Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21#ifndef _LINUX_NETDEVICE_H
22#define _LINUX_NETDEVICE_H
23
24#include <linux/timer.h>
25#include <linux/bug.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/prefetch.h>
29#include <asm/cache.h>
30#include <asm/byteorder.h>
31#include <asm/local.h>
32
33#include <linux/percpu.h>
34#include <linux/rculist.h>
35#include <linux/workqueue.h>
36#include <linux/dynamic_queue_limits.h>
37
38#include <net/net_namespace.h>
39#ifdef CONFIG_DCB
40#include <net/dcbnl.h>
41#endif
42#include <net/netprio_cgroup.h>
43#include <net/xdp.h>
44
45#include <linux/netdev_features.h>
46#include <linux/neighbour.h>
47#include <uapi/linux/netdevice.h>
48#include <uapi/linux/if_bonding.h>
49#include <uapi/linux/pkt_cls.h>
50#include <linux/hashtable.h>
51#include <linux/rbtree.h>
52#include <net/net_trackers.h>
53#include <net/net_debug.h>
54
55struct netpoll_info;
56struct device;
57struct ethtool_ops;
58struct phy_device;
59struct dsa_port;
60struct ip_tunnel_parm;
61struct macsec_context;
62struct macsec_ops;
63struct netdev_name_node;
64struct sd_flow_limit;
65struct sfp_bus;
66/* 802.11 specific */
67struct wireless_dev;
68/* 802.15.4 specific */
69struct wpan_dev;
70struct mpls_dev;
71/* UDP Tunnel offloads */
72struct udp_tunnel_info;
73struct udp_tunnel_nic_info;
74struct udp_tunnel_nic;
75struct bpf_prog;
76struct xdp_buff;
77
78void synchronize_net(void);
79void netdev_set_default_ethtool_ops(struct net_device *dev,
80 const struct ethtool_ops *ops);
81void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
82
83/* Backlog congestion levels */
84#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
85#define NET_RX_DROP 1 /* packet dropped */
86
87#define MAX_NEST_DEV 8
88
89/*
90 * Transmit return codes: transmit return codes originate from three different
91 * namespaces:
92 *
93 * - qdisc return codes
94 * - driver transmit return codes
95 * - errno values
96 *
97 * Drivers are allowed to return any one of those in their hard_start_xmit()
98 * function. Real network devices commonly used with qdiscs should only return
99 * the driver transmit return codes though - when qdiscs are used, the actual
100 * transmission happens asynchronously, so the value is not propagated to
101 * higher layers. Virtual network devices transmit synchronously; in this case
102 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
103 * others are propagated to higher layers.
104 */
105
106/* qdisc ->enqueue() return codes. */
107#define NET_XMIT_SUCCESS 0x00
108#define NET_XMIT_DROP 0x01 /* skb dropped */
109#define NET_XMIT_CN 0x02 /* congestion notification */
110#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
111
112/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
113 * indicates that the device will soon be dropping packets, or already drops
114 * some packets of the same priority; prompting us to send less aggressively. */
115#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
116#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
117
118/* Driver transmit return codes */
119#define NETDEV_TX_MASK 0xf0
120
121enum netdev_tx {
122 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
123 NETDEV_TX_OK = 0x00, /* driver took care of packet */
124 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
125};
126typedef enum netdev_tx netdev_tx_t;
127
128/*
129 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
130 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
131 */
132static inline bool dev_xmit_complete(int rc)
133{
134 /*
135 * Positive cases with an skb consumed by a driver:
136 * - successful transmission (rc == NETDEV_TX_OK)
137 * - error while transmitting (rc < 0)
138 * - error while queueing to a different device (rc & NET_XMIT_MASK)
139 */
140 if (likely(rc < NET_XMIT_MASK))
141 return true;
142
143 return false;
144}
145
146/*
147 * Compute the worst-case header length according to the protocols
148 * used.
149 */
150
151#if defined(CONFIG_HYPERV_NET)
152# define LL_MAX_HEADER 128
153#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
154# if defined(CONFIG_MAC80211_MESH)
155# define LL_MAX_HEADER 128
156# else
157# define LL_MAX_HEADER 96
158# endif
159#else
160# define LL_MAX_HEADER 32
161#endif
162
163#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
164 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
165#define MAX_HEADER LL_MAX_HEADER
166#else
167#define MAX_HEADER (LL_MAX_HEADER + 48)
168#endif
169
170/*
171 * Old network device statistics. Fields are native words
172 * (unsigned long) so they can be read and written atomically.
173 */
174
175#define NET_DEV_STAT(FIELD) \
176 union { \
177 unsigned long FIELD; \
178 atomic_long_t __##FIELD; \
179 }
180
181struct net_device_stats {
182 NET_DEV_STAT(rx_packets);
183 NET_DEV_STAT(tx_packets);
184 NET_DEV_STAT(rx_bytes);
185 NET_DEV_STAT(tx_bytes);
186 NET_DEV_STAT(rx_errors);
187 NET_DEV_STAT(tx_errors);
188 NET_DEV_STAT(rx_dropped);
189 NET_DEV_STAT(tx_dropped);
190 NET_DEV_STAT(multicast);
191 NET_DEV_STAT(collisions);
192 NET_DEV_STAT(rx_length_errors);
193 NET_DEV_STAT(rx_over_errors);
194 NET_DEV_STAT(rx_crc_errors);
195 NET_DEV_STAT(rx_frame_errors);
196 NET_DEV_STAT(rx_fifo_errors);
197 NET_DEV_STAT(rx_missed_errors);
198 NET_DEV_STAT(tx_aborted_errors);
199 NET_DEV_STAT(tx_carrier_errors);
200 NET_DEV_STAT(tx_fifo_errors);
201 NET_DEV_STAT(tx_heartbeat_errors);
202 NET_DEV_STAT(tx_window_errors);
203 NET_DEV_STAT(rx_compressed);
204 NET_DEV_STAT(tx_compressed);
205};
206#undef NET_DEV_STAT
207
208/* per-cpu stats, allocated on demand.
209 * Try to fit them in a single cache line, for dev_get_stats() sake.
210 */
211struct net_device_core_stats {
212 unsigned long rx_dropped;
213 unsigned long tx_dropped;
214 unsigned long rx_nohandler;
215 unsigned long rx_otherhost_dropped;
216} __aligned(4 * sizeof(unsigned long));
217
218#include <linux/cache.h>
219#include <linux/skbuff.h>
220
221#ifdef CONFIG_RPS
222#include <linux/static_key.h>
223extern struct static_key_false rps_needed;
224extern struct static_key_false rfs_needed;
225#endif
226
227struct neighbour;
228struct neigh_parms;
229struct sk_buff;
230
231struct netdev_hw_addr {
232 struct list_head list;
233 struct rb_node node;
234 unsigned char addr[MAX_ADDR_LEN];
235 unsigned char type;
236#define NETDEV_HW_ADDR_T_LAN 1
237#define NETDEV_HW_ADDR_T_SAN 2
238#define NETDEV_HW_ADDR_T_UNICAST 3
239#define NETDEV_HW_ADDR_T_MULTICAST 4
240 bool global_use;
241 int sync_cnt;
242 int refcount;
243 int synced;
244 struct rcu_head rcu_head;
245};
246
247struct netdev_hw_addr_list {
248 struct list_head list;
249 int count;
250
251 /* Auxiliary tree for faster lookup on addition and deletion */
252 struct rb_root tree;
253};
254
255#define netdev_hw_addr_list_count(l) ((l)->count)
256#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
257#define netdev_hw_addr_list_for_each(ha, l) \
258 list_for_each_entry(ha, &(l)->list, list)
259
260#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
261#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
262#define netdev_for_each_uc_addr(ha, dev) \
263 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
264#define netdev_for_each_synced_uc_addr(_ha, _dev) \
265 netdev_for_each_uc_addr((_ha), (_dev)) \
266 if ((_ha)->sync_cnt)
267
268#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
269#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
270#define netdev_for_each_mc_addr(ha, dev) \
271 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
272#define netdev_for_each_synced_mc_addr(_ha, _dev) \
273 netdev_for_each_mc_addr((_ha), (_dev)) \
274 if ((_ha)->sync_cnt)
275
276struct hh_cache {
277 unsigned int hh_len;
278 seqlock_t hh_lock;
279
280 /* cached hardware header; allow for machine alignment needs. */
281#define HH_DATA_MOD 16
282#define HH_DATA_OFF(__len) \
283 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
284#define HH_DATA_ALIGN(__len) \
285 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
286 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
287};
288
289/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
290 * Alternative is:
291 * dev->hard_header_len ? (dev->hard_header_len +
292 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
293 *
294 * We could use other alignment values, but we must maintain the
295 * relationship HH alignment <= LL alignment.
296 */
297#define LL_RESERVED_SPACE(dev) \
298 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
299#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
300 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
301
302struct header_ops {
303 int (*create) (struct sk_buff *skb, struct net_device *dev,
304 unsigned short type, const void *daddr,
305 const void *saddr, unsigned int len);
306 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
307 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
308 void (*cache_update)(struct hh_cache *hh,
309 const struct net_device *dev,
310 const unsigned char *haddr);
311 bool (*validate)(const char *ll_header, unsigned int len);
312 __be16 (*parse_protocol)(const struct sk_buff *skb);
313};
314
315/* These flag bits are private to the generic network queueing
316 * layer; they may not be explicitly referenced by any other
317 * code.
318 */
319
320enum netdev_state_t {
321 __LINK_STATE_START,
322 __LINK_STATE_PRESENT,
323 __LINK_STATE_NOCARRIER,
324 __LINK_STATE_LINKWATCH_PENDING,
325 __LINK_STATE_DORMANT,
326 __LINK_STATE_TESTING,
327};
328
329struct gro_list {
330 struct list_head list;
331 int count;
332};
333
334/*
335 * size of gro hash buckets, must less than bit number of
336 * napi_struct::gro_bitmask
337 */
338#define GRO_HASH_BUCKETS 8
339
340/*
341 * Structure for NAPI scheduling similar to tasklet but with weighting
342 */
343struct napi_struct {
344 /* The poll_list must only be managed by the entity which
345 * changes the state of the NAPI_STATE_SCHED bit. This means
346 * whoever atomically sets that bit can add this napi_struct
347 * to the per-CPU poll_list, and whoever clears that bit
348 * can remove from the list right before clearing the bit.
349 */
350 struct list_head poll_list;
351
352 unsigned long state;
353 int weight;
354 int defer_hard_irqs_count;
355 unsigned long gro_bitmask;
356 int (*poll)(struct napi_struct *, int);
357#ifdef CONFIG_NETPOLL
358 int poll_owner;
359#endif
360 struct net_device *dev;
361 struct gro_list gro_hash[GRO_HASH_BUCKETS];
362 struct sk_buff *skb;
363 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
364 int rx_count; /* length of rx_list */
365 struct hrtimer timer;
366 struct list_head dev_list;
367 struct hlist_node napi_hash_node;
368 unsigned int napi_id;
369 struct task_struct *thread;
370};
371
372enum {
373 NAPI_STATE_SCHED, /* Poll is scheduled */
374 NAPI_STATE_MISSED, /* reschedule a napi */
375 NAPI_STATE_DISABLE, /* Disable pending */
376 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
377 NAPI_STATE_LISTED, /* NAPI added to system lists */
378 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */
379 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */
380 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/
381 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/
382 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */
383};
384
385enum {
386 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
387 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
388 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
389 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
390 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED),
391 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
392 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
393 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL),
394 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED),
395 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED),
396};
397
398enum gro_result {
399 GRO_MERGED,
400 GRO_MERGED_FREE,
401 GRO_HELD,
402 GRO_NORMAL,
403 GRO_CONSUMED,
404};
405typedef enum gro_result gro_result_t;
406
407/*
408 * enum rx_handler_result - Possible return values for rx_handlers.
409 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
410 * further.
411 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
412 * case skb->dev was changed by rx_handler.
413 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
414 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
415 *
416 * rx_handlers are functions called from inside __netif_receive_skb(), to do
417 * special processing of the skb, prior to delivery to protocol handlers.
418 *
419 * Currently, a net_device can only have a single rx_handler registered. Trying
420 * to register a second rx_handler will return -EBUSY.
421 *
422 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
423 * To unregister a rx_handler on a net_device, use
424 * netdev_rx_handler_unregister().
425 *
426 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
427 * do with the skb.
428 *
429 * If the rx_handler consumed the skb in some way, it should return
430 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
431 * the skb to be delivered in some other way.
432 *
433 * If the rx_handler changed skb->dev, to divert the skb to another
434 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
435 * new device will be called if it exists.
436 *
437 * If the rx_handler decides the skb should be ignored, it should return
438 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
439 * are registered on exact device (ptype->dev == skb->dev).
440 *
441 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
442 * delivered, it should return RX_HANDLER_PASS.
443 *
444 * A device without a registered rx_handler will behave as if rx_handler
445 * returned RX_HANDLER_PASS.
446 */
447
448enum rx_handler_result {
449 RX_HANDLER_CONSUMED,
450 RX_HANDLER_ANOTHER,
451 RX_HANDLER_EXACT,
452 RX_HANDLER_PASS,
453};
454typedef enum rx_handler_result rx_handler_result_t;
455typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
456
457void __napi_schedule(struct napi_struct *n);
458void __napi_schedule_irqoff(struct napi_struct *n);
459
460static inline bool napi_disable_pending(struct napi_struct *n)
461{
462 return test_bit(NAPI_STATE_DISABLE, &n->state);
463}
464
465static inline bool napi_prefer_busy_poll(struct napi_struct *n)
466{
467 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
468}
469
470bool napi_schedule_prep(struct napi_struct *n);
471
472/**
473 * napi_schedule - schedule NAPI poll
474 * @n: NAPI context
475 *
476 * Schedule NAPI poll routine to be called if it is not already
477 * running.
478 */
479static inline void napi_schedule(struct napi_struct *n)
480{
481 if (napi_schedule_prep(n))
482 __napi_schedule(n);
483}
484
485/**
486 * napi_schedule_irqoff - schedule NAPI poll
487 * @n: NAPI context
488 *
489 * Variant of napi_schedule(), assuming hard irqs are masked.
490 */
491static inline void napi_schedule_irqoff(struct napi_struct *n)
492{
493 if (napi_schedule_prep(n))
494 __napi_schedule_irqoff(n);
495}
496
497/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
498static inline bool napi_reschedule(struct napi_struct *napi)
499{
500 if (napi_schedule_prep(napi)) {
501 __napi_schedule(napi);
502 return true;
503 }
504 return false;
505}
506
507bool napi_complete_done(struct napi_struct *n, int work_done);
508/**
509 * napi_complete - NAPI processing complete
510 * @n: NAPI context
511 *
512 * Mark NAPI processing as complete.
513 * Consider using napi_complete_done() instead.
514 * Return false if device should avoid rearming interrupts.
515 */
516static inline bool napi_complete(struct napi_struct *n)
517{
518 return napi_complete_done(n, 0);
519}
520
521int dev_set_threaded(struct net_device *dev, bool threaded);
522
523/**
524 * napi_disable - prevent NAPI from scheduling
525 * @n: NAPI context
526 *
527 * Stop NAPI from being scheduled on this context.
528 * Waits till any outstanding processing completes.
529 */
530void napi_disable(struct napi_struct *n);
531
532void napi_enable(struct napi_struct *n);
533
534/**
535 * napi_synchronize - wait until NAPI is not running
536 * @n: NAPI context
537 *
538 * Wait until NAPI is done being scheduled on this context.
539 * Waits till any outstanding processing completes but
540 * does not disable future activations.
541 */
542static inline void napi_synchronize(const struct napi_struct *n)
543{
544 if (IS_ENABLED(CONFIG_SMP))
545 while (test_bit(NAPI_STATE_SCHED, &n->state))
546 msleep(1);
547 else
548 barrier();
549}
550
551/**
552 * napi_if_scheduled_mark_missed - if napi is running, set the
553 * NAPIF_STATE_MISSED
554 * @n: NAPI context
555 *
556 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
557 * NAPI is scheduled.
558 **/
559static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
560{
561 unsigned long val, new;
562
563 val = READ_ONCE(n->state);
564 do {
565 if (val & NAPIF_STATE_DISABLE)
566 return true;
567
568 if (!(val & NAPIF_STATE_SCHED))
569 return false;
570
571 new = val | NAPIF_STATE_MISSED;
572 } while (!try_cmpxchg(&n->state, &val, new));
573
574 return true;
575}
576
577enum netdev_queue_state_t {
578 __QUEUE_STATE_DRV_XOFF,
579 __QUEUE_STATE_STACK_XOFF,
580 __QUEUE_STATE_FROZEN,
581};
582
583#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
584#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
585#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
586
587#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
588#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
589 QUEUE_STATE_FROZEN)
590#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
591 QUEUE_STATE_FROZEN)
592
593/*
594 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
595 * netif_tx_* functions below are used to manipulate this flag. The
596 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
597 * queue independently. The netif_xmit_*stopped functions below are called
598 * to check if the queue has been stopped by the driver or stack (either
599 * of the XOFF bits are set in the state). Drivers should not need to call
600 * netif_xmit*stopped functions, they should only be using netif_tx_*.
601 */
602
603struct netdev_queue {
604/*
605 * read-mostly part
606 */
607 struct net_device *dev;
608 netdevice_tracker dev_tracker;
609
610 struct Qdisc __rcu *qdisc;
611 struct Qdisc *qdisc_sleeping;
612#ifdef CONFIG_SYSFS
613 struct kobject kobj;
614#endif
615#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
616 int numa_node;
617#endif
618 unsigned long tx_maxrate;
619 /*
620 * Number of TX timeouts for this queue
621 * (/sys/class/net/DEV/Q/trans_timeout)
622 */
623 atomic_long_t trans_timeout;
624
625 /* Subordinate device that the queue has been assigned to */
626 struct net_device *sb_dev;
627#ifdef CONFIG_XDP_SOCKETS
628 struct xsk_buff_pool *pool;
629#endif
630/*
631 * write-mostly part
632 */
633 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
634 int xmit_lock_owner;
635 /*
636 * Time (in jiffies) of last Tx
637 */
638 unsigned long trans_start;
639
640 unsigned long state;
641
642#ifdef CONFIG_BQL
643 struct dql dql;
644#endif
645} ____cacheline_aligned_in_smp;
646
647extern int sysctl_fb_tunnels_only_for_init_net;
648extern int sysctl_devconf_inherit_init_net;
649
650/*
651 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
652 * == 1 : For initns only
653 * == 2 : For none.
654 */
655static inline bool net_has_fallback_tunnels(const struct net *net)
656{
657#if IS_ENABLED(CONFIG_SYSCTL)
658 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
659
660 return !fb_tunnels_only_for_init_net ||
661 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
662#else
663 return true;
664#endif
665}
666
667static inline int net_inherit_devconf(void)
668{
669#if IS_ENABLED(CONFIG_SYSCTL)
670 return READ_ONCE(sysctl_devconf_inherit_init_net);
671#else
672 return 0;
673#endif
674}
675
676static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
677{
678#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
679 return q->numa_node;
680#else
681 return NUMA_NO_NODE;
682#endif
683}
684
685static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
686{
687#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
688 q->numa_node = node;
689#endif
690}
691
692#ifdef CONFIG_RPS
693/*
694 * This structure holds an RPS map which can be of variable length. The
695 * map is an array of CPUs.
696 */
697struct rps_map {
698 unsigned int len;
699 struct rcu_head rcu;
700 u16 cpus[];
701};
702#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
703
704/*
705 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
706 * tail pointer for that CPU's input queue at the time of last enqueue, and
707 * a hardware filter index.
708 */
709struct rps_dev_flow {
710 u16 cpu;
711 u16 filter;
712 unsigned int last_qtail;
713};
714#define RPS_NO_FILTER 0xffff
715
716/*
717 * The rps_dev_flow_table structure contains a table of flow mappings.
718 */
719struct rps_dev_flow_table {
720 unsigned int mask;
721 struct rcu_head rcu;
722 struct rps_dev_flow flows[];
723};
724#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
725 ((_num) * sizeof(struct rps_dev_flow)))
726
727/*
728 * The rps_sock_flow_table contains mappings of flows to the last CPU
729 * on which they were processed by the application (set in recvmsg).
