Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
20#include <linux/mm.h>
21#include <linux/vmstat.h>
22#include <linux/writeback.h>
23#include <linux/page-flags.h>
24
25struct mem_cgroup;
26struct obj_cgroup;
27struct page;
28struct mm_struct;
29struct kmem_cache;
30
31/* Cgroup-specific page state, on top of universal node page state */
32enum memcg_stat_item {
33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 MEMCG_SOCK,
35 MEMCG_PERCPU_B,
36 MEMCG_VMALLOC,
37 MEMCG_KMEM,
38 MEMCG_ZSWAP_B,
39 MEMCG_ZSWAPPED,
40 MEMCG_NR_STAT,
41};
42
43enum memcg_memory_event {
44 MEMCG_LOW,
45 MEMCG_HIGH,
46 MEMCG_MAX,
47 MEMCG_OOM,
48 MEMCG_OOM_KILL,
49 MEMCG_OOM_GROUP_KILL,
50 MEMCG_SWAP_HIGH,
51 MEMCG_SWAP_MAX,
52 MEMCG_SWAP_FAIL,
53 MEMCG_NR_MEMORY_EVENTS,
54};
55
56struct mem_cgroup_reclaim_cookie {
57 pg_data_t *pgdat;
58 unsigned int generation;
59};
60
61#ifdef CONFIG_MEMCG
62
63#define MEM_CGROUP_ID_SHIFT 16
64#define MEM_CGROUP_ID_MAX USHRT_MAX
65
66struct mem_cgroup_id {
67 int id;
68 refcount_t ref;
69};
70
71/*
72 * Per memcg event counter is incremented at every pagein/pageout. With THP,
73 * it will be incremented by the number of pages. This counter is used
74 * to trigger some periodic events. This is straightforward and better
75 * than using jiffies etc. to handle periodic memcg event.
76 */
77enum mem_cgroup_events_target {
78 MEM_CGROUP_TARGET_THRESH,
79 MEM_CGROUP_TARGET_SOFTLIMIT,
80 MEM_CGROUP_NTARGETS,
81};
82
83struct memcg_vmstats_percpu;
84struct memcg_vmstats;
85
86struct mem_cgroup_reclaim_iter {
87 struct mem_cgroup *position;
88 /* scan generation, increased every round-trip */
89 unsigned int generation;
90};
91
92/*
93 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
94 * shrinkers, which have elements charged to this memcg.
95 */
96struct shrinker_info {
97 struct rcu_head rcu;
98 atomic_long_t *nr_deferred;
99 unsigned long *map;
100};
101
102struct lruvec_stats_percpu {
103 /* Local (CPU and cgroup) state */
104 long state[NR_VM_NODE_STAT_ITEMS];
105
106 /* Delta calculation for lockless upward propagation */
107 long state_prev[NR_VM_NODE_STAT_ITEMS];
108};
109
110struct lruvec_stats {
111 /* Aggregated (CPU and subtree) state */
112 long state[NR_VM_NODE_STAT_ITEMS];
113
114 /* Pending child counts during tree propagation */
115 long state_pending[NR_VM_NODE_STAT_ITEMS];
116};
117
118/*
119 * per-node information in memory controller.
120 */
121struct mem_cgroup_per_node {
122 struct lruvec lruvec;
123
124 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
125 struct lruvec_stats lruvec_stats;
126
127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
128
129 struct mem_cgroup_reclaim_iter iter;
130
131 struct shrinker_info __rcu *shrinker_info;
132
133 struct rb_node tree_node; /* RB tree node */
134 unsigned long usage_in_excess;/* Set to the value by which */
135 /* the soft limit is exceeded*/
136 bool on_tree;
137 struct mem_cgroup *memcg; /* Back pointer, we cannot */
138 /* use container_of */
139};
140
141struct mem_cgroup_threshold {
142 struct eventfd_ctx *eventfd;
143 unsigned long threshold;
144};
145
146/* For threshold */
147struct mem_cgroup_threshold_ary {
148 /* An array index points to threshold just below or equal to usage. */
149 int current_threshold;
150 /* Size of entries[] */
151 unsigned int size;
152 /* Array of thresholds */
153 struct mem_cgroup_threshold entries[];
154};
155
156struct mem_cgroup_thresholds {
157 /* Primary thresholds array */
158 struct mem_cgroup_threshold_ary *primary;
159 /*
160 * Spare threshold array.
161 * This is needed to make mem_cgroup_unregister_event() "never fail".
162 * It must be able to store at least primary->size - 1 entries.
163 */
164 struct mem_cgroup_threshold_ary *spare;
165};
166
167/*
168 * Remember four most recent foreign writebacks with dirty pages in this
169 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
170 * one in a given round, we're likely to catch it later if it keeps
171 * foreign-dirtying, so a fairly low count should be enough.
172 *
173 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
174 */
175#define MEMCG_CGWB_FRN_CNT 4
176
177struct memcg_cgwb_frn {
178 u64 bdi_id; /* bdi->id of the foreign inode */
179 int memcg_id; /* memcg->css.id of foreign inode */
180 u64 at; /* jiffies_64 at the time of dirtying */
181 struct wb_completion done; /* tracks in-flight foreign writebacks */
182};
183
184/*
185 * Bucket for arbitrarily byte-sized objects charged to a memory
186 * cgroup. The bucket can be reparented in one piece when the cgroup
187 * is destroyed, without having to round up the individual references
188 * of all live memory objects in the wild.
189 */
190struct obj_cgroup {
191 struct percpu_ref refcnt;
192 struct mem_cgroup *memcg;
193 atomic_t nr_charged_bytes;
194 union {
195 struct list_head list; /* protected by objcg_lock */
196 struct rcu_head rcu;
197 };
198};
199
200/*
201 * The memory controller data structure. The memory controller controls both
202 * page cache and RSS per cgroup. We would eventually like to provide
203 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
204 * to help the administrator determine what knobs to tune.
