Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef BLK_MQ_H
3#define BLK_MQ_H
4
5#include <linux/blkdev.h>
6#include <linux/sbitmap.h>
7#include <linux/lockdep.h>
8#include <linux/scatterlist.h>
9#include <linux/prefetch.h>
10#include <linux/srcu.h>
11
12struct blk_mq_tags;
13struct blk_flush_queue;
14
15#define BLKDEV_MIN_RQ 4
16#define BLKDEV_DEFAULT_RQ 128
17
18enum rq_end_io_ret {
19 RQ_END_IO_NONE,
20 RQ_END_IO_FREE,
21};
22
23typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
24
25/*
26 * request flags */
27typedef __u32 __bitwise req_flags_t;
28
29/* drive already may have started this one */
30#define RQF_STARTED ((__force req_flags_t)(1 << 1))
31/* may not be passed by ioscheduler */
32#define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
33/* request for flush sequence */
34#define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
35/* merge of different types, fail separately */
36#define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
37/* track inflight for MQ */
38#define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
39/* don't call prep for this one */
40#define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
41/* vaguely specified driver internal error. Ignored by the block layer */
42#define RQF_FAILED ((__force req_flags_t)(1 << 10))
43/* don't warn about errors */
44#define RQF_QUIET ((__force req_flags_t)(1 << 11))
45/* elevator private data attached */
46#define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
47/* account into disk and partition IO statistics */
48#define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
49/* runtime pm request */
50#define RQF_PM ((__force req_flags_t)(1 << 15))
51/* on IO scheduler merge hash */
52#define RQF_HASHED ((__force req_flags_t)(1 << 16))
53/* track IO completion time */
54#define RQF_STATS ((__force req_flags_t)(1 << 17))
55/* Look at ->special_vec for the actual data payload instead of the
56 bio chain. */
57#define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
58/* The per-zone write lock is held for this request */
59#define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
60/* already slept for hybrid poll */
61#define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
62/* ->timeout has been called, don't expire again */
63#define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
64/* queue has elevator attached */
65#define RQF_ELV ((__force req_flags_t)(1 << 22))
66#define RQF_RESV ((__force req_flags_t)(1 << 23))
67
68/* flags that prevent us from merging requests: */
69#define RQF_NOMERGE_FLAGS \
70 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
71
72enum mq_rq_state {
73 MQ_RQ_IDLE = 0,
74 MQ_RQ_IN_FLIGHT = 1,
75 MQ_RQ_COMPLETE = 2,
76};
77
78/*
79 * Try to put the fields that are referenced together in the same cacheline.
80 *
81 * If you modify this structure, make sure to update blk_rq_init() and
82 * especially blk_mq_rq_ctx_init() to take care of the added fields.
83 */
84struct request {
85 struct request_queue *q;
86 struct blk_mq_ctx *mq_ctx;
87 struct blk_mq_hw_ctx *mq_hctx;
88
89 blk_opf_t cmd_flags; /* op and common flags */
90 req_flags_t rq_flags;
91
92 int tag;
93 int internal_tag;
94
95 unsigned int timeout;
96
97 /* the following two fields are internal, NEVER access directly */
98 unsigned int __data_len; /* total data len */
99 sector_t __sector; /* sector cursor */
100
101 struct bio *bio;
102 struct bio *biotail;
103
104 union {
105 struct list_head queuelist;
106 struct request *rq_next;
107 };
108
109 struct block_device *part;
110#ifdef CONFIG_BLK_RQ_ALLOC_TIME
111 /* Time that the first bio started allocating this request. */
112 u64 alloc_time_ns;
113#endif
114 /* Time that this request was allocated for this IO. */
115 u64 start_time_ns;
116 /* Time that I/O was submitted to the device. */
117 u64 io_start_time_ns;
118
119#ifdef CONFIG_BLK_WBT
120 unsigned short wbt_flags;
121#endif
122 /*
123 * rq sectors used for blk stats. It has the same value
124 * with blk_rq_sectors(rq), except that it never be zeroed
125 * by completion.
126 */
127 unsigned short stats_sectors;
128
129 /*
130 * Number of scatter-gather DMA addr+len pairs after
131 * physical address coalescing is performed.
132 */
133 unsigned short nr_phys_segments;
134
135#ifdef CONFIG_BLK_DEV_INTEGRITY
136 unsigned short nr_integrity_segments;
137#endif
138
139#ifdef CONFIG_BLK_INLINE_ENCRYPTION
140 struct bio_crypt_ctx *crypt_ctx;
141 struct blk_crypto_keyslot *crypt_keyslot;
142#endif
143
144 unsigned short ioprio;
145
146 enum mq_rq_state state;
147 atomic_t ref;
148
149 unsigned long deadline;
150
151 /*
152 * The hash is used inside the scheduler, and killed once the
153 * request reaches the dispatch list. The ipi_list is only used
154 * to queue the request for softirq completion, which is long
155 * after the request has been unhashed (and even removed from
156 * the dispatch list).
