at v6.2 1303 lines 34 kB view raw
1// SPDX-License-Identifier: LGPL-2.1 2/* 3 * 4 * Copyright (C) International Business Machines Corp., 2002,2008 5 * Author(s): Steve French (sfrench@us.ibm.com) 6 * 7 */ 8 9#include <linux/slab.h> 10#include <linux/ctype.h> 11#include <linux/mempool.h> 12#include <linux/vmalloc.h> 13#include "cifspdu.h" 14#include "cifsglob.h" 15#include "cifsproto.h" 16#include "cifs_debug.h" 17#include "smberr.h" 18#include "nterr.h" 19#include "cifs_unicode.h" 20#include "smb2pdu.h" 21#include "cifsfs.h" 22#ifdef CONFIG_CIFS_DFS_UPCALL 23#include "dns_resolve.h" 24#endif 25#include "fs_context.h" 26#include "cached_dir.h" 27 28extern mempool_t *cifs_sm_req_poolp; 29extern mempool_t *cifs_req_poolp; 30 31/* The xid serves as a useful identifier for each incoming vfs request, 32 in a similar way to the mid which is useful to track each sent smb, 33 and CurrentXid can also provide a running counter (although it 34 will eventually wrap past zero) of the total vfs operations handled 35 since the cifs fs was mounted */ 36 37unsigned int 38_get_xid(void) 39{ 40 unsigned int xid; 41 42 spin_lock(&GlobalMid_Lock); 43 GlobalTotalActiveXid++; 44 45 /* keep high water mark for number of simultaneous ops in filesystem */ 46 if (GlobalTotalActiveXid > GlobalMaxActiveXid) 47 GlobalMaxActiveXid = GlobalTotalActiveXid; 48 if (GlobalTotalActiveXid > 65000) 49 cifs_dbg(FYI, "warning: more than 65000 requests active\n"); 50 xid = GlobalCurrentXid++; 51 spin_unlock(&GlobalMid_Lock); 52 return xid; 53} 54 55void 56_free_xid(unsigned int xid) 57{ 58 spin_lock(&GlobalMid_Lock); 59 /* if (GlobalTotalActiveXid == 0) 60 BUG(); */ 61 GlobalTotalActiveXid--; 62 spin_unlock(&GlobalMid_Lock); 63} 64 65struct cifs_ses * 66sesInfoAlloc(void) 67{ 68 struct cifs_ses *ret_buf; 69 70 ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL); 71 if (ret_buf) { 72 atomic_inc(&sesInfoAllocCount); 73 spin_lock_init(&ret_buf->ses_lock); 74 ret_buf->ses_status = SES_NEW; 75 ++ret_buf->ses_count; 76 INIT_LIST_HEAD(&ret_buf->smb_ses_list); 77 INIT_LIST_HEAD(&ret_buf->tcon_list); 78 mutex_init(&ret_buf->session_mutex); 79 spin_lock_init(&ret_buf->iface_lock); 80 INIT_LIST_HEAD(&ret_buf->iface_list); 81 spin_lock_init(&ret_buf->chan_lock); 82 } 83 return ret_buf; 84} 85 86void 87sesInfoFree(struct cifs_ses *buf_to_free) 88{ 89 struct cifs_server_iface *iface = NULL, *niface = NULL; 90 91 if (buf_to_free == NULL) { 92 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n"); 93 return; 94 } 95 96 atomic_dec(&sesInfoAllocCount); 97 kfree(buf_to_free->serverOS); 98 kfree(buf_to_free->serverDomain); 99 kfree(buf_to_free->serverNOS); 100 kfree_sensitive(buf_to_free->password); 101 kfree(buf_to_free->user_name); 102 kfree(buf_to_free->domainName); 103 kfree_sensitive(buf_to_free->auth_key.response); 104 spin_lock(&buf_to_free->iface_lock); 105 list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list, 106 iface_head) 107 kref_put(&iface->refcount, release_iface); 108 spin_unlock(&buf_to_free->iface_lock); 109 kfree_sensitive(buf_to_free); 110} 111 112struct cifs_tcon * 113tconInfoAlloc(void) 114{ 115 struct cifs_tcon *ret_buf; 116 117 ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL); 118 if (!ret_buf) 119 return NULL; 120 ret_buf->cfids = init_cached_dirs(); 121 if (!ret_buf->cfids) { 122 kfree(ret_buf); 123 return NULL; 124 } 125 126 atomic_inc(&tconInfoAllocCount); 127 ret_buf->status = TID_NEW; 128 ++ret_buf->tc_count; 129 spin_lock_init(&ret_buf->tc_lock); 130 INIT_LIST_HEAD(&ret_buf->openFileList); 131 INIT_LIST_HEAD(&ret_buf->tcon_list); 132 spin_lock_init(&ret_buf->open_file_lock); 133 spin_lock_init(&ret_buf->stat_lock); 134 atomic_set(&ret_buf->num_local_opens, 0); 135 atomic_set(&ret_buf->num_remote_opens, 0); 136 137 return ret_buf; 138} 139 140void 141tconInfoFree(struct cifs_tcon *tcon) 142{ 143 if (tcon == NULL) { 144 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n"); 145 return; 146 } 147 free_cached_dirs(tcon->cfids); 148 atomic_dec(&tconInfoAllocCount); 149 kfree(tcon->nativeFileSystem); 150 kfree_sensitive(tcon->password); 151 kfree(tcon); 152} 153 154struct smb_hdr * 155cifs_buf_get(void) 156{ 157 struct smb_hdr *ret_buf = NULL; 158 /* 159 * SMB2 header is bigger than CIFS one - no problems to clean some 160 * more bytes for CIFS. 161 */ 162 size_t buf_size = sizeof(struct smb2_hdr); 163 164 /* 165 * We could use negotiated size instead of max_msgsize - 166 * but it may be more efficient to always alloc same size 167 * albeit slightly larger than necessary and maxbuffersize 168 * defaults to this and can not be bigger. 