at v6.2 53 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/******************************************************************************* 3 * 4 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver 5 * Copyright(c) 2013 - 2014 Intel Corporation. 6 * 7 * Contact Information: 8 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 9 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 10 * 11 ******************************************************************************/ 12 13#ifndef _VIRTCHNL_H_ 14#define _VIRTCHNL_H_ 15 16/* Description: 17 * This header file describes the VF-PF communication protocol used 18 * by the drivers for all devices starting from our 40G product line 19 * 20 * Admin queue buffer usage: 21 * desc->opcode is always aqc_opc_send_msg_to_pf 22 * flags, retval, datalen, and data addr are all used normally. 23 * The Firmware copies the cookie fields when sending messages between the 24 * PF and VF, but uses all other fields internally. Due to this limitation, 25 * we must send all messages as "indirect", i.e. using an external buffer. 26 * 27 * All the VSI indexes are relative to the VF. Each VF can have maximum of 28 * three VSIs. All the queue indexes are relative to the VSI. Each VF can 29 * have a maximum of sixteen queues for all of its VSIs. 30 * 31 * The PF is required to return a status code in v_retval for all messages 32 * except RESET_VF, which does not require any response. The return value 33 * is of status_code type, defined in the shared type.h. 34 * 35 * In general, VF driver initialization should roughly follow the order of 36 * these opcodes. The VF driver must first validate the API version of the 37 * PF driver, then request a reset, then get resources, then configure 38 * queues and interrupts. After these operations are complete, the VF 39 * driver may start its queues, optionally add MAC and VLAN filters, and 40 * process traffic. 41 */ 42 43/* START GENERIC DEFINES 44 * Need to ensure the following enums and defines hold the same meaning and 45 * value in current and future projects 46 */ 47 48/* Error Codes */ 49enum virtchnl_status_code { 50 VIRTCHNL_STATUS_SUCCESS = 0, 51 VIRTCHNL_STATUS_ERR_PARAM = -5, 52 VIRTCHNL_STATUS_ERR_NO_MEMORY = -18, 53 VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH = -38, 54 VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR = -39, 55 VIRTCHNL_STATUS_ERR_INVALID_VF_ID = -40, 56 VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR = -53, 57 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED = -64, 58}; 59 60/* Backward compatibility */ 61#define VIRTCHNL_ERR_PARAM VIRTCHNL_STATUS_ERR_PARAM 62#define VIRTCHNL_STATUS_NOT_SUPPORTED VIRTCHNL_STATUS_ERR_NOT_SUPPORTED 63 64#define VIRTCHNL_LINK_SPEED_2_5GB_SHIFT 0x0 65#define VIRTCHNL_LINK_SPEED_100MB_SHIFT 0x1 66#define VIRTCHNL_LINK_SPEED_1000MB_SHIFT 0x2 67#define VIRTCHNL_LINK_SPEED_10GB_SHIFT 0x3 68#define VIRTCHNL_LINK_SPEED_40GB_SHIFT 0x4 69#define VIRTCHNL_LINK_SPEED_20GB_SHIFT 0x5 70#define VIRTCHNL_LINK_SPEED_25GB_SHIFT 0x6 71#define VIRTCHNL_LINK_SPEED_5GB_SHIFT 0x7 72 73enum virtchnl_link_speed { 74 VIRTCHNL_LINK_SPEED_UNKNOWN = 0, 75 VIRTCHNL_LINK_SPEED_100MB = BIT(VIRTCHNL_LINK_SPEED_100MB_SHIFT), 76 VIRTCHNL_LINK_SPEED_1GB = BIT(VIRTCHNL_LINK_SPEED_1000MB_SHIFT), 77 VIRTCHNL_LINK_SPEED_10GB = BIT(VIRTCHNL_LINK_SPEED_10GB_SHIFT), 78 VIRTCHNL_LINK_SPEED_40GB = BIT(VIRTCHNL_LINK_SPEED_40GB_SHIFT), 79 VIRTCHNL_LINK_SPEED_20GB = BIT(VIRTCHNL_LINK_SPEED_20GB_SHIFT), 80 VIRTCHNL_LINK_SPEED_25GB = BIT(VIRTCHNL_LINK_SPEED_25GB_SHIFT), 81 VIRTCHNL_LINK_SPEED_2_5GB = BIT(VIRTCHNL_LINK_SPEED_2_5GB_SHIFT), 82 VIRTCHNL_LINK_SPEED_5GB = BIT(VIRTCHNL_LINK_SPEED_5GB_SHIFT), 83}; 84 85/* for hsplit_0 field of Rx HMC context */ 86/* deprecated with AVF 1.0 */ 87enum virtchnl_rx_hsplit { 88 VIRTCHNL_RX_HSPLIT_NO_SPLIT = 0, 89 VIRTCHNL_RX_HSPLIT_SPLIT_L2 = 1, 90 VIRTCHNL_RX_HSPLIT_SPLIT_IP = 2, 91 VIRTCHNL_RX_HSPLIT_SPLIT_TCP_UDP = 4, 92 VIRTCHNL_RX_HSPLIT_SPLIT_SCTP = 8, 93}; 94 95/* END GENERIC DEFINES */ 96 97/* Opcodes for VF-PF communication. These are placed in the v_opcode field 98 * of the virtchnl_msg structure. 99 */ 100enum virtchnl_ops { 101/* The PF sends status change events to VFs using 102 * the VIRTCHNL_OP_EVENT opcode. 103 * VFs send requests to the PF using the other ops. 104 * Use of "advanced opcode" features must be negotiated as part of capabilities 105 * exchange and are not considered part of base mode feature set. 106 */ 107 VIRTCHNL_OP_UNKNOWN = 0, 108 VIRTCHNL_OP_VERSION = 1, /* must ALWAYS be 1 */ 109 VIRTCHNL_OP_RESET_VF = 2, 110 VIRTCHNL_OP_GET_VF_RESOURCES = 3, 111 VIRTCHNL_OP_CONFIG_TX_QUEUE = 4, 112 VIRTCHNL_OP_CONFIG_RX_QUEUE = 5, 113 VIRTCHNL_OP_CONFIG_VSI_QUEUES = 6, 114 VIRTCHNL_OP_CONFIG_IRQ_MAP = 7, 115 VIRTCHNL_OP_ENABLE_QUEUES = 8, 116 VIRTCHNL_OP_DISABLE_QUEUES = 9, 117 VIRTCHNL_OP_ADD_ETH_ADDR = 10, 118 VIRTCHNL_OP_DEL_ETH_ADDR = 11, 119 VIRTCHNL_OP_ADD_VLAN = 12, 120 VIRTCHNL_OP_DEL_VLAN = 13, 121 VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE = 14, 122 VIRTCHNL_OP_GET_STATS = 15, 123 VIRTCHNL_OP_RSVD = 16, 124 VIRTCHNL_OP_EVENT = 17, /* must ALWAYS be 17 */ 125 VIRTCHNL_OP_IWARP = 20, /* advanced opcode */ 126 VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP = 21, /* advanced opcode */ 127 VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP = 22, /* advanced opcode */ 128 VIRTCHNL_OP_CONFIG_RSS_KEY = 23, 129 VIRTCHNL_OP_CONFIG_RSS_LUT = 24, 130 VIRTCHNL_OP_GET_RSS_HENA_CAPS = 25, 131 VIRTCHNL_OP_SET_RSS_HENA = 26, 132 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING = 27, 133 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING = 28, 134 VIRTCHNL_OP_REQUEST_QUEUES = 29, 135 VIRTCHNL_OP_ENABLE_CHANNELS = 30, 136 VIRTCHNL_OP_DISABLE_CHANNELS = 31, 137 VIRTCHNL_OP_ADD_CLOUD_FILTER = 32, 138 VIRTCHNL_OP_DEL_CLOUD_FILTER = 33, 139 /* opcode 34 - 43 are reserved */ 140 VIRTCHNL_OP_GET_SUPPORTED_RXDIDS = 44, 141 VIRTCHNL_OP_ADD_RSS_CFG = 45, 142 VIRTCHNL_OP_DEL_RSS_CFG = 46, 143 VIRTCHNL_OP_ADD_FDIR_FILTER = 47, 144 VIRTCHNL_OP_DEL_FDIR_FILTER = 48, 145 VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS = 51, 146 VIRTCHNL_OP_ADD_VLAN_V2 = 52, 147 VIRTCHNL_OP_DEL_VLAN_V2 = 53, 148 VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 = 54, 149 VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 = 55, 150 VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 = 56, 151 VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 = 57, 152 VIRTCHNL_OP_MAX, 153}; 154 155/* These macros are used to generate compilation errors if a structure/union 156 * is not exactly the correct length. It gives a divide by zero error if the 157 * structure/union is not of the correct size, otherwise it creates an enum 158 * that is never used. 159 */ 160#define VIRTCHNL_CHECK_STRUCT_LEN(n, X) enum virtchnl_static_assert_enum_##X \ 161 { virtchnl_static_assert_##X = (n)/((sizeof(struct X) == (n)) ? 1 : 0) } 162#define VIRTCHNL_CHECK_UNION_LEN(n, X) enum virtchnl_static_asset_enum_##X \ 163 { virtchnl_static_assert_##X = (n)/((sizeof(union X) == (n)) ? 1 : 0) } 164 165/* Virtual channel message descriptor. This overlays the admin queue 166 * descriptor. All other data is passed in external buffers. 