730 * Each entry is a 32bit value. Upper part is the high-order bits
731 * of flow hash, lower part is CPU number.
732 * rps_cpu_mask is used to partition the space, depending on number of
733 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
734 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
735 * meaning we use 32-6=26 bits for the hash.
736 */
737struct rps_sock_flow_table {
738 u32 mask;
739
740 u32 ents[] ____cacheline_aligned_in_smp;
741};
742#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
743
744#define RPS_NO_CPU 0xffff
745
746extern u32 rps_cpu_mask;
747extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
748
749static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
750 u32 hash)
751{
752 if (table && hash) {
753 unsigned int index = hash & table->mask;
754 u32 val = hash & ~rps_cpu_mask;
755
756 /* We only give a hint, preemption can change CPU under us */
757 val |= raw_smp_processor_id();
758
759 if (table->ents[index] != val)
760 table->ents[index] = val;
761 }
762}
763
764#ifdef CONFIG_RFS_ACCEL
765bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
766 u16 filter_id);
767#endif
768#endif /* CONFIG_RPS */
769
770/* This structure contains an instance of an RX queue. */
771struct netdev_rx_queue {
772 struct xdp_rxq_info xdp_rxq;
773#ifdef CONFIG_RPS
774 struct rps_map __rcu *rps_map;
775 struct rps_dev_flow_table __rcu *rps_flow_table;
776#endif
777 struct kobject kobj;
778 struct net_device *dev;
779 netdevice_tracker dev_tracker;
780
781#ifdef CONFIG_XDP_SOCKETS
782 struct xsk_buff_pool *pool;
783#endif
784} ____cacheline_aligned_in_smp;
785
786/*
787 * RX queue sysfs structures and functions.
788 */
789struct rx_queue_attribute {
790 struct attribute attr;
791 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
792 ssize_t (*store)(struct netdev_rx_queue *queue,
793 const char *buf, size_t len);
794};
795
796/* XPS map type and offset of the xps map within net_device->xps_maps[]. */
797enum xps_map_type {
798 XPS_CPUS = 0,
799 XPS_RXQS,
800 XPS_MAPS_MAX,
801};
802
803#ifdef CONFIG_XPS
804/*
805 * This structure holds an XPS map which can be of variable length. The
806 * map is an array of queues.
807 */
808struct xps_map {
809 unsigned int len;
810 unsigned int alloc_len;
811 struct rcu_head rcu;
812 u16 queues[];
813};
814#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
815#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
816 - sizeof(struct xps_map)) / sizeof(u16))
817
818/*
819 * This structure holds all XPS maps for device. Maps are indexed by CPU.
820 *
821 * We keep track of the number of cpus/rxqs used when the struct is allocated,
822 * in nr_ids. This will help not accessing out-of-bound memory.
823 *
824 * We keep track of the number of traffic classes used when the struct is
825 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
826 * not crossing its upper bound, as the original dev->num_tc can be updated in
827 * the meantime.
828 */
829struct xps_dev_maps {
830 struct rcu_head rcu;
831 unsigned int nr_ids;
832 s16 num_tc;
833 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
834};
835
836#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
837 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
838
839#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
840 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
841
842#endif /* CONFIG_XPS */
843
844#define TC_MAX_QUEUE 16
845#define TC_BITMASK 15
846/* HW offloaded queuing disciplines txq count and offset maps */
847struct netdev_tc_txq {
848 u16 count;
849 u16 offset;
850};
851
852#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
853/*
854 * This structure is to hold information about the device
855 * configured to run FCoE protocol stack.
856 */
857struct netdev_fcoe_hbainfo {
858 char manufacturer[64];
859 char serial_number[64];
860 char hardware_version[64];
861 char driver_version[64];
862 char optionrom_version[64];
863 char firmware_version[64];
864 char model[256];
865 char model_description[256];
866};
867#endif
868
869#define MAX_PHYS_ITEM_ID_LEN 32
870
871/* This structure holds a unique identifier to identify some
872 * physical item (port for example) used by a netdevice.
873 */
874struct netdev_phys_item_id {
875 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
876 unsigned char id_len;
877};
878
879static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
880 struct netdev_phys_item_id *b)
881{
882 return a->id_len == b->id_len &&
883 memcmp(a->id, b->id, a->id_len) == 0;
884}
885
886typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
887 struct sk_buff *skb,
888 struct net_device *sb_dev);
889
890enum net_device_path_type {
891 DEV_PATH_ETHERNET = 0,
892 DEV_PATH_VLAN,
893 DEV_PATH_BRIDGE,
894 DEV_PATH_PPPOE,
895 DEV_PATH_DSA,
896 DEV_PATH_MTK_WDMA,
897};
898
899struct net_device_path {
900 enum net_device_path_type type;
901 const struct net_device *dev;
902 union {
903 struct {
904 u16 id;
905 __be16 proto;
906 u8 h_dest[ETH_ALEN];
907 } encap;
908 struct {
909 enum {
910 DEV_PATH_BR_VLAN_KEEP,
911 DEV_PATH_BR_VLAN_TAG,
912 DEV_PATH_BR_VLAN_UNTAG,
913 DEV_PATH_BR_VLAN_UNTAG_HW,
914 } vlan_mode;
915 u16 vlan_id;
916 __be16 vlan_proto;
917 } bridge;
918 struct {
919 int port;
920 u16 proto;
921 } dsa;
922 struct {
923 u8 wdma_idx;
924 u8 queue;
925 u16 wcid;
926 u8 bss;
927 } mtk_wdma;
928 };
929};
930
931#define NET_DEVICE_PATH_STACK_MAX 5
932#define NET_DEVICE_PATH_VLAN_MAX 2
933
934struct net_device_path_stack {
935 int num_paths;
936 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX];
937};
938
939struct net_device_path_ctx {
940 const struct net_device *dev;
941 u8 daddr[ETH_ALEN];
942
943 int num_vlans;
944 struct {
945 u16 id;
946 __be16 proto;
947 } vlan[NET_DEVICE_PATH_VLAN_MAX];
948};
949
950enum tc_setup_type {
951 TC_QUERY_CAPS,
952 TC_SETUP_QDISC_MQPRIO,
953 TC_SETUP_CLSU32,
954 TC_SETUP_CLSFLOWER,
955 TC_SETUP_CLSMATCHALL,
956 TC_SETUP_CLSBPF,
957 TC_SETUP_BLOCK,
958 TC_SETUP_QDISC_CBS,
959 TC_SETUP_QDISC_RED,
960 TC_SETUP_QDISC_PRIO,
961 TC_SETUP_QDISC_MQ,
962 TC_SETUP_QDISC_ETF,
963 TC_SETUP_ROOT_QDISC,
964 TC_SETUP_QDISC_GRED,
965 TC_SETUP_QDISC_TAPRIO,
966 TC_SETUP_FT,
967 TC_SETUP_QDISC_ETS,
968 TC_SETUP_QDISC_TBF,
969 TC_SETUP_QDISC_FIFO,
970 TC_SETUP_QDISC_HTB,
971 TC_SETUP_ACT,
972};
973
974/* These structures hold the attributes of bpf state that are being passed
975 * to the netdevice through the bpf op.
976 */
977enum bpf_netdev_command {
978 /* Set or clear a bpf program used in the earliest stages of packet
979 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
980 * is responsible for calling bpf_prog_put on any old progs that are
981 * stored. In case of error, the callee need not release the new prog
982 * reference, but on success it takes ownership and must bpf_prog_put
983 * when it is no longer used.
984 */
985 XDP_SETUP_PROG,
986 XDP_SETUP_PROG_HW,
987 /* BPF program for offload callbacks, invoked at program load time. */
988 BPF_OFFLOAD_MAP_ALLOC,
989 BPF_OFFLOAD_MAP_FREE,
990 XDP_SETUP_XSK_POOL,
991};
992
993struct bpf_prog_offload_ops;
994struct netlink_ext_ack;
995struct xdp_umem;
996struct xdp_dev_bulk_queue;
997struct bpf_xdp_link;
998
999enum bpf_xdp_mode {
1000 XDP_MODE_SKB = 0,
1001 XDP_MODE_DRV = 1,
1002 XDP_MODE_HW = 2,
1003 __MAX_XDP_MODE
1004};
1005
1006struct bpf_xdp_entity {
1007 struct bpf_prog *prog;
1008 struct bpf_xdp_link *link;
1009};
1010
1011struct netdev_bpf {
1012 enum bpf_netdev_command command;
1013 union {
1014 /* XDP_SETUP_PROG */
1015 struct {
1016 u32 flags;
1017 struct bpf_prog *prog;
1018 struct netlink_ext_ack *extack;
1019 };
1020 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1021 struct {
1022 struct bpf_offloaded_map *offmap;
1023 };
1024 /* XDP_SETUP_XSK_POOL */
1025 struct {
1026 struct xsk_buff_pool *pool;
1027 u16 queue_id;
1028 } xsk;
1029 };
1030};
1031
1032/* Flags for ndo_xsk_wakeup. */
1033#define XDP_WAKEUP_RX (1 << 0)
1034#define XDP_WAKEUP_TX (1 << 1)
1035
1036#ifdef CONFIG_XFRM_OFFLOAD
1037struct xfrmdev_ops {
1038 int (*xdo_dev_state_add) (struct xfrm_state *x);
1039 void (*xdo_dev_state_delete) (struct xfrm_state *x);
1040 void (*xdo_dev_state_free) (struct xfrm_state *x);
1041 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
1042 struct xfrm_state *x);
1043 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1044 void (*xdo_dev_state_update_curlft) (struct xfrm_state *x);
1045 int (*xdo_dev_policy_add) (struct xfrm_policy *x);
1046 void (*xdo_dev_policy_delete) (struct xfrm_policy *x);
1047 void (*xdo_dev_policy_free) (struct xfrm_policy *x);
1048};
1049#endif
1050
1051struct dev_ifalias {
1052 struct rcu_head rcuhead;
1053 char ifalias[];
1054};
1055
1056struct devlink;
1057struct tlsdev_ops;
1058
1059struct netdev_net_notifier {
1060 struct list_head list;
1061 struct notifier_block *nb;
1062};
1063
1064/*
1065 * This structure defines the management hooks for network devices.
1066 * The following hooks can be defined; unless noted otherwise, they are
1067 * optional and can be filled with a null pointer.
1068 *
1069 * int (*ndo_init)(struct net_device *dev);
1070 * This function is called once when a network device is registered.
1071 * The network device can use this for any late stage initialization
1072 * or semantic validation. It can fail with an error code which will
1073 * be propagated back to register_netdev.
1074 *
1075 * void (*ndo_uninit)(struct net_device *dev);
1076 * This function is called when device is unregistered or when registration
1077 * fails. It is not called if init fails.
1078 *
1079 * int (*ndo_open)(struct net_device *dev);
1080 * This function is called when a network device transitions to the up
1081 * state.
1082 *
1083 * int (*ndo_stop)(struct net_device *dev);
1084 * This function is called when a network device transitions to the down
1085 * state.
1086 *
1087 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1088 * struct net_device *dev);
1089 * Called when a packet needs to be transmitted.
1090 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
1091 * the queue before that can happen; it's for obsolete devices and weird
1092 * corner cases, but the stack really does a non-trivial amount
1093 * of useless work if you return NETDEV_TX_BUSY.
1094 * Required; cannot be NULL.
1095 *
1096 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1097 * struct net_device *dev
1098 * netdev_features_t features);
1099 * Called by core transmit path to determine if device is capable of
1100 * performing offload operations on a given packet. This is to give
1101 * the device an opportunity to implement any restrictions that cannot
1102 * be otherwise expressed by feature flags. The check is called with
1103 * the set of features that the stack has calculated and it returns
1104 * those the driver believes to be appropriate.
1105 *
1106 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1107 * struct net_device *sb_dev);
1108 * Called to decide which queue to use when device supports multiple
1109 * transmit queues.
1110 *
1111 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1112 * This function is called to allow device receiver to make
1113 * changes to configuration when multicast or promiscuous is enabled.
1114 *
1115 * void (*ndo_set_rx_mode)(struct net_device *dev);
1116 * This function is called device changes address list filtering.
1117 * If driver handles unicast address filtering, it should set
1118 * IFF_UNICAST_FLT in its priv_flags.
1119 *
1120 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1121 * This function is called when the Media Access Control address
1122 * needs to be changed. If this interface is not defined, the
1123 * MAC address can not be changed.
1124 *
1125 * int (*ndo_validate_addr)(struct net_device *dev);
1126 * Test if Media Access Control address is valid for the device.
1127 *
1128 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1129 * Old-style ioctl entry point. This is used internally by the
1130 * appletalk and ieee802154 subsystems but is no longer called by
1131 * the device ioctl handler.
1132 *
1133 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1134 * Used by the bonding driver for its device specific ioctls:
1135 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1136 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1137 *
1138 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1139 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1140 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1141 *
1142 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1143 * Used to set network devices bus interface parameters. This interface
1144 * is retained for legacy reasons; new devices should use the bus
1145 * interface (PCI) for low level management.
1146 *
1147 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1148 * Called when a user wants to change the Maximum Transfer Unit
1149 * of a device.
1150 *
1151 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1152 * Callback used when the transmitter has not made any progress
1153 * for dev->watchdog ticks.
1154 *
1155 * void (*ndo_get_stats64)(struct net_device *dev,
1156 * struct rtnl_link_stats64 *storage);
1157 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1158 * Called when a user wants to get the network device usage
1159 * statistics. Drivers must do one of the following:
1160 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1161 * rtnl_link_stats64 structure passed by the caller.
1162 * 2. Define @ndo_get_stats to update a net_device_stats structure
1163 * (which should normally be dev->stats) and return a pointer to
1164 * it. The structure may be changed asynchronously only if each
1165 * field is written atomically.
1166 * 3. Update dev->stats asynchronously and atomically, and define
1167 * neither operation.
1168 *
1169 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1170 * Return true if this device supports offload stats of this attr_id.
1171 *
1172 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1173 * void *attr_data)
1174 * Get statistics for offload operations by attr_id. Write it into the
1175 * attr_data pointer.
1176 *
1177 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1178 * If device supports VLAN filtering this function is called when a
1179 * VLAN id is registered.
1180 *
1181 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1182 * If device supports VLAN filtering this function is called when a
1183 * VLAN id is unregistered.
1184 *
1185 * void (*ndo_poll_controller)(struct net_device *dev);
1186 *
1187 * SR-IOV management functions.
1188 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1189 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1190 * u8 qos, __be16 proto);
1191 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1192 * int max_tx_rate);
1193 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1194 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1195 * int (*ndo_get_vf_config)(struct net_device *dev,
1196 * int vf, struct ifla_vf_info *ivf);
1197 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1198 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1199 * struct nlattr *port[]);
1200 *
1201 * Enable or disable the VF ability to query its RSS Redirection Table and
1202 * Hash Key. This is needed since on some devices VF share this information
1203 * with PF and querying it may introduce a theoretical security risk.
1204 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1205 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1206 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1207 * void *type_data);
1208 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1209 * This is always called from the stack with the rtnl lock held and netif
1210 * tx queues stopped. This allows the netdevice to perform queue
1211 * management safely.
1212 *
1213 * Fiber Channel over Ethernet (FCoE) offload functions.
1214 * int (*ndo_fcoe_enable)(struct net_device *dev);
1215 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1216 * so the underlying device can perform whatever needed configuration or
1217 * initialization to support acceleration of FCoE traffic.
1218 *
1219 * int (*ndo_fcoe_disable)(struct net_device *dev);
1220 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1221 * so the underlying device can perform whatever needed clean-ups to
1222 * stop supporting acceleration of FCoE traffic.
1223 *
1224 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1225 * struct scatterlist *sgl, unsigned int sgc);
1226 * Called when the FCoE Initiator wants to initialize an I/O that
1227 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1228 * perform necessary setup and returns 1 to indicate the device is set up
1229 * successfully to perform DDP on this I/O, otherwise this returns 0.
1230 *
1231 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1232 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1233 * indicated by the FC exchange id 'xid', so the underlying device can
1234 * clean up and reuse resources for later DDP requests.
1235 *
1236 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1237 * struct scatterlist *sgl, unsigned int sgc);
1238 * Called when the FCoE Target wants to initialize an I/O that
1239 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1240 * perform necessary setup and returns 1 to indicate the device is set up
1241 * successfully to perform DDP on this I/O, otherwise this returns 0.
1242 *
1243 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1244 * struct netdev_fcoe_hbainfo *hbainfo);
1245 * Called when the FCoE Protocol stack wants information on the underlying
1246 * device. This information is utilized by the FCoE protocol stack to
1247 * register attributes with Fiber Channel management service as per the
1248 * FC-GS Fabric Device Management Information(FDMI) specification.
1249 *
1250 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1251 * Called when the underlying device wants to override default World Wide
1252 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1253 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1254 * protocol stack to use.
1255 *
1256 * RFS acceleration.
1257 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1258 * u16 rxq_index, u32 flow_id);
1259 * Set hardware filter for RFS. rxq_index is the target queue index;
1260 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1261 * Return the filter ID on success, or a negative error code.
1262 *
1263 * Slave management functions (for bridge, bonding, etc).
1264 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1265 * Called to make another netdev an underling.
1266 *
1267 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1268 * Called to release previously enslaved netdev.
1269 *
1270 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1271 * struct sk_buff *skb,
1272 * bool all_slaves);
1273 * Get the xmit slave of master device. If all_slaves is true, function
1274 * assume all the slaves can transmit.
1275 *
1276 * Feature/offload setting functions.
1277 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1278 * netdev_features_t features);
1279 * Adjusts the requested feature flags according to device-specific
1280 * constraints, and returns the resulting flags. Must not modify
1281 * the device state.
1282 *
1283 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1284 * Called to update device configuration to new features. Passed
1285 * feature set might be less than what was returned by ndo_fix_features()).
1286 * Must return >0 or -errno if it changed dev->features itself.
1287 *
1288 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1289 * struct net_device *dev,
1290 * const unsigned char *addr, u16 vid, u16 flags,
1291 * struct netlink_ext_ack *extack);
1292 * Adds an FDB entry to dev for addr.
1293 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1294 * struct net_device *dev,
1295 * const unsigned char *addr, u16 vid)
1296 * Deletes the FDB entry from dev coresponding to addr.
1297 * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1298 * struct net_device *dev,
1299 * u16 vid,
1300 * struct netlink_ext_ack *extack);
1301 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1302 * struct net_device *dev, struct net_device *filter_dev,
1303 * int *idx)
1304 * Used to add FDB entries to dump requests. Implementers should add
1305 * entries to skb and update idx with the number of entries.
1306 *
1307 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1308 * u16 flags, struct netlink_ext_ack *extack)
1309 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1310 * struct net_device *dev, u32 filter_mask,
1311 * int nlflags)
1312 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1313 * u16 flags);
1314 *
1315 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1316 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1317 * which do not represent real hardware may define this to allow their
1318 * userspace components to manage their virtual carrier state. Devices
1319 * that determine carrier state from physical hardware properties (eg
1320 * network cables) or protocol-dependent mechanisms (eg
1321 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1322 *
1323 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1324 * struct netdev_phys_item_id *ppid);
1325 * Called to get ID of physical port of this device. If driver does
1326 * not implement this, it is assumed that the hw is not able to have
1327 * multiple net devices on single physical port.
1328 *
1329 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1330 * struct netdev_phys_item_id *ppid)
1331 * Called to get the parent ID of the physical port of this device.
1332 *
1333 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1334 * struct net_device *dev)
1335 * Called by upper layer devices to accelerate switching or other
1336 * station functionality into hardware. 'pdev is the lowerdev
1337 * to use for the offload and 'dev' is the net device that will
1338 * back the offload. Returns a pointer to the private structure
1339 * the upper layer will maintain.
1340 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1341 * Called by upper layer device to delete the station created
1342 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1343 * the station and priv is the structure returned by the add
1344 * operation.
1345 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1346 * int queue_index, u32 maxrate);
1347 * Called when a user wants to set a max-rate limitation of specific
1348 * TX queue.
