at v6.2 61 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMZONE_H 3#define _LINUX_MMZONE_H 4 5#ifndef __ASSEMBLY__ 6#ifndef __GENERATING_BOUNDS_H 7 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/wait.h> 11#include <linux/bitops.h> 12#include <linux/cache.h> 13#include <linux/threads.h> 14#include <linux/numa.h> 15#include <linux/init.h> 16#include <linux/seqlock.h> 17#include <linux/nodemask.h> 18#include <linux/pageblock-flags.h> 19#include <linux/page-flags-layout.h> 20#include <linux/atomic.h> 21#include <linux/mm_types.h> 22#include <linux/page-flags.h> 23#include <linux/local_lock.h> 24#include <asm/page.h> 25 26/* Free memory management - zoned buddy allocator. */ 27#ifndef CONFIG_ARCH_FORCE_MAX_ORDER 28#define MAX_ORDER 11 29#else 30#define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 31#endif 32#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 33 34/* 35 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 36 * costly to service. That is between allocation orders which should 37 * coalesce naturally under reasonable reclaim pressure and those which 38 * will not. 39 */ 40#define PAGE_ALLOC_COSTLY_ORDER 3 41 42enum migratetype { 43 MIGRATE_UNMOVABLE, 44 MIGRATE_MOVABLE, 45 MIGRATE_RECLAIMABLE, 46 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 47 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 48#ifdef CONFIG_CMA 49 /* 50 * MIGRATE_CMA migration type is designed to mimic the way 51 * ZONE_MOVABLE works. Only movable pages can be allocated 52 * from MIGRATE_CMA pageblocks and page allocator never 53 * implicitly change migration type of MIGRATE_CMA pageblock. 54 * 55 * The way to use it is to change migratetype of a range of 56 * pageblocks to MIGRATE_CMA which can be done by 57 * __free_pageblock_cma() function. 58 */ 59 MIGRATE_CMA, 60#endif 61#ifdef CONFIG_MEMORY_ISOLATION 62 MIGRATE_ISOLATE, /* can't allocate from here */ 63#endif 64 MIGRATE_TYPES 65}; 66 67/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 68extern const char * const migratetype_names[MIGRATE_TYPES]; 69 70#ifdef CONFIG_CMA 71# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 72# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 73#else 74# define is_migrate_cma(migratetype) false 75# define is_migrate_cma_page(_page) false 76#endif 77 78static inline bool is_migrate_movable(int mt) 79{ 80 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 81} 82 83/* 84 * Check whether a migratetype can be merged with another migratetype. 85 * 86 * It is only mergeable when it can fall back to other migratetypes for 87 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 88 */ 89static inline bool migratetype_is_mergeable(int mt) 90{ 91 return mt < MIGRATE_PCPTYPES; 92} 93 94#define for_each_migratetype_order(order, type) \ 95 for (order = 0; order < MAX_ORDER; order++) \ 96 for (type = 0; type < MIGRATE_TYPES; type++) 97 98extern int page_group_by_mobility_disabled; 99 100#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 101 102#define get_pageblock_migratetype(page) \ 103 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 104 105struct free_area { 106 struct list_head free_list[MIGRATE_TYPES]; 107 unsigned long nr_free; 108}; 109 110static inline struct page *get_page_from_free_area(struct free_area *area, 111 int migratetype) 112{ 113 return list_first_entry_or_null(&area->free_list[migratetype], 114 struct page, lru); 115} 116 117static inline bool free_area_empty(struct free_area *area, int migratetype) 118{ 119 return list_empty(&area->free_list[migratetype]); 120} 121 122struct pglist_data; 123 124#ifdef CONFIG_NUMA 125enum numa_stat_item { 126 NUMA_HIT, /* allocated in intended node */ 127 NUMA_MISS, /* allocated in non intended node */ 128 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 129 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 130 NUMA_LOCAL, /* allocation from local node */ 131 NUMA_OTHER, /* allocation from other node */ 132 NR_VM_NUMA_EVENT_ITEMS 133}; 134#else 135#define NR_VM_NUMA_EVENT_ITEMS 0 136#endif 137 138enum zone_stat_item { 139 /* First 128 byte cacheline (assuming 64 bit words) */ 140 NR_FREE_PAGES, 141 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 142 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 143 NR_ZONE_ACTIVE_ANON, 144 NR_ZONE_INACTIVE_FILE, 145 NR_ZONE_ACTIVE_FILE, 146 NR_ZONE_UNEVICTABLE, 147 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 148 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 149 /* Second 128 byte cacheline */ 150 NR_BOUNCE, 151#if IS_ENABLED(CONFIG_ZSMALLOC) 152 NR_ZSPAGES, /* allocated in zsmalloc */ 153#endif 154 NR_FREE_CMA_PAGES, 155 NR_VM_ZONE_STAT_ITEMS }; 156 157enum node_stat_item { 158 NR_LRU_BASE, 159 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 160 NR_ACTIVE_ANON, /* " " " " " */ 161 NR_INACTIVE_FILE, /* " " " " " */ 162 NR_ACTIVE_FILE, /* " " " " " */ 163 NR_UNEVICTABLE, /* " " " " " */ 164 NR_SLAB_RECLAIMABLE_B, 165 NR_SLAB_UNRECLAIMABLE_B, 166 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 167 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 168 WORKINGSET_NODES, 169 WORKINGSET_REFAULT_BASE, 170 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 171 WORKINGSET_REFAULT_FILE, 172 WORKINGSET_ACTIVATE_BASE, 173 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 174 WORKINGSET_ACTIVATE_FILE, 175 WORKINGSET_RESTORE_BASE, 176 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 177 WORKINGSET_RESTORE_FILE, 178 WORKINGSET_NODERECLAIM, 179 NR_ANON_MAPPED, /* Mapped anonymous pages */ 180 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 181 only modified from process context */ 182 NR_FILE_PAGES, 183 NR_FILE_DIRTY, 184 NR_WRITEBACK, 185 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 186 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 187 NR_SHMEM_THPS, 188 NR_SHMEM_PMDMAPPED, 189 NR_FILE_THPS, 190 NR_FILE_PMDMAPPED, 191 NR_ANON_THPS, 192 NR_VMSCAN_WRITE, 193 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 194 NR_DIRTIED, /* page dirtyings since bootup */ 195 NR_WRITTEN, /* page writings since bootup */ 196 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 197 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 198 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 199 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 200 NR_KERNEL_STACK_KB, /* measured in KiB */ 201#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 202 NR_KERNEL_SCS_KB, /* measured in KiB */ 203#endif 204 NR_PAGETABLE, /* used for pagetables */ 205 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */ 206#ifdef CONFIG_SWAP 207 NR_SWAPCACHE, 208#endif 209#ifdef CONFIG_NUMA_BALANCING 210 PGPROMOTE_SUCCESS, /* promote successfully */ 211 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 212#endif 213 NR_VM_NODE_STAT_ITEMS 214}; 215 216/* 217 * Returns true if the item should be printed in THPs (/proc/vmstat 218 * currently prints number of anon, file and shmem THPs. But the item 219 * is charged in pages). 220 */ 221static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 222{ 223 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 224 return false; 225 226 return item == NR_ANON_THPS || 227 item == NR_FILE_THPS || 228 item == NR_SHMEM_THPS || 229 item == NR_SHMEM_PMDMAPPED || 230 item == NR_FILE_PMDMAPPED; 231} 232 233/* 234 * Returns true if the value is measured in bytes (most vmstat values are 235 * measured in pages). This defines the API part, the internal representation 236 * might be different. 237 */ 238static __always_inline bool vmstat_item_in_bytes(int idx) 239{ 240 /* 241 * Global and per-node slab counters track slab pages. 242 * It's expected that changes are multiples of PAGE_SIZE. 243 * Internally values are stored in pages. 244 * 245 * Per-memcg and per-lruvec counters track memory, consumed 246 * by individual slab objects. These counters are actually 247 * byte-precise. 