Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Host communication command constants for ChromeOS EC
4 *
5 * Copyright (C) 2012 Google, Inc
6 *
7 * NOTE: This file is auto-generated from ChromeOS EC Open Source code from
8 * https://chromium.googlesource.com/chromiumos/platform/ec/+/master/include/ec_commands.h
9 */
10
11/* Host communication command constants for Chrome EC */
12
13#ifndef __CROS_EC_COMMANDS_H
14#define __CROS_EC_COMMANDS_H
15
16#include <linux/bits.h>
17#include <linux/types.h>
18
19#define BUILD_ASSERT(_cond)
20
21/*
22 * Current version of this protocol
23 *
24 * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
25 * determined in other ways. Remove this once the kernel code no longer
26 * depends on it.
27 */
28#define EC_PROTO_VERSION 0x00000002
29
30/* Command version mask */
31#define EC_VER_MASK(version) BIT(version)
32
33/* I/O addresses for ACPI commands */
34#define EC_LPC_ADDR_ACPI_DATA 0x62
35#define EC_LPC_ADDR_ACPI_CMD 0x66
36
37/* I/O addresses for host command */
38#define EC_LPC_ADDR_HOST_DATA 0x200
39#define EC_LPC_ADDR_HOST_CMD 0x204
40
41/* I/O addresses for host command args and params */
42/* Protocol version 2 */
43#define EC_LPC_ADDR_HOST_ARGS 0x800 /* And 0x801, 0x802, 0x803 */
44#define EC_LPC_ADDR_HOST_PARAM 0x804 /* For version 2 params; size is
45 * EC_PROTO2_MAX_PARAM_SIZE
46 */
47/* Protocol version 3 */
48#define EC_LPC_ADDR_HOST_PACKET 0x800 /* Offset of version 3 packet */
49#define EC_LPC_HOST_PACKET_SIZE 0x100 /* Max size of version 3 packet */
50
51/*
52 * The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
53 * and they tell the kernel that so we have to think of it as two parts.
54 *
55 * Other BIOSes report only the I/O port region spanned by the Microchip
56 * MEC series EC; an attempt to address a larger region may fail.
57 */
58#define EC_HOST_CMD_REGION0 0x800
59#define EC_HOST_CMD_REGION1 0x880
60#define EC_HOST_CMD_REGION_SIZE 0x80
61#define EC_HOST_CMD_MEC_REGION_SIZE 0x8
62
63/* EC command register bit functions */
64#define EC_LPC_CMDR_DATA BIT(0) /* Data ready for host to read */
65#define EC_LPC_CMDR_PENDING BIT(1) /* Write pending to EC */
66#define EC_LPC_CMDR_BUSY BIT(2) /* EC is busy processing a command */
67#define EC_LPC_CMDR_CMD BIT(3) /* Last host write was a command */
68#define EC_LPC_CMDR_ACPI_BRST BIT(4) /* Burst mode (not used) */
69#define EC_LPC_CMDR_SCI BIT(5) /* SCI event is pending */
70#define EC_LPC_CMDR_SMI BIT(6) /* SMI event is pending */
71
72#define EC_LPC_ADDR_MEMMAP 0x900
73#define EC_MEMMAP_SIZE 255 /* ACPI IO buffer max is 255 bytes */
74#define EC_MEMMAP_TEXT_MAX 8 /* Size of a string in the memory map */
75
76/* The offset address of each type of data in mapped memory. */
77#define EC_MEMMAP_TEMP_SENSOR 0x00 /* Temp sensors 0x00 - 0x0f */
78#define EC_MEMMAP_FAN 0x10 /* Fan speeds 0x10 - 0x17 */
79#define EC_MEMMAP_TEMP_SENSOR_B 0x18 /* More temp sensors 0x18 - 0x1f */
80#define EC_MEMMAP_ID 0x20 /* 0x20 == 'E', 0x21 == 'C' */
81#define EC_MEMMAP_ID_VERSION 0x22 /* Version of data in 0x20 - 0x2f */
82#define EC_MEMMAP_THERMAL_VERSION 0x23 /* Version of data in 0x00 - 0x1f */
83#define EC_MEMMAP_BATTERY_VERSION 0x24 /* Version of data in 0x40 - 0x7f */
84#define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
85#define EC_MEMMAP_EVENTS_VERSION 0x26 /* Version of data in 0x34 - 0x3f */
86#define EC_MEMMAP_HOST_CMD_FLAGS 0x27 /* Host cmd interface flags (8 bits) */
87/* Unused 0x28 - 0x2f */
88#define EC_MEMMAP_SWITCHES 0x30 /* 8 bits */
89/* Unused 0x31 - 0x33 */
90#define EC_MEMMAP_HOST_EVENTS 0x34 /* 64 bits */
91/* Battery values are all 32 bits, unless otherwise noted. */
92#define EC_MEMMAP_BATT_VOLT 0x40 /* Battery Present Voltage */
93#define EC_MEMMAP_BATT_RATE 0x44 /* Battery Present Rate */
94#define EC_MEMMAP_BATT_CAP 0x48 /* Battery Remaining Capacity */
95#define EC_MEMMAP_BATT_FLAG 0x4c /* Battery State, see below (8-bit) */
96#define EC_MEMMAP_BATT_COUNT 0x4d /* Battery Count (8-bit) */
97#define EC_MEMMAP_BATT_INDEX 0x4e /* Current Battery Data Index (8-bit) */
98/* Unused 0x4f */
99#define EC_MEMMAP_BATT_DCAP 0x50 /* Battery Design Capacity */
100#define EC_MEMMAP_BATT_DVLT 0x54 /* Battery Design Voltage */
101#define EC_MEMMAP_BATT_LFCC 0x58 /* Battery Last Full Charge Capacity */
102#define EC_MEMMAP_BATT_CCNT 0x5c /* Battery Cycle Count */
103/* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
104#define EC_MEMMAP_BATT_MFGR 0x60 /* Battery Manufacturer String */
105#define EC_MEMMAP_BATT_MODEL 0x68 /* Battery Model Number String */
106#define EC_MEMMAP_BATT_SERIAL 0x70 /* Battery Serial Number String */
107#define EC_MEMMAP_BATT_TYPE 0x78 /* Battery Type String */
108#define EC_MEMMAP_ALS 0x80 /* ALS readings in lux (2 X 16 bits) */
109/* Unused 0x84 - 0x8f */
110#define EC_MEMMAP_ACC_STATUS 0x90 /* Accelerometer status (8 bits )*/
111/* Unused 0x91 */
112#define EC_MEMMAP_ACC_DATA 0x92 /* Accelerometers data 0x92 - 0x9f */
113/* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
114/* 0x94 - 0x99: 1st Accelerometer */
115/* 0x9a - 0x9f: 2nd Accelerometer */
116#define EC_MEMMAP_GYRO_DATA 0xa0 /* Gyroscope data 0xa0 - 0xa5 */
117/* Unused 0xa6 - 0xdf */
118
119/*
120 * ACPI is unable to access memory mapped data at or above this offset due to
121 * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
122 * which might be needed by ACPI.
123 */
124#define EC_MEMMAP_NO_ACPI 0xe0
125
126/* Define the format of the accelerometer mapped memory status byte. */
127#define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK 0x0f
128#define EC_MEMMAP_ACC_STATUS_BUSY_BIT BIT(4)
129#define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT BIT(7)
130
131/* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
132#define EC_TEMP_SENSOR_ENTRIES 16
133/*
134 * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
135 *
136 * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
137 */
138#define EC_TEMP_SENSOR_B_ENTRIES 8
139
140/* Special values for mapped temperature sensors */
141#define EC_TEMP_SENSOR_NOT_PRESENT 0xff
142#define EC_TEMP_SENSOR_ERROR 0xfe
143#define EC_TEMP_SENSOR_NOT_POWERED 0xfd
144#define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
145/*
146 * The offset of temperature value stored in mapped memory. This allows
147 * reporting a temperature range of 200K to 454K = -73C to 181C.
148 */
149#define EC_TEMP_SENSOR_OFFSET 200
150
151/*
152 * Number of ALS readings at EC_MEMMAP_ALS
153 */
154#define EC_ALS_ENTRIES 2
155
156/*
157 * The default value a temperature sensor will return when it is present but
158 * has not been read this boot. This is a reasonable number to avoid
159 * triggering alarms on the host.
160 */
161#define EC_TEMP_SENSOR_DEFAULT (296 - EC_TEMP_SENSOR_OFFSET)
162
163#define EC_FAN_SPEED_ENTRIES 4 /* Number of fans at EC_MEMMAP_FAN */
164#define EC_FAN_SPEED_NOT_PRESENT 0xffff /* Entry not present */
165#define EC_FAN_SPEED_STALLED 0xfffe /* Fan stalled */
166
167/* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
168#define EC_BATT_FLAG_AC_PRESENT 0x01
169#define EC_BATT_FLAG_BATT_PRESENT 0x02
170#define EC_BATT_FLAG_DISCHARGING 0x04
171#define EC_BATT_FLAG_CHARGING 0x08
172#define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
173/* Set if some of the static/dynamic data is invalid (or outdated). */
174#define EC_BATT_FLAG_INVALID_DATA 0x20
175
176/* Switch flags at EC_MEMMAP_SWITCHES */
177#define EC_SWITCH_LID_OPEN 0x01
178#define EC_SWITCH_POWER_BUTTON_PRESSED 0x02
179#define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
180/* Was recovery requested via keyboard; now unused. */
181#define EC_SWITCH_IGNORE1 0x08
182/* Recovery requested via dedicated signal (from servo board) */
183#define EC_SWITCH_DEDICATED_RECOVERY 0x10
184/* Was fake developer mode switch; now unused. Remove in next refactor. */
185#define EC_SWITCH_IGNORE0 0x20
186
187/* Host command interface flags */
188/* Host command interface supports LPC args (LPC interface only) */
189#define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED 0x01
190/* Host command interface supports version 3 protocol */
191#define EC_HOST_CMD_FLAG_VERSION_3 0x02
192
193/* Wireless switch flags */
194#define EC_WIRELESS_SWITCH_ALL ~0x00 /* All flags */
195#define EC_WIRELESS_SWITCH_WLAN 0x01 /* WLAN radio */
196#define EC_WIRELESS_SWITCH_BLUETOOTH 0x02 /* Bluetooth radio */
197#define EC_WIRELESS_SWITCH_WWAN 0x04 /* WWAN power */
198#define EC_WIRELESS_SWITCH_WLAN_POWER 0x08 /* WLAN power */
199
200/*****************************************************************************/
201/*
202 * ACPI commands
203 *
204 * These are valid ONLY on the ACPI command/data port.
205 */
206
207/*
208 * ACPI Read Embedded Controller
209 *
210 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
211 *
212 * Use the following sequence:
213 *
214 * - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
215 * - Wait for EC_LPC_CMDR_PENDING bit to clear
216 * - Write address to EC_LPC_ADDR_ACPI_DATA
217 * - Wait for EC_LPC_CMDR_DATA bit to set
218 * - Read value from EC_LPC_ADDR_ACPI_DATA
219 */
220#define EC_CMD_ACPI_READ 0x0080
221
222/*
223 * ACPI Write Embedded Controller
224 *
225 * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
226 *
227 * Use the following sequence:
228 *
229 * - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
230 * - Wait for EC_LPC_CMDR_PENDING bit to clear
231 * - Write address to EC_LPC_ADDR_ACPI_DATA
232 * - Wait for EC_LPC_CMDR_PENDING bit to clear
233 * - Write value to EC_LPC_ADDR_ACPI_DATA
234 */
235#define EC_CMD_ACPI_WRITE 0x0081
236
237/*
238 * ACPI Burst Enable Embedded Controller
239 *
240 * This enables burst mode on the EC to allow the host to issue several
241 * commands back-to-back. While in this mode, writes to mapped multi-byte
242 * data are locked out to ensure data consistency.
243 */
244#define EC_CMD_ACPI_BURST_ENABLE 0x0082
245
246/*
247 * ACPI Burst Disable Embedded Controller
248 *
249 * This disables burst mode on the EC and stops preventing EC writes to mapped
250 * multi-byte data.
251 */
252#define EC_CMD_ACPI_BURST_DISABLE 0x0083
253
254/*
255 * ACPI Query Embedded Controller
256 *
257 * This clears the lowest-order bit in the currently pending host events, and
258 * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
259 * event 0x80000000 = 32), or 0 if no event was pending.
260 */
261#define EC_CMD_ACPI_QUERY_EVENT 0x0084
262
263/* Valid addresses in ACPI memory space, for read/write commands */
264
265/* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
266#define EC_ACPI_MEM_VERSION 0x00
267/*
268 * Test location; writing value here updates test compliment byte to (0xff -
269 * value).
270 */
271#define EC_ACPI_MEM_TEST 0x01
272/* Test compliment; writes here are ignored. */
273#define EC_ACPI_MEM_TEST_COMPLIMENT 0x02
274
275/* Keyboard backlight brightness percent (0 - 100) */
276#define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
277/* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
278#define EC_ACPI_MEM_FAN_DUTY 0x04
279
280/*
281 * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
282 * independent thresholds attached to them. The current value of the ID
283 * register determines which sensor is affected by the THRESHOLD and COMMIT
284 * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
285 * as the memory-mapped sensors. The COMMIT register applies those settings.
286 *
287 * The spec does not mandate any way to read back the threshold settings
288 * themselves, but when a threshold is crossed the AP needs a way to determine
289 * which sensor(s) are responsible. Each reading of the ID register clears and
290 * returns one sensor ID that has crossed one of its threshold (in either
291 * direction) since the last read. A value of 0xFF means "no new thresholds
292 * have tripped". Setting or enabling the thresholds for a sensor will clear
293 * the unread event count for that sensor.
294 */
295#define EC_ACPI_MEM_TEMP_ID 0x05
296#define EC_ACPI_MEM_TEMP_THRESHOLD 0x06
297#define EC_ACPI_MEM_TEMP_COMMIT 0x07
298/*
299 * Here are the bits for the COMMIT register:
300 * bit 0 selects the threshold index for the chosen sensor (0/1)
301 * bit 1 enables/disables the selected threshold (0 = off, 1 = on)
302 * Each write to the commit register affects one threshold.
303 */
304#define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK BIT(0)
305#define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK BIT(1)
306/*
307 * Example:
308 *
309 * Set the thresholds for sensor 2 to 50 C and 60 C:
310 * write 2 to [0x05] -- select temp sensor 2
311 * write 0x7b to [0x06] -- C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
312 * write 0x2 to [0x07] -- enable threshold 0 with this value
313 * write 0x85 to [0x06] -- C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
314 * write 0x3 to [0x07] -- enable threshold 1 with this value
315 *
316 * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
317 * write 2 to [0x05] -- select temp sensor 2
318 * write 0x1 to [0x07] -- disable threshold 1
319 */
320
321/* DPTF battery charging current limit */
322#define EC_ACPI_MEM_CHARGING_LIMIT 0x08
323
324/* Charging limit is specified in 64 mA steps */
325#define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA 64
326/* Value to disable DPTF battery charging limit */
327#define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED 0xff
328
329/*
330 * Report device orientation
331 * Bits Definition
332 * 3:1 Device DPTF Profile Number (DDPN)
333 * 0 = Reserved for backward compatibility (indicates no valid
334 * profile number. Host should fall back to using TBMD).
335 * 1..7 = DPTF Profile number to indicate to host which table needs
336 * to be loaded.
337 * 0 Tablet Mode Device Indicator (TBMD)
338 */
339#define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09
340#define EC_ACPI_MEM_TBMD_SHIFT 0
341#define EC_ACPI_MEM_TBMD_MASK 0x1
342#define EC_ACPI_MEM_DDPN_SHIFT 1
343#define EC_ACPI_MEM_DDPN_MASK 0x7
344
345/*
346 * Report device features. Uses the same format as the host command, except:
347 *
348 * bit 0 (EC_FEATURE_LIMITED) changes meaning from "EC code has a limited set
349 * of features", which is of limited interest when the system is already
350 * interpreting ACPI bytecode, to "EC_FEATURES[0-7] is not supported". Since
351 * these are supported, it defaults to 0.
352 * This allows detecting the presence of this field since older versions of
353 * the EC codebase would simply return 0xff to that unknown address. Check
354 * FEATURES0 != 0xff (or FEATURES0[0] == 0) to make sure that the other bits
355 * are valid.
356 */
357#define EC_ACPI_MEM_DEVICE_FEATURES0 0x0a
358#define EC_ACPI_MEM_DEVICE_FEATURES1 0x0b
359#define EC_ACPI_MEM_DEVICE_FEATURES2 0x0c
360#define EC_ACPI_MEM_DEVICE_FEATURES3 0x0d
361#define EC_ACPI_MEM_DEVICE_FEATURES4 0x0e
362#define EC_ACPI_MEM_DEVICE_FEATURES5 0x0f
363#define EC_ACPI_MEM_DEVICE_FEATURES6 0x10
364#define EC_ACPI_MEM_DEVICE_FEATURES7 0x11
365
366#define EC_ACPI_MEM_BATTERY_INDEX 0x12
367
368/*
369 * USB Port Power. Each bit indicates whether the corresponding USB ports' power
370 * is enabled (1) or disabled (0).
371 * bit 0 USB port ID 0
372 * ...
373 * bit 7 USB port ID 7
374 */
375#define EC_ACPI_MEM_USB_PORT_POWER 0x13
376
377/*
378 * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf. This data
379 * is read-only from the AP. Added in EC_ACPI_MEM_VERSION 2.
380 */
381#define EC_ACPI_MEM_MAPPED_BEGIN 0x20
382#define EC_ACPI_MEM_MAPPED_SIZE 0xe0
383
384/* Current version of ACPI memory address space */
385#define EC_ACPI_MEM_VERSION_CURRENT 2
386
387
388/*
389 * This header file is used in coreboot both in C and ACPI code. The ACPI code
390 * is pre-processed to handle constants but the ASL compiler is unable to
391 * handle actual C code so keep it separate.
392 */
393
394
395/*
396 * Attributes for EC request and response packets. Just defining __packed
397 * results in inefficient assembly code on ARM, if the structure is actually
398 * 32-bit aligned, as it should be for all buffers.
399 *
400 * Be very careful when adding these to existing structures. They will round
401 * up the structure size to the specified boundary.
402 *
403 * Also be very careful to make that if a structure is included in some other
404 * parent structure that the alignment will still be true given the packing of
405 * the parent structure. This is particularly important if the sub-structure
406 * will be passed as a pointer to another function, since that function will
407 * not know about the misaligment caused by the parent structure's packing.
408 *
409 * Also be very careful using __packed - particularly when nesting non-packed
410 * structures inside packed ones. In fact, DO NOT use __packed directly;
411 * always use one of these attributes.
412 *
413 * Once everything is annotated properly, the following search strings should
414 * not return ANY matches in this file other than right here:
415 *
416 * "__packed" - generates inefficient code; all sub-structs must also be packed
417 *
418 * "struct [^_]" - all structs should be annotated, except for structs that are
419 * members of other structs/unions (and their original declarations should be
420 * annotated).
421 */
422
423/*
424 * Packed structures make no assumption about alignment, so they do inefficient
425 * byte-wise reads.
426 */
427#define __ec_align1 __packed
428#define __ec_align2 __packed
429#define __ec_align4 __packed
430#define __ec_align_size1 __packed
431#define __ec_align_offset1 __packed
432#define __ec_align_offset2 __packed
433#define __ec_todo_packed __packed
434#define __ec_todo_unpacked
435
436
437/* LPC command status byte masks */
438/* EC has written a byte in the data register and host hasn't read it yet */
439#define EC_LPC_STATUS_TO_HOST 0x01
440/* Host has written a command/data byte and the EC hasn't read it yet */
441#define EC_LPC_STATUS_FROM_HOST 0x02
442/* EC is processing a command */
443#define EC_LPC_STATUS_PROCESSING 0x04
444/* Last write to EC was a command, not data */
445#define EC_LPC_STATUS_LAST_CMD 0x08
446/* EC is in burst mode */
447#define EC_LPC_STATUS_BURST_MODE 0x10
448/* SCI event is pending (requesting SCI query) */
449#define EC_LPC_STATUS_SCI_PENDING 0x20
450/* SMI event is pending (requesting SMI query) */
451#define EC_LPC_STATUS_SMI_PENDING 0x40
452/* (reserved) */
453#define EC_LPC_STATUS_RESERVED 0x80
454
455/*
456 * EC is busy. This covers both the EC processing a command, and the host has
457 * written a new command but the EC hasn't picked it up yet.
458 */
459#define EC_LPC_STATUS_BUSY_MASK \
460 (EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
461
462/*
463 * Host command response codes (16-bit). Note that response codes should be
464 * stored in a uint16_t rather than directly in a value of this type.
465 */
466enum ec_status {
467 EC_RES_SUCCESS = 0,
468 EC_RES_INVALID_COMMAND = 1,
469 EC_RES_ERROR = 2,
470 EC_RES_INVALID_PARAM = 3,
471 EC_RES_ACCESS_DENIED = 4,
472 EC_RES_INVALID_RESPONSE = 5,
473 EC_RES_INVALID_VERSION = 6,
474 EC_RES_INVALID_CHECKSUM = 7,
475 EC_RES_IN_PROGRESS = 8, /* Accepted, command in progress */
476 EC_RES_UNAVAILABLE = 9, /* No response available */
477 EC_RES_TIMEOUT = 10, /* We got a timeout */
478 EC_RES_OVERFLOW = 11, /* Table / data overflow */
479 EC_RES_INVALID_HEADER = 12, /* Header contains invalid data */
480 EC_RES_REQUEST_TRUNCATED = 13, /* Didn't get the entire request */
481 EC_RES_RESPONSE_TOO_BIG = 14, /* Response was too big to handle */
482 EC_RES_BUS_ERROR = 15, /* Communications bus error */
483 EC_RES_BUSY = 16, /* Up but too busy. Should retry */
484 EC_RES_INVALID_HEADER_VERSION = 17, /* Header version invalid */
485 EC_RES_INVALID_HEADER_CRC = 18, /* Header CRC invalid */
486 EC_RES_INVALID_DATA_CRC = 19, /* Data CRC invalid */
487 EC_RES_DUP_UNAVAILABLE = 20, /* Can't resend response */
488};
489
490/*
491 * Host event codes. Note these are 1-based, not 0-based, because ACPI query
492 * EC command uses code 0 to mean "no event pending". We explicitly specify
493 * each value in the enum listing so they won't change if we delete/insert an
494 * item or rearrange the list (it needs to be stable across platforms, not
495 * just within a single compiled instance).
496 */
497enum host_event_code {
498 EC_HOST_EVENT_LID_CLOSED = 1,
499 EC_HOST_EVENT_LID_OPEN = 2,
500 EC_HOST_EVENT_POWER_BUTTON = 3,
501 EC_HOST_EVENT_AC_CONNECTED = 4,
502 EC_HOST_EVENT_AC_DISCONNECTED = 5,
503 EC_HOST_EVENT_BATTERY_LOW = 6,
504 EC_HOST_EVENT_BATTERY_CRITICAL = 7,
505 EC_HOST_EVENT_BATTERY = 8,
506 EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
507 /* Event generated by a device attached to the EC */
508 EC_HOST_EVENT_DEVICE = 10,
509 EC_HOST_EVENT_THERMAL = 11,
510 EC_HOST_EVENT_USB_CHARGER = 12,
511 EC_HOST_EVENT_KEY_PRESSED = 13,
512 /*
513 * EC has finished initializing the host interface. The host can check
514 * for this event following sending a EC_CMD_REBOOT_EC command to
515 * determine when the EC is ready to accept subsequent commands.
516 */
517 EC_HOST_EVENT_INTERFACE_READY = 14,
518 /* Keyboard recovery combo has been pressed */
519 EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
520
521 /* Shutdown due to thermal overload */
522 EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
523 /* Shutdown due to battery level too low */
524 EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
525
526 /* Suggest that the AP throttle itself */
527 EC_HOST_EVENT_THROTTLE_START = 18,
528 /* Suggest that the AP resume normal speed */
529 EC_HOST_EVENT_THROTTLE_STOP = 19,
530
531 /* Hang detect logic detected a hang and host event timeout expired */
532 EC_HOST_EVENT_HANG_DETECT = 20,
533 /* Hang detect logic detected a hang and warm rebooted the AP */
534 EC_HOST_EVENT_HANG_REBOOT = 21,
535
536 /* PD MCU triggering host event */
537 EC_HOST_EVENT_PD_MCU = 22,
538
539 /* Battery Status flags have changed */
540 EC_HOST_EVENT_BATTERY_STATUS = 23,
541
542 /* EC encountered a panic, triggering a reset */
543 EC_HOST_EVENT_PANIC = 24,
544
545 /* Keyboard fastboot combo has been pressed */
546 EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
547
548 /* EC RTC event occurred */
549 EC_HOST_EVENT_RTC = 26,
550
551 /* Emulate MKBP event */
552 EC_HOST_EVENT_MKBP = 27,
553
554 /* EC desires to change state of host-controlled USB mux */
555 EC_HOST_EVENT_USB_MUX = 28,
556
557 /* TABLET/LAPTOP mode or detachable base attach/detach event */
558 EC_HOST_EVENT_MODE_CHANGE = 29,
559
560 /* Keyboard recovery combo with hardware reinitialization */
561 EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30,
562
563 /* WoV */
564 EC_HOST_EVENT_WOV = 31,
565
566 /*
567 * The high bit of the event mask is not used as a host event code. If
568 * it reads back as set, then the entire event mask should be
569 * considered invalid by the host. This can happen when reading the
570 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
571 * not initialized on the EC, or improperly configured on the host.
572 */
573 EC_HOST_EVENT_INVALID = 32
574};
575/* Host event mask */
576#define EC_HOST_EVENT_MASK(event_code) BIT_ULL((event_code) - 1)
577
578/**
579 * struct ec_lpc_host_args - Arguments at EC_LPC_ADDR_HOST_ARGS
580 * @flags: The host argument flags.
581 * @command_version: Command version.
582 * @data_size: The length of data.
583 * @checksum: Checksum; sum of command + flags + command_version + data_size +
584 * all params/response data bytes.
585 */
586struct ec_lpc_host_args {
587 uint8_t flags;
588 uint8_t command_version;
589 uint8_t data_size;
590 uint8_t checksum;
591} __ec_align4;
592
593/* Flags for ec_lpc_host_args.flags */
594/*
595 * Args are from host. Data area at EC_LPC_ADDR_HOST_PARAM contains command
596 * params.
597 *
598 * If EC gets a command and this flag is not set, this is an old-style command.
599 * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
600 * unknown length. EC must respond with an old-style response (that is,
601 * without setting EC_HOST_ARGS_FLAG_TO_HOST).
602 */
603#define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
604/*
605 * Args are from EC. Data area at EC_LPC_ADDR_HOST_PARAM contains response.
606 *
607 * If EC responds to a command and this flag is not set, this is an old-style
608 * response. Command version is 0 and response data from EC is at
609 * EC_LPC_ADDR_OLD_PARAM with unknown length.
610 */
611#define EC_HOST_ARGS_FLAG_TO_HOST 0x02
612
613/*****************************************************************************/
614/*
615 * Byte codes returned by EC over SPI interface.
616 *
617 * These can be used by the AP to debug the EC interface, and to determine
618 * when the EC is not in a state where it will ever get around to responding
619 * to the AP.
620 *
621 * Example of sequence of bytes read from EC for a current good transfer:
622 * 1. - - AP asserts chip select (CS#)
623 * 2. EC_SPI_OLD_READY - AP sends first byte(s) of request
624 * 3. - - EC starts handling CS# interrupt
625 * 4. EC_SPI_RECEIVING - AP sends remaining byte(s) of request
626 * 5. EC_SPI_PROCESSING - EC starts processing request; AP is clocking in
627 * bytes looking for EC_SPI_FRAME_START
628 * 6. - - EC finishes processing and sets up response
629 * 7. EC_SPI_FRAME_START - AP reads frame byte
630 * 8. (response packet) - AP reads response packet
631 * 9. EC_SPI_PAST_END - Any additional bytes read by AP
632 * 10 - - AP deasserts chip select
633 * 11 - - EC processes CS# interrupt and sets up DMA for
634 * next request
635 *
636 * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
637 * the following byte values:
638 * EC_SPI_OLD_READY
639 * EC_SPI_RX_READY
640 * EC_SPI_RECEIVING
641 * EC_SPI_PROCESSING
642 *
643 * Then the EC found an error in the request, or was not ready for the request
644 * and lost data. The AP should give up waiting for EC_SPI_FRAME_START,
645 * because the EC is unable to tell when the AP is done sending its request.
646 */
647
648/*
649 * Framing byte which precedes a response packet from the EC. After sending a
650 * request, the AP will clock in bytes until it sees the framing byte, then
651 * clock in the response packet.
652 */
653#define EC_SPI_FRAME_START 0xec
654
655/*
656 * Padding bytes which are clocked out after the end of a response packet.
657 */
658#define EC_SPI_PAST_END 0xed
659
660/*
661 * EC is ready to receive, and has ignored the byte sent by the AP. EC expects
662 * that the AP will send a valid packet header (starting with
663 * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
664 */
665#define EC_SPI_RX_READY 0xf8
666
667/*
668 * EC has started receiving the request from the AP, but hasn't started
669 * processing it yet.
670 */
671#define EC_SPI_RECEIVING 0xf9
672
673/* EC has received the entire request from the AP and is processing it. */
674#define EC_SPI_PROCESSING 0xfa
675
676/*
677 * EC received bad data from the AP, such as a packet header with an invalid
678 * length. EC will ignore all data until chip select deasserts.
679 */
680#define EC_SPI_RX_BAD_DATA 0xfb
681
682/*
683 * EC received data from the AP before it was ready. That is, the AP asserted
684 * chip select and started clocking data before the EC was ready to receive it.
685 * EC will ignore all data until chip select deasserts.
686 */
687#define EC_SPI_NOT_READY 0xfc
688
689/*
690 * EC was ready to receive a request from the AP. EC has treated the byte sent
691 * by the AP as part of a request packet, or (for old-style ECs) is processing
692 * a fully received packet but is not ready to respond yet.
