_get_port_parent_id(lower_dev, ppid, true);
8918 if (err)
8919 break;
8920 if (!first.id_len)
8921 first = *ppid;
8922 else if (memcmp(&first, ppid, sizeof(*ppid)))
8923 return -EOPNOTSUPP;
8924 }
8925
8926 return err;
8927}
8928EXPORT_SYMBOL(dev_get_port_parent_id);
8929
8930/**
8931 * netdev_port_same_parent_id - Indicate if two network devices have
8932 * the same port parent identifier
8933 * @a: first network device
8934 * @b: second network device
8935 */
8936bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8937{
8938 struct netdev_phys_item_id a_id = { };
8939 struct netdev_phys_item_id b_id = { };
8940
8941 if (dev_get_port_parent_id(a, &a_id, true) ||
8942 dev_get_port_parent_id(b, &b_id, true))
8943 return false;
8944
8945 return netdev_phys_item_id_same(&a_id, &b_id);
8946}
8947EXPORT_SYMBOL(netdev_port_same_parent_id);
8948
8949/**
8950 * dev_change_proto_down - set carrier according to proto_down.
8951 *
8952 * @dev: device
8953 * @proto_down: new value
8954 */
8955int dev_change_proto_down(struct net_device *dev, bool proto_down)
8956{
8957 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8958 return -EOPNOTSUPP;
8959 if (!netif_device_present(dev))
8960 return -ENODEV;
8961 if (proto_down)
8962 netif_carrier_off(dev);
8963 else
8964 netif_carrier_on(dev);
8965 dev->proto_down = proto_down;
8966 return 0;
8967}
8968
8969/**
8970 * dev_change_proto_down_reason - proto down reason
8971 *
8972 * @dev: device
8973 * @mask: proto down mask
8974 * @value: proto down value
8975 */
8976void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8977 u32 value)
8978{
8979 int b;
8980
8981 if (!mask) {
8982 dev->proto_down_reason = value;
8983 } else {
8984 for_each_set_bit(b, &mask, 32) {
8985 if (value & (1 << b))
8986 dev->proto_down_reason |= BIT(b);
8987 else
8988 dev->proto_down_reason &= ~BIT(b);
8989 }
8990 }
8991}
8992
8993struct bpf_xdp_link {
8994 struct bpf_link link;
8995 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8996 int flags;
8997};
8998
8999static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9000{
9001 if (flags & XDP_FLAGS_HW_MODE)
9002 return XDP_MODE_HW;
9003 if (flags & XDP_FLAGS_DRV_MODE)
9004 return XDP_MODE_DRV;
9005 if (flags & XDP_FLAGS_SKB_MODE)
9006 return XDP_MODE_SKB;
9007 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9008}
9009
9010static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9011{
9012 switch (mode) {
9013 case XDP_MODE_SKB:
9014 return generic_xdp_install;
9015 case XDP_MODE_DRV:
9016 case XDP_MODE_HW:
9017 return dev->netdev_ops->ndo_bpf;
9018 default:
9019 return NULL;
9020 }
9021}
9022
9023static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9024 enum bpf_xdp_mode mode)
9025{
9026 return dev->xdp_state[mode].link;
9027}
9028
9029static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9030 enum bpf_xdp_mode mode)
9031{
9032 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9033
9034 if (link)
9035 return link->link.prog;
9036 return dev->xdp_state[mode].prog;
9037}
9038
9039u8 dev_xdp_prog_count(struct net_device *dev)
9040{
9041 u8 count = 0;
9042 int i;
9043
9044 for (i = 0; i < __MAX_XDP_MODE; i++)
9045 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9046 count++;
9047 return count;
9048}
9049EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9050
9051u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9052{
9053 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9054
9055 return prog ? prog->aux->id : 0;
9056}
9057
9058static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9059 struct bpf_xdp_link *link)
9060{
9061 dev->xdp_state[mode].link = link;
9062 dev->xdp_state[mode].prog = NULL;
9063}
9064
9065static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9066 struct bpf_prog *prog)
9067{
9068 dev->xdp_state[mode].link = NULL;
9069 dev->xdp_state[mode].prog = prog;
9070}
9071
9072static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9073 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9074 u32 flags, struct bpf_prog *prog)
9075{
9076 struct netdev_bpf xdp;
9077 int err;
9078
9079 memset(&xdp, 0, sizeof(xdp));
9080 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9081 xdp.extack = extack;
9082 xdp.flags = flags;
9083 xdp.prog = prog;
9084
9085 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9086 * "moved" into driver), so they don't increment it on their own, but
9087 * they do decrement refcnt when program is detached or replaced.
9088 * Given net_device also owns link/prog, we need to bump refcnt here
9089 * to prevent drivers from underflowing it.
9090 */
9091 if (prog)
9092 bpf_prog_inc(prog);
9093 err = bpf_op(dev, &xdp);
9094 if (err) {
9095 if (prog)
9096 bpf_prog_put(prog);
9097 return err;
9098 }
9099
9100 if (mode != XDP_MODE_HW)
9101 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9102
9103 return 0;
9104}
9105
9106static void dev_xdp_uninstall(struct net_device *dev)
9107{
9108 struct bpf_xdp_link *link;
9109 struct bpf_prog *prog;
9110 enum bpf_xdp_mode mode;
9111 bpf_op_t bpf_op;
9112
9113 ASSERT_RTNL();
9114
9115 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9116 prog = dev_xdp_prog(dev, mode);
9117 if (!prog)
9118 continue;
9119
9120 bpf_op = dev_xdp_bpf_op(dev, mode);
9121 if (!bpf_op)
9122 continue;
9123
9124 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9125
9126 /* auto-detach link from net device */
9127 link = dev_xdp_link(dev, mode);
9128 if (link)
9129 link->dev = NULL;
9130 else
9131 bpf_prog_put(prog);
9132
9133 dev_xdp_set_link(dev, mode, NULL);
9134 }
9135}
9136
9137static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9138 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9139 struct bpf_prog *old_prog, u32 flags)
9140{
9141 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9142 struct bpf_prog *cur_prog;
9143 struct net_device *upper;
9144 struct list_head *iter;
9145 enum bpf_xdp_mode mode;
9146 bpf_op_t bpf_op;
9147 int err;
9148
9149 ASSERT_RTNL();
9150
9151 /* either link or prog attachment, never both */
9152 if (link && (new_prog || old_prog))
9153 return -EINVAL;
9154 /* link supports only XDP mode flags */
9155 if (link && (flags & ~XDP_FLAGS_MODES)) {
9156 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9157 return -EINVAL;
9158 }
9159 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9160 if (num_modes > 1) {
9161 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9162 return -EINVAL;
9163 }
9164 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9165 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9166 NL_SET_ERR_MSG(extack,
9167 "More than one program loaded, unset mode is ambiguous");
9168 return -EINVAL;
9169 }
9170 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9171 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9172 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9173 return -EINVAL;
9174 }
9175
9176 mode = dev_xdp_mode(dev, flags);
9177 /* can't replace attached link */
9178 if (dev_xdp_link(dev, mode)) {
9179 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9180 return -EBUSY;
9181 }
9182
9183 /* don't allow if an upper device already has a program */
9184 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9185 if (dev_xdp_prog_count(upper) > 0) {
9186 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9187 return -EEXIST;
9188 }
9189 }
9190
9191 cur_prog = dev_xdp_prog(dev, mode);
9192 /* can't replace attached prog with link */
9193 if (link && cur_prog) {
9194 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9195 return -EBUSY;
9196 }
9197 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9198 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9199 return -EEXIST;
9200 }
9201
9202 /* put effective new program into new_prog */
9203 if (link)
9204 new_prog = link->link.prog;
9205
9206 if (new_prog) {
9207 bool offload = mode == XDP_MODE_HW;
9208 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9209 ? XDP_MODE_DRV : XDP_MODE_SKB;
9210
9211 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9212 NL_SET_ERR_MSG(extack, "XDP program already attached");
9213 return -EBUSY;
9214 }
9215 if (!offload && dev_xdp_prog(dev, other_mode)) {
9216 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9217 return -EEXIST;
9218 }
9219 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9220 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9221 return -EINVAL;
9222 }
9223 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9224 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9225 return -EINVAL;
9226 }
9227 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9228 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9229 return -EINVAL;
9230 }
9231 }
9232
9233 /* don't call drivers if the effective program didn't change */
9234 if (new_prog != cur_prog) {
9235 bpf_op = dev_xdp_bpf_op(dev, mode);
9236 if (!bpf_op) {
9237 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9238 return -EOPNOTSUPP;
9239 }
9240
9241 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9242 if (err)
9243 return err;
9244 }
9245
9246 if (link)
9247 dev_xdp_set_link(dev, mode, link);
9248 else
9249 dev_xdp_set_prog(dev, mode, new_prog);
9250 if (cur_prog)
9251 bpf_prog_put(cur_prog);
9252
9253 return 0;
9254}
9255
9256static int dev_xdp_attach_link(struct net_device *dev,
9257 struct netlink_ext_ack *extack,
9258 struct bpf_xdp_link *link)
9259{
9260 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9261}
9262
9263static int dev_xdp_detach_link(struct net_device *dev,
9264 struct netlink_ext_ack *extack,
9265 struct bpf_xdp_link *link)
9266{
9267 enum bpf_xdp_mode mode;
9268 bpf_op_t bpf_op;
9269
9270 ASSERT_RTNL();
9271
9272 mode = dev_xdp_mode(dev, link->flags);
9273 if (dev_xdp_link(dev, mode) != link)
9274 return -EINVAL;
9275
9276 bpf_op = dev_xdp_bpf_op(dev, mode);
