at v6.2 116 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6#include <linux/mmdebug.h> 7#include <linux/gfp.h> 8#include <linux/bug.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/atomic.h> 13#include <linux/debug_locks.h> 14#include <linux/mm_types.h> 15#include <linux/mmap_lock.h> 16#include <linux/range.h> 17#include <linux/pfn.h> 18#include <linux/percpu-refcount.h> 19#include <linux/bit_spinlock.h> 20#include <linux/shrinker.h> 21#include <linux/resource.h> 22#include <linux/page_ext.h> 23#include <linux/err.h> 24#include <linux/page-flags.h> 25#include <linux/page_ref.h> 26#include <linux/overflow.h> 27#include <linux/sizes.h> 28#include <linux/sched.h> 29#include <linux/pgtable.h> 30#include <linux/kasan.h> 31#include <linux/memremap.h> 32 33struct mempolicy; 34struct anon_vma; 35struct anon_vma_chain; 36struct user_struct; 37struct pt_regs; 38 39extern int sysctl_page_lock_unfairness; 40 41void init_mm_internals(void); 42 43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 44extern unsigned long max_mapnr; 45 46static inline void set_max_mapnr(unsigned long limit) 47{ 48 max_mapnr = limit; 49} 50#else 51static inline void set_max_mapnr(unsigned long limit) { } 52#endif 53 54extern atomic_long_t _totalram_pages; 55static inline unsigned long totalram_pages(void) 56{ 57 return (unsigned long)atomic_long_read(&_totalram_pages); 58} 59 60static inline void totalram_pages_inc(void) 61{ 62 atomic_long_inc(&_totalram_pages); 63} 64 65static inline void totalram_pages_dec(void) 66{ 67 atomic_long_dec(&_totalram_pages); 68} 69 70static inline void totalram_pages_add(long count) 71{ 72 atomic_long_add(count, &_totalram_pages); 73} 74 75extern void * high_memory; 76extern int page_cluster; 77extern const int page_cluster_max; 78 79#ifdef CONFIG_SYSCTL 80extern int sysctl_legacy_va_layout; 81#else 82#define sysctl_legacy_va_layout 0 83#endif 84 85#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 86extern const int mmap_rnd_bits_min; 87extern const int mmap_rnd_bits_max; 88extern int mmap_rnd_bits __read_mostly; 89#endif 90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 91extern const int mmap_rnd_compat_bits_min; 92extern const int mmap_rnd_compat_bits_max; 93extern int mmap_rnd_compat_bits __read_mostly; 94#endif 95 96#include <asm/page.h> 97#include <asm/processor.h> 98 99/* 100 * Architectures that support memory tagging (assigning tags to memory regions, 101 * embedding these tags into addresses that point to these memory regions, and 102 * checking that the memory and the pointer tags match on memory accesses) 103 * redefine this macro to strip tags from pointers. 104 * It's defined as noop for architectures that don't support memory tagging. 105 */ 106#ifndef untagged_addr 107#define untagged_addr(addr) (addr) 108#endif 109 110#ifndef __pa_symbol 111#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 112#endif 113 114#ifndef page_to_virt 115#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 116#endif 117 118#ifndef lm_alias 119#define lm_alias(x) __va(__pa_symbol(x)) 120#endif 121 122/* 123 * To prevent common memory management code establishing 124 * a zero page mapping on a read fault. 125 * This macro should be defined within <asm/pgtable.h>. 126 * s390 does this to prevent multiplexing of hardware bits 127 * related to the physical page in case of virtualization. 128 */ 129#ifndef mm_forbids_zeropage 130#define mm_forbids_zeropage(X) (0) 131#endif 132 133/* 134 * On some architectures it is expensive to call memset() for small sizes. 135 * If an architecture decides to implement their own version of 136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 137 * define their own version of this macro in <asm/pgtable.h> 138 */ 139#if BITS_PER_LONG == 64 140/* This function must be updated when the size of struct page grows above 96 141 * or reduces below 56. The idea that compiler optimizes out switch() 142 * statement, and only leaves move/store instructions. Also the compiler can 143 * combine write statements if they are both assignments and can be reordered, 144 * this can result in several of the writes here being dropped. 145 */ 146#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 147static inline void __mm_zero_struct_page(struct page *page) 148{ 149 unsigned long *_pp = (void *)page; 150 151 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 152 BUILD_BUG_ON(sizeof(struct page) & 7); 153 BUILD_BUG_ON(sizeof(struct page) < 56); 154 BUILD_BUG_ON(sizeof(struct page) > 96); 155 156 switch (sizeof(struct page)) { 157 case 96: 158 _pp[11] = 0; 159 fallthrough; 160 case 88: 161 _pp[10] = 0; 162 fallthrough; 163 case 80: 164 _pp[9] = 0; 165 fallthrough; 166 case 72: 167 _pp[8] = 0; 168 fallthrough; 169 case 64: 170 _pp[7] = 0; 171 fallthrough; 172 case 56: 173 _pp[6] = 0; 174 _pp[5] = 0; 175 _pp[4] = 0; 176 _pp[3] = 0; 177 _pp[2] = 0; 178 _pp[1] = 0; 179 _pp[0] = 0; 180 } 181} 182#else 183#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 184#endif 185 186/* 187 * Default maximum number of active map areas, this limits the number of vmas 188 * per mm struct. Users can overwrite this number by sysctl but there is a 189 * problem. 190 * 191 * When a program's coredump is generated as ELF format, a section is created 192 * per a vma. In ELF, the number of sections is represented in unsigned short. 193 * This means the number of sections should be smaller than 65535 at coredump. 194 * Because the kernel adds some informative sections to a image of program at 195 * generating coredump, we need some margin. The number of extra sections is 196 * 1-3 now and depends on arch. We use "5" as safe margin, here. 197 * 198 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 199 * not a hard limit any more. Although some userspace tools can be surprised by 200 * that. 201 */ 202#define MAPCOUNT_ELF_CORE_MARGIN (5) 203#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 204 205extern int sysctl_max_map_count; 206 207extern unsigned long sysctl_user_reserve_kbytes; 208extern unsigned long sysctl_admin_reserve_kbytes; 209 210extern int sysctl_overcommit_memory; 211extern int sysctl_overcommit_ratio; 212extern unsigned long sysctl_overcommit_kbytes; 213 214int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 215 loff_t *); 216int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 217 loff_t *); 218int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 219 loff_t *); 220 221#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 222#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 223#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 224#else 225#define nth_page(page,n) ((page) + (n)) 226#define folio_page_idx(folio, p) ((p) - &(folio)->page) 227#endif 228 229/* to align the pointer to the (next) page boundary */ 230#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 231 232/* to align the pointer to the (prev) page boundary */ 233#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 234 235/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 236#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 237 238#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 239static inline struct folio *lru_to_folio(struct list_head *head) 240{ 241 return list_entry((head)->prev, struct folio, lru); 242} 243 244void setup_initial_init_mm(void *start_code, void *end_code, 245 void *end_data, void *brk); 246 247/* 248 * Linux kernel virtual memory manager primitives. 249 * The idea being to have a "virtual" mm in the same way 250 * we have a virtual fs - giving a cleaner interface to the 251 * mm details, and allowing different kinds of memory mappings 252 * (from shared memory to executable loading to arbitrary 253 * mmap() functions). 254 */ 255 256struct vm_area_struct *vm_area_alloc(struct mm_struct *); 257struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 258void vm_area_free(struct vm_area_struct *); 259 260#ifndef CONFIG_MMU 261extern struct rb_root nommu_region_tree; 262extern struct rw_semaphore nommu_region_sem; 263 264extern unsigned int kobjsize(const void *objp); 265#endif 266 267/* 268 * vm_flags in vm_area_struct, see mm_types.h. 269 * When changing, update also include/trace/events/mmflags.h 270 */ 271#define VM_NONE 0x00000000 272 273#define VM_READ 0x00000001 /* currently active flags */ 274#define VM_WRITE 0x00000002 275#define VM_EXEC 0x00000004 276#define VM_SHARED 0x00000008 277 278/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 279#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 280#define VM_MAYWRITE 0x00000020 281#define VM_MAYEXEC 0x00000040 282#define VM_MAYSHARE 0x00000080 283 284#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 285#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 286#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 287#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 288 289#define VM_LOCKED 0x00002000 290#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 291 292 /* Used by sys_madvise() */ 293#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 294#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 295 296#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 297#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 298#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 299#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 300#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 301#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 302#define VM_SYNC 0x00800000 /* Synchronous page faults */ 303#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 304#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 305#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 306 307#ifdef CONFIG_MEM_SOFT_DIRTY 308# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 309#else 310# define VM_SOFTDIRTY 0 311#endif 312 313#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 314#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 315#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 316#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 317 318#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 319#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 320#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 321#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 322#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 323#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 324#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 325#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 326#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 327#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 328#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 329#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 330 331#ifdef CONFIG_ARCH_HAS_PKEYS 332# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 333# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 334# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 335# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 336# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 337#ifdef CONFIG_PPC 338# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 339#else 340# define VM_PKEY_BIT4 0 341#endif 342#endif /* CONFIG_ARCH_HAS_PKEYS */ 343 344#if defined(CONFIG_X86) 345# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 346#elif defined(CONFIG_PPC) 347# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 348#elif defined(CONFIG_PARISC) 349# define VM_GROWSUP VM_ARCH_1 350#elif defined(CONFIG_IA64) 351# define VM_GROWSUP VM_ARCH_1 352#elif defined(CONFIG_SPARC64) 353# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 354# define VM_ARCH_CLEAR VM_SPARC_ADI 355#elif defined(CONFIG_ARM64) 356# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 357# define VM_ARCH_CLEAR VM_ARM64_BTI 358#elif !defined(CONFIG_MMU) 359# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 360#endif 361 362#if defined(CONFIG_ARM64_MTE) 363# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 364# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 365#else 366# define VM_MTE VM_NONE 367# define VM_MTE_ALLOWED VM_NONE 368#endif 369 370#ifndef VM_GROWSUP 371# define VM_GROWSUP VM_NONE 372#endif 373 374#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 375# define VM_UFFD_MINOR_BIT 37 376# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 377#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 378# define VM_UFFD_MINOR VM_NONE 379#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 380 381/* Bits set in the VMA until the stack is in its final location */ 382#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 383 384#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 385 386/* Common data flag combinations */ 387#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 388 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 389#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 390 VM_MAYWRITE | VM_MAYEXEC) 391#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 392 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 393 394#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 395#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 396#endif 397 398#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 399#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 400#endif 401 402#ifdef CONFIG_STACK_GROWSUP 403#define VM_STACK VM_GROWSUP 404#else 405#define VM_STACK VM_GROWSDOWN 406#endif 407 408#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 409 410/* VMA basic access permission flags */ 411#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 412 413 414/* 415 * Special vmas that are non-mergable, non-mlock()able. 416 */ 417#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 418 419/* This mask prevents VMA from being scanned with khugepaged */ 420#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 421 422/* This mask defines which mm->def_flags a process can inherit its parent */ 423#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 424 425/* This mask is used to clear all the VMA flags used by mlock */ 426#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 427 428/* Arch-specific flags to clear when updating VM flags on protection change */ 429#ifndef VM_ARCH_CLEAR 430# define VM_ARCH_CLEAR VM_NONE 431#endif 432#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 433 434/* 435 * mapping from the currently active vm_flags protection bits (the 436 * low four bits) to a page protection mask.. 437 */ 438 439/* 440 * The default fault flags that should be used by most of the 441 * arch-specific page fault handlers. 442 */ 443#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 444 FAULT_FLAG_KILLABLE | \ 445 FAULT_FLAG_INTERRUPTIBLE) 446 447/** 448 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 449 * @flags: Fault flags. 450 * 451 * This is mostly used for places where we want to try to avoid taking 452 * the mmap_lock for too long a time when waiting for another condition 453 * to change, in which case we can try to be polite to release the 454 * mmap_lock in the first round to avoid potential starvation of other 455 * processes that would also want the mmap_lock. 456 * 457 * Return: true if the page fault allows retry and this is the first 458 * attempt of the fault handling; false otherwise. 