248 */ 249 return (idx == NR_SLAB_RECLAIMABLE_B || 250 idx == NR_SLAB_UNRECLAIMABLE_B); 251} 252 253/* 254 * We do arithmetic on the LRU lists in various places in the code, 255 * so it is important to keep the active lists LRU_ACTIVE higher in 256 * the array than the corresponding inactive lists, and to keep 257 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 258 * 259 * This has to be kept in sync with the statistics in zone_stat_item 260 * above and the descriptions in vmstat_text in mm/vmstat.c 261 */ 262#define LRU_BASE 0 263#define LRU_ACTIVE 1 264#define LRU_FILE 2 265 266enum lru_list { 267 LRU_INACTIVE_ANON = LRU_BASE, 268 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 269 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 270 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 271 LRU_UNEVICTABLE, 272 NR_LRU_LISTS 273}; 274 275enum vmscan_throttle_state { 276 VMSCAN_THROTTLE_WRITEBACK, 277 VMSCAN_THROTTLE_ISOLATED, 278 VMSCAN_THROTTLE_NOPROGRESS, 279 VMSCAN_THROTTLE_CONGESTED, 280 NR_VMSCAN_THROTTLE, 281}; 282 283#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 284 285#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 286 287static inline bool is_file_lru(enum lru_list lru) 288{ 289 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 290} 291 292static inline bool is_active_lru(enum lru_list lru) 293{ 294 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 295} 296 297#define WORKINGSET_ANON 0 298#define WORKINGSET_FILE 1 299#define ANON_AND_FILE 2 300 301enum lruvec_flags { 302 LRUVEC_CONGESTED, /* lruvec has many dirty pages 303 * backed by a congested BDI 304 */ 305}; 306 307#endif /* !__GENERATING_BOUNDS_H */ 308 309/* 310 * Evictable pages are divided into multiple generations. The youngest and the 311 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 312 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 313 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 314 * corresponding generation. The gen counter in folio->flags stores gen+1 while 315 * a page is on one of lrugen->lists[]. Otherwise it stores 0. 316 * 317 * A page is added to the youngest generation on faulting. The aging needs to 318 * check the accessed bit at least twice before handing this page over to the 319 * eviction. The first check takes care of the accessed bit set on the initial 320 * fault; the second check makes sure this page hasn't been used since then. 321 * This process, AKA second chance, requires a minimum of two generations, 322 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive 323 * LRU, e.g., /proc/vmstat, these two generations are considered active; the 324 * rest of generations, if they exist, are considered inactive. See 325 * lru_gen_is_active(). 326 * 327 * PG_active is always cleared while a page is on one of lrugen->lists[] so that 328 * the aging needs not to worry about it. And it's set again when a page 329 * considered active is isolated for non-reclaiming purposes, e.g., migration. 330 * See lru_gen_add_folio() and lru_gen_del_folio(). 331 * 332 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 333 * number of categories of the active/inactive LRU when keeping track of 334 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 335 * in folio->flags. 336 */ 337#define MIN_NR_GENS 2U 338#define MAX_NR_GENS 4U 339 340/* 341 * Each generation is divided into multiple tiers. A page accessed N times 342 * through file descriptors is in tier order_base_2(N). A page in the first tier 343 * (N=0,1) is marked by PG_referenced unless it was faulted in through page 344 * tables or read ahead. A page in any other tier (N>1) is marked by 345 * PG_referenced and PG_workingset. This implies a minimum of two tiers is 346 * supported without using additional bits in folio->flags. 347 * 348 * In contrast to moving across generations which requires the LRU lock, moving 349 * across tiers only involves atomic operations on folio->flags and therefore 350 * has a negligible cost in the buffered access path. In the eviction path, 351 * comparisons of refaulted/(evicted+protected) from the first tier and the 352 * rest infer whether pages accessed multiple times through file descriptors 353 * are statistically hot and thus worth protecting. 354 * 355 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 356 * number of categories of the active/inactive LRU when keeping track of 357 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 358 * folio->flags. 359 */ 360#define MAX_NR_TIERS 4U 361 362#ifndef __GENERATING_BOUNDS_H 363 364struct lruvec; 365struct page_vma_mapped_walk; 366 367#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 368#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 369 370#ifdef CONFIG_LRU_GEN 371 372enum { 373 LRU_GEN_ANON, 374 LRU_GEN_FILE, 375}; 376 377enum { 378 LRU_GEN_CORE, 379 LRU_GEN_MM_WALK, 380 LRU_GEN_NONLEAF_YOUNG, 381 NR_LRU_GEN_CAPS 382}; 383 384#define MIN_LRU_BATCH BITS_PER_LONG 385#define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 386 387/* whether to keep historical stats from evicted generations */ 388#ifdef CONFIG_LRU_GEN_STATS 389#define NR_HIST_GENS MAX_NR_GENS 390#else 391#define NR_HIST_GENS 1U 392#endif 393 394/* 395 * The youngest generation number is stored in max_seq for both anon and file 396 * types as they are aged on an equal footing. The oldest generation numbers are 397 * stored in min_seq[] separately for anon and file types as clean file pages 398 * can be evicted regardless of swap constraints. 399 * 400 * Normally anon and file min_seq are in sync. But if swapping is constrained, 401 * e.g., out of swap space, file min_seq is allowed to advance and leave anon 402 * min_seq behind. 403 * 404 * The number of pages in each generation is eventually consistent and therefore 405 * can be transiently negative when reset_batch_size() is pending. 406 */ 407struct lru_gen_struct { 408 /* the aging increments the youngest generation number */ 409 unsigned long max_seq; 410 /* the eviction increments the oldest generation numbers */ 411 unsigned long min_seq[ANON_AND_FILE]; 412 /* the birth time of each generation in jiffies */ 413 unsigned long timestamps[MAX_NR_GENS]; 414 /* the multi-gen LRU lists, lazily sorted on eviction */ 415 struct list_head lists[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 416 /* the multi-gen LRU sizes, eventually consistent */ 417 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 418 /* the exponential moving average of refaulted */ 419 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 420 /* the exponential moving average of evicted+protected */ 421 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 422 /* the first tier doesn't need protection, hence the minus one */ 423 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; 424 /* can be modified without holding the LRU lock */ 425 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 426 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 427 /* whether the multi-gen LRU is enabled */ 428 bool enabled; 429}; 430 431enum { 432 MM_LEAF_TOTAL, /* total leaf entries */ 433 MM_LEAF_OLD, /* old leaf entries */ 434 MM_LEAF_YOUNG, /* young leaf entries */ 435 MM_NONLEAF_TOTAL, /* total non-leaf entries */ 436 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 437 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 438 NR_MM_STATS 439}; 440 441/* double-buffering Bloom filters */ 442#define NR_BLOOM_FILTERS 2 443 444struct lru_gen_mm_state { 445 /* set to max_seq after each iteration */ 446 unsigned long seq; 447 /* where the current iteration continues (inclusive) */ 448 struct list_head *head; 449 /* where the last iteration ended (exclusive) */ 450 struct list_head *tail; 451 /* to wait for the last page table walker to finish */ 452 struct wait_queue_head wait; 453 /* Bloom filters flip after each iteration */ 454 unsigned long *filters[NR_BLOOM_FILTERS]; 455 /* the mm stats for debugging */ 456 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 457 /* the number of concurrent page table walkers */ 458 int nr_walkers; 459}; 460 461struct lru_gen_mm_walk { 462 /* the lruvec under reclaim */ 463 struct lruvec *lruvec; 464 /* unstable max_seq