Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4#ifndef _LINUX_BPF_H
5#define _LINUX_BPF_H 1
6
7#include <uapi/linux/bpf.h>
8#include <uapi/linux/filter.h>
9
10#include <linux/workqueue.h>
11#include <linux/file.h>
12#include <linux/percpu.h>
13#include <linux/err.h>
14#include <linux/rbtree_latch.h>
15#include <linux/numa.h>
16#include <linux/mm_types.h>
17#include <linux/wait.h>
18#include <linux/refcount.h>
19#include <linux/mutex.h>
20#include <linux/module.h>
21#include <linux/kallsyms.h>
22#include <linux/capability.h>
23#include <linux/sched/mm.h>
24#include <linux/slab.h>
25#include <linux/percpu-refcount.h>
26#include <linux/stddef.h>
27#include <linux/bpfptr.h>
28#include <linux/btf.h>
29#include <linux/rcupdate_trace.h>
30#include <linux/static_call.h>
31
32struct bpf_verifier_env;
33struct bpf_verifier_log;
34struct perf_event;
35struct bpf_prog;
36struct bpf_prog_aux;
37struct bpf_map;
38struct sock;
39struct seq_file;
40struct btf;
41struct btf_type;
42struct exception_table_entry;
43struct seq_operations;
44struct bpf_iter_aux_info;
45struct bpf_local_storage;
46struct bpf_local_storage_map;
47struct kobject;
48struct mem_cgroup;
49struct module;
50struct bpf_func_state;
51struct ftrace_ops;
52struct cgroup;
53
54extern struct idr btf_idr;
55extern spinlock_t btf_idr_lock;
56extern struct kobject *btf_kobj;
57extern struct bpf_mem_alloc bpf_global_ma;
58extern bool bpf_global_ma_set;
59
60typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
61typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
62 struct bpf_iter_aux_info *aux);
63typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
64typedef unsigned int (*bpf_func_t)(const void *,
65 const struct bpf_insn *);
66struct bpf_iter_seq_info {
67 const struct seq_operations *seq_ops;
68 bpf_iter_init_seq_priv_t init_seq_private;
69 bpf_iter_fini_seq_priv_t fini_seq_private;
70 u32 seq_priv_size;
71};
72
73/* map is generic key/value storage optionally accessible by eBPF programs */
74struct bpf_map_ops {
75 /* funcs callable from userspace (via syscall) */
76 int (*map_alloc_check)(union bpf_attr *attr);
77 struct bpf_map *(*map_alloc)(union bpf_attr *attr);
78 void (*map_release)(struct bpf_map *map, struct file *map_file);
79 void (*map_free)(struct bpf_map *map);
80 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
81 void (*map_release_uref)(struct bpf_map *map);
82 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
83 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
84 union bpf_attr __user *uattr);
85 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
86 void *value, u64 flags);
87 int (*map_lookup_and_delete_batch)(struct bpf_map *map,
88 const union bpf_attr *attr,
89 union bpf_attr __user *uattr);
90 int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
91 const union bpf_attr *attr,
92 union bpf_attr __user *uattr);
93 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
94 union bpf_attr __user *uattr);
95
96 /* funcs callable from userspace and from eBPF programs */
97 void *(*map_lookup_elem)(struct bpf_map *map, void *key);
98 int (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
99 int (*map_delete_elem)(struct bpf_map *map, void *key);
100 int (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
101 int (*map_pop_elem)(struct bpf_map *map, void *value);
102 int (*map_peek_elem)(struct bpf_map *map, void *value);
103 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
104
105 /* funcs called by prog_array and perf_event_array map */
106 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
107 int fd);
108 void (*map_fd_put_ptr)(void *ptr);
109 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
110 u32 (*map_fd_sys_lookup_elem)(void *ptr);
111 void (*map_seq_show_elem)(struct bpf_map *map, void *key,
112 struct seq_file *m);
113 int (*map_check_btf)(const struct bpf_map *map,
114 const struct btf *btf,
115 const struct btf_type *key_type,
116 const struct btf_type *value_type);
117
118 /* Prog poke tracking helpers. */
119 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
120 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
121 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
122 struct bpf_prog *new);
123
124 /* Direct value access helpers. */
125 int (*map_direct_value_addr)(const struct bpf_map *map,
126 u64 *imm, u32 off);
127 int (*map_direct_value_meta)(const struct bpf_map *map,
128 u64 imm, u32 *off);
129 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
130 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
131 struct poll_table_struct *pts);
132
133 /* Functions called by bpf_local_storage maps */
134 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
135 void *owner, u32 size);
136 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
137 void *owner, u32 size);
138 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
139
140 /* Misc helpers.*/
141 int (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
142
143 /* map_meta_equal must be implemented for maps that can be
144 * used as an inner map. It is a runtime check to ensure
145 * an inner map can be inserted to an outer map.
146 *
147 * Some properties of the inner map has been used during the
148 * verification time. When inserting an inner map at the runtime,
149 * map_meta_equal has to ensure the inserting map has the same
150 * properties that the verifier has used earlier.
151 */
152 bool (*map_meta_equal)(const struct bpf_map *meta0,
153 const struct bpf_map *meta1);
154
155
156 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
157 struct bpf_func_state *caller,
158 struct bpf_func_state *callee);
159 int (*map_for_each_callback)(struct bpf_map *map,
160 bpf_callback_t callback_fn,
161 void *callback_ctx, u64 flags);
162
163 /* BTF id of struct allocated by map_alloc */
164 int *map_btf_id;
165
166 /* bpf_iter info used to open a seq_file */
167 const struct bpf_iter_seq_info *iter_seq_info;
168};
169
170enum {
171 /* Support at most 10 fields in a BTF type */
172 BTF_FIELDS_MAX = 10,
173};
174
175enum btf_field_type {
176 BPF_SPIN_LOCK = (1 << 0),
177 BPF_TIMER = (1 << 1),
178 BPF_KPTR_UNREF = (1 << 2),
179 BPF_KPTR_REF = (1 << 3),
180 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF,
181 BPF_LIST_HEAD = (1 << 4),
182 BPF_LIST_NODE = (1 << 5),
183};
184
185struct btf_field_kptr {
186 struct btf *btf;
187 struct module *module;
188 btf_dtor_kfunc_t dtor;
189 u32 btf_id;
190};
191
192struct btf_field_list_head {
193 struct btf *btf;
194 u32 value_btf_id;
195 u32 node_offset;
196 struct btf_record *value_rec;
197};
198
199struct btf_field {
200 u32 offset;
201 enum btf_field_type type;
202 union {
203 struct btf_field_kptr kptr;
204 struct btf_field_list_head list_head;
205 };
206};
207
208struct btf_record {
209 u32 cnt;
210 u32 field_mask;
211 int spin_lock_off;
212 int timer_off;
213 struct btf_field fields[];
214};
215
216struct btf_field_offs {
217 u32 cnt;
218 u32 field_off[BTF_FIELDS_MAX];
219 u8 field_sz[BTF_FIELDS_MAX];
220};
221
222struct bpf_map {
223 /* The first two cachelines with read-mostly members of which some
224 * are also accessed in fast-path (e.g. ops, max_entries).
225 */
226 const struct bpf_map_ops *ops ____cacheline_aligned;
227 struct bpf_map *inner_map_meta;
228#ifdef CONFIG_SECURITY
229 void *security;
230#endif
231 enum bpf_map_type map_type;
232 u32 key_size;
233 u32 value_size;
234 u32 max_entries;
235 u64 map_extra; /* any per-map-type extra fields */
236 u32 map_flags;
237 u32 id;
238 struct btf_record *record;
239 int numa_node;
240 u32 btf_key_type_id;
241 u32 btf_value_type_id;
242 u32 btf_vmlinux_value_type_id;
243 struct btf *btf;
244#ifdef CONFIG_MEMCG_KMEM
245 struct obj_cgroup *objcg;
246#endif
247 char name[BPF_OBJ_NAME_LEN];
248 struct btf_field_offs *field_offs;
249 /* The 3rd and 4th cacheline with misc members to avoid false sharing
250 * particularly with refcounting.
251 */
252 atomic64_t refcnt ____cacheline_aligned;
253 atomic64_t usercnt;
254 struct work_struct work;
255 struct mutex freeze_mutex;
256 atomic64_t writecnt;
257 /* 'Ownership' of program-containing map is claimed by the first program
258 * that is going to use this map or by the first program which FD is
259 * stored in the map to make sure that all callers and callees have the
260 * same prog type, JITed flag and xdp_has_frags flag.
261 */
262 struct {
263 spinlock_t lock;
264 enum bpf_prog_type type;
265 bool jited;
266 bool xdp_has_frags;
267 } owner;
268 bool bypass_spec_v1;
269 bool frozen; /* write-once; write-protected by freeze_mutex */
270};
271
272static inline const char *btf_field_type_name(enum btf_field_type type)
273{
274 switch (type) {
275 case BPF_SPIN_LOCK:
276 return "bpf_spin_lock";
277 case BPF_TIMER:
278 return "bpf_timer";
279 case BPF_KPTR_UNREF:
280 case BPF_KPTR_REF:
281 return "kptr";
282 case BPF_LIST_HEAD:
283 return "bpf_list_head";
284 case BPF_LIST_NODE:
285 return "bpf_list_node";
286 default:
287 WARN_ON_ONCE(1);
288 return "unknown";
289 }
290}
291
292static inline u32 btf_field_type_size(enum btf_field_type type)
293{
294 switch (type) {
295 case BPF_SPIN_LOCK:
296 return sizeof(struct bpf_spin_lock);
297 case BPF_TIMER:
298 return sizeof(struct bpf_timer);
299 case BPF_KPTR_UNREF:
300 case BPF_KPTR_REF:
301 return sizeof(u64);
302 case BPF_LIST_HEAD:
303 return sizeof(struct bpf_list_head);
304 case BPF_LIST_NODE:
305 return sizeof(struct bpf_list_node);
306 default:
307 WARN_ON_ONCE(1);
308 return 0;
309 }
310}
311
312static inline u32 btf_field_type_align(enum btf_field_type type)
313{
314 switch (type) {
315 case BPF_SPIN_LOCK:
316 return __alignof__(struct bpf_spin_lock);
317 case BPF_TIMER:
318 return __alignof__(struct bpf_timer);
319 case BPF_KPTR_UNREF:
320 case BPF_KPTR_REF:
321 return __alignof__(u64);
322 case BPF_LIST_HEAD:
323 return __alignof__(struct bpf_list_head);
324 case BPF_LIST_NODE:
325 return __alignof__(struct bpf_list_node);
326 default:
327 WARN_ON_ONCE(1);
328 return 0;
329 }
330}
331
332static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
333{
334 if (IS_ERR_OR_NULL(rec))
335 return false;
336 return rec->field_mask & type;
337}
338
339static inline void bpf_obj_init(const struct btf_field_offs *foffs, void *obj)
340{
341 int i;
342
343 if (!foffs)
344 return;
345 for (i = 0; i < foffs->cnt; i++)
346 memset(obj + foffs->field_off[i], 0, foffs->field_sz[i]);
347}
348
349static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
350{
351 bpf_obj_init(map->field_offs, dst);
352}
353
354/* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
355 * forced to use 'long' read/writes to try to atomically copy long counters.
