Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6#include <linux/mmdebug.h>
7#include <linux/gfp.h>
8#include <linux/bug.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/atomic.h>
13#include <linux/debug_locks.h>
14#include <linux/mm_types.h>
15#include <linux/mmap_lock.h>
16#include <linux/range.h>
17#include <linux/pfn.h>
18#include <linux/percpu-refcount.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21#include <linux/resource.h>
22#include <linux/page_ext.h>
23#include <linux/err.h>
24#include <linux/page-flags.h>
25#include <linux/page_ref.h>
26#include <linux/overflow.h>
27#include <linux/sizes.h>
28#include <linux/sched.h>
29#include <linux/pgtable.h>
30#include <linux/kasan.h>
31#include <linux/memremap.h>
32
33struct mempolicy;
34struct anon_vma;
35struct anon_vma_chain;
36struct user_struct;
37struct pt_regs;
38
39extern int sysctl_page_lock_unfairness;
40
41void init_mm_internals(void);
42
43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
44extern unsigned long max_mapnr;
45
46static inline void set_max_mapnr(unsigned long limit)
47{
48 max_mapnr = limit;
49}
50#else
51static inline void set_max_mapnr(unsigned long limit) { }
52#endif
53
54extern atomic_long_t _totalram_pages;
55static inline unsigned long totalram_pages(void)
56{
57 return (unsigned long)atomic_long_read(&_totalram_pages);
58}
59
60static inline void totalram_pages_inc(void)
61{
62 atomic_long_inc(&_totalram_pages);
63}
64
65static inline void totalram_pages_dec(void)
66{
67 atomic_long_dec(&_totalram_pages);
68}
69
70static inline void totalram_pages_add(long count)
71{
72 atomic_long_add(count, &_totalram_pages);
73}
74
75extern void * high_memory;
76extern int page_cluster;
77extern const int page_cluster_max;
78
79#ifdef CONFIG_SYSCTL
80extern int sysctl_legacy_va_layout;
81#else
82#define sysctl_legacy_va_layout 0
83#endif
84
85#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86extern const int mmap_rnd_bits_min;
87extern const int mmap_rnd_bits_max;
88extern int mmap_rnd_bits __read_mostly;
89#endif
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91extern const int mmap_rnd_compat_bits_min;
92extern const int mmap_rnd_compat_bits_max;
93extern int mmap_rnd_compat_bits __read_mostly;
94#endif
95
96#include <asm/page.h>
97#include <asm/processor.h>
98
99/*
100 * Architectures that support memory tagging (assigning tags to memory regions,
101 * embedding these tags into addresses that point to these memory regions, and
102 * checking that the memory and the pointer tags match on memory accesses)
103 * redefine this macro to strip tags from pointers.
104 * It's defined as noop for architectures that don't support memory tagging.
105 */
106#ifndef untagged_addr
107#define untagged_addr(addr) (addr)
108#endif
109
110#ifndef __pa_symbol
111#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
112#endif
113
114#ifndef page_to_virt
115#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
116#endif
117
118#ifndef lm_alias
119#define lm_alias(x) __va(__pa_symbol(x))
120#endif
121
122/*
123 * To prevent common memory management code establishing
124 * a zero page mapping on a read fault.
125 * This macro should be defined within <asm/pgtable.h>.
126 * s390 does this to prevent multiplexing of hardware bits
127 * related to the physical page in case of virtualization.
128 */
129#ifndef mm_forbids_zeropage
130#define mm_forbids_zeropage(X) (0)
131#endif
132
133/*
134 * On some architectures it is expensive to call memset() for small sizes.
135 * If an architecture decides to implement their own version of
136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137 * define their own version of this macro in <asm/pgtable.h>
138 */
139#if BITS_PER_LONG == 64
140/* This function must be updated when the size of struct page grows above 96
141 * or reduces below 56. The idea that compiler optimizes out switch()
142 * statement, and only leaves move/store instructions. Also the compiler can
143 * combine write statements if they are both assignments and can be reordered,
144 * this can result in several of the writes here being dropped.
145 */
146#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147static inline void __mm_zero_struct_page(struct page *page)
148{
149 unsigned long *_pp = (void *)page;
150
151 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
152 BUILD_BUG_ON(sizeof(struct page) & 7);
153 BUILD_BUG_ON(sizeof(struct page) < 56);
154 BUILD_BUG_ON(sizeof(struct page) > 96);
155
156 switch (sizeof(struct page)) {
157 case 96:
158 _pp[11] = 0;
159 fallthrough;
160 case 88:
161 _pp[10] = 0;
162 fallthrough;
163 case 80:
164 _pp[9] = 0;
165 fallthrough;
166 case 72:
167 _pp[8] = 0;
168 fallthrough;
169 case 64:
170 _pp[7] = 0;
171 fallthrough;
172 case 56:
173 _pp[6] = 0;
174 _pp[5] = 0;
175 _pp[4] = 0;
176 _pp[3] = 0;
177 _pp[2] = 0;
178 _pp[1] = 0;
179 _pp[0] = 0;
180 }
181}
182#else
183#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
184#endif
185
186/*
187 * Default maximum number of active map areas, this limits the number of vmas
188 * per mm struct. Users can overwrite this number by sysctl but there is a
189 * problem.
190 *
191 * When a program's coredump is generated as ELF format, a section is created
192 * per a vma. In ELF, the number of sections is represented in unsigned short.
193 * This means the number of sections should be smaller than 65535 at coredump.
194 * Because the kernel adds some informative sections to a image of program at
195 * generating coredump, we need some margin. The number of extra sections is
196 * 1-3 now and depends on arch. We use "5" as safe margin, here.
197 *
198 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
199 * not a hard limit any more. Although some userspace tools can be surprised by
200 * that.
201 */
202#define MAPCOUNT_ELF_CORE_MARGIN (5)
203#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
204
205extern int sysctl_max_map_count;
206
207extern unsigned long sysctl_user_reserve_kbytes;
208extern unsigned long sysctl_admin_reserve_kbytes;
209
210extern int sysctl_overcommit_memory;
211extern int sysctl_overcommit_ratio;
212extern unsigned long sysctl_overcommit_kbytes;
213
214int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
215 loff_t *);
216int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
217 loff_t *);
218int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
219 loff_t *);
220
221#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
222#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
223#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
224#else
225#define nth_page(page,n) ((page) + (n))
226#define folio_page_idx(folio, p) ((p) - &(folio)->page)
227#endif
228
229/* to align the pointer to the (next) page boundary */
230#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
231
232/* to align the pointer to the (prev) page boundary */
233#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
234
235/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
236#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
237
238#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
239static inline struct folio *lru_to_folio(struct list_head *head)
240{
241 return list_entry((head)->prev, struct folio, lru);
242}
243
244void setup_initial_init_mm(void *start_code, void *end_code,
245 void *end_data, void *brk);
246
247/*
248 * Linux kernel virtual memory manager primitives.
249 * The idea being to have a "virtual" mm in the same way
250 * we have a virtual fs - giving a cleaner interface to the
251 * mm details, and allowing different kinds of memory mappings
252 * (from shared memory to executable loading to arbitrary
253 * mmap() functions).
254 */
255
256struct vm_area_struct *vm_area_alloc(struct mm_struct *);
257struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258void vm_area_free(struct vm_area_struct *);
259
260#ifndef CONFIG_MMU
261extern struct rb_root nommu_region_tree;
262extern struct rw_semaphore nommu_region_sem;
263
264extern unsigned int kobjsize(const void *objp);
265#endif
266
267/*
268 * vm_flags in vm_area_struct, see mm_types.h.
269 * When changing, update also include/trace/events/mmflags.h
270 */
271#define VM_NONE 0x00000000
272
273#define VM_READ 0x00000001 /* currently active flags */
274#define VM_WRITE 0x00000002
275#define VM_EXEC 0x00000004
276#define VM_SHARED 0x00000008
277
278/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
279#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
280#define VM_MAYWRITE 0x00000020
281#define VM_MAYEXEC 0x00000040
282#define VM_MAYSHARE 0x00000080
283
284#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
285#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
286#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
287#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
288
289#define VM_LOCKED 0x00002000
290#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
291
292 /* Used by sys_madvise() */
293#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
294#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
295
296#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
297#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
298#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
299#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
300#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
301#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
302#define VM_SYNC 0x00800000 /* Synchronous page faults */
303#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
304#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
305#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
306
307#ifdef CONFIG_MEM_SOFT_DIRTY
308# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
309#else
310# define VM_SOFTDIRTY 0
311#endif
312
313#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
314#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
315#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
316#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
317
318#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
319#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
321#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
322#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
323#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
324#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
325#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
326#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
327#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
328#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
329#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
330
331#ifdef CONFIG_ARCH_HAS_PKEYS
332# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
333# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
334# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
335# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
336# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
337#ifdef CONFIG_PPC
338# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
339#else
340# define VM_PKEY_BIT4 0
341#endif
342#endif /* CONFIG_ARCH_HAS_PKEYS */
343
344#if defined(CONFIG_X86)
345# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
346#elif defined(CONFIG_PPC)
347# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
348#elif defined(CONFIG_PARISC)
349# define VM_GROWSUP VM_ARCH_1
350#elif defined(CONFIG_IA64)
351# define VM_GROWSUP VM_ARCH_1
352#elif defined(CONFIG_SPARC64)
353# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
354# define VM_ARCH_CLEAR VM_SPARC_ADI
355#elif defined(CONFIG_ARM64)
356# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
357# define VM_ARCH_CLEAR VM_ARM64_BTI
358#elif !defined(CONFIG_MMU)
359# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
360#endif
361
362#if defined(CONFIG_ARM64_MTE)
363# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
364# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
365#else
366# define VM_MTE VM_NONE
367# define VM_MTE_ALLOWED VM_NONE
368#endif
369
370#ifndef VM_GROWSUP
371# define VM_GROWSUP VM_NONE
372#endif
373
374#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
375# define VM_UFFD_MINOR_BIT 37
376# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
377#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
378# define VM_UFFD_MINOR VM_NONE
379#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
380
381/* Bits set in the VMA until the stack is in its final location */
382#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
383
384#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
385
386/* Common data flag combinations */
387#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
388 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
389#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
390 VM_MAYWRITE | VM_MAYEXEC)
391#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
392 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
393
394#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
395#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
396#endif
397
398#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
399#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
400#endif
401
402#ifdef CONFIG_STACK_GROWSUP
403#define VM_STACK VM_GROWSUP
404#else
405#define VM_STACK VM_GROWSDOWN
406#endif
407
408#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
409
410/* VMA basic access permission flags */
411#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
412
413
414/*
415 * Special vmas that are non-mergable, non-mlock()able.
416 */
417#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
418
419/* This mask prevents VMA from being scanned with khugepaged */
420#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
421
422/* This mask defines which mm->def_flags a process can inherit its parent */
423#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
424
425/* This mask is used to clear all the VMA flags used by mlock */
426#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
427
428/* Arch-specific flags to clear when updating VM flags on protection change */
429#ifndef VM_ARCH_CLEAR
430# define VM_ARCH_CLEAR VM_NONE
431#endif
432#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
433
434/*
435 * mapping from the currently active vm_flags protection bits (the
436 * low four bits) to a page protection mask..
437 */
438
439/*
440 * The default fault flags that should be used by most of the
441 * arch-specific page fault handlers.
442 */
443#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
444 FAULT_FLAG_KILLABLE | \
445 FAULT_FLAG_INTERRUPTIBLE)
446
447/**
448 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
449 * @flags: Fault flags.
450 *
451 * This is mostly used for places where we want to try to avoid taking
452 * the mmap_lock for too long a time when waiting for another condition
453 * to change, in which case we can try to be polite to release the
454 * mmap_lock in the first round to avoid potential starvation of other
455 * processes that would also want the mmap_lock.
456 *
457 * Return: true if the page fault allows retry and this is the first
458 * attempt of the fault handling; false otherwise.
459 */
460static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
461{
462 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
463 (!(flags & FAULT_FLAG_TRIED));
464}
465
466#define FAULT_FLAG_TRACE \
467 { FAULT_FLAG_WRITE, "WRITE" }, \
468 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
469 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
470 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
471 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
472 { FAULT_FLAG_TRIED, "TRIED" }, \
473 { FAULT_FLAG_USER, "USER" }, \
474 { FAULT_FLAG_REMOTE, "REMOTE" }, \
475 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
476 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
477
478/*
479 * vm_fault is filled by the pagefault handler and passed to the vma's
480 * ->fault function. The vma's ->fault is responsible for returning a bitmask
481 * of VM_FAULT_xxx flags that give details about how the fault was handled.
482 *
483 * MM layer fills up gfp_mask for page allocations but fault handler might
484 * alter it if its implementation requires a different allocation context.
485 *
486 * pgoff should be used in favour of virtual_address, if possible.
487 */
488struct vm_fault {
489 const struct {
490 struct vm_area_struct *vma; /* Target VMA */
491 gfp_t gfp_mask; /* gfp mask to be used for allocations */
492 pgoff_t pgoff; /* Logical page offset based on vma */
493 unsigned long address; /* Faulting virtual address - masked */
494 unsigned long real_address; /* Faulting virtual address - unmasked */
495 };
496 enum fault_flag flags; /* FAULT_FLAG_xxx flags
497 * XXX: should really be 'const' */
498 pmd_t *pmd; /* Pointer to pmd entry matching
499 * the 'address' */
500 pud_t *pud; /* Pointer to pud entry matching
501 * the 'address'
502 */
503 union {
504 pte_t orig_pte; /* Value of PTE at the time of fault */
505 pmd_t orig_pmd; /* Value of PMD at the time of fault,
506 * used by PMD fault only.
