Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_TYPES_H
3#define _LINUX_MM_TYPES_H
4
5#include <linux/mm_types_task.h>
6
7#include <linux/auxvec.h>
8#include <linux/kref.h>
9#include <linux/list.h>
10#include <linux/spinlock.h>
11#include <linux/rbtree.h>
12#include <linux/maple_tree.h>
13#include <linux/rwsem.h>
14#include <linux/completion.h>
15#include <linux/cpumask.h>
16#include <linux/uprobes.h>
17#include <linux/rcupdate.h>
18#include <linux/page-flags-layout.h>
19#include <linux/workqueue.h>
20#include <linux/seqlock.h>
21#include <linux/percpu_counter.h>
22
23#include <asm/mmu.h>
24
25#ifndef AT_VECTOR_SIZE_ARCH
26#define AT_VECTOR_SIZE_ARCH 0
27#endif
28#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1))
29
30#define INIT_PASID 0
31
32struct address_space;
33struct mem_cgroup;
34
35/*
36 * Each physical page in the system has a struct page associated with
37 * it to keep track of whatever it is we are using the page for at the
38 * moment. Note that we have no way to track which tasks are using
39 * a page, though if it is a pagecache page, rmap structures can tell us
40 * who is mapping it.
41 *
42 * If you allocate the page using alloc_pages(), you can use some of the
43 * space in struct page for your own purposes. The five words in the main
44 * union are available, except for bit 0 of the first word which must be
45 * kept clear. Many users use this word to store a pointer to an object
46 * which is guaranteed to be aligned. If you use the same storage as
47 * page->mapping, you must restore it to NULL before freeing the page.
48 *
49 * If your page will not be mapped to userspace, you can also use the four
50 * bytes in the mapcount union, but you must call page_mapcount_reset()
51 * before freeing it.
52 *
53 * If you want to use the refcount field, it must be used in such a way
54 * that other CPUs temporarily incrementing and then decrementing the
55 * refcount does not cause problems. On receiving the page from
56 * alloc_pages(), the refcount will be positive.
57 *
58 * If you allocate pages of order > 0, you can use some of the fields
59 * in each subpage, but you may need to restore some of their values
60 * afterwards.
61 *
62 * SLUB uses cmpxchg_double() to atomically update its freelist and counters.
63 * That requires that freelist & counters in struct slab be adjacent and
64 * double-word aligned. Because struct slab currently just reinterprets the
65 * bits of struct page, we align all struct pages to double-word boundaries,
66 * and ensure that 'freelist' is aligned within struct slab.
67 */
68#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE
69#define _struct_page_alignment __aligned(2 * sizeof(unsigned long))
70#else
71#define _struct_page_alignment __aligned(sizeof(unsigned long))
72#endif
73
74struct page {
75 unsigned long flags; /* Atomic flags, some possibly
76 * updated asynchronously */
77 /*
78 * Five words (20/40 bytes) are available in this union.
79 * WARNING: bit 0 of the first word is used for PageTail(). That
80 * means the other users of this union MUST NOT use the bit to
81 * avoid collision and false-positive PageTail().
82 */
83 union {
84 struct { /* Page cache and anonymous pages */
85 /**
86 * @lru: Pageout list, eg. active_list protected by
87 * lruvec->lru_lock. Sometimes used as a generic list
88 * by the page owner.
89 */
90 union {
91 struct list_head lru;
92
93 /* Or, for the Unevictable "LRU list" slot */
94 struct {
95 /* Always even, to negate PageTail */
96 void *__filler;
97 /* Count page's or folio's mlocks */
98 unsigned int mlock_count;
99 };
100
101 /* Or, free page */
102 struct list_head buddy_list;
103 struct list_head pcp_list;
104 };
105 /* See page-flags.h for PAGE_MAPPING_FLAGS */
106 struct address_space *mapping;
107 union {
108 pgoff_t index; /* Our offset within mapping. */
109 unsigned long share; /* share count for fsdax */
110 };
111 /**
112 * @private: Mapping-private opaque data.
113 * Usually used for buffer_heads if PagePrivate.
114 * Used for swp_entry_t if PageSwapCache.
115 * Indicates order in the buddy system if PageBuddy.
116 */
117 unsigned long private;
118 };
119 struct { /* page_pool used by netstack */
120 /**
121 * @pp_magic: magic value to avoid recycling non
122 * page_pool allocated pages.
123 */
124 unsigned long pp_magic;
125 struct page_pool *pp;
126 unsigned long _pp_mapping_pad;
127 unsigned long dma_addr;
128 union {
129 /**
130 * dma_addr_upper: might require a 64-bit
131 * value on 32-bit architectures.
132 */
133 unsigned long dma_addr_upper;
134 /**
135 * For frag page support, not supported in
136 * 32-bit architectures with 64-bit DMA.