693 */
694#define EC_SPI_OLD_READY 0xfd
695
696/*****************************************************************************/
697
698/*
699 * Protocol version 2 for I2C and SPI send a request this way:
700 *
701 * 0 EC_CMD_VERSION0 + (command version)
702 * 1 Command number
703 * 2 Length of params = N
704 * 3..N+2 Params, if any
705 * N+3 8-bit checksum of bytes 0..N+2
706 *
707 * The corresponding response is:
708 *
709 * 0 Result code (EC_RES_*)
710 * 1 Length of params = M
711 * 2..M+1 Params, if any
712 * M+2 8-bit checksum of bytes 0..M+1
713 */
714#define EC_PROTO2_REQUEST_HEADER_BYTES 3
715#define EC_PROTO2_REQUEST_TRAILER_BYTES 1
716#define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES + \
717 EC_PROTO2_REQUEST_TRAILER_BYTES)
718
719#define EC_PROTO2_RESPONSE_HEADER_BYTES 2
720#define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
721#define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES + \
722 EC_PROTO2_RESPONSE_TRAILER_BYTES)
723
724/* Parameter length was limited by the LPC interface */
725#define EC_PROTO2_MAX_PARAM_SIZE 0xfc
726
727/* Maximum request and response packet sizes for protocol version 2 */
728#define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD + \
729 EC_PROTO2_MAX_PARAM_SIZE)
730#define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD + \
731 EC_PROTO2_MAX_PARAM_SIZE)
732
733/*****************************************************************************/
734
735/*
736 * Value written to legacy command port / prefix byte to indicate protocol
737 * 3+ structs are being used. Usage is bus-dependent.
738 */
739#define EC_COMMAND_PROTOCOL_3 0xda
740
741#define EC_HOST_REQUEST_VERSION 3
742
743/**
744 * struct ec_host_request - Version 3 request from host.
745 * @struct_version: Should be 3. The EC will return EC_RES_INVALID_HEADER if it
746 * receives a header with a version it doesn't know how to
747 * parse.
748 * @checksum: Checksum of request and data; sum of all bytes including checksum
749 * should total to 0.
750 * @command: Command to send (EC_CMD_...)
751 * @command_version: Command version.
752 * @reserved: Unused byte in current protocol version; set to 0.
753 * @data_len: Length of data which follows this header.
754 */
755struct ec_host_request {
756 uint8_t struct_version;
757 uint8_t checksum;
758 uint16_t command;
759 uint8_t command_version;
760 uint8_t reserved;
761 uint16_t data_len;
762} __ec_align4;
763
764#define EC_HOST_RESPONSE_VERSION 3
765
766/**
767 * struct ec_host_response - Version 3 response from EC.
768 * @struct_version: Struct version (=3).
769 * @checksum: Checksum of response and data; sum of all bytes including
770 * checksum should total to 0.
771 * @result: EC's response to the command (separate from communication failure)
772 * @data_len: Length of data which follows this header.
773 * @reserved: Unused bytes in current protocol version; set to 0.
774 */
775struct ec_host_response {
776 uint8_t struct_version;
777 uint8_t checksum;
778 uint16_t result;
779 uint16_t data_len;
780 uint16_t reserved;
781} __ec_align4;
782
783/*****************************************************************************/
784
785/*
786 * Host command protocol V4.
787 *
788 * Packets always start with a request or response header. They are followed
789 * by data_len bytes of data. If the data_crc_present flag is set, the data
790 * bytes are followed by a CRC-8 of that data, using x^8 + x^2 + x + 1
791 * polynomial.
792 *
793 * Host algorithm when sending a request q:
794 *
795 * 101) tries_left=(some value, e.g. 3);
796 * 102) q.seq_num++
797 * 103) q.seq_dup=0
798 * 104) Calculate q.header_crc.
799 * 105) Send request q to EC.
800 * 106) Wait for response r. Go to 201 if received or 301 if timeout.
801 *
802 * 201) If r.struct_version != 4, go to 301.
803 * 202) If r.header_crc mismatches calculated CRC for r header, go to 301.
804 * 203) If r.data_crc_present and r.data_crc mismatches, go to 301.
805 * 204) If r.seq_num != q.seq_num, go to 301.
806 * 205) If r.seq_dup == q.seq_dup, return success.
807 * 207) If r.seq_dup == 1, go to 301.
808 * 208) Return error.
809 *
810 * 301) If --tries_left <= 0, return error.
811 * 302) If q.seq_dup == 1, go to 105.
812 * 303) q.seq_dup = 1
813 * 304) Go to 104.
814 *
815 * EC algorithm when receiving a request q.
816 * EC has response buffer r, error buffer e.
817 *
818 * 101) If q.struct_version != 4, set e.result = EC_RES_INVALID_HEADER_VERSION
819 * and go to 301
820 * 102) If q.header_crc mismatches calculated CRC, set e.result =
821 * EC_RES_INVALID_HEADER_CRC and go to 301
822 * 103) If q.data_crc_present, calculate data CRC. If that mismatches the CRC
823 * byte at the end of the packet, set e.result = EC_RES_INVALID_DATA_CRC
824 * and go to 301.
825 * 104) If q.seq_dup == 0, go to 201.
826 * 105) If q.seq_num != r.seq_num, go to 201.
827 * 106) If q.seq_dup == r.seq_dup, go to 205, else go to 203.
828 *
829 * 201) Process request q into response r.
830 * 202) r.seq_num = q.seq_num
831 * 203) r.seq_dup = q.seq_dup
832 * 204) Calculate r.header_crc
833 * 205) If r.data_len > 0 and data is no longer available, set e.result =
834 * EC_RES_DUP_UNAVAILABLE and go to 301.
835 * 206) Send response r.
836 *
837 * 301) e.seq_num = q.seq_num
838 * 302) e.seq_dup = q.seq_dup
839 * 303) Calculate e.header_crc.
840 * 304) Send error response e.
841 */
842
843/* Version 4 request from host */
844struct ec_host_request4 {
845 /*
846 * bits 0-3: struct_version: Structure version (=4)
847 * bit 4: is_response: Is response (=0)
848 * bits 5-6: seq_num: Sequence number
849 * bit 7: seq_dup: Sequence duplicate flag
850 */
851 uint8_t fields0;
852
853 /*
854 * bits 0-4: command_version: Command version
855 * bits 5-6: Reserved (set 0, ignore on read)
856 * bit 7: data_crc_present: Is data CRC present after data
857 */
858 uint8_t fields1;
859
860 /* Command code (EC_CMD_*) */
861 uint16_t command;
862
863 /* Length of data which follows this header (not including data CRC) */
864 uint16_t data_len;
865
866 /* Reserved (set 0, ignore on read) */
867 uint8_t reserved;
868
869 /* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
870 uint8_t header_crc;
871} __ec_align4;
872
873/* Version 4 response from EC */
874struct ec_host_response4 {
875 /*
876 * bits 0-3: struct_version: Structure version (=4)
877 * bit 4: is_response: Is response (=1)
878 * bits 5-6: seq_num: Sequence number
879 * bit 7: seq_dup: Sequence duplicate flag
880 */
881 uint8_t fields0;
882
883 /*
884 * bits 0-6: Reserved (set 0, ignore on read)
885 * bit 7: data_crc_present: Is data CRC present after data
886 */
887 uint8_t fields1;
888
889 /* Result code (EC_RES_*) */
890 uint16_t result;
891
892 /* Length of data which follows this header (not including data CRC) */
893 uint16_t data_len;
894
895 /* Reserved (set 0, ignore on read) */
896 uint8_t reserved;
897
898 /* CRC-8 of above fields, using x^8 + x^2 + x + 1 polynomial */
899 uint8_t header_crc;
900} __ec_align4;
901
902/* Fields in fields0 byte */
903#define EC_PACKET4_0_STRUCT_VERSION_MASK 0x0f
904#define EC_PACKET4_0_IS_RESPONSE_MASK 0x10
905#define EC_PACKET4_0_SEQ_NUM_SHIFT 5
906#define EC_PACKET4_0_SEQ_NUM_MASK 0x60
907#define EC_PACKET4_0_SEQ_DUP_MASK 0x80
908
909/* Fields in fields1 byte */
910#define EC_PACKET4_1_COMMAND_VERSION_MASK 0x1f /* (request only) */
911#define EC_PACKET4_1_DATA_CRC_PRESENT_MASK 0x80
912
913/*****************************************************************************/
914/*
915 * Notes on commands:
916 *
917 * Each command is an 16-bit command value. Commands which take params or
918 * return response data specify structures for that data. If no structure is
919 * specified, the command does not input or output data, respectively.
920 * Parameter/response length is implicit in the structs. Some underlying
921 * communication protocols (I2C, SPI) may add length or checksum headers, but
922 * those are implementation-dependent and not defined here.
923 *
924 * All commands MUST be #defined to be 4-digit UPPER CASE hex values
925 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
926 */
927
928/*****************************************************************************/
929/* General / test commands */
930
931/*
932 * Get protocol version, used to deal with non-backward compatible protocol
933 * changes.
934 */
935#define EC_CMD_PROTO_VERSION 0x0000
936
937/**
938 * struct ec_response_proto_version - Response to the proto version command.
939 * @version: The protocol version.
940 */
941struct ec_response_proto_version {
942 uint32_t version;
943} __ec_align4;
944
945/*
946 * Hello. This is a simple command to test the EC is responsive to
947 * commands.
948 */
949#define EC_CMD_HELLO 0x0001
950
951/**
952 * struct ec_params_hello - Parameters to the hello command.
953 * @in_data: Pass anything here.
954 */
955struct ec_params_hello {
956 uint32_t in_data;
957} __ec_align4;
958
959/**
960 * struct ec_response_hello - Response to the hello command.
961 * @out_data: Output will be in_data + 0x01020304.
962 */
963struct ec_response_hello {
964 uint32_t out_data;
965} __ec_align4;
966
967/* Get version number */
968#define EC_CMD_GET_VERSION 0x0002
969
970enum ec_current_image {
971 EC_IMAGE_UNKNOWN = 0,
972 EC_IMAGE_RO,
973 EC_IMAGE_RW
974};
975
976/**
977 * struct ec_response_get_version - Response to the get version command.
978 * @version_string_ro: Null-terminated RO firmware version string.
979 * @version_string_rw: Null-terminated RW firmware version string.
980 * @reserved: Unused bytes; was previously RW-B firmware version string.
981 * @current_image: One of ec_current_image.
982 */
983struct ec_response_get_version {
984 char version_string_ro[32];
985 char version_string_rw[32];
986 char reserved[32];
987 uint32_t current_image;
988} __ec_align4;
989
990/* Read test */
991#define EC_CMD_READ_TEST 0x0003
992
993/**
994 * struct ec_params_read_test - Parameters for the read test command.
995 * @offset: Starting value for read buffer.
996 * @size: Size to read in bytes.
997 */
998struct ec_params_read_test {
999 uint32_t offset;
1000 uint32_t size;
1001} __ec_align4;
1002
1003/**
1004 * struct ec_response_read_test - Response to the read test command.
1005 * @data: Data returned by the read test command.
1006 */
1007struct ec_response_read_test {
1008 uint32_t data[32];
1009} __ec_align4;
1010
1011/*
1012 * Get build information
1013 *
1014 * Response is null-terminated string.
1015 */
1016#define EC_CMD_GET_BUILD_INFO 0x0004
1017
1018/* Get chip info */
1019#define EC_CMD_GET_CHIP_INFO 0x0005
1020
1021/**
1022 * struct ec_response_get_chip_info - Response to the get chip info command.
1023 * @vendor: Null-terminated string for chip vendor.
1024 * @name: Null-terminated string for chip name.
1025 * @revision: Null-terminated string for chip mask version.
1026 */
1027struct ec_response_get_chip_info {
1028 char vendor[32];
1029 char name[32];
1030 char revision[32];
1031} __ec_align4;
1032
1033/* Get board HW version */
1034#define EC_CMD_GET_BOARD_VERSION 0x0006
1035
1036/**
1037 * struct ec_response_board_version - Response to the board version command.
1038 * @board_version: A monotonously incrementing number.
1039 */
1040struct ec_response_board_version {
1041 uint16_t board_version;
1042} __ec_align2;
1043
1044/*
1045 * Read memory-mapped data.
1046 *
1047 * This is an alternate interface to memory-mapped data for bus protocols
1048 * which don't support direct-mapped memory - I2C, SPI, etc.
1049 *
1050 * Response is params.size bytes of data.
1051 */
1052#define EC_CMD_READ_MEMMAP 0x0007
1053
1054/**
1055 * struct ec_params_read_memmap - Parameters for the read memory map command.
1056 * @offset: Offset in memmap (EC_MEMMAP_*).
1057 * @size: Size to read in bytes.
1058 */
1059struct ec_params_read_memmap {
1060 uint8_t offset;
1061 uint8_t size;
1062} __ec_align1;
1063
1064/* Read versions supported for a command */
1065#define EC_CMD_GET_CMD_VERSIONS 0x0008
1066
1067/**
1068 * struct ec_params_get_cmd_versions - Parameters for the get command versions.
1069 * @cmd: Command to check.
1070 */
1071struct ec_params_get_cmd_versions {
1072 uint8_t cmd;
1073} __ec_align1;
1074
1075/**
1076 * struct ec_params_get_cmd_versions_v1 - Parameters for the get command
1077 * versions (v1)
1078 * @cmd: Command to check.
1079 */
1080struct ec_params_get_cmd_versions_v1 {
1081 uint16_t cmd;
1082} __ec_align2;
1083
1084/**
1085 * struct ec_response_get_cmd_version - Response to the get command versions.
1086 * @version_mask: Mask of supported versions; use EC_VER_MASK() to compare with
1087 * a desired version.
1088 */
1089struct ec_response_get_cmd_versions {
1090 uint32_t version_mask;
1091} __ec_align4;
1092
1093/*
1094 * Check EC communications status (busy). This is needed on i2c/spi but not
1095 * on lpc since it has its own out-of-band busy indicator.
1096 *
1097 * lpc must read the status from the command register. Attempting this on
1098 * lpc will overwrite the args/parameter space and corrupt its data.
1099 */
1100#define EC_CMD_GET_COMMS_STATUS 0x0009
1101
1102/* Avoid using ec_status which is for return values */
1103enum ec_comms_status {
1104 EC_COMMS_STATUS_PROCESSING = BIT(0), /* Processing cmd */
1105};
1106
1107/**
1108 * struct ec_response_get_comms_status - Response to the get comms status
1109 * command.
1110 * @flags: Mask of enum ec_comms_status.
1111 */
1112struct ec_response_get_comms_status {
1113 uint32_t flags; /* Mask of enum ec_comms_status */
1114} __ec_align4;
1115
1116/* Fake a variety of responses, purely for testing purposes. */
1117#define EC_CMD_TEST_PROTOCOL 0x000A
1118
1119/* Tell the EC what to send back to us. */
1120struct ec_params_test_protocol {
1121 uint32_t ec_result;
1122 uint32_t ret_len;
1123 uint8_t buf[32];
1124} __ec_align4;
1125
1126/* Here it comes... */
1127struct ec_response_test_protocol {
1128 uint8_t buf[32];
1129} __ec_align4;
1130
1131/* Get protocol information */
1132#define EC_CMD_GET_PROTOCOL_INFO 0x000B
1133
1134/* Flags for ec_response_get_protocol_info.flags */
1135/* EC_RES_IN_PROGRESS may be returned if a command is slow */
1136#define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED BIT(0)
1137
1138/**
1139 * struct ec_response_get_protocol_info - Response to the get protocol info.
1140 * @protocol_versions: Bitmask of protocol versions supported (1 << n means
1141 * version n).
1142 * @max_request_packet_size: Maximum request packet size in bytes.
1143 * @max_response_packet_size: Maximum response packet size in bytes.
1144 * @flags: see EC_PROTOCOL_INFO_*
1145 */
1146struct ec_response_get_protocol_info {
1147 /* Fields which exist if at least protocol version 3 supported */
1148 uint32_t protocol_versions;
1149 uint16_t max_request_packet_size;
1150 uint16_t max_response_packet_size;
1151 uint32_t flags;
1152} __ec_align4;
1153
1154
1155/*****************************************************************************/
1156/* Get/Set miscellaneous values */
1157
1158/* The upper byte of .flags tells what to do (nothing means "get") */
1159#define EC_GSV_SET 0x80000000
1160
1161/*
1162 * The lower three bytes of .flags identifies the parameter, if that has
1163 * meaning for an individual command.
1164 */
1165#define EC_GSV_PARAM_MASK 0x00ffffff
1166
1167struct ec_params_get_set_value {
1168 uint32_t flags;
1169 uint32_t value;
1170} __ec_align4;
1171
1172struct ec_response_get_set_value {
1173 uint32_t flags;
1174 uint32_t value;
1175} __ec_align4;
1176
1177/* More than one command can use these structs to get/set parameters. */
1178#define EC_CMD_GSV_PAUSE_IN_S5 0x000C
1179
1180/*****************************************************************************/
1181/* List the features supported by the firmware */
1182#define EC_CMD_GET_FEATURES 0x000D
1183
1184/* Supported features */
1185enum ec_feature_code {
1186 /*
1187 * This image contains a limited set of features. Another image
1188 * in RW partition may support more features.
1189 */
1190 EC_FEATURE_LIMITED = 0,
1191 /*
1192 * Commands for probing/reading/writing/erasing the flash in the
1193 * EC are present.
1194 */
1195 EC_FEATURE_FLASH = 1,
1196 /*
1197 * Can control the fan speed directly.
1198 */
1199 EC_FEATURE_PWM_FAN = 2,
1200 /*
1201 * Can control the intensity of the keyboard backlight.
1202 */
1203 EC_FEATURE_PWM_KEYB = 3,
1204 /*
1205 * Support Google lightbar, introduced on Pixel.
1206 */
1207 EC_FEATURE_LIGHTBAR = 4,
1208 /* Control of LEDs */
1209 EC_FEATURE_LED = 5,
1210 /* Exposes an interface to control gyro and sensors.
1211 * The host goes through the EC to access these sensors.
1212 * In addition, the EC may provide composite sensors, like lid angle.
1213 */
1214 EC_FEATURE_MOTION_SENSE = 6,
1215 /* The keyboard is controlled by the EC */
1216 EC_FEATURE_KEYB = 7,
1217 /* The AP can use part of the EC flash as persistent storage. */
1218 EC_FEATURE_PSTORE = 8,
1219 /* The EC monitors BIOS port 80h, and can return POST codes. */
1220 EC_FEATURE_PORT80 = 9,
1221 /*
1222 * Thermal management: include TMP specific commands.
1223 * Higher level than direct fan control.
1224 */
1225 EC_FEATURE_THERMAL = 10,
1226 /* Can switch the screen backlight on/off */
1227 EC_FEATURE_BKLIGHT_SWITCH = 11,
1228 /* Can switch the wifi module on/off */
1229 EC_FEATURE_WIFI_SWITCH = 12,
1230 /* Monitor host events, through for example SMI or SCI */
1231 EC_FEATURE_HOST_EVENTS = 13,
1232 /* The EC exposes GPIO commands to control/monitor connected devices. */
1233 EC_FEATURE_GPIO = 14,
1234 /* The EC can send i2c messages to downstream devices. */
1235 EC_FEATURE_I2C = 15,
1236 /* Command to control charger are included */
1237 EC_FEATURE_CHARGER = 16,
1238 /* Simple battery support. */
1239 EC_FEATURE_BATTERY = 17,
1240 /*
1241 * Support Smart battery protocol
1242 * (Common Smart Battery System Interface Specification)
1243 */
1244 EC_FEATURE_SMART_BATTERY = 18,
1245 /* EC can detect when the host hangs. */
1246 EC_FEATURE_HANG_DETECT = 19,
1247 /* Report power information, for pit only */
1248 EC_FEATURE_PMU = 20,
1249 /* Another Cros EC device is present downstream of this one */
1250 EC_FEATURE_SUB_MCU = 21,
1251 /* Support USB Power delivery (PD) commands */
1252 EC_FEATURE_USB_PD = 22,
1253 /* Control USB multiplexer, for audio through USB port for instance. */
1254 EC_FEATURE_USB_MUX = 23,
1255 /* Motion Sensor code has an internal software FIFO */
1256 EC_FEATURE_MOTION_SENSE_FIFO = 24,
1257 /* Support temporary secure vstore */
1258 EC_FEATURE_VSTORE = 25,
1259 /* EC decides on USB-C SS mux state, muxes configured by host */
1260 EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26,
1261 /* EC has RTC feature that can be controlled by host commands */
1262 EC_FEATURE_RTC = 27,
1263 /* The MCU exposes a Fingerprint sensor */
1264 EC_FEATURE_FINGERPRINT = 28,
1265 /* The MCU exposes a Touchpad */
1266 EC_FEATURE_TOUCHPAD = 29,
1267 /* The MCU has RWSIG task enabled */
1268 EC_FEATURE_RWSIG = 30,
1269 /* EC has device events support */
1270 EC_FEATURE_DEVICE_EVENT = 31,
1271 /* EC supports the unified wake masks for LPC/eSPI systems */
1272 EC_FEATURE_UNIFIED_WAKE_MASKS = 32,
1273 /* EC supports 64-bit host events */
1274 EC_FEATURE_HOST_EVENT64 = 33,
1275 /* EC runs code in RAM (not in place, a.k.a. XIP) */
1276 EC_FEATURE_EXEC_IN_RAM = 34,
1277 /* EC supports CEC commands */
1278 EC_FEATURE_CEC = 35,
1279 /* EC supports tight sensor timestamping. */
1280 EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS = 36,
1281 /*
1282 * EC supports tablet mode detection aligned to Chrome and allows
1283 * setting of threshold by host command using
1284 * MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE.
1285 */
1286 EC_FEATURE_REFINED_TABLET_MODE_HYSTERESIS = 37,
1287 /* The MCU is a System Companion Processor (SCP). */
1288 EC_FEATURE_SCP = 39,
1289 /* The MCU is an Integrated Sensor Hub */
1290 EC_FEATURE_ISH = 40,
1291 /* New TCPMv2 TYPEC_ prefaced commands supported */
1292 EC_FEATURE_TYPEC_CMD = 41,
1293 /*
1294 * The EC will wait for direction from the AP to enter Type-C alternate
1295 * modes or USB4.
1296 */
1297 EC_FEATURE_TYPEC_REQUIRE_AP_MODE_ENTRY = 42,
1298 /*
1299 * The EC will wait for an acknowledge from the AP after setting the
1300 * mux.
1301 */
1302 EC_FEATURE_TYPEC_MUX_REQUIRE_AP_ACK = 43,
1303 /* The MCU is a System Companion Processor (SCP) 2nd Core. */
1304 EC_FEATURE_SCP_C1 = 45,
1305};
1306
1307#define EC_FEATURE_MASK_0(event_code) BIT(event_code % 32)
1308#define EC_FEATURE_MASK_1(event_code) BIT(event_code - 32)
1309
1310struct ec_response_get_features {
1311 uint32_t flags[2];
1312} __ec_align4;
1313
1314/*****************************************************************************/
1315/* Get the board's SKU ID from EC */
1316#define EC_CMD_GET_SKU_ID 0x000E
1317
1318/* Set SKU ID from AP */
1319#define EC_CMD_SET_SKU_ID 0x000F
1320
1321struct ec_sku_id_info {
1322 uint32_t sku_id;
1323} __ec_align4;
1324
1325/*****************************************************************************/
1326/* Flash commands */
1327
1328/* Get flash info */
1329#define EC_CMD_FLASH_INFO 0x0010
1330#define EC_VER_FLASH_INFO 2
1331
1332/**
1333 * struct ec_response_flash_info - Response to the flash info command.
1334 * @flash_size: Usable flash size in bytes.
1335 * @write_block_size: Write block size. Write offset and size must be a
1336 * multiple of this.
1337 * @erase_block_size: Erase block size. Erase offset and size must be a
1338 * multiple of this.
1339 * @protect_block_size: Protection block size. Protection offset and size
1340 * must be a multiple of this.
1341 *
1342 * Version 0 returns these fields.
1343 */
1344struct ec_response_flash_info {
1345 uint32_t flash_size;
1346 uint32_t write_block_size;
1347 uint32_t erase_block_size;
1348 uint32_t protect_block_size;
1349} __ec_align4;
1350
1351/*
1352 * Flags for version 1+ flash info command
1353 * EC flash erases bits to 0 instead of 1.
1354 */
1355#define EC_FLASH_INFO_ERASE_TO_0 BIT(0)
1356
1357/*
1358 * Flash must be selected for read/write/erase operations to succeed. This may
1359 * be necessary on a chip where write/erase can be corrupted by other board
1360 * activity, or where the chip needs to enable some sort of programming voltage,
1361 * or where the read/write/erase operations require cleanly suspending other
1362 * chip functionality.
1363 */
1364#define EC_FLASH_INFO_SELECT_REQUIRED BIT(1)
1365
1366/**
1367 * struct ec_response_flash_info_1 - Response to the flash info v1 command.
1368 * @flash_size: Usable flash size in bytes.
1369 * @write_block_size: Write block size. Write offset and size must be a
1370 * multiple of this.
1371 * @erase_block_size: Erase block size. Erase offset and size must be a
1372 * multiple of this.
1373 * @protect_block_size: Protection block size. Protection offset and size
1374 * must be a multiple of this.
1375 * @write_ideal_size: Ideal write size in bytes. Writes will be fastest if
1376 * size is exactly this and offset is a multiple of this.
1377 * For example, an EC may have a write buffer which can do
1378 * half-page operations if data is aligned, and a slower
1379 * word-at-a-time write mode.
1380 * @flags: Flags; see EC_FLASH_INFO_*
1381 *
1382 * Version 1 returns the same initial fields as version 0, with additional
1383 * fields following.
1384 *
1385 * gcc anonymous structs don't seem to get along with the __packed directive;
1386 * if they did we'd define the version 0 structure as a sub-structure of this
1387 * one.
1388 *
1389 * Version 2 supports flash banks of different sizes:
1390 * The caller specified the number of banks it has preallocated
1391 * (num_banks_desc)
1392 * The EC returns the number of banks describing the flash memory.
1393 * It adds banks descriptions up to num_banks_desc.
1394 */
1395struct ec_response_flash_info_1 {
1396 /* Version 0 fields; see above for description */
1397 uint32_t flash_size;
1398 uint32_t write_block_size;
1399 uint32_t erase_block_size;
1400 uint32_t protect_block_size;
1401
1402 /* Version 1 adds these fields: */
1403 uint32_t write_ideal_size;
1404 uint32_t flags;
1405} __ec_align4;
1406
1407struct ec_params_flash_info_2 {
1408 /* Number of banks to describe */
1409 uint16_t num_banks_desc;
1410 /* Reserved; set 0; ignore on read */
1411 uint8_t reserved[2];
1412} __ec_align4;
1413
1414struct ec_flash_bank {
1415 /* Number of sector is in this bank. */
1416 uint16_t count;
1417 /* Size in power of 2 of each sector (8 --> 256 bytes) */
1418 uint8_t size_exp;
1419 /* Minimal write size for the sectors in this bank */
1420 uint8_t write_size_exp;
1421 /* Erase size for the sectors in this bank */
1422 uint8_t erase_size_exp;
1423 /* Size for write protection, usually identical to erase size. */
1424 uint8_t protect_size_exp;
1425 /* Reserved; set 0; ignore on read */
1426 uint8_t reserved[2];
1427};
1428
1429struct ec_response_flash_info_2 {
1430 /* Total flash in the EC. */
1431 uint32_t flash_size;
1432 /* Flags; see EC_FLASH_INFO_* */
1433 uint32_t flags;
1434 /* Maximum size to use to send data to write to the EC. */
1435 uint32_t write_ideal_size;
1436 /* Number of banks present in the EC. */
1437 uint16_t num_banks_total;
1438 /* Number of banks described in banks array. */
1439 uint16_t num_banks_desc;
1440 struct ec_flash_bank banks[];
1441} __ec_align4;
1442
1443/*
1444 * Read flash
1445 *
1446 * Response is params.size bytes of data.
1447 */
1448#define EC_CMD_FLASH_READ 0x0011
1449
1450/**
1451 * struct ec_params_flash_read - Parameters for the flash read command.
1452 * @offset: Byte offset to read.
1453 * @size: Size to read in bytes.
1454 */
1455struct ec_params_flash_read {
1456 uint32_t offset;
1457 uint32_t size;
1458} __ec_align4;
1459
1460/* Write flash */
1461#define EC_CMD_FLASH_WRITE 0x0012
1462#define EC_VER_FLASH_WRITE 1
1463
1464/* Version 0 of the flash command supported only 64 bytes of data */
1465#define EC_FLASH_WRITE_VER0_SIZE 64
1466
1467/**
1468 * struct ec_params_flash_write - Parameters for the flash write command.
1469 * @offset: Byte offset to write.
1470 * @size: Size to write in bytes.
1471 */
1472struct ec_params_flash_write {
1473 uint32_t offset;
1474 uint32_t size;
1475 /* Followed by data to write */
1476} __ec_align4;
1477
1478/* Erase flash */
1479#define EC_CMD_FLASH_ERASE 0x0013
1480
1481/**
1482 * struct ec_params_flash_erase - Parameters for the flash erase command, v0.
1483 * @offset: Byte offset to erase.
1484 * @size: Size to erase in bytes.
1485 */
1486struct ec_params_flash_erase {
1487 uint32_t offset;
1488 uint32_t size;
1489} __ec_align4;
1490
1491/*
1492 * v1 add async erase:
1493 * subcommands can returns:
1494 * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below).
1495 * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary.
1496 * EC_RES_ERROR : other errors.
1497 * EC_RES_BUSY : an existing erase operation is in progress.
1498 * EC_RES_ACCESS_DENIED: Trying to erase running image.
1499 *
1500 * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just
1501 * properly queued. The user must call ERASE_GET_RESULT subcommand to get
1502 * the proper result.
1503 * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send
1504 * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC.
1505 * ERASE_GET_RESULT command may timeout on EC where flash access is not
1506 * permitted while erasing. (For instance, STM32F4).