356 * Best-effort only. No barriers here, since it _will_ race with concurrent
357 * updates from BPF programs. Called from bpf syscall and mostly used with
358 * size 8 or 16 bytes, so ask compiler to inline it.
359 */
360static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
361{
362 const long *lsrc = src;
363 long *ldst = dst;
364
365 size /= sizeof(long);
366 while (size--)
367 *ldst++ = *lsrc++;
368}
369
370/* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
371static inline void bpf_obj_memcpy(struct btf_field_offs *foffs,
372 void *dst, void *src, u32 size,
373 bool long_memcpy)
374{
375 u32 curr_off = 0;
376 int i;
377
378 if (likely(!foffs)) {
379 if (long_memcpy)
380 bpf_long_memcpy(dst, src, round_up(size, 8));
381 else
382 memcpy(dst, src, size);
383 return;
384 }
385
386 for (i = 0; i < foffs->cnt; i++) {
387 u32 next_off = foffs->field_off[i];
388 u32 sz = next_off - curr_off;
389
390 memcpy(dst + curr_off, src + curr_off, sz);
391 curr_off += foffs->field_sz[i] + sz;
392 }
393 memcpy(dst + curr_off, src + curr_off, size - curr_off);
394}
395
396static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
397{
398 bpf_obj_memcpy(map->field_offs, dst, src, map->value_size, false);
399}
400
401static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
402{
403 bpf_obj_memcpy(map->field_offs, dst, src, map->value_size, true);
404}
405
406static inline void bpf_obj_memzero(struct btf_field_offs *foffs, void *dst, u32 size)
407{
408 u32 curr_off = 0;
409 int i;
410
411 if (likely(!foffs)) {
412 memset(dst, 0, size);
413 return;
414 }
415
416 for (i = 0; i < foffs->cnt; i++) {
417 u32 next_off = foffs->field_off[i];
418 u32 sz = next_off - curr_off;
419
420 memset(dst + curr_off, 0, sz);
421 curr_off += foffs->field_sz[i] + sz;
422 }
423 memset(dst + curr_off, 0, size - curr_off);
424}
425
426static inline void zero_map_value(struct bpf_map *map, void *dst)
427{
428 bpf_obj_memzero(map->field_offs, dst, map->value_size);
429}
430
431void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
432 bool lock_src);
433void bpf_timer_cancel_and_free(void *timer);
434void bpf_list_head_free(const struct btf_field *field, void *list_head,
435 struct bpf_spin_lock *spin_lock);
436
437int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
438
439struct bpf_offload_dev;
440struct bpf_offloaded_map;
441
442struct bpf_map_dev_ops {
443 int (*map_get_next_key)(struct bpf_offloaded_map *map,
444 void *key, void *next_key);
445 int (*map_lookup_elem)(struct bpf_offloaded_map *map,
446 void *key, void *value);
447 int (*map_update_elem)(struct bpf_offloaded_map *map,
448 void *key, void *value, u64 flags);
449 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
450};
451
452struct bpf_offloaded_map {
453 struct bpf_map map;
454 struct net_device *netdev;
455 const struct bpf_map_dev_ops *dev_ops;
456 void *dev_priv;
457 struct list_head offloads;
458};
459
460static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
461{
462 return container_of(map, struct bpf_offloaded_map, map);
463}
464
465static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
466{
467 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
468}
469
470static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
471{
472 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
473 map->ops->map_seq_show_elem;
474}
475
476int map_check_no_btf(const struct bpf_map *map,
477 const struct btf *btf,
478 const struct btf_type *key_type,
479 const struct btf_type *value_type);
480
481bool bpf_map_meta_equal(const struct bpf_map *meta0,
482 const struct bpf_map *meta1);
483
484extern const struct bpf_map_ops bpf_map_offload_ops;
485
486/* bpf_type_flag contains a set of flags that are applicable to the values of
487 * arg_type, ret_type and reg_type. For example, a pointer value may be null,
488 * or a memory is read-only. We classify types into two categories: base types
489 * and extended types. Extended types are base types combined with a type flag.
490 *
491 * Currently there are no more than 32 base types in arg_type, ret_type and
492 * reg_types.
493 */
494#define BPF_BASE_TYPE_BITS 8
495
496enum bpf_type_flag {
497 /* PTR may be NULL. */
498 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS),
499
500 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is
501 * compatible with both mutable and immutable memory.
502 */
503 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS),
504
505 /* MEM points to BPF ring buffer reservation. */
506 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS),
507
508 /* MEM is in user address space. */
509 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS),
510
511 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
512 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
513 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
514 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
515 * to the specified cpu.
516 */
517 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS),
518
519 /* Indicates that the argument will be released. */
520 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS),
521
522 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
523 * unreferenced and referenced kptr loaded from map value using a load
524 * instruction, so that they can only be dereferenced but not escape the
525 * BPF program into the kernel (i.e. cannot be passed as arguments to
526 * kfunc or bpf helpers).
527 */
528 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS),
529
530 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS),
531
532 /* DYNPTR points to memory local to the bpf program. */
533 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS),
534
535 /* DYNPTR points to a kernel-produced ringbuf record. */
536 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS),
537
538 /* Size is known at compile time. */
539 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS),
540
541 /* MEM is of an allocated object of type in program BTF. This is used to
542 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
543 */
544 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS),
545
546 /* PTR was passed from the kernel in a trusted context, and may be
547 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
548 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
549 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
550 * without invoking bpf_kptr_xchg(). What we really need to know is
551 * whether a pointer is safe to pass to a kfunc or BPF helper function.
552 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
553 * helpers, they do not cover all possible instances of unsafe
554 * pointers. For example, a pointer that was obtained from walking a
555 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
556 * fact that it may be NULL, invalid, etc. This is due to backwards
557 * compatibility requirements, as this was the behavior that was first
558 * introduced when kptrs were added. The behavior is now considered
559 * deprecated, and PTR_UNTRUSTED will eventually be removed.
560 *
561 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
562 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
563 * For example, pointers passed to tracepoint arguments are considered
564 * PTR_TRUSTED, as are pointers that are passed to struct_ops
565 * callbacks. As alluded to above, pointers that are obtained from
566 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
567 * struct task_struct *task is PTR_TRUSTED, then accessing
568 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
569 * in a BPF register. Similarly, pointers passed to certain programs
570 * types such as kretprobes are not guaranteed to be valid, as they may
571 * for example contain an object that was recently freed.
572 */
573 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS),
574
575 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
576 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS),
577
578 __BPF_TYPE_FLAG_MAX,
579 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
580};
581
582#define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF)
583
584/* Max number of base types. */
585#define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
586
587/* Max number of all types. */
588#define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
589
590/* function argument constraints */
591enum bpf_arg_type {
592 ARG_DONTCARE = 0, /* unused argument in helper function */
593
594 /* the following constraints used to prototype
595 * bpf_map_lookup/update/delete_elem() functions
596 */
597 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */
598 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */
599 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */
600
601 /* Used to prototype bpf_memcmp() and other functions that access data
602 * on eBPF program stack
603 */
604 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */
605
606 ARG_CONST_SIZE, /* number of bytes accessed from memory */
607 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */
608
609 ARG_PTR_TO_CTX, /* pointer to context */
610 ARG_ANYTHING, /* any (initialized) argument is ok */
611 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */
612 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */
613 ARG_PTR_TO_INT, /* pointer to int */
614 ARG_PTR_TO_LONG, /* pointer to long */
615 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */
616 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */
617 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */
618 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */
619 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
620 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */
621 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */
622 ARG_PTR_TO_STACK, /* pointer to stack */
623 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */
624 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */
625 ARG_PTR_TO_KPTR, /* pointer to referenced kptr */
626 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
627 __BPF_ARG_TYPE_MAX,
628
629 /* Extended arg_types. */
630 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
631 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
632 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
633 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
634 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
635 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
636 /* pointer to memory does not need to be initialized, helper function must fill
637 * all bytes or clear them in error case.
638 */
639 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | ARG_PTR_TO_MEM,
640 /* Pointer to valid memory of size known at compile time. */
641 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
642
643 /* This must be the last entry. Its purpose is to ensure the enum is
644 * wide enough to hold the higher bits reserved for bpf_type_flag.
645 */
646 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT,
647};
648static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
649
650/* type of values returned from helper functions */
651enum bpf_return_type {
652 RET_INTEGER, /* function returns integer */
653 RET_VOID, /* function doesn't return anything */
654 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */
655 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */
656 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */
657 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */
658 RET_PTR_TO_MEM, /* returns a pointer to memory */
659 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */
660 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */
661 __BPF_RET_TYPE_MAX,
662
663 /* Extended ret_types. */
664 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
665 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
666 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
667 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
668 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
669 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM,
670 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
671 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID,
672
673 /* This must be the last entry. Its purpose is to ensure the enum is
674 * wide enough to hold the higher bits reserved for bpf_type_flag.
675 */
676 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT,
677};
678static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
679
680/* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
681 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
682 * instructions after verifying
683 */
684struct bpf_func_proto {
685 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
686 bool gpl_only;
687 bool pkt_access;
688 bool might_sleep;
689 enum bpf_return_type ret_type;
690 union {
691 struct {
692 enum bpf_arg_type arg1_type;
693 enum bpf_arg_type arg2_type;
694 enum bpf_arg_type arg3_type;
695 enum bpf_arg_type arg4_type;
696 enum bpf_arg_type arg5_type;
697 };
698 enum bpf_arg_type arg_type[5];
699 };
700 union {
701 struct {
702 u32 *arg1_btf_id;
703 u32 *arg2_btf_id;
704 u32 *arg3_btf_id;
705 u32 *arg4_btf_id;
706 u32 *arg5_btf_id;
707 };
708 u32 *arg_btf_id[5];
709 struct {
710 size_t arg1_size;
711 size_t arg2_size;
712 size_t arg3_size;
713 size_t arg4_size;
714 size_t arg5_size;
715 };
716 size_t arg_size[5];
717 };
718 int *ret_btf_id; /* return value btf_id */
719 bool (*allowed)(const struct bpf_prog *prog);
720};
721
722/* bpf_context is intentionally undefined structure. Pointer to bpf_context is
723 * the first argument to eBPF programs.