137 */
138 atomic_long_t pp_frag_count;
139 };
140 };
141 struct { /* Tail pages of compound page */
142 unsigned long compound_head; /* Bit zero is set */
143
144 /* First tail page only */
145 unsigned char compound_dtor;
146 unsigned char compound_order;
147 atomic_t compound_mapcount;
148 atomic_t subpages_mapcount;
149 atomic_t compound_pincount;
150#ifdef CONFIG_64BIT
151 unsigned int compound_nr; /* 1 << compound_order */
152#endif
153 };
154 struct { /* Second tail page of transparent huge page */
155 unsigned long _compound_pad_1; /* compound_head */
156 unsigned long _compound_pad_2;
157 /* For both global and memcg */
158 struct list_head deferred_list;
159 };
160 struct { /* Second tail page of hugetlb page */
161 unsigned long _hugetlb_pad_1; /* compound_head */
162 void *hugetlb_subpool;
163 void *hugetlb_cgroup;
164 void *hugetlb_cgroup_rsvd;
165 void *hugetlb_hwpoison;
166 /* No more space on 32-bit: use third tail if more */
167 };
168 struct { /* Page table pages */
169 unsigned long _pt_pad_1; /* compound_head */
170 pgtable_t pmd_huge_pte; /* protected by page->ptl */
171 unsigned long _pt_pad_2; /* mapping */
172 union {
173 struct mm_struct *pt_mm; /* x86 pgds only */
174 atomic_t pt_frag_refcount; /* powerpc */
175 };
176#if ALLOC_SPLIT_PTLOCKS
177 spinlock_t *ptl;
178#else
179 spinlock_t ptl;
180#endif
181 };
182 struct { /* ZONE_DEVICE pages */
183 /** @pgmap: Points to the hosting device page map. */
184 struct dev_pagemap *pgmap;
185 void *zone_device_data;
186 /*
187 * ZONE_DEVICE private pages are counted as being
188 * mapped so the next 3 words hold the mapping, index,
189 * and private fields from the source anonymous or
190 * page cache page while the page is migrated to device
191 * private memory.
192 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
193 * use the mapping, index, and private fields when
194 * pmem backed DAX files are mapped.
195 */
196 };
197
198 /** @rcu_head: You can use this to free a page by RCU. */
199 struct rcu_head rcu_head;
200 };
201
202 union { /* This union is 4 bytes in size. */
203 /*
204 * If the page can be mapped to userspace, encodes the number
205 * of times this page is referenced by a page table.
206 */
207 atomic_t _mapcount;
208
209 /*
210 * If the page is neither PageSlab nor mappable to userspace,
211 * the value stored here may help determine what this page
212 * is used for. See page-flags.h for a list of page types
213 * which are currently stored here.
214 */
215 unsigned int page_type;
216 };
217
218 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
219 atomic_t _refcount;
220
221#ifdef CONFIG_MEMCG
222 unsigned long memcg_data;
223#endif
224
225 /*
226 * On machines where all RAM is mapped into kernel address space,
227 * we can simply calculate the virtual address. On machines with
228 * highmem some memory is mapped into kernel virtual memory
229 * dynamically, so we need a place to store that address.
230 * Note that this field could be 16 bits on x86 ... ;)
231 *
232 * Architectures with slow multiplication can define
233 * WANT_PAGE_VIRTUAL in asm/page.h
234 */
235#if defined(WANT_PAGE_VIRTUAL)
236 void *virtual; /* Kernel virtual address (NULL if
237 not kmapped, ie. highmem) */
238#endif /* WANT_PAGE_VIRTUAL */
239
240#ifdef CONFIG_KMSAN
241 /*
242 * KMSAN metadata for this page:
243 * - shadow page: every bit indicates whether the corresponding
244 * bit of the original page is initialized (0) or not (1);
245 * - origin page: every 4 bytes contain an id of the stack trace
246 * where the uninitialized value was created.
247 */
248 struct page *kmsan_shadow;
249 struct page *kmsan_origin;
250#endif
251
252#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
253 int _last_cpupid;
254#endif
255} _struct_page_alignment;
256
257/*
258 * struct encoded_page - a nonexistent type marking this pointer
259 *
260 * An 'encoded_page' pointer is a pointer to a regular 'struct page', but
261 * with the low bits of the pointer indicating extra context-dependent
262 * information. Not super-common, but happens in mmu_gather and mlock
263 * handling, and this acts as a type system check on that use.
264 *
265 * We only really have two guaranteed bits in general, although you could
266 * play with 'struct page' alignment (see CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
267 * for more.
268 *
269 * Use the supplied helper functions to endcode/decode the pointer and bits.
