at v6.2 53 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18#include <uapi/linux/bpf_perf_event.h> 19 20/* 21 * Kernel-internal data types and definitions: 22 */ 23 24#ifdef CONFIG_PERF_EVENTS 25# include <asm/perf_event.h> 26# include <asm/local64.h> 27#endif 28 29#define PERF_GUEST_ACTIVE 0x01 30#define PERF_GUEST_USER 0x02 31 32struct perf_guest_info_callbacks { 33 unsigned int (*state)(void); 34 unsigned long (*get_ip)(void); 35 unsigned int (*handle_intel_pt_intr)(void); 36}; 37 38#ifdef CONFIG_HAVE_HW_BREAKPOINT 39#include <linux/rhashtable-types.h> 40#include <asm/hw_breakpoint.h> 41#endif 42 43#include <linux/list.h> 44#include <linux/mutex.h> 45#include <linux/rculist.h> 46#include <linux/rcupdate.h> 47#include <linux/spinlock.h> 48#include <linux/hrtimer.h> 49#include <linux/fs.h> 50#include <linux/pid_namespace.h> 51#include <linux/workqueue.h> 52#include <linux/ftrace.h> 53#include <linux/cpu.h> 54#include <linux/irq_work.h> 55#include <linux/static_key.h> 56#include <linux/jump_label_ratelimit.h> 57#include <linux/atomic.h> 58#include <linux/sysfs.h> 59#include <linux/perf_regs.h> 60#include <linux/cgroup.h> 61#include <linux/refcount.h> 62#include <linux/security.h> 63#include <linux/static_call.h> 64#include <linux/lockdep.h> 65#include <asm/local.h> 66 67struct perf_callchain_entry { 68 __u64 nr; 69 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 70}; 71 72struct perf_callchain_entry_ctx { 73 struct perf_callchain_entry *entry; 74 u32 max_stack; 75 u32 nr; 76 short contexts; 77 bool contexts_maxed; 78}; 79 80typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 81 unsigned long off, unsigned long len); 82 83struct perf_raw_frag { 84 union { 85 struct perf_raw_frag *next; 86 unsigned long pad; 87 }; 88 perf_copy_f copy; 89 void *data; 90 u32 size; 91} __packed; 92 93struct perf_raw_record { 94 struct perf_raw_frag frag; 95 u32 size; 96}; 97 98/* 99 * branch stack layout: 100 * nr: number of taken branches stored in entries[] 101 * hw_idx: The low level index of raw branch records 102 * for the most recent branch. 103 * -1ULL means invalid/unknown. 104 * 105 * Note that nr can vary from sample to sample 106 * branches (to, from) are stored from most recent 107 * to least recent, i.e., entries[0] contains the most 108 * recent branch. 109 * The entries[] is an abstraction of raw branch records, 110 * which may not be stored in age order in HW, e.g. Intel LBR. 111 * The hw_idx is to expose the low level index of raw 112 * branch record for the most recent branch aka entries[0]. 113 * The hw_idx index is between -1 (unknown) and max depth, 114 * which can be retrieved in /sys/devices/cpu/caps/branches. 115 * For the architectures whose raw branch records are 116 * already stored in age order, the hw_idx should be 0. 117 */ 118struct perf_branch_stack { 119 __u64 nr; 120 __u64 hw_idx; 121 struct perf_branch_entry entries[]; 122}; 123 124struct task_struct; 125 126/* 127 * extra PMU register associated with an event 128 */ 129struct hw_perf_event_extra { 130 u64 config; /* register value */ 131 unsigned int reg; /* register address or index */ 132 int alloc; /* extra register already allocated */ 133 int idx; /* index in shared_regs->regs[] */ 134}; 135 136/** 137 * hw_perf_event::flag values 138 * 139 * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific 140 * usage. 141 */ 142#define PERF_EVENT_FLAG_ARCH 0x000fffff 143#define PERF_EVENT_FLAG_USER_READ_CNT 0x80000000 144 145static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0); 146 147/** 148 * struct hw_perf_event - performance event hardware details: 149 */ 150struct hw_perf_event { 151#ifdef CONFIG_PERF_EVENTS 152 union { 153 struct { /* hardware */ 154 u64 config; 155 u64 last_tag; 156 unsigned long config_base; 157 unsigned long event_base; 158 int event_base_rdpmc; 159 int idx; 160 int last_cpu; 161 int flags; 162 163 struct hw_perf_event_extra extra_reg; 164 struct hw_perf_event_extra branch_reg; 165 }; 166 struct { /* software */ 167 struct hrtimer hrtimer; 168 }; 169 struct { /* tracepoint */ 170 /* for tp_event->class */ 171 struct list_head tp_list; 172 }; 173 struct { /* amd_power */ 174 u64 pwr_acc; 175 u64 ptsc; 176 }; 177#ifdef CONFIG_HAVE_HW_BREAKPOINT 178 struct { /* breakpoint */ 179 /* 180 * Crufty hack to avoid the chicken and egg 181 * problem hw_breakpoint has with context 182 * creation and event initalization. 183 */ 184 struct arch_hw_breakpoint info; 185 struct rhlist_head bp_list; 186 }; 187#endif 188 struct { /* amd_iommu */ 189 u8 iommu_bank; 190 u8 iommu_cntr; 191 u16 padding; 192 u64 conf; 193 u64 conf1; 194 }; 195 }; 196 /* 197 * If the event is a per task event, this will point to the task in 198 * question. See the comment in perf_event_alloc(). 199 */ 200 struct task_struct *target; 201 202 /* 203 * PMU would store hardware filter configuration 204 * here. 205 */ 206 void *addr_filters; 207 208 /* Last sync'ed generation of filters */ 209 unsigned long addr_filters_gen; 210 211/* 212 * hw_perf_event::state flags; used to track the PERF_EF_* state. 213 */ 214#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 215#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 216#define PERF_HES_ARCH 0x04 217 218 int state; 219 220 /* 221 * The last observed hardware counter value, updated with a 222 * local64_cmpxchg() such that pmu::read() can be called nested. 223 */ 224 local64_t prev_count; 225 226 /* 227 * The period to start the next sample with. 228 */ 229 u64 sample_period; 230 231 union { 232 struct { /* Sampling */ 233 /* 234 * The period we started this sample with. 235 */ 236 u64 last_period; 237 238 /* 239 * However much is left of the current period; 240 * note that this is a full 64bit value and 241 * allows for generation of periods longer 242 * than hardware might allow. 243 */ 244 local64_t period_left; 245 }; 246 struct { /* Topdown events counting for context switch */ 247 u64 saved_metric; 248 u64 saved_slots; 249 }; 250 }; 251 252 /* 253 * State for throttling the event, see __perf_event_overflow() and 254 * perf_adjust_freq_unthr_context(). 255 */ 256 u64 interrupts_seq; 257 u64 interrupts; 258 259 /* 260 * State for freq target events, see __perf_event_overflow() and 261 * perf_adjust_freq_unthr_context(). 