1507 */
1508enum ec_flash_erase_cmd {
1509 FLASH_ERASE_SECTOR, /* Erase and wait for result */
1510 FLASH_ERASE_SECTOR_ASYNC, /* Erase and return immediately. */
1511 FLASH_ERASE_GET_RESULT, /* Ask for last erase result */
1512};
1513
1514/**
1515 * struct ec_params_flash_erase_v1 - Parameters for the flash erase command, v1.
1516 * @cmd: One of ec_flash_erase_cmd.
1517 * @reserved: Pad byte; currently always contains 0.
1518 * @flag: No flags defined yet; set to 0.
1519 * @params: Same as v0 parameters.
1520 */
1521struct ec_params_flash_erase_v1 {
1522 uint8_t cmd;
1523 uint8_t reserved;
1524 uint16_t flag;
1525 struct ec_params_flash_erase params;
1526} __ec_align4;
1527
1528/*
1529 * Get/set flash protection.
1530 *
1531 * If mask!=0, sets/clear the requested bits of flags. Depending on the
1532 * firmware write protect GPIO, not all flags will take effect immediately;
1533 * some flags require a subsequent hard reset to take effect. Check the
1534 * returned flags bits to see what actually happened.
1535 *
1536 * If mask=0, simply returns the current flags state.
1537 */
1538#define EC_CMD_FLASH_PROTECT 0x0015
1539#define EC_VER_FLASH_PROTECT 1 /* Command version 1 */
1540
1541/* Flags for flash protection */
1542/* RO flash code protected when the EC boots */
1543#define EC_FLASH_PROTECT_RO_AT_BOOT BIT(0)
1544/*
1545 * RO flash code protected now. If this bit is set, at-boot status cannot
1546 * be changed.
1547 */
1548#define EC_FLASH_PROTECT_RO_NOW BIT(1)
1549/* Entire flash code protected now, until reboot. */
1550#define EC_FLASH_PROTECT_ALL_NOW BIT(2)
1551/* Flash write protect GPIO is asserted now */
1552#define EC_FLASH_PROTECT_GPIO_ASSERTED BIT(3)
1553/* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
1554#define EC_FLASH_PROTECT_ERROR_STUCK BIT(4)
1555/*
1556 * Error - flash protection is in inconsistent state. At least one bank of
1557 * flash which should be protected is not protected. Usually fixed by
1558 * re-requesting the desired flags, or by a hard reset if that fails.
1559 */
1560#define EC_FLASH_PROTECT_ERROR_INCONSISTENT BIT(5)
1561/* Entire flash code protected when the EC boots */
1562#define EC_FLASH_PROTECT_ALL_AT_BOOT BIT(6)
1563/* RW flash code protected when the EC boots */
1564#define EC_FLASH_PROTECT_RW_AT_BOOT BIT(7)
1565/* RW flash code protected now. */
1566#define EC_FLASH_PROTECT_RW_NOW BIT(8)
1567/* Rollback information flash region protected when the EC boots */
1568#define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT BIT(9)
1569/* Rollback information flash region protected now */
1570#define EC_FLASH_PROTECT_ROLLBACK_NOW BIT(10)
1571
1572
1573/**
1574 * struct ec_params_flash_protect - Parameters for the flash protect command.
1575 * @mask: Bits in flags to apply.
1576 * @flags: New flags to apply.
1577 */
1578struct ec_params_flash_protect {
1579 uint32_t mask;
1580 uint32_t flags;
1581} __ec_align4;
1582
1583/**
1584 * struct ec_response_flash_protect - Response to the flash protect command.
1585 * @flags: Current value of flash protect flags.
1586 * @valid_flags: Flags which are valid on this platform. This allows the
1587 * caller to distinguish between flags which aren't set vs. flags
1588 * which can't be set on this platform.
1589 * @writable_flags: Flags which can be changed given the current protection
1590 * state.
1591 */
1592struct ec_response_flash_protect {
1593 uint32_t flags;
1594 uint32_t valid_flags;
1595 uint32_t writable_flags;
1596} __ec_align4;
1597
1598/*
1599 * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
1600 * write protect. These commands may be reused with version > 0.
1601 */
1602
1603/* Get the region offset/size */
1604#define EC_CMD_FLASH_REGION_INFO 0x0016
1605#define EC_VER_FLASH_REGION_INFO 1
1606
1607enum ec_flash_region {
1608 /* Region which holds read-only EC image */
1609 EC_FLASH_REGION_RO = 0,
1610 /*
1611 * Region which holds active RW image. 'Active' is different from
1612 * 'running'. Active means 'scheduled-to-run'. Since RO image always
1613 * scheduled to run, active/non-active applies only to RW images (for
1614 * the same reason 'update' applies only to RW images. It's a state of
1615 * an image on a flash. Running image can be RO, RW_A, RW_B but active
1616 * image can only be RW_A or RW_B. In recovery mode, an active RW image
1617 * doesn't enter 'running' state but it's still active on a flash.
1618 */
1619 EC_FLASH_REGION_ACTIVE,
1620 /*
1621 * Region which should be write-protected in the factory (a superset of
1622 * EC_FLASH_REGION_RO)
1623 */
1624 EC_FLASH_REGION_WP_RO,
1625 /* Region which holds updatable (non-active) RW image */
1626 EC_FLASH_REGION_UPDATE,
1627 /* Number of regions */
1628 EC_FLASH_REGION_COUNT,
1629};
1630/*
1631 * 'RW' is vague if there are multiple RW images; we mean the active one,
1632 * so the old constant is deprecated.
1633 */
1634#define EC_FLASH_REGION_RW EC_FLASH_REGION_ACTIVE
1635
1636/**
1637 * struct ec_params_flash_region_info - Parameters for the flash region info
1638 * command.
1639 * @region: Flash region; see EC_FLASH_REGION_*
1640 */
1641struct ec_params_flash_region_info {
1642 uint32_t region;
1643} __ec_align4;
1644
1645struct ec_response_flash_region_info {
1646 uint32_t offset;
1647 uint32_t size;
1648} __ec_align4;
1649
1650/* Read/write VbNvContext */
1651#define EC_CMD_VBNV_CONTEXT 0x0017
1652#define EC_VER_VBNV_CONTEXT 1
1653#define EC_VBNV_BLOCK_SIZE 16
1654
1655enum ec_vbnvcontext_op {
1656 EC_VBNV_CONTEXT_OP_READ,
1657 EC_VBNV_CONTEXT_OP_WRITE,
1658};
1659
1660struct ec_params_vbnvcontext {
1661 uint32_t op;
1662 uint8_t block[EC_VBNV_BLOCK_SIZE];
1663} __ec_align4;
1664
1665struct ec_response_vbnvcontext {
1666 uint8_t block[EC_VBNV_BLOCK_SIZE];
1667} __ec_align4;
1668
1669
1670/* Get SPI flash information */
1671#define EC_CMD_FLASH_SPI_INFO 0x0018
1672
1673struct ec_response_flash_spi_info {
1674 /* JEDEC info from command 0x9F (manufacturer, memory type, size) */
1675 uint8_t jedec[3];
1676
1677 /* Pad byte; currently always contains 0 */
1678 uint8_t reserved0;
1679
1680 /* Manufacturer / device ID from command 0x90 */
1681 uint8_t mfr_dev_id[2];
1682
1683 /* Status registers from command 0x05 and 0x35 */
1684 uint8_t sr1, sr2;
1685} __ec_align1;
1686
1687
1688/* Select flash during flash operations */
1689#define EC_CMD_FLASH_SELECT 0x0019
1690
1691/**
1692 * struct ec_params_flash_select - Parameters for the flash select command.
1693 * @select: 1 to select flash, 0 to deselect flash
1694 */
1695struct ec_params_flash_select {
1696 uint8_t select;
1697} __ec_align4;
1698
1699
1700/*****************************************************************************/
1701/* PWM commands */
1702
1703/* Get fan target RPM */
1704#define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020
1705
1706struct ec_response_pwm_get_fan_rpm {
1707 uint32_t rpm;
1708} __ec_align4;
1709
1710/* Set target fan RPM */
1711#define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021
1712
1713/* Version 0 of input params */
1714struct ec_params_pwm_set_fan_target_rpm_v0 {
1715 uint32_t rpm;
1716} __ec_align4;
1717
1718/* Version 1 of input params */
1719struct ec_params_pwm_set_fan_target_rpm_v1 {
1720 uint32_t rpm;
1721 uint8_t fan_idx;
1722} __ec_align_size1;
1723
1724/* Get keyboard backlight */
1725/* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1726#define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022
1727
1728struct ec_response_pwm_get_keyboard_backlight {
1729 uint8_t percent;
1730 uint8_t enabled;
1731} __ec_align1;
1732
1733/* Set keyboard backlight */
1734/* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1735#define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023
1736
1737struct ec_params_pwm_set_keyboard_backlight {
1738 uint8_t percent;
1739} __ec_align1;
1740
1741/* Set target fan PWM duty cycle */
1742#define EC_CMD_PWM_SET_FAN_DUTY 0x0024
1743
1744/* Version 0 of input params */
1745struct ec_params_pwm_set_fan_duty_v0 {
1746 uint32_t percent;
1747} __ec_align4;
1748
1749/* Version 1 of input params */
1750struct ec_params_pwm_set_fan_duty_v1 {
1751 uint32_t percent;
1752 uint8_t fan_idx;
1753} __ec_align_size1;
1754
1755#define EC_CMD_PWM_SET_DUTY 0x0025
1756/* 16 bit duty cycle, 0xffff = 100% */
1757#define EC_PWM_MAX_DUTY 0xffff
1758
1759enum ec_pwm_type {
1760 /* All types, indexed by board-specific enum pwm_channel */
1761 EC_PWM_TYPE_GENERIC = 0,
1762 /* Keyboard backlight */
1763 EC_PWM_TYPE_KB_LIGHT,
1764 /* Display backlight */
1765 EC_PWM_TYPE_DISPLAY_LIGHT,
1766 EC_PWM_TYPE_COUNT,
1767};
1768
1769struct ec_params_pwm_set_duty {
1770 uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1771 uint8_t pwm_type; /* ec_pwm_type */
1772 uint8_t index; /* Type-specific index, or 0 if unique */
1773} __ec_align4;
1774
1775#define EC_CMD_PWM_GET_DUTY 0x0026
1776
1777struct ec_params_pwm_get_duty {
1778 uint8_t pwm_type; /* ec_pwm_type */
1779 uint8_t index; /* Type-specific index, or 0 if unique */
1780} __ec_align1;
1781
1782struct ec_response_pwm_get_duty {
1783 uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1784} __ec_align2;
1785
1786/*****************************************************************************/
1787/*
1788 * Lightbar commands. This looks worse than it is. Since we only use one HOST
1789 * command to say "talk to the lightbar", we put the "and tell it to do X" part
1790 * into a subcommand. We'll make separate structs for subcommands with
1791 * different input args, so that we know how much to expect.
1792 */
1793#define EC_CMD_LIGHTBAR_CMD 0x0028
1794
1795struct rgb_s {
1796 uint8_t r, g, b;
1797} __ec_todo_unpacked;
1798
1799#define LB_BATTERY_LEVELS 4
1800
1801/*
1802 * List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1803 * host command, but the alignment is the same regardless. Keep it that way.
1804 */
1805struct lightbar_params_v0 {
1806 /* Timing */
1807 int32_t google_ramp_up;
1808 int32_t google_ramp_down;
1809 int32_t s3s0_ramp_up;
1810 int32_t s0_tick_delay[2]; /* AC=0/1 */
1811 int32_t s0a_tick_delay[2]; /* AC=0/1 */
1812 int32_t s0s3_ramp_down;
1813 int32_t s3_sleep_for;
1814 int32_t s3_ramp_up;
1815 int32_t s3_ramp_down;
1816
1817 /* Oscillation */
1818 uint8_t new_s0;
1819 uint8_t osc_min[2]; /* AC=0/1 */
1820 uint8_t osc_max[2]; /* AC=0/1 */
1821 uint8_t w_ofs[2]; /* AC=0/1 */
1822
1823 /* Brightness limits based on the backlight and AC. */
1824 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
1825 uint8_t bright_bl_on_min[2]; /* AC=0/1 */
1826 uint8_t bright_bl_on_max[2]; /* AC=0/1 */
1827
1828 /* Battery level thresholds */
1829 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1830
1831 /* Map [AC][battery_level] to color index */
1832 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
1833 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
1834
1835 /* Color palette */
1836 struct rgb_s color[8]; /* 0-3 are Google colors */
1837} __ec_todo_packed;
1838
1839struct lightbar_params_v1 {
1840 /* Timing */
1841 int32_t google_ramp_up;
1842 int32_t google_ramp_down;
1843 int32_t s3s0_ramp_up;
1844 int32_t s0_tick_delay[2]; /* AC=0/1 */
1845 int32_t s0a_tick_delay[2]; /* AC=0/1 */
1846 int32_t s0s3_ramp_down;
1847 int32_t s3_sleep_for;
1848 int32_t s3_ramp_up;
1849 int32_t s3_ramp_down;
1850 int32_t s5_ramp_up;
1851 int32_t s5_ramp_down;
1852 int32_t tap_tick_delay;
1853 int32_t tap_gate_delay;
1854 int32_t tap_display_time;
1855
1856 /* Tap-for-battery params */
1857 uint8_t tap_pct_red;
1858 uint8_t tap_pct_green;
1859 uint8_t tap_seg_min_on;
1860 uint8_t tap_seg_max_on;
1861 uint8_t tap_seg_osc;
1862 uint8_t tap_idx[3];
1863
1864 /* Oscillation */
1865 uint8_t osc_min[2]; /* AC=0/1 */
1866 uint8_t osc_max[2]; /* AC=0/1 */
1867 uint8_t w_ofs[2]; /* AC=0/1 */
1868
1869 /* Brightness limits based on the backlight and AC. */
1870 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
1871 uint8_t bright_bl_on_min[2]; /* AC=0/1 */
1872 uint8_t bright_bl_on_max[2]; /* AC=0/1 */
1873
1874 /* Battery level thresholds */
1875 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1876
1877 /* Map [AC][battery_level] to color index */
1878 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
1879 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
1880
1881 /* s5: single color pulse on inhibited power-up */
1882 uint8_t s5_idx;
1883
1884 /* Color palette */
1885 struct rgb_s color[8]; /* 0-3 are Google colors */
1886} __ec_todo_packed;
1887
1888/* Lightbar command params v2
1889 * crbug.com/467716
1890 *
1891 * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
1892 * logical groups to make it more manageable ( < 120 bytes).
1893 *
1894 * NOTE: Each of these groups must be less than 120 bytes.
1895 */
1896
1897struct lightbar_params_v2_timing {
1898 /* Timing */
1899 int32_t google_ramp_up;
1900 int32_t google_ramp_down;
1901 int32_t s3s0_ramp_up;
1902 int32_t s0_tick_delay[2]; /* AC=0/1 */
1903 int32_t s0a_tick_delay[2]; /* AC=0/1 */
1904 int32_t s0s3_ramp_down;
1905 int32_t s3_sleep_for;
1906 int32_t s3_ramp_up;
1907 int32_t s3_ramp_down;
1908 int32_t s5_ramp_up;
1909 int32_t s5_ramp_down;
1910 int32_t tap_tick_delay;
1911 int32_t tap_gate_delay;
1912 int32_t tap_display_time;
1913} __ec_todo_packed;
1914
1915struct lightbar_params_v2_tap {
1916 /* Tap-for-battery params */
1917 uint8_t tap_pct_red;
1918 uint8_t tap_pct_green;
1919 uint8_t tap_seg_min_on;
1920 uint8_t tap_seg_max_on;
1921 uint8_t tap_seg_osc;
1922 uint8_t tap_idx[3];
1923} __ec_todo_packed;
1924
1925struct lightbar_params_v2_oscillation {
1926 /* Oscillation */
1927 uint8_t osc_min[2]; /* AC=0/1 */
1928 uint8_t osc_max[2]; /* AC=0/1 */
1929 uint8_t w_ofs[2]; /* AC=0/1 */
1930} __ec_todo_packed;
1931
1932struct lightbar_params_v2_brightness {
1933 /* Brightness limits based on the backlight and AC. */
1934 uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
1935 uint8_t bright_bl_on_min[2]; /* AC=0/1 */
1936 uint8_t bright_bl_on_max[2]; /* AC=0/1 */
1937} __ec_todo_packed;
1938
1939struct lightbar_params_v2_thresholds {
1940 /* Battery level thresholds */
1941 uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1942} __ec_todo_packed;
1943
1944struct lightbar_params_v2_colors {
1945 /* Map [AC][battery_level] to color index */
1946 uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
1947 uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
1948
1949 /* s5: single color pulse on inhibited power-up */
1950 uint8_t s5_idx;
1951
1952 /* Color palette */
1953 struct rgb_s color[8]; /* 0-3 are Google colors */
1954} __ec_todo_packed;
1955
1956/* Lightbar program. */
1957#define EC_LB_PROG_LEN 192
1958struct lightbar_program {
1959 uint8_t size;
1960 uint8_t data[EC_LB_PROG_LEN];
1961} __ec_todo_unpacked;
1962
1963struct ec_params_lightbar {
1964 uint8_t cmd; /* Command (see enum lightbar_command) */
1965 union {
1966 /*
1967 * The following commands have no args:
1968 *
1969 * dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1970 * version, get_brightness, get_demo, suspend, resume,
1971 * get_params_v2_timing, get_params_v2_tap, get_params_v2_osc,
1972 * get_params_v2_bright, get_params_v2_thlds,
1973 * get_params_v2_colors
1974 *
1975 * Don't use an empty struct, because C++ hates that.
1976 */
1977
1978 struct __ec_todo_unpacked {
1979 uint8_t num;
1980 } set_brightness, seq, demo;
1981
1982 struct __ec_todo_unpacked {
1983 uint8_t ctrl, reg, value;
1984 } reg;
1985
1986 struct __ec_todo_unpacked {
1987 uint8_t led, red, green, blue;
1988 } set_rgb;
1989
1990 struct __ec_todo_unpacked {
1991 uint8_t led;
1992 } get_rgb;
1993
1994 struct __ec_todo_unpacked {
1995 uint8_t enable;
1996 } manual_suspend_ctrl;
1997
1998 struct lightbar_params_v0 set_params_v0;
1999 struct lightbar_params_v1 set_params_v1;
2000
2001 struct lightbar_params_v2_timing set_v2par_timing;
2002 struct lightbar_params_v2_tap set_v2par_tap;
2003 struct lightbar_params_v2_oscillation set_v2par_osc;
2004 struct lightbar_params_v2_brightness set_v2par_bright;
2005 struct lightbar_params_v2_thresholds set_v2par_thlds;
2006 struct lightbar_params_v2_colors set_v2par_colors;
2007
2008 struct lightbar_program set_program;
2009 };
2010} __ec_todo_packed;
2011
2012struct ec_response_lightbar {
2013 union {
2014 struct __ec_todo_unpacked {
2015 struct __ec_todo_unpacked {
2016 uint8_t reg;
2017 uint8_t ic0;
2018 uint8_t ic1;
2019 } vals[23];
2020 } dump;
2021
2022 struct __ec_todo_unpacked {
2023 uint8_t num;
2024 } get_seq, get_brightness, get_demo;
2025
2026 struct lightbar_params_v0 get_params_v0;
2027 struct lightbar_params_v1 get_params_v1;
2028
2029
2030 struct lightbar_params_v2_timing get_params_v2_timing;
2031 struct lightbar_params_v2_tap get_params_v2_tap;
2032 struct lightbar_params_v2_oscillation get_params_v2_osc;
2033 struct lightbar_params_v2_brightness get_params_v2_bright;
2034 struct lightbar_params_v2_thresholds get_params_v2_thlds;
2035 struct lightbar_params_v2_colors get_params_v2_colors;
2036
2037 struct __ec_todo_unpacked {
2038 uint32_t num;
2039 uint32_t flags;
2040 } version;
2041
2042 struct __ec_todo_unpacked {
2043 uint8_t red, green, blue;
2044 } get_rgb;
2045
2046 /*
2047 * The following commands have no response:
2048 *
2049 * off, on, init, set_brightness, seq, reg, set_rgb, demo,
2050 * set_params_v0, set_params_v1, set_program,
2051 * manual_suspend_ctrl, suspend, resume, set_v2par_timing,
2052 * set_v2par_tap, set_v2par_osc, set_v2par_bright,
2053 * set_v2par_thlds, set_v2par_colors
2054 */
2055 };
2056} __ec_todo_packed;
2057
2058/* Lightbar commands */
2059enum lightbar_command {
2060 LIGHTBAR_CMD_DUMP = 0,
2061 LIGHTBAR_CMD_OFF = 1,
2062 LIGHTBAR_CMD_ON = 2,
2063 LIGHTBAR_CMD_INIT = 3,
2064 LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
2065 LIGHTBAR_CMD_SEQ = 5,
2066 LIGHTBAR_CMD_REG = 6,
2067 LIGHTBAR_CMD_SET_RGB = 7,
2068 LIGHTBAR_CMD_GET_SEQ = 8,
2069 LIGHTBAR_CMD_DEMO = 9,
2070 LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
2071 LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
2072 LIGHTBAR_CMD_VERSION = 12,
2073 LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
2074 LIGHTBAR_CMD_GET_RGB = 14,
2075 LIGHTBAR_CMD_GET_DEMO = 15,
2076 LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
2077 LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
2078 LIGHTBAR_CMD_SET_PROGRAM = 18,
2079 LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
2080 LIGHTBAR_CMD_SUSPEND = 20,
2081 LIGHTBAR_CMD_RESUME = 21,
2082 LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
2083 LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
2084 LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
2085 LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
2086 LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
2087 LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
2088 LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
2089 LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
2090 LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
2091 LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
2092 LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
2093 LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
2094 LIGHTBAR_NUM_CMDS
2095};
2096
2097/*****************************************************************************/
2098/* LED control commands */
2099
2100#define EC_CMD_LED_CONTROL 0x0029
2101
2102enum ec_led_id {
2103 /* LED to indicate battery state of charge */
2104 EC_LED_ID_BATTERY_LED = 0,
2105 /*
2106 * LED to indicate system power state (on or in suspend).
2107 * May be on power button or on C-panel.
2108 */
2109 EC_LED_ID_POWER_LED,
2110 /* LED on power adapter or its plug */
2111 EC_LED_ID_ADAPTER_LED,
2112 /* LED to indicate left side */
2113 EC_LED_ID_LEFT_LED,
2114 /* LED to indicate right side */
2115 EC_LED_ID_RIGHT_LED,
2116 /* LED to indicate recovery mode with HW_REINIT */
2117 EC_LED_ID_RECOVERY_HW_REINIT_LED,
2118 /* LED to indicate sysrq debug mode. */
2119 EC_LED_ID_SYSRQ_DEBUG_LED,
2120
2121 EC_LED_ID_COUNT
2122};
2123
2124/* LED control flags */
2125#define EC_LED_FLAGS_QUERY BIT(0) /* Query LED capability only */
2126#define EC_LED_FLAGS_AUTO BIT(1) /* Switch LED back to automatic control */
2127
2128enum ec_led_colors {
2129 EC_LED_COLOR_RED = 0,
2130 EC_LED_COLOR_GREEN,
2131 EC_LED_COLOR_BLUE,
2132 EC_LED_COLOR_YELLOW,
2133 EC_LED_COLOR_WHITE,
2134 EC_LED_COLOR_AMBER,
2135
2136 EC_LED_COLOR_COUNT
2137};
2138
2139struct ec_params_led_control {
2140 uint8_t led_id; /* Which LED to control */
2141 uint8_t flags; /* Control flags */
2142
2143 uint8_t brightness[EC_LED_COLOR_COUNT];
2144} __ec_align1;
2145
2146struct ec_response_led_control {
2147 /*
2148 * Available brightness value range.
2149 *
2150 * Range 0 means color channel not present.
2151 * Range 1 means on/off control.
2152 * Other values means the LED is control by PWM.
2153 */
2154 uint8_t brightness_range[EC_LED_COLOR_COUNT];
2155} __ec_align1;
2156
2157/*****************************************************************************/
2158/* Verified boot commands */
2159
2160/*
2161 * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
2162 * reused for other purposes with version > 0.
2163 */
2164
2165/* Verified boot hash command */
2166#define EC_CMD_VBOOT_HASH 0x002A
2167
2168struct ec_params_vboot_hash {
2169 uint8_t cmd; /* enum ec_vboot_hash_cmd */
2170 uint8_t hash_type; /* enum ec_vboot_hash_type */
2171 uint8_t nonce_size; /* Nonce size; may be 0 */
2172 uint8_t reserved0; /* Reserved; set 0 */
2173 uint32_t offset; /* Offset in flash to hash */
2174 uint32_t size; /* Number of bytes to hash */
2175 uint8_t nonce_data[64]; /* Nonce data; ignored if nonce_size=0 */
2176} __ec_align4;
2177
2178struct ec_response_vboot_hash {
2179 uint8_t status; /* enum ec_vboot_hash_status */
2180 uint8_t hash_type; /* enum ec_vboot_hash_type */
2181 uint8_t digest_size; /* Size of hash digest in bytes */
2182 uint8_t reserved0; /* Ignore; will be 0 */
2183 uint32_t offset; /* Offset in flash which was hashed */
2184 uint32_t size; /* Number of bytes hashed */
2185 uint8_t hash_digest[64]; /* Hash digest data */
2186} __ec_align4;
2187
2188enum ec_vboot_hash_cmd {
2189 EC_VBOOT_HASH_GET = 0, /* Get current hash status */
2190 EC_VBOOT_HASH_ABORT = 1, /* Abort calculating current hash */
2191 EC_VBOOT_HASH_START = 2, /* Start computing a new hash */
2192 EC_VBOOT_HASH_RECALC = 3, /* Synchronously compute a new hash */
2193};
2194
2195enum ec_vboot_hash_type {
2196 EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
2197};
2198
2199enum ec_vboot_hash_status {
2200 EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
2201 EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
2202 EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
2203};
2204
2205/*
2206 * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
2207 * If one of these is specified, the EC will automatically update offset and
2208 * size to the correct values for the specified image (RO or RW).
2209 */
2210#define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe
2211#define EC_VBOOT_HASH_OFFSET_ACTIVE 0xfffffffd
2212#define EC_VBOOT_HASH_OFFSET_UPDATE 0xfffffffc
2213
2214/*
2215 * 'RW' is vague if there are multiple RW images; we mean the active one,
2216 * so the old constant is deprecated.
2217 */
2218#define EC_VBOOT_HASH_OFFSET_RW EC_VBOOT_HASH_OFFSET_ACTIVE
2219
2220/*****************************************************************************/
2221/*
2222 * Motion sense commands. We'll make separate structs for sub-commands with
2223 * different input args, so that we know how much to expect.
2224 */
2225#define EC_CMD_MOTION_SENSE_CMD 0x002B
2226
2227/* Motion sense commands */
2228enum motionsense_command {
2229 /*
2230 * Dump command returns all motion sensor data including motion sense
2231 * module flags and individual sensor flags.
2232 */
2233 MOTIONSENSE_CMD_DUMP = 0,
2234
2235 /*
2236 * Info command returns data describing the details of a given sensor,
2237 * including enum motionsensor_type, enum motionsensor_location, and
2238 * enum motionsensor_chip.
2239 */
2240 MOTIONSENSE_CMD_INFO = 1,
2241
2242 /*
2243 * EC Rate command is a setter/getter command for the EC sampling rate
2244 * in milliseconds.
2245 * It is per sensor, the EC run sample task at the minimum of all
2246 * sensors EC_RATE.
2247 * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
2248 * to collect all the sensor samples.
2249 * For sensor with hardware FIFO, EC_RATE is used as the maximal delay
2250 * to process of all motion sensors in milliseconds.
2251 */
2252 MOTIONSENSE_CMD_EC_RATE = 2,
2253
2254 /*
2255 * Sensor ODR command is a setter/getter command for the output data
2256 * rate of a specific motion sensor in millihertz.
2257 */
2258 MOTIONSENSE_CMD_SENSOR_ODR = 3,
2259
2260 /*
2261 * Sensor range command is a setter/getter command for the range of
2262 * a specified motion sensor in +/-G's or +/- deg/s.
2263 */
2264 MOTIONSENSE_CMD_SENSOR_RANGE = 4,
2265
2266 /*
2267 * Setter/getter command for the keyboard wake angle. When the lid
2268 * angle is greater than this value, keyboard wake is disabled in S3,
2269 * and when the lid angle goes less than this value, keyboard wake is
2270 * enabled. Note, the lid angle measurement is an approximate,
2271 * un-calibrated value, hence the wake angle isn't exact.
2272 */
2273 MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
2274
2275 /*
2276 * Returns a single sensor data.
2277 */
2278 MOTIONSENSE_CMD_DATA = 6,
2279
2280 /*
2281 * Return sensor fifo info.
2282 */
2283 MOTIONSENSE_CMD_FIFO_INFO = 7,
2284
2285 /*
2286 * Insert a flush element in the fifo and return sensor fifo info.
2287 * The host can use that element to synchronize its operation.
2288 */
2289 MOTIONSENSE_CMD_FIFO_FLUSH = 8,
2290
2291 /*
2292 * Return a portion of the fifo.
2293 */
2294 MOTIONSENSE_CMD_FIFO_READ = 9,
2295
2296 /*
2297 * Perform low level calibration.
2298 * On sensors that support it, ask to do offset calibration.
2299 */
2300 MOTIONSENSE_CMD_PERFORM_CALIB = 10,
2301
2302 /*
2303 * Sensor Offset command is a setter/getter command for the offset
2304 * used for calibration.
2305 * The offsets can be calculated by the host, or via
2306 * PERFORM_CALIB command.
2307 */
2308 MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
2309
2310 /*
2311 * List available activities for a MOTION sensor.
2312 * Indicates if they are enabled or disabled.
2313 */
2314 MOTIONSENSE_CMD_LIST_ACTIVITIES = 12,
2315
2316 /*
2317 * Activity management
2318 * Enable/Disable activity recognition.
2319 */
2320 MOTIONSENSE_CMD_SET_ACTIVITY = 13,
2321
2322 /*
2323 * Lid Angle
2324 */
2325 MOTIONSENSE_CMD_LID_ANGLE = 14,
2326
2327 /*
2328 * Allow the FIFO to trigger interrupt via MKBP events.