270 */
271struct encoded_page;
272#define ENCODE_PAGE_BITS 3ul
273static __always_inline struct encoded_page *encode_page(struct page *page, unsigned long flags)
274{
275 BUILD_BUG_ON(flags > ENCODE_PAGE_BITS);
276 return (struct encoded_page *)(flags | (unsigned long)page);
277}
278
279static inline unsigned long encoded_page_flags(struct encoded_page *page)
280{
281 return ENCODE_PAGE_BITS & (unsigned long)page;
282}
283
284static inline struct page *encoded_page_ptr(struct encoded_page *page)
285{
286 return (struct page *)(~ENCODE_PAGE_BITS & (unsigned long)page);
287}
288
289/**
290 * struct folio - Represents a contiguous set of bytes.
291 * @flags: Identical to the page flags.
292 * @lru: Least Recently Used list; tracks how recently this folio was used.
293 * @mlock_count: Number of times this folio has been pinned by mlock().
294 * @mapping: The file this page belongs to, or refers to the anon_vma for
295 * anonymous memory.
296 * @index: Offset within the file, in units of pages. For anonymous memory,
297 * this is the index from the beginning of the mmap.
298 * @private: Filesystem per-folio data (see folio_attach_private()).
299 * Used for swp_entry_t if folio_test_swapcache().
300 * @_mapcount: Do not access this member directly. Use folio_mapcount() to
301 * find out how many times this folio is mapped by userspace.
302 * @_refcount: Do not access this member directly. Use folio_ref_count()
303 * to find how many references there are to this folio.
304 * @memcg_data: Memory Control Group data.
305 * @_flags_1: For large folios, additional page flags.
306 * @_head_1: Points to the folio. Do not use.
307 * @_folio_dtor: Which destructor to use for this folio.
308 * @_folio_order: Do not use directly, call folio_order().
309 * @_compound_mapcount: Do not use directly, call folio_entire_mapcount().
310 * @_subpages_mapcount: Do not use directly, call folio_mapcount().
311 * @_pincount: Do not use directly, call folio_maybe_dma_pinned().
312 * @_folio_nr_pages: Do not use directly, call folio_nr_pages().
313 * @_flags_2: For alignment. Do not use.
314 * @_head_2: Points to the folio. Do not use.
315 * @_hugetlb_subpool: Do not use directly, use accessor in hugetlb.h.
316 * @_hugetlb_cgroup: Do not use directly, use accessor in hugetlb_cgroup.h.
317 * @_hugetlb_cgroup_rsvd: Do not use directly, use accessor in hugetlb_cgroup.h.
318 * @_hugetlb_hwpoison: Do not use directly, call raw_hwp_list_head().
319 *
320 * A folio is a physically, virtually and logically contiguous set
321 * of bytes. It is a power-of-two in size, and it is aligned to that
322 * same power-of-two. It is at least as large as %PAGE_SIZE. If it is
323 * in the page cache, it is at a file offset which is a multiple of that
324 * power-of-two. It may be mapped into userspace at an address which is
325 * at an arbitrary page offset, but its kernel virtual address is aligned
326 * to its size.
327 */
328struct folio {
329 /* private: don't document the anon union */
330 union {
331 struct {
332 /* public: */
333 unsigned long flags;
334 union {
335 struct list_head lru;
336 /* private: avoid cluttering the output */
337 struct {
338 void *__filler;
339 /* public: */
340 unsigned int mlock_count;
341 /* private: */
342 };
343 /* public: */
344 };
345 struct address_space *mapping;
346 pgoff_t index;
347 void *private;
348 atomic_t _mapcount;
349 atomic_t _refcount;
350#ifdef CONFIG_MEMCG
351 unsigned long memcg_data;
352#endif
353 /* private: the union with struct page is transitional */
354 };
355 struct page page;
356 };
357 union {
358 struct {
359 unsigned long _flags_1;
360 unsigned long _head_1;
361 unsigned char _folio_dtor;
362 unsigned char _folio_order;
363 atomic_t _compound_mapcount;
364 atomic_t _subpages_mapcount;
365 atomic_t _pincount;
366#ifdef CONFIG_64BIT
367 unsigned int _folio_nr_pages;
368#endif
369 };
370 struct page __page_1;
371 };
372 union {
373 struct {
374 unsigned long _flags_2;
375 unsigned long _head_2;
376 void *_hugetlb_subpool;
377 void *_hugetlb_cgroup;
378 void *_hugetlb_cgroup_rsvd;
379 void *_hugetlb_hwpoison;
380 };
381 struct page __page_2;
382 };
383};
384
385#define FOLIO_MATCH(pg, fl) \
386 static_assert(offsetof(struct page, pg) == offsetof(struct folio, fl))
387FOLIO_MATCH(flags, flags);
388FOLIO_MATCH(lru, lru);
389FOLIO_MATCH(mapping, mapping);
390FOLIO_MATCH(compound_head, lru);
391FOLIO_MATCH(index, index);
392FOLIO_MATCH(private, private);
393FOLIO_MATCH(_mapcount, _mapcount);
394FOLIO_MATCH(_refcount, _refcount);
395#ifdef CONFIG_MEMCG
396FOLIO_MATCH(memcg_data, memcg_data);