262 */ 263 u64 freq_time_stamp; 264 u64 freq_count_stamp; 265#endif 266}; 267 268struct perf_event; 269struct perf_event_pmu_context; 270 271/* 272 * Common implementation detail of pmu::{start,commit,cancel}_txn 273 */ 274#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 275#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 276 277/** 278 * pmu::capabilities flags 279 */ 280#define PERF_PMU_CAP_NO_INTERRUPT 0x0001 281#define PERF_PMU_CAP_NO_NMI 0x0002 282#define PERF_PMU_CAP_AUX_NO_SG 0x0004 283#define PERF_PMU_CAP_EXTENDED_REGS 0x0008 284#define PERF_PMU_CAP_EXCLUSIVE 0x0010 285#define PERF_PMU_CAP_ITRACE 0x0020 286#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040 287#define PERF_PMU_CAP_NO_EXCLUDE 0x0080 288#define PERF_PMU_CAP_AUX_OUTPUT 0x0100 289#define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200 290 291struct perf_output_handle; 292 293/** 294 * struct pmu - generic performance monitoring unit 295 */ 296struct pmu { 297 struct list_head entry; 298 299 struct module *module; 300 struct device *dev; 301 const struct attribute_group **attr_groups; 302 const struct attribute_group **attr_update; 303 const char *name; 304 int type; 305 306 /* 307 * various common per-pmu feature flags 308 */ 309 int capabilities; 310 311 int __percpu *pmu_disable_count; 312 struct perf_cpu_pmu_context __percpu *cpu_pmu_context; 313 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 314 int task_ctx_nr; 315 int hrtimer_interval_ms; 316 317 /* number of address filters this PMU can do */ 318 unsigned int nr_addr_filters; 319 320 /* 321 * Fully disable/enable this PMU, can be used to protect from the PMI 322 * as well as for lazy/batch writing of the MSRs. 323 */ 324 void (*pmu_enable) (struct pmu *pmu); /* optional */ 325 void (*pmu_disable) (struct pmu *pmu); /* optional */ 326 327 /* 328 * Try and initialize the event for this PMU. 329 * 330 * Returns: 331 * -ENOENT -- @event is not for this PMU 332 * 333 * -ENODEV -- @event is for this PMU but PMU not present 334 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 335 * -EINVAL -- @event is for this PMU but @event is not valid 336 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 337 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 338 * 339 * 0 -- @event is for this PMU and valid 340 * 341 * Other error return values are allowed. 342 */ 343 int (*event_init) (struct perf_event *event); 344 345 /* 346 * Notification that the event was mapped or unmapped. Called 347 * in the context of the mapping task. 348 */ 349 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 350 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 351 352 /* 353 * Flags for ->add()/->del()/ ->start()/->stop(). There are 354 * matching hw_perf_event::state flags. 355 */ 356#define PERF_EF_START 0x01 /* start the counter when adding */ 357#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 358#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 359 360 /* 361 * Adds/Removes a counter to/from the PMU, can be done inside a 362 * transaction, see the ->*_txn() methods. 363 * 364 * The add/del callbacks will reserve all hardware resources required 365 * to service the event, this includes any counter constraint 366 * scheduling etc. 367 * 368 * Called with IRQs disabled and the PMU disabled on the CPU the event 369 * is on. 370 * 371 * ->add() called without PERF_EF_START should result in the same state 372 * as ->add() followed by ->stop(). 373 * 374 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 375 * ->stop() that must deal with already being stopped without 376 * PERF_EF_UPDATE. 377 */ 378 int (*add) (struct perf_event *event, int flags); 379 void (*del) (struct perf_event *event, int flags); 380 381 /* 382 * Starts/Stops a counter present on the PMU. 383 * 384 * The PMI handler should stop the counter when perf_event_overflow() 385 * returns !0. ->start() will be used to continue. 386 * 387 * Also used to change the sample period. 388 * 389 * Called with IRQs disabled and the PMU disabled on the CPU the event 390 * is on -- will be called from NMI context with the PMU generates 391 * NMIs. 392 * 393 * ->stop() with PERF_EF_UPDATE will read the counter and update 394 * period/count values like ->read() would. 395 * 396 * ->start() with PERF_EF_RELOAD will reprogram the counter 397 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 398 */ 399 void (*start) (struct perf_event *event, int flags); 400 void (*stop) (struct perf_event *event, int flags); 401 402 /* 403 * Updates the counter value of the event. 404 * 405 * For sampling capable PMUs this will also update the software period 406 * hw_perf_event::period_left field. 407 */ 408 void (*read) (struct perf_event *event); 409 410 /* 411 * Group events scheduling is treated as a transaction, add 412 * group events as a whole and perform one schedulability test. 413 * If the test fails, roll back the whole group 414 * 415 * Start the transaction, after this ->add() doesn't need to 416 * do schedulability tests. 417 * 418 * Optional. 419 */ 420 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 421 /* 422 * If ->start_txn() disabled the ->add() schedulability test 423 * then ->commit_txn() is required to perform one. On success 424 * the transaction is closed. On error the transaction is kept 425 * open until ->cancel_txn() is called. 426 * 427 * Optional. 428 */ 429 int (*commit_txn) (struct pmu *pmu); 430 /* 431 * Will cancel the transaction, assumes ->del() is called 432 * for each successful ->add() during the transaction. 433 * 434 * Optional. 435 */ 436 void (*cancel_txn) (struct pmu *pmu); 437 438 /* 439 * Will return the value for perf_event_mmap_page::index for this event, 440 * if no implementation is provided it will default to: event->hw.idx + 1. 441 */ 442 int (*event_idx) (struct perf_event *event); /*optional */ 443 444 /* 445 * context-switches callback 446 */ 447 void (*sched_task) (struct perf_event_pmu_context *pmu_ctx, 448 bool sched_in); 449 450 /* 451 * Kmem cache of PMU specific data 452 */ 453 struct kmem_cache *task_ctx_cache; 454 455 /* 456 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 457 * can be synchronized using this function. See Intel LBR callstack support 458 * implementation and Perf core context switch handling callbacks for usage 459 * examples. 460 */ 461 void (*swap_task_ctx) (struct perf_event_pmu_context *prev_epc, 462 struct perf_event_pmu_context *next_epc); 463 /* optional */ 464 465 /* 466 * Set up pmu-private data structures for an AUX area 467 */ 468 void *(*setup_aux) (struct perf_event *event, void **pages, 469 int nr_pages, bool overwrite); 470 /* optional */ 471 472 /* 473 * Free pmu-private AUX data structures 474 */ 475 void (*free_aux) (void *aux); /* optional */ 476 477 /* 478 * Take a snapshot of the AUX buffer without touching the event 479 * state, so that preempting ->start()/->stop() callbacks does 480 * not interfere with their logic. Called in PMI context. 481 * 482 * Returns the size of AUX data copied to the output handle. 483 * 484 * Optional. 485 */ 486 long (*snapshot_aux) (struct perf_event *event, 487 struct perf_output_handle *handle, 488 unsigned long size); 489 490 /* 491 * Validate address range filters: make sure the HW supports the 492 * requested configuration and number of filters; return 0 if the 493 * supplied filters are valid, -errno otherwise. 494 * 495 * Runs in the context of the ioctl()ing process and is not serialized 496 * with the rest of the PMU callbacks. 