507 */
508 };
509
510 struct page *cow_page; /* Page handler may use for COW fault */
511 struct page *page; /* ->fault handlers should return a
512 * page here, unless VM_FAULT_NOPAGE
513 * is set (which is also implied by
514 * VM_FAULT_ERROR).
515 */
516 /* These three entries are valid only while holding ptl lock */
517 pte_t *pte; /* Pointer to pte entry matching
518 * the 'address'. NULL if the page
519 * table hasn't been allocated.
520 */
521 spinlock_t *ptl; /* Page table lock.
522 * Protects pte page table if 'pte'
523 * is not NULL, otherwise pmd.
524 */
525 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
526 * vm_ops->map_pages() sets up a page
527 * table from atomic context.
528 * do_fault_around() pre-allocates
529 * page table to avoid allocation from
530 * atomic context.
531 */
532};
533
534/* page entry size for vm->huge_fault() */
535enum page_entry_size {
536 PE_SIZE_PTE = 0,
537 PE_SIZE_PMD,
538 PE_SIZE_PUD,
539};
540
541/*
542 * These are the virtual MM functions - opening of an area, closing and
543 * unmapping it (needed to keep files on disk up-to-date etc), pointer
544 * to the functions called when a no-page or a wp-page exception occurs.
545 */
546struct vm_operations_struct {
547 void (*open)(struct vm_area_struct * area);
548 /**
549 * @close: Called when the VMA is being removed from the MM.
550 * Context: User context. May sleep. Caller holds mmap_lock.
551 */
552 void (*close)(struct vm_area_struct * area);
553 /* Called any time before splitting to check if it's allowed */
554 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
555 int (*mremap)(struct vm_area_struct *area);
556 /*
557 * Called by mprotect() to make driver-specific permission
558 * checks before mprotect() is finalised. The VMA must not
559 * be modified. Returns 0 if mprotect() can proceed.
560 */
561 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
562 unsigned long end, unsigned long newflags);
563 vm_fault_t (*fault)(struct vm_fault *vmf);
564 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
565 enum page_entry_size pe_size);
566 vm_fault_t (*map_pages)(struct vm_fault *vmf,
567 pgoff_t start_pgoff, pgoff_t end_pgoff);
568 unsigned long (*pagesize)(struct vm_area_struct * area);
569
570 /* notification that a previously read-only page is about to become
571 * writable, if an error is returned it will cause a SIGBUS */
572 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
573
574 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
575 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
576
577 /* called by access_process_vm when get_user_pages() fails, typically
578 * for use by special VMAs. See also generic_access_phys() for a generic
579 * implementation useful for any iomem mapping.
580 */
581 int (*access)(struct vm_area_struct *vma, unsigned long addr,
582 void *buf, int len, int write);
583
584 /* Called by the /proc/PID/maps code to ask the vma whether it
585 * has a special name. Returning non-NULL will also cause this
586 * vma to be dumped unconditionally. */
587 const char *(*name)(struct vm_area_struct *vma);
588
589#ifdef CONFIG_NUMA
590 /*
591 * set_policy() op must add a reference to any non-NULL @new mempolicy
592 * to hold the policy upon return. Caller should pass NULL @new to
593 * remove a policy and fall back to surrounding context--i.e. do not
594 * install a MPOL_DEFAULT policy, nor the task or system default
595 * mempolicy.
596 */
597 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
598
599 /*
600 * get_policy() op must add reference [mpol_get()] to any policy at
601 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
602 * in mm/mempolicy.c will do this automatically.
603 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
604 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
605 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
606 * must return NULL--i.e., do not "fallback" to task or system default
607 * policy.
608 */
609 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
610 unsigned long addr);
611#endif
612 /*
613 * Called by vm_normal_page() for special PTEs to find the
614 * page for @addr. This is useful if the default behavior
615 * (using pte_page()) would not find the correct page.
616 */
617 struct page *(*find_special_page)(struct vm_area_struct *vma,
618 unsigned long addr);
619};
620
621static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
622{
623 static const struct vm_operations_struct dummy_vm_ops = {};
624
625 memset(vma, 0, sizeof(*vma));
626 vma->vm_mm = mm;
627 vma->vm_ops = &dummy_vm_ops;
628 INIT_LIST_HEAD(&vma->anon_vma_chain);
629}
630
631static inline void vma_set_anonymous(struct vm_area_struct *vma)
632{
633 vma->vm_ops = NULL;
634}
635
636static inline bool vma_is_anonymous(struct vm_area_struct *vma)
637{
638 return !vma->vm_ops;
639}
640
641static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
642{
643 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
644
645 if (!maybe_stack)
646 return false;
647
648 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
649 VM_STACK_INCOMPLETE_SETUP)
650 return true;
651
652 return false;
653}
654
655static inline bool vma_is_foreign(struct vm_area_struct *vma)
656{
657 if (!current->mm)
658 return true;
659
660 if (current->mm != vma->vm_mm)
661 return true;
662
663 return false;
664}
665
666static inline bool vma_is_accessible(struct vm_area_struct *vma)
667{
668 return vma->vm_flags & VM_ACCESS_FLAGS;
669}
670
671static inline
672struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
673{
674 return mas_find(&vmi->mas, max);
675}
676
677static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
678{
679 /*
680 * Uses vma_find() to get the first VMA when the iterator starts.
681 * Calling mas_next() could skip the first entry.
682 */
683 return vma_find(vmi, ULONG_MAX);
684}
685
686static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
687{
688 return mas_prev(&vmi->mas, 0);
689}
690
691static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
692{
693 return vmi->mas.index;
694}
695
696#define for_each_vma(__vmi, __vma) \
697 while (((__vma) = vma_next(&(__vmi))) != NULL)
698
699/* The MM code likes to work with exclusive end addresses */
700#define for_each_vma_range(__vmi, __vma, __end) \
701 while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL)
702
703#ifdef CONFIG_SHMEM
704/*
705 * The vma_is_shmem is not inline because it is used only by slow
706 * paths in userfault.
707 */
708bool vma_is_shmem(struct vm_area_struct *vma);
709bool vma_is_anon_shmem(struct vm_area_struct *vma);
710#else
711static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
712static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
713#endif
714
715int vma_is_stack_for_current(struct vm_area_struct *vma);
716
717/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
718#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
719
720struct mmu_gather;
721struct inode;
722
723static inline unsigned int compound_order(struct page *page)
724{
725 if (!PageHead(page))
726 return 0;
727 return page[1].compound_order;
728}
729
730/**
731 * folio_order - The allocation order of a folio.
732 * @folio: The folio.
733 *
734 * A folio is composed of 2^order pages. See get_order() for the definition
735 * of order.
736 *
737 * Return: The order of the folio.
738 */
739static inline unsigned int folio_order(struct folio *folio)
740{
741 if (!folio_test_large(folio))
742 return 0;
743 return folio->_folio_order;
744}
745
746#include <linux/huge_mm.h>
747
748/*
749 * Methods to modify the page usage count.
750 *
751 * What counts for a page usage:
752 * - cache mapping (page->mapping)
753 * - private data (page->private)
754 * - page mapped in a task's page tables, each mapping
755 * is counted separately
756 *
757 * Also, many kernel routines increase the page count before a critical
758 * routine so they can be sure the page doesn't go away from under them.
759 */
760
761/*
762 * Drop a ref, return true if the refcount fell to zero (the page has no users)
763 */
764static inline int put_page_testzero(struct page *page)
765{
766 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
767 return page_ref_dec_and_test(page);
768}
769
770static inline int folio_put_testzero(struct folio *folio)
771{
772 return put_page_testzero(&folio->page);
773}
774
775/*
776 * Try to grab a ref unless the page has a refcount of zero, return false if
777 * that is the case.
778 * This can be called when MMU is off so it must not access
779 * any of the virtual mappings.
780 */
781static inline bool get_page_unless_zero(struct page *page)
782{
783 return page_ref_add_unless(page, 1, 0);
784}
785
786extern int page_is_ram(unsigned long pfn);
787
788enum {
789 REGION_INTERSECTS,
790 REGION_DISJOINT,
791 REGION_MIXED,
792};
793
794int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
795 unsigned long desc);
796
797/* Support for virtually mapped pages */
798struct page *vmalloc_to_page(const void *addr);
799unsigned long vmalloc_to_pfn(const void *addr);
800
801/*
802 * Determine if an address is within the vmalloc range
803 *
804 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
805 * is no special casing required.
806 */
807
808#ifndef is_ioremap_addr
809#define is_ioremap_addr(x) is_vmalloc_addr(x)
810#endif
811
812#ifdef CONFIG_MMU
813extern bool is_vmalloc_addr(const void *x);
814extern int is_vmalloc_or_module_addr(const void *x);
815#else
816static inline bool is_vmalloc_addr(const void *x)
817{
818 return false;
819}
820static inline int is_vmalloc_or_module_addr(const void *x)
821{
822 return 0;
823}
824#endif
825
826/*
827 * How many times the entire folio is mapped as a single unit (eg by a
828 * PMD or PUD entry). This is probably not what you want, except for
829 * debugging purposes - it does not include PTE-mapped sub-pages; look
830 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
831 */
832static inline int folio_entire_mapcount(struct folio *folio)
833{
834 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
835 return atomic_read(folio_mapcount_ptr(folio)) + 1;
836}
837
838/*
839 * Mapcount of compound page as a whole, does not include mapped sub-pages.
840 * Must be called only on head of compound page.
841 */
842static inline int head_compound_mapcount(struct page *head)
843{
844 return atomic_read(compound_mapcount_ptr(head)) + 1;
845}
846
847/*
848 * If a 16GB hugetlb page were mapped by PTEs of all of its 4kB sub-pages,
849 * its subpages_mapcount would be 0x400000: choose the COMPOUND_MAPPED bit
850 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
851 * leaves subpages_mapcount at 0, but avoid surprise if it participates later.
852 */
853#define COMPOUND_MAPPED 0x800000
854#define SUBPAGES_MAPPED (COMPOUND_MAPPED - 1)
855
856/*
857 * Number of sub-pages mapped by PTE, does not include compound mapcount.
858 * Must be called only on head of compound page.
859 */
860static inline int head_subpages_mapcount(struct page *head)
861{
862 return atomic_read(subpages_mapcount_ptr(head)) & SUBPAGES_MAPPED;
863}
864
865/*
866 * The atomic page->_mapcount, starts from -1: so that transitions
867 * both from it and to it can be tracked, using atomic_inc_and_test
868 * and atomic_add_negative(-1).
869 */
870static inline void page_mapcount_reset(struct page *page)
871{
872 atomic_set(&(page)->_mapcount, -1);
873}
874
875/*
876 * Mapcount of 0-order page; when compound sub-page, includes
877 * compound_mapcount of compound_head of page.
878 *
879 * Result is undefined for pages which cannot be mapped into userspace.
880 * For example SLAB or special types of pages. See function page_has_type().
881 * They use this place in struct page differently.
882 */
883static inline int page_mapcount(struct page *page)
884{
885 int mapcount = atomic_read(&page->_mapcount) + 1;
886
887 if (likely(!PageCompound(page)))
888 return mapcount;
889 page = compound_head(page);
890 return head_compound_mapcount(page) + mapcount;
891}
892
893int total_compound_mapcount(struct page *head);
894
895/**
896 * folio_mapcount() - Calculate the number of mappings of this folio.
897 * @folio: The folio.
898 *
899 * A large folio tracks both how many times the entire folio is mapped,
900 * and how many times each individual page in the folio is mapped.
901 * This function calculates the total number of times the folio is
902 * mapped.
903 *
904 * Return: The number of times this folio is mapped.
905 */
906static inline int folio_mapcount(struct folio *folio)
907{
908 if (likely(!folio_test_large(folio)))
909 return atomic_read(&folio->_mapcount) + 1;
910 return total_compound_mapcount(&folio->page);
911}
912
913static inline int total_mapcount(struct page *page)
914{
915 if (likely(!PageCompound(page)))
916 return atomic_read(&page->_mapcount) + 1;
917 return total_compound_mapcount(compound_head(page));
918}
919
920static inline bool folio_large_is_mapped(struct folio *folio)
921{
922 /*
923 * Reading folio_mapcount_ptr() below could be omitted if hugetlb
924 * participated in incrementing subpages_mapcount when compound mapped.
925 */
926 return atomic_read(folio_subpages_mapcount_ptr(folio)) > 0 ||
927 atomic_read(folio_mapcount_ptr(folio)) >= 0;
928}
929
930/**
931 * folio_mapped - Is this folio mapped into userspace?
932 * @folio: The folio.
933 *
934 * Return: True if any page in this folio is referenced by user page tables.
935 */
936static inline bool folio_mapped(struct folio *folio)
937{
938 if (likely(!folio_test_large(folio)))
939 return atomic_read(&folio->_mapcount) >= 0;
940 return folio_large_is_mapped(folio);
941}
942
943/*
944 * Return true if this page is mapped into pagetables.
945 * For compound page it returns true if any sub-page of compound page is mapped,
946 * even if this particular sub-page is not itself mapped by any PTE or PMD.