1349 * int (*ndo_get_iflink)(const struct net_device *dev);
1350 * Called to get the iflink value of this device.
1351 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1352 * This function is used to get egress tunnel information for given skb.
1353 * This is useful for retrieving outer tunnel header parameters while
1354 * sampling packet.
1355 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1356 * This function is used to specify the headroom that the skb must
1357 * consider when allocation skb during packet reception. Setting
1358 * appropriate rx headroom value allows avoiding skb head copy on
1359 * forward. Setting a negative value resets the rx headroom to the
1360 * default value.
1361 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1362 * This function is used to set or query state related to XDP on the
1363 * netdevice and manage BPF offload. See definition of
1364 * enum bpf_netdev_command for details.
1365 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1366 * u32 flags);
1367 * This function is used to submit @n XDP packets for transmit on a
1368 * netdevice. Returns number of frames successfully transmitted, frames
1369 * that got dropped are freed/returned via xdp_return_frame().
1370 * Returns negative number, means general error invoking ndo, meaning
1371 * no frames were xmit'ed and core-caller will free all frames.
1372 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1373 * struct xdp_buff *xdp);
1374 * Get the xmit slave of master device based on the xdp_buff.
1375 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1376 * This function is used to wake up the softirq, ksoftirqd or kthread
1377 * responsible for sending and/or receiving packets on a specific
1378 * queue id bound to an AF_XDP socket. The flags field specifies if
1379 * only RX, only Tx, or both should be woken up using the flags
1380 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1381 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1382 * int cmd);
1383 * Add, change, delete or get information on an IPv4 tunnel.
1384 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1385 * If a device is paired with a peer device, return the peer instance.
1386 * The caller must be under RCU read context.
1387 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1388 * Get the forwarding path to reach the real device from the HW destination address
1389 * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1390 * const struct skb_shared_hwtstamps *hwtstamps,
1391 * bool cycles);
1392 * Get hardware timestamp based on normal/adjustable time or free running
1393 * cycle counter. This function is required if physical clock supports a
1394 * free running cycle counter.
1395 */
1396struct net_device_ops {
1397 int (*ndo_init)(struct net_device *dev);
1398 void (*ndo_uninit)(struct net_device *dev);
1399 int (*ndo_open)(struct net_device *dev);
1400 int (*ndo_stop)(struct net_device *dev);
1401 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1402 struct net_device *dev);
1403 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1404 struct net_device *dev,
1405 netdev_features_t features);
1406 u16 (*ndo_select_queue)(struct net_device *dev,
1407 struct sk_buff *skb,
1408 struct net_device *sb_dev);
1409 void (*ndo_change_rx_flags)(struct net_device *dev,
1410 int flags);
1411 void (*ndo_set_rx_mode)(struct net_device *dev);
1412 int (*ndo_set_mac_address)(struct net_device *dev,
1413 void *addr);
1414 int (*ndo_validate_addr)(struct net_device *dev);
1415 int (*ndo_do_ioctl)(struct net_device *dev,
1416 struct ifreq *ifr, int cmd);
1417 int (*ndo_eth_ioctl)(struct net_device *dev,
1418 struct ifreq *ifr, int cmd);
1419 int (*ndo_siocbond)(struct net_device *dev,
1420 struct ifreq *ifr, int cmd);
1421 int (*ndo_siocwandev)(struct net_device *dev,
1422 struct if_settings *ifs);
1423 int (*ndo_siocdevprivate)(struct net_device *dev,
1424 struct ifreq *ifr,
1425 void __user *data, int cmd);
1426 int (*ndo_set_config)(struct net_device *dev,
1427 struct ifmap *map);
1428 int (*ndo_change_mtu)(struct net_device *dev,
1429 int new_mtu);
1430 int (*ndo_neigh_setup)(struct net_device *dev,
1431 struct neigh_parms *);
1432 void (*ndo_tx_timeout) (struct net_device *dev,
1433 unsigned int txqueue);
1434
1435 void (*ndo_get_stats64)(struct net_device *dev,
1436 struct rtnl_link_stats64 *storage);
1437 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1438 int (*ndo_get_offload_stats)(int attr_id,
1439 const struct net_device *dev,
1440 void *attr_data);
1441 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1442
1443 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1444 __be16 proto, u16 vid);
1445 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1446 __be16 proto, u16 vid);
1447#ifdef CONFIG_NET_POLL_CONTROLLER
1448 void (*ndo_poll_controller)(struct net_device *dev);
1449 int (*ndo_netpoll_setup)(struct net_device *dev,
1450 struct netpoll_info *info);
1451 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1452#endif
1453 int (*ndo_set_vf_mac)(struct net_device *dev,
1454 int queue, u8 *mac);
1455 int (*ndo_set_vf_vlan)(struct net_device *dev,
1456 int queue, u16 vlan,
1457 u8 qos, __be16 proto);
1458 int (*ndo_set_vf_rate)(struct net_device *dev,
1459 int vf, int min_tx_rate,
1460 int max_tx_rate);
1461 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1462 int vf, bool setting);
1463 int (*ndo_set_vf_trust)(struct net_device *dev,
1464 int vf, bool setting);
1465 int (*ndo_get_vf_config)(struct net_device *dev,
1466 int vf,
1467 struct ifla_vf_info *ivf);
1468 int (*ndo_set_vf_link_state)(struct net_device *dev,
1469 int vf, int link_state);
1470 int (*ndo_get_vf_stats)(struct net_device *dev,
1471 int vf,
1472 struct ifla_vf_stats
1473 *vf_stats);
1474 int (*ndo_set_vf_port)(struct net_device *dev,
1475 int vf,
1476 struct nlattr *port[]);
1477 int (*ndo_get_vf_port)(struct net_device *dev,
1478 int vf, struct sk_buff *skb);
1479 int (*ndo_get_vf_guid)(struct net_device *dev,
1480 int vf,
1481 struct ifla_vf_guid *node_guid,
1482 struct ifla_vf_guid *port_guid);
1483 int (*ndo_set_vf_guid)(struct net_device *dev,
1484 int vf, u64 guid,
1485 int guid_type);
1486 int (*ndo_set_vf_rss_query_en)(
1487 struct net_device *dev,
1488 int vf, bool setting);
1489 int (*ndo_setup_tc)(struct net_device *dev,
1490 enum tc_setup_type type,
1491 void *type_data);
1492#if IS_ENABLED(CONFIG_FCOE)
1493 int (*ndo_fcoe_enable)(struct net_device *dev);
1494 int (*ndo_fcoe_disable)(struct net_device *dev);
1495 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1496 u16 xid,
1497 struct scatterlist *sgl,
1498 unsigned int sgc);
1499 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1500 u16 xid);
1501 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1502 u16 xid,
1503 struct scatterlist *sgl,
1504 unsigned int sgc);
1505 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1506 struct netdev_fcoe_hbainfo *hbainfo);
1507#endif
1508
1509#if IS_ENABLED(CONFIG_LIBFCOE)
1510#define NETDEV_FCOE_WWNN 0
1511#define NETDEV_FCOE_WWPN 1
1512 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1513 u64 *wwn, int type);
1514#endif
1515
1516#ifdef CONFIG_RFS_ACCEL
1517 int (*ndo_rx_flow_steer)(struct net_device *dev,
1518 const struct sk_buff *skb,
1519 u16 rxq_index,
1520 u32 flow_id);
1521#endif
1522 int (*ndo_add_slave)(struct net_device *dev,
1523 struct net_device *slave_dev,
1524 struct netlink_ext_ack *extack);
1525 int (*ndo_del_slave)(struct net_device *dev,
1526 struct net_device *slave_dev);
1527 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1528 struct sk_buff *skb,
1529 bool all_slaves);
1530 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev,
1531 struct sock *sk);
1532 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1533 netdev_features_t features);
1534 int (*ndo_set_features)(struct net_device *dev,
1535 netdev_features_t features);
1536 int (*ndo_neigh_construct)(struct net_device *dev,
1537 struct neighbour *n);
1538 void (*ndo_neigh_destroy)(struct net_device *dev,
1539 struct neighbour *n);
1540
1541 int (*ndo_fdb_add)(struct ndmsg *ndm,
1542 struct nlattr *tb[],
1543 struct net_device *dev,
1544 const unsigned char *addr,
1545 u16 vid,
1546 u16 flags,
1547 struct netlink_ext_ack *extack);
1548 int (*ndo_fdb_del)(struct ndmsg *ndm,
1549 struct nlattr *tb[],
1550 struct net_device *dev,
1551 const unsigned char *addr,
1552 u16 vid, struct netlink_ext_ack *extack);
1553 int (*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1554 struct nlattr *tb[],
1555 struct net_device *dev,
1556 u16 vid,
1557 struct netlink_ext_ack *extack);
1558 int (*ndo_fdb_dump)(struct sk_buff *skb,
1559 struct netlink_callback *cb,
1560 struct net_device *dev,
1561 struct net_device *filter_dev,
1562 int *idx);
1563 int (*ndo_fdb_get)(struct sk_buff *skb,
1564 struct nlattr *tb[],
1565 struct net_device *dev,
1566 const unsigned char *addr,
1567 u16 vid, u32 portid, u32 seq,
1568 struct netlink_ext_ack *extack);
1569 int (*ndo_bridge_setlink)(struct net_device *dev,
1570 struct nlmsghdr *nlh,
1571 u16 flags,
1572 struct netlink_ext_ack *extack);
1573 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1574 u32 pid, u32 seq,
1575 struct net_device *dev,
1576 u32 filter_mask,
1577 int nlflags);
1578 int (*ndo_bridge_dellink)(struct net_device *dev,
1579 struct nlmsghdr *nlh,
1580 u16 flags);
1581 int (*ndo_change_carrier)(struct net_device *dev,
1582 bool new_carrier);
1583 int (*ndo_get_phys_port_id)(struct net_device *dev,
1584 struct netdev_phys_item_id *ppid);
1585 int (*ndo_get_port_parent_id)(struct net_device *dev,
1586 struct netdev_phys_item_id *ppid);
1587 int (*ndo_get_phys_port_name)(struct net_device *dev,
1588 char *name, size_t len);
1589 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1590 struct net_device *dev);
1591 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1592 void *priv);
1593
1594 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1595 int queue_index,
1596 u32 maxrate);
1597 int (*ndo_get_iflink)(const struct net_device *dev);
1598 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1599 struct sk_buff *skb);
1600 void (*ndo_set_rx_headroom)(struct net_device *dev,
1601 int needed_headroom);
1602 int (*ndo_bpf)(struct net_device *dev,
1603 struct netdev_bpf *bpf);
1604 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1605 struct xdp_frame **xdp,
1606 u32 flags);
1607 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1608 struct xdp_buff *xdp);
1609 int (*ndo_xsk_wakeup)(struct net_device *dev,
1610 u32 queue_id, u32 flags);
1611 int (*ndo_tunnel_ctl)(struct net_device *dev,
1612 struct ip_tunnel_parm *p, int cmd);
1613 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev);
1614 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1615 struct net_device_path *path);
1616 ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1617 const struct skb_shared_hwtstamps *hwtstamps,
1618 bool cycles);
1619};
1620
1621/**
1622 * enum netdev_priv_flags - &struct net_device priv_flags
1623 *
1624 * These are the &struct net_device, they are only set internally
1625 * by drivers and used in the kernel. These flags are invisible to
1626 * userspace; this means that the order of these flags can change
1627 * during any kernel release.
1628 *
1629 * You should have a pretty good reason to be extending these flags.
1630 *
1631 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1632 * @IFF_EBRIDGE: Ethernet bridging device
1633 * @IFF_BONDING: bonding master or slave
1634 * @IFF_ISATAP: ISATAP interface (RFC4214)
1635 * @IFF_WAN_HDLC: WAN HDLC device
1636 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1637 * release skb->dst
1638 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1639 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1640 * @IFF_MACVLAN_PORT: device used as macvlan port
1641 * @IFF_BRIDGE_PORT: device used as bridge port
1642 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1643 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1644 * @IFF_UNICAST_FLT: Supports unicast filtering
1645 * @IFF_TEAM_PORT: device used as team port
1646 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1647 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1648 * change when it's running
1649 * @IFF_MACVLAN: Macvlan device
1650 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1651 * underlying stacked devices
1652 * @IFF_L3MDEV_MASTER: device is an L3 master device
1653 * @IFF_NO_QUEUE: device can run without qdisc attached
1654 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1655 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1656 * @IFF_TEAM: device is a team device
1657 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1658 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1659 * entity (i.e. the master device for bridged veth)
1660 * @IFF_MACSEC: device is a MACsec device
1661 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1662 * @IFF_FAILOVER: device is a failover master device
1663 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1664 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1665 * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1666 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1667 * skb_headlen(skb) == 0 (data starts from frag0)
1668 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1669 */
1670enum netdev_priv_flags {
1671 IFF_802_1Q_VLAN = 1<<0,
1672 IFF_EBRIDGE = 1<<1,
1673 IFF_BONDING = 1<<2,
1674 IFF_ISATAP = 1<<3,
1675 IFF_WAN_HDLC = 1<<4,
1676 IFF_XMIT_DST_RELEASE = 1<<5,
1677 IFF_DONT_BRIDGE = 1<<6,
1678 IFF_DISABLE_NETPOLL = 1<<7,
1679 IFF_MACVLAN_PORT = 1<<8,
1680 IFF_BRIDGE_PORT = 1<<9,
1681 IFF_OVS_DATAPATH = 1<<10,
1682 IFF_TX_SKB_SHARING = 1<<11,
1683 IFF_UNICAST_FLT = 1<<12,
1684 IFF_TEAM_PORT = 1<<13,
1685 IFF_SUPP_NOFCS = 1<<14,
1686 IFF_LIVE_ADDR_CHANGE = 1<<15,
1687 IFF_MACVLAN = 1<<16,
1688 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1689 IFF_L3MDEV_MASTER = 1<<18,
1690 IFF_NO_QUEUE = 1<<19,
1691 IFF_OPENVSWITCH = 1<<20,
1692 IFF_L3MDEV_SLAVE = 1<<21,
1693 IFF_TEAM = 1<<22,
1694 IFF_RXFH_CONFIGURED = 1<<23,
1695 IFF_PHONY_HEADROOM = 1<<24,
1696 IFF_MACSEC = 1<<25,
1697 IFF_NO_RX_HANDLER = 1<<26,
1698 IFF_FAILOVER = 1<<27,
1699 IFF_FAILOVER_SLAVE = 1<<28,
1700 IFF_L3MDEV_RX_HANDLER = 1<<29,
1701 IFF_NO_ADDRCONF = BIT_ULL(30),
1702 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31),
1703 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32),
1704};
1705
1706#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1707#define IFF_EBRIDGE IFF_EBRIDGE
1708#define IFF_BONDING IFF_BONDING
1709#define IFF_ISATAP IFF_ISATAP
1710#define IFF_WAN_HDLC IFF_WAN_HDLC
1711#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1712#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1713#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1714#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1715#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1716#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1717#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1718#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1719#define IFF_TEAM_PORT IFF_TEAM_PORT
1720#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1721#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1722#define IFF_MACVLAN IFF_MACVLAN
1723#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1724#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1725#define IFF_NO_QUEUE IFF_NO_QUEUE
1726#define IFF_OPENVSWITCH IFF_OPENVSWITCH
1727#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1728#define IFF_TEAM IFF_TEAM
1729#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1730#define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM
1731#define IFF_MACSEC IFF_MACSEC
1732#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1733#define IFF_FAILOVER IFF_FAILOVER
1734#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1735#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1736#define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR
1737
1738/* Specifies the type of the struct net_device::ml_priv pointer */
1739enum netdev_ml_priv_type {
1740 ML_PRIV_NONE,
1741 ML_PRIV_CAN,
1742};
1743
1744/**
1745 * struct net_device - The DEVICE structure.
1746 *
1747 * Actually, this whole structure is a big mistake. It mixes I/O
1748 * data with strictly "high-level" data, and it has to know about
1749 * almost every data structure used in the INET module.
1750 *
1751 * @name: This is the first field of the "visible" part of this structure
1752 * (i.e. as seen by users in the "Space.c" file). It is the name
1753 * of the interface.
1754 *
1755 * @name_node: Name hashlist node
1756 * @ifalias: SNMP alias
1757 * @mem_end: Shared memory end
1758 * @mem_start: Shared memory start
1759 * @base_addr: Device I/O address
1760 * @irq: Device IRQ number
1761 *
1762 * @state: Generic network queuing layer state, see netdev_state_t
1763 * @dev_list: The global list of network devices
1764 * @napi_list: List entry used for polling NAPI devices
1765 * @unreg_list: List entry when we are unregistering the
1766 * device; see the function unregister_netdev
1767 * @close_list: List entry used when we are closing the device
1768 * @ptype_all: Device-specific packet handlers for all protocols
1769 * @ptype_specific: Device-specific, protocol-specific packet handlers
1770 *
1771 * @adj_list: Directly linked devices, like slaves for bonding
1772 * @features: Currently active device features
1773 * @hw_features: User-changeable features
1774 *
1775 * @wanted_features: User-requested features
1776 * @vlan_features: Mask of features inheritable by VLAN devices
1777 *
1778 * @hw_enc_features: Mask of features inherited by encapsulating devices
1779 * This field indicates what encapsulation
1780 * offloads the hardware is capable of doing,
1781 * and drivers will need to set them appropriately.
1782 *
1783 * @mpls_features: Mask of features inheritable by MPLS
1784 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1785 *
1786 * @ifindex: interface index
1787 * @group: The group the device belongs to
1788 *
1789 * @stats: Statistics struct, which was left as a legacy, use
1790 * rtnl_link_stats64 instead
1791 *
1792 * @core_stats: core networking counters,
1793 * do not use this in drivers
1794 * @carrier_up_count: Number of times the carrier has been up
1795 * @carrier_down_count: Number of times the carrier has been down
1796 *
1797 * @wireless_handlers: List of functions to handle Wireless Extensions,
1798 * instead of ioctl,
1799 * see <net/iw_handler.h> for details.
1800 * @wireless_data: Instance data managed by the core of wireless extensions
1801 *
1802 * @netdev_ops: Includes several pointers to callbacks,
1803 * if one wants to override the ndo_*() functions
1804 * @ethtool_ops: Management operations
1805 * @l3mdev_ops: Layer 3 master device operations
1806 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1807 * discovery handling. Necessary for e.g. 6LoWPAN.
1808 * @xfrmdev_ops: Transformation offload operations
1809 * @tlsdev_ops: Transport Layer Security offload operations
1810 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1811 * of Layer 2 headers.
1812 *
1813 * @flags: Interface flags (a la BSD)
1814 * @priv_flags: Like 'flags' but invisible to userspace,
1815 * see if.h for the definitions
1816 * @gflags: Global flags ( kept as legacy )
1817 * @padded: How much padding added by alloc_netdev()
1818 * @operstate: RFC2863 operstate
1819 * @link_mode: Mapping policy to operstate
1820 * @if_port: Selectable AUI, TP, ...
1821 * @dma: DMA channel
1822 * @mtu: Interface MTU value
1823 * @min_mtu: Interface Minimum MTU value
1824 * @max_mtu: Interface Maximum MTU value
1825 * @type: Interface hardware type
1826 * @hard_header_len: Maximum hardware header length.
1827 * @min_header_len: Minimum hardware header length
1828 *
1829 * @needed_headroom: Extra headroom the hardware may need, but not in all
1830 * cases can this be guaranteed
1831 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1832 * cases can this be guaranteed. Some cases also use
1833 * LL_MAX_HEADER instead to allocate the skb
1834 *
1835 * interface address info:
1836 *
1837 * @perm_addr: Permanent hw address
1838 * @addr_assign_type: Hw address assignment type
1839 * @addr_len: Hardware address length
1840 * @upper_level: Maximum depth level of upper devices.
1841 * @lower_level: Maximum depth level of lower devices.