167 */ 168 169struct virtchnl_msg { 170 u8 pad[8]; /* AQ flags/opcode/len/retval fields */ 171 enum virtchnl_ops v_opcode; /* avoid confusion with desc->opcode */ 172 enum virtchnl_status_code v_retval; /* ditto for desc->retval */ 173 u32 vfid; /* used by PF when sending to VF */ 174}; 175 176VIRTCHNL_CHECK_STRUCT_LEN(20, virtchnl_msg); 177 178/* Message descriptions and data structures. */ 179 180/* VIRTCHNL_OP_VERSION 181 * VF posts its version number to the PF. PF responds with its version number 182 * in the same format, along with a return code. 183 * Reply from PF has its major/minor versions also in param0 and param1. 184 * If there is a major version mismatch, then the VF cannot operate. 185 * If there is a minor version mismatch, then the VF can operate but should 186 * add a warning to the system log. 187 * 188 * This enum element MUST always be specified as == 1, regardless of other 189 * changes in the API. The PF must always respond to this message without 190 * error regardless of version mismatch. 191 */ 192#define VIRTCHNL_VERSION_MAJOR 1 193#define VIRTCHNL_VERSION_MINOR 1 194#define VIRTCHNL_VERSION_MINOR_NO_VF_CAPS 0 195 196struct virtchnl_version_info { 197 u32 major; 198 u32 minor; 199}; 200 201VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_version_info); 202 203#define VF_IS_V10(_v) (((_v)->major == 1) && ((_v)->minor == 0)) 204#define VF_IS_V11(_ver) (((_ver)->major == 1) && ((_ver)->minor == 1)) 205 206/* VIRTCHNL_OP_RESET_VF 207 * VF sends this request to PF with no parameters 208 * PF does NOT respond! VF driver must delay then poll VFGEN_RSTAT register 209 * until reset completion is indicated. The admin queue must be reinitialized 210 * after this operation. 211 * 212 * When reset is complete, PF must ensure that all queues in all VSIs associated 213 * with the VF are stopped, all queue configurations in the HMC are set to 0, 214 * and all MAC and VLAN filters (except the default MAC address) on all VSIs 215 * are cleared. 216 */ 217 218/* VSI types that use VIRTCHNL interface for VF-PF communication. VSI_SRIOV 219 * vsi_type should always be 6 for backward compatibility. Add other fields 220 * as needed. 221 */ 222enum virtchnl_vsi_type { 223 VIRTCHNL_VSI_TYPE_INVALID = 0, 224 VIRTCHNL_VSI_SRIOV = 6, 225}; 226 227/* VIRTCHNL_OP_GET_VF_RESOURCES 228 * Version 1.0 VF sends this request to PF with no parameters 229 * Version 1.1 VF sends this request to PF with u32 bitmap of its capabilities 230 * PF responds with an indirect message containing 231 * virtchnl_vf_resource and one or more 232 * virtchnl_vsi_resource structures. 233 */ 234 235struct virtchnl_vsi_resource { 236 u16 vsi_id; 237 u16 num_queue_pairs; 238 enum virtchnl_vsi_type vsi_type; 239 u16 qset_handle; 240 u8 default_mac_addr[ETH_ALEN]; 241}; 242 243VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vsi_resource); 244 245/* VF capability flags 246 * VIRTCHNL_VF_OFFLOAD_L2 flag is inclusive of base mode L2 offloads including 247 * TX/RX Checksum offloading and TSO for non-tunnelled packets. 248 */ 249#define VIRTCHNL_VF_OFFLOAD_L2 BIT(0) 250#define VIRTCHNL_VF_OFFLOAD_IWARP BIT(1) 251#define VIRTCHNL_VF_OFFLOAD_RSS_AQ BIT(3) 252#define VIRTCHNL_VF_OFFLOAD_RSS_REG BIT(4) 253#define VIRTCHNL_VF_OFFLOAD_WB_ON_ITR BIT(5) 254#define VIRTCHNL_VF_OFFLOAD_REQ_QUEUES BIT(6) 255/* used to negotiate communicating link speeds in Mbps */ 256#define VIRTCHNL_VF_CAP_ADV_LINK_SPEED BIT(7) 257#define VIRTCHNL_VF_OFFLOAD_VLAN_V2 BIT(15) 258#define VIRTCHNL_VF_OFFLOAD_VLAN BIT(16) 259#define VIRTCHNL_VF_OFFLOAD_RX_POLLING BIT(17) 260#define VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2 BIT(18) 261#define VIRTCHNL_VF_OFFLOAD_RSS_PF BIT(19) 262#define VIRTCHNL_VF_OFFLOAD_ENCAP BIT(20) 263#define VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM BIT(21) 264#define VIRTCHNL_VF_OFFLOAD_RX_ENCAP_CSUM BIT(22) 265#define VIRTCHNL_VF_OFFLOAD_ADQ BIT(23) 266#define VIRTCHNL_VF_OFFLOAD_USO BIT(25) 267#define VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC BIT(26) 268#define VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF BIT(27) 269#define VIRTCHNL_VF_OFFLOAD_FDIR_PF BIT(28) 270 271#define VF_BASE_MODE_OFFLOADS (VIRTCHNL_VF_OFFLOAD_L2 | \ 272 VIRTCHNL_VF_OFFLOAD_VLAN | \ 273 VIRTCHNL_VF_OFFLOAD_RSS_PF) 274 275struct virtchnl_vf_resource { 276 u16 num_vsis; 277 u16 num_queue_pairs; 278 u16 max_vectors; 279 u16 max_mtu; 280 281 u32 vf_cap_flags; 282 u32 rss_key_size; 283 u32 rss_lut_size; 284 285 struct virtchnl_vsi_resource vsi_res[1]; 286}; 287 288VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_vf_resource); 289 290/* VIRTCHNL_OP_CONFIG_TX_QUEUE 291 * VF sends this message to set up parameters for one TX queue. 292 * External data buffer contains one instance of virtchnl_txq_info. 293 * PF configures requested queue and returns a status code. 294 */ 295 296/* Tx queue config info */ 297struct virtchnl_txq_info { 298 u16 vsi_id; 299 u16 queue_id; 300 u16 ring_len; /* number of descriptors, multiple of 8 */ 301 u16 headwb_enabled; /* deprecated with AVF 1.0 */ 302 u64 dma_ring_addr; 303 u64 dma_headwb_addr; /* deprecated with AVF 1.0 */ 304}; 305 306VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_txq_info); 307 308/* VIRTCHNL_OP_CONFIG_RX_QUEUE 309 * VF sends this message to set up parameters for one RX queue. 310 * External data buffer contains one instance of virtchnl_rxq_info. 311 * PF configures requested queue and returns a status code. 312 */ 313 314/* Rx queue config info */ 315struct virtchnl_rxq_info { 316 u16 vsi_id; 317 u16 queue_id; 318 u32 ring_len; /* number of descriptors, multiple of 32 */ 319 u16 hdr_size; 320 u16 splithdr_enabled; /* deprecated with AVF 1.0 */ 321 u32 databuffer_size; 322 u32 max_pkt_size; 323 u8 pad0; 324 u8 rxdid; 325 u8 pad1[2]; 326 u64 dma_ring_addr; 327 enum virtchnl_rx_hsplit rx_split_pos; /* deprecated with AVF 1.0 */ 328 u32 pad2; 329}; 330 331VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_rxq_info); 332 333/* VIRTCHNL_OP_CONFIG_VSI_QUEUES 334 * VF sends this message to set parameters for all active TX and RX queues 335 * associated with the specified VSI. 336 * PF configures queues and returns status. 337 * If the number of queues specified is greater than the number of queues 338 * associated with the VSI, an error is returned and no queues are configured. 339 */ 340struct virtchnl_queue_pair_info { 341 /* NOTE: vsi_id and queue_id should be identical for both queues. */ 342 struct virtchnl_txq_info txq; 343 struct virtchnl_rxq_info rxq; 344}; 345 346VIRTCHNL_CHECK_STRUCT_LEN(64, virtchnl_queue_pair_info); 347 348struct virtchnl_vsi_queue_config_info { 349 u16 vsi_id; 350 u16 num_queue_pairs; 351 u32 pad; 352 struct virtchnl_queue_pair_info qpair[1]; 353}; 354 355VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_vsi_queue_config_info); 356 357/* VIRTCHNL_OP_REQUEST_QUEUES 358 * VF sends this message to request the PF to allocate additional queues to 359 * this VF. Each VF gets a guaranteed number of queues on init but asking for 360 * additional queues must be negotiated. This is a best effort request as it 361 * is possible the PF does not have enough queues left to support the request. 362 * If the PF cannot support the number requested it will respond with the 363 * maximum number it is able to support. If the request is successful, PF will 364 * then reset the VF to institute required changes. 365 */ 366 367/* VF resource request */ 368struct virtchnl_vf_res_request { 369 u16 num_queue_pairs; 370}; 371 372/* VIRTCHNL_OP_CONFIG_IRQ_MAP 373 * VF uses this message to map vectors to queues. 