397#endif
398#undef FOLIO_MATCH
399#define FOLIO_MATCH(pg, fl) \
400 static_assert(offsetof(struct folio, fl) == \
401 offsetof(struct page, pg) + sizeof(struct page))
402FOLIO_MATCH(flags, _flags_1);
403FOLIO_MATCH(compound_head, _head_1);
404FOLIO_MATCH(compound_dtor, _folio_dtor);
405FOLIO_MATCH(compound_order, _folio_order);
406FOLIO_MATCH(compound_mapcount, _compound_mapcount);
407FOLIO_MATCH(subpages_mapcount, _subpages_mapcount);
408FOLIO_MATCH(compound_pincount, _pincount);
409#ifdef CONFIG_64BIT
410FOLIO_MATCH(compound_nr, _folio_nr_pages);
411#endif
412#undef FOLIO_MATCH
413#define FOLIO_MATCH(pg, fl) \
414 static_assert(offsetof(struct folio, fl) == \
415 offsetof(struct page, pg) + 2 * sizeof(struct page))
416FOLIO_MATCH(flags, _flags_2);
417FOLIO_MATCH(compound_head, _head_2);
418FOLIO_MATCH(hugetlb_subpool, _hugetlb_subpool);
419FOLIO_MATCH(hugetlb_cgroup, _hugetlb_cgroup);
420FOLIO_MATCH(hugetlb_cgroup_rsvd, _hugetlb_cgroup_rsvd);
421FOLIO_MATCH(hugetlb_hwpoison, _hugetlb_hwpoison);
422#undef FOLIO_MATCH
423
424static inline atomic_t *folio_mapcount_ptr(struct folio *folio)
425{
426 struct page *tail = &folio->page + 1;
427 return &tail->compound_mapcount;
428}
429
430static inline atomic_t *folio_subpages_mapcount_ptr(struct folio *folio)
431{
432 struct page *tail = &folio->page + 1;
433 return &tail->subpages_mapcount;
434}
435
436static inline atomic_t *compound_mapcount_ptr(struct page *page)
437{
438 return &page[1].compound_mapcount;
439}
440
441static inline atomic_t *subpages_mapcount_ptr(struct page *page)
442{
443 return &page[1].subpages_mapcount;
444}
445
446static inline atomic_t *compound_pincount_ptr(struct page *page)
447{
448 return &page[1].compound_pincount;
449}
450
451/*
452 * Used for sizing the vmemmap region on some architectures
453 */
454#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page)))
455
456#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK)
457#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE)
458
459/*
460 * page_private can be used on tail pages. However, PagePrivate is only
461 * checked by the VM on the head page. So page_private on the tail pages
462 * should be used for data that's ancillary to the head page (eg attaching
463 * buffer heads to tail pages after attaching buffer heads to the head page)
464 */
465#define page_private(page) ((page)->private)
466
467static inline void set_page_private(struct page *page, unsigned long private)
468{
469 page->private = private;
470}
471
472static inline void *folio_get_private(struct folio *folio)
473{
474 return folio->private;
475}
476
477struct page_frag_cache {
478 void * va;
479#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
480 __u16 offset;
481 __u16 size;
482#else
483 __u32 offset;
484#endif
485 /* we maintain a pagecount bias, so that we dont dirty cache line
486 * containing page->_refcount every time we allocate a fragment.
487 */
488 unsigned int pagecnt_bias;
489 bool pfmemalloc;
490};
491
492typedef unsigned long vm_flags_t;
493
494/*
495 * A region containing a mapping of a non-memory backed file under NOMMU
496 * conditions. These are held in a global tree and are pinned by the VMAs that
497 * map parts of them.
498 */
499struct vm_region {
500 struct rb_node vm_rb; /* link in global region tree */
501 vm_flags_t vm_flags; /* VMA vm_flags */
502 unsigned long vm_start; /* start address of region */
503 unsigned long vm_end; /* region initialised to here */
504 unsigned long vm_top; /* region allocated to here */
505 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */
506 struct file *vm_file; /* the backing file or NULL */
507
508 int vm_usage; /* region usage count (access under nommu_region_sem) */
509 bool vm_icache_flushed : 1; /* true if the icache has been flushed for
510 * this region */
511};
512
513#ifdef CONFIG_USERFAULTFD
514#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, })
515struct vm_userfaultfd_ctx {
516 struct userfaultfd_ctx *ctx;
517};
518#else /* CONFIG_USERFAULTFD */
519#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {})
520struct vm_userfaultfd_ctx {};
521#endif /* CONFIG_USERFAULTFD */
522
523struct anon_vma_name {
524 struct kref kref;
525 /* The name needs to be at the end because it is dynamically sized. */
526 char name[];
527};
528
529/*
530 * This struct describes a virtual memory area. There is one of these
531 * per VM-area/task. A VM area is any part of the process virtual memory
532 * space that has a special rule for the page-fault handlers (ie a shared
533 * library, the executable area etc).