1842 * @neigh_priv_len: Used in neigh_alloc()
1843 * @dev_id: Used to differentiate devices that share
1844 * the same link layer address
1845 * @dev_port: Used to differentiate devices that share
1846 * the same function
1847 * @addr_list_lock: XXX: need comments on this one
1848 * @name_assign_type: network interface name assignment type
1849 * @uc_promisc: Counter that indicates promiscuous mode
1850 * has been enabled due to the need to listen to
1851 * additional unicast addresses in a device that
1852 * does not implement ndo_set_rx_mode()
1853 * @uc: unicast mac addresses
1854 * @mc: multicast mac addresses
1855 * @dev_addrs: list of device hw addresses
1856 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1857 * @promiscuity: Number of times the NIC is told to work in
1858 * promiscuous mode; if it becomes 0 the NIC will
1859 * exit promiscuous mode
1860 * @allmulti: Counter, enables or disables allmulticast mode
1861 *
1862 * @vlan_info: VLAN info
1863 * @dsa_ptr: dsa specific data
1864 * @tipc_ptr: TIPC specific data
1865 * @atalk_ptr: AppleTalk link
1866 * @ip_ptr: IPv4 specific data
1867 * @ip6_ptr: IPv6 specific data
1868 * @ax25_ptr: AX.25 specific data
1869 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1870 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1871 * device struct
1872 * @mpls_ptr: mpls_dev struct pointer
1873 * @mctp_ptr: MCTP specific data
1874 *
1875 * @dev_addr: Hw address (before bcast,
1876 * because most packets are unicast)
1877 *
1878 * @_rx: Array of RX queues
1879 * @num_rx_queues: Number of RX queues
1880 * allocated at register_netdev() time
1881 * @real_num_rx_queues: Number of RX queues currently active in device
1882 * @xdp_prog: XDP sockets filter program pointer
1883 * @gro_flush_timeout: timeout for GRO layer in NAPI
1884 * @napi_defer_hard_irqs: If not zero, provides a counter that would
1885 * allow to avoid NIC hard IRQ, on busy queues.
1886 *
1887 * @rx_handler: handler for received packets
1888 * @rx_handler_data: XXX: need comments on this one
1889 * @miniq_ingress: ingress/clsact qdisc specific data for
1890 * ingress processing
1891 * @ingress_queue: XXX: need comments on this one
1892 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1893 * @broadcast: hw bcast address
1894 *
1895 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1896 * indexed by RX queue number. Assigned by driver.
1897 * This must only be set if the ndo_rx_flow_steer
1898 * operation is defined
1899 * @index_hlist: Device index hash chain
1900 *
1901 * @_tx: Array of TX queues
1902 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1903 * @real_num_tx_queues: Number of TX queues currently active in device
1904 * @qdisc: Root qdisc from userspace point of view
1905 * @tx_queue_len: Max frames per queue allowed
1906 * @tx_global_lock: XXX: need comments on this one
1907 * @xdp_bulkq: XDP device bulk queue
1908 * @xps_maps: all CPUs/RXQs maps for XPS device
1909 *
1910 * @xps_maps: XXX: need comments on this one
1911 * @miniq_egress: clsact qdisc specific data for
1912 * egress processing
1913 * @nf_hooks_egress: netfilter hooks executed for egress packets
1914 * @qdisc_hash: qdisc hash table
1915 * @watchdog_timeo: Represents the timeout that is used by
1916 * the watchdog (see dev_watchdog())
1917 * @watchdog_timer: List of timers
1918 *
1919 * @proto_down_reason: reason a netdev interface is held down
1920 * @pcpu_refcnt: Number of references to this device
1921 * @dev_refcnt: Number of references to this device
1922 * @refcnt_tracker: Tracker directory for tracked references to this device
1923 * @todo_list: Delayed register/unregister
1924 * @link_watch_list: XXX: need comments on this one
1925 *
1926 * @reg_state: Register/unregister state machine
1927 * @dismantle: Device is going to be freed
1928 * @rtnl_link_state: This enum represents the phases of creating
1929 * a new link
1930 *
1931 * @needs_free_netdev: Should unregister perform free_netdev?
1932 * @priv_destructor: Called from unregister
1933 * @npinfo: XXX: need comments on this one
1934 * @nd_net: Network namespace this network device is inside
1935 *
1936 * @ml_priv: Mid-layer private
1937 * @ml_priv_type: Mid-layer private type
1938 * @lstats: Loopback statistics
1939 * @tstats: Tunnel statistics
1940 * @dstats: Dummy statistics
1941 * @vstats: Virtual ethernet statistics
1942 *
1943 * @garp_port: GARP
1944 * @mrp_port: MRP
1945 *
1946 * @dm_private: Drop monitor private
1947 *
1948 * @dev: Class/net/name entry
1949 * @sysfs_groups: Space for optional device, statistics and wireless
1950 * sysfs groups
1951 *
1952 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1953 * @rtnl_link_ops: Rtnl_link_ops
1954 *
1955 * @gso_max_size: Maximum size of generic segmentation offload
1956 * @tso_max_size: Device (as in HW) limit on the max TSO request size
1957 * @gso_max_segs: Maximum number of segments that can be passed to the
1958 * NIC for GSO
1959 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count
1960 *
1961 * @dcbnl_ops: Data Center Bridging netlink ops
1962 * @num_tc: Number of traffic classes in the net device
1963 * @tc_to_txq: XXX: need comments on this one
1964 * @prio_tc_map: XXX: need comments on this one
1965 *
1966 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1967 *
1968 * @priomap: XXX: need comments on this one
1969 * @phydev: Physical device may attach itself
1970 * for hardware timestamping
1971 * @sfp_bus: attached &struct sfp_bus structure.
1972 *
1973 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1974 *
1975 * @proto_down: protocol port state information can be sent to the
1976 * switch driver and used to set the phys state of the
1977 * switch port.
1978 *
1979 * @wol_enabled: Wake-on-LAN is enabled
1980 *
1981 * @threaded: napi threaded mode is enabled
1982 *
1983 * @net_notifier_list: List of per-net netdev notifier block
1984 * that follow this device when it is moved
1985 * to another network namespace.
1986 *
1987 * @macsec_ops: MACsec offloading ops
1988 *
1989 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
1990 * offload capabilities of the device
1991 * @udp_tunnel_nic: UDP tunnel offload state
1992 * @xdp_state: stores info on attached XDP BPF programs
1993 *
1994 * @nested_level: Used as a parameter of spin_lock_nested() of
1995 * dev->addr_list_lock.
1996 * @unlink_list: As netif_addr_lock() can be called recursively,
1997 * keep a list of interfaces to be deleted.
1998 * @gro_max_size: Maximum size of aggregated packet in generic
1999 * receive offload (GRO)
2000 *
2001 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes.
2002 * @linkwatch_dev_tracker: refcount tracker used by linkwatch.
2003 * @watchdog_dev_tracker: refcount tracker used by watchdog.
2004 * @dev_registered_tracker: tracker for reference held while
2005 * registered
2006 * @offload_xstats_l3: L3 HW stats for this netdevice.
2007 *
2008 * @devlink_port: Pointer to related devlink port structure.
2009 * Assigned by a driver before netdev registration using
2010 * SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2011 * during the time netdevice is registered.
2012 *
2013 * FIXME: cleanup struct net_device such that network protocol info
2014 * moves out.
2015 */
2016
2017struct net_device {
2018 char name[IFNAMSIZ];
2019 struct netdev_name_node *name_node;
2020 struct dev_ifalias __rcu *ifalias;
2021 /*
2022 * I/O specific fields
2023 * FIXME: Merge these and struct ifmap into one
2024 */
2025 unsigned long mem_end;
2026 unsigned long mem_start;
2027 unsigned long base_addr;
2028
2029 /*
2030 * Some hardware also needs these fields (state,dev_list,
2031 * napi_list,unreg_list,close_list) but they are not
2032 * part of the usual set specified in Space.c.
2033 */
2034
2035 unsigned long state;
2036
2037 struct list_head dev_list;
2038 struct list_head napi_list;
2039 struct list_head unreg_list;
2040 struct list_head close_list;
2041 struct list_head ptype_all;
2042 struct list_head ptype_specific;
2043
2044 struct {
2045 struct list_head upper;
2046 struct list_head lower;
2047 } adj_list;
2048
2049 /* Read-mostly cache-line for fast-path access */
2050 unsigned int flags;
2051 unsigned long long priv_flags;
2052 const struct net_device_ops *netdev_ops;
2053 int ifindex;
2054 unsigned short gflags;
2055 unsigned short hard_header_len;
2056
2057 /* Note : dev->mtu is often read without holding a lock.
2058 * Writers usually hold RTNL.
2059 * It is recommended to use READ_ONCE() to annotate the reads,
2060 * and to use WRITE_ONCE() to annotate the writes.
2061 */
2062 unsigned int mtu;
2063 unsigned short needed_headroom;
2064 unsigned short needed_tailroom;
2065
2066 netdev_features_t features;
2067 netdev_features_t hw_features;
2068 netdev_features_t wanted_features;
2069 netdev_features_t vlan_features;
2070 netdev_features_t hw_enc_features;
2071 netdev_features_t mpls_features;
2072 netdev_features_t gso_partial_features;
2073
2074 unsigned int min_mtu;
2075 unsigned int max_mtu;
2076 unsigned short type;
2077 unsigned char min_header_len;
2078 unsigned char name_assign_type;
2079
2080 int group;
2081
2082 struct net_device_stats stats; /* not used by modern drivers */
2083
2084 struct net_device_core_stats __percpu *core_stats;
2085
2086 /* Stats to monitor link on/off, flapping */
2087 atomic_t carrier_up_count;
2088 atomic_t carrier_down_count;
2089
2090#ifdef CONFIG_WIRELESS_EXT
2091 const struct iw_handler_def *wireless_handlers;
2092 struct iw_public_data *wireless_data;
2093#endif
2094 const struct ethtool_ops *ethtool_ops;
2095#ifdef CONFIG_NET_L3_MASTER_DEV
2096 const struct l3mdev_ops *l3mdev_ops;
2097#endif
2098#if IS_ENABLED(CONFIG_IPV6)
2099 const struct ndisc_ops *ndisc_ops;
2100#endif
2101
2102#ifdef CONFIG_XFRM_OFFLOAD
2103 const struct xfrmdev_ops *xfrmdev_ops;
2104#endif
2105
2106#if IS_ENABLED(CONFIG_TLS_DEVICE)
2107 const struct tlsdev_ops *tlsdev_ops;
2108#endif
2109
2110 const struct header_ops *header_ops;
2111
2112 unsigned char operstate;
2113 unsigned char link_mode;
2114
2115 unsigned char if_port;
2116 unsigned char dma;
2117
2118 /* Interface address info. */
2119 unsigned char perm_addr[MAX_ADDR_LEN];
2120 unsigned char addr_assign_type;
2121 unsigned char addr_len;
2122 unsigned char upper_level;
2123 unsigned char lower_level;
2124
2125 unsigned short neigh_priv_len;
2126 unsigned short dev_id;
2127 unsigned short dev_port;
2128 unsigned short padded;
2129
2130 spinlock_t addr_list_lock;
2131 int irq;
2132
2133 struct netdev_hw_addr_list uc;
2134 struct netdev_hw_addr_list mc;
2135 struct netdev_hw_addr_list dev_addrs;
2136
2137#ifdef CONFIG_SYSFS
2138 struct kset *queues_kset;
2139#endif
2140#ifdef CONFIG_LOCKDEP
2141 struct list_head unlink_list;
2142#endif
2143 unsigned int promiscuity;
2144 unsigned int allmulti;
2145 bool uc_promisc;
2146#ifdef CONFIG_LOCKDEP
2147 unsigned char nested_level;
2148#endif
2149
2150
2151 /* Protocol-specific pointers */
2152
2153 struct in_device __rcu *ip_ptr;
2154 struct inet6_dev __rcu *ip6_ptr;
2155#if IS_ENABLED(CONFIG_VLAN_8021Q)
2156 struct vlan_info __rcu *vlan_info;
2157#endif
2158#if IS_ENABLED(CONFIG_NET_DSA)
2159 struct dsa_port *dsa_ptr;
2160#endif
2161#if IS_ENABLED(CONFIG_TIPC)
2162 struct tipc_bearer __rcu *tipc_ptr;
2163#endif
2164#if IS_ENABLED(CONFIG_ATALK)
2165 void *atalk_ptr;
2166#endif
2167#if IS_ENABLED(CONFIG_AX25)
2168 void *ax25_ptr;
2169#endif
2170#if IS_ENABLED(CONFIG_CFG80211)
2171 struct wireless_dev *ieee80211_ptr;
2172#endif
2173#if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2174 struct wpan_dev *ieee802154_ptr;
2175#endif
2176#if IS_ENABLED(CONFIG_MPLS_ROUTING)
2177 struct mpls_dev __rcu *mpls_ptr;
2178#endif
2179#if IS_ENABLED(CONFIG_MCTP)
2180 struct mctp_dev __rcu *mctp_ptr;
2181#endif
2182
2183/*
2184 * Cache lines mostly used on receive path (including eth_type_trans())
2185 */
2186 /* Interface address info used in eth_type_trans() */
2187 const unsigned char *dev_addr;
2188
2189 struct netdev_rx_queue *_rx;
2190 unsigned int num_rx_queues;
2191 unsigned int real_num_rx_queues;
2192
2193 struct bpf_prog __rcu *xdp_prog;
2194 unsigned long gro_flush_timeout;
2195 int napi_defer_hard_irqs;
2196#define GRO_LEGACY_MAX_SIZE 65536u
2197/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2198 * and shinfo->gso_segs is a 16bit field.
2199 */
2200#define GRO_MAX_SIZE (8 * 65535u)
2201 unsigned int gro_max_size;
2202 rx_handler_func_t __rcu *rx_handler;
2203 void __rcu *rx_handler_data;
2204
2205#ifdef CONFIG_NET_CLS_ACT
2206 struct mini_Qdisc __rcu *miniq_ingress;
2207#endif
2208 struct netdev_queue __rcu *ingress_queue;
2209#ifdef CONFIG_NETFILTER_INGRESS
2210 struct nf_hook_entries __rcu *nf_hooks_ingress;
2211#endif
2212
2213 unsigned char broadcast[MAX_ADDR_LEN];
2214#ifdef CONFIG_RFS_ACCEL
2215 struct cpu_rmap *rx_cpu_rmap;
2216#endif
2217 struct hlist_node index_hlist;
2218
2219/*
2220 * Cache lines mostly used on transmit path
2221 */
2222 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2223 unsigned int num_tx_queues;
2224 unsigned int real_num_tx_queues;
2225 struct Qdisc __rcu *qdisc;
2226 unsigned int tx_queue_len;
2227 spinlock_t tx_global_lock;
2228
2229 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2230
2231#ifdef CONFIG_XPS
2232 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2233#endif
2234#ifdef CONFIG_NET_CLS_ACT
2235 struct mini_Qdisc __rcu *miniq_egress;
2236#endif
2237#ifdef CONFIG_NETFILTER_EGRESS
2238 struct nf_hook_entries __rcu *nf_hooks_egress;
2239#endif
2240
2241#ifdef CONFIG_NET_SCHED
2242 DECLARE_HASHTABLE (qdisc_hash, 4);
2243#endif
2244 /* These may be needed for future network-power-down code. */
2245 struct timer_list watchdog_timer;
2246 int watchdog_timeo;
2247
2248 u32 proto_down_reason;
2249
2250 struct list_head todo_list;
2251
2252#ifdef CONFIG_PCPU_DEV_REFCNT
2253 int __percpu *pcpu_refcnt;
2254#else
2255 refcount_t dev_refcnt;
2256#endif
2257 struct ref_tracker_dir refcnt_tracker;
2258
2259 struct list_head link_watch_list;
2260
2261 enum { NETREG_UNINITIALIZED=0,
2262 NETREG_REGISTERED, /* completed register_netdevice */
2263 NETREG_UNREGISTERING, /* called unregister_netdevice */
2264 NETREG_UNREGISTERED, /* completed unregister todo */
2265 NETREG_RELEASED, /* called free_netdev */
2266 NETREG_DUMMY, /* dummy device for NAPI poll */
2267 } reg_state:8;
2268
2269 bool dismantle;
2270
2271 enum {
2272 RTNL_LINK_INITIALIZED,
2273 RTNL_LINK_INITIALIZING,
2274 } rtnl_link_state:16;
2275
2276 bool needs_free_netdev;
2277 void (*priv_destructor)(struct net_device *dev);
2278
2279#ifdef CONFIG_NETPOLL
2280 struct netpoll_info __rcu *npinfo;
2281#endif
2282
2283 possible_net_t nd_net;
2284
2285 /* mid-layer private */
2286 void *ml_priv;
2287 enum netdev_ml_priv_type ml_priv_type;
2288
2289 union {
2290 struct pcpu_lstats __percpu *lstats;
2291 struct pcpu_sw_netstats __percpu *tstats;
2292 struct pcpu_dstats __percpu *dstats;
2293 };
2294
2295#if IS_ENABLED(CONFIG_GARP)
2296 struct garp_port __rcu *garp_port;
2297#endif
2298#if IS_ENABLED(CONFIG_MRP)
2299 struct mrp_port __rcu *mrp_port;
2300#endif
2301#if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2302 struct dm_hw_stat_delta __rcu *dm_private;
2303#endif
2304 struct device dev;
2305 const struct attribute_group *sysfs_groups[4];
2306 const struct attribute_group *sysfs_rx_queue_group;
2307
2308 const struct rtnl_link_ops *rtnl_link_ops;
2309
2310 /* for setting kernel sock attribute on TCP connection setup */
2311#define GSO_MAX_SEGS 65535u
2312#define GSO_LEGACY_MAX_SIZE 65536u
2313/* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2314 * and shinfo->gso_segs is a 16bit field.
2315 */
2316#define GSO_MAX_SIZE (8 * GSO_MAX_SEGS)
2317
2318 unsigned int gso_max_size;
2319#define TSO_LEGACY_MAX_SIZE 65536
2320#define TSO_MAX_SIZE UINT_MAX
2321 unsigned int tso_max_size;
2322 u16 gso_max_segs;
2323#define TSO_MAX_SEGS U16_MAX
2324 u16 tso_max_segs;
2325
2326#ifdef CONFIG_DCB
2327 const struct dcbnl_rtnl_ops *dcbnl_ops;
2328#endif
2329 s16 num_tc;
2330 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2331 u8 prio_tc_map[TC_BITMASK + 1];
2332
2333#if IS_ENABLED(CONFIG_FCOE)
2334 unsigned int fcoe_ddp_xid;
2335#endif
2336#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2337 struct netprio_map __rcu *priomap;
2338#endif
2339 struct phy_device *phydev;
2340 struct sfp_bus *sfp_bus;
2341 struct lock_class_key *qdisc_tx_busylock;
2342 bool proto_down;
2343 unsigned wol_enabled:1;
2344 unsigned threaded:1;
2345
2346 struct list_head net_notifier_list;
2347
2348#if IS_ENABLED(CONFIG_MACSEC)
2349 /* MACsec management functions */
2350 const struct macsec_ops *macsec_ops;
2351#endif
2352 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2353 struct udp_tunnel_nic *udp_tunnel_nic;
2354
2355 /* protected by rtnl_lock */
2356 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2357
2358 u8 dev_addr_shadow[MAX_ADDR_LEN];
2359 netdevice_tracker linkwatch_dev_tracker;
2360 netdevice_tracker watchdog_dev_tracker;
2361 netdevice_tracker dev_registered_tracker;
2362 struct rtnl_hw_stats64 *offload_xstats_l3;
2363
2364 struct devlink_port *devlink_port;
2365};
2366#define to_net_dev(d) container_of(d, struct net_device, dev)
2367
2368/*
2369 * Driver should use this to assign devlink port instance to a netdevice
2370 * before it registers the netdevice. Therefore devlink_port is static
2371 * during the netdev lifetime after it is registered.