497 */ 498 int (*addr_filters_validate) (struct list_head *filters); 499 /* optional */ 500 501 /* 502 * Synchronize address range filter configuration: 503 * translate hw-agnostic filters into hardware configuration in 504 * event::hw::addr_filters. 505 * 506 * Runs as a part of filter sync sequence that is done in ->start() 507 * callback by calling perf_event_addr_filters_sync(). 508 * 509 * May (and should) traverse event::addr_filters::list, for which its 510 * caller provides necessary serialization. 511 */ 512 void (*addr_filters_sync) (struct perf_event *event); 513 /* optional */ 514 515 /* 516 * Check if event can be used for aux_output purposes for 517 * events of this PMU. 518 * 519 * Runs from perf_event_open(). Should return 0 for "no match" 520 * or non-zero for "match". 521 */ 522 int (*aux_output_match) (struct perf_event *event); 523 /* optional */ 524 525 /* 526 * Skip programming this PMU on the given CPU. Typically needed for 527 * big.LITTLE things. 528 */ 529 bool (*filter) (struct pmu *pmu, int cpu); /* optional */ 530 531 /* 532 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 533 */ 534 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 535}; 536 537enum perf_addr_filter_action_t { 538 PERF_ADDR_FILTER_ACTION_STOP = 0, 539 PERF_ADDR_FILTER_ACTION_START, 540 PERF_ADDR_FILTER_ACTION_FILTER, 541}; 542 543/** 544 * struct perf_addr_filter - address range filter definition 545 * @entry: event's filter list linkage 546 * @path: object file's path for file-based filters 547 * @offset: filter range offset 548 * @size: filter range size (size==0 means single address trigger) 549 * @action: filter/start/stop 550 * 551 * This is a hardware-agnostic filter configuration as specified by the user. 552 */ 553struct perf_addr_filter { 554 struct list_head entry; 555 struct path path; 556 unsigned long offset; 557 unsigned long size; 558 enum perf_addr_filter_action_t action; 559}; 560 561/** 562 * struct perf_addr_filters_head - container for address range filters 563 * @list: list of filters for this event 564 * @lock: spinlock that serializes accesses to the @list and event's 565 * (and its children's) filter generations. 566 * @nr_file_filters: number of file-based filters 567 * 568 * A child event will use parent's @list (and therefore @lock), so they are 569 * bundled together; see perf_event_addr_filters(). 570 */ 571struct perf_addr_filters_head { 572 struct list_head list; 573 raw_spinlock_t lock; 574 unsigned int nr_file_filters; 575}; 576 577struct perf_addr_filter_range { 578 unsigned long start; 579 unsigned long size; 580}; 581 582/** 583 * enum perf_event_state - the states of an event: 584 */ 585enum perf_event_state { 586 PERF_EVENT_STATE_DEAD = -4, 587 PERF_EVENT_STATE_EXIT = -3, 588 PERF_EVENT_STATE_ERROR = -2, 589 PERF_EVENT_STATE_OFF = -1, 590 PERF_EVENT_STATE_INACTIVE = 0, 591 PERF_EVENT_STATE_ACTIVE = 1, 592}; 593 594struct file; 595struct perf_sample_data; 596 597typedef void (*perf_overflow_handler_t)(struct perf_event *, 598 struct perf_sample_data *, 599 struct pt_regs *regs); 600 601/* 602 * Event capabilities. For event_caps and groups caps. 603 * 604 * PERF_EV_CAP_SOFTWARE: Is a software event. 605 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 606 * from any CPU in the package where it is active. 607 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and 608 * cannot be a group leader. If an event with this flag is detached from the 609 * group it is scheduled out and moved into an unrecoverable ERROR state. 610 */ 611#define PERF_EV_CAP_SOFTWARE BIT(0) 612#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 613#define PERF_EV_CAP_SIBLING BIT(2) 614 615#define SWEVENT_HLIST_BITS 8 616#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 617 618struct swevent_hlist { 619 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 620 struct rcu_head rcu_head; 621}; 622 623#define PERF_ATTACH_CONTEXT 0x01 624#define PERF_ATTACH_GROUP 0x02 625#define PERF_ATTACH_TASK 0x04 626#define PERF_ATTACH_TASK_DATA 0x08 627#define PERF_ATTACH_ITRACE 0x10 628#define PERF_ATTACH_SCHED_CB 0x20 629#define PERF_ATTACH_CHILD 0x40 630 631struct bpf_prog; 632struct perf_cgroup; 633struct perf_buffer; 634 635struct pmu_event_list { 636 raw_spinlock_t lock; 637 struct list_head list; 638}; 639 640/* 641 * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex 642 * as such iteration must hold either lock. However, since ctx->lock is an IRQ 643 * safe lock, and is only held by the CPU doing the modification, having IRQs 644 * disabled is sufficient since it will hold-off the IPIs. 645 */ 646#ifdef CONFIG_PROVE_LOCKING 647#define lockdep_assert_event_ctx(event) \ 648 WARN_ON_ONCE(__lockdep_enabled && \ 649 (this_cpu_read(hardirqs_enabled) && \ 650 lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD)) 651#else 652#define lockdep_assert_event_ctx(event) 653#endif 654 655#define for_each_sibling_event(sibling, event) \ 656 lockdep_assert_event_ctx(event); \ 657 if ((event)->group_leader == (event)) \ 658 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 659 660/** 661 * struct perf_event - performance event kernel representation: 662 */ 663struct perf_event { 664#ifdef CONFIG_PERF_EVENTS 665 /* 666 * entry onto perf_event_context::event_list; 667 * modifications require ctx->lock 668 * RCU safe iterations. 669 */ 670 struct list_head event_entry; 671 672 /* 673 * Locked for modification by both ctx->mutex and ctx->lock; holding 674 * either sufficies for read. 675 */ 676 struct list_head sibling_list; 677 struct list_head active_list; 678 /* 679 * Node on the pinned or flexible tree located at the event context; 680 */ 681 struct rb_node group_node; 682 u64 group_index; 683 /* 684 * We need storage to track the entries in perf_pmu_migrate_context; we 685 * cannot use the event_entry because of RCU and we want to keep the 686 * group in tact which avoids us using the other two entries. 687 */ 688 struct list_head migrate_entry; 689 690 struct hlist_node hlist_entry; 691 struct list_head active_entry; 692 int nr_siblings; 693 694 /* Not serialized. Only written during event initialization. */ 695 int event_caps; 696 /* The cumulative AND of all event_caps for events in this group. */ 697 int group_caps; 698 699 struct perf_event *group_leader; 700 /* 701 * event->pmu will always point to pmu in which this event belongs. 702 * Whereas event->pmu_ctx->pmu may point to other pmu when group of 703 * different pmu events is created. 704 */ 705 struct pmu *pmu; 706 void *pmu_private; 707 708 enum perf_event_state state; 709 unsigned int attach_state; 710 local64_t count; 711 atomic64_t child_count; 712 713 /* 714 * These are the total time in nanoseconds that the event 715 * has been enabled (i.e. eligible to run, and the task has 716 * been scheduled in, if this is a per-task event) 717 * and running (scheduled onto the CPU), respectively. 