724 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
725 */
726struct bpf_context;
727
728enum bpf_access_type {
729 BPF_READ = 1,
730 BPF_WRITE = 2
731};
732
733/* types of values stored in eBPF registers */
734/* Pointer types represent:
735 * pointer
736 * pointer + imm
737 * pointer + (u16) var
738 * pointer + (u16) var + imm
739 * if (range > 0) then [ptr, ptr + range - off) is safe to access
740 * if (id > 0) means that some 'var' was added
741 * if (off > 0) means that 'imm' was added
742 */
743enum bpf_reg_type {
744 NOT_INIT = 0, /* nothing was written into register */
745 SCALAR_VALUE, /* reg doesn't contain a valid pointer */
746 PTR_TO_CTX, /* reg points to bpf_context */
747 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
748 PTR_TO_MAP_VALUE, /* reg points to map element value */
749 PTR_TO_MAP_KEY, /* reg points to a map element key */
750 PTR_TO_STACK, /* reg == frame_pointer + offset */
751 PTR_TO_PACKET_META, /* skb->data - meta_len */
752 PTR_TO_PACKET, /* reg points to skb->data */
753 PTR_TO_PACKET_END, /* skb->data + headlen */
754 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */
755 PTR_TO_SOCKET, /* reg points to struct bpf_sock */
756 PTR_TO_SOCK_COMMON, /* reg points to sock_common */
757 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */
758 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */
759 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */
760 /* PTR_TO_BTF_ID points to a kernel struct that does not need
761 * to be null checked by the BPF program. This does not imply the
762 * pointer is _not_ null and in practice this can easily be a null
763 * pointer when reading pointer chains. The assumption is program
764 * context will handle null pointer dereference typically via fault
765 * handling. The verifier must keep this in mind and can make no
766 * assumptions about null or non-null when doing branch analysis.
767 * Further, when passed into helpers the helpers can not, without
768 * additional context, assume the value is non-null.
769 */
770 PTR_TO_BTF_ID,
771 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
772 * been checked for null. Used primarily to inform the verifier
773 * an explicit null check is required for this struct.
774 */
775 PTR_TO_MEM, /* reg points to valid memory region */
776 PTR_TO_BUF, /* reg points to a read/write buffer */
777 PTR_TO_FUNC, /* reg points to a bpf program function */
778 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */
779 __BPF_REG_TYPE_MAX,
780
781 /* Extended reg_types. */
782 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
783 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET,
784 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
785 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
786 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID,
787
788 /* This must be the last entry. Its purpose is to ensure the enum is
789 * wide enough to hold the higher bits reserved for bpf_type_flag.
790 */
791 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT,
792};
793static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
794
795/* The information passed from prog-specific *_is_valid_access
796 * back to the verifier.
797 */
798struct bpf_insn_access_aux {
799 enum bpf_reg_type reg_type;
800 union {
801 int ctx_field_size;
802 struct {
803 struct btf *btf;
804 u32 btf_id;
805 };
806 };
807 struct bpf_verifier_log *log; /* for verbose logs */
808};
809
810static inline void
811bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
812{
813 aux->ctx_field_size = size;
814}
815
816static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
817{
818 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
819 insn->src_reg == BPF_PSEUDO_FUNC;
820}
821
822struct bpf_prog_ops {
823 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
824 union bpf_attr __user *uattr);
825};
826
827struct bpf_reg_state;
828struct bpf_verifier_ops {
829 /* return eBPF function prototype for verification */
830 const struct bpf_func_proto *
831 (*get_func_proto)(enum bpf_func_id func_id,
832 const struct bpf_prog *prog);
833
834 /* return true if 'size' wide access at offset 'off' within bpf_context
835 * with 'type' (read or write) is allowed
836 */
837 bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
838 const struct bpf_prog *prog,
839 struct bpf_insn_access_aux *info);
840 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
841 const struct bpf_prog *prog);
842 int (*gen_ld_abs)(const struct bpf_insn *orig,
843 struct bpf_insn *insn_buf);
844 u32 (*convert_ctx_access)(enum bpf_access_type type,
845 const struct bpf_insn *src,
846 struct bpf_insn *dst,
847 struct bpf_prog *prog, u32 *target_size);
848 int (*btf_struct_access)(struct bpf_verifier_log *log,
849 const struct bpf_reg_state *reg,
850 int off, int size, enum bpf_access_type atype,
851 u32 *next_btf_id, enum bpf_type_flag *flag);
852};
853
854struct bpf_prog_offload_ops {
855 /* verifier basic callbacks */
856 int (*insn_hook)(struct bpf_verifier_env *env,
857 int insn_idx, int prev_insn_idx);
858 int (*finalize)(struct bpf_verifier_env *env);
859 /* verifier optimization callbacks (called after .finalize) */
860 int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
861 struct bpf_insn *insn);
862 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
863 /* program management callbacks */
864 int (*prepare)(struct bpf_prog *prog);
865 int (*translate)(struct bpf_prog *prog);
866 void (*destroy)(struct bpf_prog *prog);
867};
868
869struct bpf_prog_offload {
870 struct bpf_prog *prog;
871 struct net_device *netdev;
872 struct bpf_offload_dev *offdev;
873 void *dev_priv;
874 struct list_head offloads;
875 bool dev_state;
876 bool opt_failed;
877 void *jited_image;
878 u32 jited_len;
879};
880
881enum bpf_cgroup_storage_type {
882 BPF_CGROUP_STORAGE_SHARED,
883 BPF_CGROUP_STORAGE_PERCPU,
884 __BPF_CGROUP_STORAGE_MAX
885};
886
887#define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
888
889/* The longest tracepoint has 12 args.
890 * See include/trace/bpf_probe.h
891 */
892#define MAX_BPF_FUNC_ARGS 12
893
894/* The maximum number of arguments passed through registers
895 * a single function may have.
896 */
897#define MAX_BPF_FUNC_REG_ARGS 5
898
899/* The argument is a structure. */
900#define BTF_FMODEL_STRUCT_ARG BIT(0)
901
902struct btf_func_model {
903 u8 ret_size;
904 u8 nr_args;
905 u8 arg_size[MAX_BPF_FUNC_ARGS];
906 u8 arg_flags[MAX_BPF_FUNC_ARGS];
907};
908
909/* Restore arguments before returning from trampoline to let original function
910 * continue executing. This flag is used for fentry progs when there are no
911 * fexit progs.
912 */
913#define BPF_TRAMP_F_RESTORE_REGS BIT(0)
914/* Call original function after fentry progs, but before fexit progs.
915 * Makes sense for fentry/fexit, normal calls and indirect calls.
916 */
917#define BPF_TRAMP_F_CALL_ORIG BIT(1)
918/* Skip current frame and return to parent. Makes sense for fentry/fexit
919 * programs only. Should not be used with normal calls and indirect calls.
920 */
921#define BPF_TRAMP_F_SKIP_FRAME BIT(2)
922/* Store IP address of the caller on the trampoline stack,
923 * so it's available for trampoline's programs.
924 */
925#define BPF_TRAMP_F_IP_ARG BIT(3)
926/* Return the return value of fentry prog. Only used by bpf_struct_ops. */
927#define BPF_TRAMP_F_RET_FENTRY_RET BIT(4)
928
929/* Get original function from stack instead of from provided direct address.
930 * Makes sense for trampolines with fexit or fmod_ret programs.
931 */
932#define BPF_TRAMP_F_ORIG_STACK BIT(5)
933
934/* This trampoline is on a function with another ftrace_ops with IPMODIFY,
935 * e.g., a live patch. This flag is set and cleared by ftrace call backs,
936 */
937#define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6)
938
939/* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
940 * bytes on x86.
941 */
942#define BPF_MAX_TRAMP_LINKS 38
943
944struct bpf_tramp_links {
945 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
946 int nr_links;
947};
948
949struct bpf_tramp_run_ctx;
950
951/* Different use cases for BPF trampoline:
952 * 1. replace nop at the function entry (kprobe equivalent)
953 * flags = BPF_TRAMP_F_RESTORE_REGS
954 * fentry = a set of programs to run before returning from trampoline
955 *
956 * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
957 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
958 * orig_call = fentry_ip + MCOUNT_INSN_SIZE
959 * fentry = a set of program to run before calling original function
960 * fexit = a set of program to run after original function
961 *
962 * 3. replace direct call instruction anywhere in the function body
963 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
964 * With flags = 0
965 * fentry = a set of programs to run before returning from trampoline
966 * With flags = BPF_TRAMP_F_CALL_ORIG
967 * orig_call = original callback addr or direct function addr
968 * fentry = a set of program to run before calling original function
969 * fexit = a set of program to run after original function
970 */
971struct bpf_tramp_image;
972int arch_prepare_bpf_trampoline(struct bpf_tramp_image *tr, void *image, void *image_end,
973 const struct btf_func_model *m, u32 flags,
974 struct bpf_tramp_links *tlinks,
975 void *orig_call);
976u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
977 struct bpf_tramp_run_ctx *run_ctx);
978void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
979 struct bpf_tramp_run_ctx *run_ctx);
980void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
981void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
982typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
983 struct bpf_tramp_run_ctx *run_ctx);
984typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
985 struct bpf_tramp_run_ctx *run_ctx);
986bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
987bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
988
989struct bpf_ksym {
990 unsigned long start;
991 unsigned long end;
992 char name[KSYM_NAME_LEN];
993 struct list_head lnode;
994 struct latch_tree_node tnode;
995 bool prog;
996};
997
998enum bpf_tramp_prog_type {
999 BPF_TRAMP_FENTRY,
1000 BPF_TRAMP_FEXIT,
1001 BPF_TRAMP_MODIFY_RETURN,
1002 BPF_TRAMP_MAX,
1003 BPF_TRAMP_REPLACE, /* more than MAX */
1004};
1005
1006struct bpf_tramp_image {
1007 void *image;
1008 struct bpf_ksym ksym;
1009 struct percpu_ref pcref;
1010 void *ip_after_call;
1011 void *ip_epilogue;
1012 union {
1013 struct rcu_head rcu;
1014 struct work_struct work;
1015 };
1016};
1017
1018struct bpf_trampoline {
1019 /* hlist for trampoline_table */
1020 struct hlist_node hlist;
1021 struct ftrace_ops *fops;
1022 /* serializes access to fields of this trampoline */
1023 struct mutex mutex;
1024 refcount_t refcnt;
1025 u32 flags;
1026 u64 key;
1027 struct {
1028 struct btf_func_model model;
1029 void *addr;
1030 bool ftrace_managed;
1031 } func;
1032 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1033 * program by replacing one of its functions. func.addr is the address
1034 * of the function it replaced.