169 */ 170 ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS); 171 172 /* clear the first few header bytes */ 173 /* for most paths, more is cleared in header_assemble */ 174 memset(ret_buf, 0, buf_size + 3); 175 atomic_inc(&buf_alloc_count); 176#ifdef CONFIG_CIFS_STATS2 177 atomic_inc(&total_buf_alloc_count); 178#endif /* CONFIG_CIFS_STATS2 */ 179 180 return ret_buf; 181} 182 183void 184cifs_buf_release(void *buf_to_free) 185{ 186 if (buf_to_free == NULL) { 187 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/ 188 return; 189 } 190 mempool_free(buf_to_free, cifs_req_poolp); 191 192 atomic_dec(&buf_alloc_count); 193 return; 194} 195 196struct smb_hdr * 197cifs_small_buf_get(void) 198{ 199 struct smb_hdr *ret_buf = NULL; 200 201/* We could use negotiated size instead of max_msgsize - 202 but it may be more efficient to always alloc same size 203 albeit slightly larger than necessary and maxbuffersize 204 defaults to this and can not be bigger */ 205 ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS); 206 /* No need to clear memory here, cleared in header assemble */ 207 /* memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/ 208 atomic_inc(&small_buf_alloc_count); 209#ifdef CONFIG_CIFS_STATS2 210 atomic_inc(&total_small_buf_alloc_count); 211#endif /* CONFIG_CIFS_STATS2 */ 212 213 return ret_buf; 214} 215 216void 217cifs_small_buf_release(void *buf_to_free) 218{ 219 220 if (buf_to_free == NULL) { 221 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n"); 222 return; 223 } 224 mempool_free(buf_to_free, cifs_sm_req_poolp); 225 226 atomic_dec(&small_buf_alloc_count); 227 return; 228} 229 230void 231free_rsp_buf(int resp_buftype, void *rsp) 232{ 233 if (resp_buftype == CIFS_SMALL_BUFFER) 234 cifs_small_buf_release(rsp); 235 else if (resp_buftype == CIFS_LARGE_BUFFER) 236 cifs_buf_release(rsp); 237} 238 239/* NB: MID can not be set if treeCon not passed in, in that 240 case it is responsbility of caller to set the mid */ 241void 242header_assemble(struct smb_hdr *buffer, char smb_command /* command */ , 243 const struct cifs_tcon *treeCon, int word_count 244 /* length of fixed section (word count) in two byte units */) 245{ 246 char *temp = (char *) buffer; 247 248 memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */ 249 250 buffer->smb_buf_length = cpu_to_be32( 251 (2 * word_count) + sizeof(struct smb_hdr) - 252 4 /* RFC 1001 length field does not count */ + 253 2 /* for bcc field itself */) ; 254 255 buffer->Protocol[0] = 0xFF; 256 buffer->Protocol[1] = 'S'; 257 buffer->Protocol[2] = 'M'; 258 buffer->Protocol[3] = 'B'; 259 buffer->Command = smb_command; 260 buffer->Flags = 0x00; /* case sensitive */ 261 buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES; 262 buffer->Pid = cpu_to_le16((__u16)current->tgid); 263 buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16)); 264 if (treeCon) { 265 buffer->Tid = treeCon->tid; 266 if (treeCon->ses) { 267 if (treeCon->ses->capabilities & CAP_UNICODE) 268 buffer->Flags2 |= SMBFLG2_UNICODE; 269 if (treeCon->ses->capabilities & CAP_STATUS32) 270 buffer->Flags2 |= SMBFLG2_ERR_STATUS; 271 272 /* Uid is not converted */ 273 buffer->Uid = treeCon->ses->Suid; 274 if (treeCon->ses->server) 275 buffer->Mid = get_next_mid(treeCon->ses->server); 276 } 277 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS) 278 buffer->Flags2 |= SMBFLG2_DFS; 279 if (treeCon->nocase) 280 buffer->Flags |= SMBFLG_CASELESS; 281 if ((treeCon->ses) && (treeCon->ses->server)) 282 if (treeCon->ses->server->sign) 283 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE; 284 } 285 286/* endian conversion of flags is now done just before sending */ 287 buffer->WordCount = (char) word_count; 288 return; 289} 290 291static int 292check_smb_hdr(struct smb_hdr *smb) 293{ 294 /* does it have the right SMB "signature" ? */ 295 if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) { 296 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n", 297 *(unsigned int *)smb->Protocol); 298 return 1; 299 } 300 301 /* if it's a response then accept */ 302 if (smb->Flags & SMBFLG_RESPONSE) 303 return 0; 304 305 /* only one valid case where server sends us request */ 306 if (smb->Command == SMB_COM_LOCKING_ANDX) 307 return 0; 308 309 cifs_dbg(VFS, "Server sent request, not response. mid=%u\n", 310 get_mid(smb)); 311 return 1; 312} 313 314int 315checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server) 316{ 317 struct smb_hdr *smb = (struct smb_hdr *)buf; 318 __u32 rfclen = be32_to_cpu(smb->smb_buf_length); 319 __u32 clc_len; /* calculated length */ 320 cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n", 321 total_read, rfclen); 322 323 /* is this