205 */
206struct mem_cgroup {
207 struct cgroup_subsys_state css;
208
209 /* Private memcg ID. Used to ID objects that outlive the cgroup */
210 struct mem_cgroup_id id;
211
212 /* Accounted resources */
213 struct page_counter memory; /* Both v1 & v2 */
214
215 union {
216 struct page_counter swap; /* v2 only */
217 struct page_counter memsw; /* v1 only */
218 };
219
220 /* Legacy consumer-oriented counters */
221 struct page_counter kmem; /* v1 only */
222 struct page_counter tcpmem; /* v1 only */
223
224 /* Range enforcement for interrupt charges */
225 struct work_struct high_work;
226
227#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
228 unsigned long zswap_max;
229#endif
230
231 unsigned long soft_limit;
232
233 /* vmpressure notifications */
234 struct vmpressure vmpressure;
235
236 /*
237 * Should the OOM killer kill all belonging tasks, had it kill one?
238 */
239 bool oom_group;
240
241 /* protected by memcg_oom_lock */
242 bool oom_lock;
243 int under_oom;
244
245 int swappiness;
246 /* OOM-Killer disable */
247 int oom_kill_disable;
248
249 /* memory.events and memory.events.local */
250 struct cgroup_file events_file;
251 struct cgroup_file events_local_file;
252
253 /* handle for "memory.swap.events" */
254 struct cgroup_file swap_events_file;
255
256 /* protect arrays of thresholds */
257 struct mutex thresholds_lock;
258
259 /* thresholds for memory usage. RCU-protected */
260 struct mem_cgroup_thresholds thresholds;
261
262 /* thresholds for mem+swap usage. RCU-protected */
263 struct mem_cgroup_thresholds memsw_thresholds;
264
265 /* For oom notifier event fd */
266 struct list_head oom_notify;
267
268 /*
269 * Should we move charges of a task when a task is moved into this
270 * mem_cgroup ? And what type of charges should we move ?
271 */
272 unsigned long move_charge_at_immigrate;
273 /* taken only while moving_account > 0 */
274 spinlock_t move_lock;
275 unsigned long move_lock_flags;
276
277 CACHELINE_PADDING(_pad1_);
278
279 /* memory.stat */
280 struct memcg_vmstats *vmstats;
281
282 /* memory.events */
283 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
284 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
285
286 unsigned long socket_pressure;
287
288 /* Legacy tcp memory accounting */
289 bool tcpmem_active;
290 int tcpmem_pressure;
291
292#ifdef CONFIG_MEMCG_KMEM
293 int kmemcg_id;
294 struct obj_cgroup __rcu *objcg;
295 /* list of inherited objcgs, protected by objcg_lock */
296 struct list_head objcg_list;
297#endif
298
299 CACHELINE_PADDING(_pad2_);
300
301 /*
302 * set > 0 if pages under this cgroup are moving to other cgroup.
303 */
304 atomic_t moving_account;
305 struct task_struct *move_lock_task;
306
307 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
308
309#ifdef CONFIG_CGROUP_WRITEBACK
310 struct list_head cgwb_list;
311 struct wb_domain cgwb_domain;
312 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
313#endif
314
315 /* List of events which userspace want to receive */
316 struct list_head event_list;
317 spinlock_t event_list_lock;
318
319#ifdef CONFIG_TRANSPARENT_HUGEPAGE
320 struct deferred_split deferred_split_queue;
321#endif
322
323#ifdef CONFIG_LRU_GEN
324 /* per-memcg mm_struct list */
325 struct lru_gen_mm_list mm_list;
326#endif
327
328 struct mem_cgroup_per_node *nodeinfo[];
329};
330
331/*
332 * size of first charge trial.
333 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
334 * workload.
335 */
336#define MEMCG_CHARGE_BATCH 64U
337
338extern struct mem_cgroup *root_mem_cgroup;
339
340enum page_memcg_data_flags {
341 /* page->memcg_data is a pointer to an objcgs vector */
342 MEMCG_DATA_OBJCGS = (1UL << 0),
343 /* page has been accounted as a non-slab kernel page */
344 MEMCG_DATA_KMEM = (1UL << 1),
345 /* the next bit after the last actual flag */
346 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
347};
348
349#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
350
351static inline bool folio_memcg_kmem(struct folio *folio);
352
353/*
354 * After the initialization objcg->memcg is always pointing at
355 * a valid memcg, but can be atomically swapped to the parent memcg.
356 *
357 * The caller must ensure that the returned memcg won't be released:
358 * e.g. acquire the rcu_read_lock or css_set_lock.
359 */
360static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
361{
362 return READ_ONCE(objcg->memcg);
363}
364
365/*
366 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
367 * @folio: Pointer to the folio.
368 *
369 * Returns a pointer to the memory cgroup associated with the folio,
370 * or NULL. This function assumes that the folio is known to have a
371 * proper memory cgroup pointer. It's not safe to call this function
372 * against some type of folios, e.g. slab folios or ex-slab folios or
373 * kmem folios.
374 */
375static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
376{
377 unsigned long memcg_data = folio->memcg_data;
378
379 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
380 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
381 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
382
383 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
384}
385
386/*
387 * __folio_objcg - get the object cgroup associated with a kmem folio.
388 * @folio: Pointer to the folio.
389 *
390 * Returns a pointer to the object cgroup associated with the folio,
391 * or NULL. This function assumes that the folio is known to have a
392 * proper object cgroup pointer. It's not safe to call this function
393 * against some type of folios, e.g. slab folios or ex-slab folios or
394 * LRU folios.
395 */
396static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
397{
398 unsigned long memcg_data = folio->memcg_data;
399
400 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
402 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
403
404 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
405}
406
407/*
408 * folio_memcg - Get the memory cgroup associated with a folio.
409 * @folio: Pointer to the folio.