374 * The rxq_map and txq_map fields are bitmaps used to indicate which queues 375 * are to be associated with the specified vector. 376 * The "other" causes are always mapped to vector 0. 377 * PF configures interrupt mapping and returns status. 378 */ 379struct virtchnl_vector_map { 380 u16 vsi_id; 381 u16 vector_id; 382 u16 rxq_map; 383 u16 txq_map; 384 u16 rxitr_idx; 385 u16 txitr_idx; 386}; 387 388VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_vector_map); 389 390struct virtchnl_irq_map_info { 391 u16 num_vectors; 392 struct virtchnl_vector_map vecmap[1]; 393}; 394 395VIRTCHNL_CHECK_STRUCT_LEN(14, virtchnl_irq_map_info); 396 397/* VIRTCHNL_OP_ENABLE_QUEUES 398 * VIRTCHNL_OP_DISABLE_QUEUES 399 * VF sends these message to enable or disable TX/RX queue pairs. 400 * The queues fields are bitmaps indicating which queues to act upon. 401 * (Currently, we only support 16 queues per VF, but we make the field 402 * u32 to allow for expansion.) 403 * PF performs requested action and returns status. 404 */ 405struct virtchnl_queue_select { 406 u16 vsi_id; 407 u16 pad; 408 u32 rx_queues; 409 u32 tx_queues; 410}; 411 412VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_queue_select); 413 414/* VIRTCHNL_OP_ADD_ETH_ADDR 415 * VF sends this message in order to add one or more unicast or multicast 416 * address filters for the specified VSI. 417 * PF adds the filters and returns status. 418 */ 419 420/* VIRTCHNL_OP_DEL_ETH_ADDR 421 * VF sends this message in order to remove one or more unicast or multicast 422 * filters for the specified VSI. 423 * PF removes the filters and returns status. 424 */ 425 426/* VIRTCHNL_ETHER_ADDR_LEGACY 427 * Prior to adding the @type member to virtchnl_ether_addr, there were 2 pad 428 * bytes. Moving forward all VF drivers should not set type to 429 * VIRTCHNL_ETHER_ADDR_LEGACY. This is only here to not break previous/legacy 430 * behavior. The control plane function (i.e. PF) can use a best effort method 431 * of tracking the primary/device unicast in this case, but there is no 432 * guarantee and functionality depends on the implementation of the PF. 433 */ 434 435/* VIRTCHNL_ETHER_ADDR_PRIMARY 436 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_PRIMARY for the 437 * primary/device unicast MAC address filter for VIRTCHNL_OP_ADD_ETH_ADDR and 438 * VIRTCHNL_OP_DEL_ETH_ADDR. This allows for the underlying control plane 439 * function (i.e. PF) to accurately track and use this MAC address for 440 * displaying on the host and for VM/function reset. 441 */ 442 443/* VIRTCHNL_ETHER_ADDR_EXTRA 444 * All VF drivers should set @type to VIRTCHNL_ETHER_ADDR_EXTRA for any extra 445 * unicast and/or multicast filters that are being added/deleted via 446 * VIRTCHNL_OP_DEL_ETH_ADDR/VIRTCHNL_OP_ADD_ETH_ADDR respectively. 447 */ 448struct virtchnl_ether_addr { 449 u8 addr[ETH_ALEN]; 450 u8 type; 451#define VIRTCHNL_ETHER_ADDR_LEGACY 0 452#define VIRTCHNL_ETHER_ADDR_PRIMARY 1 453#define VIRTCHNL_ETHER_ADDR_EXTRA 2 454#define VIRTCHNL_ETHER_ADDR_TYPE_MASK 3 /* first two bits of type are valid */ 455 u8 pad; 456}; 457 458VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_ether_addr); 459 460struct virtchnl_ether_addr_list { 461 u16 vsi_id; 462 u16 num_elements; 463 struct virtchnl_ether_addr list[1]; 464}; 465 466VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_ether_addr_list); 467 468/* VIRTCHNL_OP_ADD_VLAN 469 * VF sends this message to add one or more VLAN tag filters for receives. 470 * PF adds the filters and returns status. 471 * If a port VLAN is configured by the PF, this operation will return an 472 * error to the VF. 473 */ 474 475/* VIRTCHNL_OP_DEL_VLAN 476 * VF sends this message to remove one or more VLAN tag filters for receives. 477 * PF removes the filters and returns status. 478 * If a port VLAN is configured by the PF, this operation will return an 479 * error to the VF. 480 */ 481 482struct virtchnl_vlan_filter_list { 483 u16 vsi_id; 484 u16 num_elements; 485 u16 vlan_id[1]; 486}; 487 488VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_vlan_filter_list); 489 490/* This enum is used for all of the VIRTCHNL_VF_OFFLOAD_VLAN_V2_CAPS related 491 * structures and opcodes. 492 * 493 * VIRTCHNL_VLAN_UNSUPPORTED - This field is not supported and if a VF driver 494 * populates it the PF should return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED. 495 * 496 * VIRTCHNL_VLAN_ETHERTYPE_8100 - This field supports 0x8100 ethertype. 497 * VIRTCHNL_VLAN_ETHERTYPE_88A8 - This field supports 0x88A8 ethertype. 498 * VIRTCHNL_VLAN_ETHERTYPE_9100 - This field supports 0x9100 ethertype. 499 * 500 * VIRTCHNL_VLAN_ETHERTYPE_AND - Used when multiple ethertypes can be supported 501 * by the PF concurrently. For example, if the PF can support 502 * VIRTCHNL_VLAN_ETHERTYPE_8100 AND VIRTCHNL_VLAN_ETHERTYPE_88A8 filters it 503 * would OR the following bits: 504 * 505 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 506 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 507 * VIRTCHNL_VLAN_ETHERTYPE_AND; 508 * 509 * The VF would interpret this as VLAN filtering can be supported on both 0x8100 510 * and 0x88A8 VLAN ethertypes. 511 * 512 * VIRTCHNL_ETHERTYPE_XOR - Used when only a single ethertype can be supported 513 * by the PF concurrently. For example if the PF can support 514 * VIRTCHNL_VLAN_ETHERTYPE_8100 XOR VIRTCHNL_VLAN_ETHERTYPE_88A8 stripping 515 * offload it would OR the following bits: 516 * 517 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 518 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 519 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 520 * 521 * The VF would interpret this as VLAN stripping can be supported on either 522 * 0x8100 or 0x88a8 VLAN ethertypes. So when requesting VLAN stripping via 523 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 the specified ethertype will override 524 * the previously set value. 525 * 526 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 - Used to tell the VF to insert and/or 527 * strip the VLAN tag using the L2TAG1 field of the Tx/Rx descriptors. 528 * 529 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to insert hardware 530 * offloaded VLAN tags using the L2TAG2 field of the Tx descriptor. 531 * 532 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 - Used to tell the VF to strip hardware 533 * offloaded VLAN tags using the L2TAG2_2 field of the Rx descriptor. 534 * 535 * VIRTCHNL_VLAN_PRIO - This field supports VLAN priority bits. This is used for 536 * VLAN filtering if the underlying PF supports it. 537 * 538 * VIRTCHNL_VLAN_TOGGLE_ALLOWED - This field is used to say whether a 539 * certain VLAN capability can be toggled. For example if the underlying PF/CP 540 * allows the VF to toggle VLAN filtering, stripping, and/or insertion it should 541 * set this bit along with the supported ethertypes. 542 */ 543enum virtchnl_vlan_support { 544 VIRTCHNL_VLAN_UNSUPPORTED = 0, 545 VIRTCHNL_VLAN_ETHERTYPE_8100 = BIT(0), 546 VIRTCHNL_VLAN_ETHERTYPE_88A8 = BIT(1), 547 VIRTCHNL_VLAN_ETHERTYPE_9100 = BIT(2), 548 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1 = BIT(8), 549 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2 = BIT(9), 550 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 = BIT(10), 551 VIRTCHNL_VLAN_PRIO = BIT(24), 552 VIRTCHNL_VLAN_FILTER_MASK = BIT(28), 553 VIRTCHNL_VLAN_ETHERTYPE_AND = BIT(29), 554 VIRTCHNL_VLAN_ETHERTYPE_XOR = BIT(30), 555 VIRTCHNL_VLAN_TOGGLE = BIT(31), 556}; 557 558/* This structure is used as part of the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 559 * for filtering, insertion, and stripping capabilities. 