157 */
158 union {
159 struct hlist_node hash; /* merge hash */
160 struct llist_node ipi_list;
161 };
162
163 /*
164 * The rb_node is only used inside the io scheduler, requests
165 * are pruned when moved to the dispatch queue. So let the
166 * completion_data share space with the rb_node.
167 */
168 union {
169 struct rb_node rb_node; /* sort/lookup */
170 struct bio_vec special_vec;
171 void *completion_data;
172 };
173
174
175 /*
176 * Three pointers are available for the IO schedulers, if they need
177 * more they have to dynamically allocate it. Flush requests are
178 * never put on the IO scheduler. So let the flush fields share
179 * space with the elevator data.
180 */
181 union {
182 struct {
183 struct io_cq *icq;
184 void *priv[2];
185 } elv;
186
187 struct {
188 unsigned int seq;
189 struct list_head list;
190 rq_end_io_fn *saved_end_io;
191 } flush;
192 };
193
194 union {
195 struct __call_single_data csd;
196 u64 fifo_time;
197 };
198
199 /*
200 * completion callback.
201 */
202 rq_end_io_fn *end_io;
203 void *end_io_data;
204};
205
206static inline enum req_op req_op(const struct request *req)
207{
208 return req->cmd_flags & REQ_OP_MASK;
209}
210
211static inline bool blk_rq_is_passthrough(struct request *rq)
212{
213 return blk_op_is_passthrough(req_op(rq));
214}
215
216static inline unsigned short req_get_ioprio(struct request *req)
217{
218 return req->ioprio;
219}
220
221#define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
222
223#define rq_dma_dir(rq) \
224 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
225
226#define rq_list_add(listptr, rq) do { \
227 (rq)->rq_next = *(listptr); \
228 *(listptr) = rq; \
229} while (0)
230
231#define rq_list_pop(listptr) \
232({ \
233 struct request *__req = NULL; \
234 if ((listptr) && *(listptr)) { \
235 __req = *(listptr); \
236 *(listptr) = __req->rq_next; \
237 } \
238 __req; \
239})
240
241#define rq_list_peek(listptr) \
242({ \
243 struct request *__req = NULL; \
244 if ((listptr) && *(listptr)) \
245 __req = *(listptr); \
246 __req; \
247})
248
249#define rq_list_for_each(listptr, pos) \
250 for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos))
251
252#define rq_list_for_each_safe(listptr, pos, nxt) \
253 for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos); \
254 pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL)
255
256#define rq_list_next(rq) (rq)->rq_next
257#define rq_list_empty(list) ((list) == (struct request *) NULL)
258
259/**
260 * rq_list_move() - move a struct request from one list to another
261 * @src: The source list @rq is currently in
262 * @dst: The destination list that @rq will be appended to
263 * @rq: The request to move
264 * @prev: The request preceding @rq in @src (NULL if @rq is the head)
265 */
266static inline void rq_list_move(struct request **src, struct request **dst,
267 struct request *rq, struct request *prev)
268{
269 if (prev)
270 prev->rq_next = rq->rq_next;
271 else
272 *src = rq->rq_next;
273 rq_list_add(dst, rq);
274}
275
276/**
277 * enum blk_eh_timer_return - How the timeout handler should proceed
278 * @BLK_EH_DONE: The block driver completed the command or will complete it at
279 * a later time.
280 * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
281 * request to complete.
282 */
283enum blk_eh_timer_return {
284 BLK_EH_DONE,
285 BLK_EH_RESET_TIMER,
286};
287
288#define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
289#define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
290
291/**
292 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
293 * block device
294 */
295struct blk_mq_hw_ctx {
296 struct {
297 /** @lock: Protects the dispatch list. */
298 spinlock_t lock;
299 /**
300 * @dispatch: Used for requests that are ready to be
301 * dispatched to the hardware but for some reason (e.g. lack of
302 * resources) could not be sent to the hardware. As soon as the
303 * driver can send new requests, requests at this list will
304 * be sent first for a fairer dispatch.
305 */
306 struct list_head dispatch;
307 /**
308 * @state: BLK_MQ_S_* flags. Defines the state of the hw
309 * queue (active, scheduled to restart, stopped).
310 */
311 unsigned long state;
312 } ____cacheline_aligned_in_smp;
313
314 /**
315 * @run_work: Used for scheduling a hardware queue run at a later time.