410 *
411 * Returns a pointer to the memory cgroup associated with the folio,
412 * or NULL. This function assumes that the folio is known to have a
413 * proper memory cgroup pointer. It's not safe to call this function
414 * against some type of folios, e.g. slab folios or ex-slab folios.
415 *
416 * For a non-kmem folio any of the following ensures folio and memcg binding
417 * stability:
418 *
419 * - the folio lock
420 * - LRU isolation
421 * - lock_page_memcg()
422 * - exclusive reference
423 * - mem_cgroup_trylock_pages()
424 *
425 * For a kmem folio a caller should hold an rcu read lock to protect memcg
426 * associated with a kmem folio from being released.
427 */
428static inline struct mem_cgroup *folio_memcg(struct folio *folio)
429{
430 if (folio_memcg_kmem(folio))
431 return obj_cgroup_memcg(__folio_objcg(folio));
432 return __folio_memcg(folio);
433}
434
435static inline struct mem_cgroup *page_memcg(struct page *page)
436{
437 return folio_memcg(page_folio(page));
438}
439
440/**
441 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
442 * @folio: Pointer to the folio.
443 *
444 * This function assumes that the folio is known to have a
445 * proper memory cgroup pointer. It's not safe to call this function
446 * against some type of folios, e.g. slab folios or ex-slab folios.
447 *
448 * Return: A pointer to the memory cgroup associated with the folio,
449 * or NULL.
450 */
451static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
452{
453 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
454
455 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
456 WARN_ON_ONCE(!rcu_read_lock_held());
457
458 if (memcg_data & MEMCG_DATA_KMEM) {
459 struct obj_cgroup *objcg;
460
461 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
462 return obj_cgroup_memcg(objcg);
463 }
464
465 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
466}
467
468/*
469 * page_memcg_check - get the memory cgroup associated with a page
470 * @page: a pointer to the page struct
471 *
472 * Returns a pointer to the memory cgroup associated with the page,
473 * or NULL. This function unlike page_memcg() can take any page
474 * as an argument. It has to be used in cases when it's not known if a page
475 * has an associated memory cgroup pointer or an object cgroups vector or
476 * an object cgroup.
477 *
478 * For a non-kmem page any of the following ensures page and memcg binding
479 * stability:
480 *
481 * - the page lock
482 * - LRU isolation
483 * - lock_page_memcg()
484 * - exclusive reference
485 * - mem_cgroup_trylock_pages()
486 *
487 * For a kmem page a caller should hold an rcu read lock to protect memcg
488 * associated with a kmem page from being released.
489 */
490static inline struct mem_cgroup *page_memcg_check(struct page *page)
491{
492 /*
493 * Because page->memcg_data might be changed asynchronously
494 * for slab pages, READ_ONCE() should be used here.
495 */
496 unsigned long memcg_data = READ_ONCE(page->memcg_data);
497
498 if (memcg_data & MEMCG_DATA_OBJCGS)
499 return NULL;
500
501 if (memcg_data & MEMCG_DATA_KMEM) {
502 struct obj_cgroup *objcg;
503
504 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
505 return obj_cgroup_memcg(objcg);
506 }
507
508 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
509}
510
511static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
512{
513 struct mem_cgroup *memcg;
514
515 rcu_read_lock();
516retry:
517 memcg = obj_cgroup_memcg(objcg);
518 if (unlikely(!css_tryget(&memcg->css)))
519 goto retry;
520 rcu_read_unlock();
521
522 return memcg;
523}
524
525#ifdef CONFIG_MEMCG_KMEM
526/*
527 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
528 * @folio: Pointer to the folio.
529 *
530 * Checks if the folio has MemcgKmem flag set. The caller must ensure
531 * that the folio has an associated memory cgroup. It's not safe to call
532 * this function against some types of folios, e.g. slab folios.
533 */
534static inline bool folio_memcg_kmem(struct folio *folio)
535{
536 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
537 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
538 return folio->memcg_data & MEMCG_DATA_KMEM;
539}
540
541
542#else
543static inline bool folio_memcg_kmem(struct folio *folio)
544{
545 return false;
546}
547
548#endif
549
550static inline bool PageMemcgKmem(struct page *page)
551{
552 return folio_memcg_kmem(page_folio(page));
553}
554
555static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
556{
557 return (memcg == root_mem_cgroup);
558}
559
560static inline bool mem_cgroup_disabled(void)
561{
562 return !cgroup_subsys_enabled(memory_cgrp_subsys);
563}
564
565static inline void mem_cgroup_protection(struct mem_cgroup *root,
566 struct mem_cgroup *memcg,
567 unsigned long *min,
568 unsigned long *low)
569{
570 *min = *low = 0;
571
572 if (mem_cgroup_disabled())
573 return;
574
575 /*
576 * There is no reclaim protection applied to a targeted reclaim.
577 * We are special casing this specific case here because
578 * mem_cgroup_protected calculation is not robust enough to keep
579 * the protection invariant for calculated effective values for
580 * parallel reclaimers with different reclaim target. This is
581 * especially a problem for tail memcgs (as they have pages on LRU)
582 * which would want to have effective values 0 for targeted reclaim
583 * but a different value for external reclaim.
584 *
585 * Example
586 * Let's have global and A's reclaim in parallel:
587 * |
588 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
589 * |\
590 * | C (low = 1G, usage = 2.5G)
591 * B (low = 1G, usage = 0.5G)
592 *
593 * For the global reclaim
594 * A.elow = A.low
595 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
596 * C.elow = min(C.usage, C.low)
597 *
598 * With the effective values resetting we have A reclaim
599 * A.elow = 0
600 * B.elow = B.low
601 * C.elow = C.low
602 *
603 * If the global reclaim races with A's reclaim then
604 * B.elow = C.elow = 0 because children_low_usage > A.elow)
605 * is possible and reclaiming B would be violating the protection.