9277 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9278 dev_xdp_set_link(dev, mode, NULL);
9279 return 0;
9280}
9281
9282static void bpf_xdp_link_release(struct bpf_link *link)
9283{
9284 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9285
9286 rtnl_lock();
9287
9288 /* if racing with net_device's tear down, xdp_link->dev might be
9289 * already NULL, in which case link was already auto-detached
9290 */
9291 if (xdp_link->dev) {
9292 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9293 xdp_link->dev = NULL;
9294 }
9295
9296 rtnl_unlock();
9297}
9298
9299static int bpf_xdp_link_detach(struct bpf_link *link)
9300{
9301 bpf_xdp_link_release(link);
9302 return 0;
9303}
9304
9305static void bpf_xdp_link_dealloc(struct bpf_link *link)
9306{
9307 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9308
9309 kfree(xdp_link);
9310}
9311
9312static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9313 struct seq_file *seq)
9314{
9315 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9316 u32 ifindex = 0;
9317
9318 rtnl_lock();
9319 if (xdp_link->dev)
9320 ifindex = xdp_link->dev->ifindex;
9321 rtnl_unlock();
9322
9323 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9324}
9325
9326static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9327 struct bpf_link_info *info)
9328{
9329 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9330 u32 ifindex = 0;
9331
9332 rtnl_lock();
9333 if (xdp_link->dev)
9334 ifindex = xdp_link->dev->ifindex;
9335 rtnl_unlock();
9336
9337 info->xdp.ifindex = ifindex;
9338 return 0;
9339}
9340
9341static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9342 struct bpf_prog *old_prog)
9343{
9344 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9345 enum bpf_xdp_mode mode;
9346 bpf_op_t bpf_op;
9347 int err = 0;
9348
9349 rtnl_lock();
9350
9351 /* link might have been auto-released already, so fail */
9352 if (!xdp_link->dev) {
9353 err = -ENOLINK;
9354 goto out_unlock;
9355 }
9356
9357 if (old_prog && link->prog != old_prog) {
9358 err = -EPERM;
9359 goto out_unlock;
9360 }
9361 old_prog = link->prog;
9362 if (old_prog->type != new_prog->type ||
9363 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9364 err = -EINVAL;
9365 goto out_unlock;
9366 }
9367
9368 if (old_prog == new_prog) {
9369 /* no-op, don't disturb drivers */
9370 bpf_prog_put(new_prog);
9371 goto out_unlock;
9372 }
9373
9374 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9375 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9376 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9377 xdp_link->flags, new_prog);
9378 if (err)
9379 goto out_unlock;
9380
9381 old_prog = xchg(&link->prog, new_prog);
9382 bpf_prog_put(old_prog);
9383
9384out_unlock:
9385 rtnl_unlock();
9386 return err;
9387}
9388
9389static const struct bpf_link_ops bpf_xdp_link_lops = {
9390 .release = bpf_xdp_link_release,
9391 .dealloc = bpf_xdp_link_dealloc,
9392 .detach = bpf_xdp_link_detach,
9393 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9394 .fill_link_info = bpf_xdp_link_fill_link_info,
9395 .update_prog = bpf_xdp_link_update,
9396};
9397
9398int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9399{
9400 struct net *net = current->nsproxy->net_ns;
9401 struct bpf_link_primer link_primer;
9402 struct bpf_xdp_link *link;
9403 struct net_device *dev;
9404 int err, fd;
9405
9406 rtnl_lock();
9407 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9408 if (!dev) {
9409 rtnl_unlock();
9410 return -EINVAL;
9411 }
9412
9413 link = kzalloc(sizeof(*link), GFP_USER);
9414 if (!link) {
9415 err = -ENOMEM;
9416 goto unlock;
9417 }
9418
9419 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9420 link->dev = dev;
9421 link->flags = attr->link_create.flags;
9422
9423 err = bpf_link_prime(&link->link, &link_primer);
9424 if (err) {
9425 kfree(link);
9426 goto unlock;
9427 }
9428
9429 err = dev_xdp_attach_link(dev, NULL, link);
9430 rtnl_unlock();
9431
9432 if (err) {
9433 link->dev = NULL;
9434 bpf_link_cleanup(&link_primer);
9435 goto out_put_dev;
9436 }
9437
9438 fd = bpf_link_settle(&link_primer);
9439 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9440 dev_put(dev);
9441 return fd;
9442
9443unlock:
9444 rtnl_unlock();
9445
9446out_put_dev:
9447 dev_put(dev);
9448 return err;
9449}
9450
9451/**
9452 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9453 * @dev: device
9454 * @extack: netlink extended ack
9455 * @fd: new program fd or negative value to clear
9456 * @expected_fd: old program fd that userspace expects to replace or clear
9457 * @flags: xdp-related flags
9458 *
9459 * Set or clear a bpf program for a device
9460 */
9461int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9462 int fd, int expected_fd, u32 flags)
9463{
9464 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9465 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9466 int err;
9467
9468 ASSERT_RTNL();
9469
9470 if (fd >= 0) {
9471 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9472 mode != XDP_MODE_SKB);
9473 if (IS_ERR(new_prog))
9474 return PTR_ERR(new_prog);
9475 }
9476
9477 if (expected_fd >= 0) {
9478 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9479 mode != XDP_MODE_SKB);
9480 if (IS_ERR(old_prog)) {
9481 err = PTR_ERR(old_prog);
9482 old_prog = NULL;
9483 goto err_out;
9484 }
9485 }
9486
9487 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9488
9489err_out:
9490 if (err && new_prog)
9491 bpf_prog_put(new_prog);
9492 if (old_prog)
9493 bpf_prog_put(old_prog);
9494 return err;
9495}
9496
9497/**
9498 * dev_new_index - allocate an ifindex
9499 * @net: the applicable net namespace
9500 *
9501 * Returns a suitable unique value for a new device interface
9502 * number. The caller must hold the rtnl semaphore or the
9503 * dev_base_lock to be sure it remains unique.
9504 */
9505static int dev_new_index(struct net *net)
9506{
9507 int ifindex = net->ifindex;
9508
9509 for (;;) {
9510 if (++ifindex <= 0)
9511 ifindex = 1;
9512 if (!__dev_get_by_index(net, ifindex))
9513 return net->ifindex = ifindex;
9514 }
9515}
9516
9517/* Delayed registration/unregisteration */
9518LIST_HEAD(net_todo_list);
9519DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9520
9521static void net_set_todo(struct net_device *dev)
9522{
9523 list_add_tail(&dev->todo_list, &net_todo_list);
9524 atomic_inc(&dev_net(dev)->dev_unreg_count);
9525}
9526
9527static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9528 struct net_device *upper, netdev_features_t features)
9529{
9530 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9531 netdev_features_t feature;
9532 int feature_bit;
9533
9534 for_each_netdev_feature(upper_disables, feature_bit) {
9535 feature = __NETIF_F_BIT(feature_bit);
9536 if (!(upper->wanted_features & feature)
9537 && (features & feature)) {
9538 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9539 &feature, upper->name);
9540 features &= ~feature;
9541 }
9542 }
9543
9544 return features;
9545}
9546
9547static void netdev_sync_lower_features(struct net_device *upper,
9548 struct net_device *lower, netdev_features_t features)
9549{
9550 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9551 netdev_features_t feature;
9552 int feature_bit;
9553
9554 for_each_netdev_feature(upper_disables, feature_bit) {
9555 feature = __NETIF_F_BIT(feature_bit);
9556 if (!(features & feature) && (lower->features & feature)) {
9557 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9558 &feature, lower->name);
9559 lower->wanted_features &= ~feature;
9560 __netdev_update_features(lower);
9561
9562 if (unlikely(lower->features & feature))
9563 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9564 &feature, lower->name);
9565 else
9566 netdev_features_change(lower);
9567 }
9568 }
9569}
9570
9571static netdev_features_t netdev_fix_features(struct net_device *dev,
9572 netdev_features_t features)
9573{
9574 /* Fix illegal checksum combinations */
9575 if ((features & NETIF_F_HW_CSUM) &&
9576 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9577 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9578 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9579 }
9580
9581 /* TSO requires that SG is present as well. */
9582 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9583 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9584 features &= ~NETIF_F_ALL_TSO;
9585 }
9586
9587 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9588 !(features & NETIF_F_IP_CSUM)) {
9589 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9590 features &= ~NETIF_F_TSO;
9591 features &= ~NETIF_F_TSO_ECN;
9592 }
9593
9594 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9595 !(features & NETIF_F_IPV6_CSUM)) {
9596 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9597 features &= ~NETIF_F_TSO6;
9598 }
9599
9600 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9601 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9602 features &= ~NETIF_F_TSO_MANGLEID;
9603
9604 /* TSO ECN requires that TSO is present as well. */
9605 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9606 features &= ~NETIF_F_TSO_ECN;
9607
9608 /* Software GSO depends on SG. */
9609 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9610 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9611 features &= ~NETIF_F_GSO;
9612 }
9613
9614 /* GSO partial features require GSO partial be set */
9615 if ((features & dev->gso_partial_features) &&
9616 !(features & NETIF_F_GSO_PARTIAL)) {
9617 netdev_dbg(dev,
9618 "Dropping partially supported GSO features since no GSO partial.\n");
9619 features &= ~dev->gso_partial_features;
9620 }
9621
9622 if (!(features & NETIF_F_RXCSUM)) {
9623 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9624 * successfully merged by hardware must also have the
9625 * checksum verified by hardware. If the user does not
9626 * want to enable RXCSUM, logically, we should disable GRO_HW.