frame too small to even get to a BCC? */ 324 if (total_read < 2 + sizeof(struct smb_hdr)) { 325 if ((total_read >= sizeof(struct smb_hdr) - 1) 326 && (smb->Status.CifsError != 0)) { 327 /* it's an error return */ 328 smb->WordCount = 0; 329 /* some error cases do not return wct and bcc */ 330 return 0; 331 } else if ((total_read == sizeof(struct smb_hdr) + 1) && 332 (smb->WordCount == 0)) { 333 char *tmp = (char *)smb; 334 /* Need to work around a bug in two servers here */ 335 /* First, check if the part of bcc they sent was zero */ 336 if (tmp[sizeof(struct smb_hdr)] == 0) { 337 /* some servers return only half of bcc 338 * on simple responses (wct, bcc both zero) 339 * in particular have seen this on 340 * ulogoffX and FindClose. This leaves 341 * one byte of bcc potentially unitialized 342 */ 343 /* zero rest of bcc */ 344 tmp[sizeof(struct smb_hdr)+1] = 0; 345 return 0; 346 } 347 cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n"); 348 } else { 349 cifs_dbg(VFS, "Length less than smb header size\n"); 350 } 351 return -EIO; 352 } 353 354 /* otherwise, there is enough to get to the BCC */ 355 if (check_smb_hdr(smb)) 356 return -EIO; 357 clc_len = smbCalcSize(smb); 358 359 if (4 + rfclen != total_read) { 360 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n", 361 rfclen); 362 return -EIO; 363 } 364 365 if (4 + rfclen != clc_len) { 366 __u16 mid = get_mid(smb); 367 /* check if bcc wrapped around for large read responses */ 368 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) { 369 /* check if lengths match mod 64K */ 370 if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF)) 371 return 0; /* bcc wrapped */ 372 } 373 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n", 374 clc_len, 4 + rfclen, mid); 375 376 if (4 + rfclen < clc_len) { 377 cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n", 378 rfclen, mid); 379 return -EIO; 380 } else if (rfclen > clc_len + 512) { 381 /* 382 * Some servers (Windows XP in particular) send more 383 * data than the lengths in the SMB packet would 384 * indicate on certain calls (byte range locks and 385 * trans2 find first calls in particular). While the 386 * client can handle such a frame by ignoring the 387 * trailing data, we choose limit the amount of extra 388 * data to 512 bytes. 389 */ 390 cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n", 391 rfclen, mid); 392 return -EIO; 393 } 394 } 395 return 0; 396} 397 398bool 399is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv) 400{ 401 struct smb_hdr *buf = (struct smb_hdr *)buffer; 402 struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf; 403 struct TCP_Server_Info *pserver; 404 struct cifs_ses *ses; 405 struct cifs_tcon *tcon; 406 struct cifsInodeInfo *pCifsInode; 407 struct cifsFileInfo *netfile; 408 409 cifs_dbg(FYI, "Checking for oplock break or dnotify response\n"); 410 if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) && 411 (pSMB->hdr.Flags & SMBFLG_RESPONSE)) { 412 struct smb_com_transaction_change_notify_rsp *pSMBr = 413 (struct smb_com_transaction_change_notify_rsp *)buf; 414 struct file_notify_information *pnotify; 415 __u32 data_offset = 0; 416 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length); 417 418 if (get_bcc(buf) > sizeof(struct file_notify_information)) { 419 data_offset = le32_to_cpu(pSMBr->DataOffset); 420 421 if (data_offset > 422 len - sizeof(struct file_notify_information)) { 423 cifs_dbg(FYI, "Invalid data_offset %u\n", 424 data_offset); 425 return true; 426 } 427 pnotify = (struct file_notify_information *) 428 ((char *)&pSMBr->hdr.Protocol + data_offset); 429 cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n", 430 pnotify->FileName, pnotify->Action); 431 /* cifs_dump_mem("Rcvd notify Data: ",buf, 432 sizeof(struct smb_hdr)+60); */ 433 return true; 434 } 435 if (pSMBr->hdr.Status.CifsError) { 436 cifs_dbg(FYI, "notify err 0x%x\n", 437 pSMBr->hdr.Status.CifsError); 438 return true; 439 } 440 return false; 441 } 442 if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX) 443 return false; 444 if (pSMB->hdr.Flags & SMBFLG_RESPONSE) { 445 /* no sense logging error on invalid handle on oplock 446 break - harmless race between close request and oplock 447 break response is expected from time to time writing out 448 large dirty files cached on the client */ 449 if ((NT_STATUS_INVALID_HANDLE) == 450 le32_to_cpu(pSMB->hdr.Status.CifsError)) { 451 cifs_dbg(FYI, "Invalid handle on oplock break\n"); 452 return true; 453 } else if (ERRbadfid == 454 le16_to_cpu(pSMB->hdr.Status.DosError.Error)) { 455 return true; 456 } else { 457 return false; /* on valid oplock brk we get "request" */ 