316 */
317 struct delayed_work run_work;
318 /** @cpumask: Map of available CPUs where this hctx can run. */
319 cpumask_var_t cpumask;
320 /**
321 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
322 * selection from @cpumask.
323 */
324 int next_cpu;
325 /**
326 * @next_cpu_batch: Counter of how many works left in the batch before
327 * changing to the next CPU.
328 */
329 int next_cpu_batch;
330
331 /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
332 unsigned long flags;
333
334 /**
335 * @sched_data: Pointer owned by the IO scheduler attached to a request
336 * queue. It's up to the IO scheduler how to use this pointer.
337 */
338 void *sched_data;
339 /**
340 * @queue: Pointer to the request queue that owns this hardware context.
341 */
342 struct request_queue *queue;
343 /** @fq: Queue of requests that need to perform a flush operation. */
344 struct blk_flush_queue *fq;
345
346 /**
347 * @driver_data: Pointer to data owned by the block driver that created
348 * this hctx
349 */
350 void *driver_data;
351
352 /**
353 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
354 * pending request in that software queue.
355 */
356 struct sbitmap ctx_map;
357
358 /**
359 * @dispatch_from: Software queue to be used when no scheduler was
360 * selected.
361 */
362 struct blk_mq_ctx *dispatch_from;
363 /**
364 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
365 * decide if the hw_queue is busy using Exponential Weighted Moving
366 * Average algorithm.
367 */
368 unsigned int dispatch_busy;
369
370 /** @type: HCTX_TYPE_* flags. Type of hardware queue. */
371 unsigned short type;
372 /** @nr_ctx: Number of software queues. */
373 unsigned short nr_ctx;
374 /** @ctxs: Array of software queues. */
375 struct blk_mq_ctx **ctxs;
376
377 /** @dispatch_wait_lock: Lock for dispatch_wait queue. */
378 spinlock_t dispatch_wait_lock;
379 /**
380 * @dispatch_wait: Waitqueue to put requests when there is no tag
381 * available at the moment, to wait for another try in the future.
382 */
383 wait_queue_entry_t dispatch_wait;
384
385 /**
386 * @wait_index: Index of next available dispatch_wait queue to insert
387 * requests.
388 */
389 atomic_t wait_index;
390
391 /**
392 * @tags: Tags owned by the block driver. A tag at this set is only
393 * assigned when a request is dispatched from a hardware queue.
394 */
395 struct blk_mq_tags *tags;
396 /**
397 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
398 * scheduler associated with a request queue, a tag is assigned when
399 * that request is allocated. Else, this member is not used.
400 */
401 struct blk_mq_tags *sched_tags;
402
403 /** @queued: Number of queued requests. */
404 unsigned long queued;
405 /** @run: Number of dispatched requests. */
406 unsigned long run;
407
408 /** @numa_node: NUMA node the storage adapter has been connected to. */
409 unsigned int numa_node;
410 /** @queue_num: Index of this hardware queue. */
411 unsigned int queue_num;
412
413 /**
414 * @nr_active: Number of active requests. Only used when a tag set is
415 * shared across request queues.
416 */
417 atomic_t nr_active;
418
419 /** @cpuhp_online: List to store request if CPU is going to die */
420 struct hlist_node cpuhp_online;
421 /** @cpuhp_dead: List to store request if some CPU die. */
422 struct hlist_node cpuhp_dead;
423 /** @kobj: Kernel object for sysfs. */
424 struct kobject kobj;
425
426#ifdef CONFIG_BLK_DEBUG_FS
427 /**
428 * @debugfs_dir: debugfs directory for this hardware queue. Named
429 * as cpu<cpu_number>.
430 */
431 struct dentry *debugfs_dir;
432 /** @sched_debugfs_dir: debugfs directory for the scheduler. */
433 struct dentry *sched_debugfs_dir;
434#endif
435
436 /**
437 * @hctx_list: if this hctx is not in use, this is an entry in
438 * q->unused_hctx_list.
439 */
440 struct list_head hctx_list;
441};
442
443/**
444 * struct blk_mq_queue_map - Map software queues to hardware queues
445 * @mq_map: CPU ID to hardware queue index map. This is an array
446 * with nr_cpu_ids elements. Each element has a value in the range
447 * [@queue_offset, @queue_offset + @nr_queues).
448 * @nr_queues: Number of hardware queues to map CPU IDs onto.
449 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
450 * driver to map each hardware queue type (enum hctx_type) onto a distinct
451 * set of hardware queues.
452 */
453struct blk_mq_queue_map {
454 unsigned int *mq_map;
455 unsigned int nr_queues;
456 unsigned int queue_offset;
457};
458
459/**
460 * enum hctx_type - Type of hardware queue
461 * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for.