459 */ 460static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 461{ 462 return (flags & FAULT_FLAG_ALLOW_RETRY) && 463 (!(flags & FAULT_FLAG_TRIED)); 464} 465 466#define FAULT_FLAG_TRACE \ 467 { FAULT_FLAG_WRITE, "WRITE" }, \ 468 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 469 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 470 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 471 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 472 { FAULT_FLAG_TRIED, "TRIED" }, \ 473 { FAULT_FLAG_USER, "USER" }, \ 474 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 475 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 476 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 477 478/* 479 * vm_fault is filled by the pagefault handler and passed to the vma's 480 * ->fault function. The vma's ->fault is responsible for returning a bitmask 481 * of VM_FAULT_xxx flags that give details about how the fault was handled. 482 * 483 * MM layer fills up gfp_mask for page allocations but fault handler might 484 * alter it if its implementation requires a different allocation context. 485 * 486 * pgoff should be used in favour of virtual_address, if possible. 487 */ 488struct vm_fault { 489 const struct { 490 struct vm_area_struct *vma; /* Target VMA */ 491 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 492 pgoff_t pgoff; /* Logical page offset based on vma */ 493 unsigned long address; /* Faulting virtual address - masked */ 494 unsigned long real_address; /* Faulting virtual address - unmasked */ 495 }; 496 enum fault_flag flags; /* FAULT_FLAG_xxx flags 497 * XXX: should really be 'const' */ 498 pmd_t *pmd; /* Pointer to pmd entry matching 499 * the 'address' */ 500 pud_t *pud; /* Pointer to pud entry matching 501 * the 'address' 502 */ 503 union { 504 pte_t orig_pte; /* Value of PTE at the time of fault */ 505 pmd_t orig_pmd; /* Value of PMD at the time of fault, 506 * used by PMD fault only. 507 */ 508 }; 509 510 struct page *cow_page; /* Page handler may use for COW fault */ 511 struct page *page; /* ->fault handlers should return a 512 * page here, unless VM_FAULT_NOPAGE 513 * is set (which is also implied by 514 * VM_FAULT_ERROR). 515 */ 516 /* These three entries are valid only while holding ptl lock */ 517 pte_t *pte; /* Pointer to pte entry matching 518 * the 'address'. NULL if the page 519 * table hasn't been allocated. 520 */ 521 spinlock_t *ptl; /* Page table lock. 522 * Protects pte page table if 'pte' 523 * is not NULL, otherwise pmd. 524 */ 525 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 526 * vm_ops->map_pages() sets up a page 527 * table from atomic context. 528 * do_fault_around() pre-allocates 529 * page table to avoid allocation from 530 * atomic context. 531 */ 532}; 533 534/* page entry size for vm->huge_fault() */ 535enum page_entry_size { 536 PE_SIZE_PTE = 0, 537 PE_SIZE_PMD, 538 PE_SIZE_PUD, 539}; 540 541/* 542 * These are the virtual MM functions - opening of an area, closing and 543 * unmapping it (needed to keep files on disk up-to-date etc), pointer 544 * to the functions called when a no-page or a wp-page exception occurs. 545 */ 546struct vm_operations_struct { 547 void (*open)(struct vm_area_struct * area); 548 /** 549 * @close: Called when the VMA is being removed from the MM. 550 * Context: User context. May sleep. Caller holds mmap_lock. 551 */ 552 void (*close)(struct vm_area_struct * area); 553 /* Called any time before splitting to check if it's allowed */ 554 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 555 int (*mremap)(struct vm_area_struct *area); 556 /* 557 * Called by mprotect() to make driver-specific permission 558 * checks before mprotect() is finalised. The VMA must not 559 * be modified. Returns 0 if mprotect() can proceed. 560 */ 561 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 562 unsigned long end, unsigned long newflags); 563 vm_fault_t (*fault)(struct vm_fault *vmf); 564 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 565 enum page_entry_size pe_size); 566 vm_fault_t (*map_pages)(struct vm_fault *vmf, 567 pgoff_t start_pgoff, pgoff_t end_pgoff); 568 unsigned long (*pagesize)(struct vm_area_struct * area); 569 570 /* notification that a previously read-only page is about to become 571 * writable, if an error is returned it will cause a SIGBUS */ 572 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 573 574 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 575 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 576 577 /* called by access_process_vm when get_user_pages() fails, typically 578 * for use by special VMAs. See also generic_access_phys() for a generic 579 * implementation useful for any iomem mapping. 580 */ 581 int (*access)(struct vm_area_struct *vma, unsigned long addr, 582 void *buf, int len, int write); 583 584 /* Called by the /proc/PID/maps code to ask the vma whether it 585 * has a special name. Returning non-NULL will also cause this 586 * vma to be dumped unconditionally. */ 587 const char *(*name)(struct vm_area_struct *vma); 588 589#ifdef CONFIG_NUMA 590 /* 591 * set_policy() op must add a reference to any non-NULL @new mempolicy 592 * to hold the policy upon return. Caller should pass NULL @new to 593 * remove a policy and fall back to surrounding context--i.e. do not 594 * install a MPOL_DEFAULT policy, nor the task or system default 595 * mempolicy. 596 */ 597 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 598 599 /* 600 * get_policy() op must add reference [mpol_get()] to any policy at 601 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 602 * in mm/mempolicy.c will do this automatically. 603 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 604 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 605 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 606 * must return NULL--i.e., do not "fallback" to task or system default 607 * policy. 608 */ 609 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 610 unsigned long addr); 611#endif 612 /* 613 * Called by vm_normal_page() for special PTEs to find the 614 * page for @addr. This is useful if the default behavior 615 * (using pte_page()) would not find the correct page. 616 */ 617 struct page *(*find_special_page)(struct vm_area_struct *vma, 618 unsigned long addr); 619}; 620 621static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 622{ 623 static const struct vm_operations_struct dummy_vm_ops = {}; 624 625 memset(vma, 0, sizeof(*vma)); 626 vma->vm_mm = mm; 627 vma->vm_ops = &dummy_vm_ops; 628 INIT_LIST_HEAD(&vma->anon_vma_chain); 629} 630 631static inline void vma_set_anonymous(struct vm_area_struct *vma) 632{ 633 vma->vm_ops = NULL; 634} 635 636static inline bool vma_is_anonymous(struct vm_area_struct *vma) 637{ 638 return !vma->vm_ops; 639} 640 641static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 642{ 643 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 644 645 if (!maybe_stack) 646 return false; 647 648 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 649 VM_STACK_INCOMPLETE_SETUP) 650 return true; 651 652 return false; 653} 654 655static inline bool vma_is_foreign(struct vm_area_struct *vma) 656{ 657 if (!current->mm) 658 return true; 659 660 if (current->mm != vma->vm_mm) 661 return true; 662 663 return false; 664} 665 666static inline bool vma_is_accessible(struct vm_area_struct *vma) 667{ 668 return vma->vm_flags & VM_ACCESS_FLAGS; 669} 670 671static inline 672struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 673{ 674 return mas_find(&vmi->mas, max); 675} 676 677static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 678{ 679 /* 680 * Uses vma_find() to get the first VMA when the iterator starts. 681 * Calling mas_next() could skip the first entry. 682 */ 683 return vma_find(vmi, ULONG_MAX); 684} 685 686static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 687{ 688 return mas_prev(&vmi->mas, 0); 689} 690 691static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 692{ 693 return vmi->mas.index; 694} 695 696#define for_each_vma(__vmi, __vma) \ 697 while (((__vma) = vma_next(&(__vmi))) != NULL) 698 699/* The MM code likes to work with exclusive end addresses */ 700#define for_each_vma_range(__vmi, __vma, __end) \ 701 while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL) 702 703#ifdef CONFIG_SHMEM 704/* 705 * The vma_is_shmem is not inline because it is used only by slow 706 * paths in userfault. 707 */ 708bool vma_is_shmem(struct vm_area_struct *vma); 709bool vma_is_anon_shmem(struct vm_area_struct *vma); 710#else 711static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 712static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 713#endif 714 715int vma_is_stack_for_current(struct vm_area_struct *vma); 716 717/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 718#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 719 720struct mmu_gather; 721struct inode; 722 723static inline unsigned int compound_order(struct page *page) 724{ 725 if (!PageHead(page)) 726 return 0; 727 return page[1].compound_order; 728} 729 730/** 731 * folio_order - The allocation order of a folio. 732 * @folio: The folio. 733 * 734 * A folio is composed of 2^order pages. See get_order() for the definition 735 * of order. 736 * 737 * Return: The order of the folio. 738 */ 739static inline unsigned int folio_order(struct folio *folio) 740{ 741 if (!folio_test_large(folio)) 742 return 0; 743 return folio->_folio_order; 744} 745 746#include <linux/huge_mm.h> 747 748/* 749 * Methods to modify the page usage count. 750 * 751 * What counts for a page usage: 752 * - cache mapping (page->mapping) 753 * - private data (page->private) 754 * - page mapped in a task's page tables, each mapping 755 * is counted separately 756 * 757 * Also, many kernel routines increase the page count before a critical 758 * routine so they can be sure the page doesn't go away from under them. 759 */ 760 761/* 762 * Drop a ref, return true if the refcount fell to zero (the page has no users) 763 */ 764static inline int put_page_testzero(struct page *page) 765{ 766 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 767 return page_ref_dec_and_test(page); 768} 769 770static inline int folio_put_testzero(struct folio *folio) 771{ 772 return put_page_testzero(&folio->page); 773} 774 775/* 776 * Try to grab a ref unless the page has a refcount of zero, return false if 777 * that is the case. 778 * This can be called when MMU is off so it must not access 779 * any of the virtual mappings. 780 */ 781static inline bool get_page_unless_zero(struct page *page) 782{ 783 return page_ref_add_unless(page, 1, 0); 784} 785 786extern int page_is_ram(unsigned long pfn); 787 788enum { 789 REGION_INTERSECTS, 790 REGION_DISJOINT, 791 REGION_MIXED, 792}; 793 794int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 795 unsigned long desc); 796 797/* Support for virtually mapped pages */ 798struct page *vmalloc_to_page(const void *addr); 799unsigned long vmalloc_to_pfn(const void *addr); 800 801/* 802 * Determine if an address is within the vmalloc range 803 * 804 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 805 * is no special casing required. 806 */ 807 808#ifndef is_ioremap_addr 809#define is_ioremap_addr(x) is_vmalloc_addr(x) 810#endif 811 812#ifdef CONFIG_MMU 813extern bool is_vmalloc_addr(const void *x); 814extern int is_vmalloc_or_module_addr(const void *x); 815#else 816static inline bool is_vmalloc_addr(const void *x) 817{ 818 return false; 819} 820static inline int is_vmalloc_or_module_addr(const void *x) 821{ 822 return 0; 823} 824#endif 825 826/* 827 * How many times the entire folio is mapped as a single unit (eg by a 828 * PMD or PUD entry). This is probably not what you want, except for 829 * debugging purposes - it does not include PTE-mapped sub-pages; look 830 * at folio_mapcount() or page_mapcount() or total_mapcount() instead. 831 */ 832static inline int folio_entire_mapcount(struct folio *folio) 833{ 834 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 835 return atomic_read(folio_mapcount_ptr(folio)) + 1; 836} 837 838/* 839 * Mapcount of compound page as a whole, does not include mapped sub-pages. 840 * Must be called only on head of compound page. 841 */ 842static inline int head_compound_mapcount(struct page *head) 843{ 844 return atomic_read(compound_mapcount_ptr(head)) + 1; 845} 846 847/* 848 * If a 16GB hugetlb page were mapped by PTEs of all of its 4kB sub-pages, 849 * its subpages_mapcount would be 0x400000: choose the COMPOUND_MAPPED bit 850 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently 851 * leaves subpages_mapcount at 0, but avoid surprise if it participates later. 852 */ 853#define COMPOUND_MAPPED 0x800000 854#define SUBPAGES_MAPPED (COMPOUND_MAPPED - 1) 855 856/* 857 * Number of sub-pages mapped by PTE, does not include compound mapcount. 858 * Must be called only on head of compound page. 859 */ 860static inline int head_subpages_mapcount(struct page *head) 861{ 862 return atomic_read(subpages_mapcount_ptr(head)) & SUBPAGES_MAPPED; 863} 864 865/* 866 * The atomic page->_mapcount, starts from -1: so that transitions 867 * both from it and to it can be tracked, using atomic_inc_and_test 868 * and atomic_add_negative(-1). 869 */ 870static inline void page_mapcount_reset(struct page *page) 871{ 872 atomic_set(&(page)->_mapcount, -1); 873} 874 875/* 876 * Mapcount of 0-order page; when compound sub-page, includes 877 * compound_mapcount of compound_head of page. 878 * 879 * Result is undefined for pages which cannot be mapped into userspace. 880 * For example SLAB or special types of pages. See function page_has_type(). 881 * They use this place in struct page differently. 882 */ 883static inline int page_mapcount(struct page *page) 884{ 885 int mapcount = atomic_read(&page->_mapcount) + 1; 886 887 if (likely(!PageCompound(page))) 888 return mapcount; 889 page = compound_head(page); 890 return head_compound_mapcount(page) + mapcount; 891} 892 893int total_compound_mapcount(struct page *head); 894 895/** 896 * folio_mapcount() - Calculate the number of mappings of this folio. 897 * @folio: The folio. 898 * 899 * A large folio tracks both how many times the entire folio is mapped, 900 * and how many times each individual page in the folio is mapped. 901 * This function calculates the total number of times the folio is 902 * mapped. 903 * 904 * Return: The number of times this folio is mapped. 905 */ 906static inline int folio_mapcount(struct folio *folio) 907{ 908 if (likely(!folio_test_large(folio))) 909 return atomic_read(&folio->_mapcount) + 1; 910 return total_compound_mapcount(&folio->page); 911} 912 913static inline int total_mapcount(struct page *page) 914{ 915 if (likely(!PageCompound(page))) 916 return atomic_read(&page->_mapcount) + 1; 917 return total_compound_mapcount(compound_head(page)); 918} 919 920static inline bool folio_large_is_mapped(struct folio *folio) 921{ 922 /* 923 * Reading folio_mapcount_ptr() below could be omitted if hugetlb 924 * participated in incrementing subpages_mapcount when compound mapped. 925 */ 926 return atomic_read(folio_subpages_mapcount_ptr(folio)) > 0 || 927 atomic_read(folio_mapcount_ptr(folio)) >= 0; 928} 929 930/** 931 * folio_mapped - Is this folio mapped into userspace? 