458 } 459 } 460 if (pSMB->hdr.WordCount != 8) 461 return false; 462 463 cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n", 464 pSMB->LockType, pSMB->OplockLevel); 465 if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE)) 466 return false; 467 468 /* If server is a channel, select the primary channel */ 469 pserver = CIFS_SERVER_IS_CHAN(srv) ? srv->primary_server : srv; 470 471 /* look up tcon based on tid & uid */ 472 spin_lock(&cifs_tcp_ses_lock); 473 list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) { 474 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) { 475 if (tcon->tid != buf->Tid) 476 continue; 477 478 cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks); 479 spin_lock(&tcon->open_file_lock); 480 list_for_each_entry(netfile, &tcon->openFileList, tlist) { 481 if (pSMB->Fid != netfile->fid.netfid) 482 continue; 483 484 cifs_dbg(FYI, "file id match, oplock break\n"); 485 pCifsInode = CIFS_I(d_inode(netfile->dentry)); 486 487 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, 488 &pCifsInode->flags); 489 490 netfile->oplock_epoch = 0; 491 netfile->oplock_level = pSMB->OplockLevel; 492 netfile->oplock_break_cancelled = false; 493 cifs_queue_oplock_break(netfile); 494 495 spin_unlock(&tcon->open_file_lock); 496 spin_unlock(&cifs_tcp_ses_lock); 497 return true; 498 } 499 spin_unlock(&tcon->open_file_lock); 500 spin_unlock(&cifs_tcp_ses_lock); 501 cifs_dbg(FYI, "No matching file for oplock break\n"); 502 return true; 503 } 504 } 505 spin_unlock(&cifs_tcp_ses_lock); 506 cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n"); 507 return true; 508} 509 510void 511dump_smb(void *buf, int smb_buf_length) 512{ 513 if (traceSMB == 0) 514 return; 515 516 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf, 517 smb_buf_length, true); 518} 519 520void 521cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb) 522{ 523 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) { 524 struct cifs_tcon *tcon = NULL; 525 526 if (cifs_sb->master_tlink) 527 tcon = cifs_sb_master_tcon(cifs_sb); 528 529 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM; 530 cifs_sb->mnt_cifs_serverino_autodisabled = true; 531 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n", 532 tcon ? tcon->tree_name : "new server"); 533 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n"); 534 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n"); 535 536 } 537} 538 539void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock) 540{ 541 oplock &= 0xF; 542 543 if (oplock == OPLOCK_EXCLUSIVE) { 544 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG; 545 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n", 546 &cinode->netfs.inode); 547 } else if (oplock == OPLOCK_READ) { 548 cinode->oplock = CIFS_CACHE_READ_FLG; 549 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n", 550 &cinode->netfs.inode); 551 } else 552 cinode->oplock = 0; 553} 554 555/* 556 * We wait for oplock breaks to be processed before we attempt to perform 557 * writes. 558 */ 559int cifs_get_writer(struct cifsInodeInfo *cinode) 560{ 561 int rc; 562 563start: 564 rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK, 565 TASK_KILLABLE); 566 if (rc) 567 return rc; 568 569 spin_lock(&cinode->writers_lock); 570 if (!cinode->writers) 571 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 572 cinode->writers++; 573 /* Check to see if we have started servicing an oplock break */ 574 if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) { 575 cinode->writers--; 576 if (cinode->writers == 0) { 577 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 578 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS); 579 } 580 spin_unlock(&cinode->writers_lock); 581 goto start; 582 } 583 spin_unlock(&cinode->writers_lock); 584 return 0; 585} 586 587void cifs_put_writer(struct cifsInodeInfo *cinode) 588{ 589 spin_lock(&cinode->writers_lock); 590 cinode->writers--; 591 if (cinode->writers == 0) { 592 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags); 593 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS); 594 } 595 spin_unlock(&cinode->writers_lock); 596} 597 598/** 599 * cifs_queue_oplock_break - queue the oplock break handler for cfile 600 * @cfile: The file to break the oplock on 601 * 602 * This function is called from the demultiplex thread when it 603 * receives an oplock break for @cfile. 604 * 605 * Assumes the tcon->open_file_lock is held. 606 * Assumes cfile->file_info_lock is NOT held. 607 */ 608void cifs_queue_oplock_break(struct cifsFileInfo *cfile) 609{ 610 /* 611 * Bump the handle refcount now while we hold the 612 * open_file_lock to enforce the validity of it for the oplock 613 * break handler. The matching put is done at the end of the 614 * handler. 