462 * @HCTX_TYPE_READ: Just for READ I/O.
463 * @HCTX_TYPE_POLL: Polled I/O of any kind.
464 * @HCTX_MAX_TYPES: Number of types of hctx.
465 */
466enum hctx_type {
467 HCTX_TYPE_DEFAULT,
468 HCTX_TYPE_READ,
469 HCTX_TYPE_POLL,
470
471 HCTX_MAX_TYPES,
472};
473
474/**
475 * struct blk_mq_tag_set - tag set that can be shared between request queues
476 * @map: One or more ctx -> hctx mappings. One map exists for each
477 * hardware queue type (enum hctx_type) that the driver wishes
478 * to support. There are no restrictions on maps being of the
479 * same size, and it's perfectly legal to share maps between
480 * types.
481 * @nr_maps: Number of elements in the @map array. A number in the range
482 * [1, HCTX_MAX_TYPES].
483 * @ops: Pointers to functions that implement block driver behavior.
484 * @nr_hw_queues: Number of hardware queues supported by the block driver that
485 * owns this data structure.
486 * @queue_depth: Number of tags per hardware queue, reserved tags included.
487 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
488 * allocations.
489 * @cmd_size: Number of additional bytes to allocate per request. The block
490 * driver owns these additional bytes.
491 * @numa_node: NUMA node the storage adapter has been connected to.
492 * @timeout: Request processing timeout in jiffies.
493 * @flags: Zero or more BLK_MQ_F_* flags.
494 * @driver_data: Pointer to data owned by the block driver that created this
495 * tag set.
496 * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues
497 * elements.
498 * @shared_tags:
499 * Shared set of tags. Has @nr_hw_queues elements. If set,
500 * shared by all @tags.
501 * @tag_list_lock: Serializes tag_list accesses.
502 * @tag_list: List of the request queues that use this tag set. See also
503 * request_queue.tag_set_list.
504 * @srcu: Use as lock when type of the request queue is blocking
505 * (BLK_MQ_F_BLOCKING).
506 */
507struct blk_mq_tag_set {
508 struct blk_mq_queue_map map[HCTX_MAX_TYPES];
509 unsigned int nr_maps;
510 const struct blk_mq_ops *ops;
511 unsigned int nr_hw_queues;
512 unsigned int queue_depth;
513 unsigned int reserved_tags;
514 unsigned int cmd_size;
515 int numa_node;
516 unsigned int timeout;
517 unsigned int flags;
518 void *driver_data;
519
520 struct blk_mq_tags **tags;
521
522 struct blk_mq_tags *shared_tags;
523
524 struct mutex tag_list_lock;
525 struct list_head tag_list;
526 struct srcu_struct *srcu;
527};
528
529/**
530 * struct blk_mq_queue_data - Data about a request inserted in a queue
531 *
532 * @rq: Request pointer.
533 * @last: If it is the last request in the queue.
534 */
535struct blk_mq_queue_data {
536 struct request *rq;
537 bool last;
538};
539
540typedef bool (busy_tag_iter_fn)(struct request *, void *);
541
542/**
543 * struct blk_mq_ops - Callback functions that implements block driver
544 * behaviour.
545 */
546struct blk_mq_ops {
547 /**
548 * @queue_rq: Queue a new request from block IO.
549 */
550 blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
551 const struct blk_mq_queue_data *);
552
553 /**
554 * @commit_rqs: If a driver uses bd->last to judge when to submit
555 * requests to hardware, it must define this function. In case of errors
556 * that make us stop issuing further requests, this hook serves the
557 * purpose of kicking the hardware (which the last request otherwise
558 * would have done).
559 */
560 void (*commit_rqs)(struct blk_mq_hw_ctx *);
561
562 /**
563 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
564 * that each request belongs to the same queue. If the driver doesn't
565 * empty the @rqlist completely, then the rest will be queued
566 * individually by the block layer upon return.
567 */
568 void (*queue_rqs)(struct request **rqlist);
569
570 /**
571 * @get_budget: Reserve budget before queue request, once .queue_rq is
572 * run, it is driver's responsibility to release the
573 * reserved budget. Also we have to handle failure case
574 * of .get_budget for avoiding I/O deadlock.
575 */
576 int (*get_budget)(struct request_queue *);
577
578 /**
579 * @put_budget: Release the reserved budget.
580 */
581 void (*put_budget)(struct request_queue *, int);
582
583 /**
584 * @set_rq_budget_token: store rq's budget token
585 */
586 void (*set_rq_budget_token)(struct request *, int);
587 /**
588 * @get_rq_budget_token: retrieve rq's budget token
589 */
590 int (*get_rq_budget_token)(struct request *);
591
592 /**
593 * @timeout: Called on request timeout.