534 */
535struct vm_area_struct {
536 /* The first cache line has the info for VMA tree walking. */
537
538 unsigned long vm_start; /* Our start address within vm_mm. */
539 unsigned long vm_end; /* The first byte after our end address
540 within vm_mm. */
541
542 struct mm_struct *vm_mm; /* The address space we belong to. */
543
544 /*
545 * Access permissions of this VMA.
546 * See vmf_insert_mixed_prot() for discussion.
547 */
548 pgprot_t vm_page_prot;
549 unsigned long vm_flags; /* Flags, see mm.h. */
550
551 /*
552 * For areas with an address space and backing store,
553 * linkage into the address_space->i_mmap interval tree.
554 *
555 */
556 struct {
557 struct rb_node rb;
558 unsigned long rb_subtree_last;
559 } shared;
560
561 /*
562 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
563 * list, after a COW of one of the file pages. A MAP_SHARED vma
564 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
565 * or brk vma (with NULL file) can only be in an anon_vma list.
566 */
567 struct list_head anon_vma_chain; /* Serialized by mmap_lock &
568 * page_table_lock */
569 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
570
571 /* Function pointers to deal with this struct. */
572 const struct vm_operations_struct *vm_ops;
573
574 /* Information about our backing store: */
575 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE
576 units */
577 struct file * vm_file; /* File we map to (can be NULL). */
578 void * vm_private_data; /* was vm_pte (shared mem) */
579
580#ifdef CONFIG_ANON_VMA_NAME
581 /*
582 * For private and shared anonymous mappings, a pointer to a null
583 * terminated string containing the name given to the vma, or NULL if
584 * unnamed. Serialized by mmap_lock. Use anon_vma_name to access.
585 */
586 struct anon_vma_name *anon_name;
587#endif
588#ifdef CONFIG_SWAP
589 atomic_long_t swap_readahead_info;
590#endif
591#ifndef CONFIG_MMU
592 struct vm_region *vm_region; /* NOMMU mapping region */
593#endif
594#ifdef CONFIG_NUMA
595 struct mempolicy *vm_policy; /* NUMA policy for the VMA */
596#endif
597 struct vm_userfaultfd_ctx vm_userfaultfd_ctx;
598} __randomize_layout;
599
600struct kioctx_table;
601struct mm_struct {
602 struct {
603 struct maple_tree mm_mt;
604#ifdef CONFIG_MMU
605 unsigned long (*get_unmapped_area) (struct file *filp,
606 unsigned long addr, unsigned long len,
607 unsigned long pgoff, unsigned long flags);
608#endif
609 unsigned long mmap_base; /* base of mmap area */
610 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */
611#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES
612 /* Base addresses for compatible mmap() */
613 unsigned long mmap_compat_base;
614 unsigned long mmap_compat_legacy_base;
615#endif
616 unsigned long task_size; /* size of task vm space */
617 pgd_t * pgd;
618
619#ifdef CONFIG_MEMBARRIER
620 /**
621 * @membarrier_state: Flags controlling membarrier behavior.
622 *
623 * This field is close to @pgd to hopefully fit in the same
624 * cache-line, which needs to be touched by switch_mm().
625 */
626 atomic_t membarrier_state;
627#endif
628
629 /**
630 * @mm_users: The number of users including userspace.
631 *
632 * Use mmget()/mmget_not_zero()/mmput() to modify. When this
633 * drops to 0 (i.e. when the task exits and there are no other
634 * temporary reference holders), we also release a reference on
635 * @mm_count (which may then free the &struct mm_struct if
636 * @mm_count also drops to 0).
637 */
638 atomic_t mm_users;
639
640 /**
641 * @mm_count: The number of references to &struct mm_struct
642 * (@mm_users count as 1).
643 *
644 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the
645 * &struct mm_struct is freed.
646 */
647 atomic_t mm_count;
648
649#ifdef CONFIG_MMU
650 atomic_long_t pgtables_bytes; /* PTE page table pages */
651#endif
652 int map_count; /* number of VMAs */
653
654 spinlock_t page_table_lock; /* Protects page tables and some
655 * counters
656 */
657 /*
658 * With some kernel config, the current mmap_lock's offset
659 * inside 'mm_struct' is at 0x120, which is very optimal, as
660 * its two hot fields 'count' and 'owner' sit in 2 different
661 * cachelines, and when mmap_lock is highly contended, both
662 * of the 2 fields will be accessed frequently, current layout
663 * will help to reduce cache bouncing.
664 *
665 * So please be careful with adding new fields before
666 * mmap_lock, which can easily push the 2 fields into one
667 * cacheline.