932 * @folio: The folio. 933 * 934 * Return: True if any page in this folio is referenced by user page tables. 935 */ 936static inline bool folio_mapped(struct folio *folio) 937{ 938 if (likely(!folio_test_large(folio))) 939 return atomic_read(&folio->_mapcount) >= 0; 940 return folio_large_is_mapped(folio); 941} 942 943/* 944 * Return true if this page is mapped into pagetables. 945 * For compound page it returns true if any sub-page of compound page is mapped, 946 * even if this particular sub-page is not itself mapped by any PTE or PMD. 947 */ 948static inline bool page_mapped(struct page *page) 949{ 950 if (likely(!PageCompound(page))) 951 return atomic_read(&page->_mapcount) >= 0; 952 return folio_large_is_mapped(page_folio(page)); 953} 954 955static inline struct page *virt_to_head_page(const void *x) 956{ 957 struct page *page = virt_to_page(x); 958 959 return compound_head(page); 960} 961 962static inline struct folio *virt_to_folio(const void *x) 963{ 964 struct page *page = virt_to_page(x); 965 966 return page_folio(page); 967} 968 969void __folio_put(struct folio *folio); 970 971void put_pages_list(struct list_head *pages); 972 973void split_page(struct page *page, unsigned int order); 974void folio_copy(struct folio *dst, struct folio *src); 975 976unsigned long nr_free_buffer_pages(void); 977 978/* 979 * Compound pages have a destructor function. Provide a 980 * prototype for that function and accessor functions. 981 * These are _only_ valid on the head of a compound page. 982 */ 983typedef void compound_page_dtor(struct page *); 984 985/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 986enum compound_dtor_id { 987 NULL_COMPOUND_DTOR, 988 COMPOUND_PAGE_DTOR, 989#ifdef CONFIG_HUGETLB_PAGE 990 HUGETLB_PAGE_DTOR, 991#endif 992#ifdef CONFIG_TRANSPARENT_HUGEPAGE 993 TRANSHUGE_PAGE_DTOR, 994#endif 995 NR_COMPOUND_DTORS, 996}; 997extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 998 999static inline void set_compound_page_dtor(struct page *page, 1000 enum compound_dtor_id compound_dtor) 1001{ 1002 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 1003 page[1].compound_dtor = compound_dtor; 1004} 1005 1006static inline void folio_set_compound_dtor(struct folio *folio, 1007 enum compound_dtor_id compound_dtor) 1008{ 1009 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio); 1010 folio->_folio_dtor = compound_dtor; 1011} 1012 1013void destroy_large_folio(struct folio *folio); 1014 1015static inline int head_compound_pincount(struct page *head) 1016{ 1017 return atomic_read(compound_pincount_ptr(head)); 1018} 1019 1020static inline void set_compound_order(struct page *page, unsigned int order) 1021{ 1022 page[1].compound_order = order; 1023#ifdef CONFIG_64BIT 1024 page[1].compound_nr = 1U << order; 1025#endif 1026} 1027 1028/* 1029 * folio_set_compound_order is generally passed a non-zero order to 1030 * initialize a large folio. However, hugetlb code abuses this by 1031 * passing in zero when 'dissolving' a large folio. 1032 */ 1033static inline void folio_set_compound_order(struct folio *folio, 1034 unsigned int order) 1035{ 1036 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1037 1038 folio->_folio_order = order; 1039#ifdef CONFIG_64BIT 1040 folio->_folio_nr_pages = order ? 1U << order : 0; 1041#endif 1042} 1043 1044/* Returns the number of pages in this potentially compound page. */ 1045static inline unsigned long compound_nr(struct page *page) 1046{ 1047 if (!PageHead(page)) 1048 return 1; 1049#ifdef CONFIG_64BIT 1050 return page[1].compound_nr; 1051#else 1052 return 1UL << compound_order(page); 1053#endif 1054} 1055 1056/* Returns the number of bytes in this potentially compound page. */ 1057static inline unsigned long page_size(struct page *page) 1058{ 1059 return PAGE_SIZE << compound_order(page); 1060} 1061 1062/* Returns the number of bits needed for the number of bytes in a page */ 1063static inline unsigned int page_shift(struct page *page) 1064{ 1065 return PAGE_SHIFT + compound_order(page); 1066} 1067 1068/** 1069 * thp_order - Order of a transparent huge page. 1070 * @page: Head page of a transparent huge page. 1071 */ 1072static inline unsigned int thp_order(struct page *page) 1073{ 1074 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1075 return compound_order(page); 1076} 1077 1078/** 1079 * thp_nr_pages - The number of regular pages in this huge page. 1080 * @page: The head page of a huge page. 1081 */ 1082static inline int thp_nr_pages(struct page *page) 1083{ 1084 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1085 return compound_nr(page); 1086} 1087 1088/** 1089 * thp_size - Size of a transparent huge page. 1090 * @page: Head page of a transparent huge page. 1091 * 1092 * Return: Number of bytes in this page. 1093 */ 1094static inline unsigned long thp_size(struct page *page) 1095{ 1096 return PAGE_SIZE << thp_order(page); 1097} 1098 1099void free_compound_page(struct page *page); 1100 1101#ifdef CONFIG_MMU 1102/* 1103 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1104 * servicing faults for write access. In the normal case, do always want 1105 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1106 * that do not have writing enabled, when used by access_process_vm. 1107 */ 1108static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1109{ 1110 if (likely(vma->vm_flags & VM_WRITE)) 1111 pte = pte_mkwrite(pte); 1112 return pte; 1113} 1114 1115vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1116void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1117 1118vm_fault_t finish_fault(struct vm_fault *vmf); 1119vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1120#endif 1121 1122/* 1123 * Multiple processes may "see" the same page. E.g. for untouched 1124 * mappings of /dev/null, all processes see the same page full of 1125 * zeroes, and text pages of executables and shared libraries have 1126 * only one copy in memory, at most, normally. 1127 * 1128 * For the non-reserved pages, page_count(page) denotes a reference count. 1129 * page_count() == 0 means the page is free. page->lru is then used for 1130 * freelist management in the buddy allocator. 1131 * page_count() > 0 means the page has been allocated. 1132 * 1133 * Pages are allocated by the slab allocator in order to provide memory 1134 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1135 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1136 * unless a particular usage is carefully commented. (the responsibility of 1137 * freeing the kmalloc memory is the caller's, of course). 1138 * 1139 * A page may be used by anyone else who does a __get_free_page(). 1140 * In this case, page_count still tracks the references, and should only 1141 * be used through the normal accessor functions. The top bits of page->flags 1142 * and page->virtual store page management information, but all other fields 1143 * are unused and could be used privately, carefully. The management of this 1144 * page is the responsibility of the one who allocated it, and those who have 1145 * subsequently been given references to it. 1146 * 1147 * The other pages (we may call them "pagecache pages") are completely 1148 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1149 * The following discussion applies only to them. 1150 * 1151 * A pagecache page contains an opaque `private' member, which belongs to the 1152 * page's address_space. Usually, this is the address of a circular list of 1153 * the page's disk buffers. PG_private must be set to tell the VM to call 1154 * into the filesystem to release these pages. 1155 * 1156 * A page may belong to an inode's memory mapping. In this case, page->mapping 1157 * is the pointer to the inode, and page->index is the file offset of the page, 1158 * in units of PAGE_SIZE. 1159 * 1160 * If pagecache pages are not associated with an inode, they are said to be 1161 * anonymous pages. These may become associated with the swapcache, and in that 1162 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1163 * 1164 * In either case (swapcache or inode backed), the pagecache itself holds one 1165 * reference to the page. Setting PG_private should also increment the 1166 * refcount. The each user mapping also has a reference to the page. 1167 * 1168 * The pagecache pages are stored in a per-mapping radix tree, which is 1169 * rooted at mapping->i_pages, and indexed by offset. 1170 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1171 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1172 * 1173 * All pagecache pages may be subject to I/O: 1174 * - inode pages may need to be read from disk, 1175 * - inode pages which have been modified and are MAP_SHARED may need 1176 * to be written back to the inode on disk, 1177 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1178 * modified may need to be swapped out to swap space and (later) to be read 1179 * back into memory. 1180 */ 1181 1182#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1183DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1184 1185bool __put_devmap_managed_page_refs(struct page *page, int refs); 1186static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1187{ 1188 if (!static_branch_unlikely(&devmap_managed_key)) 1189 return false; 1190 if (!is_zone_device_page(page)) 1191 return false; 1192 return __put_devmap_managed_page_refs(page, refs); 1193} 1194#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1195static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1196{ 1197 return false; 1198} 1199#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1200 1201static inline bool put_devmap_managed_page(struct page *page) 1202{ 1203 return put_devmap_managed_page_refs(page, 1); 1204} 1205 1206/* 127: arbitrary random number, small enough to assemble well */ 1207#define folio_ref_zero_or_close_to_overflow(folio) \ 1208 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1209 1210/** 1211 * folio_get - Increment the reference count on a folio. 1212 * @folio: The folio. 1213 * 1214 * Context: May be called in any context, as long as you know that 1215 * you have a refcount on the folio. If you do not already have one, 1216 * folio_try_get() may be the right interface for you to use. 1217 */ 1218static inline void folio_get(struct folio *folio) 1219{ 1220 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1221 folio_ref_inc(folio); 1222} 1223 1224static inline void get_page(struct page *page) 1225{ 1226 folio_get(page_folio(page)); 1227} 1228 1229int __must_check try_grab_page(struct page *page, unsigned int flags); 1230 1231static inline __must_check bool try_get_page(struct page *page) 1232{ 1233 page = compound_head(page); 1234 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1235 return false; 1236 page_ref_inc(page); 1237 return true; 1238} 1239 1240/** 1241 * folio_put - Decrement the reference count on a folio. 1242 * @folio: The folio. 1243 * 1244 * If the folio's reference count reaches zero, the memory will be 1245 * released back to the page allocator and may be used by another 1246 * allocation immediately. Do not access the memory or the struct folio 1247 * after calling folio_put() unless you can be sure that it wasn't the 1248 * last reference. 1249 * 1250 * Context: May be called in process or interrupt context, but not in NMI 1251 * context. May be called while holding a spinlock. 1252 */ 1253static inline void folio_put(struct folio *folio) 1254{ 1255 if (folio_put_testzero(folio)) 1256 __folio_put(folio); 1257} 1258 1259/** 1260 * folio_put_refs - Reduce the reference count on a folio. 1261 * @folio: The folio. 1262 * @refs: The amount to subtract from the folio's reference count. 1263 * 1264 * If the folio's reference count reaches zero, the memory will be 1265 * released back to the page allocator and may be used by another 1266 * allocation immediately. Do not access the memory or the struct folio 1267 * after calling folio_put_refs() unless you can be sure that these weren't 1268 * the last references. 1269 * 1270 * Context: May be called in process or interrupt context, but not in NMI 1271 * context. May be called while holding a spinlock. 1272 */ 1273static inline void folio_put_refs(struct folio *folio, int refs) 1274{ 1275 if (folio_ref_sub_and_test(folio, refs)) 1276 __folio_put(folio); 1277} 1278 1279/* 1280 * union release_pages_arg - an array of pages or folios 1281 * 1282 * release_pages() releases a simple array of multiple pages, and 1283 * accepts various different forms of said page array: either 1284 * a regular old boring array of pages, an array of folios, or 1285 * an array of encoded page pointers. 1286 * 1287 * The transparent union syntax for this kind of "any of these 1288 * argument types" is all kinds of ugly, so look away. 1289 */ 1290typedef union { 1291 struct page **pages; 1292 struct folio **folios; 1293 struct encoded_page **encoded_pages; 1294} release_pages_arg __attribute__ ((__transparent_union__)); 1295 1296void release_pages(release_pages_arg, int nr); 1297 1298/** 1299 * folios_put - Decrement the reference count on an array of folios. 1300 * @folios: The folios. 1301 * @nr: How many folios there are. 1302 * 1303 * Like folio_put(), but for an array of folios. This is more efficient 1304 * than writing the loop yourself as it will optimise the locks which 1305 * need to be taken if the folios are freed. 1306 * 1307 * Context: May be called in process or interrupt context, but not in NMI 1308 * context. May be called while holding a spinlock. 1309 */ 1310static inline void folios_put(struct folio **folios, unsigned int nr) 1311{ 1312 release_pages(folios, nr); 1313} 1314 1315static inline void put_page(struct page *page) 1316{ 1317 struct folio *folio = page_folio(page); 1318 1319 /* 1320 * For some devmap managed pages we need to catch refcount transition 1321 * from 2 to 1: 1322 */ 1323 if (put_devmap_managed_page(&folio->page)) 1324 return; 1325 folio_put(folio); 1326} 1327 1328/* 1329 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1330 * the page's refcount so that two separate items are tracked: the original page 1331 * reference count, and also a new count of how many pin_user_pages() calls were 1332 * made against the page. ("gup-pinned" is another term for the latter). 1333 * 1334 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1335 * distinct from normal pages. As such, the unpin_user_page() call (and its 1336 * variants) must be used in order to release gup-pinned pages. 1337 * 1338 * Choice of value: 1339 * 1340 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1341 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1342 * simpler, due to the fact that adding an even power of two to the page 1343 * refcount has the effect of using only the upper N bits, for the code that 1344 * counts up using the bias value. This means that the lower bits are left for 1345 * the exclusive use of the original code that increments and decrements by one 1346 * (or at least, by much smaller values than the bias value). 1347 * 1348 * Of course, once the lower bits overflow into the upper bits (and this is 1349 * OK, because subtraction recovers the original values), then visual inspection 1350 * no longer suffices to directly view the separate counts. However, for normal 1351 * applications that don't have huge page reference counts, this won't be an 1352 * issue. 