560 * 561 * If only outer capabilities are supported (for filtering, insertion, and/or 562 * stripping) then this refers to the outer most or single VLAN from the VF's 563 * perspective. 564 * 565 * If only inner capabilities are supported (for filtering, insertion, and/or 566 * stripping) then this refers to the outer most or single VLAN from the VF's 567 * perspective. Functionally this is the same as if only outer capabilities are 568 * supported. The VF driver is just forced to use the inner fields when 569 * adding/deleting filters and enabling/disabling offloads (if supported). 570 * 571 * If both outer and inner capabilities are supported (for filtering, insertion, 572 * and/or stripping) then outer refers to the outer most or single VLAN and 573 * inner refers to the second VLAN, if it exists, in the packet. 574 * 575 * There is no support for tunneled VLAN offloads, so outer or inner are never 576 * referring to a tunneled packet from the VF's perspective. 577 */ 578struct virtchnl_vlan_supported_caps { 579 u32 outer; 580 u32 inner; 581}; 582 583/* The PF populates these fields based on the supported VLAN filtering. If a 584 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 585 * reject any VIRTCHNL_OP_ADD_VLAN_V2 or VIRTCHNL_OP_DEL_VLAN_V2 messages using 586 * the unsupported fields. 587 * 588 * Also, a VF is only allowed to toggle its VLAN filtering setting if the 589 * VIRTCHNL_VLAN_TOGGLE bit is set. 590 * 591 * The ethertype(s) specified in the ethertype_init field are the ethertypes 592 * enabled for VLAN filtering. VLAN filtering in this case refers to the outer 593 * most VLAN from the VF's perspective. If both inner and outer filtering are 594 * allowed then ethertype_init only refers to the outer most VLAN as only 595 * VLAN ethertype supported for inner VLAN filtering is 596 * VIRTCHNL_VLAN_ETHERTYPE_8100. By default, inner VLAN filtering is disabled 597 * when both inner and outer filtering are allowed. 598 * 599 * The max_filters field tells the VF how many VLAN filters it's allowed to have 600 * at any one time. If it exceeds this amount and tries to add another filter, 601 * then the request will be rejected by the PF. To prevent failures, the VF 602 * should keep track of how many VLAN filters it has added and not attempt to 603 * add more than max_filters. 604 */ 605struct virtchnl_vlan_filtering_caps { 606 struct virtchnl_vlan_supported_caps filtering_support; 607 u32 ethertype_init; 608 u16 max_filters; 609 u8 pad[2]; 610}; 611 612VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_filtering_caps); 613 614/* This enum is used for the virtchnl_vlan_offload_caps structure to specify 615 * if the PF supports a different ethertype for stripping and insertion. 616 * 617 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION - The ethertype(s) specified 618 * for stripping affect the ethertype(s) specified for insertion and visa versa 619 * as well. If the VF tries to configure VLAN stripping via 620 * VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 with VIRTCHNL_VLAN_ETHERTYPE_8100 then 621 * that will be the ethertype for both stripping and insertion. 622 * 623 * VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED - The ethertype(s) specified for 624 * stripping do not affect the ethertype(s) specified for insertion and visa 625 * versa. 626 */ 627enum virtchnl_vlan_ethertype_match { 628 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION = 0, 629 VIRTCHNL_ETHERTYPE_MATCH_NOT_REQUIRED = 1, 630}; 631 632/* The PF populates these fields based on the supported VLAN offloads. If a 633 * field is VIRTCHNL_VLAN_UNSUPPORTED then it's not supported and the PF will 634 * reject any VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 or 635 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 messages using the unsupported fields. 636 * 637 * Also, a VF is only allowed to toggle its VLAN offload setting if the 638 * VIRTCHNL_VLAN_TOGGLE_ALLOWED bit is set. 639 * 640 * The VF driver needs to be aware of how the tags are stripped by hardware and 641 * inserted by the VF driver based on the level of offload support. The PF will 642 * populate these fields based on where the VLAN tags are expected to be 643 * offloaded via the VIRTHCNL_VLAN_TAG_LOCATION_* bits. The VF will need to 644 * interpret these fields. See the definition of the 645 * VIRTCHNL_VLAN_TAG_LOCATION_* bits above the virtchnl_vlan_support 646 * enumeration. 647 */ 648struct virtchnl_vlan_offload_caps { 649 struct virtchnl_vlan_supported_caps stripping_support; 650 struct virtchnl_vlan_supported_caps insertion_support; 651 u32 ethertype_init; 652 u8 ethertype_match; 653 u8 pad[3]; 654}; 655 656VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_vlan_offload_caps); 657 658/* VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS 659 * VF sends this message to determine its VLAN capabilities. 660 * 661 * PF will mark which capabilities it supports based on hardware support and 662 * current configuration. For example, if a port VLAN is configured the PF will 663 * not allow outer VLAN filtering, stripping, or insertion to be configured so 664 * it will block these features from the VF. 665 * 666 * The VF will need to cross reference its capabilities with the PFs 667 * capabilities in the response message from the PF to determine the VLAN 668 * support. 669 */ 670struct virtchnl_vlan_caps { 671 struct virtchnl_vlan_filtering_caps filtering; 672 struct virtchnl_vlan_offload_caps offloads; 673}; 674 675VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_caps); 676 677struct virtchnl_vlan { 678 u16 tci; /* tci[15:13] = PCP and tci[11:0] = VID */ 679 u16 tci_mask; /* only valid if VIRTCHNL_VLAN_FILTER_MASK set in 680 * filtering caps 681 */ 682 u16 tpid; /* 0x8100, 0x88a8, etc. and only type(s) set in 683 * filtering caps. Note that tpid here does not refer to 684 * VIRTCHNL_VLAN_ETHERTYPE_*, but it refers to the 685 * actual 2-byte VLAN TPID 686 */ 687 u8 pad[2]; 688}; 689 690VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_vlan); 691 692struct virtchnl_vlan_filter { 693 struct virtchnl_vlan inner; 694 struct virtchnl_vlan outer; 695 u8 pad[16]; 696}; 697 698VIRTCHNL_CHECK_STRUCT_LEN(32, virtchnl_vlan_filter); 699 700/* VIRTCHNL_OP_ADD_VLAN_V2 701 * VIRTCHNL_OP_DEL_VLAN_V2 702 * 703 * VF sends these messages to add/del one or more VLAN tag filters for Rx 704 * traffic. 705 * 706 * The PF attempts to add the filters and returns status. 707 * 708 * The VF should only ever attempt to add/del virtchnl_vlan_filter(s) using the 709 * supported fields negotiated via VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS. 710 */ 711struct virtchnl_vlan_filter_list_v2 { 712 u16 vport_id; 713 u16 num_elements; 714 u8 pad[4]; 715 struct virtchnl_vlan_filter filters[1]; 716}; 717 718VIRTCHNL_CHECK_STRUCT_LEN(40, virtchnl_vlan_filter_list_v2); 719 720/* VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 721 * VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2 722 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 723 * VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2 724 * 725 * VF sends this message to enable or disable VLAN stripping or insertion. It 726 * also needs to specify an ethertype. The VF knows which VLAN ethertypes are 727 * allowed and whether or not it's allowed to enable/disable the specific 728 * offload via the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS message. The VF needs to 729 * parse the virtchnl_vlan_caps.offloads fields to determine which offload 730 * messages are allowed. 