615 */ 616 cifsFileInfo_get(cfile); 617 618 queue_work(cifsoplockd_wq, &cfile->oplock_break); 619} 620 621void cifs_done_oplock_break(struct cifsInodeInfo *cinode) 622{ 623 clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags); 624 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK); 625} 626 627bool 628backup_cred(struct cifs_sb_info *cifs_sb) 629{ 630 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) { 631 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid())) 632 return true; 633 } 634 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) { 635 if (in_group_p(cifs_sb->ctx->backupgid)) 636 return true; 637 } 638 639 return false; 640} 641 642void 643cifs_del_pending_open(struct cifs_pending_open *open) 644{ 645 spin_lock(&tlink_tcon(open->tlink)->open_file_lock); 646 list_del(&open->olist); 647 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock); 648} 649 650void 651cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink, 652 struct cifs_pending_open *open) 653{ 654 memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE); 655 open->oplock = CIFS_OPLOCK_NO_CHANGE; 656 open->tlink = tlink; 657 fid->pending_open = open; 658 list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens); 659} 660 661void 662cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink, 663 struct cifs_pending_open *open) 664{ 665 spin_lock(&tlink_tcon(tlink)->open_file_lock); 666 cifs_add_pending_open_locked(fid, tlink, open); 667 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock); 668} 669 670/* 671 * Critical section which runs after acquiring deferred_lock. 672 * As there is no reference count on cifs_deferred_close, pdclose 673 * should not be used outside deferred_lock. 674 */ 675bool 676cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose) 677{ 678 struct cifs_deferred_close *dclose; 679 680 list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) { 681 if ((dclose->netfid == cfile->fid.netfid) && 682 (dclose->persistent_fid == cfile->fid.persistent_fid) && 683 (dclose->volatile_fid == cfile->fid.volatile_fid)) { 684 *pdclose = dclose; 685 return true; 686 } 687 } 688 return false; 689} 690 691/* 692 * Critical section which runs after acquiring deferred_lock. 693 */ 694void 695cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose) 696{ 697 bool is_deferred = false; 698 struct cifs_deferred_close *pdclose; 699 700 is_deferred = cifs_is_deferred_close(cfile, &pdclose); 701 if (is_deferred) { 702 kfree(dclose); 703 return; 704 } 705 706 dclose->tlink = cfile->tlink; 707 dclose->netfid = cfile->fid.netfid; 708 dclose->persistent_fid = cfile->fid.persistent_fid; 709 dclose->volatile_fid = cfile->fid.volatile_fid; 710 list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes); 711} 712 713/* 714 * Critical section which runs after acquiring deferred_lock. 715 */ 716void 717cifs_del_deferred_close(struct cifsFileInfo *cfile) 718{ 719 bool is_deferred = false; 720 struct cifs_deferred_close *dclose; 721 722 is_deferred = cifs_is_deferred_close(cfile, &dclose); 723 if (!is_deferred) 724 return; 725 list_del(&dclose->dlist); 726 kfree(dclose); 727} 728 729void 730cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode) 731{ 732 struct cifsFileInfo *cfile = NULL; 733 struct file_list *tmp_list, *tmp_next_list; 734 struct list_head file_head; 735 736 if (cifs_inode == NULL) 737 return; 738 739 INIT_LIST_HEAD(&file_head); 740 spin_lock(&cifs_inode->open_file_lock); 741 list_for_each_entry(cfile, &cifs_inode->openFileList, flist) { 742 if (delayed_work_pending(&cfile->deferred)) { 743 if (cancel_delayed_work(&cfile->deferred)) { 744 cifs_del_deferred_close(cfile); 745 746 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 747 if (tmp_list == NULL) 748 break; 749 tmp_list->cfile = cfile; 750 list_add_tail(&tmp_list->list, &file_head); 751 } 752 } 753 } 754 spin_unlock(&cifs_inode->open_file_lock); 755 756 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 757 _cifsFileInfo_put(tmp_list->cfile, true, false); 758 list_del(&tmp_list->list); 759 kfree(tmp_list); 760 } 761} 762 763void 764cifs_close_all_deferred_files(struct cifs_tcon *tcon) 765{ 766 struct cifsFileInfo *cfile; 767 struct file_list *tmp_list, *tmp_next_list; 768 struct list_head file_head; 769 770 INIT_LIST_HEAD(&file_head); 771 spin_lock(&tcon->open_file_lock); 772 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 773 if (delayed_work_pending(&cfile->deferred)) { 774 if (cancel_delayed_work(&cfile->deferred)) { 775 cifs_del_deferred_close(cfile); 776 777 