Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * tools/testing/selftests/kvm/include/x86_64/processor.h
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8#ifndef SELFTEST_KVM_PROCESSOR_H
9#define SELFTEST_KVM_PROCESSOR_H
10
11#include <assert.h>
12#include <stdint.h>
13#include <syscall.h>
14
15#include <asm/msr-index.h>
16#include <asm/prctl.h>
17
18#include <linux/stringify.h>
19
20#include "../kvm_util.h"
21
22#define NMI_VECTOR 0x02
23
24#define X86_EFLAGS_FIXED (1u << 1)
25
26#define X86_CR4_VME (1ul << 0)
27#define X86_CR4_PVI (1ul << 1)
28#define X86_CR4_TSD (1ul << 2)
29#define X86_CR4_DE (1ul << 3)
30#define X86_CR4_PSE (1ul << 4)
31#define X86_CR4_PAE (1ul << 5)
32#define X86_CR4_MCE (1ul << 6)
33#define X86_CR4_PGE (1ul << 7)
34#define X86_CR4_PCE (1ul << 8)
35#define X86_CR4_OSFXSR (1ul << 9)
36#define X86_CR4_OSXMMEXCPT (1ul << 10)
37#define X86_CR4_UMIP (1ul << 11)
38#define X86_CR4_LA57 (1ul << 12)
39#define X86_CR4_VMXE (1ul << 13)
40#define X86_CR4_SMXE (1ul << 14)
41#define X86_CR4_FSGSBASE (1ul << 16)
42#define X86_CR4_PCIDE (1ul << 17)
43#define X86_CR4_OSXSAVE (1ul << 18)
44#define X86_CR4_SMEP (1ul << 20)
45#define X86_CR4_SMAP (1ul << 21)
46#define X86_CR4_PKE (1ul << 22)
47
48/* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */
49enum cpuid_output_regs {
50 KVM_CPUID_EAX,
51 KVM_CPUID_EBX,
52 KVM_CPUID_ECX,
53 KVM_CPUID_EDX
54};
55
56/*
57 * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
58 * passed by value with no overhead.
59 */
60struct kvm_x86_cpu_feature {
61 u32 function;
62 u16 index;
63 u8 reg;
64 u8 bit;
65};
66#define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \
67({ \
68 struct kvm_x86_cpu_feature feature = { \
69 .function = fn, \
70 .index = idx, \
71 .reg = KVM_CPUID_##gpr, \
72 .bit = __bit, \
73 }; \
74 \
75 kvm_static_assert((fn & 0xc0000000) == 0 || \
76 (fn & 0xc0000000) == 0x40000000 || \
77 (fn & 0xc0000000) == 0x80000000 || \
78 (fn & 0xc0000000) == 0xc0000000); \
79 kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \
80 feature; \
81})
82
83/*
84 * Basic Leafs, a.k.a. Intel defined
85 */
86#define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
87#define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
88#define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
89#define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
90#define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
91#define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
92#define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
93#define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
94#define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
95#define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
96#define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
97#define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
98#define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
99#define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
100#define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
101#define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
102#define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
103#define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
104#define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
105#define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
106#define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
107#define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
108#define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
109#define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
110#define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
111#define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
112#define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
113#define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
114#define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
115#define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
116#define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
117#define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
118#define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
119#define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
120#define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
121#define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
122#define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
123#define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
124#define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
125#define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
126#define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
127#define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
128#define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
129#define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
130#define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
131
132/*
133 * Extended Leafs, a.k.a. AMD defined
134 */
135#define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
136#define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
137#define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
138#define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
139#define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
140#define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
141#define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
142#define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
143#define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
144#define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
145#define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
146#define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
147#define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
148#define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
149#define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
150#define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
151
152/*
153 * KVM defined paravirt features.
154 */
155#define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
156#define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
157#define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
158#define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
159#define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
160#define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
161#define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
162#define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
163/* Bit 8 apparently isn't used?!?! */
164#define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
165#define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
166#define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
167#define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
168#define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
169#define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
170#define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
171#define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
172#define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
173
174/*
175 * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
176 * value/property as opposed to a single-bit feature. Again, pack the info
177 * into a 64-bit value to pass by value with no overhead.