2372 */
2373#define SET_NETDEV_DEVLINK_PORT(dev, port) \
2374({ \
2375 WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED); \
2376 ((dev)->devlink_port = (port)); \
2377})
2378
2379static inline bool netif_elide_gro(const struct net_device *dev)
2380{
2381 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2382 return true;
2383 return false;
2384}
2385
2386#define NETDEV_ALIGN 32
2387
2388static inline
2389int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2390{
2391 return dev->prio_tc_map[prio & TC_BITMASK];
2392}
2393
2394static inline
2395int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2396{
2397 if (tc >= dev->num_tc)
2398 return -EINVAL;
2399
2400 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2401 return 0;
2402}
2403
2404int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2405void netdev_reset_tc(struct net_device *dev);
2406int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2407int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2408
2409static inline
2410int netdev_get_num_tc(struct net_device *dev)
2411{
2412 return dev->num_tc;
2413}
2414
2415static inline void net_prefetch(void *p)
2416{
2417 prefetch(p);
2418#if L1_CACHE_BYTES < 128
2419 prefetch((u8 *)p + L1_CACHE_BYTES);
2420#endif
2421}
2422
2423static inline void net_prefetchw(void *p)
2424{
2425 prefetchw(p);
2426#if L1_CACHE_BYTES < 128
2427 prefetchw((u8 *)p + L1_CACHE_BYTES);
2428#endif
2429}
2430
2431void netdev_unbind_sb_channel(struct net_device *dev,
2432 struct net_device *sb_dev);
2433int netdev_bind_sb_channel_queue(struct net_device *dev,
2434 struct net_device *sb_dev,
2435 u8 tc, u16 count, u16 offset);
2436int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2437static inline int netdev_get_sb_channel(struct net_device *dev)
2438{
2439 return max_t(int, -dev->num_tc, 0);
2440}
2441
2442static inline
2443struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2444 unsigned int index)
2445{
2446 return &dev->_tx[index];
2447}
2448
2449static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2450 const struct sk_buff *skb)
2451{
2452 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2453}
2454
2455static inline void netdev_for_each_tx_queue(struct net_device *dev,
2456 void (*f)(struct net_device *,
2457 struct netdev_queue *,
2458 void *),
2459 void *arg)
2460{
2461 unsigned int i;
2462
2463 for (i = 0; i < dev->num_tx_queues; i++)
2464 f(dev, &dev->_tx[i], arg);
2465}
2466
2467#define netdev_lockdep_set_classes(dev) \
2468{ \
2469 static struct lock_class_key qdisc_tx_busylock_key; \
2470 static struct lock_class_key qdisc_xmit_lock_key; \
2471 static struct lock_class_key dev_addr_list_lock_key; \
2472 unsigned int i; \
2473 \
2474 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2475 lockdep_set_class(&(dev)->addr_list_lock, \
2476 &dev_addr_list_lock_key); \
2477 for (i = 0; i < (dev)->num_tx_queues; i++) \
2478 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2479 &qdisc_xmit_lock_key); \
2480}
2481
2482u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2483 struct net_device *sb_dev);
2484struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2485 struct sk_buff *skb,
2486 struct net_device *sb_dev);
2487
2488/* returns the headroom that the master device needs to take in account
2489 * when forwarding to this dev
2490 */
2491static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2492{
2493 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2494}
2495
2496static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2497{
2498 if (dev->netdev_ops->ndo_set_rx_headroom)
2499 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2500}
2501
2502/* set the device rx headroom to the dev's default */
2503static inline void netdev_reset_rx_headroom(struct net_device *dev)
2504{
2505 netdev_set_rx_headroom(dev, -1);
2506}
2507
2508static inline void *netdev_get_ml_priv(struct net_device *dev,
2509 enum netdev_ml_priv_type type)
2510{
2511 if (dev->ml_priv_type != type)
2512 return NULL;
2513
2514 return dev->ml_priv;
2515}
2516
2517static inline void netdev_set_ml_priv(struct net_device *dev,
2518 void *ml_priv,
2519 enum netdev_ml_priv_type type)
2520{
2521 WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2522 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2523 dev->ml_priv_type, type);
2524 WARN(!dev->ml_priv_type && dev->ml_priv,
2525 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2526
2527 dev->ml_priv = ml_priv;
2528 dev->ml_priv_type = type;
2529}
2530
2531/*
2532 * Net namespace inlines
2533 */
2534static inline
2535struct net *dev_net(const struct net_device *dev)
2536{
2537 return read_pnet(&dev->nd_net);
2538}
2539
2540static inline
2541void dev_net_set(struct net_device *dev, struct net *net)
2542{
2543 write_pnet(&dev->nd_net, net);
2544}
2545
2546/**
2547 * netdev_priv - access network device private data
2548 * @dev: network device
2549 *
2550 * Get network device private data
2551 */
2552static inline void *netdev_priv(const struct net_device *dev)
2553{
2554 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2555}
2556
2557/* Set the sysfs physical device reference for the network logical device
2558 * if set prior to registration will cause a symlink during initialization.
2559 */
2560#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2561
2562/* Set the sysfs device type for the network logical device to allow
2563 * fine-grained identification of different network device types. For
2564 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2565 */
2566#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2567
2568/* Default NAPI poll() weight
2569 * Device drivers are strongly advised to not use bigger value
2570 */
2571#define NAPI_POLL_WEIGHT 64
2572
2573void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2574 int (*poll)(struct napi_struct *, int), int weight);
2575
2576/**
2577 * netif_napi_add() - initialize a NAPI context
2578 * @dev: network device
2579 * @napi: NAPI context
2580 * @poll: polling function
2581 *
2582 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2583 * *any* of the other NAPI-related functions.
2584 */
2585static inline void
2586netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2587 int (*poll)(struct napi_struct *, int))
2588{
2589 netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2590}
2591
2592static inline void
2593netif_napi_add_tx_weight(struct net_device *dev,
2594 struct napi_struct *napi,
2595 int (*poll)(struct napi_struct *, int),
2596 int weight)
2597{
2598 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2599 netif_napi_add_weight(dev, napi, poll, weight);
2600}
2601
2602/**
2603 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2604 * @dev: network device
2605 * @napi: NAPI context
2606 * @poll: polling function
2607 *
2608 * This variant of netif_napi_add() should be used from drivers using NAPI
2609 * to exclusively poll a TX queue.
2610 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2611 */
2612static inline void netif_napi_add_tx(struct net_device *dev,
2613 struct napi_struct *napi,
2614 int (*poll)(struct napi_struct *, int))
2615{
2616 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2617}
2618
2619/**
2620 * __netif_napi_del - remove a NAPI context
2621 * @napi: NAPI context
2622 *
2623 * Warning: caller must observe RCU grace period before freeing memory
2624 * containing @napi. Drivers might want to call this helper to combine
2625 * all the needed RCU grace periods into a single one.
2626 */
2627void __netif_napi_del(struct napi_struct *napi);
2628
2629/**
2630 * netif_napi_del - remove a NAPI context
2631 * @napi: NAPI context
2632 *
2633 * netif_napi_del() removes a NAPI context from the network device NAPI list
2634 */
2635static inline void netif_napi_del(struct napi_struct *napi)
2636{
2637 __netif_napi_del(napi);
2638 synchronize_net();
2639}
2640
2641struct packet_type {
2642 __be16 type; /* This is really htons(ether_type). */
2643 bool ignore_outgoing;
2644 struct net_device *dev; /* NULL is wildcarded here */
2645 netdevice_tracker dev_tracker;
2646 int (*func) (struct sk_buff *,
2647 struct net_device *,
2648 struct packet_type *,
2649 struct net_device *);
2650 void (*list_func) (struct list_head *,
2651 struct packet_type *,
2652 struct net_device *);
2653 bool (*id_match)(struct packet_type *ptype,
2654 struct sock *sk);
2655 struct net *af_packet_net;
2656 void *af_packet_priv;
2657 struct list_head list;
2658};
2659
2660struct offload_callbacks {
2661 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2662 netdev_features_t features);
2663 struct sk_buff *(*gro_receive)(struct list_head *head,
2664 struct sk_buff *skb);
2665 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2666};
2667
2668struct packet_offload {
2669 __be16 type; /* This is really htons(ether_type). */
2670 u16 priority;
2671 struct offload_callbacks callbacks;
2672 struct list_head list;
2673};
2674
2675/* often modified stats are per-CPU, other are shared (netdev->stats) */
2676struct pcpu_sw_netstats {
2677 u64_stats_t rx_packets;
2678 u64_stats_t rx_bytes;
2679 u64_stats_t tx_packets;
2680 u64_stats_t tx_bytes;
2681 struct u64_stats_sync syncp;
2682} __aligned(4 * sizeof(u64));
2683
2684struct pcpu_lstats {
2685 u64_stats_t packets;
2686 u64_stats_t bytes;
2687 struct u64_stats_sync syncp;
2688} __aligned(2 * sizeof(u64));
2689
2690void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2691
2692static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2693{
2694 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2695
2696 u64_stats_update_begin(&tstats->syncp);
2697 u64_stats_add(&tstats->rx_bytes, len);
2698 u64_stats_inc(&tstats->rx_packets);
2699 u64_stats_update_end(&tstats->syncp);
2700}
2701
2702static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2703 unsigned int packets,
2704 unsigned int len)
2705{
2706 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2707
2708 u64_stats_update_begin(&tstats->syncp);
2709 u64_stats_add(&tstats->tx_bytes, len);
2710 u64_stats_add(&tstats->tx_packets, packets);
2711 u64_stats_update_end(&tstats->syncp);
2712}
2713
2714static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2715{
2716 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2717
2718 u64_stats_update_begin(&lstats->syncp);
2719 u64_stats_add(&lstats->bytes, len);
2720 u64_stats_inc(&lstats->packets);
2721 u64_stats_update_end(&lstats->syncp);
2722}
2723
2724#define __netdev_alloc_pcpu_stats(type, gfp) \
2725({ \
2726 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2727 if (pcpu_stats) { \
2728 int __cpu; \
2729 for_each_possible_cpu(__cpu) { \
2730 typeof(type) *stat; \
2731 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2732 u64_stats_init(&stat->syncp); \
2733 } \
2734 } \
2735 pcpu_stats; \
2736})
2737
2738#define netdev_alloc_pcpu_stats(type) \
2739 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2740
2741#define devm_netdev_alloc_pcpu_stats(dev, type) \
2742({ \
2743 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2744 if (pcpu_stats) { \
2745 int __cpu; \
2746 for_each_possible_cpu(__cpu) { \
2747 typeof(type) *stat; \
2748 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2749 u64_stats_init(&stat->syncp); \
2750 } \
2751 } \
2752 pcpu_stats; \
2753})
2754
2755enum netdev_lag_tx_type {
2756 NETDEV_LAG_TX_TYPE_UNKNOWN,
2757 NETDEV_LAG_TX_TYPE_RANDOM,
2758 NETDEV_LAG_TX_TYPE_BROADCAST,
2759 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2760 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2761 NETDEV_LAG_TX_TYPE_HASH,
2762};
2763
2764enum netdev_lag_hash {
2765 NETDEV_LAG_HASH_NONE,
2766 NETDEV_LAG_HASH_L2,
2767 NETDEV_LAG_HASH_L34,
2768 NETDEV_LAG_HASH_L23,
2769 NETDEV_LAG_HASH_E23,
2770 NETDEV_LAG_HASH_E34,
2771 NETDEV_LAG_HASH_VLAN_SRCMAC,
2772 NETDEV_LAG_HASH_UNKNOWN,
2773};
2774
2775struct netdev_lag_upper_info {
2776 enum netdev_lag_tx_type tx_type;
2777 enum netdev_lag_hash hash_type;
2778};
2779
2780struct netdev_lag_lower_state_info {
2781 u8 link_up : 1,
2782 tx_enabled : 1;
2783};
2784
2785#include <linux/notifier.h>
2786
2787/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2788 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2789 * adding new types.
2790 */
2791enum netdev_cmd {
2792 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2793 NETDEV_DOWN,
2794 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2795 detected a hardware crash and restarted
2796 - we can use this eg to kick tcp sessions
2797 once done */
2798 NETDEV_CHANGE, /* Notify device state change */
2799 NETDEV_REGISTER,
2800 NETDEV_UNREGISTER,
2801 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2802 NETDEV_CHANGEADDR, /* notify after the address change */
2803 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2804 NETDEV_GOING_DOWN,
2805 NETDEV_CHANGENAME,
2806 NETDEV_FEAT_CHANGE,
2807 NETDEV_BONDING_FAILOVER,
2808 NETDEV_PRE_UP,
2809 NETDEV_PRE_TYPE_CHANGE,
2810 NETDEV_POST_TYPE_CHANGE,
2811 NETDEV_POST_INIT,
2812 NETDEV_PRE_UNINIT,
2813 NETDEV_RELEASE,
2814 NETDEV_NOTIFY_PEERS,
2815 NETDEV_JOIN,
2816 NETDEV_CHANGEUPPER,
2817 NETDEV_RESEND_IGMP,
2818 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2819 NETDEV_CHANGEINFODATA,
2820 NETDEV_BONDING_INFO,
2821 NETDEV_PRECHANGEUPPER,
2822 NETDEV_CHANGELOWERSTATE,
2823 NETDEV_UDP_TUNNEL_PUSH_INFO,
2824 NETDEV_UDP_TUNNEL_DROP_INFO,
2825 NETDEV_CHANGE_TX_QUEUE_LEN,
2826 NETDEV_CVLAN_FILTER_PUSH_INFO,
2827 NETDEV_CVLAN_FILTER_DROP_INFO,
2828 NETDEV_SVLAN_FILTER_PUSH_INFO,
2829 NETDEV_SVLAN_FILTER_DROP_INFO,
2830 NETDEV_OFFLOAD_XSTATS_ENABLE,
2831 NETDEV_OFFLOAD_XSTATS_DISABLE,
2832 NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2833 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2834};
2835const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2836
2837int register_netdevice_notifier(struct notifier_block *nb);
2838int unregister_netdevice_notifier(struct notifier_block *nb);
2839int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2840int unregister_netdevice_notifier_net(struct net *net,
2841 struct notifier_block *nb);
2842void move_netdevice_notifier_net(struct net *src_net, struct net *dst_net,
2843 struct notifier_block *nb);
2844int register_netdevice_notifier_dev_net(struct net_device *dev,
2845 struct notifier_block *nb,
2846 struct netdev_net_notifier *nn);
2847int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2848 struct notifier_block *nb,
2849 struct netdev_net_notifier *nn);
2850
2851struct netdev_notifier_info {
2852 struct net_device *dev;
2853 struct netlink_ext_ack *extack;
2854};
2855
2856struct netdev_notifier_info_ext {
2857 struct netdev_notifier_info info; /* must be first */
2858 union {
2859 u32 mtu;
2860 } ext;
2861};
2862
2863struct netdev_notifier_change_info {
2864 struct netdev_notifier_info info; /* must be first */
2865 unsigned int flags_changed;
2866};
2867
2868struct netdev_notifier_changeupper_info {
2869 struct netdev_notifier_info info; /* must be first */
2870 struct net_device *upper_dev; /* new upper dev */
2871 bool master; /* is upper dev master */
2872 bool linking; /* is the notification for link or unlink */
2873 void *upper_info; /* upper dev info */
2874};
2875
2876struct netdev_notifier_changelowerstate_info {
2877 struct netdev_notifier_info info; /* must be first */
2878 void *lower_state_info; /* is lower dev state */
2879};
2880
2881struct netdev_notifier_pre_changeaddr_info {
2882 struct netdev_notifier_info info; /* must be first */
2883 const unsigned char *dev_addr;
2884};
2885
2886enum netdev_offload_xstats_type {
2887 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2888};
2889
2890struct netdev_notifier_offload_xstats_info {
2891 struct netdev_notifier_info info; /* must be first */
2892 enum netdev_offload_xstats_type type;
2893
2894 union {
2895 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2896 struct netdev_notifier_offload_xstats_rd *report_delta;
2897 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2898 struct netdev_notifier_offload_xstats_ru *report_used;
2899 };
2900};
2901
2902int netdev_offload_xstats_enable(struct net_device *dev,
2903 enum netdev_offload_xstats_type type,
2904 struct netlink_ext_ack *extack);
2905int netdev_offload_xstats_disable(struct net_device *dev,
2906 enum netdev_offload_xstats_type type);
2907bool netdev_offload_xstats_enabled(const struct net_device *dev,
2908 enum netdev_offload_xstats_type type);
2909int netdev_offload_xstats_get(struct net_device *dev,
2910 enum netdev_offload_xstats_type type,
2911 struct rtnl_hw_stats64 *stats, bool *used,
2912 struct netlink_ext_ack *extack);
2913void
2914netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2915 const struct rtnl_hw_stats64 *stats);
2916void
2917netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2918void netdev_offload_xstats_push_delta(struct net_device *dev,
2919 enum netdev_offload_xstats_type type,
2920 const struct rtnl_hw_stats64 *stats);
2921
2922static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2923 struct net_device *dev)
2924{
2925 info->dev = dev;
2926 info->extack = NULL;
2927}
2928
2929static inline struct net_device *
2930netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2931{
2932 return info->dev;
2933}
2934
2935static inline struct netlink_ext_ack *
2936netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2937{
2938 return info->extack;
2939}
2940
2941int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2942
2943
2944extern rwlock_t dev_base_lock; /* Device list lock */
2945
2946#define for_each_netdev(net, d) \
2947 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2948#define for_each_netdev_reverse(net, d) \
2949 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2950#define for_each_netdev_rcu(net, d) \
2951 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2952#define for_each_netdev_safe(net, d, n) \
2953 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2954#define for_each_netdev_continue(net, d) \
2955 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2956#define for_each_netdev_continue_reverse(net, d) \
2957 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2958 dev_list)
2959#define for_each_netdev_continue_rcu(net, d) \
2960 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2961#define for_each_netdev_in_bond_rcu(bond, slave) \
2962 for_each_netdev_rcu(&init_net, slave) \
2963 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2964#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2965
2966static inline struct net_device *next_net_device(struct net_device *dev)
2967{
2968 struct list_head *lh;
2969 struct net *net;
2970
2971 net = dev_net(dev);
2972 lh = dev->dev_list.next;
2973 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2974}
2975
2976static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2977{
2978 struct list_head *lh;
2979 struct net *net;
2980
2981 net = dev_net(dev);
2982 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2983 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2984}
2985
2986static inline struct net_device *first_net_device(struct net *net)
2987{
2988 return list_empty(&net->dev_base_head) ? NULL :
2989 net_device_entry(net->dev_base_head.next);
2990}
2991
2992static inline struct net_device *first_net_device_rcu(struct net *net)
2993{
2994 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2995
2996 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2997}
2998
2999int netdev_boot_setup_check(struct net_device *dev);
3000struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3001 const char *hwaddr);
3002struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3003void dev_add_pack(struct packet_type *pt);
3004void dev_remove_pack(struct packet_type *pt);
3005void __dev_remove_pack(struct packet_type *pt);
3006void dev_add_offload(struct packet_offload *po);
3007void dev_remove_offload(struct packet_offload *po);
3008
3009int dev_get_iflink(const struct net_device *dev);
3010int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3011int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3012 struct net_device_path_stack *stack);
3013struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3014 unsigned short mask);
3015struct net_device *dev_get_by_name(struct net *net, const char *name);
3016struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3017struct net_device *__dev_get_by_name(struct net *net, const char *name);
3018bool netdev_name_in_use(struct net *net, const char *name);
3019int dev_alloc_name(struct net_device *dev, const char *name);
3020int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3021void dev_close(struct net_device *dev);
3022void dev_close_many(struct list_head *head, bool unlink);
3023void dev_disable_lro(struct net_device *dev);
3024int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3025u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3026 struct net_device *sb_dev);
3027u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3028 struct net_device *sb_dev);
3029
3030int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3031int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3032
3033static inline int dev_queue_xmit(struct sk_buff *skb)
3034{
3035 return __dev_queue_xmit(skb, NULL);
3036}
3037
3038static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3039 struct net_device *sb_dev)
3040{
3041 return __dev_queue_xmit(skb, sb_dev);
3042}
3043
3044static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3045{
3046 int ret;
3047
3048 ret = __dev_direct_xmit(skb, queue_id);
3049 if (!dev_xmit_complete(ret))
3050 kfree_skb(skb);
3051 return ret;
3052}
3053
3054int register_netdevice(struct net_device *dev);
3055void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3056void unregister_netdevice_many(struct list_head *head);
3057static inline void unregister_netdevice(struct net_device *dev)
3058{
3059 unregister_netdevice_queue(dev, NULL);
3060}
3061
3062int netdev_refcnt_read(const struct net_device *dev);
3063void free_netdev(struct net_device *dev);
3064void netdev_freemem(struct net_device *dev);
3065int init_dummy_netdev(struct net_device *dev);
3066
3067struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3068 struct sk_buff *skb,
3069 bool all_slaves);
3070struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3071 struct sock *sk);
3072struct net_device *dev_get_by_index(struct net *net, int ifindex);
3073struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3074struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3075struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3076int dev_restart(struct net_device *dev);
3077
3078
3079static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3080 unsigned short type,
3081 const void *daddr, const void *saddr,
3082 unsigned int len)
3083{
3084 if (!dev->header_ops || !dev->header_ops->create)
3085 return 0;
3086
3087 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3088}
3089
3090static inline int dev_parse_header(const struct sk_buff *skb,
3091 unsigned char *haddr)
3092{
3093 const struct net_device *dev = skb->dev;
3094
3095 if (!dev->header_ops || !dev->header_ops->parse)
3096 return 0;
3097 return dev->header_ops->parse(skb, haddr);
3098}
3099
3100static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3101{
3102 const struct net_device *dev = skb->dev;
3103
3104 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3105 return 0;
3106 return dev->header_ops->parse_protocol(skb);
3107}
3108
3109/* ll_header must have at least hard_header_len allocated */
3110static inline bool dev_validate_header(const struct net_device *dev,
3111 char *ll_header, int len)
3112{
3113 if (likely(len >= dev->hard_header_len))
3114 return true;
3115 if (len < dev->min_header_len)
3116 return false;
3117
3118 if (capable(CAP_SYS_RAWIO)) {
3119 memset(ll_header + len, 0, dev->hard_header_len - len);
3120 return true;
3121 }
3122
3123 if (dev->header_ops && dev->header_ops->validate)
3124 return dev->header_ops->validate(ll_header, len);
3125
3126 return false;
3127}
3128
3129static inline bool dev_has_header(const struct net_device *dev)
3130{
3131 return dev->header_ops && dev->header_ops->create;
3132}
3133
3134/*
3135 * Incoming packets are placed on per-CPU queues
3136 */
3137struct softnet_data {
3138 struct list_head poll_list;
3139 struct sk_buff_head process_queue;
3140
3141 /* stats */
3142 unsigned int processed;
3143 unsigned int time_squeeze;
3144#ifdef CONFIG_RPS
3145 struct softnet_data *rps_ipi_list;
3146#endif
3147#ifdef CONFIG_NET_FLOW_LIMIT
3148 struct sd_flow_limit __rcu *flow_limit;
3149#endif
3150 struct Qdisc *output_queue;
3151 struct Qdisc **output_queue_tailp;
3152 struct sk_buff *completion_queue;
3153#ifdef CONFIG_XFRM_OFFLOAD
3154 struct sk_buff_head xfrm_backlog;
3155#endif
3156 /* written and read only by owning cpu: */
3157 struct {
3158 u16 recursion;
3159 u8 more;
3160#ifdef CONFIG_NET_EGRESS
3161 u8 skip_txqueue;
3162#endif
3163 } xmit;
3164#ifdef CONFIG_RPS
3165 /* input_queue_head should be written by cpu owning this struct,
3166 * and only read by other cpus. Worth using a cache line.