606 *
607 */
608 if (root == memcg)
609 return;
610
611 *min = READ_ONCE(memcg->memory.emin);
612 *low = READ_ONCE(memcg->memory.elow);
613}
614
615void mem_cgroup_calculate_protection(struct mem_cgroup *root,
616 struct mem_cgroup *memcg);
617
618static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
619 struct mem_cgroup *memcg)
620{
621 /*
622 * The root memcg doesn't account charges, and doesn't support
623 * protection. The target memcg's protection is ignored, see
624 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
625 */
626 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
627 memcg == target;
628}
629
630static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
631 struct mem_cgroup *memcg)
632{
633 if (mem_cgroup_unprotected(target, memcg))
634 return false;
635
636 return READ_ONCE(memcg->memory.elow) >=
637 page_counter_read(&memcg->memory);
638}
639
640static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
641 struct mem_cgroup *memcg)
642{
643 if (mem_cgroup_unprotected(target, memcg))
644 return false;
645
646 return READ_ONCE(memcg->memory.emin) >=
647 page_counter_read(&memcg->memory);
648}
649
650int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
651
652/**
653 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
654 * @folio: Folio to charge.
655 * @mm: mm context of the allocating task.
656 * @gfp: Reclaim mode.
657 *
658 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
659 * pages according to @gfp if necessary. If @mm is NULL, try to
660 * charge to the active memcg.
661 *
662 * Do not use this for folios allocated for swapin.
663 *
664 * Return: 0 on success. Otherwise, an error code is returned.
665 */
666static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
667 gfp_t gfp)
668{
669 if (mem_cgroup_disabled())
670 return 0;
671 return __mem_cgroup_charge(folio, mm, gfp);
672}
673
674int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
675 gfp_t gfp, swp_entry_t entry);
676void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
677
678void __mem_cgroup_uncharge(struct folio *folio);
679
680/**
681 * mem_cgroup_uncharge - Uncharge a folio.
682 * @folio: Folio to uncharge.
683 *
684 * Uncharge a folio previously charged with mem_cgroup_charge().
685 */
686static inline void mem_cgroup_uncharge(struct folio *folio)
687{
688 if (mem_cgroup_disabled())
689 return;
690 __mem_cgroup_uncharge(folio);
691}
692
693void __mem_cgroup_uncharge_list(struct list_head *page_list);
694static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
695{
696 if (mem_cgroup_disabled())
697 return;
698 __mem_cgroup_uncharge_list(page_list);
699}
700
701void mem_cgroup_migrate(struct folio *old, struct folio *new);
702
703/**
704 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
705 * @memcg: memcg of the wanted lruvec
706 * @pgdat: pglist_data
707 *
708 * Returns the lru list vector holding pages for a given @memcg &
709 * @pgdat combination. This can be the node lruvec, if the memory
710 * controller is disabled.
711 */
712static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
713 struct pglist_data *pgdat)
714{
715 struct mem_cgroup_per_node *mz;
716 struct lruvec *lruvec;
717
718 if (mem_cgroup_disabled()) {
719 lruvec = &pgdat->__lruvec;
720 goto out;
721 }
722
723 if (!memcg)
724 memcg = root_mem_cgroup;
725
726 mz = memcg->nodeinfo[pgdat->node_id];
727 lruvec = &mz->lruvec;
728out:
729 /*
730 * Since a node can be onlined after the mem_cgroup was created,
731 * we have to be prepared to initialize lruvec->pgdat here;
732 * and if offlined then reonlined, we need to reinitialize it.
733 */
734 if (unlikely(lruvec->pgdat != pgdat))
735 lruvec->pgdat = pgdat;
736 return lruvec;
737}
738
739/**
740 * folio_lruvec - return lruvec for isolating/putting an LRU folio
741 * @folio: Pointer to the folio.
742 *
743 * This function relies on folio->mem_cgroup being stable.
744 */
745static inline struct lruvec *folio_lruvec(struct folio *folio)
746{
747 struct mem_cgroup *memcg = folio_memcg(folio);
748
749 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
750 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
751}
752
753struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
754
755struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
756
757struct lruvec *folio_lruvec_lock(struct folio *folio);
758struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
759struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
760 unsigned long *flags);
761
762#ifdef CONFIG_DEBUG_VM
763void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
764#else
765static inline
766void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
767{
768}
769#endif
770
771static inline
772struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
773 return css ? container_of(css, struct mem_cgroup, css) : NULL;
774}
775
776static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
777{
778 return percpu_ref_tryget(&objcg->refcnt);
779}
780
781static inline void obj_cgroup_get(struct obj_cgroup *objcg)
782{
783 percpu_ref_get(&objcg->refcnt);
784}
785
786static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
787 unsigned long nr)
788{
789 percpu_ref_get_many(&objcg->refcnt, nr);
790}
791
792static inline void obj_cgroup_put(struct obj_cgroup *objcg)
793{
794 percpu_ref_put(&objcg->refcnt);
795}
796
797static inline void mem_cgroup_put(struct mem_cgroup *memcg)
798{
799 if (memcg)
800 css_put(&memcg->css);
801}
802
803#define mem_cgroup_from_counter(counter, member) \
804 container_of(counter, struct mem_cgroup, member)
805
806struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
807 struct mem_cgroup *,
808 struct mem_cgroup_reclaim_cookie *);
809void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
810int mem_cgroup_scan_tasks(struct mem_cgroup *,
811 int (*)(struct task_struct *, void *), void *);
812
813static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
814{
815 if (mem_cgroup_disabled())
816 return 0;
817
818 return memcg->id.id;
819}
820struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
821
822#ifdef CONFIG_SHRINKER_DEBUG
823static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
824{
825 return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
826}
827
828struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
829#endif
830
831static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
832{
833 return mem_cgroup_from_css(seq_css(m));
834}
835
836static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
837{
838 struct mem_cgroup_per_node *mz;
839
840 if (mem_cgroup_disabled())
841 return NULL;
842
843 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
844 return mz->memcg;
845}
846
847/**
848 * parent_mem_cgroup - find the accounting parent of a memcg
849 * @memcg: memcg whose parent to find
850 *
851 * Returns the parent memcg, or NULL if this is the root or the memory
852 * controller is in legacy no-hierarchy mode.