1035 */
1036 struct bpf_prog *extension_prog;
1037 /* list of BPF programs using this trampoline */
1038 struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1039 /* Number of attached programs. A counter per kind. */
1040 int progs_cnt[BPF_TRAMP_MAX];
1041 /* Executable image of trampoline */
1042 struct bpf_tramp_image *cur_image;
1043 u64 selector;
1044 struct module *mod;
1045};
1046
1047struct bpf_attach_target_info {
1048 struct btf_func_model fmodel;
1049 long tgt_addr;
1050 const char *tgt_name;
1051 const struct btf_type *tgt_type;
1052};
1053
1054#define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1055
1056struct bpf_dispatcher_prog {
1057 struct bpf_prog *prog;
1058 refcount_t users;
1059};
1060
1061struct bpf_dispatcher {
1062 /* dispatcher mutex */
1063 struct mutex mutex;
1064 void *func;
1065 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1066 int num_progs;
1067 void *image;
1068 void *rw_image;
1069 u32 image_off;
1070 struct bpf_ksym ksym;
1071#ifdef CONFIG_HAVE_STATIC_CALL
1072 struct static_call_key *sc_key;
1073 void *sc_tramp;
1074#endif
1075};
1076
1077static __always_inline __nocfi unsigned int bpf_dispatcher_nop_func(
1078 const void *ctx,
1079 const struct bpf_insn *insnsi,
1080 bpf_func_t bpf_func)
1081{
1082 return bpf_func(ctx, insnsi);
1083}
1084
1085#ifdef CONFIG_BPF_JIT
1086int bpf_trampoline_link_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1087int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link, struct bpf_trampoline *tr);
1088struct bpf_trampoline *bpf_trampoline_get(u64 key,
1089 struct bpf_attach_target_info *tgt_info);
1090void bpf_trampoline_put(struct bpf_trampoline *tr);
1091int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1092
1093/*
1094 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1095 * indirection with a direct call to the bpf program. If the architecture does
1096 * not have STATIC_CALL, avoid a double-indirection.
1097 */
1098#ifdef CONFIG_HAVE_STATIC_CALL
1099
1100#define __BPF_DISPATCHER_SC_INIT(_name) \
1101 .sc_key = &STATIC_CALL_KEY(_name), \
1102 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1103
1104#define __BPF_DISPATCHER_SC(name) \
1105 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1106
1107#define __BPF_DISPATCHER_CALL(name) \
1108 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1109
1110#define __BPF_DISPATCHER_UPDATE(_d, _new) \
1111 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1112
1113#else
1114#define __BPF_DISPATCHER_SC_INIT(name)
1115#define __BPF_DISPATCHER_SC(name)
1116#define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi)
1117#define __BPF_DISPATCHER_UPDATE(_d, _new)
1118#endif
1119
1120#define BPF_DISPATCHER_INIT(_name) { \
1121 .mutex = __MUTEX_INITIALIZER(_name.mutex), \
1122 .func = &_name##_func, \
1123 .progs = {}, \
1124 .num_progs = 0, \
1125 .image = NULL, \
1126 .image_off = 0, \
1127 .ksym = { \
1128 .name = #_name, \
1129 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \
1130 }, \
1131 __BPF_DISPATCHER_SC_INIT(_name##_call) \
1132}
1133
1134#define DEFINE_BPF_DISPATCHER(name) \
1135 __BPF_DISPATCHER_SC(name); \
1136 noinline __nocfi unsigned int bpf_dispatcher_##name##_func( \
1137 const void *ctx, \
1138 const struct bpf_insn *insnsi, \
1139 bpf_func_t bpf_func) \
1140 { \
1141 return __BPF_DISPATCHER_CALL(name); \
1142 } \
1143 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \
1144 struct bpf_dispatcher bpf_dispatcher_##name = \
1145 BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1146
1147#define DECLARE_BPF_DISPATCHER(name) \
1148 unsigned int bpf_dispatcher_##name##_func( \
1149 const void *ctx, \
1150 const struct bpf_insn *insnsi, \
1151 bpf_func_t bpf_func); \
1152 extern struct bpf_dispatcher bpf_dispatcher_##name;
1153
1154#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1155#define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1156void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1157 struct bpf_prog *to);
1158/* Called only from JIT-enabled code, so there's no need for stubs. */
1159void bpf_image_ksym_add(void *data, struct bpf_ksym *ksym);
1160void bpf_image_ksym_del(struct bpf_ksym *ksym);
1161void bpf_ksym_add(struct bpf_ksym *ksym);
1162void bpf_ksym_del(struct bpf_ksym *ksym);
1163int bpf_jit_charge_modmem(u32 size);
1164void bpf_jit_uncharge_modmem(u32 size);
1165bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1166#else
1167static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1168 struct bpf_trampoline *tr)
1169{
1170 return -ENOTSUPP;
1171}
1172static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1173 struct bpf_trampoline *tr)
1174{
1175 return -ENOTSUPP;
1176}
1177static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1178 struct bpf_attach_target_info *tgt_info)
1179{
1180 return ERR_PTR(-EOPNOTSUPP);
1181}
1182static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1183#define DEFINE_BPF_DISPATCHER(name)
1184#define DECLARE_BPF_DISPATCHER(name)
1185#define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1186#define BPF_DISPATCHER_PTR(name) NULL
1187static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1188 struct bpf_prog *from,
1189 struct bpf_prog *to) {}
1190static inline bool is_bpf_image_address(unsigned long address)
1191{
1192 return false;
1193}
1194static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1195{
1196 return false;
1197}
1198#endif
1199
1200struct bpf_func_info_aux {
1201 u16 linkage;
1202 bool unreliable;
1203};
1204
1205enum bpf_jit_poke_reason {
1206 BPF_POKE_REASON_TAIL_CALL,
1207};
1208
1209/* Descriptor of pokes pointing /into/ the JITed image. */
1210struct bpf_jit_poke_descriptor {
1211 void *tailcall_target;
1212 void *tailcall_bypass;
1213 void *bypass_addr;
1214 void *aux;
1215 union {
1216 struct {
1217 struct bpf_map *map;
1218 u32 key;
1219 } tail_call;
1220 };
1221 bool tailcall_target_stable;
1222 u8 adj_off;
1223 u16 reason;
1224 u32 insn_idx;
1225};
1226
1227/* reg_type info for ctx arguments */
1228struct bpf_ctx_arg_aux {
1229 u32 offset;
1230 enum bpf_reg_type reg_type;
1231 u32 btf_id;
1232};
1233
1234struct btf_mod_pair {
1235 struct btf *btf;
1236 struct module *module;
1237};
1238
1239struct bpf_kfunc_desc_tab;
1240
1241struct bpf_prog_aux {
1242 atomic64_t refcnt;
1243 u32 used_map_cnt;
1244 u32 used_btf_cnt;
1245 u32 max_ctx_offset;
1246 u32 max_pkt_offset;
1247 u32 max_tp_access;
1248 u32 stack_depth;
1249 u32 id;
1250 u32 func_cnt; /* used by non-func prog as the number of func progs */
1251 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1252 u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1253 u32 ctx_arg_info_size;
1254 u32 max_rdonly_access;
1255 u32 max_rdwr_access;
1256 struct btf *attach_btf;
1257 const struct bpf_ctx_arg_aux *ctx_arg_info;
1258 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1259 struct bpf_prog *dst_prog;
1260 struct bpf_trampoline *dst_trampoline;
1261 enum bpf_prog_type saved_dst_prog_type;
1262 enum bpf_attach_type saved_dst_attach_type;
1263 bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1264 bool offload_requested;
1265 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1266 bool func_proto_unreliable;
1267 bool sleepable;
1268 bool tail_call_reachable;
1269 bool xdp_has_frags;
1270 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1271 const struct btf_type *attach_func_proto;
1272 /* function name for valid attach_btf_id */
1273 const char *attach_func_name;
1274 struct bpf_prog **func;
1275 void *jit_data; /* JIT specific data. arch dependent */
1276 struct bpf_jit_poke_descriptor *poke_tab;
1277 struct bpf_kfunc_desc_tab *kfunc_tab;
1278 struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1279 u32 size_poke_tab;
1280 struct bpf_ksym ksym;
1281 const struct bpf_prog_ops *ops;
1282 struct bpf_map **used_maps;
1283 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1284 struct btf_mod_pair *used_btfs;
1285 struct bpf_prog *prog;
1286 struct user_struct *user;
1287 u64 load_time; /* ns since boottime */
1288 u32 verified_insns;
1289 int cgroup_atype; /* enum cgroup_bpf_attach_type */
1290 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1291 char name[BPF_OBJ_NAME_LEN];
1292#ifdef CONFIG_SECURITY
1293 void *security;
1294#endif
1295 struct bpf_prog_offload *offload;
1296 struct btf *btf;
1297 struct bpf_func_info *func_info;
1298 struct bpf_func_info_aux *func_info_aux;
1299 /* bpf_line_info loaded from userspace. linfo->insn_off
1300 * has the xlated insn offset.
1301 * Both the main and sub prog share the same linfo.
1302 * The subprog can access its first linfo by
1303 * using the linfo_idx.
1304 */
1305 struct bpf_line_info *linfo;
1306 /* jited_linfo is the jited addr of the linfo. It has a
1307 * one to one mapping to linfo:
1308 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1309 * Both the main and sub prog share the same jited_linfo.
1310 * The subprog can access its first jited_linfo by
1311 * using the linfo_idx.
1312 */
1313 void **jited_linfo;
1314 u32 func_info_cnt;
1315 u32 nr_linfo;
1316 /* subprog can use linfo_idx to access its first linfo and
1317 * jited_linfo.