718 */ 719 u64 total_time_enabled; 720 u64 total_time_running; 721 u64 tstamp; 722 723 struct perf_event_attr attr; 724 u16 header_size; 725 u16 id_header_size; 726 u16 read_size; 727 struct hw_perf_event hw; 728 729 struct perf_event_context *ctx; 730 /* 731 * event->pmu_ctx points to perf_event_pmu_context in which the event 732 * is added. This pmu_ctx can be of other pmu for sw event when that 733 * sw event is part of a group which also contains non-sw events. 734 */ 735 struct perf_event_pmu_context *pmu_ctx; 736 atomic_long_t refcount; 737 738 /* 739 * These accumulate total time (in nanoseconds) that children 740 * events have been enabled and running, respectively. 741 */ 742 atomic64_t child_total_time_enabled; 743 atomic64_t child_total_time_running; 744 745 /* 746 * Protect attach/detach and child_list: 747 */ 748 struct mutex child_mutex; 749 struct list_head child_list; 750 struct perf_event *parent; 751 752 int oncpu; 753 int cpu; 754 755 struct list_head owner_entry; 756 struct task_struct *owner; 757 758 /* mmap bits */ 759 struct mutex mmap_mutex; 760 atomic_t mmap_count; 761 762 struct perf_buffer *rb; 763 struct list_head rb_entry; 764 unsigned long rcu_batches; 765 int rcu_pending; 766 767 /* poll related */ 768 wait_queue_head_t waitq; 769 struct fasync_struct *fasync; 770 771 /* delayed work for NMIs and such */ 772 unsigned int pending_wakeup; 773 unsigned int pending_kill; 774 unsigned int pending_disable; 775 unsigned int pending_sigtrap; 776 unsigned long pending_addr; /* SIGTRAP */ 777 struct irq_work pending_irq; 778 struct callback_head pending_task; 779 unsigned int pending_work; 780 781 atomic_t event_limit; 782 783 /* address range filters */ 784 struct perf_addr_filters_head addr_filters; 785 /* vma address array for file-based filders */ 786 struct perf_addr_filter_range *addr_filter_ranges; 787 unsigned long addr_filters_gen; 788 789 /* for aux_output events */ 790 struct perf_event *aux_event; 791 792 void (*destroy)(struct perf_event *); 793 struct rcu_head rcu_head; 794 795 struct pid_namespace *ns; 796 u64 id; 797 798 atomic64_t lost_samples; 799 800 u64 (*clock)(void); 801 perf_overflow_handler_t overflow_handler; 802 void *overflow_handler_context; 803#ifdef CONFIG_BPF_SYSCALL 804 perf_overflow_handler_t orig_overflow_handler; 805 struct bpf_prog *prog; 806 u64 bpf_cookie; 807#endif 808 809#ifdef CONFIG_EVENT_TRACING 810 struct trace_event_call *tp_event; 811 struct event_filter *filter; 812#ifdef CONFIG_FUNCTION_TRACER 813 struct ftrace_ops ftrace_ops; 814#endif 815#endif 816 817#ifdef CONFIG_CGROUP_PERF 818 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 819#endif 820 821#ifdef CONFIG_SECURITY 822 void *security; 823#endif 824 struct list_head sb_list; 825#endif /* CONFIG_PERF_EVENTS */ 826}; 827 828/* 829 * ,-----------------------[1:n]----------------------. 830 * V V 831 * perf_event_context <-[1:n]-> perf_event_pmu_context <--- perf_event 832 * ^ ^ | | 833 * `--------[1:n]---------' `-[n:1]-> pmu <-[1:n]-' 834 * 835 * 836 * struct perf_event_pmu_context lifetime is refcount based and RCU freed 837 * (similar to perf_event_context). Locking is as if it were a member of 838 * perf_event_context; specifically: 839 * 840 * modification, both: ctx->mutex && ctx->lock 841 * reading, either: ctx->mutex || ctx->lock 842 * 843 * There is one exception to this; namely put_pmu_ctx() isn't always called 844 * with ctx->mutex held; this means that as long as we can guarantee the epc 845 * has events the above rules hold. 846 * 847 * Specificially, sys_perf_event_open()'s group_leader case depends on 848 * ctx->mutex pinning the configuration. Since we hold a reference on 849 * group_leader (through the filedesc) it can't go away, therefore it's 850 * associated pmu_ctx must exist and cannot change due to ctx->mutex. 851 */ 852struct perf_event_pmu_context { 853 struct pmu *pmu; 854 struct perf_event_context *ctx; 855 856 struct list_head pmu_ctx_entry; 857 858 struct list_head pinned_active; 859 struct list_head flexible_active; 860 861 /* Used to avoid freeing per-cpu perf_event_pmu_context */ 862 unsigned int embedded : 1; 863 864 unsigned int nr_events; 865 866 atomic_t refcount; /* event <-> epc */ 867 struct rcu_head rcu_head; 868 869 void *task_ctx_data; /* pmu specific data */ 870 /* 871 * Set when one or more (plausibly active) event can't be scheduled 872 * due to pmu overcommit or pmu constraints, except tolerant to 873 * events not necessary to be active due to scheduling constraints, 874 * such as cgroups. 875 */ 876 int rotate_necessary; 877}; 878 879struct perf_event_groups { 880 struct rb_root tree; 881 u64 index; 882}; 883 884 885/** 886 * struct perf_event_context - event context structure 887 * 888 * Used as a container for task events and CPU events as well: 889 */ 890struct perf_event_context { 891 /* 892 * Protect the states of the events in the list, 893 * nr_active, and the list: 894 */ 895 raw_spinlock_t lock; 896 /* 897 * Protect the list of events. Locking either mutex or lock 898 * is sufficient to ensure the list doesn't change; to change 899 * the list you need to lock both the mutex and the spinlock. 900 */ 901 struct mutex mutex; 902 903 struct list_head pmu_ctx_list; 904 struct perf_event_groups pinned_groups; 905 struct perf_event_groups flexible_groups; 906 struct list_head event_list; 907 908 int nr_events; 909 int nr_user; 910 int is_active; 911 912 int nr_task_data; 913 int nr_stat; 914 int nr_freq; 915 int rotate_disable; 916 917 refcount_t refcount; /* event <-> ctx */ 918 struct task_struct *task; 919 920 /* 921 * Context clock, runs when context enabled. 922 */ 923 u64 time; 924 u64 timestamp; 925 u64 timeoffset; 926 927 /* 928 * These fields let us detect when two contexts have both 929 * been cloned (inherited) from a common ancestor. 930 */ 931 struct perf_event_context *parent_ctx; 932 u64 parent_gen; 933 u64 generation; 934 int pin_count; 935#ifdef CONFIG_CGROUP_PERF 936 int nr_cgroups; /* cgroup evts */ 937#endif 938 struct rcu_head rcu_head; 939 940 /* 941 * Sum (event->pending_sigtrap + event->pending_work) 942 * 943 * The SIGTRAP is targeted at ctx->task, as such it won't do changing 944 * that until the signal is delivered. 945 */ 946 local_t nr_pending; 947}; 948 949/* 950 * Number of contexts where an event can trigger: 951 * task, softirq, hardirq, nmi. 952 */ 953#define PERF_NR_CONTEXTS 4 954 955struct perf_cpu_pmu_context { 956 struct perf_event_pmu_context epc; 957 struct perf_event_pmu_context *task_epc; 958 959 struct list_head sched_cb_entry; 960 int sched_cb_usage; 961 962 int active_oncpu; 963 int exclusive; 964 965 raw_spinlock_t hrtimer_lock; 966 struct hrtimer hrtimer; 967 ktime_t hrtimer_interval; 968 unsigned int hrtimer_active; 969}; 970 971/** 972 * struct perf_event_cpu_context - per cpu event context structure 973 */ 974struct perf_cpu_context { 975 struct perf_event_context ctx; 976 struct perf_event_context *task_ctx; 977 int online; 978 979#ifdef CONFIG_CGROUP_PERF 980 struct perf_cgroup *cgrp; 981#endif 982 983 /* 984 * Per-CPU storage for iterators used in visit_groups_merge. The default 985 * storage is of size 2 to hold the CPU and any CPU event iterators. 