1353 * 1354 * Locking: the lockless algorithm described in folio_try_get_rcu() 1355 * provides safe operation for get_user_pages(), page_mkclean() and 1356 * other calls that race to set up page table entries. 1357 */ 1358#define GUP_PIN_COUNTING_BIAS (1U << 10) 1359 1360void unpin_user_page(struct page *page); 1361void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1362 bool make_dirty); 1363void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1364 bool make_dirty); 1365void unpin_user_pages(struct page **pages, unsigned long npages); 1366 1367static inline bool is_cow_mapping(vm_flags_t flags) 1368{ 1369 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1370} 1371 1372#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1373#define SECTION_IN_PAGE_FLAGS 1374#endif 1375 1376/* 1377 * The identification function is mainly used by the buddy allocator for 1378 * determining if two pages could be buddies. We are not really identifying 1379 * the zone since we could be using the section number id if we do not have 1380 * node id available in page flags. 1381 * We only guarantee that it will return the same value for two combinable 1382 * pages in a zone. 1383 */ 1384static inline int page_zone_id(struct page *page) 1385{ 1386 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1387} 1388 1389#ifdef NODE_NOT_IN_PAGE_FLAGS 1390extern int page_to_nid(const struct page *page); 1391#else 1392static inline int page_to_nid(const struct page *page) 1393{ 1394 struct page *p = (struct page *)page; 1395 1396 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1397} 1398#endif 1399 1400static inline int folio_nid(const struct folio *folio) 1401{ 1402 return page_to_nid(&folio->page); 1403} 1404 1405#ifdef CONFIG_NUMA_BALANCING 1406/* page access time bits needs to hold at least 4 seconds */ 1407#define PAGE_ACCESS_TIME_MIN_BITS 12 1408#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1409#define PAGE_ACCESS_TIME_BUCKETS \ 1410 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1411#else 1412#define PAGE_ACCESS_TIME_BUCKETS 0 1413#endif 1414 1415#define PAGE_ACCESS_TIME_MASK \ 1416 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1417 1418static inline int cpu_pid_to_cpupid(int cpu, int pid) 1419{ 1420 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1421} 1422 1423static inline int cpupid_to_pid(int cpupid) 1424{ 1425 return cpupid & LAST__PID_MASK; 1426} 1427 1428static inline int cpupid_to_cpu(int cpupid) 1429{ 1430 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1431} 1432 1433static inline int cpupid_to_nid(int cpupid) 1434{ 1435 return cpu_to_node(cpupid_to_cpu(cpupid)); 1436} 1437 1438static inline bool cpupid_pid_unset(int cpupid) 1439{ 1440 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1441} 1442 1443static inline bool cpupid_cpu_unset(int cpupid) 1444{ 1445 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1446} 1447 1448static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1449{ 1450 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1451} 1452 1453#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1454#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1455static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1456{ 1457 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1458} 1459 1460static inline int page_cpupid_last(struct page *page) 1461{ 1462 return page->_last_cpupid; 1463} 1464static inline void page_cpupid_reset_last(struct page *page) 1465{ 1466 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1467} 1468#else 1469static inline int page_cpupid_last(struct page *page) 1470{ 1471 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1472} 1473 1474extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1475 1476static inline void page_cpupid_reset_last(struct page *page) 1477{ 1478 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1479} 1480#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1481 1482static inline int xchg_page_access_time(struct page *page, int time) 1483{ 1484 int last_time; 1485 1486 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS); 1487 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1488} 1489#else /* !CONFIG_NUMA_BALANCING */ 1490static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1491{ 1492 return page_to_nid(page); /* XXX */ 1493} 1494 1495static inline int xchg_page_access_time(struct page *page, int time) 1496{ 1497 return 0; 1498} 1499 1500static inline int page_cpupid_last(struct page *page) 1501{ 1502 return page_to_nid(page); /* XXX */ 1503} 1504 1505static inline int cpupid_to_nid(int cpupid) 1506{ 1507 return -1; 1508} 1509 1510static inline int cpupid_to_pid(int cpupid) 1511{ 1512 return -1; 1513} 1514 1515static inline int cpupid_to_cpu(int cpupid) 1516{ 1517 return -1; 1518} 1519 1520static inline int cpu_pid_to_cpupid(int nid, int pid) 1521{ 1522 return -1; 1523} 1524 1525static inline bool cpupid_pid_unset(int cpupid) 1526{ 1527 return true; 1528} 1529 1530static inline void page_cpupid_reset_last(struct page *page) 1531{ 1532} 1533 1534static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1535{ 1536 return false; 1537} 1538#endif /* CONFIG_NUMA_BALANCING */ 1539 1540#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1541 1542/* 1543 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1544 * setting tags for all pages to native kernel tag value 0xff, as the default 1545 * value 0x00 maps to 0xff. 1546 */ 1547 1548static inline u8 page_kasan_tag(const struct page *page) 1549{ 1550 u8 tag = 0xff; 1551 1552 if (kasan_enabled()) { 1553 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1554 tag ^= 0xff; 1555 } 1556 1557 return tag; 1558} 1559 1560static inline void page_kasan_tag_set(struct page *page, u8 tag) 1561{ 1562 unsigned long old_flags, flags; 1563 1564 if (!kasan_enabled()) 1565 return; 1566 1567 tag ^= 0xff; 1568 old_flags = READ_ONCE(page->flags); 1569 do { 1570 flags = old_flags; 1571 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1572 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1573 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1574} 1575 1576static inline void page_kasan_tag_reset(struct page *page) 1577{ 1578 if (kasan_enabled()) 1579 page_kasan_tag_set(page, 0xff); 1580} 1581 1582#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1583 1584static inline u8 page_kasan_tag(const struct page *page) 1585{ 1586 return 0xff; 1587} 1588 1589static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1590static inline void page_kasan_tag_reset(struct page *page) { } 1591 1592#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1593 1594static inline struct zone *page_zone(const struct page *page) 1595{ 1596 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1597} 1598 1599static inline pg_data_t *page_pgdat(const struct page *page) 1600{ 1601 return NODE_DATA(page_to_nid(page)); 1602} 1603 1604static inline struct zone *folio_zone(const struct folio *folio) 1605{ 1606 return page_zone(&folio->page); 1607} 1608 1609static inline pg_data_t *folio_pgdat(const struct folio *folio) 1610{ 1611 return page_pgdat(&folio->page); 1612} 1613 1614#ifdef SECTION_IN_PAGE_FLAGS 1615static inline void set_page_section(struct page *page, unsigned long section) 1616{ 1617 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1618 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1619} 1620 1621static inline unsigned long page_to_section(const struct page *page) 1622{ 1623 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1624} 1625#endif 1626 1627/** 1628 * folio_pfn - Return the Page Frame Number of a folio. 1629 * @folio: The folio. 1630 * 1631 * A folio may contain multiple pages. The pages have consecutive 1632 * Page Frame Numbers. 1633 * 1634 * Return: The Page Frame Number of the first page in the folio. 1635 */ 1636static inline unsigned long folio_pfn(struct folio *folio) 1637{ 1638 return page_to_pfn(&folio->page); 1639} 1640 1641static inline struct folio *pfn_folio(unsigned long pfn) 1642{ 1643 return page_folio(pfn_to_page(pfn)); 1644} 1645 1646static inline atomic_t *folio_pincount_ptr(struct folio *folio) 1647{ 1648 return &folio_page(folio, 1)->compound_pincount; 1649} 1650 1651/** 1652 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1653 * @folio: The folio. 1654 * 1655 * This function checks if a folio has been pinned via a call to 1656 * a function in the pin_user_pages() family. 1657 * 1658 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1659 * because it means "definitely not pinned for DMA", but true means "probably 1660 * pinned for DMA, but possibly a false positive due to having at least 1661 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1662 * 1663 * False positives are OK, because: a) it's unlikely for a folio to 1664 * get that many refcounts, and b) all the callers of this routine are 1665 * expected to be able to deal gracefully with a false positive. 1666 * 1667 * For large folios, the result will be exactly correct. That's because 1668 * we have more tracking data available: the compound_pincount is used 1669 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1670 * 1671 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1672 * 1673 * Return: True, if it is likely that the page has been "dma-pinned". 1674 * False, if the page is definitely not dma-pinned. 1675 */ 1676static inline bool folio_maybe_dma_pinned(struct folio *folio) 1677{ 1678 if (folio_test_large(folio)) 1679 return atomic_read(folio_pincount_ptr(folio)) > 0; 1680 1681 /* 1682 * folio_ref_count() is signed. If that refcount overflows, then 1683 * folio_ref_count() returns a negative value, and callers will avoid 1684 * further incrementing the refcount. 1685 * 1686 * Here, for that overflow case, use the sign bit to count a little 1687 * bit higher via unsigned math, and thus still get an accurate result. 1688 */ 1689 return ((unsigned int)folio_ref_count(folio)) >= 1690 GUP_PIN_COUNTING_BIAS; 1691} 1692 1693static inline bool page_maybe_dma_pinned(struct page *page) 1694{ 1695 return folio_maybe_dma_pinned(page_folio(page)); 1696} 1697 1698/* 1699 * This should most likely only be called during fork() to see whether we 1700 * should break the cow immediately for an anon page on the src mm. 1701 * 1702 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1703 */ 1704static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1705 struct page *page) 1706{ 1707 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1708 1709 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1710 return false; 1711 1712 return page_maybe_dma_pinned(page); 1713} 1714 1715/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1716#ifdef CONFIG_MIGRATION 1717static inline bool is_longterm_pinnable_page(struct page *page) 1718{ 1719#ifdef CONFIG_CMA 1720 int mt = get_pageblock_migratetype(page); 1721 1722 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1723 return false; 1724#endif 1725 /* The zero page may always be pinned */ 1726 if (is_zero_pfn(page_to_pfn(page))) 1727 return true; 1728 1729 /* Coherent device memory must always allow eviction. */ 1730 if (is_device_coherent_page(page)) 1731 return false; 1732 1733 /* Otherwise, non-movable zone pages can be pinned. */ 1734 return !is_zone_movable_page(page); 1735} 1736#else 1737static inline bool is_longterm_pinnable_page(struct page *page) 1738{ 1739 return true; 1740} 1741#endif 1742 1743static inline bool folio_is_longterm_pinnable(struct folio *folio) 1744{ 1745 return is_longterm_pinnable_page(&folio->page); 1746} 1747 1748static inline void set_page_zone(struct page *page, enum zone_type zone) 1749{ 1750 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1751 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1752} 1753 1754static inline void set_page_node(struct page *page, unsigned long node) 1755{ 1756 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1757 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1758} 1759 1760static inline void set_page_links(struct page *page, enum zone_type zone, 1761 unsigned long node, unsigned long pfn) 1762{ 1763 set_page_zone(page, zone); 1764 set_page_node(page, node); 1765#ifdef SECTION_IN_PAGE_FLAGS 1766 set_page_section(page, pfn_to_section_nr(pfn)); 1767#endif 1768} 1769 1770/** 1771 * folio_nr_pages - The number of pages in the folio. 1772 * @folio: The folio. 1773 * 1774 * Return: A positive power of two. 1775 */ 1776static inline long folio_nr_pages(struct folio *folio) 1777{ 1778 if (!folio_test_large(folio)) 1779 return 1; 1780#ifdef CONFIG_64BIT 1781 return folio->_folio_nr_pages; 1782#else 1783 return 1L << folio->_folio_order; 1784#endif 1785} 1786 1787/** 1788 * folio_next - Move to the next physical folio. 1789 * @folio: The folio we're currently operating on. 1790 * 1791 * If you have physically contiguous memory which may span more than 1792 * one folio (eg a &struct bio_vec), use this function to move from one 1793 * folio to the next. Do not use it if the memory is only virtually 1794 * contiguous as the folios are almost certainly not adjacent to each 1795 * other. This is the folio equivalent to writing ``page++``. 1796 * 1797 * Context: We assume that the folios are refcounted and/or locked at a 1798 * higher level and do not adjust the reference counts. 1799 * Return: The next struct folio. 1800 */ 1801static inline struct folio *folio_next(struct folio *folio) 1802{ 1803 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 1804} 1805 1806/** 1807 * folio_shift - The size of the memory described by this folio. 1808 * @folio: The folio. 1809 * 1810 * A folio represents a number of bytes which is a power-of-two in size. 1811 * This function tells you which power-of-two the folio is. See also 1812 * folio_size() and folio_order(). 1813 * 1814 * Context: The caller should have a reference on the folio to prevent 1815 * it from being split. It is not necessary for the folio to be locked. 1816 * Return: The base-2 logarithm of the size of this folio. 1817 */ 1818static inline unsigned int folio_shift(struct folio *folio) 1819{ 1820 return PAGE_SHIFT + folio_order(folio); 1821} 1822 1823/** 1824 * folio_size - The number of bytes in a folio. 1825 * @folio: The folio. 1826 * 1827 * Context: The caller should have a reference on the folio to prevent 1828 * it from being split. It is not necessary for the folio to be locked. 1829 * Return: The number of bytes in this folio. 