947 */
948static inline bool page_mapped(struct page *page)
949{
950 if (likely(!PageCompound(page)))
951 return atomic_read(&page->_mapcount) >= 0;
952 return folio_large_is_mapped(page_folio(page));
953}
954
955static inline struct page *virt_to_head_page(const void *x)
956{
957 struct page *page = virt_to_page(x);
958
959 return compound_head(page);
960}
961
962static inline struct folio *virt_to_folio(const void *x)
963{
964 struct page *page = virt_to_page(x);
965
966 return page_folio(page);
967}
968
969void __folio_put(struct folio *folio);
970
971void put_pages_list(struct list_head *pages);
972
973void split_page(struct page *page, unsigned int order);
974void folio_copy(struct folio *dst, struct folio *src);
975
976unsigned long nr_free_buffer_pages(void);
977
978/*
979 * Compound pages have a destructor function. Provide a
980 * prototype for that function and accessor functions.
981 * These are _only_ valid on the head of a compound page.
982 */
983typedef void compound_page_dtor(struct page *);
984
985/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
986enum compound_dtor_id {
987 NULL_COMPOUND_DTOR,
988 COMPOUND_PAGE_DTOR,
989#ifdef CONFIG_HUGETLB_PAGE
990 HUGETLB_PAGE_DTOR,
991#endif
992#ifdef CONFIG_TRANSPARENT_HUGEPAGE
993 TRANSHUGE_PAGE_DTOR,
994#endif
995 NR_COMPOUND_DTORS,
996};
997extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
998
999static inline void set_compound_page_dtor(struct page *page,
1000 enum compound_dtor_id compound_dtor)
1001{
1002 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
1003 page[1].compound_dtor = compound_dtor;
1004}
1005
1006static inline void folio_set_compound_dtor(struct folio *folio,
1007 enum compound_dtor_id compound_dtor)
1008{
1009 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1010 folio->_folio_dtor = compound_dtor;
1011}
1012
1013void destroy_large_folio(struct folio *folio);
1014
1015static inline int head_compound_pincount(struct page *head)
1016{
1017 return atomic_read(compound_pincount_ptr(head));
1018}
1019
1020static inline void set_compound_order(struct page *page, unsigned int order)
1021{
1022 page[1].compound_order = order;
1023#ifdef CONFIG_64BIT
1024 page[1].compound_nr = 1U << order;
1025#endif
1026}
1027
1028/*
1029 * folio_set_compound_order is generally passed a non-zero order to
1030 * initialize a large folio. However, hugetlb code abuses this by
1031 * passing in zero when 'dissolving' a large folio.
1032 */
1033static inline void folio_set_compound_order(struct folio *folio,
1034 unsigned int order)
1035{
1036 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1037
1038 folio->_folio_order = order;
1039#ifdef CONFIG_64BIT
1040 folio->_folio_nr_pages = order ? 1U << order : 0;
1041#endif
1042}
1043
1044/* Returns the number of pages in this potentially compound page. */
1045static inline unsigned long compound_nr(struct page *page)
1046{
1047 if (!PageHead(page))
1048 return 1;
1049#ifdef CONFIG_64BIT
1050 return page[1].compound_nr;
1051#else
1052 return 1UL << compound_order(page);
1053#endif
1054}
1055
1056/* Returns the number of bytes in this potentially compound page. */
1057static inline unsigned long page_size(struct page *page)
1058{
1059 return PAGE_SIZE << compound_order(page);
1060}
1061
1062/* Returns the number of bits needed for the number of bytes in a page */
1063static inline unsigned int page_shift(struct page *page)
1064{
1065 return PAGE_SHIFT + compound_order(page);
1066}
1067
1068/**
1069 * thp_order - Order of a transparent huge page.
1070 * @page: Head page of a transparent huge page.
1071 */
1072static inline unsigned int thp_order(struct page *page)
1073{
1074 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1075 return compound_order(page);
1076}
1077
1078/**
1079 * thp_nr_pages - The number of regular pages in this huge page.
1080 * @page: The head page of a huge page.
1081 */
1082static inline int thp_nr_pages(struct page *page)
1083{
1084 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1085 return compound_nr(page);
1086}
1087
1088/**
1089 * thp_size - Size of a transparent huge page.
1090 * @page: Head page of a transparent huge page.
1091 *
1092 * Return: Number of bytes in this page.
1093 */
1094static inline unsigned long thp_size(struct page *page)
1095{
1096 return PAGE_SIZE << thp_order(page);
1097}
1098
1099void free_compound_page(struct page *page);
1100
1101#ifdef CONFIG_MMU
1102/*
1103 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1104 * servicing faults for write access. In the normal case, do always want
1105 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1106 * that do not have writing enabled, when used by access_process_vm.
1107 */
1108static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1109{
1110 if (likely(vma->vm_flags & VM_WRITE))
1111 pte = pte_mkwrite(pte);
1112 return pte;
1113}
1114
1115vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1116void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1117
1118vm_fault_t finish_fault(struct vm_fault *vmf);
1119vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1120#endif
1121
1122/*
1123 * Multiple processes may "see" the same page. E.g. for untouched
1124 * mappings of /dev/null, all processes see the same page full of
1125 * zeroes, and text pages of executables and shared libraries have
1126 * only one copy in memory, at most, normally.
1127 *
1128 * For the non-reserved pages, page_count(page) denotes a reference count.
1129 * page_count() == 0 means the page is free. page->lru is then used for
1130 * freelist management in the buddy allocator.
1131 * page_count() > 0 means the page has been allocated.
1132 *
1133 * Pages are allocated by the slab allocator in order to provide memory
1134 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1135 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1136 * unless a particular usage is carefully commented. (the responsibility of
1137 * freeing the kmalloc memory is the caller's, of course).
1138 *
1139 * A page may be used by anyone else who does a __get_free_page().
1140 * In this case, page_count still tracks the references, and should only
1141 * be used through the normal accessor functions. The top bits of page->flags
1142 * and page->virtual store page management information, but all other fields
1143 * are unused and could be used privately, carefully. The management of this
1144 * page is the responsibility of the one who allocated it, and those who have
1145 * subsequently been given references to it.
1146 *
1147 * The other pages (we may call them "pagecache pages") are completely
1148 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1149 * The following discussion applies only to them.
1150 *
1151 * A pagecache page contains an opaque `private' member, which belongs to the
1152 * page's address_space. Usually, this is the address of a circular list of
1153 * the page's disk buffers. PG_private must be set to tell the VM to call
1154 * into the filesystem to release these pages.
1155 *
1156 * A page may belong to an inode's memory mapping. In this case, page->mapping
1157 * is the pointer to the inode, and page->index is the file offset of the page,
1158 * in units of PAGE_SIZE.
1159 *
1160 * If pagecache pages are not associated with an inode, they are said to be
1161 * anonymous pages. These may become associated with the swapcache, and in that
1162 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1163 *
1164 * In either case (swapcache or inode backed), the pagecache itself holds one
1165 * reference to the page. Setting PG_private should also increment the
1166 * refcount. The each user mapping also has a reference to the page.
1167 *
1168 * The pagecache pages are stored in a per-mapping radix tree, which is
1169 * rooted at mapping->i_pages, and indexed by offset.
1170 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1171 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1172 *
1173 * All pagecache pages may be subject to I/O:
1174 * - inode pages may need to be read from disk,
1175 * - inode pages which have been modified and are MAP_SHARED may need
1176 * to be written back to the inode on disk,
1177 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1178 * modified may need to be swapped out to swap space and (later) to be read
1179 * back into memory.
1180 */
1181
1182#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1183DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1184
1185bool __put_devmap_managed_page_refs(struct page *page, int refs);
1186static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1187{
1188 if (!static_branch_unlikely(&devmap_managed_key))
1189 return false;
1190 if (!is_zone_device_page(page))
1191 return false;
1192 return __put_devmap_managed_page_refs(page, refs);
1193}
1194#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1195static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1196{
1197 return false;
1198}
1199#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1200
1201static inline bool put_devmap_managed_page(struct page *page)
1202{
1203 return put_devmap_managed_page_refs(page, 1);
1204}
1205
1206/* 127: arbitrary random number, small enough to assemble well */
1207#define folio_ref_zero_or_close_to_overflow(folio) \
1208 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1209
1210/**
1211 * folio_get - Increment the reference count on a folio.
1212 * @folio: The folio.
1213 *
1214 * Context: May be called in any context, as long as you know that
1215 * you have a refcount on the folio. If you do not already have one,
1216 * folio_try_get() may be the right interface for you to use.
1217 */
1218static inline void folio_get(struct folio *folio)
1219{
1220 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1221 folio_ref_inc(folio);
1222}
1223
1224static inline void get_page(struct page *page)
1225{
1226 folio_get(page_folio(page));
1227}
1228
1229int __must_check try_grab_page(struct page *page, unsigned int flags);
1230
1231static inline __must_check bool try_get_page(struct page *page)
1232{
1233 page = compound_head(page);
1234 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1235 return false;
1236 page_ref_inc(page);
1237 return true;
1238}
1239
1240/**
1241 * folio_put - Decrement the reference count on a folio.
1242 * @folio: The folio.
1243 *
1244 * If the folio's reference count reaches zero, the memory will be
1245 * released back to the page allocator and may be used by another
1246 * allocation immediately. Do not access the memory or the struct folio
1247 * after calling folio_put() unless you can be sure that it wasn't the
1248 * last reference.
1249 *
1250 * Context: May be called in process or interrupt context, but not in NMI
1251 * context. May be called while holding a spinlock.
1252 */
1253static inline void folio_put(struct folio *folio)
1254{
1255 if (folio_put_testzero(folio))
1256 __folio_put(folio);
1257}
1258
1259/**
1260 * folio_put_refs - Reduce the reference count on a folio.
1261 * @folio: The folio.
1262 * @refs: The amount to subtract from the folio's reference count.
1263 *
1264 * If the folio's reference count reaches zero, the memory will be
1265 * released back to the page allocator and may be used by another
1266 * allocation immediately. Do not access the memory or the struct folio
1267 * after calling folio_put_refs() unless you can be sure that these weren't
1268 * the last references.
1269 *
1270 * Context: May be called in process or interrupt context, but not in NMI
1271 * context. May be called while holding a spinlock.
1272 */
1273static inline void folio_put_refs(struct folio *folio, int refs)
1274{
1275 if (folio_ref_sub_and_test(folio, refs))
1276 __folio_put(folio);
1277}
1278
1279/*
1280 * union release_pages_arg - an array of pages or folios
1281 *
1282 * release_pages() releases a simple array of multiple pages, and
1283 * accepts various different forms of said page array: either
1284 * a regular old boring array of pages, an array of folios, or
1285 * an array of encoded page pointers.
1286 *
1287 * The transparent union syntax for this kind of "any of these
1288 * argument types" is all kinds of ugly, so look away.
1289 */
1290typedef union {
1291 struct page **pages;
1292 struct folio **folios;
1293 struct encoded_page **encoded_pages;
1294} release_pages_arg __attribute__ ((__transparent_union__));
1295
1296void release_pages(release_pages_arg, int nr);
1297
1298/**
1299 * folios_put - Decrement the reference count on an array of folios.
1300 * @folios: The folios.
1301 * @nr: How many folios there are.
1302 *
1303 * Like folio_put(), but for an array of folios. This is more efficient
1304 * than writing the loop yourself as it will optimise the locks which
1305 * need to be taken if the folios are freed.
1306 *
1307 * Context: May be called in process or interrupt context, but not in NMI
1308 * context. May be called while holding a spinlock.
1309 */
1310static inline void folios_put(struct folio **folios, unsigned int nr)
1311{
1312 release_pages(folios, nr);
1313}
1314
1315static inline void put_page(struct page *page)
1316{
1317 struct folio *folio = page_folio(page);
1318
1319 /*
1320 * For some devmap managed pages we need to catch refcount transition
1321 * from 2 to 1:
1322 */
1323 if (put_devmap_managed_page(&folio->page))
1324 return;
1325 folio_put(folio);
1326}
1327
1328/*
1329 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1330 * the page's refcount so that two separate items are tracked: the original page
1331 * reference count, and also a new count of how many pin_user_pages() calls were
1332 * made against the page. ("gup-pinned" is another term for the latter).
1333 *
1334 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1335 * distinct from normal pages. As such, the unpin_user_page() call (and its
1336 * variants) must be used in order to release gup-pinned pages.
1337 *
1338 * Choice of value:
1339 *
1340 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1341 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1342 * simpler, due to the fact that adding an even power of two to the page
1343 * refcount has the effect of using only the upper N bits, for the code that
1344 * counts up using the bias value. This means that the lower bits are left for
1345 * the exclusive use of the original code that increments and decrements by one
1346 * (or at least, by much smaller values than the bias value).
1347 *
1348 * Of course, once the lower bits overflow into the upper bits (and this is
1349 * OK, because subtraction recovers the original values), then visual inspection
1350 * no longer suffices to directly view the separate counts. However, for normal
1351 * applications that don't have huge page reference counts, this won't be an
1352 * issue.
1353 *
1354 * Locking: the lockless algorithm described in folio_try_get_rcu()
1355 * provides safe operation for get_user_pages(), page_mkclean() and
1356 * other calls that race to set up page table entries.