2329 * By default the FIFO does not send interrupt to process the FIFO
2330 * until the AP is ready or it is coming from a wakeup sensor.
2331 */
2332 MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15,
2333
2334 /*
2335 * Spoof the readings of the sensors. The spoofed readings can be set
2336 * to arbitrary values, or will lock to the last read actual values.
2337 */
2338 MOTIONSENSE_CMD_SPOOF = 16,
2339
2340 /* Set lid angle for tablet mode detection. */
2341 MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE = 17,
2342
2343 /*
2344 * Sensor Scale command is a setter/getter command for the calibration
2345 * scale.
2346 */
2347 MOTIONSENSE_CMD_SENSOR_SCALE = 18,
2348
2349 /* Number of motionsense sub-commands. */
2350 MOTIONSENSE_NUM_CMDS
2351};
2352
2353/* List of motion sensor types. */
2354enum motionsensor_type {
2355 MOTIONSENSE_TYPE_ACCEL = 0,
2356 MOTIONSENSE_TYPE_GYRO = 1,
2357 MOTIONSENSE_TYPE_MAG = 2,
2358 MOTIONSENSE_TYPE_PROX = 3,
2359 MOTIONSENSE_TYPE_LIGHT = 4,
2360 MOTIONSENSE_TYPE_ACTIVITY = 5,
2361 MOTIONSENSE_TYPE_BARO = 6,
2362 MOTIONSENSE_TYPE_SYNC = 7,
2363 MOTIONSENSE_TYPE_MAX,
2364};
2365
2366/* List of motion sensor locations. */
2367enum motionsensor_location {
2368 MOTIONSENSE_LOC_BASE = 0,
2369 MOTIONSENSE_LOC_LID = 1,
2370 MOTIONSENSE_LOC_CAMERA = 2,
2371 MOTIONSENSE_LOC_MAX,
2372};
2373
2374/* List of motion sensor chips. */
2375enum motionsensor_chip {
2376 MOTIONSENSE_CHIP_KXCJ9 = 0,
2377 MOTIONSENSE_CHIP_LSM6DS0 = 1,
2378 MOTIONSENSE_CHIP_BMI160 = 2,
2379 MOTIONSENSE_CHIP_SI1141 = 3,
2380 MOTIONSENSE_CHIP_SI1142 = 4,
2381 MOTIONSENSE_CHIP_SI1143 = 5,
2382 MOTIONSENSE_CHIP_KX022 = 6,
2383 MOTIONSENSE_CHIP_L3GD20H = 7,
2384 MOTIONSENSE_CHIP_BMA255 = 8,
2385 MOTIONSENSE_CHIP_BMP280 = 9,
2386 MOTIONSENSE_CHIP_OPT3001 = 10,
2387 MOTIONSENSE_CHIP_BH1730 = 11,
2388 MOTIONSENSE_CHIP_GPIO = 12,
2389 MOTIONSENSE_CHIP_LIS2DH = 13,
2390 MOTIONSENSE_CHIP_LSM6DSM = 14,
2391 MOTIONSENSE_CHIP_LIS2DE = 15,
2392 MOTIONSENSE_CHIP_LIS2MDL = 16,
2393 MOTIONSENSE_CHIP_LSM6DS3 = 17,
2394 MOTIONSENSE_CHIP_LSM6DSO = 18,
2395 MOTIONSENSE_CHIP_LNG2DM = 19,
2396 MOTIONSENSE_CHIP_MAX,
2397};
2398
2399/* List of orientation positions */
2400enum motionsensor_orientation {
2401 MOTIONSENSE_ORIENTATION_LANDSCAPE = 0,
2402 MOTIONSENSE_ORIENTATION_PORTRAIT = 1,
2403 MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_PORTRAIT = 2,
2404 MOTIONSENSE_ORIENTATION_UPSIDE_DOWN_LANDSCAPE = 3,
2405 MOTIONSENSE_ORIENTATION_UNKNOWN = 4,
2406};
2407
2408struct ec_response_motion_sensor_data {
2409 /* Flags for each sensor. */
2410 uint8_t flags;
2411 /* Sensor number the data comes from. */
2412 uint8_t sensor_num;
2413 /* Each sensor is up to 3-axis. */
2414 union {
2415 int16_t data[3];
2416 struct __ec_todo_packed {
2417 uint16_t reserved;
2418 uint32_t timestamp;
2419 };
2420 struct __ec_todo_unpacked {
2421 uint8_t activity; /* motionsensor_activity */
2422 uint8_t state;
2423 int16_t add_info[2];
2424 };
2425 };
2426} __ec_todo_packed;
2427
2428/* Note: used in ec_response_get_next_data */
2429struct ec_response_motion_sense_fifo_info {
2430 /* Size of the fifo */
2431 uint16_t size;
2432 /* Amount of space used in the fifo */
2433 uint16_t count;
2434 /* Timestamp recorded in us.
2435 * aka accurate timestamp when host event was triggered.
2436 */
2437 uint32_t timestamp;
2438 /* Total amount of vector lost */
2439 uint16_t total_lost;
2440 /* Lost events since the last fifo_info, per sensors */
2441 uint16_t lost[];
2442} __ec_todo_packed;
2443
2444struct ec_response_motion_sense_fifo_data {
2445 uint32_t number_data;
2446 struct ec_response_motion_sensor_data data[];
2447} __ec_todo_packed;
2448
2449/* List supported activity recognition */
2450enum motionsensor_activity {
2451 MOTIONSENSE_ACTIVITY_RESERVED = 0,
2452 MOTIONSENSE_ACTIVITY_SIG_MOTION = 1,
2453 MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2,
2454 MOTIONSENSE_ACTIVITY_ORIENTATION = 3,
2455};
2456
2457struct ec_motion_sense_activity {
2458 uint8_t sensor_num;
2459 uint8_t activity; /* one of enum motionsensor_activity */
2460 uint8_t enable; /* 1: enable, 0: disable */
2461 uint8_t reserved;
2462 uint16_t parameters[3]; /* activity dependent parameters */
2463} __ec_todo_unpacked;
2464
2465/* Module flag masks used for the dump sub-command. */
2466#define MOTIONSENSE_MODULE_FLAG_ACTIVE BIT(0)
2467
2468/* Sensor flag masks used for the dump sub-command. */
2469#define MOTIONSENSE_SENSOR_FLAG_PRESENT BIT(0)
2470
2471/*
2472 * Flush entry for synchronization.
2473 * data contains time stamp
2474 */
2475#define MOTIONSENSE_SENSOR_FLAG_FLUSH BIT(0)
2476#define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP BIT(1)
2477#define MOTIONSENSE_SENSOR_FLAG_WAKEUP BIT(2)
2478#define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE BIT(3)
2479#define MOTIONSENSE_SENSOR_FLAG_ODR BIT(4)
2480
2481/*
2482 * Send this value for the data element to only perform a read. If you
2483 * send any other value, the EC will interpret it as data to set and will
2484 * return the actual value set.
2485 */
2486#define EC_MOTION_SENSE_NO_VALUE -1
2487
2488#define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
2489
2490/* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
2491/* Set Calibration information */
2492#define MOTION_SENSE_SET_OFFSET BIT(0)
2493
2494/* Default Scale value, factor 1. */
2495#define MOTION_SENSE_DEFAULT_SCALE BIT(15)
2496
2497#define LID_ANGLE_UNRELIABLE 500
2498
2499enum motionsense_spoof_mode {
2500 /* Disable spoof mode. */
2501 MOTIONSENSE_SPOOF_MODE_DISABLE = 0,
2502
2503 /* Enable spoof mode, but use provided component values. */
2504 MOTIONSENSE_SPOOF_MODE_CUSTOM,
2505
2506 /* Enable spoof mode, but use the current sensor values. */
2507 MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT,
2508
2509 /* Query the current spoof mode status for the sensor. */
2510 MOTIONSENSE_SPOOF_MODE_QUERY,
2511};
2512
2513struct ec_params_motion_sense {
2514 uint8_t cmd;
2515 union {
2516 /* Used for MOTIONSENSE_CMD_DUMP. */
2517 struct __ec_todo_unpacked {
2518 /*
2519 * Maximal number of sensor the host is expecting.
2520 * 0 means the host is only interested in the number
2521 * of sensors controlled by the EC.
2522 */
2523 uint8_t max_sensor_count;
2524 } dump;
2525
2526 /*
2527 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
2528 */
2529 struct __ec_todo_unpacked {
2530 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
2531 * kb_wake_angle: angle to wakup AP.
2532 */
2533 int16_t data;
2534 } kb_wake_angle;
2535
2536 /*
2537 * Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
2538 * and MOTIONSENSE_CMD_PERFORM_CALIB.
2539 */
2540 struct __ec_todo_unpacked {
2541 uint8_t sensor_num;
2542 } info, info_3, data, fifo_flush, perform_calib,
2543 list_activities;
2544
2545 /*
2546 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
2547 * and MOTIONSENSE_CMD_SENSOR_RANGE.
2548 */
2549 struct __ec_todo_unpacked {
2550 uint8_t sensor_num;
2551
2552 /* Rounding flag, true for round-up, false for down. */
2553 uint8_t roundup;
2554
2555 uint16_t reserved;
2556
2557 /* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
2558 int32_t data;
2559 } ec_rate, sensor_odr, sensor_range;
2560
2561 /* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2562 struct __ec_todo_packed {
2563 uint8_t sensor_num;
2564
2565 /*
2566 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2567 * the calibration information in the EC.
2568 * If unset, just retrieve calibration information.
2569 */
2570 uint16_t flags;
2571
2572 /*
2573 * Temperature at calibration, in units of 0.01 C
2574 * 0x8000: invalid / unknown.
2575 * 0x0: 0C
2576 * 0x7fff: +327.67C
2577 */
2578 int16_t temp;
2579
2580 /*
2581 * Offset for calibration.
2582 * Unit:
2583 * Accelerometer: 1/1024 g
2584 * Gyro: 1/1024 deg/s
2585 * Compass: 1/16 uT
2586 */
2587 int16_t offset[3];
2588 } sensor_offset;
2589
2590 /* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2591 struct __ec_todo_packed {
2592 uint8_t sensor_num;
2593
2594 /*
2595 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2596 * the calibration information in the EC.
2597 * If unset, just retrieve calibration information.
2598 */
2599 uint16_t flags;
2600
2601 /*
2602 * Temperature at calibration, in units of 0.01 C
2603 * 0x8000: invalid / unknown.
2604 * 0x0: 0C
2605 * 0x7fff: +327.67C
2606 */
2607 int16_t temp;
2608
2609 /*
2610 * Scale for calibration:
2611 * By default scale is 1, it is encoded on 16bits:
2612 * 1 = BIT(15)
2613 * ~2 = 0xFFFF
2614 * ~0 = 0.
2615 */
2616 uint16_t scale[3];
2617 } sensor_scale;
2618
2619
2620 /* Used for MOTIONSENSE_CMD_FIFO_INFO */
2621 /* (no params) */
2622
2623 /* Used for MOTIONSENSE_CMD_FIFO_READ */
2624 struct __ec_todo_unpacked {
2625 /*
2626 * Number of expected vector to return.
2627 * EC may return less or 0 if none available.
2628 */
2629 uint32_t max_data_vector;
2630 } fifo_read;
2631
2632 struct ec_motion_sense_activity set_activity;
2633
2634 /* Used for MOTIONSENSE_CMD_LID_ANGLE */
2635 /* (no params) */
2636
2637 /* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */
2638 struct __ec_todo_unpacked {
2639 /*
2640 * 1: enable, 0 disable fifo,
2641 * EC_MOTION_SENSE_NO_VALUE return value.
2642 */
2643 int8_t enable;
2644 } fifo_int_enable;
2645
2646 /* Used for MOTIONSENSE_CMD_SPOOF */
2647 struct __ec_todo_packed {
2648 uint8_t sensor_id;
2649
2650 /* See enum motionsense_spoof_mode. */
2651 uint8_t spoof_enable;
2652
2653 /* Ignored, used for alignment. */
2654 uint8_t reserved;
2655
2656 /* Individual component values to spoof. */
2657 int16_t components[3];
2658 } spoof;
2659
2660 /* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2661 struct __ec_todo_unpacked {
2662 /*
2663 * Lid angle threshold for switching between tablet and
2664 * clamshell mode.
2665 */
2666 int16_t lid_angle;
2667
2668 /*
2669 * Hysteresis degree to prevent fluctuations between
2670 * clamshell and tablet mode if lid angle keeps
2671 * changing around the threshold. Lid motion driver will
2672 * use lid_angle + hys_degree to trigger tablet mode and
2673 * lid_angle - hys_degree to trigger clamshell mode.
2674 */
2675 int16_t hys_degree;
2676 } tablet_mode_threshold;
2677 };
2678} __ec_todo_packed;
2679
2680struct ec_response_motion_sense {
2681 union {
2682 /* Used for MOTIONSENSE_CMD_DUMP */
2683 struct __ec_todo_unpacked {
2684 /* Flags representing the motion sensor module. */
2685 uint8_t module_flags;
2686
2687 /* Number of sensors managed directly by the EC. */
2688 uint8_t sensor_count;
2689
2690 /*
2691 * Sensor data is truncated if response_max is too small
2692 * for holding all the data.
2693 */
2694 struct ec_response_motion_sensor_data sensor[0];
2695 } dump;
2696
2697 /* Used for MOTIONSENSE_CMD_INFO. */
2698 struct __ec_todo_unpacked {
2699 /* Should be element of enum motionsensor_type. */
2700 uint8_t type;
2701
2702 /* Should be element of enum motionsensor_location. */
2703 uint8_t location;
2704
2705 /* Should be element of enum motionsensor_chip. */
2706 uint8_t chip;
2707 } info;
2708
2709 /* Used for MOTIONSENSE_CMD_INFO version 3 */
2710 struct __ec_todo_unpacked {
2711 /* Should be element of enum motionsensor_type. */
2712 uint8_t type;
2713
2714 /* Should be element of enum motionsensor_location. */
2715 uint8_t location;
2716
2717 /* Should be element of enum motionsensor_chip. */
2718 uint8_t chip;
2719
2720 /* Minimum sensor sampling frequency */
2721 uint32_t min_frequency;
2722
2723 /* Maximum sensor sampling frequency */
2724 uint32_t max_frequency;
2725
2726 /* Max number of sensor events that could be in fifo */
2727 uint32_t fifo_max_event_count;
2728 } info_3;
2729
2730 /* Used for MOTIONSENSE_CMD_DATA */
2731 struct ec_response_motion_sensor_data data;
2732
2733 /*
2734 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
2735 * MOTIONSENSE_CMD_SENSOR_RANGE,
2736 * MOTIONSENSE_CMD_KB_WAKE_ANGLE,
2737 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and
2738 * MOTIONSENSE_CMD_SPOOF.
2739 */
2740 struct __ec_todo_unpacked {
2741 /* Current value of the parameter queried. */
2742 int32_t ret;
2743 } ec_rate, sensor_odr, sensor_range, kb_wake_angle,
2744 fifo_int_enable, spoof;
2745
2746 /*
2747 * Used for MOTIONSENSE_CMD_SENSOR_OFFSET,
2748 * PERFORM_CALIB.
2749 */
2750 struct __ec_todo_unpacked {
2751 int16_t temp;
2752 int16_t offset[3];
2753 } sensor_offset, perform_calib;
2754
2755 /* Used for MOTIONSENSE_CMD_SENSOR_SCALE */
2756 struct __ec_todo_unpacked {
2757 int16_t temp;
2758 uint16_t scale[3];
2759 } sensor_scale;
2760
2761 struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
2762
2763 struct ec_response_motion_sense_fifo_data fifo_read;
2764
2765 struct __ec_todo_packed {
2766 uint16_t reserved;
2767 uint32_t enabled;
2768 uint32_t disabled;
2769 } list_activities;
2770
2771 /* No params for set activity */
2772
2773 /* Used for MOTIONSENSE_CMD_LID_ANGLE */
2774 struct __ec_todo_unpacked {
2775 /*
2776 * Angle between 0 and 360 degree if available,
2777 * LID_ANGLE_UNRELIABLE otherwise.
2778 */
2779 uint16_t value;
2780 } lid_angle;
2781
2782 /* Used for MOTIONSENSE_CMD_TABLET_MODE_LID_ANGLE. */
2783 struct __ec_todo_unpacked {
2784 /*
2785 * Lid angle threshold for switching between tablet and
2786 * clamshell mode.
2787 */
2788 uint16_t lid_angle;
2789
2790 /* Hysteresis degree. */
2791 uint16_t hys_degree;
2792 } tablet_mode_threshold;
2793
2794 };
2795} __ec_todo_packed;
2796
2797/*****************************************************************************/
2798/* Force lid open command */
2799
2800/* Make lid event always open */
2801#define EC_CMD_FORCE_LID_OPEN 0x002C
2802
2803struct ec_params_force_lid_open {
2804 uint8_t enabled;
2805} __ec_align1;
2806
2807/*****************************************************************************/
2808/* Configure the behavior of the power button */
2809#define EC_CMD_CONFIG_POWER_BUTTON 0x002D
2810
2811enum ec_config_power_button_flags {
2812 /* Enable/Disable power button pulses for x86 devices */
2813 EC_POWER_BUTTON_ENABLE_PULSE = BIT(0),
2814};
2815
2816struct ec_params_config_power_button {
2817 /* See enum ec_config_power_button_flags */
2818 uint8_t flags;
2819} __ec_align1;
2820
2821/*****************************************************************************/
2822/* USB charging control commands */
2823
2824/* Set USB port charging mode */
2825#define EC_CMD_USB_CHARGE_SET_MODE 0x0030
2826
2827struct ec_params_usb_charge_set_mode {
2828 uint8_t usb_port_id;
2829 uint8_t mode:7;
2830 uint8_t inhibit_charge:1;
2831} __ec_align1;
2832
2833/*****************************************************************************/
2834/* Persistent storage for host */
2835
2836/* Maximum bytes that can be read/written in a single command */
2837#define EC_PSTORE_SIZE_MAX 64
2838
2839/* Get persistent storage info */
2840#define EC_CMD_PSTORE_INFO 0x0040
2841
2842struct ec_response_pstore_info {
2843 /* Persistent storage size, in bytes */
2844 uint32_t pstore_size;
2845 /* Access size; read/write offset and size must be a multiple of this */
2846 uint32_t access_size;
2847} __ec_align4;
2848
2849/*
2850 * Read persistent storage
2851 *
2852 * Response is params.size bytes of data.
2853 */
2854#define EC_CMD_PSTORE_READ 0x0041
2855
2856struct ec_params_pstore_read {
2857 uint32_t offset; /* Byte offset to read */
2858 uint32_t size; /* Size to read in bytes */
2859} __ec_align4;
2860
2861/* Write persistent storage */
2862#define EC_CMD_PSTORE_WRITE 0x0042
2863
2864struct ec_params_pstore_write {
2865 uint32_t offset; /* Byte offset to write */
2866 uint32_t size; /* Size to write in bytes */
2867 uint8_t data[EC_PSTORE_SIZE_MAX];
2868} __ec_align4;
2869
2870/*****************************************************************************/
2871/* Real-time clock */
2872
2873/* RTC params and response structures */
2874struct ec_params_rtc {
2875 uint32_t time;
2876} __ec_align4;
2877
2878struct ec_response_rtc {
2879 uint32_t time;
2880} __ec_align4;
2881
2882/* These use ec_response_rtc */
2883#define EC_CMD_RTC_GET_VALUE 0x0044
2884#define EC_CMD_RTC_GET_ALARM 0x0045
2885
2886/* These all use ec_params_rtc */
2887#define EC_CMD_RTC_SET_VALUE 0x0046
2888#define EC_CMD_RTC_SET_ALARM 0x0047
2889
2890/* Pass as time param to SET_ALARM to clear the current alarm */
2891#define EC_RTC_ALARM_CLEAR 0
2892
2893/*****************************************************************************/
2894/* Port80 log access */
2895
2896/* Maximum entries that can be read/written in a single command */
2897#define EC_PORT80_SIZE_MAX 32
2898
2899/* Get last port80 code from previous boot */
2900#define EC_CMD_PORT80_LAST_BOOT 0x0048
2901#define EC_CMD_PORT80_READ 0x0048
2902
2903enum ec_port80_subcmd {
2904 EC_PORT80_GET_INFO = 0,
2905 EC_PORT80_READ_BUFFER,
2906};
2907
2908struct ec_params_port80_read {
2909 uint16_t subcmd;
2910 union {
2911 struct __ec_todo_unpacked {
2912 uint32_t offset;
2913 uint32_t num_entries;
2914 } read_buffer;
2915 };
2916} __ec_todo_packed;
2917
2918struct ec_response_port80_read {
2919 union {
2920 struct __ec_todo_unpacked {
2921 uint32_t writes;
2922 uint32_t history_size;
2923 uint32_t last_boot;
2924 } get_info;
2925 struct __ec_todo_unpacked {
2926 uint16_t codes[EC_PORT80_SIZE_MAX];
2927 } data;
2928 };
2929} __ec_todo_packed;
2930
2931struct ec_response_port80_last_boot {
2932 uint16_t code;
2933} __ec_align2;
2934
2935/*****************************************************************************/
2936/* Temporary secure storage for host verified boot use */
2937
2938/* Number of bytes in a vstore slot */
2939#define EC_VSTORE_SLOT_SIZE 64
2940
2941/* Maximum number of vstore slots */
2942#define EC_VSTORE_SLOT_MAX 32
2943
2944/* Get persistent storage info */
2945#define EC_CMD_VSTORE_INFO 0x0049
2946struct ec_response_vstore_info {
2947 /* Indicates which slots are locked */
2948 uint32_t slot_locked;
2949 /* Total number of slots available */
2950 uint8_t slot_count;
2951} __ec_align_size1;
2952
2953/*
2954 * Read temporary secure storage
2955 *
2956 * Response is EC_VSTORE_SLOT_SIZE bytes of data.
2957 */
2958#define EC_CMD_VSTORE_READ 0x004A
2959
2960struct ec_params_vstore_read {
2961 uint8_t slot; /* Slot to read from */
2962} __ec_align1;
2963
2964struct ec_response_vstore_read {
2965 uint8_t data[EC_VSTORE_SLOT_SIZE];
2966} __ec_align1;
2967
2968/*
2969 * Write temporary secure storage and lock it.
2970 */
2971#define EC_CMD_VSTORE_WRITE 0x004B
2972
2973struct ec_params_vstore_write {
2974 uint8_t slot; /* Slot to write to */
2975 uint8_t data[EC_VSTORE_SLOT_SIZE];
2976} __ec_align1;
2977
2978/*****************************************************************************/
2979/* Thermal engine commands. Note that there are two implementations. We'll
2980 * reuse the command number, but the data and behavior is incompatible.
2981 * Version 0 is what originally shipped on Link.
2982 * Version 1 separates the CPU thermal limits from the fan control.
2983 */
2984
2985#define EC_CMD_THERMAL_SET_THRESHOLD 0x0050
2986#define EC_CMD_THERMAL_GET_THRESHOLD 0x0051
2987
2988/* The version 0 structs are opaque. You have to know what they are for
2989 * the get/set commands to make any sense.
2990 */
2991
2992/* Version 0 - set */
2993struct ec_params_thermal_set_threshold {
2994 uint8_t sensor_type;
2995 uint8_t threshold_id;
2996 uint16_t value;
2997} __ec_align2;
2998
2999/* Version 0 - get */
3000struct ec_params_thermal_get_threshold {
3001 uint8_t sensor_type;
3002 uint8_t threshold_id;
3003} __ec_align1;
3004
3005struct ec_response_thermal_get_threshold {
3006 uint16_t value;
3007} __ec_align2;
3008
3009
3010/* The version 1 structs are visible. */
3011enum ec_temp_thresholds {
3012 EC_TEMP_THRESH_WARN = 0,
3013 EC_TEMP_THRESH_HIGH,
3014 EC_TEMP_THRESH_HALT,
3015
3016 EC_TEMP_THRESH_COUNT
3017};
3018
3019/*
3020 * Thermal configuration for one temperature sensor. Temps are in degrees K.
3021 * Zero values will be silently ignored by the thermal task.
3022 *
3023 * Set 'temp_host' value allows thermal task to trigger some event with 1 degree
3024 * hysteresis.
3025 * For example,
3026 * temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3027 * temp_host_release[EC_TEMP_THRESH_HIGH] = 0 K
3028 * EC will throttle ap when temperature >= 301 K, and release throttling when
3029 * temperature <= 299 K.
3030 *
3031 * Set 'temp_host_release' value allows thermal task has a custom hysteresis.
3032 * For example,
3033 * temp_host[EC_TEMP_THRESH_HIGH] = 300 K
3034 * temp_host_release[EC_TEMP_THRESH_HIGH] = 295 K
3035 * EC will throttle ap when temperature >= 301 K, and release throttling when
3036 * temperature <= 294 K.
3037 *
3038 * Note that this structure is a sub-structure of
3039 * ec_params_thermal_set_threshold_v1, but maintains its alignment there.
3040 */
3041struct ec_thermal_config {
3042 uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
3043 uint32_t temp_host_release[EC_TEMP_THRESH_COUNT]; /* release levels */
3044 uint32_t temp_fan_off; /* no active cooling needed */
3045 uint32_t temp_fan_max; /* max active cooling needed */
3046} __ec_align4;
3047
3048/* Version 1 - get config for one sensor. */
3049struct ec_params_thermal_get_threshold_v1 {
3050 uint32_t sensor_num;
3051} __ec_align4;
3052/* This returns a struct ec_thermal_config */
3053
3054/*
3055 * Version 1 - set config for one sensor.
3056 * Use read-modify-write for best results!
3057 */
3058struct ec_params_thermal_set_threshold_v1 {
3059 uint32_t sensor_num;
3060 struct ec_thermal_config cfg;
3061} __ec_align4;
3062/* This returns no data */
3063
3064/****************************************************************************/
3065
3066/* Toggle automatic fan control */
3067#define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052
3068
3069/* Version 1 of input params */
3070struct ec_params_auto_fan_ctrl_v1 {
3071 uint8_t fan_idx;
3072} __ec_align1;
3073
3074/* Get/Set TMP006 calibration data */
3075#define EC_CMD_TMP006_GET_CALIBRATION 0x0053
3076#define EC_CMD_TMP006_SET_CALIBRATION 0x0054
3077
3078/*
3079 * The original TMP006 calibration only needed four params, but now we need
3080 * more. Since the algorithm is nothing but magic numbers anyway, we'll leave
3081 * the params opaque. The v1 "get" response will include the algorithm number
3082 * and how many params it requires. That way we can change the EC code without
3083 * needing to update this file. We can also use a different algorithm on each
3084 * sensor.
3085 */
3086
3087/* This is the same struct for both v0 and v1. */
3088struct ec_params_tmp006_get_calibration {
3089 uint8_t index;
3090} __ec_align1;
3091
3092/* Version 0 */
3093struct ec_response_tmp006_get_calibration_v0 {
3094 float s0;
3095 float b0;
3096 float b1;
3097 float b2;
3098} __ec_align4;
3099
3100struct ec_params_tmp006_set_calibration_v0 {
3101 uint8_t index;
3102 uint8_t reserved[3];
3103 float s0;
3104 float b0;
3105 float b1;
3106 float b2;
3107} __ec_align4;
3108
3109/* Version 1 */
3110struct ec_response_tmp006_get_calibration_v1 {
3111 uint8_t algorithm;
3112 uint8_t num_params;
3113 uint8_t reserved[2];
3114 float val[];
3115} __ec_align4;
3116
3117struct ec_params_tmp006_set_calibration_v1 {
3118 uint8_t index;
3119 uint8_t algorithm;
3120 uint8_t num_params;
3121 uint8_t reserved;
3122 float val[];
3123} __ec_align4;
3124
3125
3126/* Read raw TMP006 data */
3127#define EC_CMD_TMP006_GET_RAW 0x0055
3128
3129struct ec_params_tmp006_get_raw {
3130 uint8_t index;
3131} __ec_align1;
3132
3133struct ec_response_tmp006_get_raw {
3134 int32_t t; /* In 1/100 K */
3135 int32_t v; /* In nV */
3136} __ec_align4;
3137
3138/*****************************************************************************/
3139/* MKBP - Matrix KeyBoard Protocol */
3140
3141/*
3142 * Read key state
3143 *
3144 * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
3145 * expected response size.
3146 *
3147 * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT. If you wish
3148 * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
3149 * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
3150 */
3151#define EC_CMD_MKBP_STATE 0x0060
3152
3153/*
3154 * Provide information about various MKBP things. See enum ec_mkbp_info_type.
3155 */
3156#define EC_CMD_MKBP_INFO 0x0061
3157
3158struct ec_response_mkbp_info {
3159 uint32_t rows;
3160 uint32_t cols;
3161 /* Formerly "switches", which was 0. */
3162 uint8_t reserved;
3163} __ec_align_size1;
3164
3165struct ec_params_mkbp_info {
3166 uint8_t info_type;
3167 uint8_t event_type;
3168} __ec_align1;
3169
3170enum ec_mkbp_info_type {
3171 /*
3172 * Info about the keyboard matrix: number of rows and columns.
3173 *
3174 * Returns struct ec_response_mkbp_info.
3175 */
3176 EC_MKBP_INFO_KBD = 0,
3177
3178 /*
3179 * For buttons and switches, info about which specifically are
3180 * supported. event_type must be set to one of the values in enum
3181 * ec_mkbp_event.
3182 *
3183 * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
3184 * bitmask indicating which buttons or switches are present. See the
3185 * bit inidices below.
3186 */
3187 EC_MKBP_INFO_SUPPORTED = 1,
3188
3189 /*
3190 * Instantaneous state of buttons and switches.
3191 *
3192 * event_type must be set to one of the values in enum ec_mkbp_event.
3193 *
3194 * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
3195 * indicating the current state of the keyboard matrix.
3196 *
3197 * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
3198 * event state.
3199 *
3200 * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
3201 * state of supported buttons.
3202 *
3203 * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
3204 * state of supported switches.