1830 */ 1831static inline size_t folio_size(struct folio *folio) 1832{ 1833 return PAGE_SIZE << folio_order(folio); 1834} 1835 1836#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 1837static inline int arch_make_page_accessible(struct page *page) 1838{ 1839 return 0; 1840} 1841#endif 1842 1843#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 1844static inline int arch_make_folio_accessible(struct folio *folio) 1845{ 1846 int ret; 1847 long i, nr = folio_nr_pages(folio); 1848 1849 for (i = 0; i < nr; i++) { 1850 ret = arch_make_page_accessible(folio_page(folio, i)); 1851 if (ret) 1852 break; 1853 } 1854 1855 return ret; 1856} 1857#endif 1858 1859/* 1860 * Some inline functions in vmstat.h depend on page_zone() 1861 */ 1862#include <linux/vmstat.h> 1863 1864static __always_inline void *lowmem_page_address(const struct page *page) 1865{ 1866 return page_to_virt(page); 1867} 1868 1869#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1870#define HASHED_PAGE_VIRTUAL 1871#endif 1872 1873#if defined(WANT_PAGE_VIRTUAL) 1874static inline void *page_address(const struct page *page) 1875{ 1876 return page->virtual; 1877} 1878static inline void set_page_address(struct page *page, void *address) 1879{ 1880 page->virtual = address; 1881} 1882#define page_address_init() do { } while(0) 1883#endif 1884 1885#if defined(HASHED_PAGE_VIRTUAL) 1886void *page_address(const struct page *page); 1887void set_page_address(struct page *page, void *virtual); 1888void page_address_init(void); 1889#endif 1890 1891#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1892#define page_address(page) lowmem_page_address(page) 1893#define set_page_address(page, address) do { } while(0) 1894#define page_address_init() do { } while(0) 1895#endif 1896 1897static inline void *folio_address(const struct folio *folio) 1898{ 1899 return page_address(&folio->page); 1900} 1901 1902extern void *page_rmapping(struct page *page); 1903extern pgoff_t __page_file_index(struct page *page); 1904 1905/* 1906 * Return the pagecache index of the passed page. Regular pagecache pages 1907 * use ->index whereas swapcache pages use swp_offset(->private) 1908 */ 1909static inline pgoff_t page_index(struct page *page) 1910{ 1911 if (unlikely(PageSwapCache(page))) 1912 return __page_file_index(page); 1913 return page->index; 1914} 1915 1916/* 1917 * Return true only if the page has been allocated with 1918 * ALLOC_NO_WATERMARKS and the low watermark was not 1919 * met implying that the system is under some pressure. 1920 */ 1921static inline bool page_is_pfmemalloc(const struct page *page) 1922{ 1923 /* 1924 * lru.next has bit 1 set if the page is allocated from the 1925 * pfmemalloc reserves. Callers may simply overwrite it if 1926 * they do not need to preserve that information. 1927 */ 1928 return (uintptr_t)page->lru.next & BIT(1); 1929} 1930 1931/* 1932 * Only to be called by the page allocator on a freshly allocated 1933 * page. 1934 */ 1935static inline void set_page_pfmemalloc(struct page *page) 1936{ 1937 page->lru.next = (void *)BIT(1); 1938} 1939 1940static inline void clear_page_pfmemalloc(struct page *page) 1941{ 1942 page->lru.next = NULL; 1943} 1944 1945/* 1946 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1947 */ 1948extern void pagefault_out_of_memory(void); 1949 1950#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1951#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1952#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 1953 1954/* 1955 * Flags passed to show_mem() and show_free_areas() to suppress output in 1956 * various contexts. 1957 */ 1958#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1959 1960extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 1961static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask) 1962{ 1963 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1); 1964} 1965 1966/* 1967 * Parameter block passed down to zap_pte_range in exceptional cases. 1968 */ 1969struct zap_details { 1970 struct folio *single_folio; /* Locked folio to be unmapped */ 1971 bool even_cows; /* Zap COWed private pages too? */ 1972 zap_flags_t zap_flags; /* Extra flags for zapping */ 1973}; 1974 1975/* 1976 * Whether to drop the pte markers, for example, the uffd-wp information for 1977 * file-backed memory. This should only be specified when we will completely 1978 * drop the page in the mm, either by truncation or unmapping of the vma. By 1979 * default, the flag is not set. 1980 */ 1981#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 1982/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 1983#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 1984 1985#ifdef CONFIG_MMU 1986extern bool can_do_mlock(void); 1987#else 1988static inline bool can_do_mlock(void) { return false; } 1989#endif 1990extern int user_shm_lock(size_t, struct ucounts *); 1991extern void user_shm_unlock(size_t, struct ucounts *); 1992 1993struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1994 pte_t pte); 1995struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1996 pmd_t pmd); 1997 1998void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1999 unsigned long size); 2000void zap_page_range(struct vm_area_struct *vma, unsigned long address, 2001 unsigned long size); 2002void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2003 unsigned long size, struct zap_details *details); 2004void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 2005 struct vm_area_struct *start_vma, unsigned long start, 2006 unsigned long end); 2007 2008struct mmu_notifier_range; 2009 2010void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2011 unsigned long end, unsigned long floor, unsigned long ceiling); 2012int 2013copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2014int follow_pte(struct mm_struct *mm, unsigned long address, 2015 pte_t **ptepp, spinlock_t **ptlp); 2016int follow_pfn(struct vm_area_struct *vma, unsigned long address, 2017 unsigned long *pfn); 2018int follow_phys(struct vm_area_struct *vma, unsigned long address, 2019 unsigned int flags, unsigned long *prot, resource_size_t *phys); 2020int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2021 void *buf, int len, int write); 2022 2023extern void truncate_pagecache(struct inode *inode, loff_t new); 2024extern void truncate_setsize(struct inode *inode, loff_t newsize); 2025void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2026void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2027int generic_error_remove_page(struct address_space *mapping, struct page *page); 2028 2029#ifdef CONFIG_MMU 2030extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2031 unsigned long address, unsigned int flags, 2032 struct pt_regs *regs); 2033extern int fixup_user_fault(struct mm_struct *mm, 2034 unsigned long address, unsigned int fault_flags, 2035 bool *unlocked); 2036void unmap_mapping_pages(struct address_space *mapping, 2037 pgoff_t start, pgoff_t nr, bool even_cows); 2038void unmap_mapping_range(struct address_space *mapping, 2039 loff_t const holebegin, loff_t const holelen, int even_cows); 2040#else 2041static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2042 unsigned long address, unsigned int flags, 2043 struct pt_regs *regs) 2044{ 2045 /* should never happen if there's no MMU */ 2046 BUG(); 2047 return VM_FAULT_SIGBUS; 2048} 2049static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2050 unsigned int fault_flags, bool *unlocked) 2051{ 2052 /* should never happen if there's no MMU */ 2053 BUG(); 2054 return -EFAULT; 2055} 2056static inline void unmap_mapping_pages(struct address_space *mapping, 2057 pgoff_t start, pgoff_t nr, bool even_cows) { } 2058static inline void unmap_mapping_range(struct address_space *mapping, 2059 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2060#endif 2061 2062static inline void unmap_shared_mapping_range(struct address_space *mapping, 2063 loff_t const holebegin, loff_t const holelen) 2064{ 2065 unmap_mapping_range(mapping, holebegin, holelen, 0); 2066} 2067 2068extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2069 void *buf, int len, unsigned int gup_flags); 2070extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2071 void *buf, int len, unsigned int gup_flags); 2072extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 2073 void *buf, int len, unsigned int gup_flags); 2074 2075long get_user_pages_remote(struct mm_struct *mm, 2076 unsigned long start, unsigned long nr_pages, 2077 unsigned int gup_flags, struct page **pages, 2078 struct vm_area_struct **vmas, int *locked); 2079long pin_user_pages_remote(struct mm_struct *mm, 2080 unsigned long start, unsigned long nr_pages, 2081 unsigned int gup_flags, struct page **pages, 2082 struct vm_area_struct **vmas, int *locked); 2083long get_user_pages(unsigned long start, unsigned long nr_pages, 2084 unsigned int gup_flags, struct page **pages, 2085 struct vm_area_struct **vmas); 2086long pin_user_pages(unsigned long start, unsigned long nr_pages, 2087 unsigned int gup_flags, struct page **pages, 2088 struct vm_area_struct **vmas); 2089long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2090 struct page **pages, unsigned int gup_flags); 2091long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2092 struct page **pages, unsigned int gup_flags); 2093 2094int get_user_pages_fast(unsigned long start, int nr_pages, 2095 unsigned int gup_flags, struct page **pages); 2096int pin_user_pages_fast(unsigned long start, int nr_pages, 2097 unsigned int gup_flags, struct page **pages); 2098 2099int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2100int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2101 struct task_struct *task, bool bypass_rlim); 2102 2103struct kvec; 2104int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 2105 struct page **pages); 2106struct page *get_dump_page(unsigned long addr); 2107 2108bool folio_mark_dirty(struct folio *folio); 2109bool set_page_dirty(struct page *page); 2110int set_page_dirty_lock(struct page *page); 2111 2112int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2113 2114extern unsigned long move_page_tables(struct vm_area_struct *vma, 2115 unsigned long old_addr, struct vm_area_struct *new_vma, 2116 unsigned long new_addr, unsigned long len, 2117 bool need_rmap_locks); 2118 2119/* 2120 * Flags used by change_protection(). For now we make it a bitmap so 2121 * that we can pass in multiple flags just like parameters. However 2122 * for now all the callers are only use one of the flags at the same 2123 * time. 2124 */ 2125/* 2126 * Whether we should manually check if we can map individual PTEs writable, 2127 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2128 * PTEs automatically in a writable mapping. 2129 */ 2130#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2131/* Whether this protection change is for NUMA hints */ 2132#define MM_CP_PROT_NUMA (1UL << 1) 2133/* Whether this change is for write protecting */ 2134#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2135#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2136#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2137 MM_CP_UFFD_WP_RESOLVE) 2138 2139int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2140static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2141{ 2142 /* 2143 * We want to check manually if we can change individual PTEs writable 2144 * if we can't do that automatically for all PTEs in a mapping. For 2145 * private mappings, that's always the case when we have write 2146 * permissions as we properly have to handle COW. 2147 */ 2148 if (vma->vm_flags & VM_SHARED) 2149 return vma_wants_writenotify(vma, vma->vm_page_prot); 2150 return !!(vma->vm_flags & VM_WRITE); 2151 2152} 2153bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2154 pte_t pte); 2155extern unsigned long change_protection(struct mmu_gather *tlb, 2156 struct vm_area_struct *vma, unsigned long start, 2157 unsigned long end, pgprot_t newprot, 2158 unsigned long cp_flags); 2159extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma, 2160 struct vm_area_struct **pprev, unsigned long start, 2161 unsigned long end, unsigned long newflags); 2162 2163/* 2164 * doesn't attempt to fault and will return short. 2165 */ 2166int get_user_pages_fast_only(unsigned long start, int nr_pages, 2167 unsigned int gup_flags, struct page **pages); 2168int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2169 unsigned int gup_flags, struct page **pages); 2170 2171static inline bool get_user_page_fast_only(unsigned long addr, 2172 unsigned int gup_flags, struct page **pagep) 2173{ 2174 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2175} 2176/* 2177 * per-process(per-mm_struct) statistics. 2178 */ 2179static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2180{ 2181 return percpu_counter_read_positive(&mm->rss_stat[member]); 2182} 2183 2184void mm_trace_rss_stat(struct mm_struct *mm, int member); 2185 2186static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2187{ 2188 percpu_counter_add(&mm->rss_stat[member], value); 2189 2190 mm_trace_rss_stat(mm, member); 2191} 2192 2193static inline void inc_mm_counter(struct mm_struct *mm, int member) 2194{ 2195 percpu_counter_inc(&mm->rss_stat[member]); 2196 2197 mm_trace_rss_stat(mm, member); 2198} 2199 2200static inline void dec_mm_counter(struct mm_struct *mm, int member) 2201{ 2202 percpu_counter_dec(&mm->rss_stat[member]); 2203 2204 mm_trace_rss_stat(mm, member); 2205} 2206 2207/* Optimized variant when page is already known not to be PageAnon */ 2208static inline int mm_counter_file(struct page *page) 2209{ 2210 if (PageSwapBacked(page)) 2211 return MM_SHMEMPAGES; 2212 return MM_FILEPAGES; 2213} 2214 2215static inline int mm_counter(struct page *page) 2216{ 2217 if (PageAnon(page)) 2218 return MM_ANONPAGES; 2219 return mm_counter_file(page); 2220} 2221 2222static inline unsigned long get_mm_rss(struct mm_struct *mm) 2223{ 2224 return get_mm_counter(mm, MM_FILEPAGES) + 2225 get_mm_counter(mm, MM_ANONPAGES) + 2226 get_mm_counter(mm, MM_SHMEMPAGES); 2227} 2228 2229static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2230{ 2231 return max(mm->hiwater_rss, get_mm_rss(mm)); 2232} 2233 2234static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2235{ 2236 return max(mm->hiwater_vm, mm->total_vm); 2237} 2238 2239static inline void update_hiwater_rss(struct mm_struct *mm) 2240{ 2241 unsigned long _rss = get_mm_rss(mm); 2242 2243 if ((mm)->hiwater_rss < _rss) 2244 (mm)->hiwater_rss = _rss; 2245} 2246 2247static inline void update_hiwater_vm(struct mm_struct *mm) 2248{ 2249 if (mm->hiwater_vm < mm->total_vm) 2250 mm->hiwater_vm = mm->total_vm; 2251} 2252 2253static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2254{ 2255 mm->hiwater_rss = get_mm_rss(mm); 2256} 2257 2258static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2259 struct mm_struct *mm) 2260{ 2261 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2262 2263 if (*maxrss < hiwater_rss) 2264 *maxrss = hiwater_rss; 2265} 2266 2267#if defined(SPLIT_RSS_COUNTING) 2268void sync_mm_rss(struct mm_struct *mm); 2269#else 2270static inline void sync_mm_rss(struct mm_struct *mm) 2271{ 2272} 2273#endif 2274 2275#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2276static inline int pte_special(pte_t pte) 2277{ 2278 return 0; 2279} 2280 2281static inline pte_t pte_mkspecial(pte_t pte) 2282{ 2283 return pte; 2284} 2285#endif 2286 2287#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2288static inline int pte_devmap(pte_t pte) 2289{ 2290 return 0; 2291} 2292#endif 2293 2294extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2295 spinlock_t **ptl); 2296static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2297 spinlock_t **ptl) 2298{ 2299 pte_t *ptep; 2300 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2301 return ptep; 2302} 2303 2304#ifdef __PAGETABLE_P4D_FOLDED 2305static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2306 unsigned long address) 2307{ 2308 return 0; 2309} 2310#else 2311int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2312#endif 2313 