1357 */
1358#define GUP_PIN_COUNTING_BIAS (1U << 10)
1359
1360void unpin_user_page(struct page *page);
1361void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1362 bool make_dirty);
1363void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1364 bool make_dirty);
1365void unpin_user_pages(struct page **pages, unsigned long npages);
1366
1367static inline bool is_cow_mapping(vm_flags_t flags)
1368{
1369 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1370}
1371
1372#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1373#define SECTION_IN_PAGE_FLAGS
1374#endif
1375
1376/*
1377 * The identification function is mainly used by the buddy allocator for
1378 * determining if two pages could be buddies. We are not really identifying
1379 * the zone since we could be using the section number id if we do not have
1380 * node id available in page flags.
1381 * We only guarantee that it will return the same value for two combinable
1382 * pages in a zone.
1383 */
1384static inline int page_zone_id(struct page *page)
1385{
1386 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1387}
1388
1389#ifdef NODE_NOT_IN_PAGE_FLAGS
1390extern int page_to_nid(const struct page *page);
1391#else
1392static inline int page_to_nid(const struct page *page)
1393{
1394 struct page *p = (struct page *)page;
1395
1396 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1397}
1398#endif
1399
1400static inline int folio_nid(const struct folio *folio)
1401{
1402 return page_to_nid(&folio->page);
1403}
1404
1405#ifdef CONFIG_NUMA_BALANCING
1406/* page access time bits needs to hold at least 4 seconds */
1407#define PAGE_ACCESS_TIME_MIN_BITS 12
1408#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1409#define PAGE_ACCESS_TIME_BUCKETS \
1410 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1411#else
1412#define PAGE_ACCESS_TIME_BUCKETS 0
1413#endif
1414
1415#define PAGE_ACCESS_TIME_MASK \
1416 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1417
1418static inline int cpu_pid_to_cpupid(int cpu, int pid)
1419{
1420 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1421}
1422
1423static inline int cpupid_to_pid(int cpupid)
1424{
1425 return cpupid & LAST__PID_MASK;
1426}
1427
1428static inline int cpupid_to_cpu(int cpupid)
1429{
1430 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1431}
1432
1433static inline int cpupid_to_nid(int cpupid)
1434{
1435 return cpu_to_node(cpupid_to_cpu(cpupid));
1436}
1437
1438static inline bool cpupid_pid_unset(int cpupid)
1439{
1440 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1441}
1442
1443static inline bool cpupid_cpu_unset(int cpupid)
1444{
1445 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1446}
1447
1448static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1449{
1450 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1451}
1452
1453#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1454#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1455static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1456{
1457 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1458}
1459
1460static inline int page_cpupid_last(struct page *page)
1461{
1462 return page->_last_cpupid;
1463}
1464static inline void page_cpupid_reset_last(struct page *page)
1465{
1466 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1467}
1468#else
1469static inline int page_cpupid_last(struct page *page)
1470{
1471 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1472}
1473
1474extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1475
1476static inline void page_cpupid_reset_last(struct page *page)
1477{
1478 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1479}
1480#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1481
1482static inline int xchg_page_access_time(struct page *page, int time)
1483{
1484 int last_time;
1485
1486 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1487 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1488}
1489#else /* !CONFIG_NUMA_BALANCING */
1490static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1491{
1492 return page_to_nid(page); /* XXX */
1493}
1494
1495static inline int xchg_page_access_time(struct page *page, int time)
1496{
1497 return 0;
1498}
1499
1500static inline int page_cpupid_last(struct page *page)
1501{
1502 return page_to_nid(page); /* XXX */
1503}
1504
1505static inline int cpupid_to_nid(int cpupid)
1506{
1507 return -1;
1508}
1509
1510static inline int cpupid_to_pid(int cpupid)
1511{
1512 return -1;
1513}
1514
1515static inline int cpupid_to_cpu(int cpupid)
1516{
1517 return -1;
1518}
1519
1520static inline int cpu_pid_to_cpupid(int nid, int pid)
1521{
1522 return -1;
1523}
1524
1525static inline bool cpupid_pid_unset(int cpupid)
1526{
1527 return true;
1528}
1529
1530static inline void page_cpupid_reset_last(struct page *page)
1531{
1532}
1533
1534static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1535{
1536 return false;
1537}
1538#endif /* CONFIG_NUMA_BALANCING */
1539
1540#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1541
1542/*
1543 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1544 * setting tags for all pages to native kernel tag value 0xff, as the default
1545 * value 0x00 maps to 0xff.
1546 */
1547
1548static inline u8 page_kasan_tag(const struct page *page)
1549{
1550 u8 tag = 0xff;
1551
1552 if (kasan_enabled()) {
1553 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1554 tag ^= 0xff;
1555 }
1556
1557 return tag;
1558}
1559
1560static inline void page_kasan_tag_set(struct page *page, u8 tag)
1561{
1562 unsigned long old_flags, flags;
1563
1564 if (!kasan_enabled())
1565 return;
1566
1567 tag ^= 0xff;
1568 old_flags = READ_ONCE(page->flags);
1569 do {
1570 flags = old_flags;
1571 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1572 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1573 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1574}
1575
1576static inline void page_kasan_tag_reset(struct page *page)
1577{
1578 if (kasan_enabled())
1579 page_kasan_tag_set(page, 0xff);
1580}
1581
1582#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1583
1584static inline u8 page_kasan_tag(const struct page *page)
1585{
1586 return 0xff;
1587}
1588
1589static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1590static inline void page_kasan_tag_reset(struct page *page) { }
1591
1592#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1593
1594static inline struct zone *page_zone(const struct page *page)
1595{
1596 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1597}
1598
1599static inline pg_data_t *page_pgdat(const struct page *page)
1600{
1601 return NODE_DATA(page_to_nid(page));
1602}
1603
1604static inline struct zone *folio_zone(const struct folio *folio)
1605{
1606 return page_zone(&folio->page);
1607}
1608
1609static inline pg_data_t *folio_pgdat(const struct folio *folio)
1610{
1611 return page_pgdat(&folio->page);
1612}
1613
1614#ifdef SECTION_IN_PAGE_FLAGS
1615static inline void set_page_section(struct page *page, unsigned long section)
1616{
1617 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1618 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1619}
1620
1621static inline unsigned long page_to_section(const struct page *page)
1622{
1623 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1624}
1625#endif
1626
1627/**
1628 * folio_pfn - Return the Page Frame Number of a folio.
1629 * @folio: The folio.
1630 *
1631 * A folio may contain multiple pages. The pages have consecutive
1632 * Page Frame Numbers.
1633 *
1634 * Return: The Page Frame Number of the first page in the folio.
1635 */
1636static inline unsigned long folio_pfn(struct folio *folio)
1637{
1638 return page_to_pfn(&folio->page);
1639}
1640
1641static inline struct folio *pfn_folio(unsigned long pfn)
1642{
1643 return page_folio(pfn_to_page(pfn));
1644}
1645
1646static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1647{
1648 return &folio_page(folio, 1)->compound_pincount;
1649}
1650
1651/**
1652 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1653 * @folio: The folio.
1654 *
1655 * This function checks if a folio has been pinned via a call to
1656 * a function in the pin_user_pages() family.
1657 *
1658 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1659 * because it means "definitely not pinned for DMA", but true means "probably
1660 * pinned for DMA, but possibly a false positive due to having at least
1661 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1662 *
1663 * False positives are OK, because: a) it's unlikely for a folio to
1664 * get that many refcounts, and b) all the callers of this routine are
1665 * expected to be able to deal gracefully with a false positive.
1666 *
1667 * For large folios, the result will be exactly correct. That's because
1668 * we have more tracking data available: the compound_pincount is used
1669 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1670 *
1671 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1672 *
1673 * Return: True, if it is likely that the page has been "dma-pinned".
1674 * False, if the page is definitely not dma-pinned.
1675 */
1676static inline bool folio_maybe_dma_pinned(struct folio *folio)
1677{
1678 if (folio_test_large(folio))
1679 return atomic_read(folio_pincount_ptr(folio)) > 0;
1680
1681 /*
1682 * folio_ref_count() is signed. If that refcount overflows, then
1683 * folio_ref_count() returns a negative value, and callers will avoid
1684 * further incrementing the refcount.
1685 *
1686 * Here, for that overflow case, use the sign bit to count a little
1687 * bit higher via unsigned math, and thus still get an accurate result.
1688 */
1689 return ((unsigned int)folio_ref_count(folio)) >=
1690 GUP_PIN_COUNTING_BIAS;
1691}
1692
1693static inline bool page_maybe_dma_pinned(struct page *page)
1694{
1695 return folio_maybe_dma_pinned(page_folio(page));
1696}
1697
1698/*
1699 * This should most likely only be called during fork() to see whether we
1700 * should break the cow immediately for an anon page on the src mm.
1701 *
1702 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1703 */
1704static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1705 struct page *page)
1706{
1707 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1708
1709 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1710 return false;
1711
1712 return page_maybe_dma_pinned(page);
1713}
1714
1715/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1716#ifdef CONFIG_MIGRATION
1717static inline bool is_longterm_pinnable_page(struct page *page)
1718{
1719#ifdef CONFIG_CMA
1720 int mt = get_pageblock_migratetype(page);
1721
1722 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1723 return false;
1724#endif
1725 /* The zero page may always be pinned */
1726 if (is_zero_pfn(page_to_pfn(page)))
1727 return true;
1728
1729 /* Coherent device memory must always allow eviction. */
1730 if (is_device_coherent_page(page))
1731 return false;
1732
1733 /* Otherwise, non-movable zone pages can be pinned. */
1734 return !is_zone_movable_page(page);
1735}
1736#else
1737static inline bool is_longterm_pinnable_page(struct page *page)
1738{
1739 return true;
1740}
1741#endif
1742
1743static inline bool folio_is_longterm_pinnable(struct folio *folio)
1744{
1745 return is_longterm_pinnable_page(&folio->page);
1746}
1747
1748static inline void set_page_zone(struct page *page, enum zone_type zone)
1749{
1750 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1751 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1752}
1753
1754static inline void set_page_node(struct page *page, unsigned long node)
1755{
1756 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1757 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1758}
1759
1760static inline void set_page_links(struct page *page, enum zone_type zone,
1761 unsigned long node, unsigned long pfn)
1762{
1763 set_page_zone(page, zone);
1764 set_page_node(page, node);
1765#ifdef SECTION_IN_PAGE_FLAGS
1766 set_page_section(page, pfn_to_section_nr(pfn));
1767#endif
1768}
1769
1770/**
1771 * folio_nr_pages - The number of pages in the folio.
1772 * @folio: The folio.
1773 *
1774 * Return: A positive power of two.
1775 */
1776static inline long folio_nr_pages(struct folio *folio)
1777{
1778 if (!folio_test_large(folio))
1779 return 1;
1780#ifdef CONFIG_64BIT
1781 return folio->_folio_nr_pages;
1782#else
1783 return 1L << folio->_folio_order;
1784#endif
1785}
1786
1787/**
1788 * folio_next - Move to the next physical folio.
1789 * @folio: The folio we're currently operating on.
1790 *
1791 * If you have physically contiguous memory which may span more than
1792 * one folio (eg a &struct bio_vec), use this function to move from one
1793 * folio to the next. Do not use it if the memory is only virtually
1794 * contiguous as the folios are almost certainly not adjacent to each
1795 * other. This is the folio equivalent to writing ``page++``.
1796 *
1797 * Context: We assume that the folios are refcounted and/or locked at a
1798 * higher level and do not adjust the reference counts.
1799 * Return: The next struct folio.
1800 */
1801static inline struct folio *folio_next(struct folio *folio)
1802{
1803 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1804}
1805
1806/**
1807 * folio_shift - The size of the memory described by this folio.
1808 * @folio: The folio.
1809 *
1810 * A folio represents a number of bytes which is a power-of-two in size.
1811 * This function tells you which power-of-two the folio is. See also
1812 * folio_size() and folio_order().
1813 *
1814 * Context: The caller should have a reference on the folio to prevent
1815 * it from being split. It is not necessary for the folio to be locked.
1816 * Return: The base-2 logarithm of the size of this folio.
1817 */
1818static inline unsigned int folio_shift(struct folio *folio)
1819{
1820 return PAGE_SHIFT + folio_order(folio);
1821}
1822
1823/**
1824 * folio_size - The number of bytes in a folio.
1825 * @folio: The folio.
1826 *
1827 * Context: The caller should have a reference on the folio to prevent
1828 * it from being split. It is not necessary for the folio to be locked.
1829 * Return: The number of bytes in this folio.