3205 */
3206 EC_MKBP_INFO_CURRENT = 2,
3207};
3208
3209/* Simulate key press */
3210#define EC_CMD_MKBP_SIMULATE_KEY 0x0062
3211
3212struct ec_params_mkbp_simulate_key {
3213 uint8_t col;
3214 uint8_t row;
3215 uint8_t pressed;
3216} __ec_align1;
3217
3218#define EC_CMD_GET_KEYBOARD_ID 0x0063
3219
3220struct ec_response_keyboard_id {
3221 uint32_t keyboard_id;
3222} __ec_align4;
3223
3224enum keyboard_id {
3225 KEYBOARD_ID_UNSUPPORTED = 0,
3226 KEYBOARD_ID_UNREADABLE = 0xffffffff,
3227};
3228
3229/* Configure keyboard scanning */
3230#define EC_CMD_MKBP_SET_CONFIG 0x0064
3231#define EC_CMD_MKBP_GET_CONFIG 0x0065
3232
3233/* flags */
3234enum mkbp_config_flags {
3235 EC_MKBP_FLAGS_ENABLE = 1, /* Enable keyboard scanning */
3236};
3237
3238enum mkbp_config_valid {
3239 EC_MKBP_VALID_SCAN_PERIOD = BIT(0),
3240 EC_MKBP_VALID_POLL_TIMEOUT = BIT(1),
3241 EC_MKBP_VALID_MIN_POST_SCAN_DELAY = BIT(3),
3242 EC_MKBP_VALID_OUTPUT_SETTLE = BIT(4),
3243 EC_MKBP_VALID_DEBOUNCE_DOWN = BIT(5),
3244 EC_MKBP_VALID_DEBOUNCE_UP = BIT(6),
3245 EC_MKBP_VALID_FIFO_MAX_DEPTH = BIT(7),
3246};
3247
3248/*
3249 * Configuration for our key scanning algorithm.
3250 *
3251 * Note that this is used as a sub-structure of
3252 * ec_{params/response}_mkbp_get_config.
3253 */
3254struct ec_mkbp_config {
3255 uint32_t valid_mask; /* valid fields */
3256 uint8_t flags; /* some flags (enum mkbp_config_flags) */
3257 uint8_t valid_flags; /* which flags are valid */
3258 uint16_t scan_period_us; /* period between start of scans */
3259 /* revert to interrupt mode after no activity for this long */
3260 uint32_t poll_timeout_us;
3261 /*
3262 * minimum post-scan relax time. Once we finish a scan we check
3263 * the time until we are due to start the next one. If this time is
3264 * shorter this field, we use this instead.
3265 */
3266 uint16_t min_post_scan_delay_us;
3267 /* delay between setting up output and waiting for it to settle */
3268 uint16_t output_settle_us;
3269 uint16_t debounce_down_us; /* time for debounce on key down */
3270 uint16_t debounce_up_us; /* time for debounce on key up */
3271 /* maximum depth to allow for fifo (0 = no keyscan output) */
3272 uint8_t fifo_max_depth;
3273} __ec_align_size1;
3274
3275struct ec_params_mkbp_set_config {
3276 struct ec_mkbp_config config;
3277} __ec_align_size1;
3278
3279struct ec_response_mkbp_get_config {
3280 struct ec_mkbp_config config;
3281} __ec_align_size1;
3282
3283/* Run the key scan emulation */
3284#define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066
3285
3286enum ec_keyscan_seq_cmd {
3287 EC_KEYSCAN_SEQ_STATUS = 0, /* Get status information */
3288 EC_KEYSCAN_SEQ_CLEAR = 1, /* Clear sequence */
3289 EC_KEYSCAN_SEQ_ADD = 2, /* Add item to sequence */
3290 EC_KEYSCAN_SEQ_START = 3, /* Start running sequence */
3291 EC_KEYSCAN_SEQ_COLLECT = 4, /* Collect sequence summary data */
3292};
3293
3294enum ec_collect_flags {
3295 /*
3296 * Indicates this scan was processed by the EC. Due to timing, some
3297 * scans may be skipped.
3298 */
3299 EC_KEYSCAN_SEQ_FLAG_DONE = BIT(0),
3300};
3301
3302struct ec_collect_item {
3303 uint8_t flags; /* some flags (enum ec_collect_flags) */
3304} __ec_align1;
3305
3306struct ec_params_keyscan_seq_ctrl {
3307 uint8_t cmd; /* Command to send (enum ec_keyscan_seq_cmd) */
3308 union {
3309 struct __ec_align1 {
3310 uint8_t active; /* still active */
3311 uint8_t num_items; /* number of items */
3312 /* Current item being presented */
3313 uint8_t cur_item;
3314 } status;
3315 struct __ec_todo_unpacked {
3316 /*
3317 * Absolute time for this scan, measured from the
3318 * start of the sequence.
3319 */
3320 uint32_t time_us;
3321 uint8_t scan[0]; /* keyscan data */
3322 } add;
3323 struct __ec_align1 {
3324 uint8_t start_item; /* First item to return */
3325 uint8_t num_items; /* Number of items to return */
3326 } collect;
3327 };
3328} __ec_todo_packed;
3329
3330struct ec_result_keyscan_seq_ctrl {
3331 union {
3332 struct __ec_todo_unpacked {
3333 uint8_t num_items; /* Number of items */
3334 /* Data for each item */
3335 struct ec_collect_item item[0];
3336 } collect;
3337 };
3338} __ec_todo_packed;
3339
3340/*
3341 * Get the next pending MKBP event.
3342 *
3343 * Returns EC_RES_UNAVAILABLE if there is no event pending.
3344 */
3345#define EC_CMD_GET_NEXT_EVENT 0x0067
3346
3347#define EC_MKBP_HAS_MORE_EVENTS_SHIFT 7
3348
3349/*
3350 * We use the most significant bit of the event type to indicate to the host
3351 * that the EC has more MKBP events available to provide.
3352 */
3353#define EC_MKBP_HAS_MORE_EVENTS BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT)
3354
3355/* The mask to apply to get the raw event type */
3356#define EC_MKBP_EVENT_TYPE_MASK (BIT(EC_MKBP_HAS_MORE_EVENTS_SHIFT) - 1)
3357
3358enum ec_mkbp_event {
3359 /* Keyboard matrix changed. The event data is the new matrix state. */
3360 EC_MKBP_EVENT_KEY_MATRIX = 0,
3361
3362 /* New host event. The event data is 4 bytes of host event flags. */
3363 EC_MKBP_EVENT_HOST_EVENT = 1,
3364
3365 /* New Sensor FIFO data. The event data is fifo_info structure. */
3366 EC_MKBP_EVENT_SENSOR_FIFO = 2,
3367
3368 /* The state of the non-matrixed buttons have changed. */
3369 EC_MKBP_EVENT_BUTTON = 3,
3370
3371 /* The state of the switches have changed. */
3372 EC_MKBP_EVENT_SWITCH = 4,
3373
3374 /* New Fingerprint sensor event, the event data is fp_events bitmap. */
3375 EC_MKBP_EVENT_FINGERPRINT = 5,
3376
3377 /*
3378 * Sysrq event: send emulated sysrq. The event data is sysrq,
3379 * corresponding to the key to be pressed.
3380 */
3381 EC_MKBP_EVENT_SYSRQ = 6,
3382
3383 /*
3384 * New 64-bit host event.
3385 * The event data is 8 bytes of host event flags.
3386 */
3387 EC_MKBP_EVENT_HOST_EVENT64 = 7,
3388
3389 /* Notify the AP that something happened on CEC */
3390 EC_MKBP_EVENT_CEC_EVENT = 8,
3391
3392 /* Send an incoming CEC message to the AP */
3393 EC_MKBP_EVENT_CEC_MESSAGE = 9,
3394
3395 /* Peripheral device charger event */
3396 EC_MKBP_EVENT_PCHG = 12,
3397
3398 /* Number of MKBP events */
3399 EC_MKBP_EVENT_COUNT,
3400};
3401BUILD_ASSERT(EC_MKBP_EVENT_COUNT <= EC_MKBP_EVENT_TYPE_MASK);
3402
3403union __ec_align_offset1 ec_response_get_next_data {
3404 uint8_t key_matrix[13];
3405
3406 /* Unaligned */
3407 uint32_t host_event;
3408 uint64_t host_event64;
3409
3410 struct __ec_todo_unpacked {
3411 /* For aligning the fifo_info */
3412 uint8_t reserved[3];
3413 struct ec_response_motion_sense_fifo_info info;
3414 } sensor_fifo;
3415
3416 uint32_t buttons;
3417
3418 uint32_t switches;
3419
3420 uint32_t fp_events;
3421
3422 uint32_t sysrq;
3423
3424 /* CEC events from enum mkbp_cec_event */
3425 uint32_t cec_events;
3426};
3427
3428union __ec_align_offset1 ec_response_get_next_data_v1 {
3429 uint8_t key_matrix[16];
3430
3431 /* Unaligned */
3432 uint32_t host_event;
3433 uint64_t host_event64;
3434
3435 struct __ec_todo_unpacked {
3436 /* For aligning the fifo_info */
3437 uint8_t reserved[3];
3438 struct ec_response_motion_sense_fifo_info info;
3439 } sensor_fifo;
3440
3441 uint32_t buttons;
3442
3443 uint32_t switches;
3444
3445 uint32_t fp_events;
3446
3447 uint32_t sysrq;
3448
3449 /* CEC events from enum mkbp_cec_event */
3450 uint32_t cec_events;
3451
3452 uint8_t cec_message[16];
3453};
3454BUILD_ASSERT(sizeof(union ec_response_get_next_data_v1) == 16);
3455
3456struct ec_response_get_next_event {
3457 uint8_t event_type;
3458 /* Followed by event data if any */
3459 union ec_response_get_next_data data;
3460} __ec_align1;
3461
3462struct ec_response_get_next_event_v1 {
3463 uint8_t event_type;
3464 /* Followed by event data if any */
3465 union ec_response_get_next_data_v1 data;
3466} __ec_align1;
3467
3468/* Bit indices for buttons and switches.*/
3469/* Buttons */
3470#define EC_MKBP_POWER_BUTTON 0
3471#define EC_MKBP_VOL_UP 1
3472#define EC_MKBP_VOL_DOWN 2
3473#define EC_MKBP_RECOVERY 3
3474
3475/* Switches */
3476#define EC_MKBP_LID_OPEN 0
3477#define EC_MKBP_TABLET_MODE 1
3478#define EC_MKBP_BASE_ATTACHED 2
3479#define EC_MKBP_FRONT_PROXIMITY 3
3480
3481/* Run keyboard factory test scanning */
3482#define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068
3483
3484struct ec_response_keyboard_factory_test {
3485 uint16_t shorted; /* Keyboard pins are shorted */
3486} __ec_align2;
3487
3488/* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */
3489#define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF)
3490#define EC_MKBP_FP_ERRCODE(fp_events) ((fp_events) & 0x0000000F)
3491#define EC_MKBP_FP_ENROLL_PROGRESS_OFFSET 4
3492#define EC_MKBP_FP_ENROLL_PROGRESS(fpe) (((fpe) & 0x00000FF0) \
3493 >> EC_MKBP_FP_ENROLL_PROGRESS_OFFSET)
3494#define EC_MKBP_FP_MATCH_IDX_OFFSET 12
3495#define EC_MKBP_FP_MATCH_IDX_MASK 0x0000F000
3496#define EC_MKBP_FP_MATCH_IDX(fpe) (((fpe) & EC_MKBP_FP_MATCH_IDX_MASK) \
3497 >> EC_MKBP_FP_MATCH_IDX_OFFSET)
3498#define EC_MKBP_FP_ENROLL BIT(27)
3499#define EC_MKBP_FP_MATCH BIT(28)
3500#define EC_MKBP_FP_FINGER_DOWN BIT(29)
3501#define EC_MKBP_FP_FINGER_UP BIT(30)
3502#define EC_MKBP_FP_IMAGE_READY BIT(31)
3503/* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_ENROLL is set */
3504#define EC_MKBP_FP_ERR_ENROLL_OK 0
3505#define EC_MKBP_FP_ERR_ENROLL_LOW_QUALITY 1
3506#define EC_MKBP_FP_ERR_ENROLL_IMMOBILE 2
3507#define EC_MKBP_FP_ERR_ENROLL_LOW_COVERAGE 3
3508#define EC_MKBP_FP_ERR_ENROLL_INTERNAL 5
3509/* Can be used to detect if image was usable for enrollment or not. */
3510#define EC_MKBP_FP_ERR_ENROLL_PROBLEM_MASK 1
3511/* code given by EC_MKBP_FP_ERRCODE() when EC_MKBP_FP_MATCH is set */
3512#define EC_MKBP_FP_ERR_MATCH_NO 0
3513#define EC_MKBP_FP_ERR_MATCH_NO_INTERNAL 6
3514#define EC_MKBP_FP_ERR_MATCH_NO_TEMPLATES 7
3515#define EC_MKBP_FP_ERR_MATCH_NO_LOW_QUALITY 2
3516#define EC_MKBP_FP_ERR_MATCH_NO_LOW_COVERAGE 4
3517#define EC_MKBP_FP_ERR_MATCH_YES 1
3518#define EC_MKBP_FP_ERR_MATCH_YES_UPDATED 3
3519#define EC_MKBP_FP_ERR_MATCH_YES_UPDATE_FAILED 5
3520
3521
3522/*****************************************************************************/
3523/* Temperature sensor commands */
3524
3525/* Read temperature sensor info */
3526#define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070
3527
3528struct ec_params_temp_sensor_get_info {
3529 uint8_t id;
3530} __ec_align1;
3531
3532struct ec_response_temp_sensor_get_info {
3533 char sensor_name[32];
3534 uint8_t sensor_type;
3535} __ec_align1;
3536
3537/*****************************************************************************/
3538
3539/*
3540 * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
3541 * commands accidentally sent to the wrong interface. See the ACPI section
3542 * below.
3543 */
3544
3545/*****************************************************************************/
3546/* Host event commands */
3547
3548
3549/* Obsolete. New implementation should use EC_CMD_HOST_EVENT instead */
3550/*
3551 * Host event mask params and response structures, shared by all of the host
3552 * event commands below.
3553 */
3554struct ec_params_host_event_mask {
3555 uint32_t mask;
3556} __ec_align4;
3557
3558struct ec_response_host_event_mask {
3559 uint32_t mask;
3560} __ec_align4;
3561
3562/* These all use ec_response_host_event_mask */
3563#define EC_CMD_HOST_EVENT_GET_B 0x0087
3564#define EC_CMD_HOST_EVENT_GET_SMI_MASK 0x0088
3565#define EC_CMD_HOST_EVENT_GET_SCI_MASK 0x0089
3566#define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D
3567
3568/* These all use ec_params_host_event_mask */
3569#define EC_CMD_HOST_EVENT_SET_SMI_MASK 0x008A
3570#define EC_CMD_HOST_EVENT_SET_SCI_MASK 0x008B
3571#define EC_CMD_HOST_EVENT_CLEAR 0x008C
3572#define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E
3573#define EC_CMD_HOST_EVENT_CLEAR_B 0x008F
3574
3575/*
3576 * Unified host event programming interface - Should be used by newer versions
3577 * of BIOS/OS to program host events and masks
3578 */
3579
3580struct ec_params_host_event {
3581
3582 /* Action requested by host - one of enum ec_host_event_action. */
3583 uint8_t action;
3584
3585 /*
3586 * Mask type that the host requested the action on - one of
3587 * enum ec_host_event_mask_type.
3588 */
3589 uint8_t mask_type;
3590
3591 /* Set to 0, ignore on read */
3592 uint16_t reserved;
3593
3594 /* Value to be used in case of set operations. */
3595 uint64_t value;
3596} __ec_align4;
3597
3598/*
3599 * Response structure returned by EC_CMD_HOST_EVENT.
3600 * Update the value on a GET request. Set to 0 on GET/CLEAR
3601 */
3602
3603struct ec_response_host_event {
3604
3605 /* Mask value in case of get operation */
3606 uint64_t value;
3607} __ec_align4;
3608
3609enum ec_host_event_action {
3610 /*
3611 * params.value is ignored. Value of mask_type populated
3612 * in response.value
3613 */
3614 EC_HOST_EVENT_GET,
3615
3616 /* Bits in params.value are set */
3617 EC_HOST_EVENT_SET,
3618
3619 /* Bits in params.value are cleared */
3620 EC_HOST_EVENT_CLEAR,
3621};
3622
3623enum ec_host_event_mask_type {
3624
3625 /* Main host event copy */
3626 EC_HOST_EVENT_MAIN,
3627
3628 /* Copy B of host events */
3629 EC_HOST_EVENT_B,
3630
3631 /* SCI Mask */
3632 EC_HOST_EVENT_SCI_MASK,
3633
3634 /* SMI Mask */
3635 EC_HOST_EVENT_SMI_MASK,
3636
3637 /* Mask of events that should be always reported in hostevents */
3638 EC_HOST_EVENT_ALWAYS_REPORT_MASK,
3639
3640 /* Active wake mask */
3641 EC_HOST_EVENT_ACTIVE_WAKE_MASK,
3642
3643 /* Lazy wake mask for S0ix */
3644 EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX,
3645
3646 /* Lazy wake mask for S3 */
3647 EC_HOST_EVENT_LAZY_WAKE_MASK_S3,
3648
3649 /* Lazy wake mask for S5 */
3650 EC_HOST_EVENT_LAZY_WAKE_MASK_S5,
3651};
3652
3653#define EC_CMD_HOST_EVENT 0x00A4
3654
3655/*****************************************************************************/
3656/* Switch commands */
3657
3658/* Enable/disable LCD backlight */
3659#define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090
3660
3661struct ec_params_switch_enable_backlight {
3662 uint8_t enabled;
3663} __ec_align1;
3664
3665/* Enable/disable WLAN/Bluetooth */
3666#define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091
3667#define EC_VER_SWITCH_ENABLE_WIRELESS 1
3668
3669/* Version 0 params; no response */
3670struct ec_params_switch_enable_wireless_v0 {
3671 uint8_t enabled;
3672} __ec_align1;
3673
3674/* Version 1 params */
3675struct ec_params_switch_enable_wireless_v1 {
3676 /* Flags to enable now */
3677 uint8_t now_flags;
3678
3679 /* Which flags to copy from now_flags */
3680 uint8_t now_mask;
3681
3682 /*
3683 * Flags to leave enabled in S3, if they're on at the S0->S3
3684 * transition. (Other flags will be disabled by the S0->S3
3685 * transition.)
3686 */
3687 uint8_t suspend_flags;
3688
3689 /* Which flags to copy from suspend_flags */
3690 uint8_t suspend_mask;
3691} __ec_align1;
3692
3693/* Version 1 response */
3694struct ec_response_switch_enable_wireless_v1 {
3695 /* Flags to enable now */
3696 uint8_t now_flags;
3697
3698 /* Flags to leave enabled in S3 */
3699 uint8_t suspend_flags;
3700} __ec_align1;
3701
3702/*****************************************************************************/
3703/* GPIO commands. Only available on EC if write protect has been disabled. */
3704
3705/* Set GPIO output value */
3706#define EC_CMD_GPIO_SET 0x0092
3707
3708struct ec_params_gpio_set {
3709 char name[32];
3710 uint8_t val;
3711} __ec_align1;
3712
3713/* Get GPIO value */
3714#define EC_CMD_GPIO_GET 0x0093
3715
3716/* Version 0 of input params and response */
3717struct ec_params_gpio_get {
3718 char name[32];
3719} __ec_align1;
3720
3721struct ec_response_gpio_get {
3722 uint8_t val;
3723} __ec_align1;
3724
3725/* Version 1 of input params and response */
3726struct ec_params_gpio_get_v1 {
3727 uint8_t subcmd;
3728 union {
3729 struct __ec_align1 {
3730 char name[32];
3731 } get_value_by_name;
3732 struct __ec_align1 {
3733 uint8_t index;
3734 } get_info;
3735 };
3736} __ec_align1;
3737
3738struct ec_response_gpio_get_v1 {
3739 union {
3740 struct __ec_align1 {
3741 uint8_t val;
3742 } get_value_by_name, get_count;
3743 struct __ec_todo_unpacked {
3744 uint8_t val;
3745 char name[32];
3746 uint32_t flags;
3747 } get_info;
3748 };
3749} __ec_todo_packed;
3750
3751enum gpio_get_subcmd {
3752 EC_GPIO_GET_BY_NAME = 0,
3753 EC_GPIO_GET_COUNT = 1,
3754 EC_GPIO_GET_INFO = 2,
3755};
3756
3757/*****************************************************************************/
3758/* I2C commands. Only available when flash write protect is unlocked. */
3759
3760/*
3761 * CAUTION: These commands are deprecated, and are not supported anymore in EC
3762 * builds >= 8398.0.0 (see crosbug.com/p/23570).
3763 *
3764 * Use EC_CMD_I2C_PASSTHRU instead.
3765 */
3766
3767/* Read I2C bus */
3768#define EC_CMD_I2C_READ 0x0094
3769
3770struct ec_params_i2c_read {
3771 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3772 uint8_t read_size; /* Either 8 or 16. */
3773 uint8_t port;
3774 uint8_t offset;
3775} __ec_align_size1;
3776
3777struct ec_response_i2c_read {
3778 uint16_t data;
3779} __ec_align2;
3780
3781/* Write I2C bus */
3782#define EC_CMD_I2C_WRITE 0x0095
3783
3784struct ec_params_i2c_write {
3785 uint16_t data;
3786 uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3787 uint8_t write_size; /* Either 8 or 16. */
3788 uint8_t port;
3789 uint8_t offset;
3790} __ec_align_size1;
3791
3792/*****************************************************************************/
3793/* Charge state commands. Only available when flash write protect unlocked. */
3794
3795/* Force charge state machine to stop charging the battery or force it to
3796 * discharge the battery.
3797 */
3798#define EC_CMD_CHARGE_CONTROL 0x0096
3799#define EC_VER_CHARGE_CONTROL 1
3800
3801enum ec_charge_control_mode {
3802 CHARGE_CONTROL_NORMAL = 0,
3803 CHARGE_CONTROL_IDLE,
3804 CHARGE_CONTROL_DISCHARGE,
3805};
3806
3807struct ec_params_charge_control {
3808 uint32_t mode; /* enum charge_control_mode */
3809} __ec_align4;
3810
3811/*****************************************************************************/
3812
3813/* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
3814#define EC_CMD_CONSOLE_SNAPSHOT 0x0097
3815
3816/*
3817 * Read data from the saved snapshot. If the subcmd parameter is
3818 * CONSOLE_READ_NEXT, this will return data starting from the beginning of
3819 * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
3820 * end of the previous snapshot.
3821 *
3822 * The params are only looked at in version >= 1 of this command. Prior
3823 * versions will just default to CONSOLE_READ_NEXT behavior.
3824 *
3825 * Response is null-terminated string. Empty string, if there is no more
3826 * remaining output.
3827 */
3828#define EC_CMD_CONSOLE_READ 0x0098
3829
3830enum ec_console_read_subcmd {
3831 CONSOLE_READ_NEXT = 0,
3832 CONSOLE_READ_RECENT
3833};
3834
3835struct ec_params_console_read_v1 {
3836 uint8_t subcmd; /* enum ec_console_read_subcmd */
3837} __ec_align1;
3838
3839/*****************************************************************************/
3840
3841/*
3842 * Cut off battery power immediately or after the host has shut down.
3843 *
3844 * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
3845 * EC_RES_SUCCESS if the command was successful.
3846 * EC_RES_ERROR if the cut off command failed.
3847 */
3848#define EC_CMD_BATTERY_CUT_OFF 0x0099
3849
3850#define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN BIT(0)
3851
3852struct ec_params_battery_cutoff {
3853 uint8_t flags;
3854} __ec_align1;
3855
3856/*****************************************************************************/
3857/* USB port mux control. */
3858
3859/*
3860 * Switch USB mux or return to automatic switching.
3861 */
3862#define EC_CMD_USB_MUX 0x009A
3863
3864struct ec_params_usb_mux {
3865 uint8_t mux;
3866} __ec_align1;
3867
3868/*****************************************************************************/
3869/* LDOs / FETs control. */
3870
3871enum ec_ldo_state {
3872 EC_LDO_STATE_OFF = 0, /* the LDO / FET is shut down */
3873 EC_LDO_STATE_ON = 1, /* the LDO / FET is ON / providing power */
3874};
3875
3876/*
3877 * Switch on/off a LDO.
3878 */
3879#define EC_CMD_LDO_SET 0x009B
3880
3881struct ec_params_ldo_set {
3882 uint8_t index;
3883 uint8_t state;
3884} __ec_align1;
3885
3886/*
3887 * Get LDO state.
3888 */
3889#define EC_CMD_LDO_GET 0x009C
3890
3891struct ec_params_ldo_get {
3892 uint8_t index;
3893} __ec_align1;
3894
3895struct ec_response_ldo_get {
3896 uint8_t state;
3897} __ec_align1;
3898
3899/*****************************************************************************/
3900/* Power info. */
3901
3902/*
3903 * Get power info.
3904 */
3905#define EC_CMD_POWER_INFO 0x009D
3906
3907struct ec_response_power_info {
3908 uint32_t usb_dev_type;
3909 uint16_t voltage_ac;
3910 uint16_t voltage_system;
3911 uint16_t current_system;
3912 uint16_t usb_current_limit;
3913} __ec_align4;
3914
3915/*****************************************************************************/
3916/* I2C passthru command */
3917
3918#define EC_CMD_I2C_PASSTHRU 0x009E
3919
3920/* Read data; if not present, message is a write */
3921#define EC_I2C_FLAG_READ BIT(15)
3922
3923/* Mask for address */
3924#define EC_I2C_ADDR_MASK 0x3ff
3925
3926#define EC_I2C_STATUS_NAK BIT(0) /* Transfer was not acknowledged */
3927#define EC_I2C_STATUS_TIMEOUT BIT(1) /* Timeout during transfer */
3928
3929/* Any error */
3930#define EC_I2C_STATUS_ERROR (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
3931
3932struct ec_params_i2c_passthru_msg {
3933 uint16_t addr_flags; /* I2C slave address (7 or 10 bits) and flags */
3934 uint16_t len; /* Number of bytes to read or write */
3935} __ec_align2;
3936
3937struct ec_params_i2c_passthru {
3938 uint8_t port; /* I2C port number */
3939 uint8_t num_msgs; /* Number of messages */
3940 struct ec_params_i2c_passthru_msg msg[];
3941 /* Data to write for all messages is concatenated here */
3942} __ec_align2;
3943
3944struct ec_response_i2c_passthru {
3945 uint8_t i2c_status; /* Status flags (EC_I2C_STATUS_...) */
3946 uint8_t num_msgs; /* Number of messages processed */
3947 uint8_t data[]; /* Data read by messages concatenated here */
3948} __ec_align1;
3949
3950/*****************************************************************************/
3951/* Power button hang detect */
3952
3953#define EC_CMD_HANG_DETECT 0x009F
3954
3955/* Reasons to start hang detection timer */
3956/* Power button pressed */
3957#define EC_HANG_START_ON_POWER_PRESS BIT(0)
3958
3959/* Lid closed */
3960#define EC_HANG_START_ON_LID_CLOSE BIT(1)
3961
3962 /* Lid opened */
3963#define EC_HANG_START_ON_LID_OPEN BIT(2)
3964
3965/* Start of AP S3->S0 transition (booting or resuming from suspend) */
3966#define EC_HANG_START_ON_RESUME BIT(3)
3967
3968/* Reasons to cancel hang detection */
3969
3970/* Power button released */
3971#define EC_HANG_STOP_ON_POWER_RELEASE BIT(8)
3972
3973/* Any host command from AP received */
3974#define EC_HANG_STOP_ON_HOST_COMMAND BIT(9)
3975
3976/* Stop on end of AP S0->S3 transition (suspending or shutting down) */
3977#define EC_HANG_STOP_ON_SUSPEND BIT(10)
3978
3979/*
3980 * If this flag is set, all the other fields are ignored, and the hang detect
3981 * timer is started. This provides the AP a way to start the hang timer
3982 * without reconfiguring any of the other hang detect settings. Note that
3983 * you must previously have configured the timeouts.
3984 */
3985#define EC_HANG_START_NOW BIT(30)
3986
3987/*
3988 * If this flag is set, all the other fields are ignored (including
3989 * EC_HANG_START_NOW). This provides the AP a way to stop the hang timer
3990 * without reconfiguring any of the other hang detect settings.
3991 */
3992#define EC_HANG_STOP_NOW BIT(31)
3993
3994struct ec_params_hang_detect {
3995 /* Flags; see EC_HANG_* */
3996 uint32_t flags;
3997
3998 /* Timeout in msec before generating host event, if enabled */
3999 uint16_t host_event_timeout_msec;
4000
4001 /* Timeout in msec before generating warm reboot, if enabled */
4002 uint16_t warm_reboot_timeout_msec;
4003} __ec_align4;
4004
4005/*****************************************************************************/
4006/* Commands for battery charging */
4007
4008/*
4009 * This is the single catch-all host command to exchange data regarding the
4010 * charge state machine (v2 and up).
4011 */
4012#define EC_CMD_CHARGE_STATE 0x00A0
4013
4014/* Subcommands for this host command */
4015enum charge_state_command {
4016 CHARGE_STATE_CMD_GET_STATE,
4017 CHARGE_STATE_CMD_GET_PARAM,
4018 CHARGE_STATE_CMD_SET_PARAM,
4019 CHARGE_STATE_NUM_CMDS
4020};
4021
4022/*
4023 * Known param numbers are defined here. Ranges are reserved for board-specific
4024 * params, which are handled by the particular implementations.
4025 */
4026enum charge_state_params {
4027 CS_PARAM_CHG_VOLTAGE, /* charger voltage limit */
4028 CS_PARAM_CHG_CURRENT, /* charger current limit */
4029 CS_PARAM_CHG_INPUT_CURRENT, /* charger input current limit */
4030 CS_PARAM_CHG_STATUS, /* charger-specific status */
4031 CS_PARAM_CHG_OPTION, /* charger-specific options */
4032 CS_PARAM_LIMIT_POWER, /*
4033 * Check if power is limited due to
4034 * low battery and / or a weak external
4035 * charger. READ ONLY.