9627 */
9628 if (features & NETIF_F_GRO_HW) {
9629 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9630 features &= ~NETIF_F_GRO_HW;
9631 }
9632 }
9633
9634 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9635 if (features & NETIF_F_RXFCS) {
9636 if (features & NETIF_F_LRO) {
9637 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9638 features &= ~NETIF_F_LRO;
9639 }
9640
9641 if (features & NETIF_F_GRO_HW) {
9642 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9643 features &= ~NETIF_F_GRO_HW;
9644 }
9645 }
9646
9647 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9648 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9649 features &= ~NETIF_F_LRO;
9650 }
9651
9652 if (features & NETIF_F_HW_TLS_TX) {
9653 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9654 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9655 bool hw_csum = features & NETIF_F_HW_CSUM;
9656
9657 if (!ip_csum && !hw_csum) {
9658 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9659 features &= ~NETIF_F_HW_TLS_TX;
9660 }
9661 }
9662
9663 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9664 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9665 features &= ~NETIF_F_HW_TLS_RX;
9666 }
9667
9668 return features;
9669}
9670
9671int __netdev_update_features(struct net_device *dev)
9672{
9673 struct net_device *upper, *lower;
9674 netdev_features_t features;
9675 struct list_head *iter;
9676 int err = -1;
9677
9678 ASSERT_RTNL();
9679
9680 features = netdev_get_wanted_features(dev);
9681
9682 if (dev->netdev_ops->ndo_fix_features)
9683 features = dev->netdev_ops->ndo_fix_features(dev, features);
9684
9685 /* driver might be less strict about feature dependencies */
9686 features = netdev_fix_features(dev, features);
9687
9688 /* some features can't be enabled if they're off on an upper device */
9689 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9690 features = netdev_sync_upper_features(dev, upper, features);
9691
9692 if (dev->features == features)
9693 goto sync_lower;
9694
9695 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9696 &dev->features, &features);
9697
9698 if (dev->netdev_ops->ndo_set_features)
9699 err = dev->netdev_ops->ndo_set_features(dev, features);
9700 else
9701 err = 0;
9702
9703 if (unlikely(err < 0)) {
9704 netdev_err(dev,
9705 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9706 err, &features, &dev->features);
9707 /* return non-0 since some features might have changed and
9708 * it's better to fire a spurious notification than miss it
9709 */
9710 return -1;
9711 }
9712
9713sync_lower:
9714 /* some features must be disabled on lower devices when disabled
9715 * on an upper device (think: bonding master or bridge)
9716 */
9717 netdev_for_each_lower_dev(dev, lower, iter)
9718 netdev_sync_lower_features(dev, lower, features);
9719
9720 if (!err) {
9721 netdev_features_t diff = features ^ dev->features;
9722
9723 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9724 /* udp_tunnel_{get,drop}_rx_info both need
9725 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9726 * device, or they won't do anything.
9727 * Thus we need to update dev->features
9728 * *before* calling udp_tunnel_get_rx_info,
9729 * but *after* calling udp_tunnel_drop_rx_info.
9730 */
9731 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9732 dev->features = features;
9733 udp_tunnel_get_rx_info(dev);
9734 } else {
9735 udp_tunnel_drop_rx_info(dev);
9736 }
9737 }
9738
9739 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9740 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9741 dev->features = features;
9742 err |= vlan_get_rx_ctag_filter_info(dev);
9743 } else {
9744 vlan_drop_rx_ctag_filter_info(dev);
9745 }
9746 }
9747
9748 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9749 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9750 dev->features = features;
9751 err |= vlan_get_rx_stag_filter_info(dev);
9752 } else {
9753 vlan_drop_rx_stag_filter_info(dev);
9754 }
9755 }
9756
9757 dev->features = features;
9758 }
9759
9760 return err < 0 ? 0 : 1;
9761}
9762
9763/**
9764 * netdev_update_features - recalculate device features
9765 * @dev: the device to check
9766 *
9767 * Recalculate dev->features set and send notifications if it
9768 * has changed. Should be called after driver or hardware dependent
9769 * conditions might have changed that influence the features.
9770 */
9771void netdev_update_features(struct net_device *dev)
9772{
9773 if (__netdev_update_features(dev))
9774 netdev_features_change(dev);
9775}
9776EXPORT_SYMBOL(netdev_update_features);
9777
9778/**
9779 * netdev_change_features - recalculate device features
9780 * @dev: the device to check
9781 *
9782 * Recalculate dev->features set and send notifications even
9783 * if they have not changed. Should be called instead of
9784 * netdev_update_features() if also dev->vlan_features might
9785 * have changed to allow the changes to be propagated to stacked
9786 * VLAN devices.
9787 */
9788void netdev_change_features(struct net_device *dev)
9789{
9790 __netdev_update_features(dev);
9791 netdev_features_change(dev);
9792}
9793EXPORT_SYMBOL(netdev_change_features);
9794
9795/**
9796 * netif_stacked_transfer_operstate - transfer operstate
9797 * @rootdev: the root or lower level device to transfer state from
9798 * @dev: the device to transfer operstate to
9799 *
9800 * Transfer operational state from root to device. This is normally
9801 * called when a stacking relationship exists between the root
9802 * device and the device(a leaf device).
9803 */
9804void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9805 struct net_device *dev)
9806{
9807 if (rootdev->operstate == IF_OPER_DORMANT)
9808 netif_dormant_on(dev);
9809 else
9810 netif_dormant_off(dev);
9811
9812 if (rootdev->operstate == IF_OPER_TESTING)
9813 netif_testing_on(dev);
9814 else
9815 netif_testing_off(dev);
9816
9817 if (netif_carrier_ok(rootdev))
9818 netif_carrier_on(dev);
9819 else
9820 netif_carrier_off(dev);
9821}
9822EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9823
9824static int netif_alloc_rx_queues(struct net_device *dev)
9825{
9826 unsigned int i, count = dev->num_rx_queues;
9827 struct netdev_rx_queue *rx;
9828 size_t sz = count * sizeof(*rx);
9829 int err = 0;
9830
9831 BUG_ON(count < 1);
9832
9833 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9834 if (!rx)
9835 return -ENOMEM;
9836
9837 dev->_rx = rx;
9838
9839 for (i = 0; i < count; i++) {
9840 rx[i].dev = dev;
9841
9842 /* XDP RX-queue setup */
9843 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9844 if (err < 0)
9845 goto err_rxq_info;
9846 }
9847 return 0;
9848
9849err_rxq_info:
9850 /* Rollback successful reg's and free other resources */
9851 while (i--)
9852 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9853 kvfree(dev->_rx);
9854 dev->_rx = NULL;
9855 return err;
9856}
9857
9858static void netif_free_rx_queues(struct net_device *dev)
9859{
9860 unsigned int i, count = dev->num_rx_queues;
9861
9862 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9863 if (!dev->_rx)
9864 return;
9865
9866 for (i = 0; i < count; i++)
9867 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9868
9869 kvfree(dev->_rx);
9870}
9871
9872static void netdev_init_one_queue(struct net_device *dev,
9873 struct netdev_queue *queue, void *_unused)
9874{
9875 /* Initialize queue lock */
9876 spin_lock_init(&queue->_xmit_lock);
9877 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9878 queue->xmit_lock_owner = -1;
9879 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9880 queue->dev = dev;
9881#ifdef CONFIG_BQL
9882 dql_init(&queue->dql, HZ);
9883#endif
9884}
9885
9886static void netif_free_tx_queues(struct net_device *dev)
9887{
9888 kvfree(dev->_tx);
9889}
9890
9891static int netif_alloc_netdev_queues(struct net_device *dev)
9892{
9893 unsigned int count = dev->num_tx_queues;
9894 struct netdev_queue *tx;
9895 size_t sz = count * sizeof(*tx);
9896
9897 if (count < 1 || count > 0xffff)
9898 return -EINVAL;
9899
9900 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9901 if (!tx)
9902 return -ENOMEM;
9903
9904 dev->_tx = tx;
9905
9906 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9907 spin_lock_init(&dev->tx_global_lock);
9908
9909 return 0;
9910}
9911
9912void netif_tx_stop_all_queues(struct net_device *dev)
9913{
9914 unsigned int i;
9915
9916 for (i = 0; i < dev->num_tx_queues; i++) {
9917 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9918
9919 netif_tx_stop_queue(txq);
9920 }
9921}
9922EXPORT_SYMBOL(netif_tx_stop_all_queues);
9923
9924/**
9925 * register_netdevice() - register a network device
9926 * @dev: device to register
9927 *
9928 * Take a prepared network device structure and make it externally accessible.
9929 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9930 * Callers must hold the rtnl lock - you may want register_netdev()
9931 * instead of this.