3167 */
3168 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3169
3170 /* Elements below can be accessed between CPUs for RPS/RFS */
3171 call_single_data_t csd ____cacheline_aligned_in_smp;
3172 struct softnet_data *rps_ipi_next;
3173 unsigned int cpu;
3174 unsigned int input_queue_tail;
3175#endif
3176 unsigned int received_rps;
3177 unsigned int dropped;
3178 struct sk_buff_head input_pkt_queue;
3179 struct napi_struct backlog;
3180
3181 /* Another possibly contended cache line */
3182 spinlock_t defer_lock ____cacheline_aligned_in_smp;
3183 int defer_count;
3184 int defer_ipi_scheduled;
3185 struct sk_buff *defer_list;
3186 call_single_data_t defer_csd;
3187};
3188
3189static inline void input_queue_head_incr(struct softnet_data *sd)
3190{
3191#ifdef CONFIG_RPS
3192 sd->input_queue_head++;
3193#endif
3194}
3195
3196static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3197 unsigned int *qtail)
3198{
3199#ifdef CONFIG_RPS
3200 *qtail = ++sd->input_queue_tail;
3201#endif
3202}
3203
3204DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3205
3206static inline int dev_recursion_level(void)
3207{
3208 return this_cpu_read(softnet_data.xmit.recursion);
3209}
3210
3211#define XMIT_RECURSION_LIMIT 8
3212static inline bool dev_xmit_recursion(void)
3213{
3214 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3215 XMIT_RECURSION_LIMIT);
3216}
3217
3218static inline void dev_xmit_recursion_inc(void)
3219{
3220 __this_cpu_inc(softnet_data.xmit.recursion);
3221}
3222
3223static inline void dev_xmit_recursion_dec(void)
3224{
3225 __this_cpu_dec(softnet_data.xmit.recursion);
3226}
3227
3228void __netif_schedule(struct Qdisc *q);
3229void netif_schedule_queue(struct netdev_queue *txq);
3230
3231static inline void netif_tx_schedule_all(struct net_device *dev)
3232{
3233 unsigned int i;
3234
3235 for (i = 0; i < dev->num_tx_queues; i++)
3236 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3237}
3238
3239static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3240{
3241 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3242}
3243
3244/**
3245 * netif_start_queue - allow transmit
3246 * @dev: network device
3247 *
3248 * Allow upper layers to call the device hard_start_xmit routine.
3249 */
3250static inline void netif_start_queue(struct net_device *dev)
3251{
3252 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3253}
3254
3255static inline void netif_tx_start_all_queues(struct net_device *dev)
3256{
3257 unsigned int i;
3258
3259 for (i = 0; i < dev->num_tx_queues; i++) {
3260 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3261 netif_tx_start_queue(txq);
3262 }
3263}
3264
3265void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3266
3267/**
3268 * netif_wake_queue - restart transmit
3269 * @dev: network device
3270 *
3271 * Allow upper layers to call the device hard_start_xmit routine.
3272 * Used for flow control when transmit resources are available.
3273 */
3274static inline void netif_wake_queue(struct net_device *dev)
3275{
3276 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3277}
3278
3279static inline void netif_tx_wake_all_queues(struct net_device *dev)
3280{
3281 unsigned int i;
3282
3283 for (i = 0; i < dev->num_tx_queues; i++) {
3284 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3285 netif_tx_wake_queue(txq);
3286 }
3287}
3288
3289static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3290{
3291 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3292}
3293
3294/**
3295 * netif_stop_queue - stop transmitted packets
3296 * @dev: network device
3297 *
3298 * Stop upper layers calling the device hard_start_xmit routine.
3299 * Used for flow control when transmit resources are unavailable.
3300 */
3301static inline void netif_stop_queue(struct net_device *dev)
3302{
3303 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3304}
3305
3306void netif_tx_stop_all_queues(struct net_device *dev);
3307
3308static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3309{
3310 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3311}
3312
3313/**
3314 * netif_queue_stopped - test if transmit queue is flowblocked
3315 * @dev: network device
3316 *
3317 * Test if transmit queue on device is currently unable to send.
3318 */
3319static inline bool netif_queue_stopped(const struct net_device *dev)
3320{
3321 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3322}
3323
3324static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3325{
3326 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3327}
3328
3329static inline bool
3330netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3331{
3332 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3333}
3334
3335static inline bool
3336netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3337{
3338 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3339}
3340
3341/**
3342 * netdev_queue_set_dql_min_limit - set dql minimum limit
3343 * @dev_queue: pointer to transmit queue
3344 * @min_limit: dql minimum limit
3345 *
3346 * Forces xmit_more() to return true until the minimum threshold
3347 * defined by @min_limit is reached (or until the tx queue is
3348 * empty). Warning: to be use with care, misuse will impact the
3349 * latency.
3350 */
3351static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3352 unsigned int min_limit)
3353{
3354#ifdef CONFIG_BQL
3355 dev_queue->dql.min_limit = min_limit;
3356#endif
3357}
3358
3359/**
3360 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3361 * @dev_queue: pointer to transmit queue
3362 *
3363 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3364 * to give appropriate hint to the CPU.
3365 */
3366static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3367{
3368#ifdef CONFIG_BQL
3369 prefetchw(&dev_queue->dql.num_queued);
3370#endif
3371}
3372
3373/**
3374 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3375 * @dev_queue: pointer to transmit queue
3376 *
3377 * BQL enabled drivers might use this helper in their TX completion path,
3378 * to give appropriate hint to the CPU.
3379 */
3380static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3381{
3382#ifdef CONFIG_BQL
3383 prefetchw(&dev_queue->dql.limit);
3384#endif
3385}
3386
3387/**
3388 * netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3389 * @dev_queue: network device queue
3390 * @bytes: number of bytes queued to the device queue
3391 *
3392 * Report the number of bytes queued for sending/completion to the network
3393 * device hardware queue. @bytes should be a good approximation and should
3394 * exactly match netdev_completed_queue() @bytes.
3395 * This is typically called once per packet, from ndo_start_xmit().
3396 */
3397static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3398 unsigned int bytes)
3399{
3400#ifdef CONFIG_BQL
3401 dql_queued(&dev_queue->dql, bytes);
3402
3403 if (likely(dql_avail(&dev_queue->dql) >= 0))
3404 return;
3405
3406 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3407
3408 /*
3409 * The XOFF flag must be set before checking the dql_avail below,
3410 * because in netdev_tx_completed_queue we update the dql_completed
3411 * before checking the XOFF flag.
3412 */
3413 smp_mb();
3414
3415 /* check again in case another CPU has just made room avail */
3416 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3417 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3418#endif
3419}
3420
3421/* Variant of netdev_tx_sent_queue() for drivers that are aware
3422 * that they should not test BQL status themselves.
3423 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3424 * skb of a batch.
3425 * Returns true if the doorbell must be used to kick the NIC.
3426 */
3427static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3428 unsigned int bytes,
3429 bool xmit_more)
3430{
3431 if (xmit_more) {
3432#ifdef CONFIG_BQL
3433 dql_queued(&dev_queue->dql, bytes);
3434#endif
3435 return netif_tx_queue_stopped(dev_queue);
3436 }
3437 netdev_tx_sent_queue(dev_queue, bytes);
3438 return true;
3439}
3440
3441/**
3442 * netdev_sent_queue - report the number of bytes queued to hardware
3443 * @dev: network device
3444 * @bytes: number of bytes queued to the hardware device queue
3445 *
3446 * Report the number of bytes queued for sending/completion to the network
3447 * device hardware queue#0. @bytes should be a good approximation and should
3448 * exactly match netdev_completed_queue() @bytes.
3449 * This is typically called once per packet, from ndo_start_xmit().
3450 */
3451static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3452{
3453 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3454}
3455
3456static inline bool __netdev_sent_queue(struct net_device *dev,
3457 unsigned int bytes,
3458 bool xmit_more)
3459{
3460 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3461 xmit_more);
3462}
3463
3464/**
3465 * netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3466 * @dev_queue: network device queue
3467 * @pkts: number of packets (currently ignored)
3468 * @bytes: number of bytes dequeued from the device queue
3469 *
3470 * Must be called at most once per TX completion round (and not per
3471 * individual packet), so that BQL can adjust its limits appropriately.
3472 */
3473static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3474 unsigned int pkts, unsigned int bytes)
3475{
3476#ifdef CONFIG_BQL
3477 if (unlikely(!bytes))
3478 return;
3479
3480 dql_completed(&dev_queue->dql, bytes);
3481
3482 /*
3483 * Without the memory barrier there is a small possiblity that
3484 * netdev_tx_sent_queue will miss the update and cause the queue to
3485 * be stopped forever
3486 */
3487 smp_mb();
3488
3489 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3490 return;
3491
3492 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3493 netif_schedule_queue(dev_queue);
3494#endif
3495}
3496
3497/**
3498 * netdev_completed_queue - report bytes and packets completed by device
3499 * @dev: network device
3500 * @pkts: actual number of packets sent over the medium
3501 * @bytes: actual number of bytes sent over the medium
3502 *
3503 * Report the number of bytes and packets transmitted by the network device
3504 * hardware queue over the physical medium, @bytes must exactly match the
3505 * @bytes amount passed to netdev_sent_queue()
3506 */
3507static inline void netdev_completed_queue(struct net_device *dev,
3508 unsigned int pkts, unsigned int bytes)
3509{
3510 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3511}
3512
3513static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3514{
3515#ifdef CONFIG_BQL
3516 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3517 dql_reset(&q->dql);
3518#endif
3519}
3520
3521/**
3522 * netdev_reset_queue - reset the packets and bytes count of a network device
3523 * @dev_queue: network device
3524 *
3525 * Reset the bytes and packet count of a network device and clear the
3526 * software flow control OFF bit for this network device
3527 */
3528static inline void netdev_reset_queue(struct net_device *dev_queue)
3529{
3530 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3531}
3532
3533/**
3534 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3535 * @dev: network device
3536 * @queue_index: given tx queue index
3537 *
3538 * Returns 0 if given tx queue index >= number of device tx queues,
3539 * otherwise returns the originally passed tx queue index.
3540 */
3541static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3542{
3543 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3544 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3545 dev->name, queue_index,
3546 dev->real_num_tx_queues);
3547 return 0;
3548 }
3549
3550 return queue_index;
3551}
3552
3553/**
3554 * netif_running - test if up
3555 * @dev: network device
3556 *
3557 * Test if the device has been brought up.
3558 */
3559static inline bool netif_running(const struct net_device *dev)
3560{
3561 return test_bit(__LINK_STATE_START, &dev->state);
3562}
3563
3564/*
3565 * Routines to manage the subqueues on a device. We only need start,
3566 * stop, and a check if it's stopped. All other device management is
3567 * done at the overall netdevice level.
3568 * Also test the device if we're multiqueue.
3569 */
3570
3571/**
3572 * netif_start_subqueue - allow sending packets on subqueue
3573 * @dev: network device
3574 * @queue_index: sub queue index
3575 *
3576 * Start individual transmit queue of a device with multiple transmit queues.
3577 */
3578static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3579{
3580 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3581
3582 netif_tx_start_queue(txq);
3583}
3584
3585/**
3586 * netif_stop_subqueue - stop sending packets on subqueue
3587 * @dev: network device
3588 * @queue_index: sub queue index
3589 *
3590 * Stop individual transmit queue of a device with multiple transmit queues.
3591 */
3592static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3593{
3594 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3595 netif_tx_stop_queue(txq);
3596}
3597
3598/**
3599 * __netif_subqueue_stopped - test status of subqueue
3600 * @dev: network device
3601 * @queue_index: sub queue index
3602 *
3603 * Check individual transmit queue of a device with multiple transmit queues.
3604 */
3605static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3606 u16 queue_index)
3607{
3608 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3609
3610 return netif_tx_queue_stopped(txq);
3611}
3612
3613/**
3614 * netif_subqueue_stopped - test status of subqueue
3615 * @dev: network device
3616 * @skb: sub queue buffer pointer
3617 *
3618 * Check individual transmit queue of a device with multiple transmit queues.
3619 */
3620static inline bool netif_subqueue_stopped(const struct net_device *dev,
3621 struct sk_buff *skb)
3622{
3623 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3624}
3625
3626/**
3627 * netif_wake_subqueue - allow sending packets on subqueue
3628 * @dev: network device
3629 * @queue_index: sub queue index
3630 *
3631 * Resume individual transmit queue of a device with multiple transmit queues.
3632 */
3633static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3634{
3635 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3636
3637 netif_tx_wake_queue(txq);
3638}
3639
3640#ifdef CONFIG_XPS
3641int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3642 u16 index);
3643int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3644 u16 index, enum xps_map_type type);
3645
3646/**
3647 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3648 * @j: CPU/Rx queue index
3649 * @mask: bitmask of all cpus/rx queues
3650 * @nr_bits: number of bits in the bitmask
3651 *
3652 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3653 */
3654static inline bool netif_attr_test_mask(unsigned long j,
3655 const unsigned long *mask,
3656 unsigned int nr_bits)
3657{
3658 cpu_max_bits_warn(j, nr_bits);
3659 return test_bit(j, mask);
3660}
3661
3662/**
3663 * netif_attr_test_online - Test for online CPU/Rx queue
3664 * @j: CPU/Rx queue index
3665 * @online_mask: bitmask for CPUs/Rx queues that are online
3666 * @nr_bits: number of bits in the bitmask
3667 *
3668 * Returns true if a CPU/Rx queue is online.
3669 */
3670static inline bool netif_attr_test_online(unsigned long j,
3671 const unsigned long *online_mask,
3672 unsigned int nr_bits)
3673{
3674 cpu_max_bits_warn(j, nr_bits);
3675
3676 if (online_mask)
3677 return test_bit(j, online_mask);
3678
3679 return (j < nr_bits);
3680}
3681
3682/**
3683 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3684 * @n: CPU/Rx queue index
3685 * @srcp: the cpumask/Rx queue mask pointer
3686 * @nr_bits: number of bits in the bitmask
3687 *
3688 * Returns >= nr_bits if no further CPUs/Rx queues set.
3689 */
3690static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3691 unsigned int nr_bits)
3692{
3693 /* -1 is a legal arg here. */
3694 if (n != -1)
3695 cpu_max_bits_warn(n, nr_bits);
3696
3697 if (srcp)
3698 return find_next_bit(srcp, nr_bits, n + 1);
3699
3700 return n + 1;
3701}
3702
3703/**
3704 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3705 * @n: CPU/Rx queue index
3706 * @src1p: the first CPUs/Rx queues mask pointer
3707 * @src2p: the second CPUs/Rx queues mask pointer
3708 * @nr_bits: number of bits in the bitmask
3709 *
3710 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3711 */
3712static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3713 const unsigned long *src2p,
3714 unsigned int nr_bits)
3715{
3716 /* -1 is a legal arg here. */
3717 if (n != -1)
3718 cpu_max_bits_warn(n, nr_bits);
3719
3720 if (src1p && src2p)
3721 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3722 else if (src1p)
3723 return find_next_bit(src1p, nr_bits, n + 1);
3724 else if (src2p)
3725 return find_next_bit(src2p, nr_bits, n + 1);
3726
3727 return n + 1;
3728}
3729#else
3730static inline int netif_set_xps_queue(struct net_device *dev,
3731 const struct cpumask *mask,
3732 u16 index)
3733{
3734 return 0;
3735}
3736
3737static inline int __netif_set_xps_queue(struct net_device *dev,
3738 const unsigned long *mask,
3739 u16 index, enum xps_map_type type)
3740{
3741 return 0;
3742}
3743#endif
3744
3745/**
3746 * netif_is_multiqueue - test if device has multiple transmit queues
3747 * @dev: network device
3748 *
3749 * Check if device has multiple transmit queues
3750 */
3751static inline bool netif_is_multiqueue(const struct net_device *dev)
3752{
3753 return dev->num_tx_queues > 1;
3754}
3755
3756int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3757
3758#ifdef CONFIG_SYSFS
3759int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3760#else
3761static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3762 unsigned int rxqs)
3763{
3764 dev->real_num_rx_queues = rxqs;
3765 return 0;
3766}
3767#endif
3768int netif_set_real_num_queues(struct net_device *dev,
3769 unsigned int txq, unsigned int rxq);
3770
3771static inline struct netdev_rx_queue *
3772__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3773{
3774 return dev->_rx + rxq;
3775}
3776
3777#ifdef CONFIG_SYSFS
3778static inline unsigned int get_netdev_rx_queue_index(
3779 struct netdev_rx_queue *queue)
3780{
3781 struct net_device *dev = queue->dev;
3782 int index = queue - dev->_rx;
3783
3784 BUG_ON(index >= dev->num_rx_queues);
3785 return index;
3786}
3787#endif
3788
3789int netif_get_num_default_rss_queues(void);
3790
3791enum skb_free_reason {
3792 SKB_REASON_CONSUMED,
3793 SKB_REASON_DROPPED,
3794};
3795
3796void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3797void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3798
3799/*
3800 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3801 * interrupt context or with hardware interrupts being disabled.