4036 */
4037 /* How many so far? */
4038 CS_NUM_BASE_PARAMS,
4039
4040 /* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
4041 CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
4042 CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
4043
4044 /* Range for CONFIG_CHARGE_STATE_DEBUG params */
4045 CS_PARAM_DEBUG_MIN = 0x20000,
4046 CS_PARAM_DEBUG_CTL_MODE = 0x20000,
4047 CS_PARAM_DEBUG_MANUAL_MODE,
4048 CS_PARAM_DEBUG_SEEMS_DEAD,
4049 CS_PARAM_DEBUG_SEEMS_DISCONNECTED,
4050 CS_PARAM_DEBUG_BATT_REMOVED,
4051 CS_PARAM_DEBUG_MANUAL_CURRENT,
4052 CS_PARAM_DEBUG_MANUAL_VOLTAGE,
4053 CS_PARAM_DEBUG_MAX = 0x2ffff,
4054
4055 /* Other custom param ranges go here... */
4056};
4057
4058struct ec_params_charge_state {
4059 uint8_t cmd; /* enum charge_state_command */
4060 union {
4061 /* get_state has no args */
4062
4063 struct __ec_todo_unpacked {
4064 uint32_t param; /* enum charge_state_param */
4065 } get_param;
4066
4067 struct __ec_todo_unpacked {
4068 uint32_t param; /* param to set */
4069 uint32_t value; /* value to set */
4070 } set_param;
4071 };
4072} __ec_todo_packed;
4073
4074struct ec_response_charge_state {
4075 union {
4076 struct __ec_align4 {
4077 int ac;
4078 int chg_voltage;
4079 int chg_current;
4080 int chg_input_current;
4081 int batt_state_of_charge;
4082 } get_state;
4083
4084 struct __ec_align4 {
4085 uint32_t value;
4086 } get_param;
4087
4088 /* set_param returns no args */
4089 };
4090} __ec_align4;
4091
4092
4093/*
4094 * Set maximum battery charging current.
4095 */
4096#define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1
4097
4098struct ec_params_current_limit {
4099 uint32_t limit; /* in mA */
4100} __ec_align4;
4101
4102/*
4103 * Set maximum external voltage / current.
4104 */
4105#define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
4106
4107/* Command v0 is used only on Spring and is obsolete + unsupported */
4108struct ec_params_external_power_limit_v1 {
4109 uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
4110 uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
4111} __ec_align2;
4112
4113#define EC_POWER_LIMIT_NONE 0xffff
4114
4115/*
4116 * Set maximum voltage & current of a dedicated charge port
4117 */
4118#define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3
4119
4120struct ec_params_dedicated_charger_limit {
4121 uint16_t current_lim; /* in mA */
4122 uint16_t voltage_lim; /* in mV */
4123} __ec_align2;
4124
4125/*****************************************************************************/
4126/* Hibernate/Deep Sleep Commands */
4127
4128/* Set the delay before going into hibernation. */
4129#define EC_CMD_HIBERNATION_DELAY 0x00A8
4130
4131struct ec_params_hibernation_delay {
4132 /*
4133 * Seconds to wait in G3 before hibernate. Pass in 0 to read the
4134 * current settings without changing them.
4135 */
4136 uint32_t seconds;
4137} __ec_align4;
4138
4139struct ec_response_hibernation_delay {
4140 /*
4141 * The current time in seconds in which the system has been in the G3
4142 * state. This value is reset if the EC transitions out of G3.
4143 */
4144 uint32_t time_g3;
4145
4146 /*
4147 * The current time remaining in seconds until the EC should hibernate.
4148 * This value is also reset if the EC transitions out of G3.
4149 */
4150 uint32_t time_remaining;
4151
4152 /*
4153 * The current time in seconds that the EC should wait in G3 before
4154 * hibernating.
4155 */
4156 uint32_t hibernate_delay;
4157} __ec_align4;
4158
4159/* Inform the EC when entering a sleep state */
4160#define EC_CMD_HOST_SLEEP_EVENT 0x00A9
4161
4162enum host_sleep_event {
4163 HOST_SLEEP_EVENT_S3_SUSPEND = 1,
4164 HOST_SLEEP_EVENT_S3_RESUME = 2,
4165 HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
4166 HOST_SLEEP_EVENT_S0IX_RESUME = 4,
4167 /* S3 suspend with additional enabled wake sources */
4168 HOST_SLEEP_EVENT_S3_WAKEABLE_SUSPEND = 5,
4169};
4170
4171struct ec_params_host_sleep_event {
4172 uint8_t sleep_event;
4173} __ec_align1;
4174
4175/*
4176 * Use a default timeout value (CONFIG_SLEEP_TIMEOUT_MS) for detecting sleep
4177 * transition failures
4178 */
4179#define EC_HOST_SLEEP_TIMEOUT_DEFAULT 0
4180
4181/* Disable timeout detection for this sleep transition */
4182#define EC_HOST_SLEEP_TIMEOUT_INFINITE 0xFFFF
4183
4184struct ec_params_host_sleep_event_v1 {
4185 /* The type of sleep being entered or exited. */
4186 uint8_t sleep_event;
4187
4188 /* Padding */
4189 uint8_t reserved;
4190 union {
4191 /* Parameters that apply for suspend messages. */
4192 struct {
4193 /*
4194 * The timeout in milliseconds between when this message
4195 * is received and when the EC will declare sleep
4196 * transition failure if the sleep signal is not
4197 * asserted.
4198 */
4199 uint16_t sleep_timeout_ms;
4200 } suspend_params;
4201
4202 /* No parameters for non-suspend messages. */
4203 };
4204} __ec_align2;
4205
4206/* A timeout occurred when this bit is set */
4207#define EC_HOST_RESUME_SLEEP_TIMEOUT 0x80000000
4208
4209/*
4210 * The mask defining which bits correspond to the number of sleep transitions,
4211 * as well as the maximum number of suspend line transitions that will be
4212 * reported back to the host.
4213 */
4214#define EC_HOST_RESUME_SLEEP_TRANSITIONS_MASK 0x7FFFFFFF
4215
4216struct ec_response_host_sleep_event_v1 {
4217 union {
4218 /* Response fields that apply for resume messages. */
4219 struct {
4220 /*
4221 * The number of sleep power signal transitions that
4222 * occurred since the suspend message. The high bit
4223 * indicates a timeout occurred.
4224 */
4225 uint32_t sleep_transitions;
4226 } resume_response;
4227
4228 /* No response fields for non-resume messages. */
4229 };
4230} __ec_align4;
4231
4232/*****************************************************************************/
4233/* Device events */
4234#define EC_CMD_DEVICE_EVENT 0x00AA
4235
4236enum ec_device_event {
4237 EC_DEVICE_EVENT_TRACKPAD,
4238 EC_DEVICE_EVENT_DSP,
4239 EC_DEVICE_EVENT_WIFI,
4240 EC_DEVICE_EVENT_WLC,
4241};
4242
4243enum ec_device_event_param {
4244 /* Get and clear pending device events */
4245 EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS,
4246 /* Get device event mask */
4247 EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS,
4248 /* Set device event mask */
4249 EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS,
4250};
4251
4252#define EC_DEVICE_EVENT_MASK(event_code) BIT(event_code % 32)
4253
4254struct ec_params_device_event {
4255 uint32_t event_mask;
4256 uint8_t param;
4257} __ec_align_size1;
4258
4259struct ec_response_device_event {
4260 uint32_t event_mask;
4261} __ec_align4;
4262
4263/*****************************************************************************/
4264/* Smart battery pass-through */
4265
4266/* Get / Set 16-bit smart battery registers */
4267#define EC_CMD_SB_READ_WORD 0x00B0
4268#define EC_CMD_SB_WRITE_WORD 0x00B1
4269
4270/* Get / Set string smart battery parameters
4271 * formatted as SMBUS "block".
4272 */
4273#define EC_CMD_SB_READ_BLOCK 0x00B2
4274#define EC_CMD_SB_WRITE_BLOCK 0x00B3
4275
4276struct ec_params_sb_rd {
4277 uint8_t reg;
4278} __ec_align1;
4279
4280struct ec_response_sb_rd_word {
4281 uint16_t value;
4282} __ec_align2;
4283
4284struct ec_params_sb_wr_word {
4285 uint8_t reg;
4286 uint16_t value;
4287} __ec_align1;
4288
4289struct ec_response_sb_rd_block {
4290 uint8_t data[32];
4291} __ec_align1;
4292
4293struct ec_params_sb_wr_block {
4294 uint8_t reg;
4295 uint16_t data[32];
4296} __ec_align1;
4297
4298/*****************************************************************************/
4299/* Battery vendor parameters
4300 *
4301 * Get or set vendor-specific parameters in the battery. Implementations may
4302 * differ between boards or batteries. On a set operation, the response
4303 * contains the actual value set, which may be rounded or clipped from the
4304 * requested value.
4305 */
4306
4307#define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4
4308
4309enum ec_battery_vendor_param_mode {
4310 BATTERY_VENDOR_PARAM_MODE_GET = 0,
4311 BATTERY_VENDOR_PARAM_MODE_SET,
4312};
4313
4314struct ec_params_battery_vendor_param {
4315 uint32_t param;
4316 uint32_t value;
4317 uint8_t mode;
4318} __ec_align_size1;
4319
4320struct ec_response_battery_vendor_param {
4321 uint32_t value;
4322} __ec_align4;
4323
4324/*****************************************************************************/
4325/*
4326 * Smart Battery Firmware Update Commands
4327 */
4328#define EC_CMD_SB_FW_UPDATE 0x00B5
4329
4330enum ec_sb_fw_update_subcmd {
4331 EC_SB_FW_UPDATE_PREPARE = 0x0,
4332 EC_SB_FW_UPDATE_INFO = 0x1, /*query sb info */
4333 EC_SB_FW_UPDATE_BEGIN = 0x2, /*check if protected */
4334 EC_SB_FW_UPDATE_WRITE = 0x3, /*check if protected */
4335 EC_SB_FW_UPDATE_END = 0x4,
4336 EC_SB_FW_UPDATE_STATUS = 0x5,
4337 EC_SB_FW_UPDATE_PROTECT = 0x6,
4338 EC_SB_FW_UPDATE_MAX = 0x7,
4339};
4340
4341#define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32
4342#define SB_FW_UPDATE_CMD_STATUS_SIZE 2
4343#define SB_FW_UPDATE_CMD_INFO_SIZE 8
4344
4345struct ec_sb_fw_update_header {
4346 uint16_t subcmd; /* enum ec_sb_fw_update_subcmd */
4347 uint16_t fw_id; /* firmware id */
4348} __ec_align4;
4349
4350struct ec_params_sb_fw_update {
4351 struct ec_sb_fw_update_header hdr;
4352 union {
4353 /* EC_SB_FW_UPDATE_PREPARE = 0x0 */
4354 /* EC_SB_FW_UPDATE_INFO = 0x1 */
4355 /* EC_SB_FW_UPDATE_BEGIN = 0x2 */
4356 /* EC_SB_FW_UPDATE_END = 0x4 */
4357 /* EC_SB_FW_UPDATE_STATUS = 0x5 */
4358 /* EC_SB_FW_UPDATE_PROTECT = 0x6 */
4359 /* Those have no args */
4360
4361 /* EC_SB_FW_UPDATE_WRITE = 0x3 */
4362 struct __ec_align4 {
4363 uint8_t data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE];
4364 } write;
4365 };
4366} __ec_align4;
4367
4368struct ec_response_sb_fw_update {
4369 union {
4370 /* EC_SB_FW_UPDATE_INFO = 0x1 */
4371 struct __ec_align1 {
4372 uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE];
4373 } info;
4374
4375 /* EC_SB_FW_UPDATE_STATUS = 0x5 */
4376 struct __ec_align1 {
4377 uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE];
4378 } status;
4379 };
4380} __ec_align1;
4381
4382/*
4383 * Entering Verified Boot Mode Command
4384 * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
4385 * Valid Modes are: normal, developer, and recovery.
4386 */
4387#define EC_CMD_ENTERING_MODE 0x00B6
4388
4389struct ec_params_entering_mode {
4390 int vboot_mode;
4391} __ec_align4;
4392
4393#define VBOOT_MODE_NORMAL 0
4394#define VBOOT_MODE_DEVELOPER 1
4395#define VBOOT_MODE_RECOVERY 2
4396
4397/*****************************************************************************/
4398/*
4399 * I2C passthru protection command: Protects I2C tunnels against access on
4400 * certain addresses (board-specific).
4401 */
4402#define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7
4403
4404enum ec_i2c_passthru_protect_subcmd {
4405 EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0,
4406 EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1,
4407};
4408
4409struct ec_params_i2c_passthru_protect {
4410 uint8_t subcmd;
4411 uint8_t port; /* I2C port number */
4412} __ec_align1;
4413
4414struct ec_response_i2c_passthru_protect {
4415 uint8_t status; /* Status flags (0: unlocked, 1: locked) */
4416} __ec_align1;
4417
4418
4419/*****************************************************************************/
4420/*
4421 * HDMI CEC commands
4422 *
4423 * These commands are for sending and receiving message via HDMI CEC
4424 */
4425
4426#define MAX_CEC_MSG_LEN 16
4427
4428/* CEC message from the AP to be written on the CEC bus */
4429#define EC_CMD_CEC_WRITE_MSG 0x00B8
4430
4431/**
4432 * struct ec_params_cec_write - Message to write to the CEC bus
4433 * @msg: message content to write to the CEC bus
4434 */
4435struct ec_params_cec_write {
4436 uint8_t msg[MAX_CEC_MSG_LEN];
4437} __ec_align1;
4438
4439/* Set various CEC parameters */
4440#define EC_CMD_CEC_SET 0x00BA
4441
4442/**
4443 * struct ec_params_cec_set - CEC parameters set
4444 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4445 * @val: in case cmd is CEC_CMD_ENABLE, this field can be 0 to disable CEC
4446 * or 1 to enable CEC functionality, in case cmd is
4447 * CEC_CMD_LOGICAL_ADDRESS, this field encodes the requested logical
4448 * address between 0 and 15 or 0xff to unregister
4449 */
4450struct ec_params_cec_set {
4451 uint8_t cmd; /* enum cec_command */
4452 uint8_t val;
4453} __ec_align1;
4454
4455/* Read various CEC parameters */
4456#define EC_CMD_CEC_GET 0x00BB
4457
4458/**
4459 * struct ec_params_cec_get - CEC parameters get
4460 * @cmd: parameter type, can be CEC_CMD_ENABLE or CEC_CMD_LOGICAL_ADDRESS
4461 */
4462struct ec_params_cec_get {
4463 uint8_t cmd; /* enum cec_command */
4464} __ec_align1;
4465
4466/**
4467 * struct ec_response_cec_get - CEC parameters get response
4468 * @val: in case cmd was CEC_CMD_ENABLE, this field will 0 if CEC is
4469 * disabled or 1 if CEC functionality is enabled,
4470 * in case cmd was CEC_CMD_LOGICAL_ADDRESS, this will encode the
4471 * configured logical address between 0 and 15 or 0xff if unregistered
4472 */
4473struct ec_response_cec_get {
4474 uint8_t val;
4475} __ec_align1;
4476
4477/* CEC parameters command */
4478enum cec_command {
4479 /* CEC reading, writing and events enable */
4480 CEC_CMD_ENABLE,
4481 /* CEC logical address */
4482 CEC_CMD_LOGICAL_ADDRESS,
4483};
4484
4485/* Events from CEC to AP */
4486enum mkbp_cec_event {
4487 /* Outgoing message was acknowledged by a follower */
4488 EC_MKBP_CEC_SEND_OK = BIT(0),
4489 /* Outgoing message was not acknowledged */
4490 EC_MKBP_CEC_SEND_FAILED = BIT(1),
4491};
4492
4493/*****************************************************************************/
4494
4495/* Commands for audio codec. */
4496#define EC_CMD_EC_CODEC 0x00BC
4497
4498enum ec_codec_subcmd {
4499 EC_CODEC_GET_CAPABILITIES = 0x0,
4500 EC_CODEC_GET_SHM_ADDR = 0x1,
4501 EC_CODEC_SET_SHM_ADDR = 0x2,
4502 EC_CODEC_SUBCMD_COUNT,
4503};
4504
4505enum ec_codec_cap {
4506 EC_CODEC_CAP_WOV_AUDIO_SHM = 0,
4507 EC_CODEC_CAP_WOV_LANG_SHM = 1,
4508 EC_CODEC_CAP_LAST = 32,
4509};
4510
4511enum ec_codec_shm_id {
4512 EC_CODEC_SHM_ID_WOV_AUDIO = 0x0,
4513 EC_CODEC_SHM_ID_WOV_LANG = 0x1,
4514 EC_CODEC_SHM_ID_LAST,
4515};
4516
4517enum ec_codec_shm_type {
4518 EC_CODEC_SHM_TYPE_EC_RAM = 0x0,
4519 EC_CODEC_SHM_TYPE_SYSTEM_RAM = 0x1,
4520};
4521
4522struct __ec_align1 ec_param_ec_codec_get_shm_addr {
4523 uint8_t shm_id;
4524 uint8_t reserved[3];
4525};
4526
4527struct __ec_align4 ec_param_ec_codec_set_shm_addr {
4528 uint64_t phys_addr;
4529 uint32_t len;
4530 uint8_t shm_id;
4531 uint8_t reserved[3];
4532};
4533
4534struct __ec_align4 ec_param_ec_codec {
4535 uint8_t cmd; /* enum ec_codec_subcmd */
4536 uint8_t reserved[3];
4537
4538 union {
4539 struct ec_param_ec_codec_get_shm_addr
4540 get_shm_addr_param;
4541 struct ec_param_ec_codec_set_shm_addr
4542 set_shm_addr_param;
4543 };
4544};
4545
4546struct __ec_align4 ec_response_ec_codec_get_capabilities {
4547 uint32_t capabilities;
4548};
4549
4550struct __ec_align4 ec_response_ec_codec_get_shm_addr {
4551 uint64_t phys_addr;
4552 uint32_t len;
4553 uint8_t type;
4554 uint8_t reserved[3];
4555};
4556
4557/*****************************************************************************/
4558
4559/* Commands for DMIC on audio codec. */
4560#define EC_CMD_EC_CODEC_DMIC 0x00BD
4561
4562enum ec_codec_dmic_subcmd {
4563 EC_CODEC_DMIC_GET_MAX_GAIN = 0x0,
4564 EC_CODEC_DMIC_SET_GAIN_IDX = 0x1,
4565 EC_CODEC_DMIC_GET_GAIN_IDX = 0x2,
4566 EC_CODEC_DMIC_SUBCMD_COUNT,
4567};
4568
4569enum ec_codec_dmic_channel {
4570 EC_CODEC_DMIC_CHANNEL_0 = 0x0,
4571 EC_CODEC_DMIC_CHANNEL_1 = 0x1,
4572 EC_CODEC_DMIC_CHANNEL_2 = 0x2,
4573 EC_CODEC_DMIC_CHANNEL_3 = 0x3,
4574 EC_CODEC_DMIC_CHANNEL_4 = 0x4,
4575 EC_CODEC_DMIC_CHANNEL_5 = 0x5,
4576 EC_CODEC_DMIC_CHANNEL_6 = 0x6,
4577 EC_CODEC_DMIC_CHANNEL_7 = 0x7,
4578 EC_CODEC_DMIC_CHANNEL_COUNT,
4579};
4580
4581struct __ec_align1 ec_param_ec_codec_dmic_set_gain_idx {
4582 uint8_t channel; /* enum ec_codec_dmic_channel */
4583 uint8_t gain;
4584 uint8_t reserved[2];
4585};
4586
4587struct __ec_align1 ec_param_ec_codec_dmic_get_gain_idx {
4588 uint8_t channel; /* enum ec_codec_dmic_channel */
4589 uint8_t reserved[3];
4590};
4591
4592struct __ec_align4 ec_param_ec_codec_dmic {
4593 uint8_t cmd; /* enum ec_codec_dmic_subcmd */
4594 uint8_t reserved[3];
4595
4596 union {
4597 struct ec_param_ec_codec_dmic_set_gain_idx
4598 set_gain_idx_param;
4599 struct ec_param_ec_codec_dmic_get_gain_idx
4600 get_gain_idx_param;
4601 };
4602};
4603
4604struct __ec_align1 ec_response_ec_codec_dmic_get_max_gain {
4605 uint8_t max_gain;
4606};
4607
4608struct __ec_align1 ec_response_ec_codec_dmic_get_gain_idx {
4609 uint8_t gain;
4610};
4611
4612/*****************************************************************************/
4613
4614/* Commands for I2S RX on audio codec. */
4615
4616#define EC_CMD_EC_CODEC_I2S_RX 0x00BE
4617
4618enum ec_codec_i2s_rx_subcmd {
4619 EC_CODEC_I2S_RX_ENABLE = 0x0,
4620 EC_CODEC_I2S_RX_DISABLE = 0x1,
4621 EC_CODEC_I2S_RX_SET_SAMPLE_DEPTH = 0x2,
4622 EC_CODEC_I2S_RX_SET_DAIFMT = 0x3,
4623 EC_CODEC_I2S_RX_SET_BCLK = 0x4,
4624 EC_CODEC_I2S_RX_RESET = 0x5,
4625 EC_CODEC_I2S_RX_SUBCMD_COUNT,
4626};
4627
4628enum ec_codec_i2s_rx_sample_depth {
4629 EC_CODEC_I2S_RX_SAMPLE_DEPTH_16 = 0x0,
4630 EC_CODEC_I2S_RX_SAMPLE_DEPTH_24 = 0x1,
4631 EC_CODEC_I2S_RX_SAMPLE_DEPTH_COUNT,
4632};
4633
4634enum ec_codec_i2s_rx_daifmt {
4635 EC_CODEC_I2S_RX_DAIFMT_I2S = 0x0,
4636 EC_CODEC_I2S_RX_DAIFMT_RIGHT_J = 0x1,
4637 EC_CODEC_I2S_RX_DAIFMT_LEFT_J = 0x2,
4638 EC_CODEC_I2S_RX_DAIFMT_COUNT,
4639};
4640
4641struct __ec_align1 ec_param_ec_codec_i2s_rx_set_sample_depth {
4642 uint8_t depth;
4643 uint8_t reserved[3];
4644};
4645
4646struct __ec_align1 ec_param_ec_codec_i2s_rx_set_gain {
4647 uint8_t left;
4648 uint8_t right;
4649 uint8_t reserved[2];
4650};
4651
4652struct __ec_align1 ec_param_ec_codec_i2s_rx_set_daifmt {
4653 uint8_t daifmt;
4654 uint8_t reserved[3];
4655};
4656
4657struct __ec_align4 ec_param_ec_codec_i2s_rx_set_bclk {
4658 uint32_t bclk;
4659};
4660
4661struct __ec_align4 ec_param_ec_codec_i2s_rx {
4662 uint8_t cmd; /* enum ec_codec_i2s_rx_subcmd */
4663 uint8_t reserved[3];
4664
4665 union {
4666 struct ec_param_ec_codec_i2s_rx_set_sample_depth
4667 set_sample_depth_param;
4668 struct ec_param_ec_codec_i2s_rx_set_daifmt
4669 set_daifmt_param;
4670 struct ec_param_ec_codec_i2s_rx_set_bclk
4671 set_bclk_param;
4672 };
4673};
4674
4675/*****************************************************************************/
4676/* Commands for WoV on audio codec. */
4677
4678#define EC_CMD_EC_CODEC_WOV 0x00BF
4679
4680enum ec_codec_wov_subcmd {
4681 EC_CODEC_WOV_SET_LANG = 0x0,
4682 EC_CODEC_WOV_SET_LANG_SHM = 0x1,
4683 EC_CODEC_WOV_GET_LANG = 0x2,
4684 EC_CODEC_WOV_ENABLE = 0x3,
4685 EC_CODEC_WOV_DISABLE = 0x4,
4686 EC_CODEC_WOV_READ_AUDIO = 0x5,
4687 EC_CODEC_WOV_READ_AUDIO_SHM = 0x6,
4688 EC_CODEC_WOV_SUBCMD_COUNT,
4689};
4690
4691/*
4692 * @hash is SHA256 of the whole language model.
4693 * @total_len indicates the length of whole language model.
4694 * @offset is the cursor from the beginning of the model.
4695 * @buf is the packet buffer.
4696 * @len denotes how many bytes in the buf.
4697 */
4698struct __ec_align4 ec_param_ec_codec_wov_set_lang {
4699 uint8_t hash[32];
4700 uint32_t total_len;
4701 uint32_t offset;
4702 uint8_t buf[128];
4703 uint32_t len;
4704};
4705
4706struct __ec_align4 ec_param_ec_codec_wov_set_lang_shm {
4707 uint8_t hash[32];
4708 uint32_t total_len;
4709};
4710
4711struct __ec_align4 ec_param_ec_codec_wov {
4712 uint8_t cmd; /* enum ec_codec_wov_subcmd */
4713 uint8_t reserved[3];
4714
4715 union {
4716 struct ec_param_ec_codec_wov_set_lang
4717 set_lang_param;
4718 struct ec_param_ec_codec_wov_set_lang_shm
4719 set_lang_shm_param;
4720 };
4721};
4722
4723struct __ec_align4 ec_response_ec_codec_wov_get_lang {
4724 uint8_t hash[32];
4725};
4726
4727struct __ec_align4 ec_response_ec_codec_wov_read_audio {
4728 uint8_t buf[128];
4729 uint32_t len;
4730};
4731
4732struct __ec_align4 ec_response_ec_codec_wov_read_audio_shm {
4733 uint32_t offset;
4734 uint32_t len;
4735};
4736
4737/*****************************************************************************/
4738/* System commands */
4739
4740/*
4741 * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
4742 * necessarily reboot the EC. Rename to "image" or something similar?
4743 */
4744#define EC_CMD_REBOOT_EC 0x00D2
4745
4746/* Command */
4747enum ec_reboot_cmd {
4748 EC_REBOOT_CANCEL = 0, /* Cancel a pending reboot */
4749 EC_REBOOT_JUMP_RO = 1, /* Jump to RO without rebooting */
4750 EC_REBOOT_JUMP_RW = 2, /* Jump to active RW without rebooting */
4751 /* (command 3 was jump to RW-B) */
4752 EC_REBOOT_COLD = 4, /* Cold-reboot */
4753 EC_REBOOT_DISABLE_JUMP = 5, /* Disable jump until next reboot */
4754 EC_REBOOT_HIBERNATE = 6, /* Hibernate EC */
4755 EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */
4756 EC_REBOOT_COLD_AP_OFF = 8, /* Cold-reboot and don't boot AP */
4757};
4758
4759/* Flags for ec_params_reboot_ec.reboot_flags */
4760#define EC_REBOOT_FLAG_RESERVED0 BIT(0) /* Was recovery request */
4761#define EC_REBOOT_FLAG_ON_AP_SHUTDOWN BIT(1) /* Reboot after AP shutdown */
4762#define EC_REBOOT_FLAG_SWITCH_RW_SLOT BIT(2) /* Switch RW slot */
4763
4764struct ec_params_reboot_ec {
4765 uint8_t cmd; /* enum ec_reboot_cmd */
4766 uint8_t flags; /* See EC_REBOOT_FLAG_* */
4767} __ec_align1;
4768
4769/*
4770 * Get information on last EC panic.
4771 *
4772 * Returns variable-length platform-dependent panic information. See panic.h
4773 * for details.
4774 */
4775#define EC_CMD_GET_PANIC_INFO 0x00D3
4776
4777/*****************************************************************************/
4778/*
4779 * Special commands
4780 *
4781 * These do not follow the normal rules for commands. See each command for
4782 * details.
4783 */
4784
4785/*
4786 * Reboot NOW
4787 *
4788 * This command will work even when the EC LPC interface is busy, because the
4789 * reboot command is processed at interrupt level. Note that when the EC
4790 * reboots, the host will reboot too, so there is no response to this command.
4791 *
4792 * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
4793 */
4794#define EC_CMD_REBOOT 0x00D1 /* Think "die" */
4795
4796/*
4797 * Resend last response (not supported on LPC).
4798 *
4799 * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
4800 * there was no previous command, or the previous command's response was too
4801 * big to save.
4802 */
4803#define EC_CMD_RESEND_RESPONSE 0x00DB
4804
4805/*
4806 * This header byte on a command indicate version 0. Any header byte less
4807 * than this means that we are talking to an old EC which doesn't support
4808 * versioning. In that case, we assume version 0.
4809 *
4810 * Header bytes greater than this indicate a later version. For example,
4811 * EC_CMD_VERSION0 + 1 means we are using version 1.
4812 *
4813 * The old EC interface must not use commands 0xdc or higher.
4814 */
4815#define EC_CMD_VERSION0 0x00DC
4816
4817/*****************************************************************************/
4818/*
4819 * PD commands
4820 *
4821 * These commands are for PD MCU communication.