731 * 732 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 733 * following manner the VF will be allowed to enable and/or disable 0x8100 inner 734 * VLAN insertion and/or stripping via the opcodes listed above. Inner in this 735 * case means the outer most or single VLAN from the VF's perspective. This is 736 * because no outer offloads are supported. See the comments above the 737 * virtchnl_vlan_supported_caps structure for more details. 738 * 739 * virtchnl_vlan_caps.offloads.stripping_support.inner = 740 * VIRTCHNL_VLAN_TOGGLE | 741 * VIRTCHNL_VLAN_ETHERTYPE_8100; 742 * 743 * virtchnl_vlan_caps.offloads.insertion_support.inner = 744 * VIRTCHNL_VLAN_TOGGLE | 745 * VIRTCHNL_VLAN_ETHERTYPE_8100; 746 * 747 * In order to enable inner (again note that in this case inner is the outer 748 * most or single VLAN from the VF's perspective) VLAN stripping for 0x8100 749 * VLANs, the VF would populate the virtchnl_vlan_setting structure in the 750 * following manner and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 751 * 752 * virtchnl_vlan_setting.inner_ethertype_setting = 753 * VIRTCHNL_VLAN_ETHERTYPE_8100; 754 * 755 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 756 * initialization. 757 * 758 * The reason that VLAN TPID(s) are not being used for the 759 * outer_ethertype_setting and inner_ethertype_setting fields is because it's 760 * possible a device could support VLAN insertion and/or stripping offload on 761 * multiple ethertypes concurrently, so this method allows a VF to request 762 * multiple ethertypes in one message using the virtchnl_vlan_support 763 * enumeration. 764 * 765 * For example, if the PF populates the virtchnl_vlan_caps.offloads in the 766 * following manner the VF will be allowed to enable 0x8100 and 0x88a8 outer 767 * VLAN insertion and stripping simultaneously. The 768 * virtchnl_vlan_caps.offloads.ethertype_match field will also have to be 769 * populated based on what the PF can support. 770 * 771 * virtchnl_vlan_caps.offloads.stripping_support.outer = 772 * VIRTCHNL_VLAN_TOGGLE | 773 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 774 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 775 * VIRTCHNL_VLAN_ETHERTYPE_AND; 776 * 777 * virtchnl_vlan_caps.offloads.insertion_support.outer = 778 * VIRTCHNL_VLAN_TOGGLE | 779 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 780 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 781 * VIRTCHNL_VLAN_ETHERTYPE_AND; 782 * 783 * In order to enable outer VLAN stripping for 0x8100 and 0x88a8 VLANs, the VF 784 * would populate the virthcnl_vlan_offload_structure in the following manner 785 * and send the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2 message. 786 * 787 * virtchnl_vlan_setting.outer_ethertype_setting = 788 * VIRTHCNL_VLAN_ETHERTYPE_8100 | 789 * VIRTHCNL_VLAN_ETHERTYPE_88A8; 790 * 791 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 792 * initialization. 793 * 794 * There is also the case where a PF and the underlying hardware can support 795 * VLAN offloads on multiple ethertypes, but not concurrently. For example, if 796 * the PF populates the virtchnl_vlan_caps.offloads in the following manner the 797 * VF will be allowed to enable and/or disable 0x8100 XOR 0x88a8 outer VLAN 798 * offloads. The ethertypes must match for stripping and insertion. 799 * 800 * virtchnl_vlan_caps.offloads.stripping_support.outer = 801 * VIRTCHNL_VLAN_TOGGLE | 802 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 803 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 804 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 805 * 806 * virtchnl_vlan_caps.offloads.insertion_support.outer = 807 * VIRTCHNL_VLAN_TOGGLE | 808 * VIRTCHNL_VLAN_ETHERTYPE_8100 | 809 * VIRTCHNL_VLAN_ETHERTYPE_88A8 | 810 * VIRTCHNL_VLAN_ETHERTYPE_XOR; 811 * 812 * virtchnl_vlan_caps.offloads.ethertype_match = 813 * VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION; 814 * 815 * In order to enable outer VLAN stripping for 0x88a8 VLANs, the VF would 816 * populate the virtchnl_vlan_setting structure in the following manner and send 817 * the VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2. Also, this will change the 818 * ethertype for VLAN insertion if it's enabled. So, for completeness, a 819 * VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2 with the same ethertype should be sent. 820 * 821 * virtchnl_vlan_setting.outer_ethertype_setting = VIRTHCNL_VLAN_ETHERTYPE_88A8; 822 * 823 * virtchnl_vlan_setting.vport_id = vport_id or vsi_id assigned to the VF on 824 * initialization. 825 */ 826struct virtchnl_vlan_setting { 827 u32 outer_ethertype_setting; 828 u32 inner_ethertype_setting; 829 u16 vport_id; 830 u8 pad[6]; 831}; 832 833VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_vlan_setting); 834 835/* VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE 836 * VF sends VSI id and flags. 837 * PF returns status code in retval. 838 * Note: we assume that broadcast accept mode is always enabled. 839 */ 840struct virtchnl_promisc_info { 841 u16 vsi_id; 842 u16 flags; 843}; 844 845VIRTCHNL_CHECK_STRUCT_LEN(4, virtchnl_promisc_info); 846 847#define FLAG_VF_UNICAST_PROMISC 0x00000001 848#define FLAG_VF_MULTICAST_PROMISC 0x00000002 849 850/* VIRTCHNL_OP_GET_STATS 851 * VF sends this message to request stats for the selected VSI. VF uses 852 * the virtchnl_queue_select struct to specify the VSI. The queue_id 853 * field is ignored by the PF. 854 * 855 * PF replies with struct eth_stats in an external buffer. 856 */ 857 858/* VIRTCHNL_OP_CONFIG_RSS_KEY 859 * VIRTCHNL_OP_CONFIG_RSS_LUT 860 * VF sends these messages to configure RSS. Only supported if both PF 861 * and VF drivers set the VIRTCHNL_VF_OFFLOAD_RSS_PF bit during 862 * configuration negotiation. If this is the case, then the RSS fields in 863 * the VF resource struct are valid. 864 * Both the key and LUT are initialized to 0 by the PF, meaning that 865 * RSS is effectively disabled until set up by the VF. 866 */ 867struct virtchnl_rss_key { 868 u16 vsi_id; 869 u16 key_len; 870 u8 key[1]; /* RSS hash key, packed bytes */ 871}; 872 873VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_key); 874 875struct virtchnl_rss_lut { 876 u16 vsi_id; 877 u16 lut_entries; 878 u8 lut[1]; /* RSS lookup table */ 879}; 880 881VIRTCHNL_CHECK_STRUCT_LEN(6, virtchnl_rss_lut); 882 883/* VIRTCHNL_OP_GET_RSS_HENA_CAPS 884 * VIRTCHNL_OP_SET_RSS_HENA 885 * VF sends these messages to get and set the hash filter enable bits for RSS. 886 * By default, the PF sets these to all possible traffic types that the 887 * hardware supports. The VF can query this value if it wants to change the 888 * traffic types that are hashed by the hardware. 889 */ 890struct virtchnl_rss_hena { 891 u64 hena; 892}; 893 894VIRTCHNL_CHECK_STRUCT_LEN(8, virtchnl_rss_hena); 895 896/* VIRTCHNL_OP_ENABLE_CHANNELS 897 * VIRTCHNL_OP_DISABLE_CHANNELS 898 * VF sends these messages to enable or disable channels based on 899 * the user specified queue count and queue offset for each traffic class. 900 * This struct encompasses all the information that the PF needs from 901 * VF to create a channel. 