from lru_gen_struct */ 465 unsigned long max_seq; 466 /* the next address within an mm to scan */ 467 unsigned long next_addr; 468 /* to batch promoted pages */ 469 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 470 /* to batch the mm stats */ 471 int mm_stats[NR_MM_STATS]; 472 /* total batched items */ 473 int batched; 474 bool can_swap; 475 bool force_scan; 476}; 477 478void lru_gen_init_lruvec(struct lruvec *lruvec); 479void lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 480 481#ifdef CONFIG_MEMCG 482void lru_gen_init_memcg(struct mem_cgroup *memcg); 483void lru_gen_exit_memcg(struct mem_cgroup *memcg); 484#endif 485 486#else /* !CONFIG_LRU_GEN */ 487 488static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 489{ 490} 491 492static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 493{ 494} 495 496#ifdef CONFIG_MEMCG 497static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 498{ 499} 500 501static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 502{ 503} 504#endif 505 506#endif /* CONFIG_LRU_GEN */ 507 508struct lruvec { 509 struct list_head lists[NR_LRU_LISTS]; 510 /* per lruvec lru_lock for memcg */ 511 spinlock_t lru_lock; 512 /* 513 * These track the cost of reclaiming one LRU - file or anon - 514 * over the other. As the observed cost of reclaiming one LRU 515 * increases, the reclaim scan balance tips toward the other. 516 */ 517 unsigned long anon_cost; 518 unsigned long file_cost; 519 /* Non-resident age, driven by LRU movement */ 520 atomic_long_t nonresident_age; 521 /* Refaults at the time of last reclaim cycle */ 522 unsigned long refaults[ANON_AND_FILE]; 523 /* Various lruvec state flags (enum lruvec_flags) */ 524 unsigned long flags; 525#ifdef CONFIG_LRU_GEN 526 /* evictable pages divided into generations */ 527 struct lru_gen_struct lrugen; 528 /* to concurrently iterate lru_gen_mm_list */ 529 struct lru_gen_mm_state mm_state; 530#endif 531#ifdef CONFIG_MEMCG 532 struct pglist_data *pgdat; 533#endif 534}; 535 536/* Isolate unmapped pages */ 537#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 538/* Isolate for asynchronous migration */ 539#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 540/* Isolate unevictable pages */ 541#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 542 543/* LRU Isolation modes. */ 544typedef unsigned __bitwise isolate_mode_t; 545 546enum zone_watermarks { 547 WMARK_MIN, 548 WMARK_LOW, 549 WMARK_HIGH, 550 WMARK_PROMO, 551 NR_WMARK 552}; 553 554/* 555 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list 556 * for THP which will usually be GFP_MOVABLE. Even if it is another type, 557 * it should not contribute to serious fragmentation causing THP allocation 558 * failures. 559 */ 560#ifdef CONFIG_TRANSPARENT_HUGEPAGE 561#define NR_PCP_THP 1 562#else 563#define NR_PCP_THP 0 564#endif 565#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 566#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 567 568#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 569#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 570#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 571#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 572 573/* Fields and list protected by pagesets local_lock in page_alloc.c */ 574struct per_cpu_pages { 575 spinlock_t lock; /* Protects lists field */ 576 int count; /* number of pages in the list */ 577 int high; /* high watermark, emptying needed */ 578 int batch; /* chunk size for buddy add/remove */ 579 short free_factor; /* batch scaling factor during free */ 580#ifdef CONFIG_NUMA 581 short expire; /* When 0, remote pagesets are drained */ 582#endif 583 584 /* Lists of pages, one per migrate type stored on the pcp-lists */ 585 struct list_head lists[NR_PCP_LISTS]; 586} ____cacheline_aligned_in_smp; 587 588struct per_cpu_zonestat { 589#ifdef CONFIG_SMP 590 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 591 s8 stat_threshold; 592#endif 593#ifdef CONFIG_NUMA 594 /* 595 * Low priority inaccurate counters that are only folded 596 * on demand. Use a large type to avoid the overhead of 597 * folding during refresh_cpu_vm_stats. 598 */ 599 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 600#endif 601}; 602 603struct per_cpu_nodestat { 604 s8 stat_threshold; 605 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 606}; 607 608#endif /* !__GENERATING_BOUNDS.H */ 609 610enum zone_type { 611 /* 612 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 613 * to DMA to all of the addressable memory (ZONE_NORMAL). 614 * On architectures where this area covers the whole 32 bit address 615 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 616 * DMA addressing constraints. This distinction is important as a 32bit 617 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 618 * platforms may need both zones as they support peripherals with 619 * different DMA addressing limitations. 620 */ 621#ifdef CONFIG_ZONE_DMA 622 ZONE_DMA, 623#endif 624#ifdef CONFIG_ZONE_DMA32 625 ZONE_DMA32, 626#endif 627 /* 628 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 629 * performed on pages in ZONE_NORMAL if the DMA devices support 630 * transfers to all addressable memory. 631 */ 632 ZONE_NORMAL, 633#ifdef CONFIG_HIGHMEM 634 /* 635 * A memory area that is only addressable by the kernel through 636 * mapping portions into its own address space. This is for example 637 * used by i386 to allow the kernel to address the memory beyond 638 * 900MB. The kernel will set up special mappings (page 639 * table entries on i386) for each page that the kernel needs to 640 * access. 641 */ 642 ZONE_HIGHMEM, 643#endif 644 /* 645 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 646 * movable pages with few exceptional cases described below. Main use 647 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 648 * likely to succeed, and to locally limit unmovable allocations - e.g., 649 * to increase the number of THP/huge pages. Notable special cases are: 650 * 651 * 1. Pinned pages: (long-term) pinning of movable pages might 652 * essentially turn such pages unmovable. Therefore, we do not allow 653 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 654 * faulted, they come from the right zone right away. However, it is 655 * still possible that address space already has pages in 656 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 657 * touches that memory before pinning). In such case we migrate them 658 * to a different zone. When migration fails - pinning fails. 659 * 2. memblock allocations: kernelcore/movablecore setups might create 660 * situations where ZONE_MOVABLE contains unmovable allocations 661 * after boot. Memory offlining and allocations fail early. 662 * 3. Memory holes: kernelcore/movablecore setups might create very rare 663 * situations where ZONE_MOVABLE contains memory holes after boot, 664 * for example, if we have sections that are only partially 665 * populated. Memory offlining and allocations fail early. 666 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 667 * memory offlining, such pages cannot be allocated. 668 * 5. Unmovable PG_offline pages: in paravirtualized environments, 669 * hotplugged memory blocks might only partially be managed by the 670 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 671 * parts not manged by the buddy are unmovable PG_offline pages. In 672 * some cases (virtio-mem), such pages can be skipped during 673 * memory offlining, however, cannot be moved/allocated. These 674 * techniques might use alloc_contig_range() to hide previously 675 * exposed pages from the buddy again (e.g., to implement some sort 676 * of memory unplug in virtio-mem). 677 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 678 * situations where ZERO_PAGE(0) which is allocated differently 679 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 680 * cannot be migrated. 681 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 682 * memory to the MOVABLE zone, the vmemmap pages are also placed in 683 * such zone. Such pages cannot be really moved around as they are 684 * self-stored in the range, but they are treated as movable when 685 * the range they describe is about to be offlined. 