1830 */
1831static inline size_t folio_size(struct folio *folio)
1832{
1833 return PAGE_SIZE << folio_order(folio);
1834}
1835
1836#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1837static inline int arch_make_page_accessible(struct page *page)
1838{
1839 return 0;
1840}
1841#endif
1842
1843#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1844static inline int arch_make_folio_accessible(struct folio *folio)
1845{
1846 int ret;
1847 long i, nr = folio_nr_pages(folio);
1848
1849 for (i = 0; i < nr; i++) {
1850 ret = arch_make_page_accessible(folio_page(folio, i));
1851 if (ret)
1852 break;
1853 }
1854
1855 return ret;
1856}
1857#endif
1858
1859/*
1860 * Some inline functions in vmstat.h depend on page_zone()
1861 */
1862#include <linux/vmstat.h>
1863
1864static __always_inline void *lowmem_page_address(const struct page *page)
1865{
1866 return page_to_virt(page);
1867}
1868
1869#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1870#define HASHED_PAGE_VIRTUAL
1871#endif
1872
1873#if defined(WANT_PAGE_VIRTUAL)
1874static inline void *page_address(const struct page *page)
1875{
1876 return page->virtual;
1877}
1878static inline void set_page_address(struct page *page, void *address)
1879{
1880 page->virtual = address;
1881}
1882#define page_address_init() do { } while(0)
1883#endif
1884
1885#if defined(HASHED_PAGE_VIRTUAL)
1886void *page_address(const struct page *page);
1887void set_page_address(struct page *page, void *virtual);
1888void page_address_init(void);
1889#endif
1890
1891#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1892#define page_address(page) lowmem_page_address(page)
1893#define set_page_address(page, address) do { } while(0)
1894#define page_address_init() do { } while(0)
1895#endif
1896
1897static inline void *folio_address(const struct folio *folio)
1898{
1899 return page_address(&folio->page);
1900}
1901
1902extern void *page_rmapping(struct page *page);
1903extern pgoff_t __page_file_index(struct page *page);
1904
1905/*
1906 * Return the pagecache index of the passed page. Regular pagecache pages
1907 * use ->index whereas swapcache pages use swp_offset(->private)
1908 */
1909static inline pgoff_t page_index(struct page *page)
1910{
1911 if (unlikely(PageSwapCache(page)))
1912 return __page_file_index(page);
1913 return page->index;
1914}
1915
1916/*
1917 * Return true only if the page has been allocated with
1918 * ALLOC_NO_WATERMARKS and the low watermark was not
1919 * met implying that the system is under some pressure.
1920 */
1921static inline bool page_is_pfmemalloc(const struct page *page)
1922{
1923 /*
1924 * lru.next has bit 1 set if the page is allocated from the
1925 * pfmemalloc reserves. Callers may simply overwrite it if
1926 * they do not need to preserve that information.
1927 */
1928 return (uintptr_t)page->lru.next & BIT(1);
1929}
1930
1931/*
1932 * Only to be called by the page allocator on a freshly allocated
1933 * page.
1934 */
1935static inline void set_page_pfmemalloc(struct page *page)
1936{
1937 page->lru.next = (void *)BIT(1);
1938}
1939
1940static inline void clear_page_pfmemalloc(struct page *page)
1941{
1942 page->lru.next = NULL;
1943}
1944
1945/*
1946 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1947 */
1948extern void pagefault_out_of_memory(void);
1949
1950#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1951#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1952#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1953
1954/*
1955 * Flags passed to show_mem() and show_free_areas() to suppress output in
1956 * various contexts.
1957 */
1958#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1959
1960extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
1961static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
1962{
1963 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
1964}
1965
1966/*
1967 * Parameter block passed down to zap_pte_range in exceptional cases.
1968 */
1969struct zap_details {
1970 struct folio *single_folio; /* Locked folio to be unmapped */
1971 bool even_cows; /* Zap COWed private pages too? */
1972 zap_flags_t zap_flags; /* Extra flags for zapping */
1973};
1974
1975/*
1976 * Whether to drop the pte markers, for example, the uffd-wp information for
1977 * file-backed memory. This should only be specified when we will completely
1978 * drop the page in the mm, either by truncation or unmapping of the vma. By
1979 * default, the flag is not set.
1980 */
1981#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
1982/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
1983#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
1984
1985#ifdef CONFIG_MMU
1986extern bool can_do_mlock(void);
1987#else
1988static inline bool can_do_mlock(void) { return false; }
1989#endif
1990extern int user_shm_lock(size_t, struct ucounts *);
1991extern void user_shm_unlock(size_t, struct ucounts *);
1992
1993struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1994 pte_t pte);
1995struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1996 pmd_t pmd);
1997
1998void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1999 unsigned long size);
2000void zap_page_range(struct vm_area_struct *vma, unsigned long address,
2001 unsigned long size);
2002void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2003 unsigned long size, struct zap_details *details);
2004void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2005 struct vm_area_struct *start_vma, unsigned long start,
2006 unsigned long end);
2007
2008struct mmu_notifier_range;
2009
2010void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2011 unsigned long end, unsigned long floor, unsigned long ceiling);
2012int
2013copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2014int follow_pte(struct mm_struct *mm, unsigned long address,
2015 pte_t **ptepp, spinlock_t **ptlp);
2016int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2017 unsigned long *pfn);
2018int follow_phys(struct vm_area_struct *vma, unsigned long address,
2019 unsigned int flags, unsigned long *prot, resource_size_t *phys);
2020int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2021 void *buf, int len, int write);
2022
2023extern void truncate_pagecache(struct inode *inode, loff_t new);
2024extern void truncate_setsize(struct inode *inode, loff_t newsize);
2025void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2026void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2027int generic_error_remove_page(struct address_space *mapping, struct page *page);
2028
2029#ifdef CONFIG_MMU
2030extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2031 unsigned long address, unsigned int flags,
2032 struct pt_regs *regs);
2033extern int fixup_user_fault(struct mm_struct *mm,
2034 unsigned long address, unsigned int fault_flags,
2035 bool *unlocked);
2036void unmap_mapping_pages(struct address_space *mapping,
2037 pgoff_t start, pgoff_t nr, bool even_cows);
2038void unmap_mapping_range(struct address_space *mapping,
2039 loff_t const holebegin, loff_t const holelen, int even_cows);
2040#else
2041static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2042 unsigned long address, unsigned int flags,
2043 struct pt_regs *regs)
2044{
2045 /* should never happen if there's no MMU */
2046 BUG();
2047 return VM_FAULT_SIGBUS;
2048}
2049static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2050 unsigned int fault_flags, bool *unlocked)
2051{
2052 /* should never happen if there's no MMU */
2053 BUG();
2054 return -EFAULT;
2055}
2056static inline void unmap_mapping_pages(struct address_space *mapping,
2057 pgoff_t start, pgoff_t nr, bool even_cows) { }
2058static inline void unmap_mapping_range(struct address_space *mapping,
2059 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2060#endif
2061
2062static inline void unmap_shared_mapping_range(struct address_space *mapping,
2063 loff_t const holebegin, loff_t const holelen)
2064{
2065 unmap_mapping_range(mapping, holebegin, holelen, 0);
2066}
2067
2068extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2069 void *buf, int len, unsigned int gup_flags);
2070extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2071 void *buf, int len, unsigned int gup_flags);
2072extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2073 void *buf, int len, unsigned int gup_flags);
2074
2075long get_user_pages_remote(struct mm_struct *mm,
2076 unsigned long start, unsigned long nr_pages,
2077 unsigned int gup_flags, struct page **pages,
2078 struct vm_area_struct **vmas, int *locked);
2079long pin_user_pages_remote(struct mm_struct *mm,
2080 unsigned long start, unsigned long nr_pages,
2081 unsigned int gup_flags, struct page **pages,
2082 struct vm_area_struct **vmas, int *locked);
2083long get_user_pages(unsigned long start, unsigned long nr_pages,
2084 unsigned int gup_flags, struct page **pages,
2085 struct vm_area_struct **vmas);
2086long pin_user_pages(unsigned long start, unsigned long nr_pages,
2087 unsigned int gup_flags, struct page **pages,
2088 struct vm_area_struct **vmas);
2089long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2090 struct page **pages, unsigned int gup_flags);
2091long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2092 struct page **pages, unsigned int gup_flags);
2093
2094int get_user_pages_fast(unsigned long start, int nr_pages,
2095 unsigned int gup_flags, struct page **pages);
2096int pin_user_pages_fast(unsigned long start, int nr_pages,
2097 unsigned int gup_flags, struct page **pages);
2098
2099int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2100int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2101 struct task_struct *task, bool bypass_rlim);
2102
2103struct kvec;
2104int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
2105 struct page **pages);
2106struct page *get_dump_page(unsigned long addr);
2107
2108bool folio_mark_dirty(struct folio *folio);
2109bool set_page_dirty(struct page *page);
2110int set_page_dirty_lock(struct page *page);
2111
2112int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2113
2114extern unsigned long move_page_tables(struct vm_area_struct *vma,
2115 unsigned long old_addr, struct vm_area_struct *new_vma,
2116 unsigned long new_addr, unsigned long len,
2117 bool need_rmap_locks);
2118
2119/*
2120 * Flags used by change_protection(). For now we make it a bitmap so
2121 * that we can pass in multiple flags just like parameters. However
2122 * for now all the callers are only use one of the flags at the same
2123 * time.
2124 */
2125/*
2126 * Whether we should manually check if we can map individual PTEs writable,
2127 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2128 * PTEs automatically in a writable mapping.
2129 */
2130#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2131/* Whether this protection change is for NUMA hints */
2132#define MM_CP_PROT_NUMA (1UL << 1)
2133/* Whether this change is for write protecting */
2134#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2135#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2136#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2137 MM_CP_UFFD_WP_RESOLVE)
2138
2139int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2140static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2141{
2142 /*
2143 * We want to check manually if we can change individual PTEs writable
2144 * if we can't do that automatically for all PTEs in a mapping. For
2145 * private mappings, that's always the case when we have write
2146 * permissions as we properly have to handle COW.
2147 */
2148 if (vma->vm_flags & VM_SHARED)
2149 return vma_wants_writenotify(vma, vma->vm_page_prot);
2150 return !!(vma->vm_flags & VM_WRITE);
2151
2152}
2153bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2154 pte_t pte);
2155extern unsigned long change_protection(struct mmu_gather *tlb,
2156 struct vm_area_struct *vma, unsigned long start,
2157 unsigned long end, pgprot_t newprot,
2158 unsigned long cp_flags);
2159extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
2160 struct vm_area_struct **pprev, unsigned long start,
2161 unsigned long end, unsigned long newflags);
2162
2163/*
2164 * doesn't attempt to fault and will return short.
2165 */
2166int get_user_pages_fast_only(unsigned long start, int nr_pages,
2167 unsigned int gup_flags, struct page **pages);
2168int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2169 unsigned int gup_flags, struct page **pages);
2170
2171static inline bool get_user_page_fast_only(unsigned long addr,
2172 unsigned int gup_flags, struct page **pagep)
2173{
2174 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2175}
2176/*
2177 * per-process(per-mm_struct) statistics.