178 */
179struct kvm_x86_cpu_property {
180 u32 function;
181 u8 index;
182 u8 reg;
183 u8 lo_bit;
184 u8 hi_bit;
185};
186#define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \
187({ \
188 struct kvm_x86_cpu_property property = { \
189 .function = fn, \
190 .index = idx, \
191 .reg = KVM_CPUID_##gpr, \
192 .lo_bit = low_bit, \
193 .hi_bit = high_bit, \
194 }; \
195 \
196 kvm_static_assert(low_bit < high_bit); \
197 kvm_static_assert((fn & 0xc0000000) == 0 || \
198 (fn & 0xc0000000) == 0x40000000 || \
199 (fn & 0xc0000000) == 0x80000000 || \
200 (fn & 0xc0000000) == 0xc0000000); \
201 kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \
202 property; \
203})
204
205#define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
206#define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
207#define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
208#define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
209
210#define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31)
211#define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31)
212#define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31)
213#define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31)
214#define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15)
215#define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
216#define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15)
217#define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
218#define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15)
219
220#define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
221
222#define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
223#define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
224#define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
225#define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
226
227#define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
228
229/*
230 * Intel's architectural PMU events are bizarre. They have a "feature" bit
231 * that indicates the feature is _not_ supported, and a property that states
232 * the length of the bit mask of unsupported features. A feature is supported
233 * if the size of the bit mask is larger than the "unavailable" bit, and said
234 * bit is not set.
235 *
236 * Wrap the "unavailable" feature to simplify checking whether or not a given
237 * architectural event is supported.
238 */
239struct kvm_x86_pmu_feature {
240 struct kvm_x86_cpu_feature anti_feature;
241};
242#define KVM_X86_PMU_FEATURE(name, __bit) \
243({ \
244 struct kvm_x86_pmu_feature feature = { \
245 .anti_feature = KVM_X86_CPU_FEATURE(0xa, 0, EBX, __bit), \
246 }; \
247 \
248 feature; \
249})
250
251#define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(BRANCH_INSNS_RETIRED, 5)
252
253static inline unsigned int x86_family(unsigned int eax)
254{
255 unsigned int x86;
256
257 x86 = (eax >> 8) & 0xf;
258
259 if (x86 == 0xf)
260 x86 += (eax >> 20) & 0xff;
261
262 return x86;
263}
264
265static inline unsigned int x86_model(unsigned int eax)
266{
267 return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
268}
269
270/* Page table bitfield declarations */
271#define PTE_PRESENT_MASK BIT_ULL(0)
272#define PTE_WRITABLE_MASK BIT_ULL(1)
273#define PTE_USER_MASK BIT_ULL(2)
274#define PTE_ACCESSED_MASK BIT_ULL(5)
275#define PTE_DIRTY_MASK BIT_ULL(6)
276#define PTE_LARGE_MASK BIT_ULL(7)
277#define PTE_GLOBAL_MASK BIT_ULL(8)
278#define PTE_NX_MASK BIT_ULL(63)
279
280#define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12)
281
282#define PAGE_SHIFT 12
283#define PAGE_SIZE (1ULL << PAGE_SHIFT)
284#define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
285
286#define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9))
287#define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x))
288#define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
289
290#define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK)
291#define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT)
292
293/* General Registers in 64-Bit Mode */
294struct gpr64_regs {
295 u64 rax;
296 u64 rcx;
297 u64 rdx;
298 u64 rbx;
299 u64 rsp;
300 u64 rbp;
301 u64 rsi;
302 u64 rdi;
303 u64 r8;
304 u64 r9;
305 u64 r10;
306 u64 r11;
307 u64 r12;
308 u64 r13;
309 u64 r14;
310 u64 r15;
311};
312
313struct desc64 {