686 * 687 * In general, no unmovable allocations that degrade memory offlining 688 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 689 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 690 * if has_unmovable_pages() states that there are no unmovable pages, 691 * there can be false negatives). 692 */ 693 ZONE_MOVABLE, 694#ifdef CONFIG_ZONE_DEVICE 695 ZONE_DEVICE, 696#endif 697 __MAX_NR_ZONES 698 699}; 700 701#ifndef __GENERATING_BOUNDS_H 702 703#define ASYNC_AND_SYNC 2 704 705struct zone { 706 /* Read-mostly fields */ 707 708 /* zone watermarks, access with *_wmark_pages(zone) macros */ 709 unsigned long _watermark[NR_WMARK]; 710 unsigned long watermark_boost; 711 712 unsigned long nr_reserved_highatomic; 713 714 /* 715 * We don't know if the memory that we're going to allocate will be 716 * freeable or/and it will be released eventually, so to avoid totally 717 * wasting several GB of ram we must reserve some of the lower zone 718 * memory (otherwise we risk to run OOM on the lower zones despite 719 * there being tons of freeable ram on the higher zones). This array is 720 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 721 * changes. 722 */ 723 long lowmem_reserve[MAX_NR_ZONES]; 724 725#ifdef CONFIG_NUMA 726 int node; 727#endif 728 struct pglist_data *zone_pgdat; 729 struct per_cpu_pages __percpu *per_cpu_pageset; 730 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 731 /* 732 * the high and batch values are copied to individual pagesets for 733 * faster access 734 */ 735 int pageset_high; 736 int pageset_batch; 737 738#ifndef CONFIG_SPARSEMEM 739 /* 740 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 741 * In SPARSEMEM, this map is stored in struct mem_section 742 */ 743 unsigned long *pageblock_flags; 744#endif /* CONFIG_SPARSEMEM */ 745 746 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 747 unsigned long zone_start_pfn; 748 749 /* 750 * spanned_pages is the total pages spanned by the zone, including 751 * holes, which is calculated as: 752 * spanned_pages = zone_end_pfn - zone_start_pfn; 753 * 754 * present_pages is physical pages existing within the zone, which 755 * is calculated as: 756 * present_pages = spanned_pages - absent_pages(pages in holes); 757 * 758 * present_early_pages is present pages existing within the zone 759 * located on memory available since early boot, excluding hotplugged 760 * memory. 761 * 762 * managed_pages is present pages managed by the buddy system, which 763 * is calculated as (reserved_pages includes pages allocated by the 764 * bootmem allocator): 765 * managed_pages = present_pages - reserved_pages; 766 * 767 * cma pages is present pages that are assigned for CMA use 768 * (MIGRATE_CMA). 769 * 770 * So present_pages may be used by memory hotplug or memory power 771 * management logic to figure out unmanaged pages by checking 772 * (present_pages - managed_pages). And managed_pages should be used 773 * by page allocator and vm scanner to calculate all kinds of watermarks 774 * and thresholds. 775 * 776 * Locking rules: 777 * 778 * zone_start_pfn and spanned_pages are protected by span_seqlock. 779 * It is a seqlock because it has to be read outside of zone->lock, 780 * and it is done in the main allocator path. But, it is written 781 * quite infrequently. 782 * 783 * The span_seq lock is declared along with zone->lock because it is 784 * frequently read in proximity to zone->lock. It's good to 785 * give them a chance of being in the same cacheline. 786 * 787 * Write access to present_pages at runtime should be protected by 788 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 789 * present_pages should use get_online_mems() to get a stable value. 790 */ 791 atomic_long_t managed_pages; 792 unsigned long spanned_pages; 793 unsigned long present_pages; 794#if defined(CONFIG_MEMORY_HOTPLUG) 795 unsigned long present_early_pages; 796#endif 797#ifdef CONFIG_CMA 798 unsigned long cma_pages; 799#endif 800 801 const char *name; 802 803#ifdef CONFIG_MEMORY_ISOLATION 804 /* 805 * Number of isolated pageblock. It is used to solve incorrect 806 * freepage counting problem due to racy retrieving migratetype 807 * of pageblock. Protected by zone->lock. 808 */ 809 unsigned long nr_isolate_pageblock; 810#endif 811 812#ifdef CONFIG_MEMORY_HOTPLUG 813 /* see spanned/present_pages for more description */ 814 seqlock_t span_seqlock; 815#endif 816 817 int initialized; 818 819 /* Write-intensive fields used from the page allocator */ 820 CACHELINE_PADDING(_pad1_); 821 822 /* free areas of different sizes */ 823 struct free_area free_area[MAX_ORDER]; 824 825 /* zone flags, see below */ 826 unsigned long flags; 827 828 /* Primarily protects free_area */ 829 spinlock_t lock; 830 831 /* Write-intensive fields used by compaction and vmstats. */ 832 CACHELINE_PADDING(_pad2_); 833 834 /* 835 * When free pages are below this point, additional steps are taken 836 * when reading the number of free pages to avoid per-cpu counter 837 * drift allowing watermarks to be breached 838 */ 839 unsigned long percpu_drift_mark; 840 841#if defined CONFIG_COMPACTION || defined CONFIG_CMA 842 /* pfn where compaction free scanner should start */ 843 unsigned long compact_cached_free_pfn; 844 /* pfn where compaction migration scanner should start */ 845 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 846 unsigned long compact_init_migrate_pfn; 847 unsigned long compact_init_free_pfn; 848#endif 849 850#ifdef CONFIG_COMPACTION 851 /* 852 * On compaction failure, 1<<compact_defer_shift compactions 853 * are skipped before trying again. The number attempted since 854 * last failure is tracked with compact_considered. 855 * compact_order_failed is the minimum compaction failed order. 856 */ 857 unsigned int compact_considered; 858 unsigned int compact_defer_shift; 859 int compact_order_failed; 860#endif 861 862#if defined CONFIG_COMPACTION || defined CONFIG_CMA 863 /* Set to true when the PG_migrate_skip bits should be cleared */ 864 bool compact_blockskip_flush; 865#endif 866 867 bool contiguous; 868 869 CACHELINE_PADDING(_pad3_); 870 /* Zone statistics */ 871 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 872 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 873} ____cacheline_internodealigned_in_smp; 874 875enum pgdat_flags { 876 PGDAT_DIRTY, /* reclaim scanning has recently found 877 * many dirty file pages at the tail 878 * of the LRU. 879 */ 880 PGDAT_WRITEBACK, /* reclaim scanning has recently found 881 * many pages under writeback 882 */ 883 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 884}; 885 886enum zone_flags { 887 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 888 * Cleared when kswapd is woken. 889 */ 890 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 891}; 892 893static inline unsigned long zone_managed_pages(struct zone *zone) 894{ 895 return (unsigned long)atomic_long_read(&zone->managed_pages); 896} 897 898static inline unsigned long zone_cma_pages(struct zone *zone) 899{ 900#ifdef CONFIG_CMA 901 return zone->cma_pages; 902#else 903 return 0; 904#endif 905} 906 907static inline unsigned long zone_end_pfn(const struct zone *zone) 908{ 909 return zone->zone_start_pfn + zone->spanned_pages; 910} 911 912static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 913{ 914 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 915} 916 917static inline bool zone_is_initialized(struct zone *zone) 918{ 919 return zone->initialized; 920} 921 922static inline bool zone_is_empty(struct zone *zone) 923{ 924 return zone->spanned_pages == 0; 925} 926 927#ifndef BUILD_VDSO32_64 928/* 929 * The zone field is never updated after free_area_init_core() 930 * sets it, so none of the operations on it need to be atomic. 