at v6.2-rc4 910 lines 26 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * tools/testing/selftests/kvm/include/kvm_util_base.h 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7#ifndef SELFTEST_KVM_UTIL_BASE_H 8#define SELFTEST_KVM_UTIL_BASE_H 9 10#include "test_util.h" 11 12#include <linux/compiler.h> 13#include "linux/hashtable.h" 14#include "linux/list.h" 15#include <linux/kernel.h> 16#include <linux/kvm.h> 17#include "linux/rbtree.h" 18 19#include <asm/atomic.h> 20 21#include <sys/ioctl.h> 22 23#include "sparsebit.h" 24 25/* 26 * Provide a version of static_assert() that is guaranteed to have an optional 27 * message param. If _ISOC11_SOURCE is defined, glibc (/usr/include/assert.h) 28 * #undefs and #defines static_assert() as a direct alias to _Static_assert(), 29 * i.e. effectively makes the message mandatory. Many KVM selftests #define 30 * _GNU_SOURCE for various reasons, and _GNU_SOURCE implies _ISOC11_SOURCE. As 31 * a result, static_assert() behavior is non-deterministic and may or may not 32 * require a message depending on #include order. 33 */ 34#define __kvm_static_assert(expr, msg, ...) _Static_assert(expr, msg) 35#define kvm_static_assert(expr, ...) __kvm_static_assert(expr, ##__VA_ARGS__, #expr) 36 37#define KVM_DEV_PATH "/dev/kvm" 38#define KVM_MAX_VCPUS 512 39 40#define NSEC_PER_SEC 1000000000L 41 42typedef uint64_t vm_paddr_t; /* Virtual Machine (Guest) physical address */ 43typedef uint64_t vm_vaddr_t; /* Virtual Machine (Guest) virtual address */ 44 45struct userspace_mem_region { 46 struct kvm_userspace_memory_region region; 47 struct sparsebit *unused_phy_pages; 48 int fd; 49 off_t offset; 50 enum vm_mem_backing_src_type backing_src_type; 51 void *host_mem; 52 void *host_alias; 53 void *mmap_start; 54 void *mmap_alias; 55 size_t mmap_size; 56 struct rb_node gpa_node; 57 struct rb_node hva_node; 58 struct hlist_node slot_node; 59}; 60 61struct kvm_vcpu { 62 struct list_head list; 63 uint32_t id; 64 int fd; 65 struct kvm_vm *vm; 66 struct kvm_run *run; 67#ifdef __x86_64__ 68 struct kvm_cpuid2 *cpuid; 69#endif 70 struct kvm_dirty_gfn *dirty_gfns; 71 uint32_t fetch_index; 72 uint32_t dirty_gfns_count; 73}; 74 75struct userspace_mem_regions { 76 struct rb_root gpa_tree; 77 struct rb_root hva_tree; 78 DECLARE_HASHTABLE(slot_hash, 9); 79}; 80 81enum kvm_mem_region_type { 82 MEM_REGION_CODE, 83 MEM_REGION_DATA, 84 MEM_REGION_PT, 85 MEM_REGION_TEST_DATA, 86 NR_MEM_REGIONS, 87}; 88 89struct kvm_vm { 90 int mode; 91 unsigned long type; 92 int kvm_fd; 93 int fd; 94 unsigned int pgtable_levels; 95 unsigned int page_size; 96 unsigned int page_shift; 97 unsigned int pa_bits; 98 unsigned int va_bits; 99 uint64_t max_gfn; 100 struct list_head vcpus; 101 struct userspace_mem_regions regions; 102 struct sparsebit *vpages_valid; 103 struct sparsebit *vpages_mapped; 104 bool has_irqchip; 105 bool pgd_created; 106 vm_paddr_t ucall_mmio_addr; 107 vm_paddr_t pgd; 108 vm_vaddr_t gdt; 109 vm_vaddr_t tss; 110 vm_vaddr_t idt; 111 vm_vaddr_t handlers; 112 uint32_t dirty_ring_size; 113 114 /* Cache of information for binary stats interface */ 115 int stats_fd; 116 struct kvm_stats_header stats_header; 117 struct kvm_stats_desc *stats_desc; 118 119 /* 120 * KVM region slots. These are the default memslots used by page 121 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE] 122 * memslot. 123 */ 124 uint32_t memslots[NR_MEM_REGIONS]; 125}; 126 127 128#define kvm_for_each_vcpu(vm, i, vcpu) \ 129 for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \ 130 if (!((vcpu) = vm->vcpus[i])) \ 131 continue; \ 132 else 133 134struct userspace_mem_region * 135memslot2region(struct kvm_vm *vm, uint32_t memslot); 136 137static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm, 138 enum kvm_mem_region_type type) 139{ 140 assert(type < NR_MEM_REGIONS); 141 return memslot2region(vm, vm->memslots[type]); 142} 143 144/* Minimum allocated guest virtual and physical addresses */ 145#define KVM_UTIL_MIN_VADDR 0x2000 146#define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 147 148#define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000 149#define DEFAULT_STACK_PGS 5 150 151enum vm_guest_mode { 152 VM_MODE_P52V48_4K, 153 VM_MODE_P52V48_64K, 154 VM_MODE_P48V48_4K, 155 VM_MODE_P48V48_16K, 156 VM_MODE_P48V48_64K, 157 VM_MODE_P40V48_4K, 158 VM_MODE_P40V48_16K, 159 VM_MODE_P40V48_64K, 160 VM_MODE_PXXV48_4K, /* For 48bits VA but ANY bits PA */ 161 VM_MODE_P47V64_4K, 162 VM_MODE_P44V64_4K, 163 VM_MODE_P36V48_4K, 164 VM_MODE_P36V48_16K, 165 VM_MODE_P36V48_64K, 166 VM_MODE_P36V47_16K, 