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 778 if (tmp_list == NULL) 779 break; 780 tmp_list->cfile = cfile; 781 list_add_tail(&tmp_list->list, &file_head); 782 } 783 } 784 } 785 spin_unlock(&tcon->open_file_lock); 786 787 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 788 _cifsFileInfo_put(tmp_list->cfile, true, false); 789 list_del(&tmp_list->list); 790 kfree(tmp_list); 791 } 792} 793void 794cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path) 795{ 796 struct cifsFileInfo *cfile; 797 struct file_list *tmp_list, *tmp_next_list; 798 struct list_head file_head; 799 void *page; 800 const char *full_path; 801 802 INIT_LIST_HEAD(&file_head); 803 page = alloc_dentry_path(); 804 spin_lock(&tcon->open_file_lock); 805 list_for_each_entry(cfile, &tcon->openFileList, tlist) { 806 full_path = build_path_from_dentry(cfile->dentry, page); 807 if (strstr(full_path, path)) { 808 if (delayed_work_pending(&cfile->deferred)) { 809 if (cancel_delayed_work(&cfile->deferred)) { 810 cifs_del_deferred_close(cfile); 811 812 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC); 813 if (tmp_list == NULL) 814 break; 815 tmp_list->cfile = cfile; 816 list_add_tail(&tmp_list->list, &file_head); 817 } 818 } 819 } 820 } 821 spin_unlock(&tcon->open_file_lock); 822 823 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) { 824 _cifsFileInfo_put(tmp_list->cfile, true, false); 825 list_del(&tmp_list->list); 826 kfree(tmp_list); 827 } 828 free_dentry_path(page); 829} 830 831/* parses DFS referral V3 structure 832 * caller is responsible for freeing target_nodes 833 * returns: 834 * - on success - 0 835 * - on failure - errno 836 */ 837int 838parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size, 839 unsigned int *num_of_nodes, 840 struct dfs_info3_param **target_nodes, 841 const struct nls_table *nls_codepage, int remap, 842 const char *searchName, bool is_unicode) 843{ 844 int i, rc = 0; 845 char *data_end; 846 struct dfs_referral_level_3 *ref; 847 848 *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals); 849 850 if (*num_of_nodes < 1) { 851 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n", 852 *num_of_nodes); 853 rc = -EINVAL; 854 goto parse_DFS_referrals_exit; 855 } 856 857 ref = (struct dfs_referral_level_3 *) &(rsp->referrals); 858 if (ref->VersionNumber != cpu_to_le16(3)) { 859 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n", 860 le16_to_cpu(ref->VersionNumber)); 861 rc = -EINVAL; 862 goto parse_DFS_referrals_exit; 863 } 864 865 /* get the upper boundary of the resp buffer */ 866 data_end = (char *)rsp + rsp_size; 867 868 cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n", 869 *num_of_nodes, le32_to_cpu(rsp->DFSFlags)); 870 871 *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param), 872 GFP_KERNEL); 873 if (*target_nodes == NULL) { 874 rc = -ENOMEM; 875 goto parse_DFS_referrals_exit; 876 } 877 878 /* collect necessary data from referrals */ 879 for (i = 0; i < *num_of_nodes; i++) { 880 char *temp; 881 int max_len; 882 struct dfs_info3_param *node = (*target_nodes)+i; 883 884 node->flags = le32_to_cpu(rsp->DFSFlags); 885 if (is_unicode) { 886 __le16 *tmp = kmalloc(strlen(searchName)*2 + 2, 887 GFP_KERNEL); 888 if (tmp == NULL) { 889 rc = -ENOMEM; 890 goto parse_DFS_referrals_exit; 891 } 892 cifsConvertToUTF16((__le16 *) tmp, searchName, 893 PATH_MAX, nls_codepage, remap); 894 node->path_consumed = cifs_utf16_bytes(tmp, 895 le16_to_cpu(rsp->PathConsumed), 896 nls_codepage); 897 kfree(tmp); 898 } else 899 node->path_consumed = le16_to_cpu(rsp->PathConsumed); 900 901 node->server_type = le16_to_cpu(ref->ServerType); 902 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags); 903 904 /* copy DfsPath */ 905 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset); 906 max_len = data_end - temp; 907 node->path_name = cifs_strndup_from_utf16(temp, max_len, 908 is_unicode, nls_codepage); 909 if (!node->path_name) { 910 rc = -ENOMEM; 911 goto parse_DFS_referrals_exit; 912 } 913 914 /* copy link target UNC */ 915 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset); 916 max_len = data_end - temp; 917 node->node_name = cifs_strndup_from_utf16(temp, max_len, 918 is_unicode, nls_codepage); 919 if (!node->node_name) { 920 rc = -ENOMEM; 921 goto parse_DFS_referrals_exit; 922 } 923 924 node->ttl = le32_to_cpu(ref->TimeToLive); 925 926 ref++; 927 } 928 929parse_DFS_referrals_exit: 930 if (rc) { 931 free_dfs_info_array(*target_nodes, *num_of_nodes); 932 *target_nodes = NULL; 933 *num_of_nodes = 0; 934 } 935 return rc; 936} 937 938struct cifs_aio_ctx * 939cifs_aio_ctx_alloc(void) 940{ 941 struct cifs_aio_ctx *ctx; 942 943 /* 