594 */
595 enum blk_eh_timer_return (*timeout)(struct request *);
596
597 /**
598 * @poll: Called to poll for completion of a specific tag.
599 */
600 int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
601
602 /**
603 * @complete: Mark the request as complete.
604 */
605 void (*complete)(struct request *);
606
607 /**
608 * @init_hctx: Called when the block layer side of a hardware queue has
609 * been set up, allowing the driver to allocate/init matching
610 * structures.
611 */
612 int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
613 /**
614 * @exit_hctx: Ditto for exit/teardown.
615 */
616 void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
617
618 /**
619 * @init_request: Called for every command allocated by the block layer
620 * to allow the driver to set up driver specific data.
621 *
622 * Tag greater than or equal to queue_depth is for setting up
623 * flush request.
624 */
625 int (*init_request)(struct blk_mq_tag_set *set, struct request *,
626 unsigned int, unsigned int);
627 /**
628 * @exit_request: Ditto for exit/teardown.
629 */
630 void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
631 unsigned int);
632
633 /**
634 * @cleanup_rq: Called before freeing one request which isn't completed
635 * yet, and usually for freeing the driver private data.
636 */
637 void (*cleanup_rq)(struct request *);
638
639 /**
640 * @busy: If set, returns whether or not this queue currently is busy.
641 */
642 bool (*busy)(struct request_queue *);
643
644 /**
645 * @map_queues: This allows drivers specify their own queue mapping by
646 * overriding the setup-time function that builds the mq_map.
647 */
648 void (*map_queues)(struct blk_mq_tag_set *set);
649
650#ifdef CONFIG_BLK_DEBUG_FS
651 /**
652 * @show_rq: Used by the debugfs implementation to show driver-specific
653 * information about a request.
654 */
655 void (*show_rq)(struct seq_file *m, struct request *rq);
656#endif
657};
658
659enum {
660 BLK_MQ_F_SHOULD_MERGE = 1 << 0,
661 BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
662 /*
663 * Set when this device requires underlying blk-mq device for
664 * completing IO:
665 */
666 BLK_MQ_F_STACKING = 1 << 2,
667 BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
668 BLK_MQ_F_BLOCKING = 1 << 5,
669 /* Do not allow an I/O scheduler to be configured. */
670 BLK_MQ_F_NO_SCHED = 1 << 6,
671 /*
672 * Select 'none' during queue registration in case of a single hwq
673 * or shared hwqs instead of 'mq-deadline'.
674 */
675 BLK_MQ_F_NO_SCHED_BY_DEFAULT = 1 << 7,
676 BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
677 BLK_MQ_F_ALLOC_POLICY_BITS = 1,
678
679 BLK_MQ_S_STOPPED = 0,
680 BLK_MQ_S_TAG_ACTIVE = 1,
681 BLK_MQ_S_SCHED_RESTART = 2,
682
683 /* hw queue is inactive after all its CPUs become offline */
684 BLK_MQ_S_INACTIVE = 3,
685
686 BLK_MQ_MAX_DEPTH = 10240,
687
688 BLK_MQ_CPU_WORK_BATCH = 8,
689};
690#define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
691 ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
692 ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
693#define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
694 ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
695 << BLK_MQ_F_ALLOC_POLICY_START_BIT)
696
697#define BLK_MQ_NO_HCTX_IDX (-1U)
698
699struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
700 struct lock_class_key *lkclass);
701#define blk_mq_alloc_disk(set, queuedata) \
702({ \
703 static struct lock_class_key __key; \
704 \
705 __blk_mq_alloc_disk(set, queuedata, &__key); \
706})
707struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
708 struct lock_class_key *lkclass);
709struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
710int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
711 struct request_queue *q);
712void blk_mq_destroy_queue(struct request_queue *);
713
714int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
715int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
716 const struct blk_mq_ops *ops, unsigned int queue_depth,
717 unsigned int set_flags);
718void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
719
720void blk_mq_free_request(struct request *rq);
721
722bool blk_mq_queue_inflight(struct request_queue *q);
723
724enum {
725 /* return when out of requests */
726 BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0),
727 /* allocate from reserved pool */
728 BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1),
729 /* set RQF_PM */
730 BLK_MQ_REQ_PM = (__force blk_mq_req_flags_t)(1 << 2),
731};
732
733struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
734 blk_mq_req_flags_t flags);
735struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
736 blk_opf_t opf, blk_mq_req_flags_t flags,
737 unsigned int hctx_idx);
738
739/*
740 * Tag address space map.