2178 */
2179static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2180{
2181 return percpu_counter_read_positive(&mm->rss_stat[member]);
2182}
2183
2184void mm_trace_rss_stat(struct mm_struct *mm, int member);
2185
2186static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2187{
2188 percpu_counter_add(&mm->rss_stat[member], value);
2189
2190 mm_trace_rss_stat(mm, member);
2191}
2192
2193static inline void inc_mm_counter(struct mm_struct *mm, int member)
2194{
2195 percpu_counter_inc(&mm->rss_stat[member]);
2196
2197 mm_trace_rss_stat(mm, member);
2198}
2199
2200static inline void dec_mm_counter(struct mm_struct *mm, int member)
2201{
2202 percpu_counter_dec(&mm->rss_stat[member]);
2203
2204 mm_trace_rss_stat(mm, member);
2205}
2206
2207/* Optimized variant when page is already known not to be PageAnon */
2208static inline int mm_counter_file(struct page *page)
2209{
2210 if (PageSwapBacked(page))
2211 return MM_SHMEMPAGES;
2212 return MM_FILEPAGES;
2213}
2214
2215static inline int mm_counter(struct page *page)
2216{
2217 if (PageAnon(page))
2218 return MM_ANONPAGES;
2219 return mm_counter_file(page);
2220}
2221
2222static inline unsigned long get_mm_rss(struct mm_struct *mm)
2223{
2224 return get_mm_counter(mm, MM_FILEPAGES) +
2225 get_mm_counter(mm, MM_ANONPAGES) +
2226 get_mm_counter(mm, MM_SHMEMPAGES);
2227}
2228
2229static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2230{
2231 return max(mm->hiwater_rss, get_mm_rss(mm));
2232}
2233
2234static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2235{
2236 return max(mm->hiwater_vm, mm->total_vm);
2237}
2238
2239static inline void update_hiwater_rss(struct mm_struct *mm)
2240{
2241 unsigned long _rss = get_mm_rss(mm);
2242
2243 if ((mm)->hiwater_rss < _rss)
2244 (mm)->hiwater_rss = _rss;
2245}
2246
2247static inline void update_hiwater_vm(struct mm_struct *mm)
2248{
2249 if (mm->hiwater_vm < mm->total_vm)
2250 mm->hiwater_vm = mm->total_vm;
2251}
2252
2253static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2254{
2255 mm->hiwater_rss = get_mm_rss(mm);
2256}
2257
2258static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2259 struct mm_struct *mm)
2260{
2261 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2262
2263 if (*maxrss < hiwater_rss)
2264 *maxrss = hiwater_rss;
2265}
2266
2267#if defined(SPLIT_RSS_COUNTING)
2268void sync_mm_rss(struct mm_struct *mm);
2269#else
2270static inline void sync_mm_rss(struct mm_struct *mm)
2271{
2272}
2273#endif
2274
2275#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2276static inline int pte_special(pte_t pte)
2277{
2278 return 0;
2279}
2280
2281static inline pte_t pte_mkspecial(pte_t pte)
2282{
2283 return pte;
2284}
2285#endif
2286
2287#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2288static inline int pte_devmap(pte_t pte)
2289{
2290 return 0;
2291}
2292#endif
2293
2294extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2295 spinlock_t **ptl);
2296static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2297 spinlock_t **ptl)
2298{
2299 pte_t *ptep;
2300 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2301 return ptep;
2302}
2303
2304#ifdef __PAGETABLE_P4D_FOLDED
2305static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2306 unsigned long address)
2307{
2308 return 0;
2309}
2310#else
2311int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2312#endif
2313
2314#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2315static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2316 unsigned long address)
2317{
2318 return 0;
2319}
2320static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2321static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2322
2323#else
2324int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2325
2326static inline void mm_inc_nr_puds(struct mm_struct *mm)
2327{
2328 if (mm_pud_folded(mm))
2329 return;
2330 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2331}
2332
2333static inline void mm_dec_nr_puds(struct mm_struct *mm)
2334{
2335 if (mm_pud_folded(mm))
2336 return;
2337 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2338}
2339#endif
2340
2341#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2342static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2343 unsigned long address)
2344{
2345 return 0;
2346}
2347
2348static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2349static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2350
2351#else
2352int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2353
2354static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2355{
2356 if (mm_pmd_folded(mm))
2357 return;
2358 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2359}
2360
2361static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2362{
2363 if (mm_pmd_folded(mm))
2364 return;
2365 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2366}
2367#endif
2368
2369#ifdef CONFIG_MMU
2370static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2371{
2372 atomic_long_set(&mm->pgtables_bytes, 0);
2373}
2374
2375static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2376{
2377 return atomic_long_read(&mm->pgtables_bytes);
2378}
2379
2380static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2381{
2382 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2383}
2384
2385static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2386{
2387 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2388}
2389#else
2390
2391static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2392static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2393{
2394 return 0;
2395}
2396
2397static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2398static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2399#endif
2400
2401int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2402int __pte_alloc_kernel(pmd_t *pmd);
2403
2404#if defined(CONFIG_MMU)
2405
2406static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2407 unsigned long address)
2408{
2409 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2410 NULL : p4d_offset(pgd, address);
2411}
2412
2413static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2414 unsigned long address)
2415{
2416 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2417 NULL : pud_offset(p4d, address);
2418}
2419
2420static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2421{
2422 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2423 NULL: pmd_offset(pud, address);
2424}
2425#endif /* CONFIG_MMU */
2426
2427#if USE_SPLIT_PTE_PTLOCKS
2428#if ALLOC_SPLIT_PTLOCKS
2429void __init ptlock_cache_init(void);
2430extern bool ptlock_alloc(struct page *page);
2431extern void ptlock_free(struct page *page);
2432
2433static inline spinlock_t *ptlock_ptr(struct page *page)
2434{
2435 return page->ptl;
2436}
2437#else /* ALLOC_SPLIT_PTLOCKS */
2438static inline void ptlock_cache_init(void)
2439{
2440}
2441
2442static inline bool ptlock_alloc(struct page *page)
2443{
2444 return true;
2445}
2446
2447static inline void ptlock_free(struct page *page)
2448{
2449}
2450
2451static inline spinlock_t *ptlock_ptr(struct page *page)
2452{
2453 return &page->ptl;
2454}
2455#endif /* ALLOC_SPLIT_PTLOCKS */
2456
2457static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2458{
2459 return ptlock_ptr(pmd_page(*pmd));
2460}
2461
2462static inline bool ptlock_init(struct page *page)
2463{
2464 /*
2465 * prep_new_page() initialize page->private (and therefore page->ptl)
2466 * with 0. Make sure nobody took it in use in between.
2467 *
2468 * It can happen if arch try to use slab for page table allocation:
2469 * slab code uses page->slab_cache, which share storage with page->ptl.
2470 */
2471 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2472 if (!ptlock_alloc(page))
2473 return false;
2474 spin_lock_init(ptlock_ptr(page));
2475 return true;
2476}
2477
2478#else /* !USE_SPLIT_PTE_PTLOCKS */
2479/*
2480 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2481 */
2482static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2483{
2484 return &mm->page_table_lock;
2485}
2486static inline void ptlock_cache_init(void) {}
2487static inline bool ptlock_init(struct page *page) { return true; }
2488static inline void ptlock_free(struct page *page) {}
2489#endif /* USE_SPLIT_PTE_PTLOCKS */
2490
2491static inline void pgtable_init(void)
2492{
2493 ptlock_cache_init();
2494 pgtable_cache_init();
2495}
2496
2497static inline bool pgtable_pte_page_ctor(struct page *page)
2498{
2499 if (!ptlock_init(page))
2500 return false;
2501 __SetPageTable(page);
2502 inc_lruvec_page_state(page, NR_PAGETABLE);
2503 return true;
2504}
2505
2506static inline void pgtable_pte_page_dtor(struct page *page)
2507{
2508 ptlock_free(page);
2509 __ClearPageTable(page);
2510 dec_lruvec_page_state(page, NR_PAGETABLE);
2511}
2512
2513#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2514({ \
2515 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2516 pte_t *__pte = pte_offset_map(pmd, address); \
2517 *(ptlp) = __ptl; \
2518 spin_lock(__ptl); \
2519 __pte; \
2520})
2521
2522#define pte_unmap_unlock(pte, ptl) do { \
2523 spin_unlock(ptl); \
2524 pte_unmap(pte); \
2525} while (0)
2526
2527#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2528
2529#define pte_alloc_map(mm, pmd, address) \
2530 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2531
2532#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2533 (pte_alloc(mm, pmd) ? \
2534 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2535
2536#define pte_alloc_kernel(pmd, address) \
2537 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2538 NULL: pte_offset_kernel(pmd, address))
2539
2540#if USE_SPLIT_PMD_PTLOCKS
2541
2542static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2543{
2544 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2545 return virt_to_page((void *)((unsigned long) pmd & mask));
2546}
2547
2548static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2549{
2550 return ptlock_ptr(pmd_pgtable_page(pmd));
2551}
2552
2553static inline bool pmd_ptlock_init(struct page *page)
2554{
2555#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2556 page->pmd_huge_pte = NULL;
2557#endif
2558 return ptlock_init(page);
2559}
2560
2561static inline void pmd_ptlock_free(struct page *page)
2562{
2563#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2564 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2565#endif
2566 ptlock_free(page);
2567}
2568
2569#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
2570
2571#else
2572
2573static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2574{
2575 return &mm->page_table_lock;
2576}
2577
2578static inline bool pmd_ptlock_init(struct page *page) { return true; }
2579static inline void pmd_ptlock_free(struct page *page) {}
2580
2581#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2582
2583#endif
2584
2585static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2586{
2587 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2588 spin_lock(ptl);
2589 return ptl;
2590}
2591
2592static inline bool pgtable_pmd_page_ctor(struct page *page)
2593{
2594 if (!pmd_ptlock_init(page))
2595 return false;
2596 __SetPageTable(page);
2597 inc_lruvec_page_state(page, NR_PAGETABLE);
2598 return true;
2599}
2600
2601static inline void pgtable_pmd_page_dtor(struct page *page)
2602{
2603 pmd_ptlock_free(page);
2604 __ClearPageTable(page);
2605 dec_lruvec_page_state(page, NR_PAGETABLE);
2606}
2607
2608/*
2609 * No scalability reason to split PUD locks yet, but follow the same pattern
2610 * as the PMD locks to make it easier if we decide to. The VM should not be
2611 * considered ready to switch to split PUD locks yet; there may be places
2612 * which need to be converted from page_table_lock.
2613 */
2614static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2615{
2616 return &mm->page_table_lock;
2617}
2618
2619static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2620{
2621 spinlock_t *ptl = pud_lockptr(mm, pud);
2622
2623 spin_lock(ptl);
2624 return ptl;
2625}
2626
2627extern void __init pagecache_init(void);
2628extern void free_initmem(void);
2629
2630/*
2631 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2632 * into the buddy system. The freed pages will be poisoned with pattern
2633 * "poison" if it's within range [0, UCHAR_MAX].
2634 * Return pages freed into the buddy system.
2635 */
2636extern unsigned long free_reserved_area(void *start, void *end,
2637 int poison, const char *s);
2638
2639extern void adjust_managed_page_count(struct page *page, long count);
2640extern void mem_init_print_info(void);
2641
2642extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2643
2644/* Free the reserved page into the buddy system, so it gets managed. */
2645static inline void free_reserved_page(struct page *page)
2646{
2647 ClearPageReserved(page);
2648 init_page_count(page);
2649 __free_page(page);
2650 adjust_managed_page_count(page, 1);
2651}
2652#define free_highmem_page(page) free_reserved_page(page)
2653
2654static inline void mark_page_reserved(struct page *page)
2655{
2656 SetPageReserved(page);
2657 adjust_managed_page_count(page, -1);
2658}
2659
2660/*
2661 * Default method to free all the __init memory into the buddy system.
2662 * The freed pages will be poisoned with pattern "poison" if it's within
2663 * range [0, UCHAR_MAX].
2664 * Return pages freed into the buddy system.
2665 */
2666static inline unsigned long free_initmem_default(int poison)
2667{
2668 extern char __init_begin[], __init_end[];
2669
2670 return free_reserved_area(&__init_begin, &__init_end,
2671 poison, "unused kernel image (initmem)");
2672}
2673
2674static inline unsigned long get_num_physpages(void)
2675{
2676 int nid;
2677 unsigned long phys_pages = 0;
2678
2679 for_each_online_node(nid)
2680 phys_pages += node_present_pages(nid);
2681
2682 return phys_pages;
2683}
2684
2685/*
2686 * Using memblock node mappings, an architecture may initialise its
2687 * zones, allocate the backing mem_map and account for memory holes in an
2688 * architecture independent manner.