986 */ 987 int heap_size; 988 struct perf_event **heap; 989 struct perf_event *heap_default[2]; 990}; 991 992struct perf_output_handle { 993 struct perf_event *event; 994 struct perf_buffer *rb; 995 unsigned long wakeup; 996 unsigned long size; 997 u64 aux_flags; 998 union { 999 void *addr; 1000 unsigned long head; 1001 }; 1002 int page; 1003}; 1004 1005struct bpf_perf_event_data_kern { 1006 bpf_user_pt_regs_t *regs; 1007 struct perf_sample_data *data; 1008 struct perf_event *event; 1009}; 1010 1011#ifdef CONFIG_CGROUP_PERF 1012 1013/* 1014 * perf_cgroup_info keeps track of time_enabled for a cgroup. 1015 * This is a per-cpu dynamically allocated data structure. 1016 */ 1017struct perf_cgroup_info { 1018 u64 time; 1019 u64 timestamp; 1020 u64 timeoffset; 1021 int active; 1022}; 1023 1024struct perf_cgroup { 1025 struct cgroup_subsys_state css; 1026 struct perf_cgroup_info __percpu *info; 1027}; 1028 1029/* 1030 * Must ensure cgroup is pinned (css_get) before calling 1031 * this function. In other words, we cannot call this function 1032 * if there is no cgroup event for the current CPU context. 1033 */ 1034static inline struct perf_cgroup * 1035perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 1036{ 1037 return container_of(task_css_check(task, perf_event_cgrp_id, 1038 ctx ? lockdep_is_held(&ctx->lock) 1039 : true), 1040 struct perf_cgroup, css); 1041} 1042#endif /* CONFIG_CGROUP_PERF */ 1043 1044#ifdef CONFIG_PERF_EVENTS 1045 1046extern struct perf_event_context *perf_cpu_task_ctx(void); 1047 1048extern void *perf_aux_output_begin(struct perf_output_handle *handle, 1049 struct perf_event *event); 1050extern void perf_aux_output_end(struct perf_output_handle *handle, 1051 unsigned long size); 1052extern int perf_aux_output_skip(struct perf_output_handle *handle, 1053 unsigned long size); 1054extern void *perf_get_aux(struct perf_output_handle *handle); 1055extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 1056extern void perf_event_itrace_started(struct perf_event *event); 1057 1058extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 1059extern void perf_pmu_unregister(struct pmu *pmu); 1060 1061extern void __perf_event_task_sched_in(struct task_struct *prev, 1062 struct task_struct *task); 1063extern void __perf_event_task_sched_out(struct task_struct *prev, 1064 struct task_struct *next); 1065extern int perf_event_init_task(struct task_struct *child, u64 clone_flags); 1066extern void perf_event_exit_task(struct task_struct *child); 1067extern void perf_event_free_task(struct task_struct *task); 1068extern void perf_event_delayed_put(struct task_struct *task); 1069extern struct file *perf_event_get(unsigned int fd); 1070extern const struct perf_event *perf_get_event(struct file *file); 1071extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 1072extern void perf_event_print_debug(void); 1073extern void perf_pmu_disable(struct pmu *pmu); 1074extern void perf_pmu_enable(struct pmu *pmu); 1075extern void perf_sched_cb_dec(struct pmu *pmu); 1076extern void perf_sched_cb_inc(struct pmu *pmu); 1077extern int perf_event_task_disable(void); 1078extern int perf_event_task_enable(void); 1079 1080extern void perf_pmu_resched(struct pmu *pmu); 1081 1082extern int perf_event_refresh(struct perf_event *event, int refresh); 1083extern void perf_event_update_userpage(struct perf_event *event); 1084extern int perf_event_release_kernel(struct perf_event *event); 1085extern struct perf_event * 1086perf_event_create_kernel_counter(struct perf_event_attr *attr, 1087 int cpu, 1088 struct task_struct *task, 1089 perf_overflow_handler_t callback, 1090 void *context); 1091extern void perf_pmu_migrate_context(struct pmu *pmu, 1092 int src_cpu, int dst_cpu); 1093int perf_event_read_local(struct perf_event *event, u64 *value, 1094 u64 *enabled, u64 *running); 1095extern u64 perf_event_read_value(struct perf_event *event, 1096 u64 *enabled, u64 *running); 1097 1098 1099struct perf_sample_data { 1100 /* 1101 * Fields set by perf_sample_data_init(), group so as to 1102 * minimize the cachelines touched. 1103 */ 1104 u64 sample_flags; 1105 u64 period; 1106 1107 /* 1108 * The other fields, optionally {set,used} by 1109 * perf_{prepare,output}_sample(). 1110 */ 1111 struct perf_branch_stack *br_stack; 1112 union perf_sample_weight weight; 1113 union perf_mem_data_src data_src; 1114 u64 txn; 1115 u64 addr; 1116 struct perf_raw_record *raw; 1117 1118 u64 type; 1119 u64 ip; 1120 struct { 1121 u32 pid; 1122 u32 tid; 1123 } tid_entry; 1124 u64 time; 1125 u64 id; 1126 u64 stream_id; 1127 struct { 1128 u32 cpu; 1129 u32 reserved; 1130 } cpu_entry; 1131 struct perf_callchain_entry *callchain; 1132 u64 aux_size; 1133 1134 struct perf_regs regs_user; 1135 struct perf_regs regs_intr; 1136 u64 stack_user_size; 1137 1138 u64 phys_addr; 1139 u64 cgroup; 1140 u64 data_page_size; 1141 u64 code_page_size; 1142} ____cacheline_aligned; 1143 1144/* default value for data source */ 1145#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1146 PERF_MEM_S(LVL, NA) |\ 1147 PERF_MEM_S(SNOOP, NA) |\ 1148 PERF_MEM_S(LOCK, NA) |\ 1149 PERF_MEM_S(TLB, NA)) 1150 1151static inline void perf_sample_data_init(struct perf_sample_data *data, 1152 u64 addr, u64 period) 1153{ 1154 /* remaining struct members initialized in perf_prepare_sample() */ 1155 data->sample_flags = PERF_SAMPLE_PERIOD; 1156 data->period = period; 1157 1158 if (addr) { 1159 data->addr = addr; 1160 data->sample_flags |= PERF_SAMPLE_ADDR; 1161 } 1162} 1163 1164/* 1165 * Clear all bitfields in the perf_branch_entry. 1166 * The to and from fields are not cleared because they are 1167 * systematically modified by caller. 1168 */ 1169static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br) 1170{ 1171 br->mispred = 0; 1172 br->predicted = 0; 1173 br->in_tx = 0; 1174 br->abort = 0; 1175 br->cycles = 0; 1176 br->type = 0; 1177 br->spec = PERF_BR_SPEC_NA; 1178 br->reserved = 0; 1179} 1180 1181extern void perf_output_sample(struct perf_output_handle *handle, 1182 struct perf_event_header *header, 1183 struct perf_sample_data *data, 1184 struct perf_event *event); 1185extern void perf_prepare_sample(struct perf_event_header *header, 1186 struct perf_sample_data *data, 1187 struct perf_event *event, 1188 struct pt_regs *regs); 1189 1190extern int perf_event_overflow(struct perf_event *event, 1191 struct perf_sample_data *data, 1192 struct pt_regs *regs); 1193 1194extern void perf_event_output_forward(struct perf_event *event, 1195 struct perf_sample_data *data, 1196 struct pt_regs *regs); 1197extern void perf_event_output_backward(struct perf_event *event, 1198 struct perf_sample_data *data, 1199 struct pt_regs *regs); 1200extern int perf_event_output(struct perf_event *event, 1201 struct perf_sample_data *data, 1202 struct pt_regs *regs); 1203 1204static inline bool 1205is_default_overflow_handler(struct perf_event *event) 1206{ 1207 if (likely(event->overflow_handler == perf_event_output_forward)) 1208 return true; 1209 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1210 return true; 1211 return false; 1212} 1213 1214extern void 1215perf_event_header__init_id(struct perf_event_header *header, 1216 struct perf_sample_data *data, 1217 struct perf_event *event); 1218extern void 1219perf_event__output_id_sample(struct perf_event *event, 1220 struct perf_output_handle *handle, 1221 struct perf_sample_data *sample); 1222 1223extern void 1224perf_log_lost_samples(struct perf_event *event, u64 lost); 1225 1226static inline bool event_has_any_exclude_flag(struct perf_event *event) 1227{ 1228 struct perf_event_attr *attr = &event->attr; 1229 1230 return attr->exclude_idle || attr->exclude_user || 1231 attr->exclude_kernel || attr->exclude_hv || 1232 attr->exclude_guest || attr->exclude_host; 1233} 1234 1235static inline bool is_sampling_event(struct perf_event *event) 1236{ 1237 return event->attr.sample_period != 0; 1238} 1239 1240/* 1241 * Return 1 for a software event, 0 for a hardware event 1242 */ 1243static inline int is_software_event(struct perf_event *event) 1244{ 1245 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1246} 1247 1248/* 1249 * Return 1 for event in sw context, 0 for event in hw context 1250 */ 1251static inline int in_software_context(struct perf_event *event) 1252{ 1253 return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context; 1254} 1255 1256static inline int is_exclusive_pmu(struct pmu *pmu) 1257{ 1258 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1259} 1260 1261extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1262 1263extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1264extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1265 1266#ifndef perf_arch_fetch_caller_regs 1267static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1268#endif 1269 1270/* 1271 * When generating a perf sample in-line, instead of from an interrupt / 1272 * exception, we lack a pt_regs. This is typically used from software events 1273 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1274 * 1275 * We typically don't need a full set, but (for x86) do require: 1276 * - ip for PERF_SAMPLE_IP 1277 * - cs for user_mode() tests 1278 * - sp for PERF_SAMPLE_CALLCHAIN 1279 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1280 * 1281 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1282 * things like PERF_SAMPLE_REGS_INTR. 1283 */ 1284static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1285{ 1286 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1287} 1288 1289static __always_inline void 1290perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1291{ 1292 if (static_key_false(&perf_swevent_enabled[event_id])) 1293 __perf_sw_event(event_id, nr, regs, addr); 1294} 1295 1296DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1297 1298/* 1299 * 'Special' version for the scheduler, it hard assumes no recursion, 1300 * which is guaranteed by us not actually scheduling inside other swevents 1301 * because those disable preemption. 1302 */ 1303static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1304{ 1305 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1306 1307 perf_fetch_caller_regs(regs); 1308 ___perf_sw_event(event_id, nr, regs, addr); 1309} 1310 1311extern struct static_key_false perf_sched_events; 1312 1313static __always_inline bool __perf_sw_enabled(int swevt) 1314{ 1315 return static_key_false(&perf_swevent_enabled[swevt]); 1316} 1317 1318static inline void perf_event_task_migrate(struct task_struct *task) 1319{ 1320 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS)) 1321 task->sched_migrated = 1; 1322} 1323 1324static inline void perf_event_task_sched_in(struct task_struct *prev, 1325 struct task_struct *task) 1326{ 1327 if (static_branch_unlikely(&perf_sched_events)) 1328 __perf_event_task_sched_in(prev, task); 1329 1330 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) && 1331 task->sched_migrated) { 1332 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0); 1333 task->sched_migrated = 0; 1334 } 1335} 1336 1337static inline void perf_event_task_sched_out(struct task_struct *prev, 1338 struct task_struct *next) 1339{ 1340 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES)) 1341 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1342 1343#ifdef CONFIG_CGROUP_PERF 1344 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) && 1345 perf_cgroup_from_task(prev, NULL) != 1346 perf_cgroup_from_task(next, NULL)) 1347 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0); 1348#endif 1349 1350 if (static_branch_unlikely(&perf_sched_events)) 1351 __perf_event_task_sched_out(prev, next); 1352} 1353 1354extern void perf_event_mmap(struct vm_area_struct *vma); 1355 1356extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1357 bool unregister, const char *sym); 1358extern void perf_event_bpf_event(struct bpf_prog *prog, 1359 enum perf_bpf_event_type type, 1360 u16 flags); 1361 1362#ifdef CONFIG_GUEST_PERF_EVENTS 1363extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs; 1364 1365DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state); 1366DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip); 1367DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr); 1368 1369static inline unsigned int perf_guest_state(void) 1370{ 1371 return static_call(__perf_guest_state)(); 1372} 1373static inline unsigned long perf_guest_get_ip(void) 1374{ 1375 return static_call(__perf_guest_get_ip)(); 1376} 1377static inline unsigned int perf_guest_handle_intel_pt_intr(void) 1378{ 1379 return static_call(__perf_guest_handle_intel_pt_intr)(); 1380} 1381extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1382extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs); 1383#else 1384static inline unsigned int perf_guest_state(void) { return 0; } 1385static inline unsigned long perf_guest_get_ip(void) { return 0; } 1386static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; } 1387#endif /* CONFIG_GUEST_PERF_EVENTS */ 1388 1389extern void perf_event_exec(void); 1390extern void perf_event_comm(struct task_struct *tsk, bool exec); 1391extern void perf_event_namespaces(struct task_struct *tsk); 1392extern void perf_event_fork(struct task_struct *tsk); 1393extern void perf_event_text_poke(const void *addr, 1394 const void *old_bytes, size_t old_len, 1395 const void *new_bytes, size_t new_len); 1396 1397/* Callchains */ 1398DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1399 1400extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1401extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1402extern struct perf_callchain_entry * 1403get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1404 u32 max_stack, bool crosstask, bool add_mark); 1405extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1406extern int get_callchain_buffers(int max_stack); 