3802 * (in_hardirq() || irqs_disabled())
3803 *
3804 * We provide four helpers that can be used in following contexts :
3805 *
3806 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3807 * replacing kfree_skb(skb)
3808 *
3809 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3810 * Typically used in place of consume_skb(skb) in TX completion path
3811 *
3812 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3813 * replacing kfree_skb(skb)
3814 *
3815 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3816 * and consumed a packet. Used in place of consume_skb(skb)
3817 */
3818static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3819{
3820 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3821}
3822
3823static inline void dev_consume_skb_irq(struct sk_buff *skb)
3824{
3825 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3826}
3827
3828static inline void dev_kfree_skb_any(struct sk_buff *skb)
3829{
3830 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3831}
3832
3833static inline void dev_consume_skb_any(struct sk_buff *skb)
3834{
3835 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3836}
3837
3838u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3839 struct bpf_prog *xdp_prog);
3840void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3841int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3842int netif_rx(struct sk_buff *skb);
3843int __netif_rx(struct sk_buff *skb);
3844
3845int netif_receive_skb(struct sk_buff *skb);
3846int netif_receive_skb_core(struct sk_buff *skb);
3847void netif_receive_skb_list_internal(struct list_head *head);
3848void netif_receive_skb_list(struct list_head *head);
3849gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3850void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3851struct sk_buff *napi_get_frags(struct napi_struct *napi);
3852void napi_get_frags_check(struct napi_struct *napi);
3853gro_result_t napi_gro_frags(struct napi_struct *napi);
3854struct packet_offload *gro_find_receive_by_type(__be16 type);
3855struct packet_offload *gro_find_complete_by_type(__be16 type);
3856
3857static inline void napi_free_frags(struct napi_struct *napi)
3858{
3859 kfree_skb(napi->skb);
3860 napi->skb = NULL;
3861}
3862
3863bool netdev_is_rx_handler_busy(struct net_device *dev);
3864int netdev_rx_handler_register(struct net_device *dev,
3865 rx_handler_func_t *rx_handler,
3866 void *rx_handler_data);
3867void netdev_rx_handler_unregister(struct net_device *dev);
3868
3869bool dev_valid_name(const char *name);
3870static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3871{
3872 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3873}
3874int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3875int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3876int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3877 void __user *data, bool *need_copyout);
3878int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3879int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3880unsigned int dev_get_flags(const struct net_device *);
3881int __dev_change_flags(struct net_device *dev, unsigned int flags,
3882 struct netlink_ext_ack *extack);
3883int dev_change_flags(struct net_device *dev, unsigned int flags,
3884 struct netlink_ext_ack *extack);
3885int dev_set_alias(struct net_device *, const char *, size_t);
3886int dev_get_alias(const struct net_device *, char *, size_t);
3887int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3888 const char *pat, int new_ifindex);
3889static inline
3890int dev_change_net_namespace(struct net_device *dev, struct net *net,
3891 const char *pat)
3892{
3893 return __dev_change_net_namespace(dev, net, pat, 0);
3894}
3895int __dev_set_mtu(struct net_device *, int);
3896int dev_set_mtu(struct net_device *, int);
3897int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3898 struct netlink_ext_ack *extack);
3899int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3900 struct netlink_ext_ack *extack);
3901int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3902 struct netlink_ext_ack *extack);
3903int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3904int dev_get_port_parent_id(struct net_device *dev,
3905 struct netdev_phys_item_id *ppid, bool recurse);
3906bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3907struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3908struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3909 struct netdev_queue *txq, int *ret);
3910
3911int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3912u8 dev_xdp_prog_count(struct net_device *dev);
3913u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3914
3915int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3916int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3917int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3918bool is_skb_forwardable(const struct net_device *dev,
3919 const struct sk_buff *skb);
3920
3921static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3922 const struct sk_buff *skb,
3923 const bool check_mtu)
3924{
3925 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3926 unsigned int len;
3927
3928 if (!(dev->flags & IFF_UP))
3929 return false;
3930
3931 if (!check_mtu)
3932 return true;
3933
3934 len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3935 if (skb->len <= len)
3936 return true;
3937
3938 /* if TSO is enabled, we don't care about the length as the packet
3939 * could be forwarded without being segmented before
3940 */
3941 if (skb_is_gso(skb))
3942 return true;
3943
3944 return false;
3945}
3946
3947struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3948
3949static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3950{
3951 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3952 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3953
3954 if (likely(p))
3955 return p;
3956
3957 return netdev_core_stats_alloc(dev);
3958}
3959
3960#define DEV_CORE_STATS_INC(FIELD) \
3961static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \
3962{ \
3963 struct net_device_core_stats __percpu *p; \
3964 \
3965 p = dev_core_stats(dev); \
3966 if (p) \
3967 this_cpu_inc(p->FIELD); \
3968}
3969DEV_CORE_STATS_INC(rx_dropped)
3970DEV_CORE_STATS_INC(tx_dropped)
3971DEV_CORE_STATS_INC(rx_nohandler)
3972DEV_CORE_STATS_INC(rx_otherhost_dropped)
3973
3974static __always_inline int ____dev_forward_skb(struct net_device *dev,
3975 struct sk_buff *skb,
3976 const bool check_mtu)
3977{
3978 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3979 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3980 dev_core_stats_rx_dropped_inc(dev);
3981 kfree_skb(skb);
3982 return NET_RX_DROP;
3983 }
3984
3985 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3986 skb->priority = 0;
3987 return 0;
3988}
3989
3990bool dev_nit_active(struct net_device *dev);
3991void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3992
3993static inline void __dev_put(struct net_device *dev)
3994{
3995 if (dev) {
3996#ifdef CONFIG_PCPU_DEV_REFCNT
3997 this_cpu_dec(*dev->pcpu_refcnt);
3998#else
3999 refcount_dec(&dev->dev_refcnt);
4000#endif
4001 }
4002}
4003
4004static inline void __dev_hold(struct net_device *dev)
4005{
4006 if (dev) {
4007#ifdef CONFIG_PCPU_DEV_REFCNT
4008 this_cpu_inc(*dev->pcpu_refcnt);
4009#else
4010 refcount_inc(&dev->dev_refcnt);
4011#endif
4012 }
4013}
4014
4015static inline void __netdev_tracker_alloc(struct net_device *dev,
4016 netdevice_tracker *tracker,
4017 gfp_t gfp)
4018{
4019#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4020 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4021#endif
4022}
4023
4024/* netdev_tracker_alloc() can upgrade a prior untracked reference
4025 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4026 */
4027static inline void netdev_tracker_alloc(struct net_device *dev,
4028 netdevice_tracker *tracker, gfp_t gfp)
4029{
4030#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4031 refcount_dec(&dev->refcnt_tracker.no_tracker);
4032 __netdev_tracker_alloc(dev, tracker, gfp);
4033#endif
4034}
4035
4036static inline void netdev_tracker_free(struct net_device *dev,
4037 netdevice_tracker *tracker)
4038{
4039#ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4040 ref_tracker_free(&dev->refcnt_tracker, tracker);
4041#endif
4042}
4043
4044static inline void netdev_hold(struct net_device *dev,
4045 netdevice_tracker *tracker, gfp_t gfp)
4046{
4047 if (dev) {
4048 __dev_hold(dev);
4049 __netdev_tracker_alloc(dev, tracker, gfp);
4050 }
4051}
4052
4053static inline void netdev_put(struct net_device *dev,
4054 netdevice_tracker *tracker)
4055{
4056 if (dev) {
4057 netdev_tracker_free(dev, tracker);
4058 __dev_put(dev);
4059 }
4060}
4061
4062/**
4063 * dev_hold - get reference to device
4064 * @dev: network device
4065 *
4066 * Hold reference to device to keep it from being freed.
4067 * Try using netdev_hold() instead.
4068 */
4069static inline void dev_hold(struct net_device *dev)
4070{
4071 netdev_hold(dev, NULL, GFP_ATOMIC);
4072}
4073
4074/**
4075 * dev_put - release reference to device
4076 * @dev: network device
4077 *
4078 * Release reference to device to allow it to be freed.
4079 * Try using netdev_put() instead.
4080 */
4081static inline void dev_put(struct net_device *dev)
4082{
4083 netdev_put(dev, NULL);
4084}
4085
4086static inline void netdev_ref_replace(struct net_device *odev,
4087 struct net_device *ndev,
4088 netdevice_tracker *tracker,
4089 gfp_t gfp)
4090{
4091 if (odev)
4092 netdev_tracker_free(odev, tracker);
4093
4094 __dev_hold(ndev);
4095 __dev_put(odev);
4096
4097 if (ndev)
4098 __netdev_tracker_alloc(ndev, tracker, gfp);
4099}
4100
4101/* Carrier loss detection, dial on demand. The functions netif_carrier_on
4102 * and _off may be called from IRQ context, but it is caller
4103 * who is responsible for serialization of these calls.
4104 *
4105 * The name carrier is inappropriate, these functions should really be
4106 * called netif_lowerlayer_*() because they represent the state of any
4107 * kind of lower layer not just hardware media.
4108 */
4109void linkwatch_fire_event(struct net_device *dev);
4110
4111/**
4112 * netif_carrier_ok - test if carrier present
4113 * @dev: network device
4114 *
4115 * Check if carrier is present on device
4116 */
4117static inline bool netif_carrier_ok(const struct net_device *dev)
4118{
4119 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4120}
4121
4122unsigned long dev_trans_start(struct net_device *dev);
4123
4124void __netdev_watchdog_up(struct net_device *dev);
4125
4126void netif_carrier_on(struct net_device *dev);
4127void netif_carrier_off(struct net_device *dev);
4128void netif_carrier_event(struct net_device *dev);
4129
4130/**
4131 * netif_dormant_on - mark device as dormant.
4132 * @dev: network device
4133 *
4134 * Mark device as dormant (as per RFC2863).
4135 *
4136 * The dormant state indicates that the relevant interface is not
4137 * actually in a condition to pass packets (i.e., it is not 'up') but is
4138 * in a "pending" state, waiting for some external event. For "on-
4139 * demand" interfaces, this new state identifies the situation where the
4140 * interface is waiting for events to place it in the up state.
4141 */
4142static inline void netif_dormant_on(struct net_device *dev)
4143{
4144 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4145 linkwatch_fire_event(dev);
4146}
4147
4148/**
4149 * netif_dormant_off - set device as not dormant.
4150 * @dev: network device
4151 *
4152 * Device is not in dormant state.
4153 */
4154static inline void netif_dormant_off(struct net_device *dev)
4155{
4156 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4157 linkwatch_fire_event(dev);
4158}
4159
4160/**
4161 * netif_dormant - test if device is dormant
4162 * @dev: network device
4163 *
4164 * Check if device is dormant.
4165 */
4166static inline bool netif_dormant(const struct net_device *dev)
4167{
4168 return test_bit(__LINK_STATE_DORMANT, &dev->state);
4169}
4170
4171
4172/**
4173 * netif_testing_on - mark device as under test.
4174 * @dev: network device
4175 *
4176 * Mark device as under test (as per RFC2863).
4177 *
4178 * The testing state indicates that some test(s) must be performed on
4179 * the interface. After completion, of the test, the interface state
4180 * will change to up, dormant, or down, as appropriate.
4181 */
4182static inline void netif_testing_on(struct net_device *dev)
4183{
4184 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4185 linkwatch_fire_event(dev);
4186}
4187
4188/**
4189 * netif_testing_off - set device as not under test.
4190 * @dev: network device
4191 *
4192 * Device is not in testing state.
4193 */
4194static inline void netif_testing_off(struct net_device *dev)
4195{
4196 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4197 linkwatch_fire_event(dev);
4198}
4199
4200/**
4201 * netif_testing - test if device is under test
4202 * @dev: network device
4203 *
4204 * Check if device is under test
4205 */
4206static inline bool netif_testing(const struct net_device *dev)
4207{
4208 return test_bit(__LINK_STATE_TESTING, &dev->state);
4209}
4210
4211
4212/**
4213 * netif_oper_up - test if device is operational
4214 * @dev: network device
4215 *
4216 * Check if carrier is operational
4217 */
4218static inline bool netif_oper_up(const struct net_device *dev)
4219{
4220 return (dev->operstate == IF_OPER_UP ||
4221 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4222}
4223
4224/**
4225 * netif_device_present - is device available or removed
4226 * @dev: network device
4227 *
4228 * Check if device has not been removed from system.
4229 */
4230static inline bool netif_device_present(const struct net_device *dev)
4231{
4232 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4233}
4234
4235void netif_device_detach(struct net_device *dev);
4236
4237void netif_device_attach(struct net_device *dev);
4238
4239/*
4240 * Network interface message level settings
4241 */
4242
4243enum {
4244 NETIF_MSG_DRV_BIT,
4245 NETIF_MSG_PROBE_BIT,
4246 NETIF_MSG_LINK_BIT,
4247 NETIF_MSG_TIMER_BIT,
4248 NETIF_MSG_IFDOWN_BIT,
4249 NETIF_MSG_IFUP_BIT,
4250 NETIF_MSG_RX_ERR_BIT,
4251 NETIF_MSG_TX_ERR_BIT,
4252 NETIF_MSG_TX_QUEUED_BIT,
4253 NETIF_MSG_INTR_BIT,
4254 NETIF_MSG_TX_DONE_BIT,
4255 NETIF_MSG_RX_STATUS_BIT,
4256 NETIF_MSG_PKTDATA_BIT,
4257 NETIF_MSG_HW_BIT,
4258 NETIF_MSG_WOL_BIT,
4259
4260 /* When you add a new bit above, update netif_msg_class_names array
4261 * in net/ethtool/common.c
4262 */
4263 NETIF_MSG_CLASS_COUNT,
4264};
4265/* Both ethtool_ops interface and internal driver implementation use u32 */
4266static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4267
4268#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4269#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4270
4271#define NETIF_MSG_DRV __NETIF_MSG(DRV)
4272#define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4273#define NETIF_MSG_LINK __NETIF_MSG(LINK)
4274#define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4275#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4276#define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4277#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4278#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4279#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4280#define NETIF_MSG_INTR __NETIF_MSG(INTR)
4281#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4282#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4283#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4284#define NETIF_MSG_HW __NETIF_MSG(HW)
4285#define NETIF_MSG_WOL __NETIF_MSG(WOL)
4286
4287#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4288#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4289#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4290#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4291#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4292#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4293#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4294#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4295#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4296#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4297#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4298#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4299#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4300#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4301#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4302
4303static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4304{
4305 /* use default */
4306 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4307 return default_msg_enable_bits;
4308 if (debug_value == 0) /* no output */
4309 return 0;
4310 /* set low N bits */
4311 return (1U << debug_value) - 1;
4312}
4313
4314static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4315{
4316 spin_lock(&txq->_xmit_lock);
4317 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4318 WRITE_ONCE(txq->xmit_lock_owner, cpu);
4319}
4320
4321static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4322{
4323 __acquire(&txq->_xmit_lock);
4324 return true;
4325}
4326
4327static inline void __netif_tx_release(struct netdev_queue *txq)
4328{
4329 __release(&txq->_xmit_lock);
4330}
4331
4332static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4333{
4334 spin_lock_bh(&txq->_xmit_lock);
4335 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4336 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4337}
4338
4339static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4340{
4341 bool ok = spin_trylock(&txq->_xmit_lock);
4342
4343 if (likely(ok)) {
4344 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4345 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4346 }
4347 return ok;
4348}
4349
4350static inline void __netif_tx_unlock(struct netdev_queue *txq)
4351{
4352 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4353 WRITE_ONCE(txq->xmit_lock_owner, -1);
4354 spin_unlock(&txq->_xmit_lock);
4355}
4356
4357static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4358{
4359 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4360 WRITE_ONCE(txq->xmit_lock_owner, -1);
4361 spin_unlock_bh(&txq->_xmit_lock);
4362}
4363
4364/*
4365 * txq->trans_start can be read locklessly from dev_watchdog()
4366 */
4367static inline void txq_trans_update(struct netdev_queue *txq)
4368{
4369 if (txq->xmit_lock_owner != -1)
4370 WRITE_ONCE(txq->trans_start, jiffies);
4371}
4372
4373static inline void txq_trans_cond_update(struct netdev_queue *txq)
4374{
4375 unsigned long now = jiffies;
4376
4377 if (READ_ONCE(txq->trans_start) != now)
4378 WRITE_ONCE(txq->trans_start, now);
4379}
4380
4381/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4382static inline void netif_trans_update(struct net_device *dev)
4383{
4384 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4385
4386 txq_trans_cond_update(txq);
4387}
4388
4389/**
4390 * netif_tx_lock - grab network device transmit lock
4391 * @dev: network device
4392 *
4393 * Get network device transmit lock
4394 */
4395void netif_tx_lock(struct net_device *dev);
4396
4397static inline void netif_tx_lock_bh(struct net_device *dev)
4398{
4399 local_bh_disable();
4400 netif_tx_lock(dev);
4401}
4402
4403void netif_tx_unlock(struct net_device *dev);
4404
4405static inline void netif_tx_unlock_bh(struct net_device *dev)
4406{
4407 netif_tx_unlock(dev);
4408 local_bh_enable();
4409}
4410
4411#define HARD_TX_LOCK(dev, txq, cpu) { \
4412 if ((dev->features & NETIF_F_LLTX) == 0) { \
4413 __netif_tx_lock(txq, cpu); \
4414 } else { \
4415 __netif_tx_acquire(txq); \
4416 } \
4417}
4418
4419#define HARD_TX_TRYLOCK(dev, txq) \
4420 (((dev->features & NETIF_F_LLTX) == 0) ? \
4421 __netif_tx_trylock(txq) : \
4422 __netif_tx_acquire(txq))
4423
4424#define HARD_TX_UNLOCK(dev, txq) { \
4425 if ((dev->features & NETIF_F_LLTX) == 0) { \
4426 __netif_tx_unlock(txq); \
4427 } else { \
4428 __netif_tx_release(txq); \
4429 } \
4430}
4431
4432static inline void netif_tx_disable(struct net_device *dev)
4433{
4434 unsigned int i;
4435 int cpu;
4436
4437 local_bh_disable();
4438 cpu = smp_processor_id();
4439 spin_lock(&dev->tx_global_lock);
4440 for (i = 0; i < dev->num_tx_queues; i++) {
4441 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4442
4443 __netif_tx_lock(txq, cpu);
4444 netif_tx_stop_queue(txq);
4445 __netif_tx_unlock(txq);
4446 }
4447 spin_unlock(&dev->tx_global_lock);
4448 local_bh_enable();
4449}
4450
4451static inline void netif_addr_lock(struct net_device *dev)
4452{
4453 unsigned char nest_level = 0;
4454
4455#ifdef CONFIG_LOCKDEP
4456 nest_level = dev->nested_level;
4457#endif
4458 spin_lock_nested(&dev->addr_list_lock, nest_level);
4459}
4460
4461static inline void netif_addr_lock_bh(struct net_device *dev)
4462{
4463 unsigned char nest_level = 0;
4464
4465#ifdef CONFIG_LOCKDEP
4466 nest_level = dev->nested_level;
4467#endif
4468 local_bh_disable();
4469 spin_lock_nested(&dev->addr_list_lock, nest_level);
4470}
4471
4472static inline void netif_addr_unlock(struct net_device *dev)
4473{
4474 spin_unlock(&dev->addr_list_lock);
4475}
4476
4477static inline void netif_addr_unlock_bh(struct net_device *dev)
4478{
4479 spin_unlock_bh(&dev->addr_list_lock);
4480}
4481
4482/*
4483 * dev_addrs walker. Should be used only for read access. Call with
4484 * rcu_read_lock held.