2689 *
2690 * An architecture is expected to register range of page frames backed by
2691 * physical memory with memblock_add[_node]() before calling
2692 * free_area_init() passing in the PFN each zone ends at. At a basic
2693 * usage, an architecture is expected to do something like
2694 *
2695 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2696 * max_highmem_pfn};
2697 * for_each_valid_physical_page_range()
2698 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2699 * free_area_init(max_zone_pfns);
2700 */
2701void free_area_init(unsigned long *max_zone_pfn);
2702unsigned long node_map_pfn_alignment(void);
2703unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2704 unsigned long end_pfn);
2705extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2706 unsigned long end_pfn);
2707extern void get_pfn_range_for_nid(unsigned int nid,
2708 unsigned long *start_pfn, unsigned long *end_pfn);
2709
2710#ifndef CONFIG_NUMA
2711static inline int early_pfn_to_nid(unsigned long pfn)
2712{
2713 return 0;
2714}
2715#else
2716/* please see mm/page_alloc.c */
2717extern int __meminit early_pfn_to_nid(unsigned long pfn);
2718#endif
2719
2720extern void set_dma_reserve(unsigned long new_dma_reserve);
2721extern void memmap_init_range(unsigned long, int, unsigned long,
2722 unsigned long, unsigned long, enum meminit_context,
2723 struct vmem_altmap *, int migratetype);
2724extern void setup_per_zone_wmarks(void);
2725extern void calculate_min_free_kbytes(void);
2726extern int __meminit init_per_zone_wmark_min(void);
2727extern void mem_init(void);
2728extern void __init mmap_init(void);
2729
2730extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2731static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2732{
2733 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2734}
2735extern long si_mem_available(void);
2736extern void si_meminfo(struct sysinfo * val);
2737extern void si_meminfo_node(struct sysinfo *val, int nid);
2738#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2739extern unsigned long arch_reserved_kernel_pages(void);
2740#endif
2741
2742extern __printf(3, 4)
2743void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2744
2745extern void setup_per_cpu_pageset(void);
2746
2747/* page_alloc.c */
2748extern int min_free_kbytes;
2749extern int watermark_boost_factor;
2750extern int watermark_scale_factor;
2751extern bool arch_has_descending_max_zone_pfns(void);
2752
2753/* nommu.c */
2754extern atomic_long_t mmap_pages_allocated;
2755extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2756
2757/* interval_tree.c */
2758void vma_interval_tree_insert(struct vm_area_struct *node,
2759 struct rb_root_cached *root);
2760void vma_interval_tree_insert_after(struct vm_area_struct *node,
2761 struct vm_area_struct *prev,
2762 struct rb_root_cached *root);
2763void vma_interval_tree_remove(struct vm_area_struct *node,
2764 struct rb_root_cached *root);
2765struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2766 unsigned long start, unsigned long last);
2767struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2768 unsigned long start, unsigned long last);
2769
2770#define vma_interval_tree_foreach(vma, root, start, last) \
2771 for (vma = vma_interval_tree_iter_first(root, start, last); \
2772 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2773
2774void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2775 struct rb_root_cached *root);
2776void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2777 struct rb_root_cached *root);
2778struct anon_vma_chain *
2779anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2780 unsigned long start, unsigned long last);
2781struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2782 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2783#ifdef CONFIG_DEBUG_VM_RB
2784void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2785#endif
2786
2787#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2788 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2789 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2790
2791/* mmap.c */
2792extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2793extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2794 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2795 struct vm_area_struct *expand);
2796static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2797 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2798{
2799 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2800}
2801extern struct vm_area_struct *vma_merge(struct mm_struct *,
2802 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2803 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2804 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2805extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2806extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2807 unsigned long addr, int new_below);
2808extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2809 unsigned long addr, int new_below);
2810extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2811extern void unlink_file_vma(struct vm_area_struct *);
2812extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2813 unsigned long addr, unsigned long len, pgoff_t pgoff,
2814 bool *need_rmap_locks);
2815extern void exit_mmap(struct mm_struct *);
2816
2817void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas);
2818void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas);
2819
2820static inline int check_data_rlimit(unsigned long rlim,
2821 unsigned long new,
2822 unsigned long start,
2823 unsigned long end_data,
2824 unsigned long start_data)
2825{
2826 if (rlim < RLIM_INFINITY) {
2827 if (((new - start) + (end_data - start_data)) > rlim)
2828 return -ENOSPC;
2829 }
2830
2831 return 0;
2832}
2833
2834extern int mm_take_all_locks(struct mm_struct *mm);
2835extern void mm_drop_all_locks(struct mm_struct *mm);
2836
2837extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2838extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2839extern struct file *get_mm_exe_file(struct mm_struct *mm);
2840extern struct file *get_task_exe_file(struct task_struct *task);
2841
2842extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2843extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2844
2845extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2846 const struct vm_special_mapping *sm);
2847extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2848 unsigned long addr, unsigned long len,
2849 unsigned long flags,
2850 const struct vm_special_mapping *spec);
2851/* This is an obsolete alternative to _install_special_mapping. */
2852extern int install_special_mapping(struct mm_struct *mm,
2853 unsigned long addr, unsigned long len,
2854 unsigned long flags, struct page **pages);
2855
2856unsigned long randomize_stack_top(unsigned long stack_top);
2857unsigned long randomize_page(unsigned long start, unsigned long range);
2858
2859extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2860
2861extern unsigned long mmap_region(struct file *file, unsigned long addr,
2862 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2863 struct list_head *uf);
2864extern unsigned long do_mmap(struct file *file, unsigned long addr,
2865 unsigned long len, unsigned long prot, unsigned long flags,
2866 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2867extern int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
2868 unsigned long start, size_t len, struct list_head *uf,
2869 bool downgrade);
2870extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2871 struct list_head *uf);
2872extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2873
2874#ifdef CONFIG_MMU
2875extern int __mm_populate(unsigned long addr, unsigned long len,
2876 int ignore_errors);
2877static inline void mm_populate(unsigned long addr, unsigned long len)
2878{
2879 /* Ignore errors */
2880 (void) __mm_populate(addr, len, 1);
2881}
2882#else
2883static inline void mm_populate(unsigned long addr, unsigned long len) {}
2884#endif
2885
2886/* These take the mm semaphore themselves */
2887extern int __must_check vm_brk(unsigned long, unsigned long);
2888extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2889extern int vm_munmap(unsigned long, size_t);
2890extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2891 unsigned long, unsigned long,
2892 unsigned long, unsigned long);
2893
2894struct vm_unmapped_area_info {
2895#define VM_UNMAPPED_AREA_TOPDOWN 1
2896 unsigned long flags;
2897 unsigned long length;
2898 unsigned long low_limit;
2899 unsigned long high_limit;
2900 unsigned long align_mask;
2901 unsigned long align_offset;
2902};
2903
2904extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2905
2906/* truncate.c */
2907extern void truncate_inode_pages(struct address_space *, loff_t);
2908extern void truncate_inode_pages_range(struct address_space *,
2909 loff_t lstart, loff_t lend);
2910extern void truncate_inode_pages_final(struct address_space *);
2911
2912/* generic vm_area_ops exported for stackable file systems */
2913extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2914extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2915 pgoff_t start_pgoff, pgoff_t end_pgoff);
2916extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2917
2918extern unsigned long stack_guard_gap;
2919/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2920extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2921
2922/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2923extern int expand_downwards(struct vm_area_struct *vma,
2924 unsigned long address);
2925#if VM_GROWSUP
2926extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2927#else
2928 #define expand_upwards(vma, address) (0)
2929#endif
2930
2931/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2932extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2933extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2934 struct vm_area_struct **pprev);
2935
2936/*
2937 * Look up the first VMA which intersects the interval [start_addr, end_addr)
2938 * NULL if none. Assume start_addr < end_addr.
2939 */
2940struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2941 unsigned long start_addr, unsigned long end_addr);
2942
2943/**
2944 * vma_lookup() - Find a VMA at a specific address
2945 * @mm: The process address space.
2946 * @addr: The user address.
2947 *
2948 * Return: The vm_area_struct at the given address, %NULL otherwise.
2949 */
2950static inline
2951struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2952{
2953 return mtree_load(&mm->mm_mt, addr);
2954}
2955
2956static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2957{
2958 unsigned long vm_start = vma->vm_start;
2959
2960 if (vma->vm_flags & VM_GROWSDOWN) {
2961 vm_start -= stack_guard_gap;
2962 if (vm_start > vma->vm_start)
2963 vm_start = 0;
2964 }
2965 return vm_start;
2966}
2967
2968static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2969{
2970 unsigned long vm_end = vma->vm_end;
2971
2972 if (vma->vm_flags & VM_GROWSUP) {
2973 vm_end += stack_guard_gap;
2974 if (vm_end < vma->vm_end)
2975 vm_end = -PAGE_SIZE;
2976 }
2977 return vm_end;
2978}
2979
2980static inline unsigned long vma_pages(struct vm_area_struct *vma)
2981{
2982 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2983}
2984
2985/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2986static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2987 unsigned long vm_start, unsigned long vm_end)
2988{
2989 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
2990
2991 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2992 vma = NULL;
2993
2994 return vma;
2995}
2996
2997static inline bool range_in_vma(struct vm_area_struct *vma,
2998 unsigned long start, unsigned long end)
2999{
3000 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3001}
3002
3003#ifdef CONFIG_MMU
3004pgprot_t vm_get_page_prot(unsigned long vm_flags);
3005void vma_set_page_prot(struct vm_area_struct *vma);
3006#else
3007static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3008{
3009 return __pgprot(0);
3010}
3011static inline void vma_set_page_prot(struct vm_area_struct *vma)
3012{
3013 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3014}
3015#endif
3016
3017void vma_set_file(struct vm_area_struct *vma, struct file *file);
3018
3019#ifdef CONFIG_NUMA_BALANCING
3020unsigned long change_prot_numa(struct vm_area_struct *vma,
3021 unsigned long start, unsigned long end);
3022#endif
3023
3024struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
3025int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3026 unsigned long pfn, unsigned long size, pgprot_t);
3027int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3028 unsigned long pfn, unsigned long size, pgprot_t prot);
3029int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3030int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3031 struct page **pages, unsigned long *num);
3032int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3033 unsigned long num);
3034int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3035 unsigned long num);
3036vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3037 unsigned long pfn);
3038vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3039 unsigned long pfn, pgprot_t pgprot);
3040vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3041 pfn_t pfn);
3042vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
3043 pfn_t pfn, pgprot_t pgprot);
3044vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3045 unsigned long addr, pfn_t pfn);
3046int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3047
3048static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3049 unsigned long addr, struct page *page)
3050{
3051 int err = vm_insert_page(vma, addr, page);
3052
3053 if (err == -ENOMEM)
3054 return VM_FAULT_OOM;
3055 if (err < 0 && err != -EBUSY)
3056 return VM_FAULT_SIGBUS;
3057
3058 return VM_FAULT_NOPAGE;
3059}
3060
3061#ifndef io_remap_pfn_range
3062static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3063 unsigned long addr, unsigned long pfn,
3064 unsigned long size, pgprot_t prot)
3065{
3066 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3067}
3068#endif
3069
3070static inline vm_fault_t vmf_error(int err)
3071{
3072 if (err == -ENOMEM)
3073 return VM_FAULT_OOM;
3074 return VM_FAULT_SIGBUS;
3075}
3076
3077struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3078 unsigned int foll_flags);
3079
3080#define FOLL_WRITE 0x01 /* check pte is writable */
3081#define FOLL_TOUCH 0x02 /* mark page accessed */
3082#define FOLL_GET 0x04 /* do get_page on page */
3083#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
3084#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
3085#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
3086 * and return without waiting upon it */
3087#define FOLL_NOFAULT 0x80 /* do not fault in pages */
3088#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
3089#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
3090#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
3091#define FOLL_ANON 0x8000 /* don't do file mappings */
3092#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
3093#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
3094#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
3095#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
3096#define FOLL_PCI_P2PDMA 0x100000 /* allow returning PCI P2PDMA pages */
3097#define FOLL_INTERRUPTIBLE 0x200000 /* allow interrupts from generic signals */
3098
3099/*
3100 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
3101 * other. Here is what they mean, and how to use them:
3102 *
3103 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
3104 * period _often_ under userspace control. This is in contrast to
3105 * iov_iter_get_pages(), whose usages are transient.
3106 *
3107 * FIXME: For pages which are part of a filesystem, mappings are subject to the
3108 * lifetime enforced by the filesystem and we need guarantees that longterm
3109 * users like RDMA and V4L2 only establish mappings which coordinate usage with
3110 * the filesystem. Ideas for this coordination include revoking the longterm
3111 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
3112 * added after the problem with filesystems was found FS DAX VMAs are
3113 * specifically failed. Filesystem pages are still subject to bugs and use of
3114 * FOLL_LONGTERM should be avoided on those pages.
3115 *
3116 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
3117 * Currently only get_user_pages() and get_user_pages_fast() support this flag
3118 * and calls to get_user_pages_[un]locked are specifically not allowed. This
3119 * is due to an incompatibility with the FS DAX check and
3120 * FAULT_FLAG_ALLOW_RETRY.
3121 *
3122 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
3123 * that region. And so, CMA attempts to migrate the page before pinning, when
3124 * FOLL_LONGTERM is specified.
3125 *
3126 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
3127 * but an additional pin counting system) will be invoked. This is intended for
3128 * anything that gets a page reference and then touches page data (for example,
3129 * Direct IO). This lets the filesystem know that some non-file-system entity is
3130 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
3131 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
3132 * a call to unpin_user_page().
3133 *
3134 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
3135 * and separate refcounting mechanisms, however, and that means that each has
3136 * its own acquire and release mechanisms:
3137 *
3138 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
3139 *
3140 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
3141 *
3142 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
3143 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
3144 * calls applied to them, and that's perfectly OK. This is a constraint on the
3145 * callers, not on the pages.)
3146 *
3147 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
3148 * directly by the caller. That's in order to help avoid mismatches when
3149 * releasing pages: get_user_pages*() pages must be released via put_page(),
3150 * while pin_user_pages*() pages must be released via unpin_user_page().
3151 *
3152 * Please see Documentation/core-api/pin_user_pages.rst for more information.
3153 */
3154
3155static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3156{
3157 if (vm_fault & VM_FAULT_OOM)
3158 return -ENOMEM;
3159 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3160 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3161 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3162 return -EFAULT;
3163 return 0;
3164}
3165
3166/*
3167 * Indicates for which pages that are write-protected in the page table,
3168 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
3169 * GUP pin will remain consistent with the pages mapped into the page tables
3170 * of the MM.
3171 *
3172 * Temporary unmapping of PageAnonExclusive() pages or clearing of
3173 * PageAnonExclusive() has to protect against concurrent GUP:
3174 * * Ordinary GUP: Using the PT lock
3175 * * GUP-fast and fork(): mm->write_protect_seq
3176 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
3177 * page_try_share_anon_rmap()
3178 *
3179 * Must be called with the (sub)page that's actually referenced via the
3180 * page table entry, which might not necessarily be the head page for a
3181 * PTE-mapped THP.
3182 *
3183 * If the vma is NULL, we're coming from the GUP-fast path and might have
3184 * to fallback to the slow path just to lookup the vma.
3185 */
3186static inline bool gup_must_unshare(struct vm_area_struct *vma,
3187 unsigned int flags, struct page *page)
3188{
3189 /*
3190 * FOLL_WRITE is implicitly handled correctly as the page table entry
3191 * has to be writable -- and if it references (part of) an anonymous
3192 * folio, that part is required to be marked exclusive.
3193 */
3194 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
3195 return false;
3196 /*
3197 * Note: PageAnon(page) is stable until the page is actually getting
3198 * freed.
3199 */
3200 if (!PageAnon(page)) {
3201 /*
3202 * We only care about R/O long-term pining: R/O short-term
3203 * pinning does not have the semantics to observe successive
3204 * changes through the process page tables.
3205 */
3206 if (!(flags & FOLL_LONGTERM))
3207 return false;
3208
3209 /* We really need the vma ... */
3210 if (!vma)
3211 return true;
3212
3213 /*
3214 * ... because we only care about writable private ("COW")
3215 * mappings where we have to break COW early.
3216 */
3217 return is_cow_mapping(vma->vm_flags);
3218 }
3219
3220 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
3221 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
3222 smp_rmb();
3223
3224 /*
3225 * Note that PageKsm() pages cannot be exclusive, and consequently,
3226 * cannot get pinned.
3227 */
3228 return !PageAnonExclusive(page);
3229}
3230
3231/*
3232 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3233 * a (NUMA hinting) fault is required.
3234 */
3235static inline bool gup_can_follow_protnone(unsigned int flags)
3236{
3237 /*
3238 * FOLL_FORCE has to be able to make progress even if the VMA is
3239 * inaccessible. Further, FOLL_FORCE access usually does not represent
3240 * application behaviour and we should avoid triggering NUMA hinting
3241 * faults.