9932 */
9933int register_netdevice(struct net_device *dev)
9934{
9935 int ret;
9936 struct net *net = dev_net(dev);
9937
9938 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9939 NETDEV_FEATURE_COUNT);
9940 BUG_ON(dev_boot_phase);
9941 ASSERT_RTNL();
9942
9943 might_sleep();
9944
9945 /* When net_device's are persistent, this will be fatal. */
9946 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9947 BUG_ON(!net);
9948
9949 ret = ethtool_check_ops(dev->ethtool_ops);
9950 if (ret)
9951 return ret;
9952
9953 spin_lock_init(&dev->addr_list_lock);
9954 netdev_set_addr_lockdep_class(dev);
9955
9956 ret = dev_get_valid_name(net, dev, dev->name);
9957 if (ret < 0)
9958 goto out;
9959
9960 ret = -ENOMEM;
9961 dev->name_node = netdev_name_node_head_alloc(dev);
9962 if (!dev->name_node)
9963 goto out;
9964
9965 /* Init, if this function is available */
9966 if (dev->netdev_ops->ndo_init) {
9967 ret = dev->netdev_ops->ndo_init(dev);
9968 if (ret) {
9969 if (ret > 0)
9970 ret = -EIO;
9971 goto err_free_name;
9972 }
9973 }
9974
9975 if (((dev->hw_features | dev->features) &
9976 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9977 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9978 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9979 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9980 ret = -EINVAL;
9981 goto err_uninit;
9982 }
9983
9984 ret = -EBUSY;
9985 if (!dev->ifindex)
9986 dev->ifindex = dev_new_index(net);
9987 else if (__dev_get_by_index(net, dev->ifindex))
9988 goto err_uninit;
9989
9990 /* Transfer changeable features to wanted_features and enable
9991 * software offloads (GSO and GRO).
9992 */
9993 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9994 dev->features |= NETIF_F_SOFT_FEATURES;
9995
9996 if (dev->udp_tunnel_nic_info) {
9997 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9998 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9999 }
10000
10001 dev->wanted_features = dev->features & dev->hw_features;
10002
10003 if (!(dev->flags & IFF_LOOPBACK))
10004 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10005
10006 /* If IPv4 TCP segmentation offload is supported we should also
10007 * allow the device to enable segmenting the frame with the option
10008 * of ignoring a static IP ID value. This doesn't enable the
10009 * feature itself but allows the user to enable it later.
10010 */
10011 if (dev->hw_features & NETIF_F_TSO)
10012 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10013 if (dev->vlan_features & NETIF_F_TSO)
10014 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10015 if (dev->mpls_features & NETIF_F_TSO)
10016 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10017 if (dev->hw_enc_features & NETIF_F_TSO)
10018 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10019
10020 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10021 */
10022 dev->vlan_features |= NETIF_F_HIGHDMA;
10023
10024 /* Make NETIF_F_SG inheritable to tunnel devices.
10025 */
10026 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10027
10028 /* Make NETIF_F_SG inheritable to MPLS.
10029 */
10030 dev->mpls_features |= NETIF_F_SG;
10031
10032 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10033 ret = notifier_to_errno(ret);
10034 if (ret)
10035 goto err_uninit;
10036
10037 ret = netdev_register_kobject(dev);
10038 write_lock(&dev_base_lock);
10039 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10040 write_unlock(&dev_base_lock);
10041 if (ret)
10042 goto err_uninit_notify;
10043
10044 __netdev_update_features(dev);
10045
10046 /*
10047 * Default initial state at registry is that the
10048 * device is present.
10049 */
10050
10051 set_bit(__LINK_STATE_PRESENT, &dev->state);
10052
10053 linkwatch_init_dev(dev);
10054
10055 dev_init_scheduler(dev);
10056
10057 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10058 list_netdevice(dev);
10059
10060 add_device_randomness(dev->dev_addr, dev->addr_len);
10061
10062 /* If the device has permanent device address, driver should
10063 * set dev_addr and also addr_assign_type should be set to
10064 * NET_ADDR_PERM (default value).
10065 */
10066 if (dev->addr_assign_type == NET_ADDR_PERM)
10067 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10068
10069 /* Notify protocols, that a new device appeared. */
10070 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10071 ret = notifier_to_errno(ret);
10072 if (ret) {
10073 /* Expect explicit free_netdev() on failure */
10074 dev->needs_free_netdev = false;
10075 unregister_netdevice_queue(dev, NULL);
10076 goto out;
10077 }
10078 /*
10079 * Prevent userspace races by waiting until the network
10080 * device is fully setup before sending notifications.
10081 */
10082 if (!dev->rtnl_link_ops ||
10083 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10084 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10085
10086out:
10087 return ret;
10088
10089err_uninit_notify:
10090 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10091err_uninit:
10092 if (dev->netdev_ops->ndo_uninit)
10093 dev->netdev_ops->ndo_uninit(dev);
10094 if (dev->priv_destructor)
10095 dev->priv_destructor(dev);
10096err_free_name:
10097 netdev_name_node_free(dev->name_node);
10098 goto out;
10099}
10100EXPORT_SYMBOL(register_netdevice);
10101
10102/**
10103 * init_dummy_netdev - init a dummy network device for NAPI
10104 * @dev: device to init
10105 *
10106 * This takes a network device structure and initialize the minimum
10107 * amount of fields so it can be used to schedule NAPI polls without
10108 * registering a full blown interface. This is to be used by drivers
10109 * that need to tie several hardware interfaces to a single NAPI
10110 * poll scheduler due to HW limitations.
10111 */
10112int init_dummy_netdev(struct net_device *dev)
10113{
10114 /* Clear everything. Note we don't initialize spinlocks
10115 * are they aren't supposed to be taken by any of the
10116 * NAPI code and this dummy netdev is supposed to be
10117 * only ever used for NAPI polls
10118 */
10119 memset(dev, 0, sizeof(struct net_device));
10120
10121 /* make sure we BUG if trying to hit standard
10122 * register/unregister code path
10123 */
10124 dev->reg_state = NETREG_DUMMY;
10125
10126 /* NAPI wants this */
10127 INIT_LIST_HEAD(&dev->napi_list);
10128
10129 /* a dummy interface is started by default */
10130 set_bit(__LINK_STATE_PRESENT, &dev->state);
10131 set_bit(__LINK_STATE_START, &dev->state);
10132
10133 /* napi_busy_loop stats accounting wants this */
10134 dev_net_set(dev, &init_net);
10135
10136 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10137 * because users of this 'device' dont need to change
10138 * its refcount.
10139 */
10140
10141 return 0;
10142}
10143EXPORT_SYMBOL_GPL(init_dummy_netdev);
10144
10145
10146/**
10147 * register_netdev - register a network device
10148 * @dev: device to register
10149 *
10150 * Take a completed network device structure and add it to the kernel
10151 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10152 * chain. 0 is returned on success. A negative errno code is returned
10153 * on a failure to set up the device, or if the name is a duplicate.
10154 *
10155 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10156 * and expands the device name if you passed a format string to
10157 * alloc_netdev.
10158 */
10159int register_netdev(struct net_device *dev)
10160{
10161 int err;
10162
10163 if (rtnl_lock_killable())
10164 return -EINTR;
10165 err = register_netdevice(dev);
10166 rtnl_unlock();
10167 return err;
10168}
10169EXPORT_SYMBOL(register_netdev);
10170
10171int netdev_refcnt_read(const struct net_device *dev)
10172{
10173#ifdef CONFIG_PCPU_DEV_REFCNT
10174 int i, refcnt = 0;
10175
10176 for_each_possible_cpu(i)
10177 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10178 return refcnt;
10179#else
10180 return refcount_read(&dev->dev_refcnt);
10181#endif
10182}
10183EXPORT_SYMBOL(netdev_refcnt_read);
10184
10185int netdev_unregister_timeout_secs __read_mostly = 10;
10186
10187#define WAIT_REFS_MIN_MSECS 1
10188#define WAIT_REFS_MAX_MSECS 250
10189/**
10190 * netdev_wait_allrefs_any - wait until all references are gone.
10191 * @list: list of net_devices to wait on
10192 *
10193 * This is called when unregistering network devices.
10194 *
10195 * Any protocol or device that holds a reference should register
10196 * for netdevice notification, and cleanup and put back the
10197 * reference if they receive an UNREGISTER event.
10198 * We can get stuck here if buggy protocols don't correctly
10199 * call dev_put.
10200 */
10201static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10202{
10203 unsigned long rebroadcast_time, warning_time;
10204 struct net_device *dev;
10205 int wait = 0;
10206
10207 rebroadcast_time = warning_time = jiffies;
10208
10209 list_for_each_entry(dev, list, todo_list)
10210 if (netdev_refcnt_read(dev) == 1)
10211 return dev;
10212
10213 while (true) {
10214 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10215 rtnl_lock();
10216
10217 /* Rebroadcast unregister notification */
10218 list_for_each_entry(dev, list, todo_list)
10219 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10220
10221 __rtnl_unlock();
10222 rcu_barrier();
10223 rtnl_lock();
10224
10225 list_for_each_entry(dev, list, todo_list)
10226 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10227 &dev->state)) {
10228 /* We must not have linkwatch events
10229 * pending on unregister. If this
10230 * happens, we simply run the queue
10231 * unscheduled, resulting in a noop
10232 * for this device.