2314#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2315static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2316 unsigned long address) 2317{ 2318 return 0; 2319} 2320static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2321static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2322 2323#else 2324int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2325 2326static inline void mm_inc_nr_puds(struct mm_struct *mm) 2327{ 2328 if (mm_pud_folded(mm)) 2329 return; 2330 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2331} 2332 2333static inline void mm_dec_nr_puds(struct mm_struct *mm) 2334{ 2335 if (mm_pud_folded(mm)) 2336 return; 2337 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2338} 2339#endif 2340 2341#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2342static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2343 unsigned long address) 2344{ 2345 return 0; 2346} 2347 2348static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2349static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2350 2351#else 2352int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2353 2354static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2355{ 2356 if (mm_pmd_folded(mm)) 2357 return; 2358 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2359} 2360 2361static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2362{ 2363 if (mm_pmd_folded(mm)) 2364 return; 2365 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2366} 2367#endif 2368 2369#ifdef CONFIG_MMU 2370static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2371{ 2372 atomic_long_set(&mm->pgtables_bytes, 0); 2373} 2374 2375static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2376{ 2377 return atomic_long_read(&mm->pgtables_bytes); 2378} 2379 2380static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2381{ 2382 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2383} 2384 2385static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2386{ 2387 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2388} 2389#else 2390 2391static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2392static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2393{ 2394 return 0; 2395} 2396 2397static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2398static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2399#endif 2400 2401int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2402int __pte_alloc_kernel(pmd_t *pmd); 2403 2404#if defined(CONFIG_MMU) 2405 2406static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2407 unsigned long address) 2408{ 2409 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2410 NULL : p4d_offset(pgd, address); 2411} 2412 2413static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2414 unsigned long address) 2415{ 2416 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2417 NULL : pud_offset(p4d, address); 2418} 2419 2420static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2421{ 2422 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2423 NULL: pmd_offset(pud, address); 2424} 2425#endif /* CONFIG_MMU */ 2426 2427#if USE_SPLIT_PTE_PTLOCKS 2428#if ALLOC_SPLIT_PTLOCKS 2429void __init ptlock_cache_init(void); 2430extern bool ptlock_alloc(struct page *page); 2431extern void ptlock_free(struct page *page); 2432 2433static inline spinlock_t *ptlock_ptr(struct page *page) 2434{ 2435 return page->ptl; 2436} 2437#else /* ALLOC_SPLIT_PTLOCKS */ 2438static inline void ptlock_cache_init(void) 2439{ 2440} 2441 2442static inline bool ptlock_alloc(struct page *page) 2443{ 2444 return true; 2445} 2446 2447static inline void ptlock_free(struct page *page) 2448{ 2449} 2450 2451static inline spinlock_t *ptlock_ptr(struct page *page) 2452{ 2453 return &page->ptl; 2454} 2455#endif /* ALLOC_SPLIT_PTLOCKS */ 2456 2457static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2458{ 2459 return ptlock_ptr(pmd_page(*pmd)); 2460} 2461 2462static inline bool ptlock_init(struct page *page) 2463{ 2464 /* 2465 * prep_new_page() initialize page->private (and therefore page->ptl) 2466 * with 0. Make sure nobody took it in use in between. 2467 * 2468 * It can happen if arch try to use slab for page table allocation: 2469 * slab code uses page->slab_cache, which share storage with page->ptl. 2470 */ 2471 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2472 if (!ptlock_alloc(page)) 2473 return false; 2474 spin_lock_init(ptlock_ptr(page)); 2475 return true; 2476} 2477 2478#else /* !USE_SPLIT_PTE_PTLOCKS */ 2479/* 2480 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2481 */ 2482static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2483{ 2484 return &mm->page_table_lock; 2485} 2486static inline void ptlock_cache_init(void) {} 2487static inline bool ptlock_init(struct page *page) { return true; } 2488static inline void ptlock_free(struct page *page) {} 2489#endif /* USE_SPLIT_PTE_PTLOCKS */ 2490 2491static inline void pgtable_init(void) 2492{ 2493 ptlock_cache_init(); 2494 pgtable_cache_init(); 2495} 2496 2497static inline bool pgtable_pte_page_ctor(struct page *page) 2498{ 2499 if (!ptlock_init(page)) 2500 return false; 2501 __SetPageTable(page); 2502 inc_lruvec_page_state(page, NR_PAGETABLE); 2503 return true; 2504} 2505 2506static inline void pgtable_pte_page_dtor(struct page *page) 2507{ 2508 ptlock_free(page); 2509 __ClearPageTable(page); 2510 dec_lruvec_page_state(page, NR_PAGETABLE); 2511} 2512 2513#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2514({ \ 2515 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2516 pte_t *__pte = pte_offset_map(pmd, address); \ 2517 *(ptlp) = __ptl; \ 2518 spin_lock(__ptl); \ 2519 __pte; \ 2520}) 2521 2522#define pte_unmap_unlock(pte, ptl) do { \ 2523 spin_unlock(ptl); \ 2524 pte_unmap(pte); \ 2525} while (0) 2526 2527#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2528 2529#define pte_alloc_map(mm, pmd, address) \ 2530 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2531 2532#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2533 (pte_alloc(mm, pmd) ? \ 2534 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2535 2536#define pte_alloc_kernel(pmd, address) \ 2537 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2538 NULL: pte_offset_kernel(pmd, address)) 2539 2540#if USE_SPLIT_PMD_PTLOCKS 2541 2542static inline struct page *pmd_pgtable_page(pmd_t *pmd) 2543{ 2544 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2545 return virt_to_page((void *)((unsigned long) pmd & mask)); 2546} 2547 2548static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2549{ 2550 return ptlock_ptr(pmd_pgtable_page(pmd)); 2551} 2552 2553static inline bool pmd_ptlock_init(struct page *page) 2554{ 2555#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2556 page->pmd_huge_pte = NULL; 2557#endif 2558 return ptlock_init(page); 2559} 2560 2561static inline void pmd_ptlock_free(struct page *page) 2562{ 2563#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2564 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2565#endif 2566 ptlock_free(page); 2567} 2568 2569#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte) 2570 2571#else 2572 2573static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2574{ 2575 return &mm->page_table_lock; 2576} 2577 2578static inline bool pmd_ptlock_init(struct page *page) { return true; } 2579static inline void pmd_ptlock_free(struct page *page) {} 2580 2581#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2582 2583#endif 2584 2585static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2586{ 2587 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2588 spin_lock(ptl); 2589 return ptl; 2590} 2591 2592static inline bool pgtable_pmd_page_ctor(struct page *page) 2593{ 2594 if (!pmd_ptlock_init(page)) 2595 return false; 2596 __SetPageTable(page); 2597 inc_lruvec_page_state(page, NR_PAGETABLE); 2598 return true; 2599} 2600 2601static inline void pgtable_pmd_page_dtor(struct page *page) 2602{ 2603 pmd_ptlock_free(page); 2604 __ClearPageTable(page); 2605 dec_lruvec_page_state(page, NR_PAGETABLE); 2606} 2607 2608/* 2609 * No scalability reason to split PUD locks yet, but follow the same pattern 2610 * as the PMD locks to make it easier if we decide to. The VM should not be 2611 * considered ready to switch to split PUD locks yet; there may be places 2612 * which need to be converted from page_table_lock. 2613 */ 2614static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2615{ 2616 return &mm->page_table_lock; 2617} 2618 2619static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2620{ 2621 spinlock_t *ptl = pud_lockptr(mm, pud); 2622 2623 spin_lock(ptl); 2624 return ptl; 2625} 2626 2627extern void __init pagecache_init(void); 2628extern void free_initmem(void); 2629 2630/* 2631 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2632 * into the buddy system. The freed pages will be poisoned with pattern 2633 * "poison" if it's within range [0, UCHAR_MAX]. 2634 * Return pages freed into the buddy system. 2635 */ 2636extern unsigned long free_reserved_area(void *start, void *end, 2637 int poison, const char *s); 2638 2639extern void adjust_managed_page_count(struct page *page, long count); 2640extern void mem_init_print_info(void); 2641 2642extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2643 2644/* Free the reserved page into the buddy system, so it gets managed. */ 2645static inline void free_reserved_page(struct page *page) 2646{ 2647 ClearPageReserved(page); 2648 init_page_count(page); 2649 __free_page(page); 2650 adjust_managed_page_count(page, 1); 2651} 2652#define free_highmem_page(page) free_reserved_page(page) 2653 2654static inline void mark_page_reserved(struct page *page) 2655{ 2656 SetPageReserved(page); 2657 adjust_managed_page_count(page, -1); 2658} 2659 2660/* 2661 * Default method to free all the __init memory into the buddy system. 2662 * The freed pages will be poisoned with pattern "poison" if it's within 2663 * range [0, UCHAR_MAX]. 2664 * Return pages freed into the buddy system. 2665 */ 2666static inline unsigned long free_initmem_default(int poison) 2667{ 2668 extern char __init_begin[], __init_end[]; 2669 2670 return free_reserved_area(&__init_begin, &__init_end, 2671 poison, "unused kernel image (initmem)"); 2672} 2673 2674static inline unsigned long get_num_physpages(void) 2675{ 2676 int nid; 2677 unsigned long phys_pages = 0; 2678 2679 for_each_online_node(nid) 2680 phys_pages += node_present_pages(nid); 2681 2682 return phys_pages; 2683} 2684 2685/* 2686 * Using memblock node mappings, an architecture may initialise its 2687 * zones, allocate the backing mem_map and account for memory holes in an 2688 * architecture independent manner. 2689 * 2690 * An architecture is expected to register range of page frames backed by 2691 * physical memory with memblock_add[_node]() before calling 2692 * free_area_init() passing in the PFN each zone ends at. At a basic 2693 * usage, an architecture is expected to do something like 2694 * 2695 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2696 * max_highmem_pfn}; 2697 * for_each_valid_physical_page_range() 2698 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 2699 * free_area_init(max_zone_pfns); 2700 */ 2701void free_area_init(unsigned long *max_zone_pfn); 2702unsigned long node_map_pfn_alignment(void); 2703unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2704 unsigned long end_pfn); 2705extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2706 unsigned long end_pfn); 2707extern void get_pfn_range_for_nid(unsigned int nid, 2708 unsigned long *start_pfn, unsigned long *end_pfn); 2709 2710#ifndef CONFIG_NUMA 2711static inline int early_pfn_to_nid(unsigned long pfn) 2712{ 2713 return 0; 2714} 2715#else 2716/* please see mm/page_alloc.c */ 2717extern int __meminit early_pfn_to_nid(unsigned long pfn); 2718#endif 2719 2720extern void set_dma_reserve(unsigned long new_dma_reserve); 2721extern void memmap_init_range(unsigned long, int, unsigned long, 2722 unsigned long, unsigned long, enum meminit_context, 2723 struct vmem_altmap *, int migratetype); 2724extern void setup_per_zone_wmarks(void); 2725extern void calculate_min_free_kbytes(void); 2726extern int __meminit init_per_zone_wmark_min(void); 2727extern void mem_init(void); 2728extern void __init mmap_init(void); 2729 2730extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 2731static inline void show_mem(unsigned int flags, nodemask_t *nodemask) 2732{ 2733 __show_mem(flags, nodemask, MAX_NR_ZONES - 1); 2734} 2735extern long si_mem_available(void); 2736extern void si_meminfo(struct sysinfo * val); 2737extern void si_meminfo_node(struct sysinfo *val, int nid); 2738#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2739extern unsigned long arch_reserved_kernel_pages(void); 2740#endif 2741 2742extern __printf(3, 4) 2743void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2744 2745extern void setup_per_cpu_pageset(void); 2746 2747/* page_alloc.c */ 2748extern int min_free_kbytes; 2749extern int watermark_boost_factor; 2750extern int watermark_scale_factor; 2751extern bool arch_has_descending_max_zone_pfns(void); 2752 2753/* nommu.c */ 2754extern atomic_long_t mmap_pages_allocated; 2755extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2756 2757/* interval_tree.c */ 2758void vma_interval_tree_insert(struct vm_area_struct *node, 2759 struct rb_root_cached *root); 2760void vma_interval_tree_insert_after(struct vm_area_struct *node, 2761 struct vm_area_struct *prev, 2762 struct rb_root_cached *root); 2763void vma_interval_tree_remove(struct vm_area_struct *node, 2764 struct rb_root_cached *root); 2765struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2766 unsigned long start, unsigned long last); 2767struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2768 unsigned long start, unsigned long last); 2769 2770#define vma_interval_tree_foreach(vma, root, start, last) \ 2771 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2772 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2773 2774void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2775 struct rb_root_cached *root); 2776void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2777 struct rb_root_cached *root); 2778struct anon_vma_chain * 2779anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2780 unsigned long start, unsigned long last); 2781struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2782 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2783#ifdef CONFIG_DEBUG_VM_RB 2784void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2785#endif 2786 2787#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2788 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2789 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2790 2791/* mmap.c */ 2792extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2793extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2794 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2795 struct vm_area_struct *expand); 2796static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2797 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2798{ 2799 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2800} 2801extern struct vm_area_struct *vma_merge(struct mm_struct *, 2802 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2803 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2804 