853 */
854static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
855{
856 return mem_cgroup_from_css(memcg->css.parent);
857}
858
859static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
860 struct mem_cgroup *root)
861{
862 if (root == memcg)
863 return true;
864 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
865}
866
867static inline bool mm_match_cgroup(struct mm_struct *mm,
868 struct mem_cgroup *memcg)
869{
870 struct mem_cgroup *task_memcg;
871 bool match = false;
872
873 rcu_read_lock();
874 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
875 if (task_memcg)
876 match = mem_cgroup_is_descendant(task_memcg, memcg);
877 rcu_read_unlock();
878 return match;
879}
880
881struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
882ino_t page_cgroup_ino(struct page *page);
883
884static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
885{
886 if (mem_cgroup_disabled())
887 return true;
888 return !!(memcg->css.flags & CSS_ONLINE);
889}
890
891void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
892 int zid, int nr_pages);
893
894static inline
895unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
896 enum lru_list lru, int zone_idx)
897{
898 struct mem_cgroup_per_node *mz;
899
900 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
901 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
902}
903
904void mem_cgroup_handle_over_high(void);
905
906unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
907
908unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
909
910void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
911 struct task_struct *p);
912
913void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
914
915static inline void mem_cgroup_enter_user_fault(void)
916{
917 WARN_ON(current->in_user_fault);
918 current->in_user_fault = 1;
919}
920
921static inline void mem_cgroup_exit_user_fault(void)
922{
923 WARN_ON(!current->in_user_fault);
924 current->in_user_fault = 0;
925}
926
927static inline bool task_in_memcg_oom(struct task_struct *p)
928{
929 return p->memcg_in_oom;
930}
931
932bool mem_cgroup_oom_synchronize(bool wait);
933struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
934 struct mem_cgroup *oom_domain);
935void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
936
937void folio_memcg_lock(struct folio *folio);
938void folio_memcg_unlock(struct folio *folio);
939void lock_page_memcg(struct page *page);
940void unlock_page_memcg(struct page *page);
941
942void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
943
944/* try to stablize folio_memcg() for all the pages in a memcg */
945static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
946{
947 rcu_read_lock();
948
949 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
950 return true;
951
952 rcu_read_unlock();
953 return false;
954}
955
956static inline void mem_cgroup_unlock_pages(void)
957{
958 rcu_read_unlock();
959}
960
961/* idx can be of type enum memcg_stat_item or node_stat_item */
962static inline void mod_memcg_state(struct mem_cgroup *memcg,
963 int idx, int val)
964{
965 unsigned long flags;
966
967 local_irq_save(flags);
968 __mod_memcg_state(memcg, idx, val);
969 local_irq_restore(flags);
970}
971
972static inline void mod_memcg_page_state(struct page *page,
973 int idx, int val)
974{
975 struct mem_cgroup *memcg;
976
977 if (mem_cgroup_disabled())
978 return;
979
980 rcu_read_lock();
981 memcg = page_memcg(page);
982 if (memcg)
983 mod_memcg_state(memcg, idx, val);
984 rcu_read_unlock();
985}
986
987unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
988
989static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
990 enum node_stat_item idx)
991{
992 struct mem_cgroup_per_node *pn;
993 long x;
994
995 if (mem_cgroup_disabled())
996 return node_page_state(lruvec_pgdat(lruvec), idx);
997
998 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
999 x = READ_ONCE(pn->lruvec_stats.state[idx]);
1000#ifdef CONFIG_SMP
1001 if (x < 0)
1002 x = 0;
1003#endif
1004 return x;
1005}
1006
1007static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1008 enum node_stat_item idx)
1009{
1010 struct mem_cgroup_per_node *pn;
1011 long x = 0;
1012 int cpu;
1013
1014 if (mem_cgroup_disabled())
1015 return node_page_state(lruvec_pgdat(lruvec), idx);
1016
1017 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1018 for_each_possible_cpu(cpu)
1019 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1020#ifdef CONFIG_SMP
1021 if (x < 0)
1022 x = 0;
1023#endif
1024 return x;
1025}
1026
1027void mem_cgroup_flush_stats(void);
1028void mem_cgroup_flush_stats_delayed(void);
1029
1030void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1031 int val);
1032void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1033
1034static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1035 int val)
1036{
1037 unsigned long flags;
1038
1039 local_irq_save(flags);
1040 __mod_lruvec_kmem_state(p, idx, val);
1041 local_irq_restore(flags);
1042}
1043
1044static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1045 enum node_stat_item idx, int val)
1046{
1047 unsigned long flags;
1048
1049 local_irq_save(flags);
1050 __mod_memcg_lruvec_state(lruvec, idx, val);
1051 local_irq_restore(flags);
1052}
1053
1054void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1055 unsigned long count);
1056
1057static inline void count_memcg_events(struct mem_cgroup *memcg,
1058 enum vm_event_item idx,
1059 unsigned long count)
1060{
1061 unsigned long flags;
1062
1063 local_irq_save(flags);
1064 __count_memcg_events(memcg, idx, count);
1065 local_irq_restore(flags);
1066}
1067
1068static inline void count_memcg_page_event(struct page *page,
1069 enum vm_event_item idx)
1070{
1071 struct mem_cgroup *memcg = page_memcg(page);
1072
1073 if (memcg)
1074 count_memcg_events(memcg, idx, 1);
1075}
1076
1077static inline void count_memcg_folio_events(struct folio *folio,
1078 enum vm_event_item idx, unsigned long nr)
1079{
1080 struct mem_cgroup *memcg = folio_memcg(folio);
1081
1082 if (memcg)
1083 count_memcg_events(memcg, idx, nr);
1084}
1085
1086static inline void count_memcg_event_mm(struct mm_struct *mm,
1087 enum vm_event_item idx)
1088{
1089 struct mem_cgroup *memcg;
1090
1091 if (mem_cgroup_disabled())
1092 return;
1093
1094 rcu_read_lock();
1095 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1096 if (likely(memcg))