10233 */
10234 linkwatch_run_queue();
10235 break;
10236 }
10237
10238 __rtnl_unlock();
10239
10240 rebroadcast_time = jiffies;
10241 }
10242
10243 if (!wait) {
10244 rcu_barrier();
10245 wait = WAIT_REFS_MIN_MSECS;
10246 } else {
10247 msleep(wait);
10248 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10249 }
10250
10251 list_for_each_entry(dev, list, todo_list)
10252 if (netdev_refcnt_read(dev) == 1)
10253 return dev;
10254
10255 if (time_after(jiffies, warning_time +
10256 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10257 list_for_each_entry(dev, list, todo_list) {
10258 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10259 dev->name, netdev_refcnt_read(dev));
10260 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10261 }
10262
10263 warning_time = jiffies;
10264 }
10265 }
10266}
10267
10268/* The sequence is:
10269 *
10270 * rtnl_lock();
10271 * ...
10272 * register_netdevice(x1);
10273 * register_netdevice(x2);
10274 * ...
10275 * unregister_netdevice(y1);
10276 * unregister_netdevice(y2);
10277 * ...
10278 * rtnl_unlock();
10279 * free_netdev(y1);
10280 * free_netdev(y2);
10281 *
10282 * We are invoked by rtnl_unlock().
10283 * This allows us to deal with problems:
10284 * 1) We can delete sysfs objects which invoke hotplug
10285 * without deadlocking with linkwatch via keventd.
10286 * 2) Since we run with the RTNL semaphore not held, we can sleep
10287 * safely in order to wait for the netdev refcnt to drop to zero.
10288 *
10289 * We must not return until all unregister events added during
10290 * the interval the lock was held have been completed.
10291 */
10292void netdev_run_todo(void)
10293{
10294 struct net_device *dev, *tmp;
10295 struct list_head list;
10296#ifdef CONFIG_LOCKDEP
10297 struct list_head unlink_list;
10298
10299 list_replace_init(&net_unlink_list, &unlink_list);
10300
10301 while (!list_empty(&unlink_list)) {
10302 struct net_device *dev = list_first_entry(&unlink_list,
10303 struct net_device,
10304 unlink_list);
10305 list_del_init(&dev->unlink_list);
10306 dev->nested_level = dev->lower_level - 1;
10307 }
10308#endif
10309
10310 /* Snapshot list, allow later requests */
10311 list_replace_init(&net_todo_list, &list);
10312
10313 __rtnl_unlock();
10314
10315 /* Wait for rcu callbacks to finish before next phase */
10316 if (!list_empty(&list))
10317 rcu_barrier();
10318
10319 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10320 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10321 netdev_WARN(dev, "run_todo but not unregistering\n");
10322 list_del(&dev->todo_list);
10323 continue;
10324 }
10325
10326 write_lock(&dev_base_lock);
10327 dev->reg_state = NETREG_UNREGISTERED;
10328 write_unlock(&dev_base_lock);
10329 linkwatch_forget_dev(dev);
10330 }
10331
10332 while (!list_empty(&list)) {
10333 dev = netdev_wait_allrefs_any(&list);
10334 list_del(&dev->todo_list);
10335
10336 /* paranoia */
10337 BUG_ON(netdev_refcnt_read(dev) != 1);
10338 BUG_ON(!list_empty(&dev->ptype_all));
10339 BUG_ON(!list_empty(&dev->ptype_specific));
10340 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10341 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10342
10343 if (dev->priv_destructor)
10344 dev->priv_destructor(dev);
10345 if (dev->needs_free_netdev)
10346 free_netdev(dev);
10347
10348 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10349 wake_up(&netdev_unregistering_wq);
10350
10351 /* Free network device */
10352 kobject_put(&dev->dev.kobj);
10353 }
10354}
10355
10356/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10357 * all the same fields in the same order as net_device_stats, with only
10358 * the type differing, but rtnl_link_stats64 may have additional fields
10359 * at the end for newer counters.
10360 */
10361void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10362 const struct net_device_stats *netdev_stats)
10363{
10364 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10365 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10366 u64 *dst = (u64 *)stats64;
10367
10368 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10369 for (i = 0; i < n; i++)
10370 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10371 /* zero out counters that only exist in rtnl_link_stats64 */
10372 memset((char *)stats64 + n * sizeof(u64), 0,
10373 sizeof(*stats64) - n * sizeof(u64));
10374}
10375EXPORT_SYMBOL(netdev_stats_to_stats64);
10376
10377struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10378{
10379 struct net_device_core_stats __percpu *p;
10380
10381 p = alloc_percpu_gfp(struct net_device_core_stats,
10382 GFP_ATOMIC | __GFP_NOWARN);
10383
10384 if (p && cmpxchg(&dev->core_stats, NULL, p))
10385 free_percpu(p);
10386
10387 /* This READ_ONCE() pairs with the cmpxchg() above */
10388 return READ_ONCE(dev->core_stats);
10389}
10390EXPORT_SYMBOL(netdev_core_stats_alloc);
10391
10392/**
10393 * dev_get_stats - get network device statistics
10394 * @dev: device to get statistics from
10395 * @storage: place to store stats
10396 *
10397 * Get network statistics from device. Return @storage.
10398 * The device driver may provide its own method by setting
10399 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10400 * otherwise the internal statistics structure is used.
10401 */
10402struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10403 struct rtnl_link_stats64 *storage)
10404{
10405 const struct net_device_ops *ops = dev->netdev_ops;
10406 const struct net_device_core_stats __percpu *p;
10407
10408 if (ops->ndo_get_stats64) {
10409 memset(storage, 0, sizeof(*storage));
10410 ops->ndo_get_stats64(dev, storage);
10411 } else if (ops->ndo_get_stats) {
10412 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10413 } else {
10414 netdev_stats_to_stats64(storage, &dev->stats);
10415 }
10416
10417 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10418 p = READ_ONCE(dev->core_stats);
10419 if (p) {
10420 const struct net_device_core_stats *core_stats;
10421 int i;
10422
10423 for_each_possible_cpu(i) {
10424 core_stats = per_cpu_ptr(p, i);
10425 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10426 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10427 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10428 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10429 }
10430 }
10431 return storage;
10432}
10433EXPORT_SYMBOL(dev_get_stats);
10434
10435/**
10436 * dev_fetch_sw_netstats - get per-cpu network device statistics
10437 * @s: place to store stats
10438 * @netstats: per-cpu network stats to read from
10439 *
10440 * Read per-cpu network statistics and populate the related fields in @s.
10441 */
10442void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10443 const struct pcpu_sw_netstats __percpu *netstats)
10444{
10445 int cpu;
10446
10447 for_each_possible_cpu(cpu) {
10448 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10449 const struct pcpu_sw_netstats *stats;
10450 unsigned int start;
10451
10452 stats = per_cpu_ptr(netstats, cpu);
10453 do {
10454 start = u64_stats_fetch_begin(&stats->syncp);
10455 rx_packets = u64_stats_read(&stats->rx_packets);
10456 rx_bytes = u64_stats_read(&stats->rx_bytes);
10457 tx_packets = u64_stats_read(&stats->tx_packets);
10458 tx_bytes = u64_stats_read(&stats->tx_bytes);
10459 } while (u64_stats_fetch_retry(&stats->syncp, start));
10460
10461 s->rx_packets += rx_packets;
10462 s->rx_bytes += rx_bytes;
10463 s->tx_packets += tx_packets;
10464 s->tx_bytes += tx_bytes;
10465 }
10466}
10467EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10468
10469/**
10470 * dev_get_tstats64 - ndo_get_stats64 implementation
10471 * @dev: device to get statistics from
10472 * @s: place to store stats
10473 *
10474 * Populate @s from dev->stats and dev->tstats. Can be used as
10475 * ndo_get_stats64() callback.
10476 */
10477void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10478{
10479 netdev_stats_to_stats64(s, &dev->stats);
10480 dev_fetch_sw_netstats(s, dev->tstats);
10481}
10482EXPORT_SYMBOL_GPL(dev_get_tstats64);
10483
10484struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10485{
10486 struct netdev_queue *queue = dev_ingress_queue(dev);
10487
10488#ifdef CONFIG_NET_CLS_ACT
10489 if (queue)
10490 return queue;
10491 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10492 if (!queue)
10493 return NULL;
10494 netdev_init_one_queue(dev, queue, NULL);
10495 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10496 queue->qdisc_sleeping = &noop_qdisc;
10497 rcu_assign_pointer(dev->ingress_queue, queue);
10498#endif
10499 return queue;
10500}
10501
10502static const struct ethtool_ops default_ethtool_ops;
10503
10504void netdev_set_default_ethtool_ops(struct net_device *dev,
10505 const struct ethtool_ops *ops)
10506{
10507 if (dev->ethtool_ops == &default_ethtool_ops)
10508 dev->ethtool_ops = ops;
10509}
10510EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10511
10512/**
10513 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10514 * @dev: netdev to enable the IRQ coalescing on
10515 *
10516 * Sets a conservative default for SW IRQ coalescing. Users can use
10517 * sysfs attributes to override the default values.
10518 */
10519void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10520{
10521 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10522
10523 dev->gro_flush_timeout = 20000;
10524 dev->napi_defer_hard_irqs = 1;
10525}
10526EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10527
10528void netdev_freemem(struct net_device *dev)
10529{
10530 char *addr = (char *)dev - dev->padded;
10531
10532 kvfree(addr);
10533}
10534
10535/**
10536 * alloc_netdev_mqs - allocate network device
10537 * @sizeof_priv: size of private data to allocate space for
10538 * @name: device name format string
10539 * @name_assign_type: origin of device name
10540 * @setup: callback to initialize device
10541 * @txqs: the number of TX subqueues to allocate
10542 * @rxqs: the number of RX subqueues to allocate
10543 *
10544 * Allocates a struct net_device with private data area for driver use
10545 * and performs basic initialization. Also allocates subqueue structs
10546 * for each queue on the device.