1407extern void put_callchain_buffers(void); 1408extern struct perf_callchain_entry *get_callchain_entry(int *rctx); 1409extern void put_callchain_entry(int rctx); 1410 1411extern int sysctl_perf_event_max_stack; 1412extern int sysctl_perf_event_max_contexts_per_stack; 1413 1414static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1415{ 1416 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1417 struct perf_callchain_entry *entry = ctx->entry; 1418 entry->ip[entry->nr++] = ip; 1419 ++ctx->contexts; 1420 return 0; 1421 } else { 1422 ctx->contexts_maxed = true; 1423 return -1; /* no more room, stop walking the stack */ 1424 } 1425} 1426 1427static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1428{ 1429 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1430 struct perf_callchain_entry *entry = ctx->entry; 1431 entry->ip[entry->nr++] = ip; 1432 ++ctx->nr; 1433 return 0; 1434 } else { 1435 return -1; /* no more room, stop walking the stack */ 1436 } 1437} 1438 1439extern int sysctl_perf_event_paranoid; 1440extern int sysctl_perf_event_mlock; 1441extern int sysctl_perf_event_sample_rate; 1442extern int sysctl_perf_cpu_time_max_percent; 1443 1444extern void perf_sample_event_took(u64 sample_len_ns); 1445 1446int perf_proc_update_handler(struct ctl_table *table, int write, 1447 void *buffer, size_t *lenp, loff_t *ppos); 1448int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1449 void *buffer, size_t *lenp, loff_t *ppos); 1450int perf_event_max_stack_handler(struct ctl_table *table, int write, 1451 void *buffer, size_t *lenp, loff_t *ppos); 1452 1453/* Access to perf_event_open(2) syscall. */ 1454#define PERF_SECURITY_OPEN 0 1455 1456/* Finer grained perf_event_open(2) access control. */ 1457#define PERF_SECURITY_CPU 1 1458#define PERF_SECURITY_KERNEL 2 1459#define PERF_SECURITY_TRACEPOINT 3 1460 1461static inline int perf_is_paranoid(void) 1462{ 1463 return sysctl_perf_event_paranoid > -1; 1464} 1465 1466static inline int perf_allow_kernel(struct perf_event_attr *attr) 1467{ 1468 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 1469 return -EACCES; 1470 1471 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 1472} 1473 1474static inline int perf_allow_cpu(struct perf_event_attr *attr) 1475{ 1476 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1477 return -EACCES; 1478 1479 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1480} 1481 1482static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1483{ 1484 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1485 return -EPERM; 1486 1487 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1488} 1489 1490extern void perf_event_init(void); 1491extern void perf_tp_event(u16 event_type, u64 count, void *record, 1492 int entry_size, struct pt_regs *regs, 1493 struct hlist_head *head, int rctx, 1494 struct task_struct *task); 1495extern void perf_bp_event(struct perf_event *event, void *data); 1496 1497#ifndef perf_misc_flags 1498# define perf_misc_flags(regs) \ 1499 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1500# define perf_instruction_pointer(regs) instruction_pointer(regs) 1501#endif 1502#ifndef perf_arch_bpf_user_pt_regs 1503# define perf_arch_bpf_user_pt_regs(regs) regs 1504#endif 1505 1506static inline bool has_branch_stack(struct perf_event *event) 1507{ 1508 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1509} 1510 1511static inline bool needs_branch_stack(struct perf_event *event) 1512{ 1513 return event->attr.branch_sample_type != 0; 1514} 1515 1516static inline bool has_aux(struct perf_event *event) 1517{ 1518 return event->pmu->setup_aux; 1519} 1520 1521static inline bool is_write_backward(struct perf_event *event) 1522{ 1523 return !!event->attr.write_backward; 1524} 1525 1526static inline bool has_addr_filter(struct perf_event *event) 1527{ 1528 return event->pmu->nr_addr_filters; 1529} 1530 1531/* 1532 * An inherited event uses parent's filters 1533 */ 1534static inline struct perf_addr_filters_head * 1535perf_event_addr_filters(struct perf_event *event) 1536{ 1537 struct perf_addr_filters_head *ifh = &event->addr_filters; 1538 1539 if (event->parent) 1540 ifh = &event->parent->addr_filters; 1541 1542 return ifh; 1543} 1544 1545extern void perf_event_addr_filters_sync(struct perf_event *event); 1546extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id); 1547 1548extern int perf_output_begin(struct perf_output_handle *handle, 1549 struct perf_sample_data *data, 1550 struct perf_event *event, unsigned int size); 1551extern int perf_output_begin_forward(struct perf_output_handle *handle, 1552 struct perf_sample_data *data, 1553 struct perf_event *event, 1554 unsigned int size); 1555extern int perf_output_begin_backward(struct perf_output_handle *handle, 1556 struct perf_sample_data *data, 1557 struct perf_event *event, 1558 unsigned int size); 1559 1560extern void perf_output_end(struct perf_output_handle *handle); 1561extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1562 const void *buf, unsigned int len); 1563extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1564 unsigned int len); 1565extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1566 struct perf_output_handle *handle, 1567 unsigned long from, unsigned long to); 1568extern int perf_swevent_get_recursion_context(void); 1569extern void perf_swevent_put_recursion_context(int rctx); 1570extern u64 perf_swevent_set_period(struct perf_event *event); 1571extern void perf_event_enable(struct perf_event *event); 1572extern void perf_event_disable(struct perf_event *event); 1573extern void perf_event_disable_local(struct perf_event *event); 1574extern void perf_event_disable_inatomic(struct perf_event *event); 1575extern void perf_event_task_tick(void); 1576extern int perf_event_account_interrupt(struct perf_event *event); 1577extern int perf_event_period(struct perf_event *event, u64 value); 1578extern u64 perf_event_pause(struct perf_event *event, bool reset); 1579#else /* !CONFIG_PERF_EVENTS: */ 1580static inline void * 1581perf_aux_output_begin(struct perf_output_handle *handle, 1582 struct perf_event *event) { return NULL; } 1583static inline void 1584perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1585 { } 1586static inline int 1587perf_aux_output_skip(struct perf_output_handle *handle, 1588 unsigned long size) { return -EINVAL; } 1589static inline void * 1590perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1591static inline void 1592perf_event_task_migrate(struct task_struct *task) { } 1593static inline void 1594perf_event_task_sched_in(struct task_struct *prev, 1595 struct task_struct *task) { } 1596static inline void 1597perf_event_task_sched_out(struct task_struct *prev, 1598 struct task_struct *next) { } 1599static inline int perf_event_init_task(struct task_struct *child, 1600 u64 clone_flags) { return 0; } 1601static inline void perf_event_exit_task(struct task_struct *child) { } 1602static inline void perf_event_free_task(struct