931 */ 932 933/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 934#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 935#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 936#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 937#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 938#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 939#define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 940#define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 941 942/* 943 * Define the bit shifts to access each section. For non-existent 944 * sections we define the shift as 0; that plus a 0 mask ensures 945 * the compiler will optimise away reference to them. 946 */ 947#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 948#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 949#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 950#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 951#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 952 953/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 954#ifdef NODE_NOT_IN_PAGE_FLAGS 955#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 956#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 957 SECTIONS_PGOFF : ZONES_PGOFF) 958#else 959#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 960#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 961 NODES_PGOFF : ZONES_PGOFF) 962#endif 963 964#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 965 966#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 967#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 968#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 969#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 970#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 971#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 972 973static inline enum zone_type page_zonenum(const struct page *page) 974{ 975 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 976 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 977} 978 979static inline enum zone_type folio_zonenum(const struct folio *folio) 980{ 981 return page_zonenum(&folio->page); 982} 983 984#ifdef CONFIG_ZONE_DEVICE 985static inline bool is_zone_device_page(const struct page *page) 986{ 987 return page_zonenum(page) == ZONE_DEVICE; 988} 989 990/* 991 * Consecutive zone device pages should not be merged into the same sgl 992 * or bvec segment with other types of pages or if they belong to different 993 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 994 * without scanning the entire segment. This helper returns true either if 995 * both pages are not zone device pages or both pages are zone device pages 996 * with the same pgmap. 997 */ 998static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 999 const struct page *b) 1000{ 1001 if (is_zone_device_page(a) != is_zone_device_page(b)) 1002 return false; 1003 if (!is_zone_device_page(a)) 1004 return true; 1005 return a->pgmap == b->pgmap; 1006} 1007 1008extern void memmap_init_zone_device(struct zone *, unsigned long, 1009 unsigned long, struct dev_pagemap *); 1010#else 1011static inline bool is_zone_device_page(const struct page *page) 1012{ 1013 return false; 1014} 1015static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1016 const struct page *b) 1017{ 1018 return true; 1019} 1020#endif 1021 1022static inline bool folio_is_zone_device(const struct folio *folio) 1023{ 1024 return is_zone_device_page(&folio->page); 1025} 1026 1027static inline bool is_zone_movable_page(const struct page *page) 1028{ 1029 return page_zonenum(page) == ZONE_MOVABLE; 1030} 1031#endif 1032 1033/* 1034 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1035 * intersection with the given zone 1036 */ 1037static inline bool zone_intersects(struct zone *zone, 1038 unsigned long start_pfn, unsigned long nr_pages) 1039{ 1040 if (zone_is_empty(zone)) 1041 return false; 1042 if (start_pfn >= zone_end_pfn(zone) || 1043 start_pfn + nr_pages <= zone->zone_start_pfn) 1044 return false; 1045 1046 return true; 1047} 1048 1049/* 1050 * The "priority" of VM scanning is how much of the queues we will scan in one 1051 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1052 * queues ("queue_length >> 12") during an aging round. 1053 */ 1054#define DEF_PRIORITY 12 1055 1056/* Maximum number of zones on a zonelist */ 1057#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1058 1059enum { 1060 ZONELIST_FALLBACK, /* zonelist with fallback */ 1061#ifdef CONFIG_NUMA 1062 /* 1063 * The NUMA zonelists are doubled because we need zonelists that 1064 * restrict the allocations to a single node for __GFP_THISNODE. 1065 */ 1066 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1067#endif 1068 MAX_ZONELISTS 1069}; 1070 1071/* 1072 * This struct contains information about a zone in a zonelist. It is stored 1073 * here to avoid dereferences into large structures and lookups of tables 1074 */ 1075struct zoneref { 1076 struct zone *zone; /* Pointer to actual zone */ 1077 int zone_idx; /* zone_idx(zoneref->zone) */ 1078}; 1079 1080/* 1081 * One allocation request operates on a zonelist. A zonelist 1082 * is a list of zones, the first one is the 'goal' of the 1083 * allocation, the other zones are fallback zones, in decreasing 1084 * priority. 1085 * 1086 * To speed the reading of the zonelist, the zonerefs contain the zone index 1087 * of the entry being read. Helper functions to access information given 1088 * a struct zoneref are 1089 * 1090 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1091 * zonelist_zone_idx() - Return the index of the zone for an entry 1092 * zonelist_node_idx() - Return the index of the node for an entry 1093 */ 1094struct zonelist { 1095 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1096}; 1097 1098/* 1099 * The array of struct pages for flatmem. 1100 * It must be declared for SPARSEMEM as well because there are configurations 1101 * that rely on that. 1102 */ 1103extern struct page *mem_map; 1104 1105#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1106struct deferred_split { 1107 spinlock_t split_queue_lock; 1108 struct list_head split_queue; 1109 unsigned long split_queue_len; 1110}; 1111#endif 1112 1113/* 1114 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1115 * it's memory layout. On UMA machines there is a single pglist_data which 1116 * describes the whole memory. 1117 * 1118 * Memory statistics and page replacement data structures are maintained on a 1119 * per-zone basis. 1120 */ 1121typedef struct pglist_data { 1122 /* 1123 * node_zones contains just the zones for THIS node. Not all of the 1124 * zones may be populated, but it is the full list. It is referenced by 1125 * this node's node_zonelists as well as other node's node_zonelists. 1126 */ 1127 struct zone node_zones[MAX_NR_ZONES]; 1128 1129 /* 1130 * node_zonelists contains references to all zones in all nodes. 1131 * Generally the first zones will be references to this node's 1132 * node_zones. 1133 */ 1134 struct zonelist node_zonelists[MAX_ZONELISTS]; 1135 1136 int nr_zones; /* number of populated zones in this node */ 1137#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1138 struct page *node_mem_map; 1139#ifdef CONFIG_PAGE_EXTENSION 1140 struct page_ext *node_page_ext; 1141#endif 1142#endif 1143#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1144 /* 1145 * Must be held any time you expect node_start_pfn, 1146 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1147 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1148 * init. 1149 * 1150 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1151 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1152 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1153 * 1154 * Nests above zone->lock and zone->span_seqlock 1155 */ 1156 spinlock_t node_size_lock; 1157#endif 1158 unsigned long node_start_pfn; 1159 unsigned long node_present_pages; /* total number of physical pages */ 1160 unsigned long node_spanned_pages; /* total size of physical page 1161 range, including holes */ 1162 int node_id; 1163 wait_queue_head_t kswapd_wait; 1164 wait_queue_head_t pfmemalloc_wait; 1165 1166 /* workqueues for throttling reclaim for different reasons. */ 1167 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1168 1169 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1170 unsigned long nr_reclaim_start; /* nr pages written while throttled 1171 * when throttling started. */ 1172#ifdef CONFIG_MEMORY_HOTPLUG 1173 struct mutex kswapd_lock; 1174#endif 1175 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1176 int kswapd_order; 1177 enum zone_type kswapd_highest_zoneidx; 1178 1179 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1180 1181#ifdef CONFIG_COMPACTION 1182 int kcompactd_max_order; 1183 enum zone_type kcompactd_highest_zoneidx; 1184 wait_queue_head_t kcompactd_wait; 1185 struct task_struct *kcompactd; 1186 bool proactive_compact_trigger; 1187#endif 1188 /* 1189 * This is a per-node reserve of pages that are not available 1190 * to userspace allocations. 