1097 count_memcg_events(memcg, idx, 1);
1098 rcu_read_unlock();
1099}
1100
1101static inline void memcg_memory_event(struct mem_cgroup *memcg,
1102 enum memcg_memory_event event)
1103{
1104 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1105 event == MEMCG_SWAP_FAIL;
1106
1107 atomic_long_inc(&memcg->memory_events_local[event]);
1108 if (!swap_event)
1109 cgroup_file_notify(&memcg->events_local_file);
1110
1111 do {
1112 atomic_long_inc(&memcg->memory_events[event]);
1113 if (swap_event)
1114 cgroup_file_notify(&memcg->swap_events_file);
1115 else
1116 cgroup_file_notify(&memcg->events_file);
1117
1118 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1119 break;
1120 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1121 break;
1122 } while ((memcg = parent_mem_cgroup(memcg)) &&
1123 !mem_cgroup_is_root(memcg));
1124}
1125
1126static inline void memcg_memory_event_mm(struct mm_struct *mm,
1127 enum memcg_memory_event event)
1128{
1129 struct mem_cgroup *memcg;
1130
1131 if (mem_cgroup_disabled())
1132 return;
1133
1134 rcu_read_lock();
1135 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1136 if (likely(memcg))
1137 memcg_memory_event(memcg, event);
1138 rcu_read_unlock();
1139}
1140
1141void split_page_memcg(struct page *head, unsigned int nr);
1142
1143unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1144 gfp_t gfp_mask,
1145 unsigned long *total_scanned);
1146
1147#else /* CONFIG_MEMCG */
1148
1149#define MEM_CGROUP_ID_SHIFT 0
1150#define MEM_CGROUP_ID_MAX 0
1151
1152static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1153{
1154 return NULL;
1155}
1156
1157static inline struct mem_cgroup *page_memcg(struct page *page)
1158{
1159 return NULL;
1160}
1161
1162static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1163{
1164 WARN_ON_ONCE(!rcu_read_lock_held());
1165 return NULL;
1166}
1167
1168static inline struct mem_cgroup *page_memcg_check(struct page *page)
1169{
1170 return NULL;
1171}
1172
1173static inline bool folio_memcg_kmem(struct folio *folio)
1174{
1175 return false;
1176}
1177
1178static inline bool PageMemcgKmem(struct page *page)
1179{
1180 return false;
1181}
1182
1183static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1184{
1185 return true;
1186}
1187
1188static inline bool mem_cgroup_disabled(void)
1189{
1190 return true;
1191}
1192
1193static inline void memcg_memory_event(struct mem_cgroup *memcg,
1194 enum memcg_memory_event event)
1195{
1196}
1197
1198static inline void memcg_memory_event_mm(struct mm_struct *mm,
1199 enum memcg_memory_event event)
1200{
1201}
1202
1203static inline void mem_cgroup_protection(struct mem_cgroup *root,
1204 struct mem_cgroup *memcg,
1205 unsigned long *min,
1206 unsigned long *low)
1207{
1208 *min = *low = 0;
1209}
1210
1211static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1212 struct mem_cgroup *memcg)
1213{
1214}
1215
1216static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1217 struct mem_cgroup *memcg)
1218{
1219 return true;
1220}
1221static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1222 struct mem_cgroup *memcg)
1223{
1224 return false;
1225}
1226
1227static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1228 struct mem_cgroup *memcg)
1229{
1230 return false;
1231}
1232
1233static inline int mem_cgroup_charge(struct folio *folio,
1234 struct mm_struct *mm, gfp_t gfp)
1235{
1236 return 0;
1237}
1238
1239static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1240 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1241{
1242 return 0;
1243}
1244
1245static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1246{
1247}
1248
1249static inline void mem_cgroup_uncharge(struct folio *folio)
1250{
1251}
1252
1253static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1254{
1255}
1256
1257static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1258{
1259}
1260
1261static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1262 struct pglist_data *pgdat)
1263{
1264 return &pgdat->__lruvec;
1265}
1266
1267static inline struct lruvec *folio_lruvec(struct folio *folio)
1268{
1269 struct pglist_data *pgdat = folio_pgdat(folio);
1270 return &pgdat->__lruvec;
1271}
1272
1273static inline
1274void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1275{
1276}
1277
1278static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1279{
1280 return NULL;
1281}
1282
1283static inline bool mm_match_cgroup(struct mm_struct *mm,
1284 struct mem_cgroup *memcg)
1285{
1286 return true;
1287}
1288
1289static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1290{
1291 return NULL;
1292}
1293
1294static inline
1295struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1296{
1297 return NULL;
1298}
1299
1300static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1301{
1302}
1303
1304static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1305{
1306}
1307
1308static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1309{
1310 struct pglist_data *pgdat = folio_pgdat(folio);
1311
1312 spin_lock(&pgdat->__lruvec.lru_lock);
1313 return &pgdat->__lruvec;
1314}
1315
1316static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1317{
1318 struct pglist_data *pgdat = folio_pgdat(folio);
1319
1320 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1321 return &pgdat->__lruvec;
1322}
1323
1324static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1325 unsigned long *flagsp)
1326{
1327 struct pglist_data *pgdat = folio_pgdat(folio);
1328
1329 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1330 return &pgdat->__lruvec;
1331}
1332
1333static inline struct mem_cgroup *
1334mem_cgroup_iter(struct mem_cgroup *root,
1335 struct mem_cgroup *prev,
1336 struct mem_cgroup_reclaim_cookie *reclaim)
1337{
1338 return NULL;
1339}
1340
1341static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1342 struct mem_cgroup *prev)
1343{
1344}
1345
1346static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1347 int (*fn)(struct task_struct *, void *), void *arg)
1348{
1349 return 0;
1350}
1351
1352static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1353{
1354 return 0;
1355}
1356
1357static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1358{
1359 WARN_ON_ONCE(id);
1360 /* XXX: This should always return root_mem_cgroup */
1361 return NULL;
1362}
1363
1364#ifdef CONFIG_SHRINKER_DEBUG