task_struct *task) { } 1603static inline void perf_event_delayed_put(struct task_struct *task) { } 1604static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1605static inline const struct perf_event *perf_get_event(struct file *file) 1606{ 1607 return ERR_PTR(-EINVAL); 1608} 1609static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1610{ 1611 return ERR_PTR(-EINVAL); 1612} 1613static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1614 u64 *enabled, u64 *running) 1615{ 1616 return -EINVAL; 1617} 1618static inline void perf_event_print_debug(void) { } 1619static inline int perf_event_task_disable(void) { return -EINVAL; } 1620static inline int perf_event_task_enable(void) { return -EINVAL; } 1621static inline int perf_event_refresh(struct perf_event *event, int refresh) 1622{ 1623 return -EINVAL; 1624} 1625 1626static inline void 1627perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1628static inline void 1629perf_bp_event(struct perf_event *event, void *data) { } 1630 1631static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1632 1633typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1634static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1635 bool unregister, const char *sym) { } 1636static inline void perf_event_bpf_event(struct bpf_prog *prog, 1637 enum perf_bpf_event_type type, 1638 u16 flags) { } 1639static inline void perf_event_exec(void) { } 1640static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1641static inline void perf_event_namespaces(struct task_struct *tsk) { } 1642static inline void perf_event_fork(struct task_struct *tsk) { } 1643static inline void perf_event_text_poke(const void *addr, 1644 const void *old_bytes, 1645 size_t old_len, 1646 const void *new_bytes, 1647 size_t new_len) { } 1648static inline void perf_event_init(void) { } 1649static inline int perf_swevent_get_recursion_context(void) { return -1; } 1650static inline void perf_swevent_put_recursion_context(int rctx) { } 1651static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1652static inline void perf_event_enable(struct perf_event *event) { } 1653static inline void perf_event_disable(struct perf_event *event) { } 1654static inline int __perf_event_disable(void *info) { return -1; } 1655static inline void perf_event_task_tick(void) { } 1656static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1657static inline int perf_event_period(struct perf_event *event, u64 value) 1658{ 1659 return -EINVAL; 1660} 1661static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1662{ 1663 return 0; 1664} 1665#endif 1666 1667#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1668extern void perf_restore_debug_store(void); 1669#else 1670static inline void perf_restore_debug_store(void) { } 1671#endif 1672 1673static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1674{ 1675 return frag->pad < sizeof(u64); 1676} 1677 1678#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1679 1680struct perf_pmu_events_attr { 1681 struct device_attribute attr; 1682 u64 id; 1683 const char *event_str; 1684}; 1685 1686struct perf_pmu_events_ht_attr { 1687 struct device_attribute attr; 1688 u64 id; 1689 const char *event_str_ht; 1690 const char *event_str_noht; 1691}; 1692 1693struct perf_pmu_events_hybrid_attr { 1694 struct device_attribute attr; 1695 u64 id; 1696 const char *event_str; 1697 u64 pmu_type; 1698}; 1699 1700struct perf_pmu_format_hybrid_attr { 1701 struct device_attribute attr; 1702 u64 pmu_type; 1703}; 1704 1705ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1706 char *page); 1707 1708#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1709static struct perf_pmu_events_attr _var = { \ 1710 .attr = __ATTR(_name, 0444, _show, NULL), \ 1711 .id = _id, \ 1712}; 1713 1714#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1715static struct perf_pmu_events_attr _var = { \ 1716 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1717 .id = 0, \ 1718 .event_str = _str, \ 1719}; 1720 1721#define PMU_EVENT_ATTR_ID(_name, _show, _id) \ 1722 (&((struct perf_pmu_events_attr[]) { \ 1723 { .attr = __ATTR(_name, 0444, _show, NULL), \ 1724 .id = _id, } \ 1725 })[0].attr.attr) 1726 1727#define PMU_FORMAT_ATTR(_name, _format) \ 1728static ssize_t \ 1729_name##_show(struct device *dev, \ 1730 struct device_attribute *attr, \ 1731 char *page) \ 1732{ \ 1733 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1734 return sprintf(page, _format "\n"); \ 1735} \ 1736 \ 1737static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1738 1739/* Performance counter hotplug functions */ 1740#ifdef CONFIG_PERF_EVENTS 1741int perf_event_init_cpu(unsigned int cpu); 1742int perf_event_exit_cpu(unsigned int cpu); 1743#else 1744#define perf_event_init_cpu NULL 1745#define perf_event_exit_cpu NULL 1746#endif 1747 1748extern void __weak arch_perf_update_userpage(struct perf_event *event, 1749 struct perf_event_mmap_page *userpg, 1750 u64 now); 1751 1752#ifdef CONFIG_MMU 1753extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr); 1754#endif 1755 1756/* 1757 * Snapshot branch stack on software events. 1758 * 1759 * Branch stack can be very useful in understanding software events. For 1760 * example, when a long function, e.g. sys_perf_event_open, returns an 1761 * errno, it is not obvious why the function failed. Branch stack could 1762 * provide very helpful information in this type of scenarios. 1763 * 1764 * On software event, it is necessary to stop the hardware branch recorder 1765 * fast. Otherwise, the hardware register/buffer will be flushed with 1766 * entries of the triggering event. Therefore, static call is used to 1767 * stop the hardware recorder. 1768 */ 1769 1770/* 1771 * cnt is the number of entries allocated for entries. 1772 * Return number of entries copied to . 1773 */ 1774typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries, 1775 unsigned int cnt); 1776DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t); 1777 1778#ifndef PERF_NEEDS_LOPWR_CB 1779static inline void perf_lopwr_cb(bool mode) 1780{ 1781} 1782#endif 1783 1784#ifdef CONFIG_PERF_EVENTS 1785static inline bool branch_sample_no_flags(const struct perf_event *event) 1786{ 1787 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS; 1788} 1789 1790static inline bool branch_sample_no_cycles(const struct perf_event *event) 1791{ 1792 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES; 1793} 1794 1795static inline bool branch_sample_type(const struct perf_event *event) 1796{ 1797 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE; 1798} 1799 1800static inline bool branch_sample_hw_index(const struct perf_event *event) 1801{ 1802 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX; 1803} 1804 1805static inline bool branch_sample_priv(const struct perf_event *event) 1806{ 1807 return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE; 1808} 1809#endif /* CONFIG_PERF_EVENTS */ 1810#endif /* _LINUX_PERF_EVENT_H */