4822 */
4823
4824/* EC to PD MCU exchange status command */
4825#define EC_CMD_PD_EXCHANGE_STATUS 0x0100
4826#define EC_VER_PD_EXCHANGE_STATUS 2
4827
4828enum pd_charge_state {
4829 PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */
4830 PD_CHARGE_NONE, /* No charging allowed */
4831 PD_CHARGE_5V, /* 5V charging only */
4832 PD_CHARGE_MAX /* Charge at max voltage */
4833};
4834
4835/* Status of EC being sent to PD */
4836#define EC_STATUS_HIBERNATING BIT(0)
4837
4838struct ec_params_pd_status {
4839 uint8_t status; /* EC status */
4840 int8_t batt_soc; /* battery state of charge */
4841 uint8_t charge_state; /* charging state (from enum pd_charge_state) */
4842} __ec_align1;
4843
4844/* Status of PD being sent back to EC */
4845#define PD_STATUS_HOST_EVENT BIT(0) /* Forward host event to AP */
4846#define PD_STATUS_IN_RW BIT(1) /* Running RW image */
4847#define PD_STATUS_JUMPED_TO_IMAGE BIT(2) /* Current image was jumped to */
4848#define PD_STATUS_TCPC_ALERT_0 BIT(3) /* Alert active in port 0 TCPC */
4849#define PD_STATUS_TCPC_ALERT_1 BIT(4) /* Alert active in port 1 TCPC */
4850#define PD_STATUS_TCPC_ALERT_2 BIT(5) /* Alert active in port 2 TCPC */
4851#define PD_STATUS_TCPC_ALERT_3 BIT(6) /* Alert active in port 3 TCPC */
4852#define PD_STATUS_EC_INT_ACTIVE (PD_STATUS_TCPC_ALERT_0 | \
4853 PD_STATUS_TCPC_ALERT_1 | \
4854 PD_STATUS_HOST_EVENT)
4855struct ec_response_pd_status {
4856 uint32_t curr_lim_ma; /* input current limit */
4857 uint16_t status; /* PD MCU status */
4858 int8_t active_charge_port; /* active charging port */
4859} __ec_align_size1;
4860
4861/* AP to PD MCU host event status command, cleared on read */
4862#define EC_CMD_PD_HOST_EVENT_STATUS 0x0104
4863
4864/* PD MCU host event status bits */
4865#define PD_EVENT_UPDATE_DEVICE BIT(0)
4866#define PD_EVENT_POWER_CHANGE BIT(1)
4867#define PD_EVENT_IDENTITY_RECEIVED BIT(2)
4868#define PD_EVENT_DATA_SWAP BIT(3)
4869struct ec_response_host_event_status {
4870 uint32_t status; /* PD MCU host event status */
4871} __ec_align4;
4872
4873/* Set USB type-C port role and muxes */
4874#define EC_CMD_USB_PD_CONTROL 0x0101
4875
4876enum usb_pd_control_role {
4877 USB_PD_CTRL_ROLE_NO_CHANGE = 0,
4878 USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
4879 USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
4880 USB_PD_CTRL_ROLE_FORCE_SINK = 3,
4881 USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
4882 USB_PD_CTRL_ROLE_FREEZE = 5,
4883 USB_PD_CTRL_ROLE_COUNT
4884};
4885
4886enum usb_pd_control_mux {
4887 USB_PD_CTRL_MUX_NO_CHANGE = 0,
4888 USB_PD_CTRL_MUX_NONE = 1,
4889 USB_PD_CTRL_MUX_USB = 2,
4890 USB_PD_CTRL_MUX_DP = 3,
4891 USB_PD_CTRL_MUX_DOCK = 4,
4892 USB_PD_CTRL_MUX_AUTO = 5,
4893 USB_PD_CTRL_MUX_COUNT
4894};
4895
4896enum usb_pd_control_swap {
4897 USB_PD_CTRL_SWAP_NONE = 0,
4898 USB_PD_CTRL_SWAP_DATA = 1,
4899 USB_PD_CTRL_SWAP_POWER = 2,
4900 USB_PD_CTRL_SWAP_VCONN = 3,
4901 USB_PD_CTRL_SWAP_COUNT
4902};
4903
4904struct ec_params_usb_pd_control {
4905 uint8_t port;
4906 uint8_t role;
4907 uint8_t mux;
4908 uint8_t swap;
4909} __ec_align1;
4910
4911#define PD_CTRL_RESP_ENABLED_COMMS BIT(0) /* Communication enabled */
4912#define PD_CTRL_RESP_ENABLED_CONNECTED BIT(1) /* Device connected */
4913#define PD_CTRL_RESP_ENABLED_PD_CAPABLE BIT(2) /* Partner is PD capable */
4914
4915#define PD_CTRL_RESP_ROLE_POWER BIT(0) /* 0=SNK/1=SRC */
4916#define PD_CTRL_RESP_ROLE_DATA BIT(1) /* 0=UFP/1=DFP */
4917#define PD_CTRL_RESP_ROLE_VCONN BIT(2) /* Vconn status */
4918#define PD_CTRL_RESP_ROLE_DR_POWER BIT(3) /* Partner is dualrole power */
4919#define PD_CTRL_RESP_ROLE_DR_DATA BIT(4) /* Partner is dualrole data */
4920#define PD_CTRL_RESP_ROLE_USB_COMM BIT(5) /* Partner USB comm capable */
4921#define PD_CTRL_RESP_ROLE_EXT_POWERED BIT(6) /* Partner externally powerd */
4922
4923struct ec_response_usb_pd_control {
4924 uint8_t enabled;
4925 uint8_t role;
4926 uint8_t polarity;
4927 uint8_t state;
4928} __ec_align1;
4929
4930struct ec_response_usb_pd_control_v1 {
4931 uint8_t enabled;
4932 uint8_t role;
4933 uint8_t polarity;
4934 char state[32];
4935} __ec_align1;
4936
4937/* Values representing usbc PD CC state */
4938#define USBC_PD_CC_NONE 0 /* No accessory connected */
4939#define USBC_PD_CC_NO_UFP 1 /* No UFP accessory connected */
4940#define USBC_PD_CC_AUDIO_ACC 2 /* Audio accessory connected */
4941#define USBC_PD_CC_DEBUG_ACC 3 /* Debug accessory connected */
4942#define USBC_PD_CC_UFP_ATTACHED 4 /* UFP attached to usbc */
4943#define USBC_PD_CC_DFP_ATTACHED 5 /* DPF attached to usbc */
4944
4945/* Active/Passive Cable */
4946#define USB_PD_CTRL_ACTIVE_CABLE BIT(0)
4947/* Optical/Non-optical cable */
4948#define USB_PD_CTRL_OPTICAL_CABLE BIT(1)
4949/* 3rd Gen TBT device (or AMA)/2nd gen tbt Adapter */
4950#define USB_PD_CTRL_TBT_LEGACY_ADAPTER BIT(2)
4951/* Active Link Uni-Direction */
4952#define USB_PD_CTRL_ACTIVE_LINK_UNIDIR BIT(3)
4953
4954struct ec_response_usb_pd_control_v2 {
4955 uint8_t enabled;
4956 uint8_t role;
4957 uint8_t polarity;
4958 char state[32];
4959 uint8_t cc_state; /* enum pd_cc_states representing cc state */
4960 uint8_t dp_mode; /* Current DP pin mode (MODE_DP_PIN_[A-E]) */
4961 uint8_t reserved; /* Reserved for future use */
4962 uint8_t control_flags; /* USB_PD_CTRL_*flags */
4963 uint8_t cable_speed; /* TBT_SS_* cable speed */
4964 uint8_t cable_gen; /* TBT_GEN3_* cable rounded support */
4965} __ec_align1;
4966
4967#define EC_CMD_USB_PD_PORTS 0x0102
4968
4969/* Maximum number of PD ports on a device, num_ports will be <= this */
4970#define EC_USB_PD_MAX_PORTS 8
4971
4972struct ec_response_usb_pd_ports {
4973 uint8_t num_ports;
4974} __ec_align1;
4975
4976#define EC_CMD_USB_PD_POWER_INFO 0x0103
4977
4978#define PD_POWER_CHARGING_PORT 0xff
4979struct ec_params_usb_pd_power_info {
4980 uint8_t port;
4981} __ec_align1;
4982
4983enum usb_chg_type {
4984 USB_CHG_TYPE_NONE,
4985 USB_CHG_TYPE_PD,
4986 USB_CHG_TYPE_C,
4987 USB_CHG_TYPE_PROPRIETARY,
4988 USB_CHG_TYPE_BC12_DCP,
4989 USB_CHG_TYPE_BC12_CDP,
4990 USB_CHG_TYPE_BC12_SDP,
4991 USB_CHG_TYPE_OTHER,
4992 USB_CHG_TYPE_VBUS,
4993 USB_CHG_TYPE_UNKNOWN,
4994 USB_CHG_TYPE_DEDICATED,
4995};
4996enum usb_power_roles {
4997 USB_PD_PORT_POWER_DISCONNECTED,
4998 USB_PD_PORT_POWER_SOURCE,
4999 USB_PD_PORT_POWER_SINK,
5000 USB_PD_PORT_POWER_SINK_NOT_CHARGING,
5001};
5002
5003struct usb_chg_measures {
5004 uint16_t voltage_max;
5005 uint16_t voltage_now;
5006 uint16_t current_max;
5007 uint16_t current_lim;
5008} __ec_align2;
5009
5010struct ec_response_usb_pd_power_info {
5011 uint8_t role;
5012 uint8_t type;
5013 uint8_t dualrole;
5014 uint8_t reserved1;
5015 struct usb_chg_measures meas;
5016 uint32_t max_power;
5017} __ec_align4;
5018
5019
5020/*
5021 * This command will return the number of USB PD charge port + the number
5022 * of dedicated port present.
5023 * EC_CMD_USB_PD_PORTS does NOT include the dedicated ports
5024 */
5025#define EC_CMD_CHARGE_PORT_COUNT 0x0105
5026struct ec_response_charge_port_count {
5027 uint8_t port_count;
5028} __ec_align1;
5029
5030/* Write USB-PD device FW */
5031#define EC_CMD_USB_PD_FW_UPDATE 0x0110
5032
5033enum usb_pd_fw_update_cmds {
5034 USB_PD_FW_REBOOT,
5035 USB_PD_FW_FLASH_ERASE,
5036 USB_PD_FW_FLASH_WRITE,
5037 USB_PD_FW_ERASE_SIG,
5038};
5039
5040struct ec_params_usb_pd_fw_update {
5041 uint16_t dev_id;
5042 uint8_t cmd;
5043 uint8_t port;
5044 uint32_t size; /* Size to write in bytes */
5045 /* Followed by data to write */
5046} __ec_align4;
5047
5048/* Write USB-PD Accessory RW_HASH table entry */
5049#define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111
5050/* RW hash is first 20 bytes of SHA-256 of RW section */
5051#define PD_RW_HASH_SIZE 20
5052struct ec_params_usb_pd_rw_hash_entry {
5053 uint16_t dev_id;
5054 uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
5055 uint8_t reserved; /*
5056 * For alignment of current_image
5057 * TODO(rspangler) but it's not aligned!
5058 * Should have been reserved[2].
5059 */
5060 uint32_t current_image; /* One of ec_current_image */
5061} __ec_align1;
5062
5063/* Read USB-PD Accessory info */
5064#define EC_CMD_USB_PD_DEV_INFO 0x0112
5065
5066struct ec_params_usb_pd_info_request {
5067 uint8_t port;
5068} __ec_align1;
5069
5070/* Read USB-PD Device discovery info */
5071#define EC_CMD_USB_PD_DISCOVERY 0x0113
5072struct ec_params_usb_pd_discovery_entry {
5073 uint16_t vid; /* USB-IF VID */
5074 uint16_t pid; /* USB-IF PID */
5075 uint8_t ptype; /* product type (hub,periph,cable,ama) */
5076} __ec_align_size1;
5077
5078/* Override default charge behavior */
5079#define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
5080
5081/* Negative port parameters have special meaning */
5082enum usb_pd_override_ports {
5083 OVERRIDE_DONT_CHARGE = -2,
5084 OVERRIDE_OFF = -1,
5085 /* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
5086};
5087
5088struct ec_params_charge_port_override {
5089 int16_t override_port; /* Override port# */
5090} __ec_align2;
5091
5092/*
5093 * Read (and delete) one entry of PD event log.
5094 * TODO(crbug.com/751742): Make this host command more generic to accommodate
5095 * future non-PD logs that use the same internal EC event_log.
5096 */
5097#define EC_CMD_PD_GET_LOG_ENTRY 0x0115
5098
5099struct ec_response_pd_log {
5100 uint32_t timestamp; /* relative timestamp in milliseconds */
5101 uint8_t type; /* event type : see PD_EVENT_xx below */
5102 uint8_t size_port; /* [7:5] port number [4:0] payload size in bytes */
5103 uint16_t data; /* type-defined data payload */
5104 uint8_t payload[]; /* optional additional data payload: 0..16 bytes */
5105} __ec_align4;
5106
5107/* The timestamp is the microsecond counter shifted to get about a ms. */
5108#define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
5109
5110#define PD_LOG_SIZE_MASK 0x1f
5111#define PD_LOG_PORT_MASK 0xe0
5112#define PD_LOG_PORT_SHIFT 5
5113#define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
5114 ((size) & PD_LOG_SIZE_MASK))
5115#define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
5116#define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
5117
5118/* PD event log : entry types */
5119/* PD MCU events */
5120#define PD_EVENT_MCU_BASE 0x00
5121#define PD_EVENT_MCU_CHARGE (PD_EVENT_MCU_BASE+0)
5122#define PD_EVENT_MCU_CONNECT (PD_EVENT_MCU_BASE+1)
5123/* Reserved for custom board event */
5124#define PD_EVENT_MCU_BOARD_CUSTOM (PD_EVENT_MCU_BASE+2)
5125/* PD generic accessory events */
5126#define PD_EVENT_ACC_BASE 0x20
5127#define PD_EVENT_ACC_RW_FAIL (PD_EVENT_ACC_BASE+0)
5128#define PD_EVENT_ACC_RW_ERASE (PD_EVENT_ACC_BASE+1)
5129/* PD power supply events */
5130#define PD_EVENT_PS_BASE 0x40
5131#define PD_EVENT_PS_FAULT (PD_EVENT_PS_BASE+0)
5132/* PD video dongles events */
5133#define PD_EVENT_VIDEO_BASE 0x60
5134#define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
5135#define PD_EVENT_VIDEO_CODEC (PD_EVENT_VIDEO_BASE+1)
5136/* Returned in the "type" field, when there is no entry available */
5137#define PD_EVENT_NO_ENTRY 0xff
5138
5139/*
5140 * PD_EVENT_MCU_CHARGE event definition :
5141 * the payload is "struct usb_chg_measures"
5142 * the data field contains the port state flags as defined below :
5143 */
5144/* Port partner is a dual role device */
5145#define CHARGE_FLAGS_DUAL_ROLE BIT(15)
5146/* Port is the pending override port */
5147#define CHARGE_FLAGS_DELAYED_OVERRIDE BIT(14)
5148/* Port is the override port */
5149#define CHARGE_FLAGS_OVERRIDE BIT(13)
5150/* Charger type */
5151#define CHARGE_FLAGS_TYPE_SHIFT 3
5152#define CHARGE_FLAGS_TYPE_MASK (0xf << CHARGE_FLAGS_TYPE_SHIFT)
5153/* Power delivery role */
5154#define CHARGE_FLAGS_ROLE_MASK (7 << 0)
5155
5156/*
5157 * PD_EVENT_PS_FAULT data field flags definition :
5158 */
5159#define PS_FAULT_OCP 1
5160#define PS_FAULT_FAST_OCP 2
5161#define PS_FAULT_OVP 3
5162#define PS_FAULT_DISCH 4
5163
5164/*
5165 * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
5166 */
5167struct mcdp_version {
5168 uint8_t major;
5169 uint8_t minor;
5170 uint16_t build;
5171} __ec_align4;
5172
5173struct mcdp_info {
5174 uint8_t family[2];
5175 uint8_t chipid[2];
5176 struct mcdp_version irom;
5177 struct mcdp_version fw;
5178} __ec_align4;
5179
5180/* struct mcdp_info field decoding */
5181#define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
5182#define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
5183
5184/* Get/Set USB-PD Alternate mode info */
5185#define EC_CMD_USB_PD_GET_AMODE 0x0116
5186struct ec_params_usb_pd_get_mode_request {
5187 uint16_t svid_idx; /* SVID index to get */
5188 uint8_t port; /* port */
5189} __ec_align_size1;
5190
5191struct ec_params_usb_pd_get_mode_response {
5192 uint16_t svid; /* SVID */
5193 uint16_t opos; /* Object Position */
5194 uint32_t vdo[6]; /* Mode VDOs */
5195} __ec_align4;
5196
5197#define EC_CMD_USB_PD_SET_AMODE 0x0117
5198
5199enum pd_mode_cmd {
5200 PD_EXIT_MODE = 0,
5201 PD_ENTER_MODE = 1,
5202 /* Not a command. Do NOT remove. */
5203 PD_MODE_CMD_COUNT,
5204};
5205
5206struct ec_params_usb_pd_set_mode_request {
5207 uint32_t cmd; /* enum pd_mode_cmd */
5208 uint16_t svid; /* SVID to set */
5209 uint8_t opos; /* Object Position */
5210 uint8_t port; /* port */
5211} __ec_align4;
5212
5213/* Ask the PD MCU to record a log of a requested type */
5214#define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118
5215
5216struct ec_params_pd_write_log_entry {
5217 uint8_t type; /* event type : see PD_EVENT_xx above */
5218 uint8_t port; /* port#, or 0 for events unrelated to a given port */
5219} __ec_align1;
5220
5221
5222/* Control USB-PD chip */
5223#define EC_CMD_PD_CONTROL 0x0119
5224
5225enum ec_pd_control_cmd {
5226 PD_SUSPEND = 0, /* Suspend the PD chip (EC: stop talking to PD) */
5227 PD_RESUME, /* Resume the PD chip (EC: start talking to PD) */
5228 PD_RESET, /* Force reset the PD chip */
5229 PD_CONTROL_DISABLE, /* Disable further calls to this command */
5230 PD_CHIP_ON, /* Power on the PD chip */
5231};
5232
5233struct ec_params_pd_control {
5234 uint8_t chip; /* chip id */
5235 uint8_t subcmd;
5236} __ec_align1;
5237
5238/* Get info about USB-C SS muxes */
5239#define EC_CMD_USB_PD_MUX_INFO 0x011A
5240
5241struct ec_params_usb_pd_mux_info {
5242 uint8_t port; /* USB-C port number */
5243} __ec_align1;
5244
5245/* Flags representing mux state */
5246#define USB_PD_MUX_NONE 0 /* Open switch */
5247#define USB_PD_MUX_USB_ENABLED BIT(0) /* USB connected */
5248#define USB_PD_MUX_DP_ENABLED BIT(1) /* DP connected */
5249#define USB_PD_MUX_POLARITY_INVERTED BIT(2) /* CC line Polarity inverted */
5250#define USB_PD_MUX_HPD_IRQ BIT(3) /* HPD IRQ is asserted */
5251#define USB_PD_MUX_HPD_LVL BIT(4) /* HPD level is asserted */
5252#define USB_PD_MUX_SAFE_MODE BIT(5) /* DP is in safe mode */
5253#define USB_PD_MUX_TBT_COMPAT_ENABLED BIT(6) /* TBT compat enabled */
5254#define USB_PD_MUX_USB4_ENABLED BIT(7) /* USB4 enabled */
5255
5256struct ec_response_usb_pd_mux_info {
5257 uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
5258} __ec_align1;
5259
5260#define EC_CMD_PD_CHIP_INFO 0x011B
5261
5262struct ec_params_pd_chip_info {
5263 uint8_t port; /* USB-C port number */
5264 uint8_t renew; /* Force renewal */
5265} __ec_align1;
5266
5267struct ec_response_pd_chip_info {
5268 uint16_t vendor_id;
5269 uint16_t product_id;
5270 uint16_t device_id;
5271 union {
5272 uint8_t fw_version_string[8];
5273 uint64_t fw_version_number;
5274 };
5275} __ec_align2;
5276
5277struct ec_response_pd_chip_info_v1 {
5278 uint16_t vendor_id;
5279 uint16_t product_id;
5280 uint16_t device_id;
5281 union {
5282 uint8_t fw_version_string[8];
5283 uint64_t fw_version_number;
5284 };
5285 union {
5286 uint8_t min_req_fw_version_string[8];
5287 uint64_t min_req_fw_version_number;
5288 };
5289} __ec_align2;
5290
5291/* Run RW signature verification and get status */
5292#define EC_CMD_RWSIG_CHECK_STATUS 0x011C
5293
5294struct ec_response_rwsig_check_status {
5295 uint32_t status;
5296} __ec_align4;
5297
5298/* For controlling RWSIG task */
5299#define EC_CMD_RWSIG_ACTION 0x011D
5300
5301enum rwsig_action {
5302 RWSIG_ACTION_ABORT = 0, /* Abort RWSIG and prevent jumping */
5303 RWSIG_ACTION_CONTINUE = 1, /* Jump to RW immediately */
5304};
5305
5306struct ec_params_rwsig_action {
5307 uint32_t action;
5308} __ec_align4;
5309
5310/* Run verification on a slot */
5311#define EC_CMD_EFS_VERIFY 0x011E
5312
5313struct ec_params_efs_verify {
5314 uint8_t region; /* enum ec_flash_region */
5315} __ec_align1;
5316
5317/*
5318 * Retrieve info from Cros Board Info store. Response is based on the data
5319 * type. Integers return a uint32. Strings return a string, using the response
5320 * size to determine how big it is.
5321 */
5322#define EC_CMD_GET_CROS_BOARD_INFO 0x011F
5323/*
5324 * Write info into Cros Board Info on EEPROM. Write fails if the board has
5325 * hardware write-protect enabled.
5326 */
5327#define EC_CMD_SET_CROS_BOARD_INFO 0x0120
5328
5329enum cbi_data_tag {
5330 CBI_TAG_BOARD_VERSION = 0, /* uint32_t or smaller */
5331 CBI_TAG_OEM_ID = 1, /* uint32_t or smaller */
5332 CBI_TAG_SKU_ID = 2, /* uint32_t or smaller */
5333 CBI_TAG_DRAM_PART_NUM = 3, /* variable length ascii, nul terminated. */
5334 CBI_TAG_OEM_NAME = 4, /* variable length ascii, nul terminated. */
5335 CBI_TAG_MODEL_ID = 5, /* uint32_t or smaller */
5336 CBI_TAG_COUNT,
5337};
5338
5339/*
5340 * Flags to control read operation
5341 *
5342 * RELOAD: Invalidate cache and read data from EEPROM. Useful to verify
5343 * write was successful without reboot.
5344 */
5345#define CBI_GET_RELOAD BIT(0)
5346
5347struct ec_params_get_cbi {
5348 uint32_t tag; /* enum cbi_data_tag */
5349 uint32_t flag; /* CBI_GET_* */
5350} __ec_align4;
5351
5352/*
5353 * Flags to control write behavior.
5354 *
5355 * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's
5356 * useful when writing multiple fields in a row.
5357 * INIT: Need to be set when creating a new CBI from scratch. All fields
5358 * will be initialized to zero first.
5359 */
5360#define CBI_SET_NO_SYNC BIT(0)
5361#define CBI_SET_INIT BIT(1)
5362
5363struct ec_params_set_cbi {
5364 uint32_t tag; /* enum cbi_data_tag */
5365 uint32_t flag; /* CBI_SET_* */
5366 uint32_t size; /* Data size */
5367 uint8_t data[]; /* For string and raw data */
5368} __ec_align1;
5369
5370/*
5371 * Information about resets of the AP by the EC and the EC's own uptime.
5372 */
5373#define EC_CMD_GET_UPTIME_INFO 0x0121
5374
5375struct ec_response_uptime_info {
5376 /*
5377 * Number of milliseconds since the last EC boot. Sysjump resets
5378 * typically do not restart the EC's time_since_boot epoch.
5379 *
5380 * WARNING: The EC's sense of time is much less accurate than the AP's
5381 * sense of time, in both phase and frequency. This timebase is similar
5382 * to CLOCK_MONOTONIC_RAW, but with 1% or more frequency error.
5383 */
5384 uint32_t time_since_ec_boot_ms;
5385
5386 /*
5387 * Number of times the AP was reset by the EC since the last EC boot.
5388 * Note that the AP may be held in reset by the EC during the initial
5389 * boot sequence, such that the very first AP boot may count as more
5390 * than one here.
5391 */
5392 uint32_t ap_resets_since_ec_boot;
5393
5394 /*
5395 * The set of flags which describe the EC's most recent reset. See
5396 * include/system.h RESET_FLAG_* for details.
5397 */
5398 uint32_t ec_reset_flags;
5399
5400 /* Empty log entries have both the cause and timestamp set to zero. */
5401 struct ap_reset_log_entry {
5402 /*
5403 * See include/chipset.h: enum chipset_{reset,shutdown}_reason
5404 * for details.
5405 */
5406 uint16_t reset_cause;
5407
5408 /* Reserved for protocol growth. */
5409 uint16_t reserved;
5410
5411 /*
5412 * The time of the reset's assertion, in milliseconds since the
5413 * last EC boot, in the same epoch as time_since_ec_boot_ms.
5414 * Set to zero if the log entry is empty.
5415 */
5416 uint32_t reset_time_ms;
5417 } recent_ap_reset[4];
5418} __ec_align4;
5419
5420/*
5421 * Add entropy to the device secret (stored in the rollback region).
5422 *
5423 * Depending on the chip, the operation may take a long time (e.g. to erase
5424 * flash), so the commands are asynchronous.
5425 */
5426#define EC_CMD_ADD_ENTROPY 0x0122
5427
5428enum add_entropy_action {
5429 /* Add entropy to the current secret. */
5430 ADD_ENTROPY_ASYNC = 0,
5431 /*
5432 * Add entropy, and also make sure that the previous secret is erased.
5433 * (this can be implemented by adding entropy multiple times until
5434 * all rolback blocks have been overwritten).
5435 */
5436 ADD_ENTROPY_RESET_ASYNC = 1,
5437 /* Read back result from the previous operation. */
5438 ADD_ENTROPY_GET_RESULT = 2,
5439};
5440
5441struct ec_params_rollback_add_entropy {
5442 uint8_t action;
5443} __ec_align1;
5444
5445/*
5446 * Perform a single read of a given ADC channel.
5447 */
5448#define EC_CMD_ADC_READ 0x0123
5449
5450struct ec_params_adc_read {
5451 uint8_t adc_channel;
5452} __ec_align1;
5453
5454struct ec_response_adc_read {
5455 int32_t adc_value;
5456} __ec_align4;
5457
5458/*
5459 * Read back rollback info
5460 */
5461#define EC_CMD_ROLLBACK_INFO 0x0124
5462
5463struct ec_response_rollback_info {
5464 int32_t id; /* Incrementing number to indicate which region to use. */
5465 int32_t rollback_min_version;
5466 int32_t rw_rollback_version;
5467} __ec_align4;
5468
5469
5470/* Issue AP reset */
5471#define EC_CMD_AP_RESET 0x0125
5472
5473/**
5474 * Get the number of peripheral charge ports
5475 */
5476#define EC_CMD_PCHG_COUNT 0x0134
5477
5478#define EC_PCHG_MAX_PORTS 8
5479
5480struct ec_response_pchg_count {
5481 uint8_t port_count;
5482} __ec_align1;
5483
5484/**
5485 * Get the status of a peripheral charge port
5486 */
5487#define EC_CMD_PCHG 0x0135
5488
5489struct ec_params_pchg {
5490 uint8_t port;
5491} __ec_align1;
5492
5493struct ec_response_pchg {
5494 uint32_t error; /* enum pchg_error */
5495 uint8_t state; /* enum pchg_state state */
5496 uint8_t battery_percentage;
5497 uint8_t unused0;
5498 uint8_t unused1;
5499 /* Fields added in version 1 */
5500 uint32_t fw_version;
5501 uint32_t dropped_event_count;
5502} __ec_align2;
5503
5504enum pchg_state {
5505 /* Charger is reset and not initialized. */
5506 PCHG_STATE_RESET = 0,
5507 /* Charger is initialized or disabled. */
5508 PCHG_STATE_INITIALIZED,
5509 /* Charger is enabled and ready to detect a device. */
5510 PCHG_STATE_ENABLED,
5511 /* Device is in proximity. */
5512 PCHG_STATE_DETECTED,
5513 /* Device is being charged. */
5514 PCHG_STATE_CHARGING,
5515 /* Device is fully charged. It implies DETECTED (& not charging). */
5516 PCHG_STATE_FULL,
5517 /* In download (a.k.a. firmware update) mode */
5518 PCHG_STATE_DOWNLOAD,
5519 /* In download mode. Ready for receiving data. */
5520 PCHG_STATE_DOWNLOADING,
5521 /* Device is ready for data communication. */
5522 PCHG_STATE_CONNECTED,
5523 /* Put no more entry below */
5524 PCHG_STATE_COUNT,
5525};
5526
5527#define EC_PCHG_STATE_TEXT { \
5528 [PCHG_STATE_RESET] = "RESET", \
5529 [PCHG_STATE_INITIALIZED] = "INITIALIZED", \
5530 [PCHG_STATE_ENABLED] = "ENABLED", \
5531 [PCHG_STATE_DETECTED] = "DETECTED", \
5532 [PCHG_STATE_CHARGING] = "CHARGING", \
5533 [PCHG_STATE_FULL] = "FULL", \
5534 [PCHG_STATE_DOWNLOAD] = "DOWNLOAD", \
5535 [PCHG_STATE_DOWNLOADING] = "DOWNLOADING", \
5536 [PCHG_STATE_CONNECTED] = "CONNECTED", \
5537 }
5538
5539/*
5540 * Update firmware of peripheral chip
5541 */
5542#define EC_CMD_PCHG_UPDATE 0x0136
5543
5544/* Port number is encoded in bit[28:31]. */
5545#define EC_MKBP_PCHG_PORT_SHIFT 28
5546/* Utility macro for converting MKBP event to port number. */
5547#define EC_MKBP_PCHG_EVENT_TO_PORT(e) (((e) >> EC_MKBP_PCHG_PORT_SHIFT) & 0xf)
5548/* Utility macro for extracting event bits. */
5549#define EC_MKBP_PCHG_EVENT_MASK(e) ((e) \
5550 & GENMASK(EC_MKBP_PCHG_PORT_SHIFT-1, 0))
5551
5552#define EC_MKBP_PCHG_UPDATE_OPENED BIT(0)
5553#define EC_MKBP_PCHG_WRITE_COMPLETE BIT(1)
5554#define EC_MKBP_PCHG_UPDATE_CLOSED BIT(2)
5555#define EC_MKBP_PCHG_UPDATE_ERROR BIT(3)
5556#define EC_MKBP_PCHG_DEVICE_EVENT BIT(4)
5557
5558enum ec_pchg_update_cmd {
5559 /* Reset chip to normal mode. */
5560 EC_PCHG_UPDATE_CMD_RESET_TO_NORMAL = 0,
5561 /* Reset and put a chip in update (a.k.a. download) mode. */
5562 EC_PCHG_UPDATE_CMD_OPEN,
5563 /* Write a block of data containing FW image. */
5564 EC_PCHG_UPDATE_CMD_WRITE,
5565 /* Close update session. */
5566 EC_PCHG_UPDATE_CMD_CLOSE,
5567 /* End of commands */
5568 EC_PCHG_UPDATE_CMD_COUNT,
5569};
5570
5571struct ec_params_pchg_update {
5572 /* PCHG port number */
5573 uint8_t port;
5574 /* enum ec_pchg_update_cmd */
5575 uint8_t cmd;
5576 /* Padding */
5577 uint8_t reserved0;
5578 uint8_t reserved1;
5579 /* Version of new firmware */
5580 uint32_t version;
5581 /* CRC32 of new firmware */
5582 uint32_t crc32;
5583 /* Address in chip memory where <data> is written to */
5584 uint32_t addr;
5585 /* Size of <data> */
5586 uint32_t size;
5587 /* Partial data of new firmware */
5588 uint8_t data[];
5589} __ec_align4;
5590
5591BUILD_ASSERT(EC_PCHG_UPDATE_CMD_COUNT
5592 < BIT(sizeof(((struct ec_params_pchg_update *)0)->cmd)*8));
5593
5594struct ec_response_pchg_update {
5595 /* Block size */
5596 uint32_t block_size;
5597} __ec_align4;
5598
5599
5600/*****************************************************************************/
5601/* Voltage regulator controls */
5602
5603/*
5604 * Get basic info of voltage regulator for given index.