944 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io 945 * to false so that we know when we have to unreference pages within 946 * cifs_aio_ctx_release() 947 */ 948 ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL); 949 if (!ctx) 950 return NULL; 951 952 INIT_LIST_HEAD(&ctx->list); 953 mutex_init(&ctx->aio_mutex); 954 init_completion(&ctx->done); 955 kref_init(&ctx->refcount); 956 return ctx; 957} 958 959void 960cifs_aio_ctx_release(struct kref *refcount) 961{ 962 struct cifs_aio_ctx *ctx = container_of(refcount, 963 struct cifs_aio_ctx, refcount); 964 965 cifsFileInfo_put(ctx->cfile); 966 967 /* 968 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly 969 * which means that iov_iter_get_pages() was a success and thus that 970 * we have taken reference on pages. 971 */ 972 if (ctx->bv) { 973 unsigned i; 974 975 for (i = 0; i < ctx->npages; i++) { 976 if (ctx->should_dirty) 977 set_page_dirty(ctx->bv[i].bv_page); 978 put_page(ctx->bv[i].bv_page); 979 } 980 kvfree(ctx->bv); 981 } 982 983 kfree(ctx); 984} 985 986#define CIFS_AIO_KMALLOC_LIMIT (1024 * 1024) 987 988int 989setup_aio_ctx_iter(struct cifs_aio_ctx *ctx, struct iov_iter *iter, int rw) 990{ 991 ssize_t rc; 992 unsigned int cur_npages; 993 unsigned int npages = 0; 994 unsigned int i; 995 size_t len; 996 size_t count = iov_iter_count(iter); 997 unsigned int saved_len; 998 size_t start; 999 unsigned int max_pages = iov_iter_npages(iter, INT_MAX); 1000 struct page **pages = NULL; 1001 struct bio_vec *bv = NULL; 1002 1003 if (iov_iter_is_kvec(iter)) { 1004 memcpy(&ctx->iter, iter, sizeof(*iter)); 1005 ctx->len = count; 1006 iov_iter_advance(iter, count); 1007 return 0; 1008 } 1009 1010 if (array_size(max_pages, sizeof(*bv)) <= CIFS_AIO_KMALLOC_LIMIT) 1011 bv = kmalloc_array(max_pages, sizeof(*bv), GFP_KERNEL); 1012 1013 if (!bv) { 1014 bv = vmalloc(array_size(max_pages, sizeof(*bv))); 1015 if (!bv) 1016 return -ENOMEM; 1017 } 1018 1019 if (array_size(max_pages, sizeof(*pages)) <= CIFS_AIO_KMALLOC_LIMIT) 1020 pages = kmalloc_array(max_pages, sizeof(*pages), GFP_KERNEL); 1021 1022 if (!pages) { 1023 pages = vmalloc(array_size(max_pages, sizeof(*pages))); 1024 if (!pages) { 1025 kvfree(bv); 1026 return -ENOMEM; 1027 } 1028 } 1029 1030 saved_len = count; 1031 1032 while (count && npages < max_pages) { 1033 rc = iov_iter_get_pages2(iter, pages, count, max_pages, &start); 1034 if (rc < 0) { 1035 cifs_dbg(VFS, "Couldn't get user pages (rc=%zd)\n", rc); 1036 break; 1037 } 1038 1039 if (rc > count) { 1040 cifs_dbg(VFS, "get pages rc=%zd more than %zu\n", rc, 1041 count); 1042 break; 1043 } 1044 1045 count -= rc; 1046 rc += start; 1047 cur_npages = DIV_ROUND_UP(rc, PAGE_SIZE); 1048 1049 if (npages + cur_npages > max_pages) { 1050 cifs_dbg(VFS, "out of vec array capacity (%u vs %u)\n", 1051 npages + cur_npages, max_pages); 1052 break; 1053 } 1054 1055 for (i = 0; i < cur_npages; i++) { 1056 len = rc > PAGE_SIZE ? PAGE_SIZE : rc; 1057 bv[npages + i].bv_page = pages[i]; 1058 bv[npages + i].bv_offset = start; 1059 bv[npages + i].bv_len = len - start; 1060 rc -= len; 1061 start = 0; 1062 } 1063 1064 npages += cur_npages; 1065 } 1066 1067 kvfree(pages); 1068 ctx->bv = bv; 1069 ctx->len = saved_len - count; 1070 ctx->npages = npages; 1071 iov_iter_bvec(&ctx->iter, rw, ctx->bv, npages, ctx->len); 1072 return 0; 1073} 1074 1075/** 1076 * cifs_alloc_hash - allocate hash and hash context together 1077 * @name: The name of the crypto hash algo 1078 * @sdesc: SHASH descriptor where to put the pointer to the hash TFM 1079 * 1080 * The caller has to make sure @sdesc is initialized to either NULL or 1081 * a valid context. It can be freed via cifs_free_hash(). 1082 */ 1083int 1084cifs_alloc_hash(const char *name, struct shash_desc **sdesc) 1085{ 1086 int rc = 0; 1087 struct crypto_shash *alg = NULL; 1088 1089 if (*sdesc) 1090 return 0; 1091 1092 alg = crypto_alloc_shash(name, 0, 0); 1093 if (IS_ERR(alg)) { 1094 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name); 1095 rc = PTR_ERR(alg); 1096 *sdesc = NULL; 1097 return rc; 1098 } 1099 1100 *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL); 1101 if (*sdesc == NULL) { 1102 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name); 1103 crypto_free_shash(alg); 1104 return -ENOMEM; 1105 } 1106 1107 (*sdesc)->tfm = alg; 1108 return 0; 1109} 1110 1111/** 1112 * cifs_free_hash - free hash and hash context together 1113 * @sdesc: Where to find the pointer to the hash TFM 1114 * 1115 * Freeing a NULL descriptor is safe. 1116 */ 1117void 1118cifs_free_hash(struct shash_desc **sdesc) 1119{ 1120 if (unlikely(!sdesc) || !