10547 */
10548struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10549 unsigned char name_assign_type,
10550 void (*setup)(struct net_device *),
10551 unsigned int txqs, unsigned int rxqs)
10552{
10553 struct net_device *dev;
10554 unsigned int alloc_size;
10555 struct net_device *p;
10556
10557 BUG_ON(strlen(name) >= sizeof(dev->name));
10558
10559 if (txqs < 1) {
10560 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10561 return NULL;
10562 }
10563
10564 if (rxqs < 1) {
10565 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10566 return NULL;
10567 }
10568
10569 alloc_size = sizeof(struct net_device);
10570 if (sizeof_priv) {
10571 /* ensure 32-byte alignment of private area */
10572 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10573 alloc_size += sizeof_priv;
10574 }
10575 /* ensure 32-byte alignment of whole construct */
10576 alloc_size += NETDEV_ALIGN - 1;
10577
10578 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10579 if (!p)
10580 return NULL;
10581
10582 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10583 dev->padded = (char *)dev - (char *)p;
10584
10585 ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10586#ifdef CONFIG_PCPU_DEV_REFCNT
10587 dev->pcpu_refcnt = alloc_percpu(int);
10588 if (!dev->pcpu_refcnt)
10589 goto free_dev;
10590 __dev_hold(dev);
10591#else
10592 refcount_set(&dev->dev_refcnt, 1);
10593#endif
10594
10595 if (dev_addr_init(dev))
10596 goto free_pcpu;
10597
10598 dev_mc_init(dev);
10599 dev_uc_init(dev);
10600
10601 dev_net_set(dev, &init_net);
10602
10603 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10604 dev->gso_max_segs = GSO_MAX_SEGS;
10605 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10606 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10607 dev->tso_max_segs = TSO_MAX_SEGS;
10608 dev->upper_level = 1;
10609 dev->lower_level = 1;
10610#ifdef CONFIG_LOCKDEP
10611 dev->nested_level = 0;
10612 INIT_LIST_HEAD(&dev->unlink_list);
10613#endif
10614
10615 INIT_LIST_HEAD(&dev->napi_list);
10616 INIT_LIST_HEAD(&dev->unreg_list);
10617 INIT_LIST_HEAD(&dev->close_list);
10618 INIT_LIST_HEAD(&dev->link_watch_list);
10619 INIT_LIST_HEAD(&dev->adj_list.upper);
10620 INIT_LIST_HEAD(&dev->adj_list.lower);
10621 INIT_LIST_HEAD(&dev->ptype_all);
10622 INIT_LIST_HEAD(&dev->ptype_specific);
10623 INIT_LIST_HEAD(&dev->net_notifier_list);
10624#ifdef CONFIG_NET_SCHED
10625 hash_init(dev->qdisc_hash);
10626#endif
10627 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10628 setup(dev);
10629
10630 if (!dev->tx_queue_len) {
10631 dev->priv_flags |= IFF_NO_QUEUE;
10632 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10633 }
10634
10635 dev->num_tx_queues = txqs;
10636 dev->real_num_tx_queues = txqs;
10637 if (netif_alloc_netdev_queues(dev))
10638 goto free_all;
10639
10640 dev->num_rx_queues = rxqs;
10641 dev->real_num_rx_queues = rxqs;
10642 if (netif_alloc_rx_queues(dev))
10643 goto free_all;
10644
10645 strcpy(dev->name, name);
10646 dev->name_assign_type = name_assign_type;
10647 dev->group = INIT_NETDEV_GROUP;
10648 if (!dev->ethtool_ops)
10649 dev->ethtool_ops = &default_ethtool_ops;
10650
10651 nf_hook_netdev_init(dev);
10652
10653 return dev;
10654
10655free_all:
10656 free_netdev(dev);
10657 return NULL;
10658
10659free_pcpu:
10660#ifdef CONFIG_PCPU_DEV_REFCNT
10661 free_percpu(dev->pcpu_refcnt);
10662free_dev:
10663#endif
10664 netdev_freemem(dev);
10665 return NULL;
10666}
10667EXPORT_SYMBOL(alloc_netdev_mqs);
10668
10669/**
10670 * free_netdev - free network device
10671 * @dev: device
10672 *
10673 * This function does the last stage of destroying an allocated device
10674 * interface. The reference to the device object is released. If this
10675 * is the last reference then it will be freed.Must be called in process
10676 * context.
10677 */
10678void free_netdev(struct net_device *dev)
10679{
10680 struct napi_struct *p, *n;
10681
10682 might_sleep();
10683
10684 /* When called immediately after register_netdevice() failed the unwind
10685 * handling may still be dismantling the device. Handle that case by
10686 * deferring the free.
10687 */
10688 if (dev->reg_state == NETREG_UNREGISTERING) {
10689 ASSERT_RTNL();
10690 dev->needs_free_netdev = true;
10691 return;
10692 }
10693
10694 netif_free_tx_queues(dev);
10695 netif_free_rx_queues(dev);
10696
10697 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10698
10699 /* Flush device addresses */
10700 dev_addr_flush(dev);
10701
10702 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10703 netif_napi_del(p);
10704
10705 ref_tracker_dir_exit(&dev->refcnt_tracker);
10706#ifdef CONFIG_PCPU_DEV_REFCNT
10707 free_percpu(dev->pcpu_refcnt);
10708 dev->pcpu_refcnt = NULL;
10709#endif
10710 free_percpu(dev->core_stats);
10711 dev->core_stats = NULL;
10712 free_percpu(dev->xdp_bulkq);
10713 dev->xdp_bulkq = NULL;
10714
10715 /* Compatibility with error handling in drivers */
10716 if (dev->reg_state == NETREG_UNINITIALIZED) {
10717 netdev_freemem(dev);
10718 return;
10719 }
10720
10721 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10722 dev->reg_state = NETREG_RELEASED;
10723
10724 /* will free via device release */
10725 put_device(&dev->dev);
10726}
10727EXPORT_SYMBOL(free_netdev);
10728
10729/**
10730 * synchronize_net - Synchronize with packet receive processing
10731 *
10732 * Wait for packets currently being received to be done.
10733 * Does not block later packets from starting.
10734 */
10735void synchronize_net(void)
10736{
10737 might_sleep();
10738 if (rtnl_is_locked())
10739 synchronize_rcu_expedited();
10740 else
10741 synchronize_rcu();
10742}
10743EXPORT_SYMBOL(synchronize_net);
10744
10745/**
10746 * unregister_netdevice_queue - remove device from the kernel
10747 * @dev: device
10748 * @head: list
10749 *
10750 * This function shuts down a device interface and removes it
10751 * from the kernel tables.
10752 * If head not NULL, device is queued to be unregistered later.
10753 *
10754 * Callers must hold the rtnl semaphore. You may want
10755 * unregister_netdev() instead of this.
10756 */
10757
10758void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10759{
10760 ASSERT_RTNL();
10761
10762 if (head) {
10763 list_move_tail(&dev->unreg_list, head);
10764 } else {
10765 LIST_HEAD(single);
10766
10767 list_add(&dev->unreg_list, &single);
10768 unregister_netdevice_many(&single);
10769 }
10770}
10771EXPORT_SYMBOL(unregister_netdevice_queue);
10772
10773void unregister_netdevice_many_notify(struct list_head *head,
10774 u32 portid, const struct nlmsghdr *nlh)
10775{
10776 struct net_device *dev, *tmp;
10777 LIST_HEAD(close_head);
10778
10779 BUG_ON(dev_boot_phase);
10780 ASSERT_RTNL();
10781
10782 if (list_empty(head))
10783 return;
10784
10785 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10786 /* Some devices call without registering
10787 * for initialization unwind. Remove those
10788 * devices and proceed with the remaining.
10789 */
10790 if (dev->reg_state == NETREG_UNINITIALIZED) {
10791 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10792 dev->name, dev);
10793
10794 WARN_ON(1);
10795 list_del(&dev->unreg_list);
10796 continue;
10797 }
10798 dev->dismantle = true;
10799 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10800 }
10801
10802 /* If device is running, close it first. */
10803 list_for_each_entry(dev, head, unreg_list)
10804 list_add_tail(&dev->close_list, &close_head);
10805 dev_close_many(&close_head, true);
10806
10807 list_for_each_entry(dev, head, unreg_list) {
10808 /* And unlink it from device chain. */
10809 write_lock(&dev_base_lock);
10810 unlist_netdevice(dev, false);
10811 dev->reg_state = NETREG_UNREGISTERING;
10812 write_unlock(&dev_base_lock);
10813 }
10814 flush_all_backlogs();
10815
10816 synchronize_net();
10817
10818 list_for_each_entry(dev, head, unreg_list) {
10819 struct sk_buff *skb = NULL;
10820
10821 /* Shutdown queueing discipline. */
10822 dev_shutdown(dev);
10823
10824 dev_xdp_uninstall(dev);
10825
10826 netdev_offload_xstats_disable_all(dev);
10827
10828 /* Notify protocols, that we are about to destroy
10829 * this device. They should clean all the things.