741 */
742struct blk_mq_tags {
743 unsigned int nr_tags;
744 unsigned int nr_reserved_tags;
745
746 atomic_t active_queues;
747
748 struct sbitmap_queue bitmap_tags;
749 struct sbitmap_queue breserved_tags;
750
751 struct request **rqs;
752 struct request **static_rqs;
753 struct list_head page_list;
754
755 /*
756 * used to clear request reference in rqs[] before freeing one
757 * request pool
758 */
759 spinlock_t lock;
760};
761
762static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
763 unsigned int tag)
764{
765 if (tag < tags->nr_tags) {
766 prefetch(tags->rqs[tag]);
767 return tags->rqs[tag];
768 }
769
770 return NULL;
771}
772
773enum {
774 BLK_MQ_UNIQUE_TAG_BITS = 16,
775 BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
776};
777
778u32 blk_mq_unique_tag(struct request *rq);
779
780static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
781{
782 return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
783}
784
785static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
786{
787 return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
788}
789
790/**
791 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
792 * @rq: target request.
793 */
794static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
795{
796 return READ_ONCE(rq->state);
797}
798
799static inline int blk_mq_request_started(struct request *rq)
800{
801 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
802}
803
804static inline int blk_mq_request_completed(struct request *rq)
805{
806 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
807}
808
809/*
810 *
811 * Set the state to complete when completing a request from inside ->queue_rq.
812 * This is used by drivers that want to ensure special complete actions that
813 * need access to the request are called on failure, e.g. by nvme for
814 * multipathing.
815 */
816static inline void blk_mq_set_request_complete(struct request *rq)
817{
818 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
819}
820
821/*
822 * Complete the request directly instead of deferring it to softirq or
823 * completing it another CPU. Useful in preemptible instead of an interrupt.
824 */
825static inline void blk_mq_complete_request_direct(struct request *rq,
826 void (*complete)(struct request *rq))
827{
828 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
829 complete(rq);
830}
831
832void blk_mq_start_request(struct request *rq);
833void blk_mq_end_request(struct request *rq, blk_status_t error);
834void __blk_mq_end_request(struct request *rq, blk_status_t error);
835void blk_mq_end_request_batch(struct io_comp_batch *ib);
836
837/*
838 * Only need start/end time stamping if we have iostat or
839 * blk stats enabled, or using an IO scheduler.
840 */
841static inline bool blk_mq_need_time_stamp(struct request *rq)
842{
843 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_ELV));
844}
845
846static inline bool blk_mq_is_reserved_rq(struct request *rq)
847{
848 return rq->rq_flags & RQF_RESV;
849}
850
851/*
852 * Batched completions only work when there is no I/O error and no special
853 * ->end_io handler.
854 */
855static inline bool blk_mq_add_to_batch(struct request *req,
856 struct io_comp_batch *iob, int ioerror,
857 void (*complete)(struct io_comp_batch *))
858{
859 if (!iob || (req->rq_flags & RQF_ELV) || ioerror ||
860 (req->end_io && !blk_rq_is_passthrough(req)))
861 return false;
862
863 if (!iob->complete)
864 iob->complete = complete;
865 else if (iob->complete != complete)
866 return false;
867 iob->need_ts |= blk_mq_need_time_stamp(req);
868 rq_list_add(&iob->req_list, req);
869 return true;
870}
871
872void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
873void blk_mq_kick_requeue_list(struct request_queue *q);
874void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
875void blk_mq_complete_request(struct request *rq);
876bool blk_mq_complete_request_remote(struct request *rq);
877void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
878void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
879void blk_mq_stop_hw_queues(struct request_queue *q);
880void blk_mq_start_hw_queues(struct request_queue *q);
881void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
882void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
883void blk_mq_quiesce_queue(struct request_queue *q);
884void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
885void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
886void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
887void blk_mq_unquiesce_queue(struct request_queue *q);
888void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
889void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
890void blk_mq_run_hw_queues(struct request_queue *q, bool async);
891void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
892void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
893 busy_tag_iter_fn *fn, void *priv);
894void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
895void blk_mq_freeze_queue(struct request_queue *q);
896void blk_mq_unfreeze_queue(struct request_queue *q);
897void blk_freeze_queue_start(struct request_queue *q);
898void blk_mq_freeze_queue_wait(struct request_queue *q);
899int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
900 unsigned long timeout);
901
902void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
903void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
904
905void blk_mq_quiesce_queue_nowait(struct request_queue *q);
906
907unsigned int blk_mq_rq_cpu(struct request *rq);
908
909bool __blk_should_fake_timeout(struct request_queue *q);
910static inline bool blk_should_fake_timeout(struct request_queue *q)
911{
912 if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
913 test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
914 return __blk_should_fake_timeout(q);
915 return false;
916}
917
918/**
919 * blk_mq_rq_from_pdu - cast a PDU to a request
920 * @pdu: the PDU (Protocol Data Unit) to be casted
921 *
922 * Return: request
923 *
924 * Driver command data is immediately after the request. So subtract request
925 * size to get back to the original request.