902 */ 903struct virtchnl_channel_info { 904 u16 count; /* number of queues in a channel */ 905 u16 offset; /* queues in a channel start from 'offset' */ 906 u32 pad; 907 u64 max_tx_rate; 908}; 909 910VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_channel_info); 911 912struct virtchnl_tc_info { 913 u32 num_tc; 914 u32 pad; 915 struct virtchnl_channel_info list[1]; 916}; 917 918VIRTCHNL_CHECK_STRUCT_LEN(24, virtchnl_tc_info); 919 920/* VIRTCHNL_ADD_CLOUD_FILTER 921 * VIRTCHNL_DEL_CLOUD_FILTER 922 * VF sends these messages to add or delete a cloud filter based on the 923 * user specified match and action filters. These structures encompass 924 * all the information that the PF needs from the VF to add/delete a 925 * cloud filter. 926 */ 927 928struct virtchnl_l4_spec { 929 u8 src_mac[ETH_ALEN]; 930 u8 dst_mac[ETH_ALEN]; 931 __be16 vlan_id; 932 __be16 pad; /* reserved for future use */ 933 __be32 src_ip[4]; 934 __be32 dst_ip[4]; 935 __be16 src_port; 936 __be16 dst_port; 937}; 938 939VIRTCHNL_CHECK_STRUCT_LEN(52, virtchnl_l4_spec); 940 941union virtchnl_flow_spec { 942 struct virtchnl_l4_spec tcp_spec; 943 u8 buffer[128]; /* reserved for future use */ 944}; 945 946VIRTCHNL_CHECK_UNION_LEN(128, virtchnl_flow_spec); 947 948enum virtchnl_action { 949 /* action types */ 950 VIRTCHNL_ACTION_DROP = 0, 951 VIRTCHNL_ACTION_TC_REDIRECT, 952 VIRTCHNL_ACTION_PASSTHRU, 953 VIRTCHNL_ACTION_QUEUE, 954 VIRTCHNL_ACTION_Q_REGION, 955 VIRTCHNL_ACTION_MARK, 956 VIRTCHNL_ACTION_COUNT, 957}; 958 959enum virtchnl_flow_type { 960 /* flow types */ 961 VIRTCHNL_TCP_V4_FLOW = 0, 962 VIRTCHNL_TCP_V6_FLOW, 963}; 964 965struct virtchnl_filter { 966 union virtchnl_flow_spec data; 967 union virtchnl_flow_spec mask; 968 enum virtchnl_flow_type flow_type; 969 enum virtchnl_action action; 970 u32 action_meta; 971 u8 field_flags; 972 u8 pad[3]; 973}; 974 975VIRTCHNL_CHECK_STRUCT_LEN(272, virtchnl_filter); 976 977struct virtchnl_supported_rxdids { 978 u64 supported_rxdids; 979}; 980 981/* VIRTCHNL_OP_EVENT 982 * PF sends this message to inform the VF driver of events that may affect it. 983 * No direct response is expected from the VF, though it may generate other 984 * messages in response to this one. 985 */ 986enum virtchnl_event_codes { 987 VIRTCHNL_EVENT_UNKNOWN = 0, 988 VIRTCHNL_EVENT_LINK_CHANGE, 989 VIRTCHNL_EVENT_RESET_IMPENDING, 990 VIRTCHNL_EVENT_PF_DRIVER_CLOSE, 991}; 992 993#define PF_EVENT_SEVERITY_INFO 0 994#define PF_EVENT_SEVERITY_CERTAIN_DOOM 255 995 996struct virtchnl_pf_event { 997 enum virtchnl_event_codes event; 998 union { 999 /* If the PF driver does not support the new speed reporting 1000 * capabilities then use link_event else use link_event_adv to 1001 * get the speed and link information. The ability to understand 1002 * new speeds is indicated by setting the capability flag 1003 * VIRTCHNL_VF_CAP_ADV_LINK_SPEED in vf_cap_flags parameter 1004 * in virtchnl_vf_resource struct and can be used to determine 1005 * which link event struct to use below. 1006 */ 1007 struct { 1008 enum virtchnl_link_speed link_speed; 1009 bool link_status; 1010 } link_event; 1011 struct { 1012 /* link_speed provided in Mbps */ 1013 u32 link_speed; 1014 u8 link_status; 1015 u8 pad[3]; 1016 } link_event_adv; 1017 } event_data; 1018 1019 int severity; 1020}; 1021 1022VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_pf_event); 1023 1024/* VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP 1025 * VF uses this message to request PF to map IWARP vectors to IWARP queues. 1026 * The request for this originates from the VF IWARP driver through 1027 * a client interface between VF LAN and VF IWARP driver. 1028 * A vector could have an AEQ and CEQ attached to it although 1029 * there is a single AEQ per VF IWARP instance in which case 1030 * most vectors will have an INVALID_IDX for aeq and valid idx for ceq. 1031 * There will never be a case where there will be multiple CEQs attached 1032 * to a single vector. 1033 * PF configures interrupt mapping and returns status. 1034 */ 1035 1036struct virtchnl_iwarp_qv_info { 1037 u32 v_idx; /* msix_vector */ 1038 u16 ceq_idx; 1039 u16 aeq_idx; 1040 u8 itr_idx; 1041 u8 pad[3]; 1042}; 1043 1044VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_iwarp_qv_info); 1045 1046struct virtchnl_iwarp_qvlist_info { 1047 u32 num_vectors; 1048 struct virtchnl_iwarp_qv_info qv_info[1]; 1049}; 1050 1051VIRTCHNL_CHECK_STRUCT_LEN(16, virtchnl_iwarp_qvlist_info); 1052 1053/* VF reset states - these are written into the RSTAT register: 1054 * VFGEN_RSTAT on the VF 1055 * When the PF initiates a reset, it writes 0 1056 * When the reset is complete, it writes 1 1057 * When the PF detects that the VF has recovered, it writes 2 1058 * VF checks this register periodically to determine if a reset has occurred, 1059 * then polls it to know when the reset is complete. 1060 * If either the PF or VF reads the register while the hardware 1061 * is in a reset state, it will return DEADBEEF, which, when masked 1062 * will result in 3. 1063 */ 1064enum virtchnl_vfr_states { 1065 VIRTCHNL_VFR_INPROGRESS = 0, 1066 VIRTCHNL_VFR_COMPLETED, 1067 VIRTCHNL_VFR_VFACTIVE, 1068}; 1069 1070/* Type of RSS algorithm */ 1071enum virtchnl_rss_algorithm { 1072 VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC = 0, 1073 VIRTCHNL_RSS_ALG_R_ASYMMETRIC = 1, 1074 VIRTCHNL_RSS_ALG_TOEPLITZ_SYMMETRIC = 2, 1075 VIRTCHNL_RSS_ALG_XOR_SYMMETRIC = 3, 1076}; 1077 1078#define VIRTCHNL_MAX_NUM_PROTO_HDRS 32 1079#define PROTO_HDR_SHIFT 5 1080#define PROTO_HDR_FIELD_START(proto_hdr_type) ((proto_hdr_type) << PROTO_HDR_SHIFT) 1081#define PROTO_HDR_FIELD_MASK ((1UL << PROTO_HDR_SHIFT) - 1) 1082 1083/* VF use these macros to configure each protocol header. 1084 * Specify which protocol headers and protocol header fields base on 1085 * virtchnl_proto_hdr_type and virtchnl_proto_hdr_field. 1086 * @param hdr: a struct of virtchnl_proto_hdr 1087 * @param hdr_type: ETH/IPV4/TCP, etc 1088 * @param field: SRC/DST/TEID/SPI, etc 1089 */ 1090#define VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, field) \ 1091 ((hdr)->field_selector |= BIT((field) & PROTO_HDR_FIELD_MASK)) 1092#define VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, field) \ 1093 ((hdr)->field_selector &= ~BIT((field) & PROTO_HDR_FIELD_MASK)) 1094#define VIRTCHNL_TEST_PROTO_HDR_FIELD(hdr, val) \ 1095 ((hdr)->field_selector & BIT((val) & PROTO_HDR_FIELD_MASK)) 1096#define VIRTCHNL_GET_PROTO_HDR_FIELD(hdr) ((hdr)->field_selector) 1097 1098#define VIRTCHNL_ADD_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1099 (VIRTCHNL_ADD_PROTO_HDR_FIELD(hdr, \ 1100 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1101#define VIRTCHNL_DEL_PROTO_HDR_FIELD_BIT(hdr, hdr_type, field) \ 1102 (VIRTCHNL_DEL_PROTO_HDR_FIELD(hdr, \ 1103 VIRTCHNL_PROTO_HDR_ ## hdr_type ## _ ## field)) 1104 1105#define VIRTCHNL_SET_PROTO_HDR_TYPE(hdr, hdr_type) \ 1106 ((hdr)->type = VIRTCHNL_PROTO_HDR_ ## hdr_type) 1107#define VIRTCHNL_GET_PROTO_HDR_TYPE(hdr) \ 1108 (((hdr)->type) >> PROTO_HDR_SHIFT) 1109#define VIRTCHNL_TEST_PROTO_HDR_TYPE(hdr, val) \ 1110 ((hdr)->type == ((val) >> PROTO_HDR_SHIFT)) 1111#define VIRTCHNL_TEST_PROTO_HDR(hdr, val) \ 1112 (VIRTCHNL_TEST_PROTO_HDR_TYPE((hdr), (val)) && \ 1113 VIRTCHNL_TEST_PROTO_HDR_FIELD((hdr), (val))) 1114 1115/* Protocol header type within a packet segment. A segment consists of one or 1116 * more protocol headers that make up a logical group of protocol headers. Each 1117 * logical group of protocol headers encapsulates or is encapsulated using/by 1118 * tunneling or encapsulation protocols for network virtualization. 