1191 */ 1192 unsigned long totalreserve_pages; 1193 1194#ifdef CONFIG_NUMA 1195 /* 1196 * node reclaim becomes active if more unmapped pages exist. 1197 */ 1198 unsigned long min_unmapped_pages; 1199 unsigned long min_slab_pages; 1200#endif /* CONFIG_NUMA */ 1201 1202 /* Write-intensive fields used by page reclaim */ 1203 CACHELINE_PADDING(_pad1_); 1204 1205#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1206 /* 1207 * If memory initialisation on large machines is deferred then this 1208 * is the first PFN that needs to be initialised. 1209 */ 1210 unsigned long first_deferred_pfn; 1211#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1212 1213#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1214 struct deferred_split deferred_split_queue; 1215#endif 1216 1217#ifdef CONFIG_NUMA_BALANCING 1218 /* start time in ms of current promote rate limit period */ 1219 unsigned int nbp_rl_start; 1220 /* number of promote candidate pages at start time of current rate limit period */ 1221 unsigned long nbp_rl_nr_cand; 1222 /* promote threshold in ms */ 1223 unsigned int nbp_threshold; 1224 /* start time in ms of current promote threshold adjustment period */ 1225 unsigned int nbp_th_start; 1226 /* 1227 * number of promote candidate pages at start time of current promote 1228 * threshold adjustment period 1229 */ 1230 unsigned long nbp_th_nr_cand; 1231#endif 1232 /* Fields commonly accessed by the page reclaim scanner */ 1233 1234 /* 1235 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1236 * 1237 * Use mem_cgroup_lruvec() to look up lruvecs. 1238 */ 1239 struct lruvec __lruvec; 1240 1241 unsigned long flags; 1242 1243#ifdef CONFIG_LRU_GEN 1244 /* kswap mm walk data */ 1245 struct lru_gen_mm_walk mm_walk; 1246#endif 1247 1248 CACHELINE_PADDING(_pad2_); 1249 1250 /* Per-node vmstats */ 1251 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1252 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1253#ifdef CONFIG_NUMA 1254 struct memory_tier __rcu *memtier; 1255#endif 1256} pg_data_t; 1257 1258#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1259#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1260 1261#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1262#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1263 1264static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1265{ 1266 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1267} 1268 1269#include <linux/memory_hotplug.h> 1270 1271void build_all_zonelists(pg_data_t *pgdat); 1272void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1273 enum zone_type highest_zoneidx); 1274bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1275 int highest_zoneidx, unsigned int alloc_flags, 1276 long free_pages); 1277bool zone_watermark_ok(struct zone *z, unsigned int order, 1278 unsigned long mark, int highest_zoneidx, 1279 unsigned int alloc_flags); 1280bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1281 unsigned long mark, int highest_zoneidx); 1282/* 1283 * Memory initialization context, use to differentiate memory added by 1284 * the platform statically or via memory hotplug interface. 1285 */ 1286enum meminit_context { 1287 MEMINIT_EARLY, 1288 MEMINIT_HOTPLUG, 1289}; 1290 1291extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1292 unsigned long size); 1293 1294extern void lruvec_init(struct lruvec *lruvec); 1295 1296static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1297{ 1298#ifdef CONFIG_MEMCG 1299 return lruvec->pgdat; 1300#else 1301 return container_of(lruvec, struct pglist_data, __lruvec); 1302#endif 1303} 1304 1305#ifdef CONFIG_HAVE_MEMORYLESS_NODES 1306int local_memory_node(int node_id); 1307#else 1308static inline int local_memory_node(int node_id) { return node_id; }; 1309#endif 1310 1311/* 1312 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1313 */ 1314#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1315 1316#ifdef CONFIG_ZONE_DEVICE 1317static inline bool zone_is_zone_device(struct zone *zone) 1318{ 1319 return zone_idx(zone) == ZONE_DEVICE; 1320} 1321#else 1322static inline bool zone_is_zone_device(struct zone *zone) 1323{ 1324 return false; 1325} 1326#endif 1327 1328/* 1329 * Returns true if a zone has pages managed by the buddy allocator. 1330 * All the reclaim decisions have to use this function rather than 1331 * populated_zone(). If the whole zone is reserved then we can easily 1332 * end up with populated_zone() && !managed_zone(). 1333 */ 1334static inline bool managed_zone(struct zone *zone) 1335{ 1336 return zone_managed_pages(zone); 1337} 1338 1339/* Returns true if a zone has memory */ 1340static inline bool populated_zone(struct zone *zone) 1341{ 1342 return zone->present_pages; 1343} 1344 1345#ifdef CONFIG_NUMA 1346static inline int zone_to_nid(struct zone *zone) 1347{ 1348 return zone->node; 1349} 1350 1351static inline void zone_set_nid(struct zone *zone, int nid) 1352{ 1353 zone->node = nid; 1354} 1355#else 1356static inline int zone_to_nid(struct zone *zone) 1357{ 1358 return 0; 1359} 1360 1361static inline void zone_set_nid(struct zone *zone, int nid) {} 1362#endif 1363 1364extern int movable_zone; 1365 1366static inline int is_highmem_idx(enum zone_type idx) 1367{ 1368#ifdef CONFIG_HIGHMEM 1369 return (idx == ZONE_HIGHMEM || 1370 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1371#else 1372 return 0; 1373#endif 1374} 1375 1376/** 1377 * is_highmem - helper function to quickly check if a struct zone is a 1378 * highmem zone or not. This is an attempt to keep references 1379 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1380 * @zone: pointer to struct zone variable 1381 * Return: 1 for a highmem zone, 0 otherwise 1382 */ 1383static inline int is_highmem(struct zone *zone) 1384{ 1385 return is_highmem_idx(zone_idx(zone)); 1386} 1387 1388#ifdef CONFIG_ZONE_DMA 1389bool has_managed_dma(void); 1390#else 1391static inline bool has_managed_dma(void) 1392{ 1393 return false; 1394} 1395#endif 1396 1397/* These two functions are used to setup the per zone pages min values */ 1398struct ctl_table; 1399 1400int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, 1401 loff_t *); 1402int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, 1403 size_t *, loff_t *); 1404extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 1405int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, 1406 size_t *, loff_t *); 1407int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int, 1408 void *, size_t *, loff_t *); 1409int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 1410 void *, size_t *, loff_t *); 1411int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 1412 void *, size_t *, loff_t *); 1413int numa_zonelist_order_handler(struct ctl_table *, int, 1414 void *, size_t *, loff_t *); 1415extern int percpu_pagelist_high_fraction; 1416extern char numa_zonelist_order[]; 1417#define NUMA_ZONELIST_ORDER_LEN 16 1418 1419#ifndef CONFIG_NUMA 1420 1421extern struct pglist_data contig_page_data; 1422static inline struct pglist_data *NODE_DATA(int nid) 1423{ 1424 return &contig_page_data; 1425} 1426 1427#else /* CONFIG_NUMA */ 1428 1429#include <asm/mmzone.h> 1430 1431#endif /* !CONFIG_NUMA */ 1432 1433extern struct pglist_data *first_online_pgdat(void); 