926 */
927static inline struct request *blk_mq_rq_from_pdu(void *pdu)
928{
929 return pdu - sizeof(struct request);
930}
931
932/**
933 * blk_mq_rq_to_pdu - cast a request to a PDU
934 * @rq: the request to be casted
935 *
936 * Return: pointer to the PDU
937 *
938 * Driver command data is immediately after the request. So add request to get
939 * the PDU.
940 */
941static inline void *blk_mq_rq_to_pdu(struct request *rq)
942{
943 return rq + 1;
944}
945
946#define queue_for_each_hw_ctx(q, hctx, i) \
947 xa_for_each(&(q)->hctx_table, (i), (hctx))
948
949#define hctx_for_each_ctx(hctx, ctx, i) \
950 for ((i) = 0; (i) < (hctx)->nr_ctx && \
951 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
952
953static inline void blk_mq_cleanup_rq(struct request *rq)
954{
955 if (rq->q->mq_ops->cleanup_rq)
956 rq->q->mq_ops->cleanup_rq(rq);
957}
958
959static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
960 unsigned int nr_segs)
961{
962 rq->nr_phys_segments = nr_segs;
963 rq->__data_len = bio->bi_iter.bi_size;
964 rq->bio = rq->biotail = bio;
965 rq->ioprio = bio_prio(bio);
966}
967
968void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
969 struct lock_class_key *key);
970
971static inline bool rq_is_sync(struct request *rq)
972{
973 return op_is_sync(rq->cmd_flags);
974}
975
976void blk_rq_init(struct request_queue *q, struct request *rq);
977int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
978 struct bio_set *bs, gfp_t gfp_mask,
979 int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
980void blk_rq_unprep_clone(struct request *rq);
981blk_status_t blk_insert_cloned_request(struct request *rq);
982
983struct rq_map_data {
984 struct page **pages;
985 unsigned long offset;
986 unsigned short page_order;
987 unsigned short nr_entries;
988 bool null_mapped;
989 bool from_user;
990};
991
992int blk_rq_map_user(struct request_queue *, struct request *,
993 struct rq_map_data *, void __user *, unsigned long, gfp_t);
994int blk_rq_map_user_io(struct request *, struct rq_map_data *,
995 void __user *, unsigned long, gfp_t, bool, int, bool, int);
996int blk_rq_map_user_iov(struct request_queue *, struct request *,
997 struct rq_map_data *, const struct iov_iter *, gfp_t);
998int blk_rq_unmap_user(struct bio *);
999int blk_rq_map_kern(struct request_queue *, struct request *, void *,
1000 unsigned int, gfp_t);
1001int blk_rq_append_bio(struct request *rq, struct bio *bio);
1002void blk_execute_rq_nowait(struct request *rq, bool at_head);
1003blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1004bool blk_rq_is_poll(struct request *rq);
1005
1006struct req_iterator {
1007 struct bvec_iter iter;
1008 struct bio *bio;
1009};
1010
1011#define __rq_for_each_bio(_bio, rq) \
1012 if ((rq->bio)) \
1013 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1014
1015#define rq_for_each_segment(bvl, _rq, _iter) \
1016 __rq_for_each_bio(_iter.bio, _rq) \
1017 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1018
1019#define rq_for_each_bvec(bvl, _rq, _iter) \
1020 __rq_for_each_bio(_iter.bio, _rq) \
1021 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1022
1023#define rq_iter_last(bvec, _iter) \
1024 (_iter.bio->bi_next == NULL && \
1025 bio_iter_last(bvec, _iter.iter))
1026
1027/*
1028 * blk_rq_pos() : the current sector
1029 * blk_rq_bytes() : bytes left in the entire request
1030 * blk_rq_cur_bytes() : bytes left in the current segment
1031 * blk_rq_sectors() : sectors left in the entire request
1032 * blk_rq_cur_sectors() : sectors left in the current segment
1033 * blk_rq_stats_sectors() : sectors of the entire request used for stats
1034 */
1035static inline sector_t blk_rq_pos(const struct request *rq)
1036{
1037 return rq->__sector;
1038}
1039
1040static inline unsigned int blk_rq_bytes(const struct request *rq)
1041{
1042 return rq->__data_len;
1043}
1044
1045static inline int blk_rq_cur_bytes(const struct request *rq)
1046{
1047 if (!rq->bio)
1048 return 0;
1049 if (!bio_has_data(rq->bio)) /* dataless requests such as discard */
1050 return rq->bio->bi_iter.bi_size;
1051 return bio_iovec(rq->bio).bv_len;
1052}
1053
1054static inline unsigned int blk_rq_sectors(const struct request *rq)
1055{
1056 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1057}
1058
1059static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1060{
1061 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1062}
1063
1064static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1065{
1066 return rq->stats_sectors;
1067}
1068
1069/*
1070 * Some commands like WRITE SAME have a payload or data transfer size which
1071 * is different from the size of the request. Any driver that supports such
1072 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1073 * calculate the data transfer size.