1318 * main prog always has linfo_idx == 0
1319 */
1320 u32 linfo_idx;
1321 u32 num_exentries;
1322 struct exception_table_entry *extable;
1323 union {
1324 struct work_struct work;
1325 struct rcu_head rcu;
1326 };
1327};
1328
1329struct bpf_prog {
1330 u16 pages; /* Number of allocated pages */
1331 u16 jited:1, /* Is our filter JIT'ed? */
1332 jit_requested:1,/* archs need to JIT the prog */
1333 gpl_compatible:1, /* Is filter GPL compatible? */
1334 cb_access:1, /* Is control block accessed? */
1335 dst_needed:1, /* Do we need dst entry? */
1336 blinding_requested:1, /* needs constant blinding */
1337 blinded:1, /* Was blinded */
1338 is_func:1, /* program is a bpf function */
1339 kprobe_override:1, /* Do we override a kprobe? */
1340 has_callchain_buf:1, /* callchain buffer allocated? */
1341 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1342 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1343 call_get_func_ip:1, /* Do we call get_func_ip() */
1344 tstamp_type_access:1; /* Accessed __sk_buff->tstamp_type */
1345 enum bpf_prog_type type; /* Type of BPF program */
1346 enum bpf_attach_type expected_attach_type; /* For some prog types */
1347 u32 len; /* Number of filter blocks */
1348 u32 jited_len; /* Size of jited insns in bytes */
1349 u8 tag[BPF_TAG_SIZE];
1350 struct bpf_prog_stats __percpu *stats;
1351 int __percpu *active;
1352 unsigned int (*bpf_func)(const void *ctx,
1353 const struct bpf_insn *insn);
1354 struct bpf_prog_aux *aux; /* Auxiliary fields */
1355 struct sock_fprog_kern *orig_prog; /* Original BPF program */
1356 /* Instructions for interpreter */
1357 union {
1358 DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1359 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1360 };
1361};
1362
1363struct bpf_array_aux {
1364 /* Programs with direct jumps into programs part of this array. */
1365 struct list_head poke_progs;
1366 struct bpf_map *map;
1367 struct mutex poke_mutex;
1368 struct work_struct work;
1369};
1370
1371struct bpf_link {
1372 atomic64_t refcnt;
1373 u32 id;
1374 enum bpf_link_type type;
1375 const struct bpf_link_ops *ops;
1376 struct bpf_prog *prog;
1377 struct work_struct work;
1378};
1379
1380struct bpf_link_ops {
1381 void (*release)(struct bpf_link *link);
1382 void (*dealloc)(struct bpf_link *link);
1383 int (*detach)(struct bpf_link *link);
1384 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1385 struct bpf_prog *old_prog);
1386 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1387 int (*fill_link_info)(const struct bpf_link *link,
1388 struct bpf_link_info *info);
1389};
1390
1391struct bpf_tramp_link {
1392 struct bpf_link link;
1393 struct hlist_node tramp_hlist;
1394 u64 cookie;
1395};
1396
1397struct bpf_shim_tramp_link {
1398 struct bpf_tramp_link link;
1399 struct bpf_trampoline *trampoline;
1400};
1401
1402struct bpf_tracing_link {
1403 struct bpf_tramp_link link;
1404 enum bpf_attach_type attach_type;
1405 struct bpf_trampoline *trampoline;
1406 struct bpf_prog *tgt_prog;
1407};
1408
1409struct bpf_link_primer {
1410 struct bpf_link *link;
1411 struct file *file;
1412 int fd;
1413 u32 id;
1414};
1415
1416struct bpf_struct_ops_value;
1417struct btf_member;
1418
1419#define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1420struct bpf_struct_ops {
1421 const struct bpf_verifier_ops *verifier_ops;
1422 int (*init)(struct btf *btf);
1423 int (*check_member)(const struct btf_type *t,
1424 const struct btf_member *member);
1425 int (*init_member)(const struct btf_type *t,
1426 const struct btf_member *member,
1427 void *kdata, const void *udata);
1428 int (*reg)(void *kdata);
1429 void (*unreg)(void *kdata);
1430 const struct btf_type *type;
1431 const struct btf_type *value_type;
1432 const char *name;
1433 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1434 u32 type_id;
1435 u32 value_id;
1436};
1437
1438#if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1439#define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1440const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id);
1441void bpf_struct_ops_init(struct btf *btf, struct bpf_verifier_log *log);
1442bool bpf_struct_ops_get(const void *kdata);
1443void bpf_struct_ops_put(const void *kdata);
1444int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1445 void *value);
1446int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1447 struct bpf_tramp_link *link,
1448 const struct btf_func_model *model,
1449 void *image, void *image_end);
1450static inline bool bpf_try_module_get(const void *data, struct module *owner)
1451{
1452 if (owner == BPF_MODULE_OWNER)
1453 return bpf_struct_ops_get(data);
1454 else
1455 return try_module_get(owner);
1456}
1457static inline void bpf_module_put(const void *data, struct module *owner)
1458{
1459 if (owner == BPF_MODULE_OWNER)
1460 bpf_struct_ops_put(data);
1461 else
1462 module_put(owner);
1463}
1464
1465#ifdef CONFIG_NET
1466/* Define it here to avoid the use of forward declaration */
1467struct bpf_dummy_ops_state {
1468 int val;
1469};
1470
1471struct bpf_dummy_ops {
1472 int (*test_1)(struct bpf_dummy_ops_state *cb);
1473 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1474 char a3, unsigned long a4);
1475};
1476
1477int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1478 union bpf_attr __user *uattr);
1479#endif
1480#else
1481static inline const struct bpf_struct_ops *bpf_struct_ops_find(u32 type_id)
1482{
1483 return NULL;
1484}
1485static inline void bpf_struct_ops_init(struct btf *btf,
1486 struct bpf_verifier_log *log)
1487{
1488}
1489static inline bool bpf_try_module_get(const void *data, struct module *owner)
1490{
1491 return try_module_get(owner);
1492}
1493static inline void bpf_module_put(const void *data, struct module *owner)
1494{
1495 module_put(owner);
1496}
1497static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1498 void *key,
1499 void *value)
1500{
1501 return -EINVAL;
1502}
1503#endif
1504
1505#if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1506int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1507 int cgroup_atype);
1508void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1509#else
1510static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1511 int cgroup_atype)
1512{
1513 return -EOPNOTSUPP;
1514}
1515static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1516{
1517}
1518#endif
1519
1520struct bpf_array {
1521 struct bpf_map map;
1522 u32 elem_size;
1523 u32 index_mask;
1524 struct bpf_array_aux *aux;
1525 union {
1526 char value[0] __aligned(8);
1527 void *ptrs[0] __aligned(8);
1528 void __percpu *pptrs[0] __aligned(8);
1529 };
1530};
1531
1532#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
1533#define MAX_TAIL_CALL_CNT 33
1534
1535/* Maximum number of loops for bpf_loop */
1536#define BPF_MAX_LOOPS BIT(23)
1537
1538#define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \
1539 BPF_F_RDONLY_PROG | \
1540 BPF_F_WRONLY | \
1541 BPF_F_WRONLY_PROG)
1542
1543#define BPF_MAP_CAN_READ BIT(0)
1544#define BPF_MAP_CAN_WRITE BIT(1)
1545
1546/* Maximum number of user-producer ring buffer samples that can be drained in
1547 * a call to bpf_user_ringbuf_drain().
1548 */
1549#define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
1550
1551static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
1552{
1553 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1554
1555 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
1556 * not possible.
1557 */
1558 if (access_flags & BPF_F_RDONLY_PROG)
1559 return BPF_MAP_CAN_READ;
1560 else if (access_flags & BPF_F_WRONLY_PROG)
1561 return BPF_MAP_CAN_WRITE;
1562 else
1563 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
1564}
1565
1566static inline bool bpf_map_flags_access_ok(u32 access_flags)
1567{
1568 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
1569 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
1570}
1571
1572struct bpf_event_entry {
1573 struct perf_event *event;
1574 struct file *perf_file;
1575 struct file *map_file;
1576 struct rcu_head rcu;
1577};
1578
1579static inline bool map_type_contains_progs(struct bpf_map *map)
1580{
1581 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
1582 map->map_type == BPF_MAP_TYPE_DEVMAP ||
1583 map->map_type == BPF_MAP_TYPE_CPUMAP;
1584}
1585
1586bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
1587int bpf_prog_calc_tag(struct bpf_prog *fp);
1588
1589const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
1590const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
1591
1592typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
1593 unsigned long off, unsigned long len);
1594typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
1595 const struct bpf_insn *src,
1596 struct bpf_insn *dst,
1597 struct bpf_prog *prog,
1598 u32 *target_size);
1599
1600u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1601 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
1602
1603/* an array of programs to be executed under rcu_lock.
1604 *
1605 * Typical usage:
1606 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
1607 *
1608 * the structure returned by bpf_prog_array_alloc() should be populated
1609 * with program pointers and the last pointer must be NULL.
1610 * The user has to keep refcnt on the program and make sure the program
1611 * is removed from the array before bpf_prog_put().
1612 * The 'struct bpf_prog_array *' should only be replaced with xchg()
1613 * since other cpus are walking the array of pointers in parallel.
1614 */
1615struct bpf_prog_array_item {
1616 struct bpf_prog *prog;
1617 union {
1618 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1619 u64 bpf_cookie;
1620 };
1621};
1622
1623struct bpf_prog_array {
1624 struct rcu_head rcu;
1625 struct bpf_prog_array_item items[];
1626};
1627
1628struct bpf_empty_prog_array {
1629 struct bpf_prog_array hdr;
1630 struct bpf_prog *null_prog;
1631};
1632
1633/* to avoid allocating empty bpf_prog_array for cgroups that
1634 * don't have bpf program attached use one global 'bpf_empty_prog_array'
1635 * It will not be modified the caller of bpf_prog_array_alloc()
1636 * (since caller requested prog_cnt == 0)
1637 * that pointer should be 'freed' by bpf_prog_array_free()
1638 */
1639extern struct bpf_empty_prog_array bpf_empty_prog_array;
1640
1641struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
1642void bpf_prog_array_free(struct bpf_prog_array *progs);
1643/* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
1644void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
1645int bpf_prog_array_length(struct bpf_prog_array *progs);
1646bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
1647int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
1648 __u32 __user *prog_ids, u32 cnt);
1649
1650void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
1651 struct bpf_prog *old_prog);
1652int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
1653int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
1654 struct bpf_prog *prog);
1655int bpf_prog_array_copy_info(struct bpf_prog_array *array,
1656 u32 *prog_ids, u32 request_cnt,
1657 u32 *prog_cnt);
1658int bpf_prog_array_copy(struct bpf_prog_array *old_array,
1659 struct bpf_prog *exclude_prog,
1660 struct bpf_prog *include_prog,
1661 u64 bpf_cookie,
1662 struct bpf_prog_array **new_array);
1663
1664struct bpf_run_ctx {};
1665
1666struct bpf_cg_run_ctx {
1667 struct bpf_run_ctx run_ctx;
1668 const struct bpf_prog_array_item *prog_item;
1669 int retval;
1670};
1671
1672struct bpf_trace_run_ctx {
1673 struct bpf_run_ctx run_ctx;
1674 u64 bpf_cookie;
1675};
1676
1677struct bpf_tramp_run_ctx {
1678 struct bpf_run_ctx run_ctx;
1679 u64 bpf_cookie;
1680 struct bpf_run_ctx *saved_run_ctx;
1681};
1682
1683static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
1684{
1685 struct bpf_run_ctx *old_ctx = NULL;
1686
1687#ifdef CONFIG_BPF_SYSCALL
1688 old_ctx = current->bpf_ctx;
1689 current->bpf_ctx = new_ctx;
1690#endif
1691 return old_ctx;
1692}
1693
1694static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
1695{
1696#ifdef CONFIG_BPF_SYSCALL
1697 current->bpf_ctx = old_ctx;
1698#endif
1699}
1700
1701/* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
1702#define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0)
1703/* BPF program asks to set CN on the packet. */
1704#define BPF_RET_SET_CN (1 << 0)
1705
1706typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
1707
1708static __always_inline u32
1709bpf_prog_run_array(const struct bpf_prog_array *array,
1710 const void *ctx, bpf_prog_run_fn run_prog)
1711{
1712 const struct bpf_prog_array_item *item;
1713 const struct bpf_prog *prog;
1714 struct bpf_run_ctx *old_run_ctx;
1715 struct bpf_trace_run_ctx run_ctx;
1716 u32 ret = 1;
1717
1718 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
1719
1720 if (unlikely(!array))
1721 return ret;
1722
1723 migrate_disable();
1724 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1725 item = &array->items[0];
1726 while ((prog = READ_ONCE(item->prog))) {
1727 run_ctx.bpf_cookie = item->bpf_cookie;
1728 ret &= run_prog(prog, ctx);
1729 item++;
1730 }
1731 bpf_reset_run_ctx(old_run_ctx);
1732 migrate_enable();
1733 return ret;
1734}
1735
1736/* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
1737 *
1738 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
1739 * overall. As a result, we must use the bpf_prog_array_free_sleepable
1740 * in order to use the tasks_trace rcu grace period.