5605 *
5606 * Returns the regulator name and supported voltage list in mV.
5607 */
5608#define EC_CMD_REGULATOR_GET_INFO 0x012C
5609
5610/* Maximum length of regulator name */
5611#define EC_REGULATOR_NAME_MAX_LEN 16
5612
5613/* Maximum length of the supported voltage list. */
5614#define EC_REGULATOR_VOLTAGE_MAX_COUNT 16
5615
5616struct ec_params_regulator_get_info {
5617 uint32_t index;
5618} __ec_align4;
5619
5620struct ec_response_regulator_get_info {
5621 char name[EC_REGULATOR_NAME_MAX_LEN];
5622 uint16_t num_voltages;
5623 uint16_t voltages_mv[EC_REGULATOR_VOLTAGE_MAX_COUNT];
5624} __ec_align2;
5625
5626/*
5627 * Configure the regulator as enabled / disabled.
5628 */
5629#define EC_CMD_REGULATOR_ENABLE 0x012D
5630
5631struct ec_params_regulator_enable {
5632 uint32_t index;
5633 uint8_t enable;
5634} __ec_align4;
5635
5636/*
5637 * Query if the regulator is enabled.
5638 *
5639 * Returns 1 if the regulator is enabled, 0 if not.
5640 */
5641#define EC_CMD_REGULATOR_IS_ENABLED 0x012E
5642
5643struct ec_params_regulator_is_enabled {
5644 uint32_t index;
5645} __ec_align4;
5646
5647struct ec_response_regulator_is_enabled {
5648 uint8_t enabled;
5649} __ec_align1;
5650
5651/*
5652 * Set voltage for the voltage regulator within the range specified.
5653 *
5654 * The driver should select the voltage in range closest to min_mv.
5655 *
5656 * Also note that this might be called before the regulator is enabled, and the
5657 * setting should be in effect after the regulator is enabled.
5658 */
5659#define EC_CMD_REGULATOR_SET_VOLTAGE 0x012F
5660
5661struct ec_params_regulator_set_voltage {
5662 uint32_t index;
5663 uint32_t min_mv;
5664 uint32_t max_mv;
5665} __ec_align4;
5666
5667/*
5668 * Get the currently configured voltage for the voltage regulator.
5669 *
5670 * Note that this might be called before the regulator is enabled, and this
5671 * should return the configured output voltage if the regulator is enabled.
5672 */
5673#define EC_CMD_REGULATOR_GET_VOLTAGE 0x0130
5674
5675struct ec_params_regulator_get_voltage {
5676 uint32_t index;
5677} __ec_align4;
5678
5679struct ec_response_regulator_get_voltage {
5680 uint32_t voltage_mv;
5681} __ec_align4;
5682
5683/*
5684 * Gather all discovery information for the given port and partner type.
5685 *
5686 * Note that if discovery has not yet completed, only the currently completed
5687 * responses will be filled in. If the discovery data structures are changed
5688 * in the process of the command running, BUSY will be returned.
5689 *
5690 * VDO field sizes are set to the maximum possible number of VDOs a VDM may
5691 * contain, while the number of SVIDs here is selected to fit within the PROTO2
5692 * maximum parameter size.
5693 */
5694#define EC_CMD_TYPEC_DISCOVERY 0x0131
5695
5696enum typec_partner_type {
5697 TYPEC_PARTNER_SOP = 0,
5698 TYPEC_PARTNER_SOP_PRIME = 1,
5699};
5700
5701struct ec_params_typec_discovery {
5702 uint8_t port;
5703 uint8_t partner_type; /* enum typec_partner_type */
5704} __ec_align1;
5705
5706struct svid_mode_info {
5707 uint16_t svid;
5708 uint16_t mode_count; /* Number of modes partner sent */
5709 uint32_t mode_vdo[6]; /* Max VDOs allowed after VDM header is 6 */
5710};
5711
5712struct ec_response_typec_discovery {
5713 uint8_t identity_count; /* Number of identity VDOs partner sent */
5714 uint8_t svid_count; /* Number of SVIDs partner sent */
5715 uint16_t reserved;
5716 uint32_t discovery_vdo[6]; /* Max VDOs allowed after VDM header is 6 */
5717 struct svid_mode_info svids[];
5718} __ec_align1;
5719
5720/* USB Type-C commands for AP-controlled device policy. */
5721#define EC_CMD_TYPEC_CONTROL 0x0132
5722
5723enum typec_control_command {
5724 TYPEC_CONTROL_COMMAND_EXIT_MODES,
5725 TYPEC_CONTROL_COMMAND_CLEAR_EVENTS,
5726 TYPEC_CONTROL_COMMAND_ENTER_MODE,
5727 TYPEC_CONTROL_COMMAND_TBT_UFP_REPLY,
5728 TYPEC_CONTROL_COMMAND_USB_MUX_SET,
5729};
5730
5731/* Replies the AP may specify to the TBT EnterMode command as a UFP */
5732enum typec_tbt_ufp_reply {
5733 TYPEC_TBT_UFP_REPLY_NAK,
5734 TYPEC_TBT_UFP_REPLY_ACK,
5735};
5736
5737struct typec_usb_mux_set {
5738 uint8_t mux_index; /* Index of the mux to set in the chain */
5739 uint8_t mux_flags; /* USB_PD_MUX_*-encoded USB mux state to set */
5740} __ec_align1;
5741
5742struct ec_params_typec_control {
5743 uint8_t port;
5744 uint8_t command; /* enum typec_control_command */
5745 uint16_t reserved;
5746
5747 /*
5748 * This section will be interpreted based on |command|. Define a
5749 * placeholder structure to avoid having to increase the size and bump
5750 * the command version when adding new sub-commands.
5751 */
5752 union {
5753 uint32_t clear_events_mask;
5754 uint8_t mode_to_enter; /* enum typec_mode */
5755 uint8_t tbt_ufp_reply; /* enum typec_tbt_ufp_reply */
5756 struct typec_usb_mux_set mux_params;
5757 uint8_t placeholder[128];
5758 };
5759} __ec_align1;
5760
5761/*
5762 * Gather all status information for a port.
5763 *
5764 * Note: this covers many of the return fields from the deprecated
5765 * EC_CMD_USB_PD_CONTROL command, except those that are redundant with the
5766 * discovery data. The "enum pd_cc_states" is defined with the deprecated
5767 * EC_CMD_USB_PD_CONTROL command.
5768 *
5769 * This also combines in the EC_CMD_USB_PD_MUX_INFO flags.
5770 */
5771#define EC_CMD_TYPEC_STATUS 0x0133
5772
5773/*
5774 * Power role.
5775 *
5776 * Note this is also used for PD header creation, and values align to those in
5777 * the Power Delivery Specification Revision 3.0 (See
5778 * 6.2.1.1.4 Port Power Role).
5779 */
5780enum pd_power_role {
5781 PD_ROLE_SINK = 0,
5782 PD_ROLE_SOURCE = 1
5783};
5784
5785/*
5786 * Data role.
5787 *
5788 * Note this is also used for PD header creation, and the first two values
5789 * align to those in the Power Delivery Specification Revision 3.0 (See
5790 * 6.2.1.1.6 Port Data Role).
5791 */
5792enum pd_data_role {
5793 PD_ROLE_UFP = 0,
5794 PD_ROLE_DFP = 1,
5795 PD_ROLE_DISCONNECTED = 2,
5796};
5797
5798enum pd_vconn_role {
5799 PD_ROLE_VCONN_OFF = 0,
5800 PD_ROLE_VCONN_SRC = 1,
5801};
5802
5803/*
5804 * Note: BIT(0) may be used to determine whether the polarity is CC1 or CC2,
5805 * regardless of whether a debug accessory is connected.
5806 */
5807enum tcpc_cc_polarity {
5808 /*
5809 * _CCx: is used to indicate the polarity while not connected to
5810 * a Debug Accessory. Only one CC line will assert a resistor and
5811 * the other will be open.
5812 */
5813 POLARITY_CC1 = 0,
5814 POLARITY_CC2 = 1,
5815
5816 /*
5817 * _CCx_DTS is used to indicate the polarity while connected to a
5818 * SRC Debug Accessory. Assert resistors on both lines.
5819 */
5820 POLARITY_CC1_DTS = 2,
5821 POLARITY_CC2_DTS = 3,
5822
5823 /*
5824 * The current TCPC code relies on these specific POLARITY values.
5825 * Adding in a check to verify if the list grows for any reason
5826 * that this will give a hint that other places need to be
5827 * adjusted.
5828 */
5829 POLARITY_COUNT
5830};
5831
5832#define PD_STATUS_EVENT_SOP_DISC_DONE BIT(0)
5833#define PD_STATUS_EVENT_SOP_PRIME_DISC_DONE BIT(1)
5834#define PD_STATUS_EVENT_HARD_RESET BIT(2)
5835#define PD_STATUS_EVENT_DISCONNECTED BIT(3)
5836#define PD_STATUS_EVENT_MUX_0_SET_DONE BIT(4)
5837#define PD_STATUS_EVENT_MUX_1_SET_DONE BIT(5)
5838
5839struct ec_params_typec_status {
5840 uint8_t port;
5841} __ec_align1;
5842
5843struct ec_response_typec_status {
5844 uint8_t pd_enabled; /* PD communication enabled - bool */
5845 uint8_t dev_connected; /* Device connected - bool */
5846 uint8_t sop_connected; /* Device is SOP PD capable - bool */
5847 uint8_t source_cap_count; /* Number of Source Cap PDOs */
5848
5849 uint8_t power_role; /* enum pd_power_role */
5850 uint8_t data_role; /* enum pd_data_role */
5851 uint8_t vconn_role; /* enum pd_vconn_role */
5852 uint8_t sink_cap_count; /* Number of Sink Cap PDOs */
5853
5854 uint8_t polarity; /* enum tcpc_cc_polarity */
5855 uint8_t cc_state; /* enum pd_cc_states */
5856 uint8_t dp_pin; /* DP pin mode (MODE_DP_IN_[A-E]) */
5857 uint8_t mux_state; /* USB_PD_MUX* - encoded mux state */
5858
5859 char tc_state[32]; /* TC state name */
5860
5861 uint32_t events; /* PD_STATUS_EVENT bitmask */
5862
5863 /*
5864 * BCD PD revisions for partners
5865 *
5866 * The format has the PD major reversion in the upper nibble, and PD
5867 * minor version in the next nibble. Following two nibbles are
5868 * currently 0.
5869 * ex. PD 3.2 would map to 0x3200
5870 *
5871 * PD major/minor will be 0 if no PD device is connected.
5872 */
5873 uint16_t sop_revision;
5874 uint16_t sop_prime_revision;
5875
5876 uint32_t source_cap_pdos[7]; /* Max 7 PDOs can be present */
5877
5878 uint32_t sink_cap_pdos[7]; /* Max 7 PDOs can be present */
5879} __ec_align1;
5880
5881/*****************************************************************************/
5882/* The command range 0x200-0x2FF is reserved for Rotor. */
5883
5884/*****************************************************************************/
5885/*
5886 * Reserve a range of host commands for the CR51 firmware.
5887 */
5888#define EC_CMD_CR51_BASE 0x0300
5889#define EC_CMD_CR51_LAST 0x03FF
5890
5891/*****************************************************************************/
5892/* Fingerprint MCU commands: range 0x0400-0x040x */
5893
5894/* Fingerprint SPI sensor passthru command: prototyping ONLY */
5895#define EC_CMD_FP_PASSTHRU 0x0400
5896
5897#define EC_FP_FLAG_NOT_COMPLETE 0x1
5898
5899struct ec_params_fp_passthru {
5900 uint16_t len; /* Number of bytes to write then read */
5901 uint16_t flags; /* EC_FP_FLAG_xxx */
5902 uint8_t data[]; /* Data to send */
5903} __ec_align2;
5904
5905/* Configure the Fingerprint MCU behavior */
5906#define EC_CMD_FP_MODE 0x0402
5907
5908/* Put the sensor in its lowest power mode */
5909#define FP_MODE_DEEPSLEEP BIT(0)
5910/* Wait to see a finger on the sensor */
5911#define FP_MODE_FINGER_DOWN BIT(1)
5912/* Poll until the finger has left the sensor */
5913#define FP_MODE_FINGER_UP BIT(2)
5914/* Capture the current finger image */
5915#define FP_MODE_CAPTURE BIT(3)
5916/* Finger enrollment session on-going */
5917#define FP_MODE_ENROLL_SESSION BIT(4)
5918/* Enroll the current finger image */
5919#define FP_MODE_ENROLL_IMAGE BIT(5)
5920/* Try to match the current finger image */
5921#define FP_MODE_MATCH BIT(6)
5922/* Reset and re-initialize the sensor. */
5923#define FP_MODE_RESET_SENSOR BIT(7)
5924/* special value: don't change anything just read back current mode */
5925#define FP_MODE_DONT_CHANGE BIT(31)
5926
5927#define FP_VALID_MODES (FP_MODE_DEEPSLEEP | \
5928 FP_MODE_FINGER_DOWN | \
5929 FP_MODE_FINGER_UP | \
5930 FP_MODE_CAPTURE | \
5931 FP_MODE_ENROLL_SESSION | \
5932 FP_MODE_ENROLL_IMAGE | \
5933 FP_MODE_MATCH | \
5934 FP_MODE_RESET_SENSOR | \
5935 FP_MODE_DONT_CHANGE)
5936
5937/* Capture types defined in bits [30..28] */
5938#define FP_MODE_CAPTURE_TYPE_SHIFT 28
5939#define FP_MODE_CAPTURE_TYPE_MASK (0x7 << FP_MODE_CAPTURE_TYPE_SHIFT)
5940/*
5941 * This enum must remain ordered, if you add new values you must ensure that
5942 * FP_CAPTURE_TYPE_MAX is still the last one.
5943 */
5944enum fp_capture_type {
5945 /* Full blown vendor-defined capture (produces 'frame_size' bytes) */
5946 FP_CAPTURE_VENDOR_FORMAT = 0,
5947 /* Simple raw image capture (produces width x height x bpp bits) */
5948 FP_CAPTURE_SIMPLE_IMAGE = 1,
5949 /* Self test pattern (e.g. checkerboard) */
5950 FP_CAPTURE_PATTERN0 = 2,
5951 /* Self test pattern (e.g. inverted checkerboard) */
5952 FP_CAPTURE_PATTERN1 = 3,
5953 /* Capture for Quality test with fixed contrast */
5954 FP_CAPTURE_QUALITY_TEST = 4,
5955 /* Capture for pixel reset value test */
5956 FP_CAPTURE_RESET_TEST = 5,
5957 FP_CAPTURE_TYPE_MAX,
5958};
5959/* Extracts the capture type from the sensor 'mode' word */
5960#define FP_CAPTURE_TYPE(mode) (((mode) & FP_MODE_CAPTURE_TYPE_MASK) \
5961 >> FP_MODE_CAPTURE_TYPE_SHIFT)
5962
5963struct ec_params_fp_mode {
5964 uint32_t mode; /* as defined by FP_MODE_ constants */
5965} __ec_align4;
5966
5967struct ec_response_fp_mode {
5968 uint32_t mode; /* as defined by FP_MODE_ constants */
5969} __ec_align4;
5970
5971/* Retrieve Fingerprint sensor information */
5972#define EC_CMD_FP_INFO 0x0403
5973
5974/* Number of dead pixels detected on the last maintenance */
5975#define FP_ERROR_DEAD_PIXELS(errors) ((errors) & 0x3FF)
5976/* Unknown number of dead pixels detected on the last maintenance */
5977#define FP_ERROR_DEAD_PIXELS_UNKNOWN (0x3FF)
5978/* No interrupt from the sensor */
5979#define FP_ERROR_NO_IRQ BIT(12)
5980/* SPI communication error */
5981#define FP_ERROR_SPI_COMM BIT(13)
5982/* Invalid sensor Hardware ID */
5983#define FP_ERROR_BAD_HWID BIT(14)
5984/* Sensor initialization failed */
5985#define FP_ERROR_INIT_FAIL BIT(15)
5986
5987struct ec_response_fp_info_v0 {
5988 /* Sensor identification */
5989 uint32_t vendor_id;
5990 uint32_t product_id;
5991 uint32_t model_id;
5992 uint32_t version;
5993 /* Image frame characteristics */
5994 uint32_t frame_size;
5995 uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
5996 uint16_t width;
5997 uint16_t height;
5998 uint16_t bpp;
5999 uint16_t errors; /* see FP_ERROR_ flags above */
6000} __ec_align4;
6001
6002struct ec_response_fp_info {
6003 /* Sensor identification */
6004 uint32_t vendor_id;
6005 uint32_t product_id;
6006 uint32_t model_id;
6007 uint32_t version;
6008 /* Image frame characteristics */
6009 uint32_t frame_size;
6010 uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
6011 uint16_t width;
6012 uint16_t height;
6013 uint16_t bpp;
6014 uint16_t errors; /* see FP_ERROR_ flags above */
6015 /* Template/finger current information */
6016 uint32_t template_size; /* max template size in bytes */
6017 uint16_t template_max; /* maximum number of fingers/templates */
6018 uint16_t template_valid; /* number of valid fingers/templates */
6019 uint32_t template_dirty; /* bitmap of templates with MCU side changes */
6020 uint32_t template_version; /* version of the template format */
6021} __ec_align4;
6022
6023/* Get the last captured finger frame or a template content */
6024#define EC_CMD_FP_FRAME 0x0404
6025
6026/* constants defining the 'offset' field which also contains the frame index */
6027#define FP_FRAME_INDEX_SHIFT 28
6028/* Frame buffer where the captured image is stored */
6029#define FP_FRAME_INDEX_RAW_IMAGE 0
6030/* First frame buffer holding a template */
6031#define FP_FRAME_INDEX_TEMPLATE 1
6032#define FP_FRAME_GET_BUFFER_INDEX(offset) ((offset) >> FP_FRAME_INDEX_SHIFT)
6033#define FP_FRAME_OFFSET_MASK 0x0FFFFFFF
6034
6035/* Version of the format of the encrypted templates. */
6036#define FP_TEMPLATE_FORMAT_VERSION 3
6037
6038/* Constants for encryption parameters */
6039#define FP_CONTEXT_NONCE_BYTES 12
6040#define FP_CONTEXT_USERID_WORDS (32 / sizeof(uint32_t))
6041#define FP_CONTEXT_TAG_BYTES 16
6042#define FP_CONTEXT_SALT_BYTES 16
6043#define FP_CONTEXT_TPM_BYTES 32
6044
6045struct ec_fp_template_encryption_metadata {
6046 /*
6047 * Version of the structure format (N=3).
6048 */
6049 uint16_t struct_version;
6050 /* Reserved bytes, set to 0. */
6051 uint16_t reserved;
6052 /*
6053 * The salt is *only* ever used for key derivation. The nonce is unique,
6054 * a different one is used for every message.
6055 */
6056 uint8_t nonce[FP_CONTEXT_NONCE_BYTES];
6057 uint8_t salt[FP_CONTEXT_SALT_BYTES];
6058 uint8_t tag[FP_CONTEXT_TAG_BYTES];
6059};
6060
6061struct ec_params_fp_frame {
6062 /*
6063 * The offset contains the template index or FP_FRAME_INDEX_RAW_IMAGE
6064 * in the high nibble, and the real offset within the frame in
6065 * FP_FRAME_OFFSET_MASK.
6066 */
6067 uint32_t offset;
6068 uint32_t size;
6069} __ec_align4;
6070
6071/* Load a template into the MCU */
6072#define EC_CMD_FP_TEMPLATE 0x0405
6073
6074/* Flag in the 'size' field indicating that the full template has been sent */
6075#define FP_TEMPLATE_COMMIT 0x80000000
6076
6077struct ec_params_fp_template {
6078 uint32_t offset;
6079 uint32_t size;
6080 uint8_t data[];
6081} __ec_align4;
6082
6083/* Clear the current fingerprint user context and set a new one */
6084#define EC_CMD_FP_CONTEXT 0x0406
6085
6086struct ec_params_fp_context {
6087 uint32_t userid[FP_CONTEXT_USERID_WORDS];
6088} __ec_align4;
6089
6090#define EC_CMD_FP_STATS 0x0407
6091
6092#define FPSTATS_CAPTURE_INV BIT(0)
6093#define FPSTATS_MATCHING_INV BIT(1)
6094
6095struct ec_response_fp_stats {
6096 uint32_t capture_time_us;
6097 uint32_t matching_time_us;
6098 uint32_t overall_time_us;
6099 struct {
6100 uint32_t lo;
6101 uint32_t hi;
6102 } overall_t0;
6103 uint8_t timestamps_invalid;
6104 int8_t template_matched;
6105} __ec_align2;
6106
6107#define EC_CMD_FP_SEED 0x0408
6108struct ec_params_fp_seed {
6109 /*
6110 * Version of the structure format (N=3).
6111 */
6112 uint16_t struct_version;
6113 /* Reserved bytes, set to 0. */
6114 uint16_t reserved;
6115 /* Seed from the TPM. */
6116 uint8_t seed[FP_CONTEXT_TPM_BYTES];
6117} __ec_align4;
6118
6119#define EC_CMD_FP_ENC_STATUS 0x0409
6120
6121/* FP TPM seed has been set or not */
6122#define FP_ENC_STATUS_SEED_SET BIT(0)
6123
6124struct ec_response_fp_encryption_status {
6125 /* Used bits in encryption engine status */
6126 uint32_t valid_flags;
6127 /* Encryption engine status */
6128 uint32_t status;
6129} __ec_align4;
6130
6131/*****************************************************************************/
6132/* Touchpad MCU commands: range 0x0500-0x05FF */
6133
6134/* Perform touchpad self test */
6135#define EC_CMD_TP_SELF_TEST 0x0500
6136
6137/* Get number of frame types, and the size of each type */
6138#define EC_CMD_TP_FRAME_INFO 0x0501
6139
6140struct ec_response_tp_frame_info {
6141 uint32_t n_frames;
6142 uint32_t frame_sizes[];
6143} __ec_align4;
6144
6145/* Create a snapshot of current frame readings */
6146#define EC_CMD_TP_FRAME_SNAPSHOT 0x0502
6147
6148/* Read the frame */
6149#define EC_CMD_TP_FRAME_GET 0x0503
6150
6151struct ec_params_tp_frame_get {
6152 uint32_t frame_index;
6153 uint32_t offset;
6154 uint32_t size;
6155} __ec_align4;
6156
6157/*****************************************************************************/
6158/* EC-EC communication commands: range 0x0600-0x06FF */
6159
6160#define EC_COMM_TEXT_MAX 8
6161
6162/*
6163 * Get battery static information, i.e. information that never changes, or
6164 * very infrequently.
6165 */
6166#define EC_CMD_BATTERY_GET_STATIC 0x0600
6167
6168/**
6169 * struct ec_params_battery_static_info - Battery static info parameters
6170 * @index: Battery index.
6171 */
6172struct ec_params_battery_static_info {
6173 uint8_t index;
6174} __ec_align_size1;
6175
6176/**
6177 * struct ec_response_battery_static_info - Battery static info response
6178 * @design_capacity: Battery Design Capacity (mAh)
6179 * @design_voltage: Battery Design Voltage (mV)
6180 * @manufacturer: Battery Manufacturer String
6181 * @model: Battery Model Number String
6182 * @serial: Battery Serial Number String
6183 * @type: Battery Type String
6184 * @cycle_count: Battery Cycle Count
6185 */
6186struct ec_response_battery_static_info {
6187 uint16_t design_capacity;
6188 uint16_t design_voltage;
6189 char manufacturer[EC_COMM_TEXT_MAX];
6190 char model[EC_COMM_TEXT_MAX];
6191 char serial[EC_COMM_TEXT_MAX];
6192 char type[EC_COMM_TEXT_MAX];
6193 /* TODO(crbug.com/795991): Consider moving to dynamic structure. */
6194 uint32_t cycle_count;
6195} __ec_align4;
6196
6197/*
6198 * Get battery dynamic information, i.e. information that is likely to change
6199 * every time it is read.
6200 */
6201#define EC_CMD_BATTERY_GET_DYNAMIC 0x0601
6202
6203/**
6204 * struct ec_params_battery_dynamic_info - Battery dynamic info parameters
6205 * @index: Battery index.
6206 */
6207struct ec_params_battery_dynamic_info {
6208 uint8_t index;
6209} __ec_align_size1;
6210
6211/**
6212 * struct ec_response_battery_dynamic_info - Battery dynamic info response
6213 * @actual_voltage: Battery voltage (mV)
6214 * @actual_current: Battery current (mA); negative=discharging
6215 * @remaining_capacity: Remaining capacity (mAh)
6216 * @full_capacity: Capacity (mAh, might change occasionally)
6217 * @flags: Flags, see EC_BATT_FLAG_*
6218 * @desired_voltage: Charging voltage desired by battery (mV)
6219 * @desired_current: Charging current desired by battery (mA)
6220 */
6221struct ec_response_battery_dynamic_info {
6222 int16_t actual_voltage;
6223 int16_t actual_current;
6224 int16_t remaining_capacity;
6225 int16_t full_capacity;
6226 int16_t flags;
6227 int16_t desired_voltage;
6228 int16_t desired_current;
6229} __ec_align2;
6230
6231/*
6232 * Control charger chip. Used to control charger chip on the slave.
6233 */
6234#define EC_CMD_CHARGER_CONTROL 0x0602
6235
6236/**
6237 * struct ec_params_charger_control - Charger control parameters
6238 * @max_current: Charger current (mA). Positive to allow base to draw up to
6239 * max_current and (possibly) charge battery, negative to request current
6240 * from base (OTG).
6241 * @otg_voltage: Voltage (mV) to use in OTG mode, ignored if max_current is
6242 * >= 0.
6243 * @allow_charging: Allow base battery charging (only makes sense if
6244 * max_current > 0).
6245 */
6246struct ec_params_charger_control {
6247 int16_t max_current;
6248 uint16_t otg_voltage;
6249 uint8_t allow_charging;
6250} __ec_align_size1;
6251
6252/* Get ACK from the USB-C SS muxes */
6253#define EC_CMD_USB_PD_MUX_ACK 0x0603
6254
6255struct ec_params_usb_pd_mux_ack {
6256 uint8_t port; /* USB-C port number */
6257} __ec_align1;
6258
6259/*****************************************************************************/
6260/*
6261 * Reserve a range of host commands for board-specific, experimental, or
6262 * special purpose features. These can be (re)used without updating this file.
6263 *
6264 * CAUTION: Don't go nuts with this. Shipping products should document ALL
6265 * their EC commands for easier development, testing, debugging, and support.
6266 *
6267 * All commands MUST be #defined to be 4-digit UPPER CASE hex values
6268 * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
6269 *
6270 * In your experimental code, you may want to do something like this:
6271 *
6272 * #define EC_CMD_MAGIC_FOO 0x0000
6273 * #define EC_CMD_MAGIC_BAR 0x0001
6274 * #define EC_CMD_MAGIC_HEY 0x0002
6275 *
6276 * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler,
6277 * EC_VER_MASK(0);
6278 *
6279 * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler,
6280 * EC_VER_MASK(0);
6281 *
6282 * DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler,
6283 * EC_VER_MASK(0);
6284 */
6285#define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00
6286#define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF
6287
6288/*
6289 * Given the private host command offset, calculate the true private host
6290 * command value.
6291 */
6292#define EC_PRIVATE_HOST_COMMAND_VALUE(command) \
6293 (EC_CMD_BOARD_SPECIFIC_BASE + (command))
6294
6295/*****************************************************************************/
6296/*
6297 * Passthru commands
6298 *
6299 * Some platforms have sub-processors chained to each other. For example.
6300 *
6301 * AP <--> EC <--> PD MCU
6302 *
6303 * The top 2 bits of the command number are used to indicate which device the
6304 * command is intended for. Device 0 is always the device receiving the
6305 * command; other device mapping is board-specific.
6306 *
6307 * When a device receives a command to be passed to a sub-processor, it passes
6308 * it on with the device number set back to 0. This allows the sub-processor
6309 * to remain blissfully unaware of whether the command originated on the next
6310 * device up the chain, or was passed through from the AP.
6311 *
6312 * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
6313 * AP sends command 0x4002 to the EC
6314 * EC sends command 0x0002 to the PD MCU
6315 * EC forwards PD MCU response back to the AP
6316 */
6317
6318/* Offset and max command number for sub-device n */
6319#define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
6320#define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
6321
6322/*****************************************************************************/
6323/*
6324 * Deprecated constants. These constants have been renamed for clarity. The
6325 * meaning and size has not changed. Programs that use the old names should
6326 * switch to the new names soon, as the old names may not be carried forward
6327 * forever.
6328 */
6329#define EC_HOST_PARAM_SIZE EC_PROTO2_MAX_PARAM_SIZE
6330#define EC_LPC_ADDR_OLD_PARAM EC_HOST_CMD_REGION1
6331#define EC_OLD_PARAM_SIZE EC_HOST_CMD_REGION_SIZE
6332
6333
6334
6335#endif /* __CROS_EC_COMMANDS_H */