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *); 2805extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2806extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2807 unsigned long addr, int new_below); 2808extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2809 unsigned long addr, int new_below); 2810extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2811extern void unlink_file_vma(struct vm_area_struct *); 2812extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2813 unsigned long addr, unsigned long len, pgoff_t pgoff, 2814 bool *need_rmap_locks); 2815extern void exit_mmap(struct mm_struct *); 2816 2817void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas); 2818void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas); 2819 2820static inline int check_data_rlimit(unsigned long rlim, 2821 unsigned long new, 2822 unsigned long start, 2823 unsigned long end_data, 2824 unsigned long start_data) 2825{ 2826 if (rlim < RLIM_INFINITY) { 2827 if (((new - start) + (end_data - start_data)) > rlim) 2828 return -ENOSPC; 2829 } 2830 2831 return 0; 2832} 2833 2834extern int mm_take_all_locks(struct mm_struct *mm); 2835extern void mm_drop_all_locks(struct mm_struct *mm); 2836 2837extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2838extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2839extern struct file *get_mm_exe_file(struct mm_struct *mm); 2840extern struct file *get_task_exe_file(struct task_struct *task); 2841 2842extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2843extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2844 2845extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2846 const struct vm_special_mapping *sm); 2847extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2848 unsigned long addr, unsigned long len, 2849 unsigned long flags, 2850 const struct vm_special_mapping *spec); 2851/* This is an obsolete alternative to _install_special_mapping. */ 2852extern int install_special_mapping(struct mm_struct *mm, 2853 unsigned long addr, unsigned long len, 2854 unsigned long flags, struct page **pages); 2855 2856unsigned long randomize_stack_top(unsigned long stack_top); 2857unsigned long randomize_page(unsigned long start, unsigned long range); 2858 2859extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2860 2861extern unsigned long mmap_region(struct file *file, unsigned long addr, 2862 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2863 struct list_head *uf); 2864extern unsigned long do_mmap(struct file *file, unsigned long addr, 2865 unsigned long len, unsigned long prot, unsigned long flags, 2866 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2867extern int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm, 2868 unsigned long start, size_t len, struct list_head *uf, 2869 bool downgrade); 2870extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2871 struct list_head *uf); 2872extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2873 2874#ifdef CONFIG_MMU 2875extern int __mm_populate(unsigned long addr, unsigned long len, 2876 int ignore_errors); 2877static inline void mm_populate(unsigned long addr, unsigned long len) 2878{ 2879 /* Ignore errors */ 2880 (void) __mm_populate(addr, len, 1); 2881} 2882#else 2883static inline void mm_populate(unsigned long addr, unsigned long len) {} 2884#endif 2885 2886/* These take the mm semaphore themselves */ 2887extern int __must_check vm_brk(unsigned long, unsigned long); 2888extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2889extern int vm_munmap(unsigned long, size_t); 2890extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2891 unsigned long, unsigned long, 2892 unsigned long, unsigned long); 2893 2894struct vm_unmapped_area_info { 2895#define VM_UNMAPPED_AREA_TOPDOWN 1 2896 unsigned long flags; 2897 unsigned long length; 2898 unsigned long low_limit; 2899 unsigned long high_limit; 2900 unsigned long align_mask; 2901 unsigned long align_offset; 2902}; 2903 2904extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2905 2906/* truncate.c */ 2907extern void truncate_inode_pages(struct address_space *, loff_t); 2908extern void truncate_inode_pages_range(struct address_space *, 2909 loff_t lstart, loff_t lend); 2910extern void truncate_inode_pages_final(struct address_space *); 2911 2912/* generic vm_area_ops exported for stackable file systems */ 2913extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2914extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2915 pgoff_t start_pgoff, pgoff_t end_pgoff); 2916extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2917 2918extern unsigned long stack_guard_gap; 2919/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2920extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2921 2922/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2923extern int expand_downwards(struct vm_area_struct *vma, 2924 unsigned long address); 2925#if VM_GROWSUP 2926extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2927#else 2928 #define expand_upwards(vma, address) (0) 2929#endif 2930 2931/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2932extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2933extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2934 struct vm_area_struct **pprev); 2935 2936/* 2937 * Look up the first VMA which intersects the interval [start_addr, end_addr) 2938 * NULL if none. Assume start_addr < end_addr. 2939 */ 2940struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 2941 unsigned long start_addr, unsigned long end_addr); 2942 2943/** 2944 * vma_lookup() - Find a VMA at a specific address 2945 * @mm: The process address space. 2946 * @addr: The user address. 2947 * 2948 * Return: The vm_area_struct at the given address, %NULL otherwise. 2949 */ 2950static inline 2951struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 2952{ 2953 return mtree_load(&mm->mm_mt, addr); 2954} 2955 2956static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2957{ 2958 unsigned long vm_start = vma->vm_start; 2959 2960 if (vma->vm_flags & VM_GROWSDOWN) { 2961 vm_start -= stack_guard_gap; 2962 if (vm_start > vma->vm_start) 2963 vm_start = 0; 2964 } 2965 return vm_start; 2966} 2967 2968static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2969{ 2970 unsigned long vm_end = vma->vm_end; 2971 2972 if (vma->vm_flags & VM_GROWSUP) { 2973 vm_end += stack_guard_gap; 2974 if (vm_end < vma->vm_end) 2975 vm_end = -PAGE_SIZE; 2976 } 2977 return vm_end; 2978} 2979 2980static inline unsigned long vma_pages(struct vm_area_struct *vma) 2981{ 2982 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2983} 2984 2985/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2986static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2987 unsigned long vm_start, unsigned long vm_end) 2988{ 2989 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 2990 2991 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2992 vma = NULL; 2993 2994 return vma; 2995} 2996 2997static inline bool range_in_vma(struct vm_area_struct *vma, 2998 unsigned long start, unsigned long end) 2999{ 3000 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3001} 3002 3003#ifdef CONFIG_MMU 3004pgprot_t vm_get_page_prot(unsigned long vm_flags); 3005void vma_set_page_prot(struct vm_area_struct *vma); 3006#else 3007static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3008{ 3009 return __pgprot(0); 3010} 3011static inline void vma_set_page_prot(struct vm_area_struct *vma) 3012{ 3013 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3014} 3015#endif 3016 3017void vma_set_file(struct vm_area_struct *vma, struct file *file); 3018 3019#ifdef CONFIG_NUMA_BALANCING 3020unsigned long change_prot_numa(struct vm_area_struct *vma, 3021 unsigned long start, unsigned long end); 3022#endif 3023 3024struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 3025int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3026 unsigned long pfn, unsigned long size, pgprot_t); 3027int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3028 unsigned long pfn, unsigned long size, pgprot_t prot); 3029int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3030int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3031 struct page **pages, unsigned long *num); 3032int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3033 unsigned long num); 3034int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3035 unsigned long num); 3036vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3037 unsigned long pfn); 3038vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3039 unsigned long pfn, pgprot_t pgprot); 3040vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3041 pfn_t pfn); 3042vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 3043 pfn_t pfn, pgprot_t pgprot); 3044vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3045 unsigned long addr, pfn_t pfn); 3046int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3047 3048static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3049 unsigned long addr, struct page *page) 3050{ 3051 int err = vm_insert_page(vma, addr, page); 3052 3053 if (err == -ENOMEM) 3054 return VM_FAULT_OOM; 3055 if (err < 0 && err != -EBUSY) 3056 return VM_FAULT_SIGBUS; 3057 3058 return VM_FAULT_NOPAGE; 3059} 3060 3061#ifndef io_remap_pfn_range 3062static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3063 unsigned long addr, unsigned long pfn, 3064 unsigned long size, pgprot_t prot) 3065{ 3066 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3067} 3068#endif 3069 3070static inline vm_fault_t vmf_error(int err) 3071{ 3072 if (err == -ENOMEM) 3073 return VM_FAULT_OOM; 3074 return VM_FAULT_SIGBUS; 3075} 3076 3077struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3078 unsigned int foll_flags); 3079 3080#define FOLL_WRITE 0x01 /* check pte is writable */ 3081#define FOLL_TOUCH 0x02 /* mark page accessed */ 3082#define FOLL_GET 0x04 /* do get_page on page */ 3083#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 3084#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 3085#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 3086 * and return without waiting upon it */ 3087#define FOLL_NOFAULT 0x80 /* do not fault in pages */ 3088#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 3089#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 3090#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 3091#define FOLL_ANON 0x8000 /* don't do file mappings */ 3092#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 3093#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 3094#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 3095#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 3096#define FOLL_PCI_P2PDMA 0x100000 /* allow returning PCI P2PDMA pages */ 3097#define FOLL_INTERRUPTIBLE 0x200000 /* allow interrupts from generic signals */ 3098 3099/* 3100 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 3101 * other. Here is what they mean, and how to use them: 3102 * 3103 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 3104 * period _often_ under userspace control. This is in contrast to 3105 * iov_iter_get_pages(), whose usages are transient. 3106 * 3107 * FIXME: For pages which are part of a filesystem, mappings are subject to the 3108 * lifetime enforced by the filesystem and we need guarantees that longterm 3109 * users like RDMA and V4L2 only establish mappings which coordinate usage with 3110 * the filesystem. Ideas for this coordination include revoking the longterm 3111 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 3112 * added after the problem with filesystems was found FS DAX VMAs are 3113 * specifically failed. Filesystem pages are still subject to bugs and use of 3114 * FOLL_LONGTERM should be avoided on those pages. 3115 * 3116 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 3117 * Currently only get_user_pages() and get_user_pages_fast() support this flag 3118 * and calls to get_user_pages_[un]locked are specifically not allowed. This 3119 * is due to an incompatibility with the FS DAX check and 3120 * FAULT_FLAG_ALLOW_RETRY. 3121 * 3122 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 3123 * that region. And so, CMA attempts to migrate the page before pinning, when 3124 * FOLL_LONGTERM is specified. 3125 * 3126 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 3127 * but an additional pin counting system) will be invoked. This is intended for 3128 * anything that gets a page reference and then touches page data (for example, 3129 * Direct IO). This lets the filesystem know that some non-file-system entity is 3130 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 3131 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 3132 * a call to unpin_user_page(). 3133 * 3134 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 3135 * and separate refcounting mechanisms, however, and that means that each has 3136 * its own acquire and release mechanisms: 3137 * 3138 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 3139 * 3140 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 3141 * 3142 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 3143 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 3144 * calls applied to them, and that's perfectly OK. This is a constraint on the 3145 * callers, not on the pages.) 3146 * 3147 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 3148 * directly by the caller. That's in order to help avoid mismatches when 3149 * releasing pages: get_user_pages*() pages must be released via put_page(), 3150 * while pin_user_pages*() pages must be released via unpin_user_page(). 3151 * 3152 * Please see Documentation/core-api/pin_user_pages.rst for more information. 3153 */ 3154 3155static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3156{ 3157 if (vm_fault & VM_FAULT_OOM) 3158 return -ENOMEM; 3159 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3160 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3161 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3162 return -EFAULT; 3163 return 0; 3164} 3165 3166/* 3167 * Indicates for which pages that are write-protected in the page table, 3168 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the 3169 * GUP pin will remain consistent with the pages mapped into the page tables 3170 * of the MM. 3171 * 3172 * Temporary unmapping of PageAnonExclusive() pages or clearing of 3173 * PageAnonExclusive() has to protect against concurrent GUP: 3174 * * Ordinary GUP: Using the PT lock 3175 * * GUP-fast and fork(): mm->write_protect_seq 3176 * * GUP-fast and KSM or temporary unmapping (swap, migration): see 3177 * page_try_share_anon_rmap() 3178 * 3179 * Must be called with the (sub)page that's actually referenced via the 3180 * page table entry, which might not necessarily be the head page for a 3181 * PTE-mapped THP. 3182 * 3183 * If the vma is NULL, we're coming from the GUP-fast path and might have 3184 * to fallback to the slow path just to lookup the vma. 3185 */ 3186static inline bool gup_must_unshare(struct vm_area_struct *vma, 3187 unsigned int flags, struct page *page) 3188{ 3189 /* 3190 * FOLL_WRITE is implicitly handled correctly as the page table entry 3191 * has to be writable -- and if it references (part of) an anonymous 3192 * folio, that part is required to be marked exclusive. 