167 NUM_VM_MODES, 168}; 169 170#if defined(__aarch64__) 171 172extern enum vm_guest_mode vm_mode_default; 173 174#define VM_MODE_DEFAULT vm_mode_default 175#define MIN_PAGE_SHIFT 12U 176#define ptes_per_page(page_size) ((page_size) / 8) 177 178#elif defined(__x86_64__) 179 180#define VM_MODE_DEFAULT VM_MODE_PXXV48_4K 181#define MIN_PAGE_SHIFT 12U 182#define ptes_per_page(page_size) ((page_size) / 8) 183 184#elif defined(__s390x__) 185 186#define VM_MODE_DEFAULT VM_MODE_P44V64_4K 187#define MIN_PAGE_SHIFT 12U 188#define ptes_per_page(page_size) ((page_size) / 16) 189 190#elif defined(__riscv) 191 192#if __riscv_xlen == 32 193#error "RISC-V 32-bit kvm selftests not supported" 194#endif 195 196#define VM_MODE_DEFAULT VM_MODE_P40V48_4K 197#define MIN_PAGE_SHIFT 12U 198#define ptes_per_page(page_size) ((page_size) / 8) 199 200#endif 201 202#define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT) 203#define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE) 204 205struct vm_guest_mode_params { 206 unsigned int pa_bits; 207 unsigned int va_bits; 208 unsigned int page_size; 209 unsigned int page_shift; 210}; 211extern const struct vm_guest_mode_params vm_guest_mode_params[]; 212 213int open_path_or_exit(const char *path, int flags); 214int open_kvm_dev_path_or_exit(void); 215 216bool get_kvm_intel_param_bool(const char *param); 217bool get_kvm_amd_param_bool(const char *param); 218 219unsigned int kvm_check_cap(long cap); 220 221static inline bool kvm_has_cap(long cap) 222{ 223 return kvm_check_cap(cap); 224} 225 226#define __KVM_SYSCALL_ERROR(_name, _ret) \ 227 "%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno) 228 229#define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret) 230#define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret) 231 232#define kvm_do_ioctl(fd, cmd, arg) \ 233({ \ 234 kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \ 235 ioctl(fd, cmd, arg); \ 236}) 237 238#define __kvm_ioctl(kvm_fd, cmd, arg) \ 239 kvm_do_ioctl(kvm_fd, cmd, arg) 240 241 242#define _kvm_ioctl(kvm_fd, cmd, name, arg) \ 243({ \ 244 int ret = __kvm_ioctl(kvm_fd, cmd, arg); \ 245 \ 246 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(name, ret)); \ 247}) 248 249#define kvm_ioctl(kvm_fd, cmd, arg) \ 250 _kvm_ioctl(kvm_fd, cmd, #cmd, arg) 251 252static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { } 253 254#define __vm_ioctl(vm, cmd, arg) \ 255({ \ 256 static_assert_is_vm(vm); \ 257 kvm_do_ioctl((vm)->fd, cmd, arg); \ 258}) 259 260#define _vm_ioctl(vm, cmd, name, arg) \ 261({ \ 262 int ret = __vm_ioctl(vm, cmd, arg); \ 263 \ 264 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(name, ret)); \ 265}) 266 267#define vm_ioctl(vm, cmd, arg) \ 268 _vm_ioctl(vm, cmd, #cmd, arg) 269 270 271static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { } 272 273#define __vcpu_ioctl(vcpu, cmd, arg) \ 274({ \ 275 static_assert_is_vcpu(vcpu); \ 276 kvm_do_ioctl((vcpu)->fd, cmd, arg); \ 277}) 278 279#define _vcpu_ioctl(vcpu, cmd, name, arg) \ 280({ \ 281 int ret = __vcpu_ioctl(vcpu, cmd, arg); \ 282 \ 283 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(name, ret)); \ 284}) 285 286#define vcpu_ioctl(vcpu, cmd, arg) \ 287 _vcpu_ioctl(vcpu, cmd, #cmd, arg) 288 289/* 290 * Looks up and returns the value corresponding to the capability 291 * (KVM_CAP_*) given by cap. 292 */ 293static inline int vm_check_cap(struct kvm_vm *vm, long cap) 294{ 295 int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap); 296 297 TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret)); 298 return ret; 299} 300 301static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0) 302{ 303 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 304 305 return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap); 306} 307static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0) 308{ 309 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 310 311 vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap); 312} 313 314void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size); 315const char *vm_guest_mode_string(uint32_t i); 316 317void kvm_vm_free(struct kvm_vm *vmp); 318void kvm_vm_restart(struct kvm_vm *vmp); 319void kvm_vm_release(struct kvm_vm *vmp); 320int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, const vm_vaddr_t gva, 321 size_t len); 322void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename); 323int kvm_memfd_alloc(size_t size, bool hugepages); 324 325void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent); 326 