668 */
669 struct rw_semaphore mmap_lock;
670
671 struct list_head mmlist; /* List of maybe swapped mm's. These
672 * are globally strung together off
673 * init_mm.mmlist, and are protected
674 * by mmlist_lock
675 */
676
677
678 unsigned long hiwater_rss; /* High-watermark of RSS usage */
679 unsigned long hiwater_vm; /* High-water virtual memory usage */
680
681 unsigned long total_vm; /* Total pages mapped */
682 unsigned long locked_vm; /* Pages that have PG_mlocked set */
683 atomic64_t pinned_vm; /* Refcount permanently increased */
684 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */
685 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */
686 unsigned long stack_vm; /* VM_STACK */
687 unsigned long def_flags;
688
689 /**
690 * @write_protect_seq: Locked when any thread is write
691 * protecting pages mapped by this mm to enforce a later COW,
692 * for instance during page table copying for fork().
693 */
694 seqcount_t write_protect_seq;
695
696 spinlock_t arg_lock; /* protect the below fields */
697
698 unsigned long start_code, end_code, start_data, end_data;
699 unsigned long start_brk, brk, start_stack;
700 unsigned long arg_start, arg_end, env_start, env_end;
701
702 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */
703
704 struct percpu_counter rss_stat[NR_MM_COUNTERS];
705
706 struct linux_binfmt *binfmt;
707
708 /* Architecture-specific MM context */
709 mm_context_t context;
710
711 unsigned long flags; /* Must use atomic bitops to access */
712
713#ifdef CONFIG_AIO
714 spinlock_t ioctx_lock;
715 struct kioctx_table __rcu *ioctx_table;
716#endif
717#ifdef CONFIG_MEMCG
718 /*
719 * "owner" points to a task that is regarded as the canonical
720 * user/owner of this mm. All of the following must be true in
721 * order for it to be changed:
722 *
723 * current == mm->owner
724 * current->mm != mm
725 * new_owner->mm == mm
726 * new_owner->alloc_lock is held
727 */
728 struct task_struct __rcu *owner;
729#endif
730 struct user_namespace *user_ns;
731
732 /* store ref to file /proc/<pid>/exe symlink points to */
733 struct file __rcu *exe_file;
734#ifdef CONFIG_MMU_NOTIFIER
735 struct mmu_notifier_subscriptions *notifier_subscriptions;
736#endif
737#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
738 pgtable_t pmd_huge_pte; /* protected by page_table_lock */
739#endif
740#ifdef CONFIG_NUMA_BALANCING
741 /*
742 * numa_next_scan is the next time that PTEs will be remapped
743 * PROT_NONE to trigger NUMA hinting faults; such faults gather
744 * statistics and migrate pages to new nodes if necessary.
745 */
746 unsigned long numa_next_scan;
747
748 /* Restart point for scanning and remapping PTEs. */
749 unsigned long numa_scan_offset;
750
751 /* numa_scan_seq prevents two threads remapping PTEs. */
752 int numa_scan_seq;
753#endif
754 /*
755 * An operation with batched TLB flushing is going on. Anything
756 * that can move process memory needs to flush the TLB when
757 * moving a PROT_NONE mapped page.
758 */
759 atomic_t tlb_flush_pending;
760#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
761 /* See flush_tlb_batched_pending() */
762 atomic_t tlb_flush_batched;
763#endif
764 struct uprobes_state uprobes_state;
765#ifdef CONFIG_PREEMPT_RT
766 struct rcu_head delayed_drop;
767#endif
768#ifdef CONFIG_HUGETLB_PAGE
769 atomic_long_t hugetlb_usage;
770#endif
771 struct work_struct async_put_work;
772
773#ifdef CONFIG_IOMMU_SVA
774 u32 pasid;
775#endif
776#ifdef CONFIG_KSM
777 /*
778 * Represent how many pages of this process are involved in KSM
779 * merging.
780 */
781 unsigned long ksm_merging_pages;
782 /*
783 * Represent how many pages are checked for ksm merging
784 * including merged and not merged.
785 */
786 unsigned long ksm_rmap_items;
787#endif
788#ifdef CONFIG_LRU_GEN
789 struct {
790 /* this mm_struct is on lru_gen_mm_list */
791 struct list_head list;
792 /*
793 * Set when switching to this mm_struct, as a hint of
794 * whether it has been used since the last time per-node
795 * page table walkers cleared the corresponding bits.
796 */
797 unsigned long bitmap;
798#ifdef CONFIG_MEMCG
799 /* points to the memcg of "owner" above */
800 struct mem_cgroup *memcg;
801#endif
802 } lru_gen;
803#endif /* CONFIG_LRU_GEN */
804 } __randomize_layout;
805
806 /*
807 * The mm_cpumask needs to be at the end of mm_struct, because it
808 * is dynamically sized based on nr_cpu_ids.