1365static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1366{
1367 return 0;
1368}
1369
1370static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1371{
1372 return NULL;
1373}
1374#endif
1375
1376static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1377{
1378 return NULL;
1379}
1380
1381static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1382{
1383 return NULL;
1384}
1385
1386static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1387{
1388 return true;
1389}
1390
1391static inline
1392unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1393 enum lru_list lru, int zone_idx)
1394{
1395 return 0;
1396}
1397
1398static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1399{
1400 return 0;
1401}
1402
1403static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1404{
1405 return 0;
1406}
1407
1408static inline void
1409mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1410{
1411}
1412
1413static inline void
1414mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1415{
1416}
1417
1418static inline void lock_page_memcg(struct page *page)
1419{
1420}
1421
1422static inline void unlock_page_memcg(struct page *page)
1423{
1424}
1425
1426static inline void folio_memcg_lock(struct folio *folio)
1427{
1428}
1429
1430static inline void folio_memcg_unlock(struct folio *folio)
1431{
1432}
1433
1434static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1435{
1436 /* to match folio_memcg_rcu() */
1437 rcu_read_lock();
1438 return true;
1439}
1440
1441static inline void mem_cgroup_unlock_pages(void)
1442{
1443 rcu_read_unlock();
1444}
1445
1446static inline void mem_cgroup_handle_over_high(void)
1447{
1448}
1449
1450static inline void mem_cgroup_enter_user_fault(void)
1451{
1452}
1453
1454static inline void mem_cgroup_exit_user_fault(void)
1455{
1456}
1457
1458static inline bool task_in_memcg_oom(struct task_struct *p)
1459{
1460 return false;
1461}
1462
1463static inline bool mem_cgroup_oom_synchronize(bool wait)
1464{
1465 return false;
1466}
1467
1468static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1469 struct task_struct *victim, struct mem_cgroup *oom_domain)
1470{
1471 return NULL;
1472}
1473
1474static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1475{
1476}
1477
1478static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1479 int idx,
1480 int nr)
1481{
1482}
1483
1484static inline void mod_memcg_state(struct mem_cgroup *memcg,
1485 int idx,
1486 int nr)
1487{
1488}
1489
1490static inline void mod_memcg_page_state(struct page *page,
1491 int idx, int val)
1492{
1493}
1494
1495static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1496{
1497 return 0;
1498}
1499
1500static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1501 enum node_stat_item idx)
1502{
1503 return node_page_state(lruvec_pgdat(lruvec), idx);
1504}
1505
1506static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1507 enum node_stat_item idx)
1508{
1509 return node_page_state(lruvec_pgdat(lruvec), idx);
1510}
1511
1512static inline void mem_cgroup_flush_stats(void)
1513{
1514}
1515
1516static inline void mem_cgroup_flush_stats_delayed(void)
1517{
1518}
1519
1520static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1521 enum node_stat_item idx, int val)
1522{
1523}
1524
1525static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1526 int val)
1527{
1528 struct page *page = virt_to_head_page(p);
1529
1530 __mod_node_page_state(page_pgdat(page), idx, val);
1531}
1532
1533static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1534 int val)
1535{
1536 struct page *page = virt_to_head_page(p);
1537
1538 mod_node_page_state(page_pgdat(page), idx, val);
1539}
1540
1541static inline void count_memcg_events(struct mem_cgroup *memcg,
1542 enum vm_event_item idx,
1543 unsigned long count)
1544{
1545}
1546
1547static inline void __count_memcg_events(struct mem_cgroup *memcg,
1548 enum vm_event_item idx,
1549 unsigned long count)
1550{
1551}
1552
1553static inline void count_memcg_page_event(struct page *page,
1554 int idx)
1555{
1556}
1557
1558static inline void count_memcg_folio_events(struct folio *folio,
1559 enum vm_event_item idx, unsigned long nr)
1560{
1561}
1562
1563static inline
1564void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1565{
1566}
1567
1568static inline void split_page_memcg(struct page *head, unsigned int nr)
1569{
1570}
1571
1572static inline
1573unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1574 gfp_t gfp_mask,
1575 unsigned long *total_scanned)
1576{
1577 return 0;
1578}
1579#endif /* CONFIG_MEMCG */
1580
1581static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1582{
1583 __mod_lruvec_kmem_state(p, idx, 1);
1584}
1585
1586static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1587{
1588 __mod_lruvec_kmem_state(p, idx, -1);
1589}
1590
1591static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1592{
1593 struct mem_cgroup *memcg;
1594
1595 memcg = lruvec_memcg(lruvec);
1596 if (!memcg)
1597 return NULL;
1598 memcg = parent_mem_cgroup(memcg);
1599 if (!memcg)
1600 return NULL;
1601 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1602}
1603
1604static inline void unlock_page_lruvec(struct lruvec *lruvec)
1605{
1606 spin_unlock(&lruvec->lru_lock);
1607}
1608
1609static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1610{
1611 spin_unlock_irq(&lruvec->lru_lock);
1612}
1613
1614static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1615 unsigned long flags)
1616{
1617 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1618}
1619
1620/* Test requires a stable page->memcg binding, see page_memcg() */
1621static inline bool folio_matches_lruvec(struct folio *folio,
1622 struct lruvec *lruvec)
1623{
1624 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1625 lruvec_memcg(lruvec) == folio_memcg(folio);
1626}
1627
1628/* Don't lock again iff page's lruvec locked */
1629static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1630 struct lruvec *locked_lruvec)
1631{
1632 if (locked_lruvec) {
1633 if (folio_matches_lruvec(folio, locked_lruvec))
1634 return locked_lruvec;
1635
1636 unlock_page_lruvec_irq(locked_lruvec);
1637 }
1638
1639 return folio_lruvec_lock_irq(folio);
1640}
1641
1642/* Don't lock again iff page's lruvec locked */
1643static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1644 struct lruvec *locked_lruvec, unsigned long *flags)