314 uint16_t limit0;
315 uint16_t base0;
316 unsigned base1:8, type:4, s:1, dpl:2, p:1;
317 unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
318 uint32_t base3;
319 uint32_t zero1;
320} __attribute__((packed));
321
322struct desc_ptr {
323 uint16_t size;
324 uint64_t address;
325} __attribute__((packed));
326
327struct kvm_x86_state {
328 struct kvm_xsave *xsave;
329 struct kvm_vcpu_events events;
330 struct kvm_mp_state mp_state;
331 struct kvm_regs regs;
332 struct kvm_xcrs xcrs;
333 struct kvm_sregs sregs;
334 struct kvm_debugregs debugregs;
335 union {
336 struct kvm_nested_state nested;
337 char nested_[16384];
338 };
339 struct kvm_msrs msrs;
340};
341
342static inline uint64_t get_desc64_base(const struct desc64 *desc)
343{
344 return ((uint64_t)desc->base3 << 32) |
345 (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
346}
347
348static inline uint64_t rdtsc(void)
349{
350 uint32_t eax, edx;
351 uint64_t tsc_val;
352 /*
353 * The lfence is to wait (on Intel CPUs) until all previous
354 * instructions have been executed. If software requires RDTSC to be
355 * executed prior to execution of any subsequent instruction, it can
356 * execute LFENCE immediately after RDTSC
357 */
358 __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
359 tsc_val = ((uint64_t)edx) << 32 | eax;
360 return tsc_val;
361}
362
363static inline uint64_t rdtscp(uint32_t *aux)
364{
365 uint32_t eax, edx;
366
367 __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
368 return ((uint64_t)edx) << 32 | eax;
369}
370
371static inline uint64_t rdmsr(uint32_t msr)
372{
373 uint32_t a, d;
374
375 __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
376
377 return a | ((uint64_t) d << 32);
378}
379
380static inline void wrmsr(uint32_t msr, uint64_t value)
381{
382 uint32_t a = value;
383 uint32_t d = value >> 32;
384
385 __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
386}
387
388
389static inline uint16_t inw(uint16_t port)
390{
391 uint16_t tmp;
392
393 __asm__ __volatile__("in %%dx, %%ax"
394 : /* output */ "=a" (tmp)
395 : /* input */ "d" (port));
396
397 return tmp;
398}
399
400static inline uint16_t get_es(void)
401{
402 uint16_t es;
403
404 __asm__ __volatile__("mov %%es, %[es]"
405 : /* output */ [es]"=rm"(es));
406 return es;
407}
408
409static inline uint16_t get_cs(void)
410{
411 uint16_t cs;
412
413 __asm__ __volatile__("mov %%cs, %[cs]"
414 : /* output */ [cs]"=rm"(cs));
415 return cs;
416}
417
418static inline uint16_t get_ss(void)
419{
420 uint16_t ss;
421
422 __asm__ __volatile__("mov %%ss, %[ss]"
423 : /* output */ [ss]"=rm"(ss));
424 return ss;
425}
426
427static inline uint16_t get_ds(void)
428{
429 uint16_t ds;
430
431 __asm__ __volatile__("mov %%ds, %[ds]"
432 : /* output */ [ds]"=rm"(ds));
433 return ds;
434}
435
436static inline uint16_t get_fs(void)
437{
438 uint16_t fs;
439
440 __asm__ __volatile__("mov %%fs, %[fs]"
441 : /* output */ [fs]"=rm"(fs));
442 return fs;
443}
444
445static inline uint16_t get_gs(void)
446{
447 uint16_t gs;
448
449 __asm__ __volatile__("mov %%gs, %[gs]"
450 : /* output */ [gs]"=rm"(gs));
451 return gs;
452}
453
454static inline uint16_t get_tr(void)
455{
456 uint16_t tr;
457
458 __asm__ __volatile__("str %[tr]"
459 : /* output */ [tr]"=rm"(tr));
460 return tr;
461}
462
463static inline uint64_t get_cr0(void)
464{
465 uint64_t cr0;
466
467 __asm__ __volatile__("mov %%cr0, %[cr0]"
468 : /* output */ [cr0]"=r"(cr0));
469 return cr0;
470}
471
472static inline uint64_t get_cr3(void)
473{
474 uint64_t cr3;
475
476 __asm__ __volatile__("mov %%cr3, %[cr3]"
477 : /* output */ [cr3]"=r"(cr3));
478 return cr3;
479}
480
481static inline uint64_t get_cr4(void)
482{
483 uint64_t cr4;
484
485 __asm__ __volatile__("mov %%cr4, %[cr4]"
486 : /* output */ [cr4]"=r"(cr4));
487 return cr4;
488}
489
490static inline void set_cr4(uint64_t val)
491{
492 __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
493}
494
495static inline struct desc_ptr get_gdt(void)
496{
497 struct desc_ptr gdt;
498 __asm__ __volatile__("sgdt %[gdt]"
499 : /* output */ [gdt]"=m"(gdt));
500 return gdt;
501}
502
503static inline struct desc_ptr get_idt(void)
504{
505 struct desc_ptr idt;
506 __asm__ __volatile__("sidt %[idt]"
507 : /* output */ [idt]"=m"(idt));
508 return idt;
509}
510
511static inline void outl(uint16_t port, uint32_t value)
512{