809 */
810 unsigned long cpu_bitmap[];
811};
812
813#define MM_MT_FLAGS (MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN)
814extern struct mm_struct init_mm;
815
816/* Pointer magic because the dynamic array size confuses some compilers. */
817static inline void mm_init_cpumask(struct mm_struct *mm)
818{
819 unsigned long cpu_bitmap = (unsigned long)mm;
820
821 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap);
822 cpumask_clear((struct cpumask *)cpu_bitmap);
823}
824
825/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */
826static inline cpumask_t *mm_cpumask(struct mm_struct *mm)
827{
828 return (struct cpumask *)&mm->cpu_bitmap;
829}
830
831#ifdef CONFIG_LRU_GEN
832
833struct lru_gen_mm_list {
834 /* mm_struct list for page table walkers */
835 struct list_head fifo;
836 /* protects the list above */
837 spinlock_t lock;
838};
839
840void lru_gen_add_mm(struct mm_struct *mm);
841void lru_gen_del_mm(struct mm_struct *mm);
842#ifdef CONFIG_MEMCG
843void lru_gen_migrate_mm(struct mm_struct *mm);
844#endif
845
846static inline void lru_gen_init_mm(struct mm_struct *mm)
847{
848 INIT_LIST_HEAD(&mm->lru_gen.list);
849 mm->lru_gen.bitmap = 0;
850#ifdef CONFIG_MEMCG
851 mm->lru_gen.memcg = NULL;
852#endif
853}
854
855static inline void lru_gen_use_mm(struct mm_struct *mm)
856{
857 /*
858 * When the bitmap is set, page reclaim knows this mm_struct has been
859 * used since the last time it cleared the bitmap. So it might be worth
860 * walking the page tables of this mm_struct to clear the accessed bit.
861 */
862 WRITE_ONCE(mm->lru_gen.bitmap, -1);
863}
864
865#else /* !CONFIG_LRU_GEN */
866
867static inline void lru_gen_add_mm(struct mm_struct *mm)
868{
869}
870
871static inline void lru_gen_del_mm(struct mm_struct *mm)
872{
873}
874
875#ifdef CONFIG_MEMCG
876static inline void lru_gen_migrate_mm(struct mm_struct *mm)
877{
878}
879#endif
880
881static inline void lru_gen_init_mm(struct mm_struct *mm)
882{
883}
884
885static inline void lru_gen_use_mm(struct mm_struct *mm)
886{
887}
888
889#endif /* CONFIG_LRU_GEN */
890
891struct vma_iterator {
892 struct ma_state mas;
893};
894
895#define VMA_ITERATOR(name, __mm, __addr) \
896 struct vma_iterator name = { \
897 .mas = { \
898 .tree = &(__mm)->mm_mt, \
899 .index = __addr, \
900 .node = MAS_START, \
901 }, \
902 }
903
904static inline void vma_iter_init(struct vma_iterator *vmi,
905 struct mm_struct *mm, unsigned long addr)
906{
907 vmi->mas.tree = &mm->mm_mt;
908 vmi->mas.index = addr;
909 vmi->mas.node = MAS_START;
910}
911
912struct mmu_gather;
913extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm);
914extern void tlb_gather_mmu_fullmm(struct mmu_gather *tlb, struct mm_struct *mm);
915extern void tlb_finish_mmu(struct mmu_gather *tlb);
916
917struct vm_fault;
918
919/**
920 * typedef vm_fault_t - Return type for page fault handlers.
921 *
922 * Page fault handlers return a bitmask of %VM_FAULT values.
923 */
924typedef __bitwise unsigned int vm_fault_t;
925
926/**
927 * enum vm_fault_reason - Page fault handlers return a bitmask of
928 * these values to tell the core VM what happened when handling the
929 * fault. Used to decide whether a process gets delivered SIGBUS or
930 * just gets major/minor fault counters bumped up.