327static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log) 328{ 329 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot }; 330 331 vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args); 332} 333 334static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log, 335 uint64_t first_page, uint32_t num_pages) 336{ 337 struct kvm_clear_dirty_log args = { 338 .dirty_bitmap = log, 339 .slot = slot, 340 .first_page = first_page, 341 .num_pages = num_pages 342 }; 343 344 vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args); 345} 346 347static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm) 348{ 349 return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL); 350} 351 352static inline int vm_get_stats_fd(struct kvm_vm *vm) 353{ 354 int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL); 355 356 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_GET_STATS_FD, fd)); 357 return fd; 358} 359 360static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header) 361{ 362 ssize_t ret; 363 364 ret = read(stats_fd, header, sizeof(*header)); 365 TEST_ASSERT(ret == sizeof(*header), "Read stats header"); 366} 367 368struct kvm_stats_desc *read_stats_descriptors(int stats_fd, 369 struct kvm_stats_header *header); 370 371static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header) 372{ 373 /* 374 * The base size of the descriptor is defined by KVM's ABI, but the 375 * size of the name field is variable, as far as KVM's ABI is 376 * concerned. For a given instance of KVM, the name field is the same 377 * size for all stats and is provided in the overall stats header. 378 */ 379 return sizeof(struct kvm_stats_desc) + header->name_size; 380} 381 382static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats, 383 int index, 384 struct kvm_stats_header *header) 385{ 386 /* 387 * Note, size_desc includes the size of the name field, which is 388 * variable. i.e. this is NOT equivalent to &stats_desc[i]. 389 */ 390 return (void *)stats + index * get_stats_descriptor_size(header); 391} 392 393void read_stat_data(int stats_fd, struct kvm_stats_header *header, 394 struct kvm_stats_desc *desc, uint64_t *data, 395 size_t max_elements); 396 397void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data, 398 size_t max_elements); 399 400static inline uint64_t vm_get_stat(struct kvm_vm *vm, const char *stat_name) 401{ 402 uint64_t data; 403 404 __vm_get_stat(vm, stat_name, &data, 1); 405 return data; 406} 407 408void vm_create_irqchip(struct kvm_vm *vm); 409 410void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 411 uint64_t gpa, uint64_t size, void *hva); 412int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags, 413 uint64_t gpa, uint64_t size, void *hva); 414void vm_userspace_mem_region_add(struct kvm_vm *vm, 415 enum vm_mem_backing_src_type src_type, 416 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 417 uint32_t flags); 418 419void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags); 420void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa); 421void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot); 422struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id); 423void vm_populate_vaddr_bitmap(struct kvm_vm *vm); 424vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); 425vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min); 426vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 427 enum kvm_mem_region_type type); 428vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages); 429vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, 430 enum kvm_mem_region_type type); 431vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm); 432 433void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 434 unsigned int npages); 435void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa); 436void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva); 437vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva); 438void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa); 439 440void vcpu_run(struct kvm_vcpu *vcpu); 441int _vcpu_run(struct kvm_vcpu *vcpu); 442 443static inline int __vcpu_run(struct kvm_vcpu *vcpu) 444{ 445 return __vcpu_ioctl(vcpu, KVM_RUN, NULL); 446} 447 448void vcpu_run_complete_io(struct kvm_vcpu *vcpu); 449struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu); 450 451static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap, 452 uint64_t arg0) 453{ 454 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } }; 455 456 vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap); 457} 458 