1074 */
1075static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1076{
1077 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1078 return rq->special_vec.bv_len;
1079 return blk_rq_bytes(rq);
1080}
1081
1082/*
1083 * Return the first full biovec in the request. The caller needs to check that
1084 * there are any bvecs before calling this helper.
1085 */
1086static inline struct bio_vec req_bvec(struct request *rq)
1087{
1088 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1089 return rq->special_vec;
1090 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1091}
1092
1093static inline unsigned int blk_rq_count_bios(struct request *rq)
1094{
1095 unsigned int nr_bios = 0;
1096 struct bio *bio;
1097
1098 __rq_for_each_bio(bio, rq)
1099 nr_bios++;
1100
1101 return nr_bios;
1102}
1103
1104void blk_steal_bios(struct bio_list *list, struct request *rq);
1105
1106/*
1107 * Request completion related functions.
1108 *
1109 * blk_update_request() completes given number of bytes and updates
1110 * the request without completing it.
1111 */
1112bool blk_update_request(struct request *rq, blk_status_t error,
1113 unsigned int nr_bytes);
1114void blk_abort_request(struct request *);
1115
1116/*
1117 * Number of physical segments as sent to the device.
1118 *
1119 * Normally this is the number of discontiguous data segments sent by the
1120 * submitter. But for data-less command like discard we might have no
1121 * actual data segments submitted, but the driver might have to add it's
1122 * own special payload. In that case we still return 1 here so that this
1123 * special payload will be mapped.
1124 */
1125static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1126{
1127 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1128 return 1;
1129 return rq->nr_phys_segments;
1130}
1131
1132/*
1133 * Number of discard segments (or ranges) the driver needs to fill in.
1134 * Each discard bio merged into a request is counted as one segment.
1135 */
1136static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1137{
1138 return max_t(unsigned short, rq->nr_phys_segments, 1);
1139}
1140
1141int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1142 struct scatterlist *sglist, struct scatterlist **last_sg);
1143static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1144 struct scatterlist *sglist)
1145{
1146 struct scatterlist *last_sg = NULL;
1147
1148 return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1149}
1150void blk_dump_rq_flags(struct request *, char *);
1151
1152#ifdef CONFIG_BLK_DEV_ZONED
1153static inline unsigned int blk_rq_zone_no(struct request *rq)
1154{
1155 return disk_zone_no(rq->q->disk, blk_rq_pos(rq));
1156}
1157
1158static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1159{
1160 return disk_zone_is_seq(rq->q->disk, blk_rq_pos(rq));
1161}
1162
1163bool blk_req_needs_zone_write_lock(struct request *rq);
1164bool blk_req_zone_write_trylock(struct request *rq);
1165void __blk_req_zone_write_lock(struct request *rq);
1166void __blk_req_zone_write_unlock(struct request *rq);
1167
1168static inline void blk_req_zone_write_lock(struct request *rq)
1169{
1170 if (blk_req_needs_zone_write_lock(rq))
1171 __blk_req_zone_write_lock(rq);
1172}
1173
1174static inline void blk_req_zone_write_unlock(struct request *rq)
1175{
1176 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1177 __blk_req_zone_write_unlock(rq);
1178}
1179
1180static inline bool blk_req_zone_is_write_locked(struct request *rq)
1181{
1182 return rq->q->disk->seq_zones_wlock &&
1183 test_bit(blk_rq_zone_no(rq), rq->q->disk->seq_zones_wlock);
1184}
1185
1186static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1187{
1188 if (!blk_req_needs_zone_write_lock(rq))
1189 return true;
1190 return !blk_req_zone_is_write_locked(rq);
1191}
1192#else /* CONFIG_BLK_DEV_ZONED */
1193static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1194{
1195 return false;
1196}
1197
1198static inline void blk_req_zone_write_lock(struct request *rq)
1199{
1200}
1201
1202static inline void blk_req_zone_write_unlock(struct request *rq)
1203{
1204}
1205static inline bool blk_req_zone_is_write_locked(struct request *rq)
1206{
1207 return false;
1208}
1209
1210static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1211{
1212 return true;
1213}
1214#endif /* CONFIG_BLK_DEV_ZONED */
1215
1216#endif /* BLK_MQ_H */