1119 */ 1120enum virtchnl_proto_hdr_type { 1121 VIRTCHNL_PROTO_HDR_NONE, 1122 VIRTCHNL_PROTO_HDR_ETH, 1123 VIRTCHNL_PROTO_HDR_S_VLAN, 1124 VIRTCHNL_PROTO_HDR_C_VLAN, 1125 VIRTCHNL_PROTO_HDR_IPV4, 1126 VIRTCHNL_PROTO_HDR_IPV6, 1127 VIRTCHNL_PROTO_HDR_TCP, 1128 VIRTCHNL_PROTO_HDR_UDP, 1129 VIRTCHNL_PROTO_HDR_SCTP, 1130 VIRTCHNL_PROTO_HDR_GTPU_IP, 1131 VIRTCHNL_PROTO_HDR_GTPU_EH, 1132 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN, 1133 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP, 1134 VIRTCHNL_PROTO_HDR_PPPOE, 1135 VIRTCHNL_PROTO_HDR_L2TPV3, 1136 VIRTCHNL_PROTO_HDR_ESP, 1137 VIRTCHNL_PROTO_HDR_AH, 1138 VIRTCHNL_PROTO_HDR_PFCP, 1139}; 1140 1141/* Protocol header field within a protocol header. */ 1142enum virtchnl_proto_hdr_field { 1143 /* ETHER */ 1144 VIRTCHNL_PROTO_HDR_ETH_SRC = 1145 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ETH), 1146 VIRTCHNL_PROTO_HDR_ETH_DST, 1147 VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE, 1148 /* S-VLAN */ 1149 VIRTCHNL_PROTO_HDR_S_VLAN_ID = 1150 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_S_VLAN), 1151 /* C-VLAN */ 1152 VIRTCHNL_PROTO_HDR_C_VLAN_ID = 1153 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_C_VLAN), 1154 /* IPV4 */ 1155 VIRTCHNL_PROTO_HDR_IPV4_SRC = 1156 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV4), 1157 VIRTCHNL_PROTO_HDR_IPV4_DST, 1158 VIRTCHNL_PROTO_HDR_IPV4_DSCP, 1159 VIRTCHNL_PROTO_HDR_IPV4_TTL, 1160 VIRTCHNL_PROTO_HDR_IPV4_PROT, 1161 /* IPV6 */ 1162 VIRTCHNL_PROTO_HDR_IPV6_SRC = 1163 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_IPV6), 1164 VIRTCHNL_PROTO_HDR_IPV6_DST, 1165 VIRTCHNL_PROTO_HDR_IPV6_TC, 1166 VIRTCHNL_PROTO_HDR_IPV6_HOP_LIMIT, 1167 VIRTCHNL_PROTO_HDR_IPV6_PROT, 1168 /* TCP */ 1169 VIRTCHNL_PROTO_HDR_TCP_SRC_PORT = 1170 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_TCP), 1171 VIRTCHNL_PROTO_HDR_TCP_DST_PORT, 1172 /* UDP */ 1173 VIRTCHNL_PROTO_HDR_UDP_SRC_PORT = 1174 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_UDP), 1175 VIRTCHNL_PROTO_HDR_UDP_DST_PORT, 1176 /* SCTP */ 1177 VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT = 1178 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_SCTP), 1179 VIRTCHNL_PROTO_HDR_SCTP_DST_PORT, 1180 /* GTPU_IP */ 1181 VIRTCHNL_PROTO_HDR_GTPU_IP_TEID = 1182 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_IP), 1183 /* GTPU_EH */ 1184 VIRTCHNL_PROTO_HDR_GTPU_EH_PDU = 1185 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_GTPU_EH), 1186 VIRTCHNL_PROTO_HDR_GTPU_EH_QFI, 1187 /* PPPOE */ 1188 VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID = 1189 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PPPOE), 1190 /* L2TPV3 */ 1191 VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID = 1192 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_L2TPV3), 1193 /* ESP */ 1194 VIRTCHNL_PROTO_HDR_ESP_SPI = 1195 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_ESP), 1196 /* AH */ 1197 VIRTCHNL_PROTO_HDR_AH_SPI = 1198 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_AH), 1199 /* PFCP */ 1200 VIRTCHNL_PROTO_HDR_PFCP_S_FIELD = 1201 PROTO_HDR_FIELD_START(VIRTCHNL_PROTO_HDR_PFCP), 1202 VIRTCHNL_PROTO_HDR_PFCP_SEID, 1203}; 1204 1205struct virtchnl_proto_hdr { 1206 enum virtchnl_proto_hdr_type type; 1207 u32 field_selector; /* a bit mask to select field for header type */ 1208 u8 buffer[64]; 1209 /** 1210 * binary buffer in network order for specific header type. 1211 * For example, if type = VIRTCHNL_PROTO_HDR_IPV4, a IPv4 1212 * header is expected to be copied into the buffer. 1213 */ 1214}; 1215 1216VIRTCHNL_CHECK_STRUCT_LEN(72, virtchnl_proto_hdr); 1217 1218struct virtchnl_proto_hdrs { 1219 u8 tunnel_level; 1220 u8 pad[3]; 1221 /** 1222 * specify where protocol header start from. 1223 * 0 - from the outer layer 1224 * 1 - from the first inner layer 1225 * 2 - from the second inner layer 1226 * .... 1227 **/ 1228 int count; /* the proto layers must < VIRTCHNL_MAX_NUM_PROTO_HDRS */ 1229 struct virtchnl_proto_hdr proto_hdr[VIRTCHNL_MAX_NUM_PROTO_HDRS]; 1230}; 1231 1232VIRTCHNL_CHECK_STRUCT_LEN(2312, virtchnl_proto_hdrs); 1233 1234struct virtchnl_rss_cfg { 1235 struct virtchnl_proto_hdrs proto_hdrs; /* protocol headers */ 1236 enum virtchnl_rss_algorithm rss_algorithm; /* RSS algorithm type */ 1237 u8 reserved[128]; /* reserve for future */ 1238}; 1239 1240VIRTCHNL_CHECK_STRUCT_LEN(2444, virtchnl_rss_cfg); 1241 1242/* action configuration for FDIR */ 1243struct virtchnl_filter_action { 1244 enum virtchnl_action type; 1245 union { 1246 /* used for queue and qgroup action */ 1247 struct { 1248 u16 index; 1249 u8 region; 1250 } queue; 1251 /* used for count action */ 1252 struct { 1253 /* share counter ID with other flow rules */ 1254 u8 shared; 1255 u32 id; /* counter ID */ 1256 } count; 1257 /* used for mark action */ 1258 u32 mark_id; 1259 u8 reserve[32]; 1260 } act_conf; 1261}; 1262 1263VIRTCHNL_CHECK_STRUCT_LEN(36, virtchnl_filter_action); 1264 1265#define VIRTCHNL_MAX_NUM_ACTIONS 8 1266 1267struct virtchnl_filter_action_set { 1268 /* action number must be less then VIRTCHNL_MAX_NUM_ACTIONS */ 1269 int count; 1270 struct virtchnl_filter_action actions[VIRTCHNL_MAX_NUM_ACTIONS]; 1271}; 1272 1273VIRTCHNL_CHECK_STRUCT_LEN(292, virtchnl_filter_action_set); 1274 1275/* pattern and action for FDIR rule */ 1276struct virtchnl_fdir_rule { 1277 struct virtchnl_proto_hdrs proto_hdrs; 1278 struct virtchnl_filter_action_set action_set; 1279}; 1280 1281VIRTCHNL_CHECK_STRUCT_LEN(2604, virtchnl_fdir_rule); 1282 1283/* Status returned to VF after VF requests FDIR commands 1284 * VIRTCHNL_FDIR_SUCCESS 1285 * VF FDIR related request is successfully done by PF 1286 * The request can be OP_ADD/DEL. 1287 * 1288 * VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE 1289 * OP_ADD_FDIR_FILTER request is failed due to no Hardware resource. 1290 * 1291 * VIRTCHNL_FDIR_FAILURE_RULE_EXIST 1292 * OP_ADD_FDIR_FILTER request is failed due to the rule is already existed. 1293 * 1294 * VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT 1295 * OP_ADD_FDIR_FILTER request is failed due to conflict with existing rule. 1296 * 1297 * VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST 1298 * OP_DEL_FDIR_FILTER request is failed due to this rule doesn't exist. 1299 * 1300 * VIRTCHNL_FDIR_FAILURE_RULE_INVALID 1301 * OP_ADD_FDIR_FILTER request is failed due to parameters validation 1302 * or HW doesn't support. 1303 * 1304 * VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT 1305 * OP_ADD/DEL_FDIR_FILTER request is failed due to timing out 1306 * for programming. 1307 */ 1308enum virtchnl_fdir_prgm_status { 1309 VIRTCHNL_FDIR_SUCCESS = 0, 1310 VIRTCHNL_FDIR_FAILURE_RULE_NORESOURCE, 1311 VIRTCHNL_FDIR_FAILURE_RULE_EXIST, 1312 VIRTCHNL_FDIR_FAILURE_RULE_CONFLICT, 1313 VIRTCHNL_FDIR_FAILURE_RULE_NONEXIST, 1314 VIRTCHNL_FDIR_FAILURE_RULE_INVALID, 1315 VIRTCHNL_FDIR_FAILURE_RULE_TIMEOUT, 1316}; 1317 1318/* VIRTCHNL_OP_ADD_FDIR_FILTER 1319 * VF sends this request to PF by filling out vsi_id, 1320 * validate_only and rule_cfg. PF will return flow_id 1321 * if the request is successfully done and return add_status to VF. 1322 */ 1323struct virtchnl_fdir_add { 1324 u16 vsi_id; /* INPUT */ 1325 /* 1326 * 1 for validating a fdir rule, 0 for creating a fdir rule. 1327 * Validate and create share one ops: VIRTCHNL_OP_ADD_FDIR_FILTER. 