3193 */ 3194 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) 3195 return false; 3196 /* 3197 * Note: PageAnon(page) is stable until the page is actually getting 3198 * freed. 3199 */ 3200 if (!PageAnon(page)) { 3201 /* 3202 * We only care about R/O long-term pining: R/O short-term 3203 * pinning does not have the semantics to observe successive 3204 * changes through the process page tables. 3205 */ 3206 if (!(flags & FOLL_LONGTERM)) 3207 return false; 3208 3209 /* We really need the vma ... */ 3210 if (!vma) 3211 return true; 3212 3213 /* 3214 * ... because we only care about writable private ("COW") 3215 * mappings where we have to break COW early. 3216 */ 3217 return is_cow_mapping(vma->vm_flags); 3218 } 3219 3220 /* Paired with a memory barrier in page_try_share_anon_rmap(). */ 3221 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) 3222 smp_rmb(); 3223 3224 /* 3225 * Note that PageKsm() pages cannot be exclusive, and consequently, 3226 * cannot get pinned. 3227 */ 3228 return !PageAnonExclusive(page); 3229} 3230 3231/* 3232 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3233 * a (NUMA hinting) fault is required. 3234 */ 3235static inline bool gup_can_follow_protnone(unsigned int flags) 3236{ 3237 /* 3238 * FOLL_FORCE has to be able to make progress even if the VMA is 3239 * inaccessible. Further, FOLL_FORCE access usually does not represent 3240 * application behaviour and we should avoid triggering NUMA hinting 3241 * faults. 3242 */ 3243 return flags & FOLL_FORCE; 3244} 3245 3246typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3247extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3248 unsigned long size, pte_fn_t fn, void *data); 3249extern int apply_to_existing_page_range(struct mm_struct *mm, 3250 unsigned long address, unsigned long size, 3251 pte_fn_t fn, void *data); 3252 3253extern void __init init_mem_debugging_and_hardening(void); 3254#ifdef CONFIG_PAGE_POISONING 3255extern void __kernel_poison_pages(struct page *page, int numpages); 3256extern void __kernel_unpoison_pages(struct page *page, int numpages); 3257extern bool _page_poisoning_enabled_early; 3258DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3259static inline bool page_poisoning_enabled(void) 3260{ 3261 return _page_poisoning_enabled_early; 3262} 3263/* 3264 * For use in fast paths after init_mem_debugging() has run, or when a 3265 * false negative result is not harmful when called too early. 3266 */ 3267static inline bool page_poisoning_enabled_static(void) 3268{ 3269 return static_branch_unlikely(&_page_poisoning_enabled); 3270} 3271static inline void kernel_poison_pages(struct page *page, int numpages) 3272{ 3273 if (page_poisoning_enabled_static()) 3274 __kernel_poison_pages(page, numpages); 3275} 3276static inline void kernel_unpoison_pages(struct page *page, int numpages) 3277{ 3278 if (page_poisoning_enabled_static()) 3279 __kernel_unpoison_pages(page, numpages); 3280} 3281#else 3282static inline bool page_poisoning_enabled(void) { return false; } 3283static inline bool page_poisoning_enabled_static(void) { return false; } 3284static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3285static inline void kernel_poison_pages(struct page *page, int numpages) { } 3286static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3287#endif 3288 3289DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3290static inline bool want_init_on_alloc(gfp_t flags) 3291{ 3292 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3293 &init_on_alloc)) 3294 return true; 3295 return flags & __GFP_ZERO; 3296} 3297 3298DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3299static inline bool want_init_on_free(void) 3300{ 3301 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3302 &init_on_free); 3303} 3304 3305extern bool _debug_pagealloc_enabled_early; 3306DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3307 3308static inline bool debug_pagealloc_enabled(void) 3309{ 3310 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3311 _debug_pagealloc_enabled_early; 3312} 3313 3314/* 3315 * For use in fast paths after init_debug_pagealloc() has run, or when a 3316 * false negative result is not harmful when called too early. 3317 */ 3318static inline bool debug_pagealloc_enabled_static(void) 3319{ 3320 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3321 return false; 3322 3323 return static_branch_unlikely(&_debug_pagealloc_enabled); 3324} 3325 3326#ifdef CONFIG_DEBUG_PAGEALLOC 3327/* 3328 * To support DEBUG_PAGEALLOC architecture must ensure that 3329 * __kernel_map_pages() never fails 3330 */ 3331extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3332 3333static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3334{ 3335 if (debug_pagealloc_enabled_static()) 3336 __kernel_map_pages(page, numpages, 1); 3337} 3338 3339static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3340{ 3341 if (debug_pagealloc_enabled_static()) 3342 __kernel_map_pages(page, numpages, 0); 3343} 3344#else /* CONFIG_DEBUG_PAGEALLOC */ 3345static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3346static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3347#endif /* CONFIG_DEBUG_PAGEALLOC */ 3348 3349#ifdef __HAVE_ARCH_GATE_AREA 3350extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3351extern int in_gate_area_no_mm(unsigned long addr); 3352extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3353#else 3354static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3355{ 3356 return NULL; 3357} 3358static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3359static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3360{ 3361 return 0; 3362} 3363#endif /* __HAVE_ARCH_GATE_AREA */ 3364 3365extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3366 3367#ifdef CONFIG_SYSCTL 3368extern int sysctl_drop_caches; 3369int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3370 loff_t *); 3371#endif 3372 3373void drop_slab(void); 3374 3375#ifndef CONFIG_MMU 3376#define randomize_va_space 0 3377#else 3378extern int randomize_va_space; 3379#endif 3380 3381const char * arch_vma_name(struct vm_area_struct *vma); 3382#ifdef CONFIG_MMU 3383void print_vma_addr(char *prefix, unsigned long rip); 3384#else 3385static inline void print_vma_addr(char *prefix, unsigned long rip) 3386{ 3387} 3388#endif 3389 3390void *sparse_buffer_alloc(unsigned long size); 3391struct page * __populate_section_memmap(unsigned long pfn, 3392 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3393 struct dev_pagemap *pgmap); 3394void pmd_init(void *addr); 3395void pud_init(void *addr); 3396pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3397p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3398pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3399pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3400pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3401 struct vmem_altmap *altmap, struct page *reuse); 3402void *vmemmap_alloc_block(unsigned long size, int node); 3403struct vmem_altmap; 3404void *vmemmap_alloc_block_buf(unsigned long size, int node, 3405 struct vmem_altmap *altmap); 3406void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3407void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3408 unsigned long addr, unsigned long next); 3409int vmemmap_check_pmd(pmd_t *pmd, int node, 3410 unsigned long addr, unsigned long next); 3411int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3412 int node, struct vmem_altmap *altmap); 3413int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3414 int node, struct vmem_altmap *altmap); 3415int vmemmap_populate(unsigned long start, unsigned long end, int node, 3416 struct vmem_altmap *altmap); 3417void vmemmap_populate_print_last(void); 3418#ifdef CONFIG_MEMORY_HOTPLUG 3419void vmemmap_free(unsigned long start, unsigned long end, 3420 struct vmem_altmap *altmap); 3421#endif 3422void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3423 unsigned long nr_pages); 3424 3425enum mf_flags { 3426 MF_COUNT_INCREASED = 1 << 0, 3427 MF_ACTION_REQUIRED = 1 << 1, 3428 MF_MUST_KILL = 1 << 2, 3429 MF_SOFT_OFFLINE = 1 << 3, 3430 MF_UNPOISON = 1 << 4, 3431 MF_SW_SIMULATED = 1 << 5, 3432 MF_NO_RETRY = 1 << 6, 3433}; 3434int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3435 unsigned long count, int mf_flags); 3436extern int memory_failure(unsigned long pfn, int flags); 3437extern void memory_failure_queue_kick(int cpu); 3438extern int unpoison_memory(unsigned long pfn); 3439extern int sysctl_memory_failure_early_kill; 3440extern int sysctl_memory_failure_recovery; 3441extern void shake_page(struct page *p); 3442extern atomic_long_t num_poisoned_pages __read_mostly; 3443extern int soft_offline_page(unsigned long pfn, int flags); 3444#ifdef CONFIG_MEMORY_FAILURE 3445extern void memory_failure_queue(unsigned long pfn, int flags); 3446extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3447 bool *migratable_cleared); 3448void num_poisoned_pages_inc(unsigned long pfn); 3449void num_poisoned_pages_sub(unsigned long pfn, long i); 3450#else 3451static inline void memory_failure_queue(unsigned long pfn, int flags) 3452{ 3453} 3454 3455static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3456 bool *migratable_cleared) 3457{ 3458 return 0; 3459} 3460 3461static inline void num_poisoned_pages_inc(unsigned long pfn) 3462{ 3463} 3464 3465static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3466{ 3467} 3468#endif 3469 3470#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3471extern void memblk_nr_poison_inc(unsigned long pfn); 3472extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3473#else 3474static inline void memblk_nr_poison_inc(unsigned long pfn) 3475{ 3476} 3477 3478static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3479{ 3480} 3481#endif 3482 3483#ifndef arch_memory_failure 3484static inline int arch_memory_failure(unsigned long pfn, int flags) 3485{ 3486 return -ENXIO; 3487} 3488#endif 3489 3490#ifndef arch_is_platform_page 3491static inline bool arch_is_platform_page(u64 paddr) 3492{ 3493 return false; 3494} 3495#endif 3496 3497/* 3498 * Error handlers for various types of pages. 3499 */ 3500enum mf_result { 3501 MF_IGNORED, /* Error: cannot be handled */ 3502 MF_FAILED, /* Error: handling failed */ 3503 MF_DELAYED, /* Will be handled later */ 3504 MF_RECOVERED, /* Successfully recovered */ 3505}; 3506 3507enum mf_action_page_type { 3508 MF_MSG_KERNEL, 3509 MF_MSG_KERNEL_HIGH_ORDER, 3510 MF_MSG_SLAB, 3511 MF_MSG_DIFFERENT_COMPOUND, 3512 MF_MSG_HUGE, 3513 MF_MSG_FREE_HUGE, 3514 MF_MSG_UNMAP_FAILED, 3515 MF_MSG_DIRTY_SWAPCACHE, 3516 MF_MSG_CLEAN_SWAPCACHE, 3517 MF_MSG_DIRTY_MLOCKED_LRU, 3518 MF_MSG_CLEAN_MLOCKED_LRU, 3519 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3520 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3521 MF_MSG_DIRTY_LRU, 3522 MF_MSG_CLEAN_LRU, 3523 MF_MSG_TRUNCATED_LRU, 3524 MF_MSG_BUDDY, 3525 MF_MSG_DAX, 3526 MF_MSG_UNSPLIT_THP, 3527 MF_MSG_UNKNOWN, 3528}; 3529 3530#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3531extern void clear_huge_page(struct page *page, 3532 unsigned long addr_hint, 3533 unsigned int pages_per_huge_page); 3534extern void copy_user_huge_page(struct page *dst, struct page *src, 3535 unsigned long addr_hint, 3536 struct vm_area_struct *vma, 3537 unsigned int pages_per_huge_page); 3538extern long copy_huge_page_from_user(struct page *dst_page, 3539 const void __user *usr_src, 3540 unsigned int pages_per_huge_page, 3541 bool allow_pagefault); 3542 3543/** 3544 * vma_is_special_huge - Are transhuge page-table entries considered special? 3545 * @vma: Pointer to the struct vm_area_struct to consider 3546 * 3547 * Whether transhuge page-table entries are considered "special" following 3548 * the definition in vm_normal_page(). 3549 * 3550 * Return: true if transhuge page-table entries should be considered special, 3551 * false otherwise. 3552 */ 3553static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3554{ 3555 return vma_is_dax(vma) || (vma->vm_file && 3556 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3557} 3558 3559#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3560 3561#ifdef CONFIG_DEBUG_PAGEALLOC 3562extern unsigned int _debug_guardpage_minorder; 3563DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3564 3565static inline unsigned int debug_guardpage_minorder(void) 3566{ 3567 return _debug_guardpage_minorder; 3568} 3569 3570static inline bool debug_guardpage_enabled(void) 3571{ 3572 return static_branch_unlikely(&_debug_guardpage_enabled); 3573} 3574 3575static inline bool page_is_guard(struct page *page) 3576{ 3577 if (!debug_guardpage_enabled()) 3578 return false; 3579 3580 return PageGuard(page); 3581} 3582#else 3583static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3584static inline bool debug_guardpage_enabled(void) { return false; } 3585static inline bool page_is_guard(struct page *page) { return false; } 3586#endif /* CONFIG_DEBUG_PAGEALLOC */ 3587 3588#if MAX_NUMNODES > 1 3589void __init setup_nr_node_ids(void); 3590#else 3591static inline void setup_nr_node_ids(void) {} 3592#endif 3593 3594extern int memcmp_pages(struct page *page1, struct page *page2); 3595 3596static inline int pages_identical(struct page *page1, struct page *page2) 3597{ 3598 return !memcmp_pages(page1, page2); 3599} 3600 3601#ifdef CONFIG_MAPPING_DIRTY_HELPERS 3602unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3603 pgoff_t first_index, pgoff_t nr, 3604 pgoff_t bitmap_pgoff, 3605 unsigned long *bitmap, 3606 pgoff_t *start, 3607 pgoff_t *end); 3608 3609unsigned long wp_shared_mapping_range(struct address_space *mapping, 3610 pgoff_t first_index, pgoff_t nr); 3611#endif 3612 3613extern int sysctl_nr_trim_pages; 3614 3615#ifdef CONFIG_PRINTK 3616void mem_dump_obj(void *object); 3617#else 3618static inline void mem_dump_obj(void *object) {} 3619#endif 3620 3621/** 3622 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3623 * @seals: the seals to check 3624 * @vma: the vma to operate on 3625 * 3626 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3627 * the vma flags. Return 0 if check pass, or <0 for errors. 3628 */ 3629static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3630{ 3631 if (seals & F_SEAL_FUTURE_WRITE) { 3632 /* 3633 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3634 * "future write" seal active. 3635 */ 3636 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3637 return -EPERM; 3638 3639 /* 3640 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3641 * MAP_SHARED and read-only, take care to not allow mprotect to 3642 * revert protections on such mappings. Do this only for shared 3643 * mappings. For private mappings, don't need to mask 3644 * VM_MAYWRITE as we still want them to be COW-writable. 3645 */ 3646 if (vma->vm_flags & VM_SHARED) 3647 vma->vm_flags &= ~(VM_MAYWRITE); 3648 } 3649 3650 return 0; 3651} 3652 3653#ifdef CONFIG_ANON_VMA_NAME 3654int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3655 unsigned long len_in, 3656 struct anon_vma_name *anon_name); 3657#else 3658static inline int 3659madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3660 unsigned long len_in, struct anon_vma_name *anon_name) { 3661 return 0; 3662} 3663#endif 3664 3665#endif /* _LINUX_MM_H */