513 __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
514}
515
516static inline void __cpuid(uint32_t function, uint32_t index,
517 uint32_t *eax, uint32_t *ebx,
518 uint32_t *ecx, uint32_t *edx)
519{
520 *eax = function;
521 *ecx = index;
522
523 asm volatile("cpuid"
524 : "=a" (*eax),
525 "=b" (*ebx),
526 "=c" (*ecx),
527 "=d" (*edx)
528 : "0" (*eax), "2" (*ecx)
529 : "memory");
530}
531
532static inline void cpuid(uint32_t function,
533 uint32_t *eax, uint32_t *ebx,
534 uint32_t *ecx, uint32_t *edx)
535{
536 return __cpuid(function, 0, eax, ebx, ecx, edx);
537}
538
539static inline uint32_t this_cpu_fms(void)
540{
541 uint32_t eax, ebx, ecx, edx;
542
543 cpuid(1, &eax, &ebx, &ecx, &edx);
544 return eax;
545}
546
547static inline uint32_t this_cpu_family(void)
548{
549 return x86_family(this_cpu_fms());
550}
551
552static inline uint32_t this_cpu_model(void)
553{
554 return x86_model(this_cpu_fms());
555}
556
557static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
558 uint8_t reg, uint8_t lo, uint8_t hi)
559{
560 uint32_t gprs[4];
561
562 __cpuid(function, index,
563 &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
564 &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
565
566 return (gprs[reg] & GENMASK(hi, lo)) >> lo;
567}
568
569static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
570{
571 return __this_cpu_has(feature.function, feature.index,
572 feature.reg, feature.bit, feature.bit);
573}
574
575static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
576{
577 return __this_cpu_has(property.function, property.index,
578 property.reg, property.lo_bit, property.hi_bit);
579}
580
581static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
582{
583 uint32_t max_leaf;
584
585 switch (property.function & 0xc0000000) {
586 case 0:
587 max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
588 break;
589 case 0x40000000:
590 max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
591 break;
592 case 0x80000000:
593 max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
594 break;
595 case 0xc0000000:
596 max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
597 }
598 return max_leaf >= property.function;
599}
600
601static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
602{
603 uint32_t nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
604
605 return nr_bits > feature.anti_feature.bit &&
606 !this_cpu_has(feature.anti_feature);
607}
608
609typedef u32 __attribute__((vector_size(16))) sse128_t;
610#define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
611#define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; })
612#define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; })
613
614static inline void read_sse_reg(int reg, sse128_t *data)
615{
616 switch (reg) {
617 case 0:
618 asm("movdqa %%xmm0, %0" : "=m"(*data));
619 break;
620 case 1:
621 asm("movdqa %%xmm1, %0" : "=m"(*data));
622 break;
623 case 2:
624 asm("movdqa %%xmm2, %0" : "=m"(*data));
625 break;
626 case 3:
627 asm("movdqa %%xmm3, %0" : "=m"(*data));
628 break;
629 case 4:
630 asm("movdqa %%xmm4, %0" : "=m"(*data));
631 break;
632 case 5:
633 asm("movdqa %%xmm5, %0" : "=m"(*data));
634 break;
635 case 6:
636 asm("movdqa %%xmm6, %0" : "=m"(*data));
637 break;
638 case 7:
639 asm("movdqa %%xmm7, %0" : "=m"(*data));
640 break;
641 default:
642 BUG();
643 }
644}
645
646static inline void write_sse_reg(int reg, const sse128_t *data)
647{
648 switch (reg) {
649 case 0:
650 asm("movdqa %0, %%xmm0" : : "m"(*data));
651 break;
652 case 1:
653 asm("movdqa %0, %%xmm1" : : "m"(*data));
654 break;
655 case 2:
656 asm("movdqa %0, %%xmm2" : : "m"(*data));
657 break;
658 case 3:
659 asm("movdqa %0, %%xmm3" : : "m"(*data));
660 break;
661 case 4:
662 asm("movdqa %0, %%xmm4" : : "m"(*data));
663 break;
664 case 5:
665 asm("movdqa %0, %%xmm5" : : "m"(*data));
666 break;
667 case 6:
668 asm("movdqa %0, %%xmm6" : : "m"(*data));
669 break;
670 case 7:
671 asm("movdqa %0, %%xmm7" : : "m"(*data));
672 break;
673 default:
674 BUG();
675 }
676}
677
678static inline void cpu_relax(void)
679{
680 asm volatile("rep; nop" ::: "memory");
681}
682
683#define ud2() \
684 __asm__ __volatile__( \
685 "ud2\n" \
686 )
687
688#define hlt() \
689 __asm__ __volatile__( \
690 "hlt\n" \
691 )
692
693bool is_intel_cpu(void);
694bool is_amd_cpu(void);
695
696struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
697void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
698void kvm_x86_state_cleanup(struct kvm_x86_state *state);
699
700const struct kvm_msr_list *kvm_get_msr_index_list(void);
701const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
702bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
703uint64_t kvm_get_feature_msr(uint64_t msr_index);
704
705static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
706 struct kvm_msrs *msrs)
707{
708 int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
709
710 TEST_ASSERT(r == msrs->nmsrs,
711 "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
712 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
713}
714static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
715{
716 int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
717
718 TEST_ASSERT(r == msrs->nmsrs,
719 "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
720 r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
721}
722static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
723 struct kvm_debugregs *debugregs)
724{
725 vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
726}
727static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
728 struct kvm_debugregs *debugregs)
729{
730 vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
731}
732static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
733 struct kvm_xsave *xsave)
734{
735 vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
736}
737static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
738 struct kvm_xsave *xsave)
739{
740 vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
741}
742static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
743 struct kvm_xsave *xsave)
744{
745 vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
746}
747static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
748 struct kvm_xcrs *xcrs)
749{
750 vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
751}
752static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
753{
754 vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
755}
756
757const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
758 uint32_t function, uint32_t index);
759const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
760const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void);
761const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu);
762
763static inline uint32_t kvm_cpu_fms(void)
764{
765 return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
766}
767
768static inline uint32_t kvm_cpu_family(void)
769{
770 return x86_family(kvm_cpu_fms());
771}
772
773static inline uint32_t kvm_cpu_model(void)
774{
775 return x86_model(kvm_cpu_fms());
776}
777
778bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
779 struct kvm_x86_cpu_feature feature);
780
781static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
782{
783 return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
784}
785
786uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
787 struct kvm_x86_cpu_property property);
788
789static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
790{
791 return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
792}
793
794static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
795{
796 uint32_t max_leaf;
797
798 switch (property.function & 0xc0000000) {
799 case 0:
800 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
801 break;
802 case 0x40000000:
803 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
804 break;
805 case 0x80000000:
806 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
807 break;
808 case 0xc0000000:
809 max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
810 }
811 return max_leaf >= property.function;
812}
813
814static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
815{
816 uint32_t nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
817
818 return nr_bits > feature.anti_feature.bit &&
819 !kvm_cpu_has(feature.anti_feature);
820}
821
822static inline size_t kvm_cpuid2_size(int nr_entries)
823{
824 return sizeof(struct kvm_cpuid2) +
825 sizeof(struct kvm_cpuid_entry2) * nr_entries;
826}
827
828/*
829 * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
830 * entries sized to hold @nr_entries. The caller is responsible for freeing
831 * the struct.