459static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu, 460 struct kvm_guest_debug *debug) 461{ 462 vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug); 463} 464 465static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu, 466 struct kvm_mp_state *mp_state) 467{ 468 vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state); 469} 470static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu, 471 struct kvm_mp_state *mp_state) 472{ 473 vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state); 474} 475 476static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 477{ 478 vcpu_ioctl(vcpu, KVM_GET_REGS, regs); 479} 480 481static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 482{ 483 vcpu_ioctl(vcpu, KVM_SET_REGS, regs); 484} 485static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 486{ 487 vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs); 488 489} 490static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 491{ 492 vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs); 493} 494static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 495{ 496 return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs); 497} 498static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 499{ 500 vcpu_ioctl(vcpu, KVM_GET_FPU, fpu); 501} 502static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 503{ 504 vcpu_ioctl(vcpu, KVM_SET_FPU, fpu); 505} 506 507static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr) 508{ 509 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr }; 510 511 return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg); 512} 513static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val) 514{ 515 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; 516 517 return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg); 518} 519static inline void vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr) 520{ 521 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr }; 522 523 vcpu_ioctl(vcpu, KVM_GET_ONE_REG, &reg); 524} 525static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val) 526{ 527 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val }; 528 529 vcpu_ioctl(vcpu, KVM_SET_ONE_REG, &reg); 530} 531 532#ifdef __KVM_HAVE_VCPU_EVENTS 533static inline void vcpu_events_get(struct kvm_vcpu *vcpu, 534 struct kvm_vcpu_events *events) 535{ 536 vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events); 537} 538static inline void vcpu_events_set(struct kvm_vcpu *vcpu, 539 struct kvm_vcpu_events *events) 540{ 541 vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events); 542} 543#endif 544#ifdef __x86_64__ 545static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu, 546 struct kvm_nested_state *state) 547{ 548 vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state); 549} 550static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu, 551 struct kvm_nested_state *state) 552{ 553 return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state); 554} 555 556static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu, 557 struct kvm_nested_state *state) 558{ 559 vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state); 560} 561#endif 562static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu) 563{ 564 int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL); 565 566 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_GET_STATS_FD, fd)); 567 return fd; 568} 569 570int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr); 571 572static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr) 573{ 574 int ret = __kvm_has_device_attr(dev_fd, group, attr); 575 576 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno); 577} 578 579int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val); 580 581static inline void kvm_device_attr_get(int dev_fd, uint32_t group, 582 uint64_t attr, void *val) 583{ 584 int ret = __kvm_device_attr_get(dev_fd, group, attr, val); 585 586 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret)); 587} 588 589int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val); 590 591static inline void kvm_device_attr_set(int dev_fd, uint32_t group, 592 uint64_t attr, void *val) 593{ 594 int ret = __kvm_device_attr_set(dev_fd, group, attr, val); 595 596 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret)); 597} 598 599static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group, 600 uint64_t attr) 601{ 602 return __kvm_has_device_attr(vcpu->fd, group, attr); 603} 604 605static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group, 606 uint64_t attr) 607{ 608 