1741 *
1742 * When a non-sleepable program is inside the array, we take the rcu read
1743 * section and disable preemption for that program alone, so it can access
1744 * rcu-protected dynamically sized maps.
1745 */
1746static __always_inline u32
1747bpf_prog_run_array_sleepable(const struct bpf_prog_array __rcu *array_rcu,
1748 const void *ctx, bpf_prog_run_fn run_prog)
1749{
1750 const struct bpf_prog_array_item *item;
1751 const struct bpf_prog *prog;
1752 const struct bpf_prog_array *array;
1753 struct bpf_run_ctx *old_run_ctx;
1754 struct bpf_trace_run_ctx run_ctx;
1755 u32 ret = 1;
1756
1757 might_fault();
1758
1759 rcu_read_lock_trace();
1760 migrate_disable();
1761
1762 array = rcu_dereference_check(array_rcu, rcu_read_lock_trace_held());
1763 if (unlikely(!array))
1764 goto out;
1765 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
1766 item = &array->items[0];
1767 while ((prog = READ_ONCE(item->prog))) {
1768 if (!prog->aux->sleepable)
1769 rcu_read_lock();
1770
1771 run_ctx.bpf_cookie = item->bpf_cookie;
1772 ret &= run_prog(prog, ctx);
1773 item++;
1774
1775 if (!prog->aux->sleepable)
1776 rcu_read_unlock();
1777 }
1778 bpf_reset_run_ctx(old_run_ctx);
1779out:
1780 migrate_enable();
1781 rcu_read_unlock_trace();
1782 return ret;
1783}
1784
1785#ifdef CONFIG_BPF_SYSCALL
1786DECLARE_PER_CPU(int, bpf_prog_active);
1787extern struct mutex bpf_stats_enabled_mutex;
1788
1789/*
1790 * Block execution of BPF programs attached to instrumentation (perf,
1791 * kprobes, tracepoints) to prevent deadlocks on map operations as any of
1792 * these events can happen inside a region which holds a map bucket lock
1793 * and can deadlock on it.
1794 */
1795static inline void bpf_disable_instrumentation(void)
1796{
1797 migrate_disable();
1798 this_cpu_inc(bpf_prog_active);
1799}
1800
1801static inline void bpf_enable_instrumentation(void)
1802{
1803 this_cpu_dec(bpf_prog_active);
1804 migrate_enable();
1805}
1806
1807extern const struct file_operations bpf_map_fops;
1808extern const struct file_operations bpf_prog_fops;
1809extern const struct file_operations bpf_iter_fops;
1810
1811#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
1812 extern const struct bpf_prog_ops _name ## _prog_ops; \
1813 extern const struct bpf_verifier_ops _name ## _verifier_ops;
1814#define BPF_MAP_TYPE(_id, _ops) \
1815 extern const struct bpf_map_ops _ops;
1816#define BPF_LINK_TYPE(_id, _name)
1817#include <linux/bpf_types.h>
1818#undef BPF_PROG_TYPE
1819#undef BPF_MAP_TYPE
1820#undef BPF_LINK_TYPE
1821
1822extern const struct bpf_prog_ops bpf_offload_prog_ops;
1823extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
1824extern const struct bpf_verifier_ops xdp_analyzer_ops;
1825
1826struct bpf_prog *bpf_prog_get(u32 ufd);
1827struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
1828 bool attach_drv);
1829void bpf_prog_add(struct bpf_prog *prog, int i);
1830void bpf_prog_sub(struct bpf_prog *prog, int i);
1831void bpf_prog_inc(struct bpf_prog *prog);
1832struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
1833void bpf_prog_put(struct bpf_prog *prog);
1834
1835void bpf_prog_free_id(struct bpf_prog *prog);
1836void bpf_map_free_id(struct bpf_map *map, bool do_idr_lock);
1837
1838struct btf_field *btf_record_find(const struct btf_record *rec,
1839 u32 offset, enum btf_field_type type);
1840void btf_record_free(struct btf_record *rec);
1841void bpf_map_free_record(struct bpf_map *map);
1842struct btf_record *btf_record_dup(const struct btf_record *rec);
1843bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
1844void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
1845void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
1846
1847struct bpf_map *bpf_map_get(u32 ufd);
1848struct bpf_map *bpf_map_get_with_uref(u32 ufd);
1849struct bpf_map *__bpf_map_get(struct fd f);
1850void bpf_map_inc(struct bpf_map *map);
1851void bpf_map_inc_with_uref(struct bpf_map *map);
1852struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
1853void bpf_map_put_with_uref(struct bpf_map *map);
1854void bpf_map_put(struct bpf_map *map);
1855void *bpf_map_area_alloc(u64 size, int numa_node);
1856void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
1857void bpf_map_area_free(void *base);
1858bool bpf_map_write_active(const struct bpf_map *map);
1859void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
1860int generic_map_lookup_batch(struct bpf_map *map,
1861 const union bpf_attr *attr,
1862 union bpf_attr __user *uattr);
1863int generic_map_update_batch(struct bpf_map *map, struct file *map_file,
1864 const union bpf_attr *attr,
1865 union bpf_attr __user *uattr);
1866int generic_map_delete_batch(struct bpf_map *map,
1867 const union bpf_attr *attr,
1868 union bpf_attr __user *uattr);
1869struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
1870struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
1871
1872#ifdef CONFIG_MEMCG_KMEM
1873void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
1874 int node);
1875void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
1876void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
1877 size_t align, gfp_t flags);
1878#else
1879static inline void *
1880bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
1881 int node)
1882{
1883 return kmalloc_node(size, flags, node);
1884}
1885
1886static inline void *
1887bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags)
1888{
1889 return kzalloc(size, flags);
1890}
1891
1892static inline void __percpu *
1893bpf_map_alloc_percpu(const struct bpf_map *map, size_t size, size_t align,
1894 gfp_t flags)
1895{
1896 return __alloc_percpu_gfp(size, align, flags);
1897}
1898#endif
1899
1900extern int sysctl_unprivileged_bpf_disabled;
1901
1902static inline bool bpf_allow_ptr_leaks(void)
1903{
1904 return perfmon_capable();
1905}
1906
1907static inline bool bpf_allow_uninit_stack(void)
1908{
1909 return perfmon_capable();
1910}
1911
1912static inline bool bpf_bypass_spec_v1(void)
1913{
1914 return perfmon_capable();
1915}
1916
1917static inline bool bpf_bypass_spec_v4(void)
1918{
1919 return perfmon_capable();
1920}
1921
1922int bpf_map_new_fd(struct bpf_map *map, int flags);
1923int bpf_prog_new_fd(struct bpf_prog *prog);
1924
1925void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
1926 const struct bpf_link_ops *ops, struct bpf_prog *prog);
1927int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
1928int bpf_link_settle(struct bpf_link_primer *primer);
1929void bpf_link_cleanup(struct bpf_link_primer *primer);
1930void bpf_link_inc(struct bpf_link *link);
1931void bpf_link_put(struct bpf_link *link);
1932int bpf_link_new_fd(struct bpf_link *link);
1933struct file *bpf_link_new_file(struct bpf_link *link, int *reserved_fd);
1934struct bpf_link *bpf_link_get_from_fd(u32 ufd);
1935struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
1936
1937int bpf_obj_pin_user(u32 ufd, const char __user *pathname);
1938int bpf_obj_get_user(const char __user *pathname, int flags);
1939
1940#define BPF_ITER_FUNC_PREFIX "bpf_iter_"
1941#define DEFINE_BPF_ITER_FUNC(target, args...) \
1942 extern int bpf_iter_ ## target(args); \
1943 int __init bpf_iter_ ## target(args) { return 0; }
1944
1945/*
1946 * The task type of iterators.
1947 *
1948 * For BPF task iterators, they can be parameterized with various
1949 * parameters to visit only some of tasks.
1950 *
1951 * BPF_TASK_ITER_ALL (default)
1952 * Iterate over resources of every task.
1953 *
1954 * BPF_TASK_ITER_TID
1955 * Iterate over resources of a task/tid.
1956 *
1957 * BPF_TASK_ITER_TGID
1958 * Iterate over resources of every task of a process / task group.
1959 */
1960enum bpf_iter_task_type {
1961 BPF_TASK_ITER_ALL = 0,
1962 BPF_TASK_ITER_TID,
1963 BPF_TASK_ITER_TGID,
1964};
1965
1966struct bpf_iter_aux_info {
1967 /* for map_elem iter */
1968 struct bpf_map *map;
1969
1970 /* for cgroup iter */
1971 struct {
1972 struct cgroup *start; /* starting cgroup */
1973 enum bpf_cgroup_iter_order order;
1974 } cgroup;
1975 struct {
1976 enum bpf_iter_task_type type;
1977 u32 pid;
1978 } task;
1979};
1980
1981typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
1982 union bpf_iter_link_info *linfo,
1983 struct bpf_iter_aux_info *aux);
1984typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
1985typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
1986 struct seq_file *seq);
1987typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
1988 struct bpf_link_info *info);
1989typedef const struct bpf_func_proto *
1990(*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
1991 const struct bpf_prog *prog);
1992
1993enum bpf_iter_feature {
1994 BPF_ITER_RESCHED = BIT(0),
1995};
1996
1997#define BPF_ITER_CTX_ARG_MAX 2
1998struct bpf_iter_reg {
1999 const char *target;
2000 bpf_iter_attach_target_t attach_target;
2001 bpf_iter_detach_target_t detach_target;
2002 bpf_iter_show_fdinfo_t show_fdinfo;
2003 bpf_iter_fill_link_info_t fill_link_info;
2004 bpf_iter_get_func_proto_t get_func_proto;
2005 u32 ctx_arg_info_size;
2006 u32 feature;
2007 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2008 const struct bpf_iter_seq_info *seq_info;
2009};
2010
2011struct bpf_iter_meta {
2012 __bpf_md_ptr(struct seq_file *, seq);
2013 u64 session_id;
2014 u64 seq_num;
2015};
2016
2017struct bpf_iter__bpf_map_elem {
2018 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2019 __bpf_md_ptr(struct bpf_map *, map);
2020 __bpf_md_ptr(void *, key);
2021 __bpf_md_ptr(void *, value);
2022};
2023
2024int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2025void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2026bool bpf_iter_prog_supported(struct bpf_prog *prog);
2027const struct bpf_func_proto *
2028bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2029int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2030int bpf_iter_new_fd(struct bpf_link *link);
2031bool bpf_link_is_iter(struct bpf_link *link);
2032struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2033int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2034void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2035 struct seq_file *seq);
2036int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2037 struct bpf_link_info *info);
2038
2039int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2040 struct bpf_func_state *caller,
2041 struct bpf_func_state *callee);
2042
2043int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2044int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2045int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2046 u64 flags);
2047int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2048 u64 flags);
2049
2050int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2051
2052int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2053 void *key, void *value, u64 map_flags);
2054int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2055int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2056 void *key, void *value, u64 map_flags);
2057int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2058
2059int bpf_get_file_flag(int flags);
2060int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2061 size_t actual_size);
2062
2063/* verify correctness of eBPF program */
2064int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr);
2065
2066#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2067void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2068#endif
2069
2070struct btf *bpf_get_btf_vmlinux(void);
2071
2072/* Map specifics */
2073struct xdp_frame;
2074struct sk_buff;
2075struct bpf_dtab_netdev;
2076struct bpf_cpu_map_entry;
2077
2078void __dev_flush(void);
2079int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2080 struct net_device *dev_rx);
2081int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2082 struct net_device *dev_rx);
2083int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2084 struct bpf_map *map, bool exclude_ingress);
2085int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2086 struct bpf_prog *xdp_prog);
2087int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2088 struct bpf_prog *xdp_prog, struct bpf_map *map,
2089 bool exclude_ingress);
2090
2091void __cpu_map_flush(void);
2092int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2093 struct net_device *dev_rx);
2094int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2095 struct sk_buff *skb);
2096
2097/* Return map's numa specified by userspace */
2098static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2099{
2100 return (attr->map_flags & BPF_F_NUMA_NODE) ?