1328 */ 1329 u16 validate_only; /* INPUT */ 1330 u32 flow_id; /* OUTPUT */ 1331 struct virtchnl_fdir_rule rule_cfg; /* INPUT */ 1332 enum virtchnl_fdir_prgm_status status; /* OUTPUT */ 1333}; 1334 1335VIRTCHNL_CHECK_STRUCT_LEN(2616, virtchnl_fdir_add); 1336 1337/* VIRTCHNL_OP_DEL_FDIR_FILTER 1338 * VF sends this request to PF by filling out vsi_id 1339 * and flow_id. PF will return del_status to VF. 1340 */ 1341struct virtchnl_fdir_del { 1342 u16 vsi_id; /* INPUT */ 1343 u16 pad; 1344 u32 flow_id; /* INPUT */ 1345 enum virtchnl_fdir_prgm_status status; /* OUTPUT */ 1346}; 1347 1348VIRTCHNL_CHECK_STRUCT_LEN(12, virtchnl_fdir_del); 1349 1350/** 1351 * virtchnl_vc_validate_vf_msg 1352 * @ver: Virtchnl version info 1353 * @v_opcode: Opcode for the message 1354 * @msg: pointer to the msg buffer 1355 * @msglen: msg length 1356 * 1357 * validate msg format against struct for each opcode 1358 */ 1359static inline int 1360virtchnl_vc_validate_vf_msg(struct virtchnl_version_info *ver, u32 v_opcode, 1361 u8 *msg, u16 msglen) 1362{ 1363 bool err_msg_format = false; 1364 int valid_len = 0; 1365 1366 /* Validate message length. */ 1367 switch (v_opcode) { 1368 case VIRTCHNL_OP_VERSION: 1369 valid_len = sizeof(struct virtchnl_version_info); 1370 break; 1371 case VIRTCHNL_OP_RESET_VF: 1372 break; 1373 case VIRTCHNL_OP_GET_VF_RESOURCES: 1374 if (VF_IS_V11(ver)) 1375 valid_len = sizeof(u32); 1376 break; 1377 case VIRTCHNL_OP_CONFIG_TX_QUEUE: 1378 valid_len = sizeof(struct virtchnl_txq_info); 1379 break; 1380 case VIRTCHNL_OP_CONFIG_RX_QUEUE: 1381 valid_len = sizeof(struct virtchnl_rxq_info); 1382 break; 1383 case VIRTCHNL_OP_CONFIG_VSI_QUEUES: 1384 valid_len = sizeof(struct virtchnl_vsi_queue_config_info); 1385 if (msglen >= valid_len) { 1386 struct virtchnl_vsi_queue_config_info *vqc = 1387 (struct virtchnl_vsi_queue_config_info *)msg; 1388 valid_len += (vqc->num_queue_pairs * 1389 sizeof(struct 1390 virtchnl_queue_pair_info)); 1391 if (vqc->num_queue_pairs == 0) 1392 err_msg_format = true; 1393 } 1394 break; 1395 case VIRTCHNL_OP_CONFIG_IRQ_MAP: 1396 valid_len = sizeof(struct virtchnl_irq_map_info); 1397 if (msglen >= valid_len) { 1398 struct virtchnl_irq_map_info *vimi = 1399 (struct virtchnl_irq_map_info *)msg; 1400 valid_len += (vimi->num_vectors * 1401 sizeof(struct virtchnl_vector_map)); 1402 if (vimi->num_vectors == 0) 1403 err_msg_format = true; 1404 } 1405 break; 1406 case VIRTCHNL_OP_ENABLE_QUEUES: 1407 case VIRTCHNL_OP_DISABLE_QUEUES: 1408 valid_len = sizeof(struct virtchnl_queue_select); 1409 break; 1410 case VIRTCHNL_OP_ADD_ETH_ADDR: 1411 case VIRTCHNL_OP_DEL_ETH_ADDR: 1412 valid_len = sizeof(struct virtchnl_ether_addr_list); 1413 if (msglen >= valid_len) { 1414 struct virtchnl_ether_addr_list *veal = 1415 (struct virtchnl_ether_addr_list *)msg; 1416 valid_len += veal->num_elements * 1417 sizeof(struct virtchnl_ether_addr); 1418 if (veal->num_elements == 0) 1419 err_msg_format = true; 1420 } 1421 break; 1422 case VIRTCHNL_OP_ADD_VLAN: 1423 case VIRTCHNL_OP_DEL_VLAN: 1424 valid_len = sizeof(struct virtchnl_vlan_filter_list); 1425 if (msglen >= valid_len) { 1426 struct virtchnl_vlan_filter_list *vfl = 1427 (struct virtchnl_vlan_filter_list *)msg; 1428 valid_len += vfl->num_elements * sizeof(u16); 1429 if (vfl->num_elements == 0) 1430 err_msg_format = true; 1431 } 1432 break; 1433 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE: 1434 valid_len = sizeof(struct virtchnl_promisc_info); 1435 break; 1436 case VIRTCHNL_OP_GET_STATS: 1437 valid_len = sizeof(struct virtchnl_queue_select); 1438 break; 1439 case VIRTCHNL_OP_IWARP: 1440 /* These messages are opaque to us and will be validated in 1441 * the RDMA client code. We just need to check for nonzero 1442 * length. The firmware will enforce max length restrictions. 1443 */ 1444 if (msglen) 1445 valid_len = msglen; 1446 else 1447 err_msg_format = true; 1448 break; 1449 case VIRTCHNL_OP_RELEASE_IWARP_IRQ_MAP: 1450 break; 1451 case VIRTCHNL_OP_CONFIG_IWARP_IRQ_MAP: 1452 valid_len = sizeof(struct virtchnl_iwarp_qvlist_info); 1453 if (msglen >= valid_len) { 1454 struct virtchnl_iwarp_qvlist_info *qv = 1455 (struct virtchnl_iwarp_qvlist_info *)msg; 1456 if (qv->num_vectors == 0) { 1457 err_msg_format = true; 1458 break; 1459 } 1460 valid_len += ((qv->num_vectors - 1) * 1461 sizeof(struct virtchnl_iwarp_qv_info)); 1462 } 1463 break; 1464 case VIRTCHNL_OP_CONFIG_RSS_KEY: 1465 valid_len = sizeof(struct virtchnl_rss_key); 1466 if (msglen >= valid_len) { 1467 struct virtchnl_rss_key *vrk = 1468 (struct virtchnl_rss_key *)msg; 1469 valid_len += vrk->key_len - 1; 1470 } 1471 break; 1472 case VIRTCHNL_OP_CONFIG_RSS_LUT: 1473 valid_len = sizeof(struct virtchnl_rss_lut); 1474 if (msglen >= valid_len) { 1475 struct virtchnl_rss_lut *vrl = 1476 (struct virtchnl_rss_lut *)msg; 1477 valid_len += vrl->lut_entries - 1; 1478 } 1479 break; 1480 case VIRTCHNL_OP_GET_RSS_HENA_CAPS: 1481 break; 1482 case VIRTCHNL_OP_SET_RSS_HENA: 1483 valid_len = sizeof(struct virtchnl_rss_hena); 1484 break; 1485 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: 1486 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: 1487 break; 1488 case VIRTCHNL_OP_REQUEST_QUEUES: 1489 valid_len = sizeof(struct virtchnl_vf_res_request); 1490 break; 1491 case VIRTCHNL_OP_ENABLE_CHANNELS: 1492 valid_len = sizeof(struct virtchnl_tc_info); 1493 if (msglen >= valid_len) { 1494 struct virtchnl_tc_info *vti = 1495 (struct virtchnl_tc_info *)msg; 1496 valid_len += (vti->num_tc - 1) * 1497 sizeof(struct virtchnl_channel_info); 1498 if (vti->num_tc == 0) 1499 err_msg_format = true; 1500 } 1501 break; 1502 case VIRTCHNL_OP_DISABLE_CHANNELS: 1503 break; 1504 case VIRTCHNL_OP_ADD_CLOUD_FILTER: 1505 valid_len = sizeof(struct virtchnl_filter); 1506 break; 1507 case VIRTCHNL_OP_DEL_CLOUD_FILTER: 1508 valid_len = sizeof(struct virtchnl_filter); 1509 break; 1510 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS: 1511 break; 1512 case VIRTCHNL_OP_ADD_RSS_CFG: 1513 case VIRTCHNL_OP_DEL_RSS_CFG: 1514 valid_len = sizeof(struct virtchnl_rss_cfg); 1515 break; 1516 case VIRTCHNL_OP_ADD_FDIR_FILTER: 1517 valid_len = sizeof(struct virtchnl_fdir_add); 1518 break; 1519 case VIRTCHNL_OP_DEL_FDIR_FILTER: 1520 valid_len = sizeof(struct virtchnl_fdir_del); 1521 break; 1522 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS: 1523 break; 1524 case VIRTCHNL_OP_ADD_VLAN_V2: 1525 case VIRTCHNL_OP_DEL_VLAN_V2: 1526 valid_len = sizeof(struct virtchnl_vlan_filter_list_v2); 1527 if (msglen >= valid_len) { 1528 struct virtchnl_vlan_filter_list_v2 *vfl = 1529 (struct virtchnl_vlan_filter_list_v2 *)msg; 1530 1531 valid_len += (vfl->num_elements - 1) * 1532 sizeof(struct virtchnl_vlan_filter); 1533 1534 if (vfl->num_elements == 0) { 1535 err_msg_format = true; 1536 break; 1537 } 1538 } 1539 break; 1540 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2: 1541 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2: 1542 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2: 1543 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2: 1544 valid_len = sizeof(struct virtchnl_vlan_setting); 1545 break; 1546 /* These are always errors coming from the VF. */ 1547 case VIRTCHNL_OP_EVENT: 1548 case VIRTCHNL_OP_UNKNOWN: 1549 default: 1550 return VIRTCHNL_STATUS_ERR_PARAM; 1551 } 1552 /* few more checks */ 1553 if (err_msg_format || valid_len != msglen) 1554 return VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH; 1555 1556 return 0; 1557} 1558#endif /* _VIRTCHNL_H_ */