kvm_has_device_attr(vcpu->fd, group, attr); 609} 610 611static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group, 612 uint64_t attr, void *val) 613{ 614 return __kvm_device_attr_get(vcpu->fd, group, attr, val); 615} 616 617static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group, 618 uint64_t attr, void *val) 619{ 620 kvm_device_attr_get(vcpu->fd, group, attr, val); 621} 622 623static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group, 624 uint64_t attr, void *val) 625{ 626 return __kvm_device_attr_set(vcpu->fd, group, attr, val); 627} 628 629static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group, 630 uint64_t attr, void *val) 631{ 632 kvm_device_attr_set(vcpu->fd, group, attr, val); 633} 634 635int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type); 636int __kvm_create_device(struct kvm_vm *vm, uint64_t type); 637 638static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type) 639{ 640 int fd = __kvm_create_device(vm, type); 641 642 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd)); 643 return fd; 644} 645 646void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu); 647 648/* 649 * VM VCPU Args Set 650 * 651 * Input Args: 652 * vm - Virtual Machine 653 * num - number of arguments 654 * ... - arguments, each of type uint64_t 655 * 656 * Output Args: None 657 * 658 * Return: None 659 * 660 * Sets the first @num input parameters for the function at @vcpu's entry point, 661 * per the C calling convention of the architecture, to the values given as 662 * variable args. Each of the variable args is expected to be of type uint64_t. 663 * The maximum @num can be is specific to the architecture. 664 */ 665void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...); 666 667void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level); 668int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level); 669 670#define KVM_MAX_IRQ_ROUTES 4096 671 672struct kvm_irq_routing *kvm_gsi_routing_create(void); 673void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 674 uint32_t gsi, uint32_t pin); 675int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing); 676void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing); 677 678const char *exit_reason_str(unsigned int exit_reason); 679 680vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 681 uint32_t memslot); 682vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 683 vm_paddr_t paddr_min, uint32_t memslot); 684vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm); 685 686/* 687 * ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also 688 * loads the test binary into guest memory and creates an IRQ chip (x86 only). 689 * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to 690 * calculate the amount of memory needed for per-vCPU data, e.g. stacks. 691 */ 692struct kvm_vm *____vm_create(enum vm_guest_mode mode); 693struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus, 694 uint64_t nr_extra_pages); 695 696static inline struct kvm_vm *vm_create_barebones(void) 697{ 698 return ____vm_create(VM_MODE_DEFAULT); 699} 700 701static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus) 702{ 703 return __vm_create(VM_MODE_DEFAULT, nr_runnable_vcpus, 0); 704} 705 706struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus, 707 uint64_t extra_mem_pages, 708 void *guest_code, struct kvm_vcpu *vcpus[]); 709 710static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus, 711 void *guest_code, 712 struct kvm_vcpu *vcpus[]) 713{ 714 return __vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, 0, 715 guest_code, vcpus); 716} 717 718/* 719 * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages 720 * additional pages of guest memory. Returns the VM and vCPU (via out param). 721 */ 722struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu, 723 uint64_t extra_mem_pages, 724 void *guest_code); 725 726static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu, 727 void *guest_code) 728{ 729 return __vm_create_with_one_vcpu(vcpu, 0, guest_code); 730} 731 732struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm); 733 734void kvm_pin_this_task_to_pcpu(uint32_t pcpu); 735void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[], 736 int nr_vcpus); 737 738unsigned long vm_compute_max_gfn(struct kvm_vm *vm); 739unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size); 740unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages); 741unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages); 742static inline unsigned int 743vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 