931 *
932 * @VM_FAULT_OOM: Out Of Memory
933 * @VM_FAULT_SIGBUS: Bad access
934 * @VM_FAULT_MAJOR: Page read from storage
935 * @VM_FAULT_HWPOISON: Hit poisoned small page
936 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded
937 * in upper bits
938 * @VM_FAULT_SIGSEGV: segmentation fault
939 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page
940 * @VM_FAULT_LOCKED: ->fault locked the returned page
941 * @VM_FAULT_RETRY: ->fault blocked, must retry
942 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small
943 * @VM_FAULT_DONE_COW: ->fault has fully handled COW
944 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs
945 * fsync() to complete (for synchronous page faults
946 * in DAX)
947 * @VM_FAULT_COMPLETED: ->fault completed, meanwhile mmap lock released
948 * @VM_FAULT_HINDEX_MASK: mask HINDEX value
949 *
950 */
951enum vm_fault_reason {
952 VM_FAULT_OOM = (__force vm_fault_t)0x000001,
953 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002,
954 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004,
955 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010,
956 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020,
957 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040,
958 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100,
959 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200,
960 VM_FAULT_RETRY = (__force vm_fault_t)0x000400,
961 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800,
962 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000,
963 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000,
964 VM_FAULT_COMPLETED = (__force vm_fault_t)0x004000,
965 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000,
966};
967
968/* Encode hstate index for a hwpoisoned large page */
969#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16))
970#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf)
971
972#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \
973 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \
974 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK)
975
976#define VM_FAULT_RESULT_TRACE \
977 { VM_FAULT_OOM, "OOM" }, \
978 { VM_FAULT_SIGBUS, "SIGBUS" }, \
979 { VM_FAULT_MAJOR, "MAJOR" }, \
980 { VM_FAULT_HWPOISON, "HWPOISON" }, \
981 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
982 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
983 { VM_FAULT_NOPAGE, "NOPAGE" }, \
984 { VM_FAULT_LOCKED, "LOCKED" }, \
985 { VM_FAULT_RETRY, "RETRY" }, \
986 { VM_FAULT_FALLBACK, "FALLBACK" }, \
987 { VM_FAULT_DONE_COW, "DONE_COW" }, \
988 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" }
989
990struct vm_special_mapping {
991 const char *name; /* The name, e.g. "[vdso]". */
992
993 /*
994 * If .fault is not provided, this points to a
995 * NULL-terminated array of pages that back the special mapping.
996 *
997 * This must not be NULL unless .fault is provided.
998 */
999 struct page **pages;
1000
1001 /*
1002 * If non-NULL, then this is called to resolve page faults
1003 * on the special mapping. If used, .pages is not checked.
1004 */
1005 vm_fault_t (*fault)(const struct vm_special_mapping *sm,
1006 struct vm_area_struct *vma,
1007 struct vm_fault *vmf);
1008
1009 int (*mremap)(const struct vm_special_mapping *sm,
1010 struct vm_area_struct *new_vma);
1011};
1012
1013enum tlb_flush_reason {
1014 TLB_FLUSH_ON_TASK_SWITCH,
1015 TLB_REMOTE_SHOOTDOWN,
1016 TLB_LOCAL_SHOOTDOWN,
1017 TLB_LOCAL_MM_SHOOTDOWN,
1018 TLB_REMOTE_SEND_IPI,
1019 NR_TLB_FLUSH_REASONS,
1020};
1021
1022 /*
1023 * A swap entry has to fit into a "unsigned long", as the entry is hidden
1024 * in the "index" field of the swapper address space.
1025 */
1026typedef struct {
1027 unsigned long val;
1028} swp_entry_t;
1029
1030/**
1031 * enum fault_flag - Fault flag definitions.
1032 * @FAULT_FLAG_WRITE: Fault was a write fault.
1033 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
1034 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
1035 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
1036 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
1037 * @FAULT_FLAG_TRIED: The fault has been tried once.
1038 * @FAULT_FLAG_USER: The fault originated in userspace.
1039 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
1040 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
1041 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
1042 * @FAULT_FLAG_UNSHARE: The fault is an unsharing request to break COW in a
1043 * COW mapping, making sure that an exclusive anon page is
1044 * mapped after the fault.
1045 * @FAULT_FLAG_ORIG_PTE_VALID: whether the fault has vmf->orig_pte cached.
1046 * We should only access orig_pte if this flag set.
1047 *
1048 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
1049 * whether we would allow page faults to retry by specifying these two
1050 * fault flags correctly. Currently there can be three legal combinations:
1051 *
1052 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
1053 * this is the first try
1054 *
1055 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
1056 * we've already tried at least once
1057 *
1058 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
1059 *
1060 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
1061 * be used. Note that page faults can be allowed to retry for multiple times,
1062 * in which case we'll have an initial fault with flags (a) then later on
1063 * continuous faults with flags (b). We should always try to detect pending
1064 * signals before a retry to make sure the continuous page faults can still be
1065 * interrupted if necessary.
1066 *
1067 * The combination FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE is illegal.
1068 * FAULT_FLAG_UNSHARE is ignored and treated like an ordinary read fault when
1069 * applied to mappings that are not COW mappings.
1070 */
1071enum fault_flag {
1072 FAULT_FLAG_WRITE = 1 << 0,
1073 FAULT_FLAG_MKWRITE = 1 << 1,
1074 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
1075 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
1076 FAULT_FLAG_KILLABLE = 1 << 4,
1077 FAULT_FLAG_TRIED = 1 << 5,
1078 FAULT_FLAG_USER = 1 << 6,
1079 FAULT_FLAG_REMOTE = 1 << 7,
1080 FAULT_FLAG_INSTRUCTION = 1 << 8,
1081 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
1082 FAULT_FLAG_UNSHARE = 1 << 10,
1083 FAULT_FLAG_ORIG_PTE_VALID = 1 << 11,
1084};
1085
1086typedef unsigned int __bitwise zap_flags_t;
1087
1088#endif /* _LINUX_MM_TYPES_H */