3242 */
3243 return flags & FOLL_FORCE;
3244}
3245
3246typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3247extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3248 unsigned long size, pte_fn_t fn, void *data);
3249extern int apply_to_existing_page_range(struct mm_struct *mm,
3250 unsigned long address, unsigned long size,
3251 pte_fn_t fn, void *data);
3252
3253extern void __init init_mem_debugging_and_hardening(void);
3254#ifdef CONFIG_PAGE_POISONING
3255extern void __kernel_poison_pages(struct page *page, int numpages);
3256extern void __kernel_unpoison_pages(struct page *page, int numpages);
3257extern bool _page_poisoning_enabled_early;
3258DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3259static inline bool page_poisoning_enabled(void)
3260{
3261 return _page_poisoning_enabled_early;
3262}
3263/*
3264 * For use in fast paths after init_mem_debugging() has run, or when a
3265 * false negative result is not harmful when called too early.
3266 */
3267static inline bool page_poisoning_enabled_static(void)
3268{
3269 return static_branch_unlikely(&_page_poisoning_enabled);
3270}
3271static inline void kernel_poison_pages(struct page *page, int numpages)
3272{
3273 if (page_poisoning_enabled_static())
3274 __kernel_poison_pages(page, numpages);
3275}
3276static inline void kernel_unpoison_pages(struct page *page, int numpages)
3277{
3278 if (page_poisoning_enabled_static())
3279 __kernel_unpoison_pages(page, numpages);
3280}
3281#else
3282static inline bool page_poisoning_enabled(void) { return false; }
3283static inline bool page_poisoning_enabled_static(void) { return false; }
3284static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3285static inline void kernel_poison_pages(struct page *page, int numpages) { }
3286static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3287#endif
3288
3289DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3290static inline bool want_init_on_alloc(gfp_t flags)
3291{
3292 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3293 &init_on_alloc))
3294 return true;
3295 return flags & __GFP_ZERO;
3296}
3297
3298DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3299static inline bool want_init_on_free(void)
3300{
3301 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3302 &init_on_free);
3303}
3304
3305extern bool _debug_pagealloc_enabled_early;
3306DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3307
3308static inline bool debug_pagealloc_enabled(void)
3309{
3310 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3311 _debug_pagealloc_enabled_early;
3312}
3313
3314/*
3315 * For use in fast paths after init_debug_pagealloc() has run, or when a
3316 * false negative result is not harmful when called too early.
3317 */
3318static inline bool debug_pagealloc_enabled_static(void)
3319{
3320 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3321 return false;
3322
3323 return static_branch_unlikely(&_debug_pagealloc_enabled);
3324}
3325
3326#ifdef CONFIG_DEBUG_PAGEALLOC
3327/*
3328 * To support DEBUG_PAGEALLOC architecture must ensure that
3329 * __kernel_map_pages() never fails
3330 */
3331extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3332
3333static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3334{
3335 if (debug_pagealloc_enabled_static())
3336 __kernel_map_pages(page, numpages, 1);
3337}
3338
3339static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3340{
3341 if (debug_pagealloc_enabled_static())
3342 __kernel_map_pages(page, numpages, 0);
3343}
3344#else /* CONFIG_DEBUG_PAGEALLOC */
3345static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3346static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3347#endif /* CONFIG_DEBUG_PAGEALLOC */
3348
3349#ifdef __HAVE_ARCH_GATE_AREA
3350extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3351extern int in_gate_area_no_mm(unsigned long addr);
3352extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3353#else
3354static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3355{
3356 return NULL;
3357}
3358static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3359static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3360{
3361 return 0;
3362}
3363#endif /* __HAVE_ARCH_GATE_AREA */
3364
3365extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3366
3367#ifdef CONFIG_SYSCTL
3368extern int sysctl_drop_caches;
3369int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3370 loff_t *);
3371#endif
3372
3373void drop_slab(void);
3374
3375#ifndef CONFIG_MMU
3376#define randomize_va_space 0
3377#else
3378extern int randomize_va_space;
3379#endif
3380
3381const char * arch_vma_name(struct vm_area_struct *vma);
3382#ifdef CONFIG_MMU
3383void print_vma_addr(char *prefix, unsigned long rip);
3384#else
3385static inline void print_vma_addr(char *prefix, unsigned long rip)
3386{
3387}
3388#endif
3389
3390void *sparse_buffer_alloc(unsigned long size);
3391struct page * __populate_section_memmap(unsigned long pfn,
3392 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3393 struct dev_pagemap *pgmap);
3394void pmd_init(void *addr);
3395void pud_init(void *addr);
3396pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3397p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3398pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3399pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3400pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3401 struct vmem_altmap *altmap, struct page *reuse);
3402void *vmemmap_alloc_block(unsigned long size, int node);
3403struct vmem_altmap;
3404void *vmemmap_alloc_block_buf(unsigned long size, int node,
3405 struct vmem_altmap *altmap);
3406void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3407void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3408 unsigned long addr, unsigned long next);
3409int vmemmap_check_pmd(pmd_t *pmd, int node,
3410 unsigned long addr, unsigned long next);
3411int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3412 int node, struct vmem_altmap *altmap);
3413int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3414 int node, struct vmem_altmap *altmap);
3415int vmemmap_populate(unsigned long start, unsigned long end, int node,
3416 struct vmem_altmap *altmap);
3417void vmemmap_populate_print_last(void);
3418#ifdef CONFIG_MEMORY_HOTPLUG
3419void vmemmap_free(unsigned long start, unsigned long end,
3420 struct vmem_altmap *altmap);
3421#endif
3422void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3423 unsigned long nr_pages);
3424
3425enum mf_flags {
3426 MF_COUNT_INCREASED = 1 << 0,
3427 MF_ACTION_REQUIRED = 1 << 1,
3428 MF_MUST_KILL = 1 << 2,
3429 MF_SOFT_OFFLINE = 1 << 3,
3430 MF_UNPOISON = 1 << 4,
3431 MF_SW_SIMULATED = 1 << 5,
3432 MF_NO_RETRY = 1 << 6,
3433};
3434int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3435 unsigned long count, int mf_flags);
3436extern int memory_failure(unsigned long pfn, int flags);
3437extern void memory_failure_queue_kick(int cpu);
3438extern int unpoison_memory(unsigned long pfn);
3439extern int sysctl_memory_failure_early_kill;
3440extern int sysctl_memory_failure_recovery;
3441extern void shake_page(struct page *p);
3442extern atomic_long_t num_poisoned_pages __read_mostly;
3443extern int soft_offline_page(unsigned long pfn, int flags);
3444#ifdef CONFIG_MEMORY_FAILURE
3445extern void memory_failure_queue(unsigned long pfn, int flags);
3446extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3447 bool *migratable_cleared);
3448void num_poisoned_pages_inc(unsigned long pfn);
3449void num_poisoned_pages_sub(unsigned long pfn, long i);
3450#else
3451static inline void memory_failure_queue(unsigned long pfn, int flags)
3452{
3453}
3454
3455static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3456 bool *migratable_cleared)
3457{
3458 return 0;
3459}
3460
3461static inline void num_poisoned_pages_inc(unsigned long pfn)
3462{
3463}
3464
3465static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3466{
3467}
3468#endif
3469
3470#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3471extern void memblk_nr_poison_inc(unsigned long pfn);
3472extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3473#else
3474static inline void memblk_nr_poison_inc(unsigned long pfn)
3475{
3476}
3477
3478static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3479{
3480}
3481#endif
3482
3483#ifndef arch_memory_failure
3484static inline int arch_memory_failure(unsigned long pfn, int flags)
3485{
3486 return -ENXIO;
3487}
3488#endif
3489
3490#ifndef arch_is_platform_page
3491static inline bool arch_is_platform_page(u64 paddr)
3492{
3493 return false;
3494}
3495#endif
3496
3497/*
3498 * Error handlers for various types of pages.
3499 */
3500enum mf_result {
3501 MF_IGNORED, /* Error: cannot be handled */
3502 MF_FAILED, /* Error: handling failed */
3503 MF_DELAYED, /* Will be handled later */
3504 MF_RECOVERED, /* Successfully recovered */
3505};
3506
3507enum mf_action_page_type {
3508 MF_MSG_KERNEL,
3509 MF_MSG_KERNEL_HIGH_ORDER,
3510 MF_MSG_SLAB,
3511 MF_MSG_DIFFERENT_COMPOUND,
3512 MF_MSG_HUGE,
3513 MF_MSG_FREE_HUGE,
3514 MF_MSG_UNMAP_FAILED,
3515 MF_MSG_DIRTY_SWAPCACHE,
3516 MF_MSG_CLEAN_SWAPCACHE,
3517 MF_MSG_DIRTY_MLOCKED_LRU,
3518 MF_MSG_CLEAN_MLOCKED_LRU,
3519 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3520 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3521 MF_MSG_DIRTY_LRU,
3522 MF_MSG_CLEAN_LRU,
3523 MF_MSG_TRUNCATED_LRU,
3524 MF_MSG_BUDDY,
3525 MF_MSG_DAX,
3526 MF_MSG_UNSPLIT_THP,
3527 MF_MSG_UNKNOWN,
3528};
3529
3530#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3531extern void clear_huge_page(struct page *page,
3532 unsigned long addr_hint,
3533 unsigned int pages_per_huge_page);
3534extern void copy_user_huge_page(struct page *dst, struct page *src,
3535 unsigned long addr_hint,
3536 struct vm_area_struct *vma,
3537 unsigned int pages_per_huge_page);
3538extern long copy_huge_page_from_user(struct page *dst_page,
3539 const void __user *usr_src,
3540 unsigned int pages_per_huge_page,
3541 bool allow_pagefault);
3542
3543/**
3544 * vma_is_special_huge - Are transhuge page-table entries considered special?
3545 * @vma: Pointer to the struct vm_area_struct to consider
3546 *
3547 * Whether transhuge page-table entries are considered "special" following
3548 * the definition in vm_normal_page().
3549 *
3550 * Return: true if transhuge page-table entries should be considered special,
3551 * false otherwise.
3552 */
3553static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3554{
3555 return vma_is_dax(vma) || (vma->vm_file &&
3556 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3557}
3558
3559#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3560
3561#ifdef CONFIG_DEBUG_PAGEALLOC
3562extern unsigned int _debug_guardpage_minorder;
3563DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3564
3565static inline unsigned int debug_guardpage_minorder(void)
3566{
3567 return _debug_guardpage_minorder;
3568}
3569
3570static inline bool debug_guardpage_enabled(void)
3571{
3572 return static_branch_unlikely(&_debug_guardpage_enabled);
3573}
3574
3575static inline bool page_is_guard(struct page *page)
3576{
3577 if (!debug_guardpage_enabled())
3578 return false;
3579
3580 return PageGuard(page);
3581}
3582#else
3583static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3584static inline bool debug_guardpage_enabled(void) { return false; }
3585static inline bool page_is_guard(struct page *page) { return false; }
3586#endif /* CONFIG_DEBUG_PAGEALLOC */
3587
3588#if MAX_NUMNODES > 1
3589void __init setup_nr_node_ids(void);
3590#else
3591static inline void setup_nr_node_ids(void) {}
3592#endif
3593
3594extern int memcmp_pages(struct page *page1, struct page *page2);
3595
3596static inline int pages_identical(struct page *page1, struct page *page2)
3597{
3598 return !memcmp_pages(page1, page2);
3599}
3600
3601#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3602unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3603 pgoff_t first_index, pgoff_t nr,
3604 pgoff_t bitmap_pgoff,
3605 unsigned long *bitmap,
3606 pgoff_t *start,
3607 pgoff_t *end);
3608
3609unsigned long wp_shared_mapping_range(struct address_space *mapping,
3610 pgoff_t first_index, pgoff_t nr);
3611#endif
3612
3613extern int sysctl_nr_trim_pages;
3614
3615#ifdef CONFIG_PRINTK
3616void mem_dump_obj(void *object);
3617#else
3618static inline void mem_dump_obj(void *object) {}
3619#endif
3620
3621/**
3622 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3623 * @seals: the seals to check
3624 * @vma: the vma to operate on
3625 *
3626 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3627 * the vma flags. Return 0 if check pass, or <0 for errors.
3628 */
3629static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3630{
3631 if (seals & F_SEAL_FUTURE_WRITE) {
3632 /*
3633 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3634 * "future write" seal active.
3635 */
3636 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3637 return -EPERM;
3638
3639 /*
3640 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3641 * MAP_SHARED and read-only, take care to not allow mprotect to
3642 * revert protections on such mappings. Do this only for shared
3643 * mappings. For private mappings, don't need to mask
3644 * VM_MAYWRITE as we still want them to be COW-writable.
3645 */
3646 if (vma->vm_flags & VM_SHARED)
3647 vma->vm_flags &= ~(VM_MAYWRITE);
3648 }
3649
3650 return 0;
3651}
3652
3653#ifdef CONFIG_ANON_VMA_NAME
3654int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3655 unsigned long len_in,
3656 struct anon_vma_name *anon_name);
3657#else
3658static inline int
3659madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3660 unsigned long len_in, struct anon_vma_name *anon_name) {
3661 return 0;
3662}
3663#endif
3664
3665#endif /* _LINUX_MM_H */