10830 */
10831 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10832
10833 if (!dev->rtnl_link_ops ||
10834 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10835 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10836 GFP_KERNEL, NULL, 0,
10837 portid, nlmsg_seq(nlh));
10838
10839 /*
10840 * Flush the unicast and multicast chains
10841 */
10842 dev_uc_flush(dev);
10843 dev_mc_flush(dev);
10844
10845 netdev_name_node_alt_flush(dev);
10846 netdev_name_node_free(dev->name_node);
10847
10848 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10849
10850 if (dev->netdev_ops->ndo_uninit)
10851 dev->netdev_ops->ndo_uninit(dev);
10852
10853 if (skb)
10854 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10855
10856 /* Notifier chain MUST detach us all upper devices. */
10857 WARN_ON(netdev_has_any_upper_dev(dev));
10858 WARN_ON(netdev_has_any_lower_dev(dev));
10859
10860 /* Remove entries from kobject tree */
10861 netdev_unregister_kobject(dev);
10862#ifdef CONFIG_XPS
10863 /* Remove XPS queueing entries */
10864 netif_reset_xps_queues_gt(dev, 0);
10865#endif
10866 }
10867
10868 synchronize_net();
10869
10870 list_for_each_entry(dev, head, unreg_list) {
10871 netdev_put(dev, &dev->dev_registered_tracker);
10872 net_set_todo(dev);
10873 }
10874
10875 list_del(head);
10876}
10877
10878/**
10879 * unregister_netdevice_many - unregister many devices
10880 * @head: list of devices
10881 *
10882 * Note: As most callers use a stack allocated list_head,
10883 * we force a list_del() to make sure stack wont be corrupted later.
10884 */
10885void unregister_netdevice_many(struct list_head *head)
10886{
10887 unregister_netdevice_many_notify(head, 0, NULL);
10888}
10889EXPORT_SYMBOL(unregister_netdevice_many);
10890
10891/**
10892 * unregister_netdev - remove device from the kernel
10893 * @dev: device
10894 *
10895 * This function shuts down a device interface and removes it
10896 * from the kernel tables.
10897 *
10898 * This is just a wrapper for unregister_netdevice that takes
10899 * the rtnl semaphore. In general you want to use this and not
10900 * unregister_netdevice.
10901 */
10902void unregister_netdev(struct net_device *dev)
10903{
10904 rtnl_lock();
10905 unregister_netdevice(dev);
10906 rtnl_unlock();
10907}
10908EXPORT_SYMBOL(unregister_netdev);
10909
10910/**
10911 * __dev_change_net_namespace - move device to different nethost namespace
10912 * @dev: device
10913 * @net: network namespace
10914 * @pat: If not NULL name pattern to try if the current device name
10915 * is already taken in the destination network namespace.
10916 * @new_ifindex: If not zero, specifies device index in the target
10917 * namespace.
10918 *
10919 * This function shuts down a device interface and moves it
10920 * to a new network namespace. On success 0 is returned, on
10921 * a failure a netagive errno code is returned.
10922 *
10923 * Callers must hold the rtnl semaphore.
10924 */
10925
10926int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10927 const char *pat, int new_ifindex)
10928{
10929 struct net *net_old = dev_net(dev);
10930 int err, new_nsid;
10931
10932 ASSERT_RTNL();
10933
10934 /* Don't allow namespace local devices to be moved. */
10935 err = -EINVAL;
10936 if (dev->features & NETIF_F_NETNS_LOCAL)
10937 goto out;
10938
10939 /* Ensure the device has been registrered */
10940 if (dev->reg_state != NETREG_REGISTERED)
10941 goto out;
10942
10943 /* Get out if there is nothing todo */
10944 err = 0;
10945 if (net_eq(net_old, net))
10946 goto out;
10947
10948 /* Pick the destination device name, and ensure
10949 * we can use it in the destination network namespace.
10950 */
10951 err = -EEXIST;
10952 if (netdev_name_in_use(net, dev->name)) {
10953 /* We get here if we can't use the current device name */
10954 if (!pat)
10955 goto out;
10956 err = dev_get_valid_name(net, dev, pat);
10957 if (err < 0)
10958 goto out;
10959 }
10960
10961 /* Check that new_ifindex isn't used yet. */
10962 err = -EBUSY;
10963 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10964 goto out;
10965
10966 /*
10967 * And now a mini version of register_netdevice unregister_netdevice.
10968 */
10969
10970 /* If device is running close it first. */
10971 dev_close(dev);
10972
10973 /* And unlink it from device chain */
10974 unlist_netdevice(dev, true);
10975
10976 synchronize_net();
10977
10978 /* Shutdown queueing discipline. */
10979 dev_shutdown(dev);
10980
10981 /* Notify protocols, that we are about to destroy
10982 * this device. They should clean all the things.
10983 *
10984 * Note that dev->reg_state stays at NETREG_REGISTERED.
10985 * This is wanted because this way 8021q and macvlan know
10986 * the device is just moving and can keep their slaves up.
10987 */
10988 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10989 rcu_barrier();
10990
10991 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10992 /* If there is an ifindex conflict assign a new one */
10993 if (!new_ifindex) {
10994 if (__dev_get_by_index(net, dev->ifindex))
10995 new_ifindex = dev_new_index(net);
10996 else
10997 new_ifindex = dev->ifindex;
10998 }
10999
11000 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11001 new_ifindex);
11002
11003 /*
11004 * Flush the unicast and multicast chains
11005 */
11006 dev_uc_flush(dev);
11007 dev_mc_flush(dev);
11008
11009 /* Send a netdev-removed uevent to the old namespace */
11010 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11011 netdev_adjacent_del_links(dev);
11012
11013 /* Move per-net netdevice notifiers that are following the netdevice */
11014 move_netdevice_notifiers_dev_net(dev, net);
11015
11016 /* Actually switch the network namespace */
11017 dev_net_set(dev, net);
11018 dev->ifindex = new_ifindex;
11019
11020 /* Send a netdev-add uevent to the new namespace */
11021 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11022 netdev_adjacent_add_links(dev);
11023
11024 /* Fixup kobjects */
11025 err = device_rename(&dev->dev, dev->name);
11026 WARN_ON(err);
11027
11028 /* Adapt owner in case owning user namespace of target network
11029 * namespace is different from the original one.
11030 */
11031 err = netdev_change_owner(dev, net_old, net);
11032 WARN_ON(err);
11033
11034 /* Add the device back in the hashes */
11035 list_netdevice(dev);
11036
11037 /* Notify protocols, that a new device appeared. */
11038 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11039
11040 /*
11041 * Prevent userspace races by waiting until the network
11042 * device is fully setup before sending notifications.
11043 */
11044 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11045
11046 synchronize_net();
11047 err = 0;
11048out:
11049 return err;
11050}
11051EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11052
11053static int dev_cpu_dead(unsigned int oldcpu)
11054{
11055 struct sk_buff **list_skb;
11056 struct sk_buff *skb;
11057 unsigned int cpu;
11058 struct softnet_data *sd, *oldsd, *remsd = NULL;
11059
11060 local_irq_disable();
11061 cpu = smp_processor_id();
11062 sd = &per_cpu(softnet_data, cpu);
11063 oldsd = &per_cpu(softnet_data, oldcpu);
11064
11065 /* Find end of our completion_queue. */
11066 list_skb = &sd->completion_queue;
11067 while (*list_skb)
11068 list_skb = &(*list_skb)->next;
11069 /* Append completion queue from offline CPU. */
11070 *list_skb = oldsd->completion_queue;
11071 oldsd->completion_queue = NULL;
11072
11073 /* Append output queue from offline CPU. */
11074 if (oldsd->output_queue) {
11075 *sd->output_queue_tailp = oldsd->output_queue;
11076 sd->output_queue_tailp = oldsd->output_queue_tailp;
11077 oldsd->output_queue = NULL;
11078 oldsd->output_queue_tailp = &oldsd->output_queue;
11079 }
11080 /* Append NAPI poll list from offline CPU, with one exception :
11081 * process_backlog() must be called by cpu owning percpu backlog.
11082 * We properly handle process_queue & input_pkt_queue later.
11083 */
11084 while (!list_empty(&oldsd->poll_list)) {
11085 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11086 struct napi_struct,
11087 poll_list);
11088
11089 list_del_init(&napi->poll_list);
11090 if (napi->poll == process_backlog)
11091 napi->state = 0;
11092 else
11093 ____napi_schedule(sd, napi);
11094 }
11095
11096 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11097 local_irq_enable();
11098
11099#ifdef CONFIG_RPS
11100 remsd = oldsd->rps_ipi_list;
11101 oldsd->rps_ipi_list = NULL;
11102#endif
11103 /* send out pending IPI's on offline CPU */
11104 net_rps_send_ipi(remsd);
11105
11106 /* Process offline CPU's input_pkt_queue */
11107 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11108 netif_rx(skb);
11109 input_queue_head_incr(oldsd);
11110 }
11111 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11112 netif_rx(skb);
11113 input_queue_head_incr(oldsd);
11114 }
11115
11116 return 0;
11117}
11118
11119/**
11120 * netdev_increment_features - increment feature set by one
11121 * @all: current feature set
11122 * @one: new feature set
11123 * @mask: mask feature set
11124 *
11125 * Computes a new feature set after adding a device with feature set
11126 * @one to the master device with current feature set @all. Will not
11127 * enable anything that is off in @mask. Returns the new feature set.