2101 attr->numa_node : NUMA_NO_NODE;
2102}
2103
2104struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2105int array_map_alloc_check(union bpf_attr *attr);
2106
2107int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2108 union bpf_attr __user *uattr);
2109int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2110 union bpf_attr __user *uattr);
2111int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2112 const union bpf_attr *kattr,
2113 union bpf_attr __user *uattr);
2114int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2115 const union bpf_attr *kattr,
2116 union bpf_attr __user *uattr);
2117int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2118 const union bpf_attr *kattr,
2119 union bpf_attr __user *uattr);
2120int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2121 const union bpf_attr *kattr,
2122 union bpf_attr __user *uattr);
2123bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2124 const struct bpf_prog *prog,
2125 struct bpf_insn_access_aux *info);
2126
2127static inline bool bpf_tracing_ctx_access(int off, int size,
2128 enum bpf_access_type type)
2129{
2130 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2131 return false;
2132 if (type != BPF_READ)
2133 return false;
2134 if (off % size != 0)
2135 return false;
2136 return true;
2137}
2138
2139static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2140 enum bpf_access_type type,
2141 const struct bpf_prog *prog,
2142 struct bpf_insn_access_aux *info)
2143{
2144 if (!bpf_tracing_ctx_access(off, size, type))
2145 return false;
2146 return btf_ctx_access(off, size, type, prog, info);
2147}
2148
2149int btf_struct_access(struct bpf_verifier_log *log,
2150 const struct bpf_reg_state *reg,
2151 int off, int size, enum bpf_access_type atype,
2152 u32 *next_btf_id, enum bpf_type_flag *flag);
2153bool btf_struct_ids_match(struct bpf_verifier_log *log,
2154 const struct btf *btf, u32 id, int off,
2155 const struct btf *need_btf, u32 need_type_id,
2156 bool strict);
2157
2158int btf_distill_func_proto(struct bpf_verifier_log *log,
2159 struct btf *btf,
2160 const struct btf_type *func_proto,
2161 const char *func_name,
2162 struct btf_func_model *m);
2163
2164struct bpf_reg_state;
2165int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
2166 struct bpf_reg_state *regs);
2167int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
2168 struct bpf_reg_state *regs);
2169int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
2170 struct bpf_reg_state *reg);
2171int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2172 struct btf *btf, const struct btf_type *t);
2173
2174struct bpf_prog *bpf_prog_by_id(u32 id);
2175struct bpf_link *bpf_link_by_id(u32 id);
2176
2177const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id);
2178void bpf_task_storage_free(struct task_struct *task);
2179void bpf_cgrp_storage_free(struct cgroup *cgroup);
2180bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2181const struct btf_func_model *
2182bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2183 const struct bpf_insn *insn);
2184struct bpf_core_ctx {
2185 struct bpf_verifier_log *log;
2186 const struct btf *btf;
2187};
2188
2189int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2190 int relo_idx, void *insn);
2191
2192static inline bool unprivileged_ebpf_enabled(void)
2193{
2194 return !sysctl_unprivileged_bpf_disabled;
2195}
2196
2197/* Not all bpf prog type has the bpf_ctx.
2198 * For the bpf prog type that has initialized the bpf_ctx,
2199 * this function can be used to decide if a kernel function
2200 * is called by a bpf program.
2201 */
2202static inline bool has_current_bpf_ctx(void)
2203{
2204 return !!current->bpf_ctx;
2205}
2206
2207void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2208#else /* !CONFIG_BPF_SYSCALL */
2209static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2210{
2211 return ERR_PTR(-EOPNOTSUPP);
2212}
2213
2214static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2215 enum bpf_prog_type type,
2216 bool attach_drv)
2217{
2218 return ERR_PTR(-EOPNOTSUPP);
2219}
2220
2221static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2222{
2223}
2224
2225static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2226{
2227}
2228
2229static inline void bpf_prog_put(struct bpf_prog *prog)
2230{
2231}
2232
2233static inline void bpf_prog_inc(struct bpf_prog *prog)
2234{
2235}
2236
2237static inline struct bpf_prog *__must_check
2238bpf_prog_inc_not_zero(struct bpf_prog *prog)
2239{
2240 return ERR_PTR(-EOPNOTSUPP);
2241}
2242
2243static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2244 const struct bpf_link_ops *ops,
2245 struct bpf_prog *prog)
2246{
2247}
2248
2249static inline int bpf_link_prime(struct bpf_link *link,
2250 struct bpf_link_primer *primer)
2251{
2252 return -EOPNOTSUPP;
2253}
2254
2255static inline int bpf_link_settle(struct bpf_link_primer *primer)
2256{
2257 return -EOPNOTSUPP;
2258}
2259
2260static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2261{
2262}
2263
2264static inline void bpf_link_inc(struct bpf_link *link)
2265{
2266}
2267
2268static inline void bpf_link_put(struct bpf_link *link)
2269{
2270}
2271
2272static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2273{
2274 return -EOPNOTSUPP;
2275}
2276
2277static inline void __dev_flush(void)
2278{
2279}
2280
2281struct xdp_frame;
2282struct bpf_dtab_netdev;
2283struct bpf_cpu_map_entry;
2284
2285static inline
2286int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2287 struct net_device *dev_rx)
2288{
2289 return 0;
2290}
2291
2292static inline
2293int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2294 struct net_device *dev_rx)
2295{
2296 return 0;
2297}
2298
2299static inline
2300int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2301 struct bpf_map *map, bool exclude_ingress)
2302{
2303 return 0;
2304}
2305
2306struct sk_buff;
2307
2308static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2309 struct sk_buff *skb,
2310 struct bpf_prog *xdp_prog)
2311{
2312 return 0;
2313}
2314
2315static inline
2316int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2317 struct bpf_prog *xdp_prog, struct bpf_map *map,
2318 bool exclude_ingress)
2319{
2320 return 0;
2321}
2322
2323static inline void __cpu_map_flush(void)
2324{
2325}
2326
2327static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2328 struct xdp_frame *xdpf,
2329 struct net_device *dev_rx)
2330{
2331 return 0;
2332}
2333
2334static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2335 struct sk_buff *skb)
2336{
2337 return -EOPNOTSUPP;
2338}
2339
2340static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2341 enum bpf_prog_type type)
2342{
2343 return ERR_PTR(-EOPNOTSUPP);
2344}
2345
2346static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2347 const union bpf_attr *kattr,
2348 union bpf_attr __user *uattr)
2349{
2350 return -ENOTSUPP;
2351}
2352
2353static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2354 const union bpf_attr *kattr,
2355 union bpf_attr __user *uattr)
2356{
2357 return -ENOTSUPP;
2358}
2359
2360static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2361 const union bpf_attr *kattr,
2362 union bpf_attr __user *uattr)
2363{
2364 return -ENOTSUPP;
2365}
2366
2367static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2368 const union bpf_attr *kattr,
2369 union bpf_attr __user *uattr)
2370{
2371 return -ENOTSUPP;
2372}
2373
2374static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2375 const union bpf_attr *kattr,
2376 union bpf_attr __user *uattr)
2377{
2378 return -ENOTSUPP;
2379}
2380
2381static inline void bpf_map_put(struct bpf_map *map)
2382{
2383}
2384
2385static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2386{
2387 return ERR_PTR(-ENOTSUPP);
2388}
2389
2390static inline int btf_struct_access(struct bpf_verifier_log *log,
2391 const struct bpf_reg_state *reg,
2392 int off, int size, enum bpf_access_type atype,
2393 u32 *next_btf_id, enum bpf_type_flag *flag)
2394{
2395 return -EACCES;
2396}
2397
2398static inline const struct bpf_func_proto *
2399bpf_base_func_proto(enum bpf_func_id func_id)
2400{
2401 return NULL;
2402}
2403
2404static inline void bpf_task_storage_free(struct task_struct *task)
2405{
2406}
2407
2408static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
2409{
2410 return false;
2411}
2412
2413static inline const struct btf_func_model *
2414bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2415 const struct bpf_insn *insn)
2416{
2417 return NULL;
2418}
2419
2420static inline bool unprivileged_ebpf_enabled(void)
2421{
2422 return false;
2423}
2424
2425static inline bool has_current_bpf_ctx(void)
2426{
2427 return false;
2428}
2429
2430static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
2431{
2432}
2433
2434static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
2435{
2436}
2437#endif /* CONFIG_BPF_SYSCALL */
2438
2439void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2440 struct btf_mod_pair *used_btfs, u32 len);
2441
2442static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
2443 enum bpf_prog_type type)
2444{
2445 return bpf_prog_get_type_dev(ufd, type, false);
2446}
2447
2448void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2449 struct bpf_map **used_maps, u32 len);
2450
2451bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
2452
2453int bpf_prog_offload_compile(struct bpf_prog *prog);
2454void bpf_prog_offload_destroy(struct bpf_prog *prog);
2455int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
2456 struct bpf_prog *prog);
2457
2458int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
2459
2460int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
2461int bpf_map_offload_update_elem(struct bpf_map *map,
2462 void *key, void *value, u64 flags);
2463int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
2464int bpf_map_offload_get_next_key(struct bpf_map *map,
2465 void *key, void *next_key);
2466
2467bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
2468
2469struct bpf_offload_dev *
2470bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
2471void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
2472void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
2473int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
2474 struct net_device *netdev);
2475void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
2476 struct net_device *netdev);
2477bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
2478
2479void unpriv_ebpf_notify(int new_state);
2480
2481#if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
2482int bpf_prog_offload_init(struct bpf_prog *prog, union bpf_attr *attr);
2483
2484static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
2485{
2486 return aux->offload_requested;
2487}
2488
2489static inline bool bpf_map_is_dev_bound(struct bpf_map *map)
2490{
2491 return unlikely(map->ops == &bpf_map_offload_ops);
2492}
2493
2494struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
2495void bpf_map_offload_map_free(struct bpf_map *map);
2496int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2497 const union bpf_attr *kattr,
2498 union bpf_attr __user *uattr);
2499
2500int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
2501int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
2502int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
2503int sock_map_bpf_prog_query(const union bpf_attr *attr,
2504 union bpf_attr __user *uattr);
2505
2506void sock_map_unhash(struct sock *sk);
2507void sock_map_destroy(struct sock *sk);
2508void sock_map_close(struct sock *sk, long timeout);
2509#else
2510static inline int bpf_prog_offload_init(struct bpf_prog *prog,
2511 union bpf_attr *attr)
2512{
2513 return -EOPNOTSUPP;
2514}
2515
2516static inline bool bpf_prog_is_dev_bound(struct bpf_prog_aux *aux)
2517{
2518 return false;
2519}
2520
2521static inline bool bpf_map_is_dev_bound(struct bpf_map *map)
2522{
2523 return false;
2524}
2525
2526static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
2527{
2528 return ERR_PTR(-EOPNOTSUPP);