1645{
1646 if (locked_lruvec) {
1647 if (folio_matches_lruvec(folio, locked_lruvec))
1648 return locked_lruvec;
1649
1650 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1651 }
1652
1653 return folio_lruvec_lock_irqsave(folio, flags);
1654}
1655
1656#ifdef CONFIG_CGROUP_WRITEBACK
1657
1658struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1659void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1660 unsigned long *pheadroom, unsigned long *pdirty,
1661 unsigned long *pwriteback);
1662
1663void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1664 struct bdi_writeback *wb);
1665
1666static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1667 struct bdi_writeback *wb)
1668{
1669 struct mem_cgroup *memcg;
1670
1671 if (mem_cgroup_disabled())
1672 return;
1673
1674 memcg = folio_memcg(folio);
1675 if (unlikely(memcg && &memcg->css != wb->memcg_css))
1676 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1677}
1678
1679void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1680
1681#else /* CONFIG_CGROUP_WRITEBACK */
1682
1683static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1684{
1685 return NULL;
1686}
1687
1688static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1689 unsigned long *pfilepages,
1690 unsigned long *pheadroom,
1691 unsigned long *pdirty,
1692 unsigned long *pwriteback)
1693{
1694}
1695
1696static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1697 struct bdi_writeback *wb)
1698{
1699}
1700
1701static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1702{
1703}
1704
1705#endif /* CONFIG_CGROUP_WRITEBACK */
1706
1707struct sock;
1708bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1709 gfp_t gfp_mask);
1710void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1711#ifdef CONFIG_MEMCG
1712extern struct static_key_false memcg_sockets_enabled_key;
1713#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1714void mem_cgroup_sk_alloc(struct sock *sk);
1715void mem_cgroup_sk_free(struct sock *sk);
1716static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1717{
1718 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1719 return true;
1720 do {
1721 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1722 return true;
1723 } while ((memcg = parent_mem_cgroup(memcg)));
1724 return false;
1725}
1726
1727int alloc_shrinker_info(struct mem_cgroup *memcg);
1728void free_shrinker_info(struct mem_cgroup *memcg);
1729void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1730void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1731#else
1732#define mem_cgroup_sockets_enabled 0
1733static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1734static inline void mem_cgroup_sk_free(struct sock *sk) { };
1735static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1736{
1737 return false;
1738}
1739
1740static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1741 int nid, int shrinker_id)
1742{
1743}
1744#endif
1745
1746#ifdef CONFIG_MEMCG_KMEM
1747bool mem_cgroup_kmem_disabled(void);
1748int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1749void __memcg_kmem_uncharge_page(struct page *page, int order);
1750
1751struct obj_cgroup *get_obj_cgroup_from_current(void);
1752struct obj_cgroup *get_obj_cgroup_from_page(struct page *page);
1753
1754int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1755void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1756
1757extern struct static_key_false memcg_kmem_enabled_key;
1758
1759static inline bool memcg_kmem_enabled(void)
1760{
1761 return static_branch_likely(&memcg_kmem_enabled_key);
1762}
1763
1764static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1765 int order)
1766{
1767 if (memcg_kmem_enabled())
1768 return __memcg_kmem_charge_page(page, gfp, order);
1769 return 0;
1770}
1771
1772static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1773{
1774 if (memcg_kmem_enabled())
1775 __memcg_kmem_uncharge_page(page, order);
1776}
1777
1778/*
1779 * A helper for accessing memcg's kmem_id, used for getting
1780 * corresponding LRU lists.
1781 */
1782static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1783{
1784 return memcg ? memcg->kmemcg_id : -1;
1785}
1786
1787struct mem_cgroup *mem_cgroup_from_obj(void *p);
1788struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1789
1790static inline void count_objcg_event(struct obj_cgroup *objcg,
1791 enum vm_event_item idx)
1792{
1793 struct mem_cgroup *memcg;
1794
1795 if (!memcg_kmem_enabled())
1796 return;
1797
1798 rcu_read_lock();
1799 memcg = obj_cgroup_memcg(objcg);
1800 count_memcg_events(memcg, idx, 1);
1801 rcu_read_unlock();
1802}
1803
1804#else
1805static inline bool mem_cgroup_kmem_disabled(void)
1806{
1807 return true;
1808}
1809
1810static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1811 int order)
1812{
1813 return 0;
1814}
1815
1816static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1817{
1818}
1819
1820static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1821 int order)
1822{
1823 return 0;
1824}
1825
1826static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1827{
1828}
1829
1830static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
1831{
1832 return NULL;
1833}
1834
1835static inline bool memcg_kmem_enabled(void)
1836{
1837 return false;
1838}
1839
1840static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1841{
1842 return -1;
1843}
1844
1845static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1846{
1847 return NULL;
1848}
1849
1850static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1851{
1852 return NULL;
1853}
1854
1855static inline void count_objcg_event(struct obj_cgroup *objcg,
1856 enum vm_event_item idx)
1857{
1858}
1859
1860#endif /* CONFIG_MEMCG_KMEM */
1861
1862#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1863bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1864void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1865void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1866#else
1867static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1868{
1869 return true;
1870}
1871static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1872 size_t size)
1873{
1874}
1875static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1876 size_t size)
1877{
1878}
1879#endif
1880
1881#endif /* _LINUX_MEMCONTROL_H */