832 */
833static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
834{
835 struct kvm_cpuid2 *cpuid;
836
837 cpuid = malloc(kvm_cpuid2_size(nr_entries));
838 TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
839
840 cpuid->nent = nr_entries;
841
842 return cpuid;
843}
844
845void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
846void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu);
847
848static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
849 uint32_t function,
850 uint32_t index)
851{
852 return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
853 function, index);
854}
855
856static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
857 uint32_t function)
858{
859 return __vcpu_get_cpuid_entry(vcpu, function, 0);
860}
861
862static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
863{
864 int r;
865
866 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
867 r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
868 if (r)
869 return r;
870
871 /* On success, refresh the cache to pick up adjustments made by KVM. */
872 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
873 return 0;
874}
875
876static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
877{
878 TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
879 vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
880
881 /* Refresh the cache to pick up adjustments made by KVM. */
882 vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
883}
884
885void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
886
887void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
888void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
889 struct kvm_x86_cpu_feature feature,
890 bool set);
891
892static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
893 struct kvm_x86_cpu_feature feature)
894{
895 vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
896
897}
898
899static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
900 struct kvm_x86_cpu_feature feature)
901{
902 vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
903}
904
905uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
906int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
907
908static inline void vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index,
909 uint64_t msr_value)
910{
911 int r = _vcpu_set_msr(vcpu, msr_index, msr_value);
912
913 TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_SET_MSRS, r));
914}
915
916
917void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
918bool vm_is_unrestricted_guest(struct kvm_vm *vm);
919
920struct ex_regs {
921 uint64_t rax, rcx, rdx, rbx;
922 uint64_t rbp, rsi, rdi;
923 uint64_t r8, r9, r10, r11;
924 uint64_t r12, r13, r14, r15;
925 uint64_t vector;
926 uint64_t error_code;
927 uint64_t rip;
928 uint64_t cs;
929 uint64_t rflags;
930};
931
932struct idt_entry {
933 uint16_t offset0;
934 uint16_t selector;
935 uint16_t ist : 3;
936 uint16_t : 5;
937 uint16_t type : 4;
938 uint16_t : 1;
939 uint16_t dpl : 2;
940 uint16_t p : 1;
941 uint16_t offset1;
942 uint32_t offset2; uint32_t reserved;
943};
944
945void vm_init_descriptor_tables(struct kvm_vm *vm);
946void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu);
947void vm_install_exception_handler(struct kvm_vm *vm, int vector,
948 void (*handler)(struct ex_regs *));
949
950/* If a toddler were to say "abracadabra". */
951#define KVM_EXCEPTION_MAGIC 0xabacadabaULL
952
953/*
954 * KVM selftest exception fixup uses registers to coordinate with the exception
955 * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
956 * per-CPU data. Using only registers avoids having to map memory into the
957 * guest, doesn't require a valid, stable GS.base, and reduces the risk of
958 * for recursive faults when accessing memory in the handler. The downside to
959 * using registers is that it restricts what registers can be used by the actual
960 * instruction. But, selftests are 64-bit only, making register* pressure a
961 * minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved
962 * by the callee, and except for r11 are not implicit parameters to any
963 * instructions. Ideally, fixup would use r8-r10 and thus avoid implicit
964 * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
965 * is higher priority than testing non-faulting SYSCALL/SYSRET.
966 *
967 * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
968 * is guaranteed to be non-zero on fault.