2529}
2530
2531static inline void bpf_map_offload_map_free(struct bpf_map *map)
2532{
2533}
2534
2535static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
2536 const union bpf_attr *kattr,
2537 union bpf_attr __user *uattr)
2538{
2539 return -ENOTSUPP;
2540}
2541
2542#ifdef CONFIG_BPF_SYSCALL
2543static inline int sock_map_get_from_fd(const union bpf_attr *attr,
2544 struct bpf_prog *prog)
2545{
2546 return -EINVAL;
2547}
2548
2549static inline int sock_map_prog_detach(const union bpf_attr *attr,
2550 enum bpf_prog_type ptype)
2551{
2552 return -EOPNOTSUPP;
2553}
2554
2555static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
2556 u64 flags)
2557{
2558 return -EOPNOTSUPP;
2559}
2560
2561static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
2562 union bpf_attr __user *uattr)
2563{
2564 return -EINVAL;
2565}
2566#endif /* CONFIG_BPF_SYSCALL */
2567#endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
2568
2569#if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
2570void bpf_sk_reuseport_detach(struct sock *sk);
2571int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
2572 void *value);
2573int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
2574 void *value, u64 map_flags);
2575#else
2576static inline void bpf_sk_reuseport_detach(struct sock *sk)
2577{
2578}
2579
2580#ifdef CONFIG_BPF_SYSCALL
2581static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
2582 void *key, void *value)
2583{
2584 return -EOPNOTSUPP;
2585}
2586
2587static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
2588 void *key, void *value,
2589 u64 map_flags)
2590{
2591 return -EOPNOTSUPP;
2592}
2593#endif /* CONFIG_BPF_SYSCALL */
2594#endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
2595
2596/* verifier prototypes for helper functions called from eBPF programs */
2597extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
2598extern const struct bpf_func_proto bpf_map_update_elem_proto;
2599extern const struct bpf_func_proto bpf_map_delete_elem_proto;
2600extern const struct bpf_func_proto bpf_map_push_elem_proto;
2601extern const struct bpf_func_proto bpf_map_pop_elem_proto;
2602extern const struct bpf_func_proto bpf_map_peek_elem_proto;
2603extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
2604
2605extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
2606extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
2607extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
2608extern const struct bpf_func_proto bpf_tail_call_proto;
2609extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
2610extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
2611extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
2612extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
2613extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
2614extern const struct bpf_func_proto bpf_get_current_comm_proto;
2615extern const struct bpf_func_proto bpf_get_stackid_proto;
2616extern const struct bpf_func_proto bpf_get_stack_proto;
2617extern const struct bpf_func_proto bpf_get_task_stack_proto;
2618extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
2619extern const struct bpf_func_proto bpf_get_stack_proto_pe;
2620extern const struct bpf_func_proto bpf_sock_map_update_proto;
2621extern const struct bpf_func_proto bpf_sock_hash_update_proto;
2622extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
2623extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
2624extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
2625extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
2626extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
2627extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
2628extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
2629extern const struct bpf_func_proto bpf_spin_lock_proto;
2630extern const struct bpf_func_proto bpf_spin_unlock_proto;
2631extern const struct bpf_func_proto bpf_get_local_storage_proto;
2632extern const struct bpf_func_proto bpf_strtol_proto;
2633extern const struct bpf_func_proto bpf_strtoul_proto;
2634extern const struct bpf_func_proto bpf_tcp_sock_proto;
2635extern const struct bpf_func_proto bpf_jiffies64_proto;
2636extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
2637extern const struct bpf_func_proto bpf_event_output_data_proto;
2638extern const struct bpf_func_proto bpf_ringbuf_output_proto;
2639extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
2640extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
2641extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
2642extern const struct bpf_func_proto bpf_ringbuf_query_proto;
2643extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
2644extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
2645extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
2646extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
2647extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
2648extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
2649extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
2650extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
2651extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
2652extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
2653extern const struct bpf_func_proto bpf_copy_from_user_proto;
2654extern const struct bpf_func_proto bpf_snprintf_btf_proto;
2655extern const struct bpf_func_proto bpf_snprintf_proto;
2656extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
2657extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
2658extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
2659extern const struct bpf_func_proto bpf_sock_from_file_proto;
2660extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
2661extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
2662extern const struct bpf_func_proto bpf_task_storage_get_proto;
2663extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
2664extern const struct bpf_func_proto bpf_task_storage_delete_proto;
2665extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
2666extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
2667extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
2668extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
2669extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
2670extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
2671extern const struct bpf_func_proto bpf_find_vma_proto;
2672extern const struct bpf_func_proto bpf_loop_proto;
2673extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
2674extern const struct bpf_func_proto bpf_set_retval_proto;
2675extern const struct bpf_func_proto bpf_get_retval_proto;
2676extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
2677extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
2678extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
2679
2680const struct bpf_func_proto *tracing_prog_func_proto(
2681 enum bpf_func_id func_id, const struct bpf_prog *prog);
2682
2683/* Shared helpers among cBPF and eBPF. */
2684void bpf_user_rnd_init_once(void);
2685u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
2686u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
2687
2688#if defined(CONFIG_NET)
2689bool bpf_sock_common_is_valid_access(int off, int size,
2690 enum bpf_access_type type,
2691 struct bpf_insn_access_aux *info);
2692bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
2693 struct bpf_insn_access_aux *info);
2694u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
2695 const struct bpf_insn *si,
2696 struct bpf_insn *insn_buf,
2697 struct bpf_prog *prog,
2698 u32 *target_size);
2699#else
2700static inline bool bpf_sock_common_is_valid_access(int off, int size,
2701 enum bpf_access_type type,
2702 struct bpf_insn_access_aux *info)
2703{
2704 return false;
2705}
2706static inline bool bpf_sock_is_valid_access(int off, int size,
2707 enum bpf_access_type type,
2708 struct bpf_insn_access_aux *info)
2709{
2710 return false;
2711}
2712static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
2713 const struct bpf_insn *si,
2714 struct bpf_insn *insn_buf,
2715 struct bpf_prog *prog,
2716 u32 *target_size)
2717{
2718 return 0;
2719}
2720#endif
2721
2722#ifdef CONFIG_INET
2723struct sk_reuseport_kern {
2724 struct sk_buff *skb;
2725 struct sock *sk;
2726 struct sock *selected_sk;
2727 struct sock *migrating_sk;
2728 void *data_end;
2729 u32 hash;
2730 u32 reuseport_id;
2731 bool bind_inany;
2732};
2733bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
2734 struct bpf_insn_access_aux *info);
2735
2736u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
2737 const struct bpf_insn *si,
2738 struct bpf_insn *insn_buf,
2739 struct bpf_prog *prog,
2740 u32 *target_size);
2741
2742bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
2743 struct bpf_insn_access_aux *info);
2744
2745u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
2746 const struct bpf_insn *si,
2747 struct bpf_insn *insn_buf,
2748 struct bpf_prog *prog,
2749 u32 *target_size);
2750#else
2751static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
2752 enum bpf_access_type type,
2753 struct bpf_insn_access_aux *info)
2754{
2755 return false;
2756}
2757
2758static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
2759 const struct bpf_insn *si,
2760 struct bpf_insn *insn_buf,
2761 struct bpf_prog *prog,
2762 u32 *target_size)
2763{
2764 return 0;
2765}
2766static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
2767 enum bpf_access_type type,
2768 struct bpf_insn_access_aux *info)
2769{
2770 return false;
2771}
2772
2773static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
2774 const struct bpf_insn *si,
2775 struct bpf_insn *insn_buf,
2776 struct bpf_prog *prog,
2777 u32 *target_size)
2778{
2779 return 0;
2780}
2781#endif /* CONFIG_INET */
2782
2783enum bpf_text_poke_type {
2784 BPF_MOD_CALL,
2785 BPF_MOD_JUMP,
2786};
2787
2788int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2789 void *addr1, void *addr2);
2790
2791void *bpf_arch_text_copy(void *dst, void *src, size_t len);
2792int bpf_arch_text_invalidate(void *dst, size_t len);
2793
2794struct btf_id_set;
2795bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
2796
2797#define MAX_BPRINTF_VARARGS 12
2798
2799int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
2800 u32 **bin_buf, u32 num_args);
2801void bpf_bprintf_cleanup(void);
2802
2803/* the implementation of the opaque uapi struct bpf_dynptr */
2804struct bpf_dynptr_kern {
2805 void *data;
2806 /* Size represents the number of usable bytes of dynptr data.
2807 * If for example the offset is at 4 for a local dynptr whose data is
2808 * of type u64, the number of usable bytes is 4.
2809 *
2810 * The upper 8 bits are reserved. It is as follows:
2811 * Bits 0 - 23 = size
2812 * Bits 24 - 30 = dynptr type
2813 * Bit 31 = whether dynptr is read-only
2814 */
2815 u32 size;
2816 u32 offset;
2817} __aligned(8);
2818
2819enum bpf_dynptr_type {
2820 BPF_DYNPTR_TYPE_INVALID,
2821 /* Points to memory that is local to the bpf program */
2822 BPF_DYNPTR_TYPE_LOCAL,
2823 /* Underlying data is a kernel-produced ringbuf record */
2824 BPF_DYNPTR_TYPE_RINGBUF,
2825};
2826
2827void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2828 enum bpf_dynptr_type type, u32 offset, u32 size);
2829void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2830int bpf_dynptr_check_size(u32 size);
2831u32 bpf_dynptr_get_size(const struct bpf_dynptr_kern *ptr);
2832
2833#ifdef CONFIG_BPF_LSM
2834void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
2835void bpf_cgroup_atype_put(int cgroup_atype);
2836#else
2837static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
2838static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
2839#endif /* CONFIG_BPF_LSM */
2840
2841struct key;
2842
2843#ifdef CONFIG_KEYS
2844struct bpf_key {
2845 struct key *key;
2846 bool has_ref;
2847};
2848#endif /* CONFIG_KEYS */
2849
2850static inline bool type_is_alloc(u32 type)
2851{
2852 return type & MEM_ALLOC;
2853}
2854
2855#endif /* _LINUX_BPF_H */