1434extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1435extern struct zone *next_zone(struct zone *zone); 1436 1437/** 1438 * for_each_online_pgdat - helper macro to iterate over all online nodes 1439 * @pgdat: pointer to a pg_data_t variable 1440 */ 1441#define for_each_online_pgdat(pgdat) \ 1442 for (pgdat = first_online_pgdat(); \ 1443 pgdat; \ 1444 pgdat = next_online_pgdat(pgdat)) 1445/** 1446 * for_each_zone - helper macro to iterate over all memory zones 1447 * @zone: pointer to struct zone variable 1448 * 1449 * The user only needs to declare the zone variable, for_each_zone 1450 * fills it in. 1451 */ 1452#define for_each_zone(zone) \ 1453 for (zone = (first_online_pgdat())->node_zones; \ 1454 zone; \ 1455 zone = next_zone(zone)) 1456 1457#define for_each_populated_zone(zone) \ 1458 for (zone = (first_online_pgdat())->node_zones; \ 1459 zone; \ 1460 zone = next_zone(zone)) \ 1461 if (!populated_zone(zone)) \ 1462 ; /* do nothing */ \ 1463 else 1464 1465static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1466{ 1467 return zoneref->zone; 1468} 1469 1470static inline int zonelist_zone_idx(struct zoneref *zoneref) 1471{ 1472 return zoneref->zone_idx; 1473} 1474 1475static inline int zonelist_node_idx(struct zoneref *zoneref) 1476{ 1477 return zone_to_nid(zoneref->zone); 1478} 1479 1480struct zoneref *__next_zones_zonelist(struct zoneref *z, 1481 enum zone_type highest_zoneidx, 1482 nodemask_t *nodes); 1483 1484/** 1485 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1486 * @z: The cursor used as a starting point for the search 1487 * @highest_zoneidx: The zone index of the highest zone to return 1488 * @nodes: An optional nodemask to filter the zonelist with 1489 * 1490 * This function returns the next zone at or below a given zone index that is 1491 * within the allowed nodemask using a cursor as the starting point for the 1492 * search. The zoneref returned is a cursor that represents the current zone 1493 * being examined. It should be advanced by one before calling 1494 * next_zones_zonelist again. 1495 * 1496 * Return: the next zone at or below highest_zoneidx within the allowed 1497 * nodemask using a cursor within a zonelist as a starting point 1498 */ 1499static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1500 enum zone_type highest_zoneidx, 1501 nodemask_t *nodes) 1502{ 1503 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1504 return z; 1505 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1506} 1507 1508/** 1509 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1510 * @zonelist: The zonelist to search for a suitable zone 1511 * @highest_zoneidx: The zone index of the highest zone to return 1512 * @nodes: An optional nodemask to filter the zonelist with 1513 * 1514 * This function returns the first zone at or below a given zone index that is 1515 * within the allowed nodemask. The zoneref returned is a cursor that can be 1516 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1517 * one before calling. 1518 * 1519 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1520 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1521 * update due to cpuset modification. 1522 * 1523 * Return: Zoneref pointer for the first suitable zone found 1524 */ 1525static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1526 enum zone_type highest_zoneidx, 1527 nodemask_t *nodes) 1528{ 1529 return next_zones_zonelist(zonelist->_zonerefs, 1530 highest_zoneidx, nodes); 1531} 1532 1533/** 1534 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1535 * @zone: The current zone in the iterator 1536 * @z: The current pointer within zonelist->_zonerefs being iterated 1537 * @zlist: The zonelist being iterated 1538 * @highidx: The zone index of the highest zone to return 1539 * @nodemask: Nodemask allowed by the allocator 1540 * 1541 * This iterator iterates though all zones at or below a given zone index and 1542 * within a given nodemask 1543 */ 1544#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1545 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1546 zone; \ 1547 z = next_zones_zonelist(++z, highidx, nodemask), \ 1548 zone = zonelist_zone(z)) 1549 1550#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1551 for (zone = z->zone; \ 1552 zone; \ 1553 z = next_zones_zonelist(++z, highidx, nodemask), \ 1554 zone = zonelist_zone(z)) 1555 1556 1557/** 1558 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1559 * @zone: The current zone in the iterator 1560 * @z: The current pointer within zonelist->zones being iterated 1561 * @zlist: The zonelist being iterated 1562 * @highidx: The zone index of the highest zone to return 1563 * 1564 * This iterator iterates though all zones at or below a given zone index. 1565 */ 1566#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1567 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1568 1569/* Whether the 'nodes' are all movable nodes */ 1570static inline bool movable_only_nodes(nodemask_t *nodes) 1571{ 1572 struct zonelist *zonelist; 1573 struct zoneref *z; 1574 int nid; 1575 1576 if (nodes_empty(*nodes)) 1577 return false; 1578 1579 /* 1580 * We can chose arbitrary node from the nodemask to get a 1581 * zonelist as they are interlinked. We just need to find 1582 * at least one zone that can satisfy kernel allocations. 1583 */ 1584 nid = first_node(*nodes); 1585 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1586 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1587 return (!z->zone) ? true : false; 1588} 1589 1590 1591#ifdef CONFIG_SPARSEMEM 1592#include <asm/sparsemem.h> 1593#endif 1594 1595#ifdef CONFIG_FLATMEM 1596#define pfn_to_nid(pfn) (0) 1597#endif 1598 1599#ifdef CONFIG_SPARSEMEM 1600 1601/* 1602 * PA_SECTION_SHIFT physical address to/from section number 1603 * PFN_SECTION_SHIFT pfn to/from section number 1604 */ 1605#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1606#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1607 1608#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1609 1610#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1611#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1612 1613#define SECTION_BLOCKFLAGS_BITS \ 1614 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1615 1616#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1617#error Allocator MAX_ORDER exceeds SECTION_SIZE 1618#endif 1619 1620static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1621{ 1622 return pfn >> PFN_SECTION_SHIFT; 1623} 1624static inline unsigned long section_nr_to_pfn(unsigned long sec) 1625{ 1626 return sec << PFN_SECTION_SHIFT; 1627} 1628 1629#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1630#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1631 1632#define SUBSECTION_SHIFT 21 1633#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1634 1635#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1636#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1637#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1638 1639#if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1640#error Subsection size exceeds section size 1641#else 1642#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1643#endif 1644 1645#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1646#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1647 1648struct mem_section_usage { 1649#ifdef CONFIG_SPARSEMEM_VMEMMAP 1650 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1651#endif 1652 /* See declaration of similar field in struct zone */ 1653 unsigned long pageblock_flags[0]; 1654}; 1655 1656void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1657 1658struct page; 1659struct page_ext; 1660struct mem_section { 1661 /* 1662 * This is, logically, a pointer to an array of struct 1663 * pages. However, it is stored with some other magic. 1664 * (see sparse.c::sparse_init_one_section()) 1665 * 1666 * Additionally during early boot we encode node id of 1667 * the location of the section here to guide allocation. 1668 * (see sparse.c::memory_present()) 1669 * 1670 * Making it a UL at least makes someone do a cast 1671 * before using it wrong. 