969 *
970 * REGISTER INPUTS:
971 * r9 = MAGIC
972 * r10 = RIP
973 * r11 = new RIP on fault
974 *
975 * REGISTER OUTPUTS:
976 * r9 = exception vector (non-zero)
977 * r10 = error code
978 */
979#define KVM_ASM_SAFE(insn) \
980 "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \
981 "lea 1f(%%rip), %%r10\n\t" \
982 "lea 2f(%%rip), %%r11\n\t" \
983 "1: " insn "\n\t" \
984 "xor %%r9, %%r9\n\t" \
985 "2:\n\t" \
986 "mov %%r9b, %[vector]\n\t" \
987 "mov %%r10, %[error_code]\n\t"
988
989#define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec)
990#define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11"
991
992#define kvm_asm_safe(insn, inputs...) \
993({ \
994 uint64_t ign_error_code; \
995 uint8_t vector; \
996 \
997 asm volatile(KVM_ASM_SAFE(insn) \
998 : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \
999 : inputs \
1000 : KVM_ASM_SAFE_CLOBBERS); \
1001 vector; \
1002})
1003
1004#define kvm_asm_safe_ec(insn, error_code, inputs...) \
1005({ \
1006 uint8_t vector; \
1007 \
1008 asm volatile(KVM_ASM_SAFE(insn) \
1009 : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
1010 : inputs \
1011 : KVM_ASM_SAFE_CLOBBERS); \
1012 vector; \
1013})
1014
1015static inline uint8_t rdmsr_safe(uint32_t msr, uint64_t *val)
1016{
1017 uint64_t error_code;
1018 uint8_t vector;
1019 uint32_t a, d;
1020
1021 asm volatile(KVM_ASM_SAFE("rdmsr")
1022 : "=a"(a), "=d"(d), KVM_ASM_SAFE_OUTPUTS(vector, error_code)
1023 : "c"(msr)
1024 : KVM_ASM_SAFE_CLOBBERS);
1025
1026 *val = (uint64_t)a | ((uint64_t)d << 32);
1027 return vector;
1028}
1029
1030static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1031{
1032 return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1033}
1034
1035bool kvm_is_tdp_enabled(void);
1036
1037uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1038 int *level);
1039uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1040
1041uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1042 uint64_t a3);
1043
1044void __vm_xsave_require_permission(int bit, const char *name);
1045
1046#define vm_xsave_require_permission(perm) \
1047 __vm_xsave_require_permission(perm, #perm)
1048
1049enum pg_level {
1050 PG_LEVEL_NONE,
1051 PG_LEVEL_4K,
1052 PG_LEVEL_2M,
1053 PG_LEVEL_1G,
1054 PG_LEVEL_512G,
1055 PG_LEVEL_NUM
1056};
1057
1058#define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1059#define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1060
1061#define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1062#define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1063#define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1064
1065void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1066void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1067 uint64_t nr_bytes, int level);
1068
1069/*
1070 * Basic CPU control in CR0
1071 */
1072#define X86_CR0_PE (1UL<<0) /* Protection Enable */
1073#define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */
1074#define X86_CR0_EM (1UL<<2) /* Emulation */
1075#define X86_CR0_TS (1UL<<3) /* Task Switched */
1076#define X86_CR0_ET (1UL<<4) /* Extension Type */
1077#define X86_CR0_NE (1UL<<5) /* Numeric Error */
1078#define X86_CR0_WP (1UL<<16) /* Write Protect */
1079#define X86_CR0_AM (1UL<<18) /* Alignment Mask */
1080#define X86_CR0_NW (1UL<<29) /* Not Write-through */
1081#define X86_CR0_CD (1UL<<30) /* Cache Disable */
1082#define X86_CR0_PG (1UL<<31) /* Paging */
1083
1084#define XSTATE_XTILE_CFG_BIT 17
1085#define XSTATE_XTILE_DATA_BIT 18
1086
1087#define XSTATE_XTILE_CFG_MASK (1ULL << XSTATE_XTILE_CFG_BIT)
1088#define XSTATE_XTILE_DATA_MASK (1ULL << XSTATE_XTILE_DATA_BIT)
1089#define XFEATURE_XTILE_MASK (XSTATE_XTILE_CFG_MASK | \
1090 XSTATE_XTILE_DATA_MASK)
1091
1092#define PFERR_PRESENT_BIT 0
1093#define PFERR_WRITE_BIT 1
1094#define PFERR_USER_BIT 2
1095#define PFERR_RSVD_BIT 3
1096#define PFERR_FETCH_BIT 4
1097#define PFERR_PK_BIT 5
1098#define PFERR_SGX_BIT 15
1099#define PFERR_GUEST_FINAL_BIT 32
1100#define PFERR_GUEST_PAGE_BIT 33
1101#define PFERR_IMPLICIT_ACCESS_BIT 48
1102
1103#define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT)
1104#define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT)
1105#define PFERR_USER_MASK BIT(PFERR_USER_BIT)
1106#define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT)
1107#define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT)
1108#define PFERR_PK_MASK BIT(PFERR_PK_BIT)
1109#define PFERR_SGX_MASK BIT(PFERR_SGX_BIT)
1110#define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT)
1111#define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT)
1112#define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1113
1114#endif /* SELFTEST_KVM_PROCESSOR_H */