744{ 745 unsigned int n; 746 n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages)); 747#ifdef __s390x__ 748 /* s390 requires 1M aligned guest sizes */ 749 n = (n + 255) & ~255; 750#endif 751 return n; 752} 753 754struct kvm_userspace_memory_region * 755kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start, 756 uint64_t end); 757 758#define sync_global_to_guest(vm, g) ({ \ 759 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 760 memcpy(_p, &(g), sizeof(g)); \ 761}) 762 763#define sync_global_from_guest(vm, g) ({ \ 764 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 765 memcpy(&(g), _p, sizeof(g)); \ 766}) 767 768/* 769 * Write a global value, but only in the VM's (guest's) domain. Primarily used 770 * for "globals" that hold per-VM values (VMs always duplicate code and global 771 * data into their own region of physical memory), but can be used anytime it's 772 * undesirable to change the host's copy of the global. 773 */ 774#define write_guest_global(vm, g, val) ({ \ 775 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \ 776 typeof(g) _val = val; \ 777 \ 778 memcpy(_p, &(_val), sizeof(g)); \ 779}) 780 781void assert_on_unhandled_exception(struct kvm_vcpu *vcpu); 782 783void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, 784 uint8_t indent); 785 786static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu, 787 uint8_t indent) 788{ 789 vcpu_arch_dump(stream, vcpu, indent); 790} 791 792/* 793 * Adds a vCPU with reasonable defaults (e.g. a stack) 794 * 795 * Input Args: 796 * vm - Virtual Machine 797 * vcpu_id - The id of the VCPU to add to the VM. 798 * guest_code - The vCPU's entry point 799 */ 800struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, 801 void *guest_code); 802 803static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, 804 void *guest_code) 805{ 806 return vm_arch_vcpu_add(vm, vcpu_id, guest_code); 807} 808 809/* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */ 810struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id); 811 812static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm, 813 uint32_t vcpu_id) 814{ 815 return vm_arch_vcpu_recreate(vm, vcpu_id); 816} 817 818void vcpu_arch_free(struct kvm_vcpu *vcpu); 819 820void virt_arch_pgd_alloc(struct kvm_vm *vm); 821 822static inline void virt_pgd_alloc(struct kvm_vm *vm) 823{ 824 virt_arch_pgd_alloc(vm); 825} 826 827/* 828 * VM Virtual Page Map 829 * 830 * Input Args: 831 * vm - Virtual Machine 832 * vaddr - VM Virtual Address 833 * paddr - VM Physical Address 834 * memslot - Memory region slot for new virtual translation tables 835 * 836 * Output Args: None 837 * 838 * Return: None 839 * 840 * Within @vm, creates a virtual translation for the page starting 841 * at @vaddr to the page starting at @paddr. 842 */ 843void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr); 844 845static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) 846{ 847 virt_arch_pg_map(vm, vaddr, paddr); 848} 849 850 851/* 852 * Address Guest Virtual to Guest Physical 853 * 854 * Input Args: 855 * vm - Virtual Machine 856 * gva - VM virtual address 857 * 858 * Output Args: None 859 * 860 * Return: 861 * Equivalent VM physical address 862 * 863 * Returns the VM physical address of the translated VM virtual 864 * address given by @gva. 865 */ 866vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva); 867 868static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 869{ 870 return addr_arch_gva2gpa(vm, gva); 871} 872 873/* 874 * Virtual Translation Tables Dump 875 * 876 * Input Args: 877 * stream - Output FILE stream 878 * vm - Virtual Machine 879 * indent - Left margin indent amount 880 * 881 * Output Args: None 882 * 883 * Return: None 884 * 885 * Dumps to the FILE stream given by @stream, the contents of all the 886 * virtual translation tables for the VM given by @vm. 887 */ 888void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent); 889 890static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 891{ 892 virt_arch_dump(stream, vm, indent); 893} 894 895 896static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm) 897{ 898 return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0); 899} 900 901/* 902 * Arch hook that is invoked via a constructor, i.e. before exeucting main(), 903 * to allow for arch-specific setup that is common to all tests, e.g. computing 904 * the default guest "mode". 905 */ 906void kvm_selftest_arch_init(void); 907 908void kvm_arch_vm_post_create(struct kvm_vm *vm); 909 910#endif /* SELFTEST_KVM_UTIL_BASE_H */