1672 */ 1673 unsigned long section_mem_map; 1674 1675 struct mem_section_usage *usage; 1676#ifdef CONFIG_PAGE_EXTENSION 1677 /* 1678 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1679 * section. (see page_ext.h about this.) 1680 */ 1681 struct page_ext *page_ext; 1682 unsigned long pad; 1683#endif 1684 /* 1685 * WARNING: mem_section must be a power-of-2 in size for the 1686 * calculation and use of SECTION_ROOT_MASK to make sense. 1687 */ 1688}; 1689 1690#ifdef CONFIG_SPARSEMEM_EXTREME 1691#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1692#else 1693#define SECTIONS_PER_ROOT 1 1694#endif 1695 1696#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1697#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1698#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1699 1700#ifdef CONFIG_SPARSEMEM_EXTREME 1701extern struct mem_section **mem_section; 1702#else 1703extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1704#endif 1705 1706static inline unsigned long *section_to_usemap(struct mem_section *ms) 1707{ 1708 return ms->usage->pageblock_flags; 1709} 1710 1711static inline struct mem_section *__nr_to_section(unsigned long nr) 1712{ 1713 unsigned long root = SECTION_NR_TO_ROOT(nr); 1714 1715 if (unlikely(root >= NR_SECTION_ROOTS)) 1716 return NULL; 1717 1718#ifdef CONFIG_SPARSEMEM_EXTREME 1719 if (!mem_section || !mem_section[root]) 1720 return NULL; 1721#endif 1722 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1723} 1724extern size_t mem_section_usage_size(void); 1725 1726/* 1727 * We use the lower bits of the mem_map pointer to store 1728 * a little bit of information. The pointer is calculated 1729 * as mem_map - section_nr_to_pfn(pnum). The result is 1730 * aligned to the minimum alignment of the two values: 1731 * 1. All mem_map arrays are page-aligned. 1732 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1733 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1734 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1735 * worst combination is powerpc with 256k pages, 1736 * which results in PFN_SECTION_SHIFT equal 6. 1737 * To sum it up, at least 6 bits are available on all architectures. 1738 * However, we can exceed 6 bits on some other architectures except 1739 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1740 * with the worst case of 64K pages on arm64) if we make sure the 1741 * exceeded bit is not applicable to powerpc. 1742 */ 1743enum { 1744 SECTION_MARKED_PRESENT_BIT, 1745 SECTION_HAS_MEM_MAP_BIT, 1746 SECTION_IS_ONLINE_BIT, 1747 SECTION_IS_EARLY_BIT, 1748#ifdef CONFIG_ZONE_DEVICE 1749 SECTION_TAINT_ZONE_DEVICE_BIT, 1750#endif 1751 SECTION_MAP_LAST_BIT, 1752}; 1753 1754#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1755#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1756#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1757#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1758#ifdef CONFIG_ZONE_DEVICE 1759#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1760#endif 1761#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1762#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1763 1764static inline struct page *__section_mem_map_addr(struct mem_section *section) 1765{ 1766 unsigned long map = section->section_mem_map; 1767 map &= SECTION_MAP_MASK; 1768 return (struct page *)map; 1769} 1770 1771static inline int present_section(struct mem_section *section) 1772{ 1773 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1774} 1775 1776static inline int present_section_nr(unsigned long nr) 1777{ 1778 return present_section(__nr_to_section(nr)); 1779} 1780 1781static inline int valid_section(struct mem_section *section) 1782{ 1783 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1784} 1785 1786static inline int early_section(struct mem_section *section) 1787{ 1788 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1789} 1790 1791static inline int valid_section_nr(unsigned long nr) 1792{ 1793 return valid_section(__nr_to_section(nr)); 1794} 1795 1796static inline int online_section(struct mem_section *section) 1797{ 1798 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1799} 1800 1801#ifdef CONFIG_ZONE_DEVICE 1802static inline int online_device_section(struct mem_section *section) 1803{ 1804 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1805 1806 return section && ((section->section_mem_map & flags) == flags); 1807} 1808#else 1809static inline int online_device_section(struct mem_section *section) 1810{ 1811 return 0; 1812} 1813#endif 1814 1815static inline int online_section_nr(unsigned long nr) 1816{ 1817 return online_section(__nr_to_section(nr)); 1818} 1819 1820#ifdef CONFIG_MEMORY_HOTPLUG 1821void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1822void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1823#endif 1824 1825static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1826{ 1827 return __nr_to_section(pfn_to_section_nr(pfn)); 1828} 1829 1830extern unsigned long __highest_present_section_nr; 1831 1832static inline int subsection_map_index(unsigned long pfn) 1833{ 1834 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1835} 1836 1837#ifdef CONFIG_SPARSEMEM_VMEMMAP 1838static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1839{ 1840 int idx = subsection_map_index(pfn); 1841 1842 return test_bit(idx, ms->usage->subsection_map); 1843} 1844#else 1845static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1846{ 1847 return 1; 1848} 1849#endif 1850 1851#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1852/** 1853 * pfn_valid - check if there is a valid memory map entry for a PFN 1854 * @pfn: the page frame number to check 1855 * 1856 * Check if there is a valid memory map entry aka struct page for the @pfn. 1857 * Note, that availability of the memory map entry does not imply that 1858 * there is actual usable memory at that @pfn. The struct page may 1859 * represent a hole or an unusable page frame. 1860 * 1861 * Return: 1 for PFNs that have memory map entries and 0 otherwise 1862 */ 1863static inline int pfn_valid(unsigned long pfn) 1864{ 1865 struct mem_section *ms; 1866 1867 /* 1868 * Ensure the upper PAGE_SHIFT bits are clear in the 1869 * pfn. Else it might lead to false positives when 1870 * some of the upper bits are set, but the lower bits 1871 * match a valid pfn. 1872 */ 1873 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 1874 return 0; 1875 1876 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1877 return 0; 1878 ms = __pfn_to_section(pfn); 1879 if (!valid_section(ms)) 1880 return 0; 1881 /* 1882 * Traditionally early sections always returned pfn_valid() for 1883 * the entire section-sized span. 1884 */ 1885 return early_section(ms) || pfn_section_valid(ms, pfn); 1886} 1887#endif 1888 1889static inline int pfn_in_present_section(unsigned long pfn) 1890{ 1891 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1892 return 0; 1893 return present_section(__pfn_to_section(pfn)); 1894} 1895 1896static inline unsigned long next_present_section_nr(unsigned long section_nr) 1897{ 1898 while (++section_nr <= __highest_present_section_nr) { 1899 if (present_section_nr(section_nr)) 1900 return section_nr; 1901 } 1902 1903 return -1; 1904} 1905 1906/* 1907 * These are _only_ used during initialisation, therefore they 1908 * can use __initdata ... They could have names to indicate 1909 * this restriction. 1910 */ 1911#ifdef CONFIG_NUMA 1912#define pfn_to_nid(pfn) \ 1913({ \ 1914 unsigned long __pfn_to_nid_pfn = (pfn); \ 1915 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1916}) 1917#else 1918#define pfn_to_nid(pfn) (0) 1919#endif 1920 1921void sparse_init(void); 1922#else 1923#define sparse_init() do {} while (0) 1924#define sparse_index_init(_sec, _nid) do {} while (0) 1925#define pfn_in_present_section pfn_valid 1926#define subsection_map_init(_pfn, _nr_pages) do {} while (0) 1927#endif /* CONFIG_SPARSEMEM */ 1928 1929#endif /* !__GENERATING_BOUNDS.H */ 1930#endif /* !__ASSEMBLY__ */ 1931#endif /* _LINUX_MMZONE_H */