4485 */
4486#define for_each_dev_addr(dev, ha) \
4487 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4488
4489/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4490
4491void ether_setup(struct net_device *dev);
4492
4493/* Support for loadable net-drivers */
4494struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4495 unsigned char name_assign_type,
4496 void (*setup)(struct net_device *),
4497 unsigned int txqs, unsigned int rxqs);
4498#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4499 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4500
4501#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4502 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4503 count)
4504
4505int register_netdev(struct net_device *dev);
4506void unregister_netdev(struct net_device *dev);
4507
4508int devm_register_netdev(struct device *dev, struct net_device *ndev);
4509
4510/* General hardware address lists handling functions */
4511int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4512 struct netdev_hw_addr_list *from_list, int addr_len);
4513void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4514 struct netdev_hw_addr_list *from_list, int addr_len);
4515int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4516 struct net_device *dev,
4517 int (*sync)(struct net_device *, const unsigned char *),
4518 int (*unsync)(struct net_device *,
4519 const unsigned char *));
4520int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4521 struct net_device *dev,
4522 int (*sync)(struct net_device *,
4523 const unsigned char *, int),
4524 int (*unsync)(struct net_device *,
4525 const unsigned char *, int));
4526void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4527 struct net_device *dev,
4528 int (*unsync)(struct net_device *,
4529 const unsigned char *, int));
4530void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4531 struct net_device *dev,
4532 int (*unsync)(struct net_device *,
4533 const unsigned char *));
4534void __hw_addr_init(struct netdev_hw_addr_list *list);
4535
4536/* Functions used for device addresses handling */
4537void dev_addr_mod(struct net_device *dev, unsigned int offset,
4538 const void *addr, size_t len);
4539
4540static inline void
4541__dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4542{
4543 dev_addr_mod(dev, 0, addr, len);
4544}
4545
4546static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4547{
4548 __dev_addr_set(dev, addr, dev->addr_len);
4549}
4550
4551int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4552 unsigned char addr_type);
4553int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4554 unsigned char addr_type);
4555
4556/* Functions used for unicast addresses handling */
4557int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4558int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4559int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4560int dev_uc_sync(struct net_device *to, struct net_device *from);
4561int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4562void dev_uc_unsync(struct net_device *to, struct net_device *from);
4563void dev_uc_flush(struct net_device *dev);
4564void dev_uc_init(struct net_device *dev);
4565
4566/**
4567 * __dev_uc_sync - Synchonize device's unicast list
4568 * @dev: device to sync
4569 * @sync: function to call if address should be added
4570 * @unsync: function to call if address should be removed
4571 *
4572 * Add newly added addresses to the interface, and release
4573 * addresses that have been deleted.
4574 */
4575static inline int __dev_uc_sync(struct net_device *dev,
4576 int (*sync)(struct net_device *,
4577 const unsigned char *),
4578 int (*unsync)(struct net_device *,
4579 const unsigned char *))
4580{
4581 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4582}
4583
4584/**
4585 * __dev_uc_unsync - Remove synchronized addresses from device
4586 * @dev: device to sync
4587 * @unsync: function to call if address should be removed
4588 *
4589 * Remove all addresses that were added to the device by dev_uc_sync().
4590 */
4591static inline void __dev_uc_unsync(struct net_device *dev,
4592 int (*unsync)(struct net_device *,
4593 const unsigned char *))
4594{
4595 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4596}
4597
4598/* Functions used for multicast addresses handling */
4599int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4600int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4601int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4602int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4603int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4604int dev_mc_sync(struct net_device *to, struct net_device *from);
4605int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4606void dev_mc_unsync(struct net_device *to, struct net_device *from);
4607void dev_mc_flush(struct net_device *dev);
4608void dev_mc_init(struct net_device *dev);
4609
4610/**
4611 * __dev_mc_sync - Synchonize device's multicast list
4612 * @dev: device to sync
4613 * @sync: function to call if address should be added
4614 * @unsync: function to call if address should be removed
4615 *
4616 * Add newly added addresses to the interface, and release
4617 * addresses that have been deleted.
4618 */
4619static inline int __dev_mc_sync(struct net_device *dev,
4620 int (*sync)(struct net_device *,
4621 const unsigned char *),
4622 int (*unsync)(struct net_device *,
4623 const unsigned char *))
4624{
4625 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4626}
4627
4628/**
4629 * __dev_mc_unsync - Remove synchronized addresses from device
4630 * @dev: device to sync
4631 * @unsync: function to call if address should be removed
4632 *
4633 * Remove all addresses that were added to the device by dev_mc_sync().
4634 */
4635static inline void __dev_mc_unsync(struct net_device *dev,
4636 int (*unsync)(struct net_device *,
4637 const unsigned char *))
4638{
4639 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4640}
4641
4642/* Functions used for secondary unicast and multicast support */
4643void dev_set_rx_mode(struct net_device *dev);
4644int dev_set_promiscuity(struct net_device *dev, int inc);
4645int dev_set_allmulti(struct net_device *dev, int inc);
4646void netdev_state_change(struct net_device *dev);
4647void __netdev_notify_peers(struct net_device *dev);
4648void netdev_notify_peers(struct net_device *dev);
4649void netdev_features_change(struct net_device *dev);
4650/* Load a device via the kmod */
4651void dev_load(struct net *net, const char *name);
4652struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4653 struct rtnl_link_stats64 *storage);
4654void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4655 const struct net_device_stats *netdev_stats);
4656void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4657 const struct pcpu_sw_netstats __percpu *netstats);
4658void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4659
4660extern int netdev_max_backlog;
4661extern int dev_rx_weight;
4662extern int dev_tx_weight;
4663extern int gro_normal_batch;
4664
4665enum {
4666 NESTED_SYNC_IMM_BIT,
4667 NESTED_SYNC_TODO_BIT,
4668};
4669
4670#define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit))
4671#define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4672
4673#define NESTED_SYNC_IMM __NESTED_SYNC(IMM)
4674#define NESTED_SYNC_TODO __NESTED_SYNC(TODO)
4675
4676struct netdev_nested_priv {
4677 unsigned char flags;
4678 void *data;
4679};
4680
4681bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4682struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4683 struct list_head **iter);
4684
4685/* iterate through upper list, must be called under RCU read lock */
4686#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4687 for (iter = &(dev)->adj_list.upper, \
4688 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4689 updev; \
4690 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4691
4692int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4693 int (*fn)(struct net_device *upper_dev,
4694 struct netdev_nested_priv *priv),
4695 struct netdev_nested_priv *priv);
4696
4697bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4698 struct net_device *upper_dev);
4699
4700bool netdev_has_any_upper_dev(struct net_device *dev);
4701
4702void *netdev_lower_get_next_private(struct net_device *dev,
4703 struct list_head **iter);
4704void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4705 struct list_head **iter);
4706
4707#define netdev_for_each_lower_private(dev, priv, iter) \
4708 for (iter = (dev)->adj_list.lower.next, \
4709 priv = netdev_lower_get_next_private(dev, &(iter)); \
4710 priv; \
4711 priv = netdev_lower_get_next_private(dev, &(iter)))
4712
4713#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4714 for (iter = &(dev)->adj_list.lower, \
4715 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4716 priv; \
4717 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4718
4719void *netdev_lower_get_next(struct net_device *dev,
4720 struct list_head **iter);
4721
4722#define netdev_for_each_lower_dev(dev, ldev, iter) \
4723 for (iter = (dev)->adj_list.lower.next, \
4724 ldev = netdev_lower_get_next(dev, &(iter)); \
4725 ldev; \
4726 ldev = netdev_lower_get_next(dev, &(iter)))
4727
4728struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4729 struct list_head **iter);
4730int netdev_walk_all_lower_dev(struct net_device *dev,
4731 int (*fn)(struct net_device *lower_dev,
4732 struct netdev_nested_priv *priv),
4733 struct netdev_nested_priv *priv);
4734int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4735 int (*fn)(struct net_device *lower_dev,
4736 struct netdev_nested_priv *priv),
4737 struct netdev_nested_priv *priv);
4738
4739void *netdev_adjacent_get_private(struct list_head *adj_list);
4740void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4741struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4742struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4743int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4744 struct netlink_ext_ack *extack);
4745int netdev_master_upper_dev_link(struct net_device *dev,
4746 struct net_device *upper_dev,
4747 void *upper_priv, void *upper_info,
4748 struct netlink_ext_ack *extack);
4749void netdev_upper_dev_unlink(struct net_device *dev,
4750 struct net_device *upper_dev);
4751int netdev_adjacent_change_prepare(struct net_device *old_dev,
4752 struct net_device *new_dev,
4753 struct net_device *dev,
4754 struct netlink_ext_ack *extack);
4755void netdev_adjacent_change_commit(struct net_device *old_dev,
4756 struct net_device *new_dev,
4757 struct net_device *dev);
4758void netdev_adjacent_change_abort(struct net_device *old_dev,
4759 struct net_device *new_dev,
4760 struct net_device *dev);
4761void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4762void *netdev_lower_dev_get_private(struct net_device *dev,
4763 struct net_device *lower_dev);
4764void netdev_lower_state_changed(struct net_device *lower_dev,
4765 void *lower_state_info);
4766
4767/* RSS keys are 40 or 52 bytes long */
4768#define NETDEV_RSS_KEY_LEN 52
4769extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4770void netdev_rss_key_fill(void *buffer, size_t len);
4771
4772int skb_checksum_help(struct sk_buff *skb);
4773int skb_crc32c_csum_help(struct sk_buff *skb);
4774int skb_csum_hwoffload_help(struct sk_buff *skb,
4775 const netdev_features_t features);
4776
4777struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4778 netdev_features_t features, bool tx_path);
4779struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4780 netdev_features_t features, __be16 type);
4781struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4782 netdev_features_t features);
4783
4784struct netdev_bonding_info {
4785 ifslave slave;
4786 ifbond master;
4787};
4788
4789struct netdev_notifier_bonding_info {
4790 struct netdev_notifier_info info; /* must be first */
4791 struct netdev_bonding_info bonding_info;
4792};
4793
4794void netdev_bonding_info_change(struct net_device *dev,
4795 struct netdev_bonding_info *bonding_info);
4796
4797#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4798void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4799#else
4800static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4801 const void *data)
4802{
4803}
4804#endif
4805
4806static inline
4807struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4808{
4809 return __skb_gso_segment(skb, features, true);
4810}
4811__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4812
4813static inline bool can_checksum_protocol(netdev_features_t features,
4814 __be16 protocol)
4815{
4816 if (protocol == htons(ETH_P_FCOE))
4817 return !!(features & NETIF_F_FCOE_CRC);
4818
4819 /* Assume this is an IP checksum (not SCTP CRC) */
4820
4821 if (features & NETIF_F_HW_CSUM) {
4822 /* Can checksum everything */
4823 return true;
4824 }
4825
4826 switch (protocol) {
4827 case htons(ETH_P_IP):
4828 return !!(features & NETIF_F_IP_CSUM);
4829 case htons(ETH_P_IPV6):
4830 return !!(features & NETIF_F_IPV6_CSUM);
4831 default:
4832 return false;
4833 }
4834}
4835
4836#ifdef CONFIG_BUG
4837void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4838#else
4839static inline void netdev_rx_csum_fault(struct net_device *dev,
4840 struct sk_buff *skb)
4841{
4842}
4843#endif
4844/* rx skb timestamps */
4845void net_enable_timestamp(void);
4846void net_disable_timestamp(void);
4847
4848static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4849 const struct skb_shared_hwtstamps *hwtstamps,
4850 bool cycles)
4851{
4852 const struct net_device_ops *ops = dev->netdev_ops;
4853
4854 if (ops->ndo_get_tstamp)
4855 return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4856
4857 return hwtstamps->hwtstamp;
4858}
4859
4860static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4861 struct sk_buff *skb, struct net_device *dev,
4862 bool more)
4863{
4864 __this_cpu_write(softnet_data.xmit.more, more);
4865 return ops->ndo_start_xmit(skb, dev);
4866}
4867
4868static inline bool netdev_xmit_more(void)
4869{
4870 return __this_cpu_read(softnet_data.xmit.more);
4871}
4872
4873static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4874 struct netdev_queue *txq, bool more)
4875{
4876 const struct net_device_ops *ops = dev->netdev_ops;
4877 netdev_tx_t rc;
4878
4879 rc = __netdev_start_xmit(ops, skb, dev, more);
4880 if (rc == NETDEV_TX_OK)
4881 txq_trans_update(txq);
4882
4883 return rc;
4884}
4885
4886int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4887 const void *ns);
4888void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4889 const void *ns);
4890
4891extern const struct kobj_ns_type_operations net_ns_type_operations;
4892
4893const char *netdev_drivername(const struct net_device *dev);
4894
4895static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4896 netdev_features_t f2)
4897{
4898 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4899 if (f1 & NETIF_F_HW_CSUM)
4900 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4901 else
4902 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4903 }
4904
4905 return f1 & f2;
4906}
4907
4908static inline netdev_features_t netdev_get_wanted_features(
4909 struct net_device *dev)
4910{
4911 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4912}
4913netdev_features_t netdev_increment_features(netdev_features_t all,
4914 netdev_features_t one, netdev_features_t mask);
4915
4916/* Allow TSO being used on stacked device :
4917 * Performing the GSO segmentation before last device
4918 * is a performance improvement.
4919 */
4920static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4921 netdev_features_t mask)
4922{
4923 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4924}
4925
4926int __netdev_update_features(struct net_device *dev);
4927void netdev_update_features(struct net_device *dev);
4928void netdev_change_features(struct net_device *dev);
4929
4930void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4931 struct net_device *dev);
4932
4933netdev_features_t passthru_features_check(struct sk_buff *skb,
4934 struct net_device *dev,
4935 netdev_features_t features);
4936netdev_features_t netif_skb_features(struct sk_buff *skb);
4937
4938static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4939{
4940 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4941
4942 /* check flags correspondence */
4943 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4944 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4945 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4946 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4947 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4948 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4949 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4950 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4951 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4952 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4953 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4954 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4955 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4956 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4957 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4958 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4959 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4960 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4961 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4962
4963 return (features & feature) == feature;
4964}
4965
4966static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4967{
4968 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4969 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4970}
4971
4972static inline bool netif_needs_gso(struct sk_buff *skb,
4973 netdev_features_t features)
4974{
4975 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4976 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4977 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4978}
4979
4980void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4981void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4982void netif_inherit_tso_max(struct net_device *to,
4983 const struct net_device *from);
4984
4985static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4986 int pulled_hlen, u16 mac_offset,
4987 int mac_len)
4988{
4989 skb->protocol = protocol;
4990 skb->encapsulation = 1;
4991 skb_push(skb, pulled_hlen);
4992 skb_reset_transport_header(skb);
4993 skb->mac_header = mac_offset;
4994 skb->network_header = skb->mac_header + mac_len;
4995 skb->mac_len = mac_len;
4996}
4997
4998static inline bool netif_is_macsec(const struct net_device *dev)
4999{
5000 return dev->priv_flags & IFF_MACSEC;
5001}
5002
5003static inline bool netif_is_macvlan(const struct net_device *dev)
5004{
5005 return dev->priv_flags & IFF_MACVLAN;
5006}
5007
5008static inline bool netif_is_macvlan_port(const struct net_device *dev)
5009{
5010 return dev->priv_flags & IFF_MACVLAN_PORT;
5011}
5012
5013static inline bool netif_is_bond_master(const struct net_device *dev)
5014{
5015 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5016}
5017
5018static inline bool netif_is_bond_slave(const struct net_device *dev)
5019{
5020 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5021}
5022
5023static inline bool netif_supports_nofcs(struct net_device *dev)
5024{
5025 return dev->priv_flags & IFF_SUPP_NOFCS;
5026}
5027
5028static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5029{
5030 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5031}
5032
5033static inline bool netif_is_l3_master(const struct net_device *dev)
5034{
5035 return dev->priv_flags & IFF_L3MDEV_MASTER;
5036}
5037
5038static inline bool netif_is_l3_slave(const struct net_device *dev)
5039{
5040 return dev->priv_flags & IFF_L3MDEV_SLAVE;
5041}
5042
5043static inline bool netif_is_bridge_master(const struct net_device *dev)
5044{
5045 return dev->priv_flags & IFF_EBRIDGE;
5046}
5047
5048static inline bool netif_is_bridge_port(const struct net_device *dev)
5049{
5050 return dev->priv_flags & IFF_BRIDGE_PORT;
5051}
5052
5053static inline bool netif_is_ovs_master(const struct net_device *dev)
5054{
5055 return dev->priv_flags & IFF_OPENVSWITCH;
5056}
5057
5058static inline bool netif_is_ovs_port(const struct net_device *dev)
5059{
5060 return dev->priv_flags & IFF_OVS_DATAPATH;
5061}
5062
5063static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5064{
5065 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5066}
5067
5068static inline bool netif_is_team_master(const struct net_device *dev)
5069{
5070 return dev->priv_flags & IFF_TEAM;
5071}
5072
5073static inline bool netif_is_team_port(const struct net_device *dev)
5074{
5075 return dev->priv_flags & IFF_TEAM_PORT;
5076}
5077
5078static inline bool netif_is_lag_master(const struct net_device *dev)
5079{
5080 return netif_is_bond_master(dev) || netif_is_team_master(dev);
5081}
5082
5083static inline bool netif_is_lag_port(const struct net_device *dev)
5084{
5085 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5086}
5087
5088static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5089{
5090 return dev->priv_flags & IFF_RXFH_CONFIGURED;
5091}
5092
5093static inline bool netif_is_failover(const struct net_device *dev)
5094{
5095 return dev->priv_flags & IFF_FAILOVER;
5096}
5097
5098static inline bool netif_is_failover_slave(const struct net_device *dev)
5099{
5100 return dev->priv_flags & IFF_FAILOVER_SLAVE;
5101}
5102
5103/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
5104static inline void netif_keep_dst(struct net_device *dev)
5105{
5106 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5107}
5108
5109/* return true if dev can't cope with mtu frames that need vlan tag insertion */
5110static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5111{
5112 /* TODO: reserve and use an additional IFF bit, if we get more users */
5113 return netif_is_macsec(dev);
5114}
5115
5116extern struct pernet_operations __net_initdata loopback_net_ops;
5117
5118/* Logging, debugging and troubleshooting/diagnostic helpers. */
5119
5120/* netdev_printk helpers, similar to dev_printk */
5121
5122static inline const char *netdev_name(const struct net_device *dev)
5123{
5124 if (!dev->name[0] || strchr(dev->name, '%'))
5125 return "(unnamed net_device)";
5126 return dev->name;
5127}
5128
5129static inline const char *netdev_reg_state(const struct net_device *dev)
5130{
5131 switch (dev->reg_state) {
5132 case NETREG_UNINITIALIZED: return " (uninitialized)";
5133 case NETREG_REGISTERED: return "";
5134 case NETREG_UNREGISTERING: return " (unregistering)";
5135 case NETREG_UNREGISTERED: return " (unregistered)";
5136 case NETREG_RELEASED: return " (released)";
5137 case NETREG_DUMMY: return " (dummy)";
5138 }
5139
5140 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5141 return " (unknown)";
5142}
5143
5144#define MODULE_ALIAS_NETDEV(device) \
5145 MODULE_ALIAS("netdev-" device)
5146
5147/*
5148 * netdev_WARN() acts like dev_printk(), but with the key difference
5149 * of using a WARN/WARN_ON to get the message out, including the
5150 * file/line information and a backtrace.
5151 */
5152#define netdev_WARN(dev, format, args...) \
5153 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5154 netdev_reg_state(dev), ##args)
5155
5156#define netdev_WARN_ONCE(dev, format, args...) \
5157 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5158 netdev_reg_state(dev), ##args)
5159
5160/*
5161 * The list of packet types we will receive (as opposed to discard)
5162 * and the routines to invoke.
5163 *
5164 * Why 16. Because with 16 the only overlap we get on a hash of the
5165 * low nibble of the protocol value is RARP/SNAP/X.25.
5166 *
5167 * 0800 IP
5168 * 0001 802.3
5169 * 0002 AX.25
5170 * 0004 802.2
5171 * 8035 RARP
5172 * 0005 SNAP
5173 * 0805 X.25
5174 * 0806 ARP
5175 * 8137 IPX
5176 * 0009 Localtalk
5177 * 86DD IPv6
5178 */
5179#define PTYPE_HASH_SIZE (16)
5180#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5181
5182extern struct list_head ptype_all __read_mostly;
5183extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5184
5185extern struct net_device *blackhole_netdev;
5186
5187/* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5188#define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5189#define DEV_STATS_ADD(DEV, FIELD, VAL) \
5190 atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5191
5192#endif /* _LINUX_NETDEVICE_H */