11128 */
11129netdev_features_t netdev_increment_features(netdev_features_t all,
11130 netdev_features_t one, netdev_features_t mask)
11131{
11132 if (mask & NETIF_F_HW_CSUM)
11133 mask |= NETIF_F_CSUM_MASK;
11134 mask |= NETIF_F_VLAN_CHALLENGED;
11135
11136 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11137 all &= one | ~NETIF_F_ALL_FOR_ALL;
11138
11139 /* If one device supports hw checksumming, set for all. */
11140 if (all & NETIF_F_HW_CSUM)
11141 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11142
11143 return all;
11144}
11145EXPORT_SYMBOL(netdev_increment_features);
11146
11147static struct hlist_head * __net_init netdev_create_hash(void)
11148{
11149 int i;
11150 struct hlist_head *hash;
11151
11152 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11153 if (hash != NULL)
11154 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11155 INIT_HLIST_HEAD(&hash[i]);
11156
11157 return hash;
11158}
11159
11160/* Initialize per network namespace state */
11161static int __net_init netdev_init(struct net *net)
11162{
11163 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11164 8 * sizeof_field(struct napi_struct, gro_bitmask));
11165
11166 INIT_LIST_HEAD(&net->dev_base_head);
11167
11168 net->dev_name_head = netdev_create_hash();
11169 if (net->dev_name_head == NULL)
11170 goto err_name;
11171
11172 net->dev_index_head = netdev_create_hash();
11173 if (net->dev_index_head == NULL)
11174 goto err_idx;
11175
11176 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11177
11178 return 0;
11179
11180err_idx:
11181 kfree(net->dev_name_head);
11182err_name:
11183 return -ENOMEM;
11184}
11185
11186/**
11187 * netdev_drivername - network driver for the device
11188 * @dev: network device
11189 *
11190 * Determine network driver for device.
11191 */
11192const char *netdev_drivername(const struct net_device *dev)
11193{
11194 const struct device_driver *driver;
11195 const struct device *parent;
11196 const char *empty = "";
11197
11198 parent = dev->dev.parent;
11199 if (!parent)
11200 return empty;
11201
11202 driver = parent->driver;
11203 if (driver && driver->name)
11204 return driver->name;
11205 return empty;
11206}
11207
11208static void __netdev_printk(const char *level, const struct net_device *dev,
11209 struct va_format *vaf)
11210{
11211 if (dev && dev->dev.parent) {
11212 dev_printk_emit(level[1] - '0',
11213 dev->dev.parent,
11214 "%s %s %s%s: %pV",
11215 dev_driver_string(dev->dev.parent),
11216 dev_name(dev->dev.parent),
11217 netdev_name(dev), netdev_reg_state(dev),
11218 vaf);
11219 } else if (dev) {
11220 printk("%s%s%s: %pV",
11221 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11222 } else {
11223 printk("%s(NULL net_device): %pV", level, vaf);
11224 }
11225}
11226
11227void netdev_printk(const char *level, const struct net_device *dev,
11228 const char *format, ...)
11229{
11230 struct va_format vaf;
11231 va_list args;
11232
11233 va_start(args, format);
11234
11235 vaf.fmt = format;
11236 vaf.va = &args;
11237
11238 __netdev_printk(level, dev, &vaf);
11239
11240 va_end(args);
11241}
11242EXPORT_SYMBOL(netdev_printk);
11243
11244#define define_netdev_printk_level(func, level) \
11245void func(const struct net_device *dev, const char *fmt, ...) \
11246{ \
11247 struct va_format vaf; \
11248 va_list args; \
11249 \
11250 va_start(args, fmt); \
11251 \
11252 vaf.fmt = fmt; \
11253 vaf.va = &args; \
11254 \
11255 __netdev_printk(level, dev, &vaf); \
11256 \
11257 va_end(args); \
11258} \
11259EXPORT_SYMBOL(func);
11260
11261define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11262define_netdev_printk_level(netdev_alert, KERN_ALERT);
11263define_netdev_printk_level(netdev_crit, KERN_CRIT);
11264define_netdev_printk_level(netdev_err, KERN_ERR);
11265define_netdev_printk_level(netdev_warn, KERN_WARNING);
11266define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11267define_netdev_printk_level(netdev_info, KERN_INFO);
11268
11269static void __net_exit netdev_exit(struct net *net)
11270{
11271 kfree(net->dev_name_head);
11272 kfree(net->dev_index_head);
11273 if (net != &init_net)
11274 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11275}
11276
11277static struct pernet_operations __net_initdata netdev_net_ops = {
11278 .init = netdev_init,
11279 .exit = netdev_exit,
11280};
11281
11282static void __net_exit default_device_exit_net(struct net *net)
11283{
11284 struct net_device *dev, *aux;
11285 /*
11286 * Push all migratable network devices back to the
11287 * initial network namespace
11288 */
11289 ASSERT_RTNL();
11290 for_each_netdev_safe(net, dev, aux) {
11291 int err;
11292 char fb_name[IFNAMSIZ];
11293
11294 /* Ignore unmoveable devices (i.e. loopback) */
11295 if (dev->features & NETIF_F_NETNS_LOCAL)
11296 continue;
11297
11298 /* Leave virtual devices for the generic cleanup */
11299 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11300 continue;
11301
11302 /* Push remaining network devices to init_net */
11303 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11304 if (netdev_name_in_use(&init_net, fb_name))
11305 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11306 err = dev_change_net_namespace(dev, &init_net, fb_name);
11307 if (err) {
11308 pr_emerg("%s: failed to move %s to init_net: %d\n",
11309 __func__, dev->name, err);
11310 BUG();
11311 }
11312 }
11313}
11314
11315static void __net_exit default_device_exit_batch(struct list_head *net_list)
11316{
11317 /* At exit all network devices most be removed from a network
11318 * namespace. Do this in the reverse order of registration.
11319 * Do this across as many network namespaces as possible to
11320 * improve batching efficiency.
11321 */
11322 struct net_device *dev;
11323 struct net *net;
11324 LIST_HEAD(dev_kill_list);
11325
11326 rtnl_lock();
11327 list_for_each_entry(net, net_list, exit_list) {
11328 default_device_exit_net(net);
11329 cond_resched();
11330 }
11331
11332 list_for_each_entry(net, net_list, exit_list) {
11333 for_each_netdev_reverse(net, dev) {
11334 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11335 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11336 else
11337 unregister_netdevice_queue(dev, &dev_kill_list);
11338 }
11339 }
11340 unregister_netdevice_many(&dev_kill_list);
11341 rtnl_unlock();
11342}
11343
11344static struct pernet_operations __net_initdata default_device_ops = {
11345 .exit_batch = default_device_exit_batch,
11346};
11347
11348/*
11349 * Initialize the DEV module. At boot time this walks the device list and
11350 * unhooks any devices that fail to initialise (normally hardware not
11351 * present) and leaves us with a valid list of present and active devices.
11352 *
11353 */
11354
11355/*
11356 * This is called single threaded during boot, so no need
11357 * to take the rtnl semaphore.
11358 */
11359static int __init net_dev_init(void)
11360{
11361 int i, rc = -ENOMEM;
11362
11363 BUG_ON(!dev_boot_phase);
11364
11365 if (dev_proc_init())
11366 goto out;
11367
11368 if (netdev_kobject_init())
11369 goto out;
11370
11371 INIT_LIST_HEAD(&ptype_all);
11372 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11373 INIT_LIST_HEAD(&ptype_base[i]);
11374
11375 if (register_pernet_subsys(&netdev_net_ops))
11376 goto out;
11377
11378 /*
11379 * Initialise the packet receive queues.
11380 */
11381
11382 for_each_possible_cpu(i) {
11383 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11384 struct softnet_data *sd = &per_cpu(softnet_data, i);
11385
11386 INIT_WORK(flush, flush_backlog);
11387
11388 skb_queue_head_init(&sd->input_pkt_queue);
11389 skb_queue_head_init(&sd->process_queue);
11390#ifdef CONFIG_XFRM_OFFLOAD
11391 skb_queue_head_init(&sd->xfrm_backlog);
11392#endif
11393 INIT_LIST_HEAD(&sd->poll_list);
11394 sd->output_queue_tailp = &sd->output_queue;
11395#ifdef CONFIG_RPS
11396 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11397 sd->cpu = i;
11398#endif
11399 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11400 spin_lock_init(&sd->defer_lock);
11401
11402 init_gro_hash(&sd->backlog);
11403 sd->backlog.poll = process_backlog;
11404 sd->backlog.weight = weight_p;
11405 }
11406
11407 dev_boot_phase = 0;
11408
11409 /* The loopback device is special if any other network devices
11410 * is present in a network namespace the loopback device must
11411 * be present. Since we now dynamically allocate and free the
11412 * loopback device ensure this invariant is maintained by
11413 * keeping the loopback device as the first device on the
11414 * list of network devices. Ensuring the loopback devices
11415 * is the first device that appears and the last network device
11416 * that disappears.
11417 */
11418 if (register_pernet_device(&loopback_net_ops))
11419 goto out;
11420
11421 if (register_pernet_device(&default_device_ops))
11422 goto out;
11423
11424 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11425 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11426
11427 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11428 NULL, dev_cpu_dead);
11429 WARN_ON(rc < 0);
11430 rc = 0;
11431out:
11432 return rc;
11433}
11434
11435subsys_initcall(net_dev_init);