*sdesc) 1121 return; 1122 1123 if ((*sdesc)->tfm) { 1124 crypto_free_shash((*sdesc)->tfm); 1125 (*sdesc)->tfm = NULL; 1126 } 1127 1128 kfree_sensitive(*sdesc); 1129 *sdesc = NULL; 1130} 1131 1132/** 1133 * rqst_page_get_length - obtain the length and offset for a page in smb_rqst 1134 * @rqst: The request descriptor 1135 * @page: The index of the page to query 1136 * @len: Where to store the length for this page: 1137 * @offset: Where to store the offset for this page 1138 */ 1139void rqst_page_get_length(const struct smb_rqst *rqst, unsigned int page, 1140 unsigned int *len, unsigned int *offset) 1141{ 1142 *len = rqst->rq_pagesz; 1143 *offset = (page == 0) ? rqst->rq_offset : 0; 1144 1145 if (rqst->rq_npages == 1 || page == rqst->rq_npages-1) 1146 *len = rqst->rq_tailsz; 1147 else if (page == 0) 1148 *len = rqst->rq_pagesz - rqst->rq_offset; 1149} 1150 1151void extract_unc_hostname(const char *unc, const char **h, size_t *len) 1152{ 1153 const char *end; 1154 1155 /* skip initial slashes */ 1156 while (*unc && (*unc == '\\' || *unc == '/')) 1157 unc++; 1158 1159 end = unc; 1160 1161 while (*end && !(*end == '\\' || *end == '/')) 1162 end++; 1163 1164 *h = unc; 1165 *len = end - unc; 1166} 1167 1168/** 1169 * copy_path_name - copy src path to dst, possibly truncating 1170 * @dst: The destination buffer 1171 * @src: The source name 1172 * 1173 * returns number of bytes written (including trailing nul) 1174 */ 1175int copy_path_name(char *dst, const char *src) 1176{ 1177 int name_len; 1178 1179 /* 1180 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it 1181 * will truncate and strlen(dst) will be PATH_MAX-1 1182 */ 1183 name_len = strscpy(dst, src, PATH_MAX); 1184 if (WARN_ON_ONCE(name_len < 0)) 1185 name_len = PATH_MAX-1; 1186 1187 /* we count the trailing nul */ 1188 name_len++; 1189 return name_len; 1190} 1191 1192struct super_cb_data { 1193 void *data; 1194 struct super_block *sb; 1195}; 1196 1197static void tcp_super_cb(struct super_block *sb, void *arg) 1198{ 1199 struct super_cb_data *sd = arg; 1200 struct TCP_Server_Info *server = sd->data; 1201 struct cifs_sb_info *cifs_sb; 1202 struct cifs_tcon *tcon; 1203 1204 if (sd->sb) 1205 return; 1206 1207 cifs_sb = CIFS_SB(sb); 1208 tcon = cifs_sb_master_tcon(cifs_sb); 1209 if (tcon->ses->server == server) 1210 sd->sb = sb; 1211} 1212 1213static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *), 1214 void *data) 1215{ 1216 struct super_cb_data sd = { 1217 .data = data, 1218 .sb = NULL, 1219 }; 1220 struct file_system_type **fs_type = (struct file_system_type *[]) { 1221 &cifs_fs_type, &smb3_fs_type, NULL, 1222 }; 1223 1224 for (; *fs_type; fs_type++) { 1225 iterate_supers_type(*fs_type, f, &sd); 1226 if (sd.sb) { 1227 /* 1228 * Grab an active reference in order to prevent automounts (DFS links) 1229 * of expiring and then freeing up our cifs superblock pointer while 1230 * we're doing failover. 1231 */ 1232 cifs_sb_active(sd.sb); 1233 return sd.sb; 1234 } 1235 } 1236 return ERR_PTR(-EINVAL); 1237} 1238 1239static void __cifs_put_super(struct super_block *sb) 1240{ 1241 if (!IS_ERR_OR_NULL(sb)) 1242 cifs_sb_deactive(sb); 1243} 1244 1245struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server) 1246{ 1247 return __cifs_get_super(tcp_super_cb, server); 1248} 1249 1250void cifs_put_tcp_super(struct super_block *sb) 1251{ 1252 __cifs_put_super(sb); 1253} 1254 1255#ifdef CONFIG_CIFS_DFS_UPCALL 1256int match_target_ip(struct TCP_Server_Info *server, 1257 const char *share, size_t share_len, 1258 bool *result) 1259{ 1260 int rc; 1261 char *target; 1262 struct sockaddr_storage ss; 1263 1264 *result = false; 1265 1266 target = kzalloc(share_len + 3, GFP_KERNEL); 1267 if (!target) 1268 return -ENOMEM; 1269 1270 scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share); 1271 1272 cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2); 1273 1274 rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL); 1275 kfree(target); 1276 1277 if (rc < 0) 1278 return rc; 1279 1280 spin_lock(&server->srv_lock); 1281 *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss); 1282 spin_unlock(&server->srv_lock); 1283 cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result); 1284 return 0; 1285} 1286 1287int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix) 1288{ 1289 kfree(cifs_sb->prepath); 1290 1291 if (prefix && *prefix) { 1292 cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC); 1293 if (!cifs_sb->prepath) 1294 return -ENOMEM; 1295 1296 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb)); 1297 } else 1298 cifs_sb->prepath = NULL; 1299 1300 cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH; 1301 return 0; 1302} 1303#endif