Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_USB_H
3#define __LINUX_USB_H
4
5#include <linux/mod_devicetable.h>
6#include <linux/usb/ch9.h>
7
8#define USB_MAJOR 180
9#define USB_DEVICE_MAJOR 189
10
11
12#ifdef __KERNEL__
13
14#include <linux/errno.h> /* for -ENODEV */
15#include <linux/delay.h> /* for mdelay() */
16#include <linux/interrupt.h> /* for in_interrupt() */
17#include <linux/list.h> /* for struct list_head */
18#include <linux/kref.h> /* for struct kref */
19#include <linux/device.h> /* for struct device */
20#include <linux/fs.h> /* for struct file_operations */
21#include <linux/completion.h> /* for struct completion */
22#include <linux/sched.h> /* for current && schedule_timeout */
23#include <linux/mutex.h> /* for struct mutex */
24#include <linux/pm_runtime.h> /* for runtime PM */
25
26struct usb_device;
27struct usb_driver;
28struct wusb_dev;
29
30/*-------------------------------------------------------------------------*/
31
32/*
33 * Host-side wrappers for standard USB descriptors ... these are parsed
34 * from the data provided by devices. Parsing turns them from a flat
35 * sequence of descriptors into a hierarchy:
36 *
37 * - devices have one (usually) or more configs;
38 * - configs have one (often) or more interfaces;
39 * - interfaces have one (usually) or more settings;
40 * - each interface setting has zero or (usually) more endpoints.
41 * - a SuperSpeed endpoint has a companion descriptor
42 *
43 * And there might be other descriptors mixed in with those.
44 *
45 * Devices may also have class-specific or vendor-specific descriptors.
46 */
47
48struct ep_device;
49
50/**
51 * struct usb_host_endpoint - host-side endpoint descriptor and queue
52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
55 * @urb_list: urbs queued to this endpoint; maintained by usbcore
56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
57 * with one or more transfer descriptors (TDs) per urb
58 * @ep_dev: ep_device for sysfs info
59 * @extra: descriptors following this endpoint in the configuration
60 * @extralen: how many bytes of "extra" are valid
61 * @enabled: URBs may be submitted to this endpoint
62 * @streams: number of USB-3 streams allocated on the endpoint
63 *
64 * USB requests are always queued to a given endpoint, identified by a
65 * descriptor within an active interface in a given USB configuration.
66 */
67struct usb_host_endpoint {
68 struct usb_endpoint_descriptor desc;
69 struct usb_ss_ep_comp_descriptor ss_ep_comp;
70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
71 struct list_head urb_list;
72 void *hcpriv;
73 struct ep_device *ep_dev; /* For sysfs info */
74
75 unsigned char *extra; /* Extra descriptors */
76 int extralen;
77 int enabled;
78 int streams;
79};
80
81/* host-side wrapper for one interface setting's parsed descriptors */
82struct usb_host_interface {
83 struct usb_interface_descriptor desc;
84
85 int extralen;
86 unsigned char *extra; /* Extra descriptors */
87
88 /* array of desc.bNumEndpoints endpoints associated with this
89 * interface setting. these will be in no particular order.
90 */
91 struct usb_host_endpoint *endpoint;
92
93 char *string; /* iInterface string, if present */
94};
95
96enum usb_interface_condition {
97 USB_INTERFACE_UNBOUND = 0,
98 USB_INTERFACE_BINDING,
99 USB_INTERFACE_BOUND,
100 USB_INTERFACE_UNBINDING,
101};
102
103int __must_check
104usb_find_common_endpoints(struct usb_host_interface *alt,
105 struct usb_endpoint_descriptor **bulk_in,
106 struct usb_endpoint_descriptor **bulk_out,
107 struct usb_endpoint_descriptor **int_in,
108 struct usb_endpoint_descriptor **int_out);
109
110int __must_check
111usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
112 struct usb_endpoint_descriptor **bulk_in,
113 struct usb_endpoint_descriptor **bulk_out,
114 struct usb_endpoint_descriptor **int_in,
115 struct usb_endpoint_descriptor **int_out);
116
117static inline int __must_check
118usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
119 struct usb_endpoint_descriptor **bulk_in)
120{
121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
122}
123
124static inline int __must_check
125usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
126 struct usb_endpoint_descriptor **bulk_out)
127{
128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
129}
130
131static inline int __must_check
132usb_find_int_in_endpoint(struct usb_host_interface *alt,
133 struct usb_endpoint_descriptor **int_in)
134{
135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
136}
137
138static inline int __must_check
139usb_find_int_out_endpoint(struct usb_host_interface *alt,
140 struct usb_endpoint_descriptor **int_out)
141{
142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
143}
144
145static inline int __must_check
146usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
147 struct usb_endpoint_descriptor **bulk_in)
148{
149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
150}
151
152static inline int __must_check
153usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
154 struct usb_endpoint_descriptor **bulk_out)
155{
156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
157}
158
159static inline int __must_check
160usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
161 struct usb_endpoint_descriptor **int_in)
162{
163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
164}
165
166static inline int __must_check
167usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
168 struct usb_endpoint_descriptor **int_out)
169{
170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
171}
172
173/**
174 * struct usb_interface - what usb device drivers talk to
175 * @altsetting: array of interface structures, one for each alternate
176 * setting that may be selected. Each one includes a set of
177 * endpoint configurations. They will be in no particular order.
178 * @cur_altsetting: the current altsetting.
179 * @num_altsetting: number of altsettings defined.
180 * @intf_assoc: interface association descriptor
181 * @minor: the minor number assigned to this interface, if this
182 * interface is bound to a driver that uses the USB major number.
183 * If this interface does not use the USB major, this field should
184 * be unused. The driver should set this value in the probe()
185 * function of the driver, after it has been assigned a minor
186 * number from the USB core by calling usb_register_dev().
187 * @condition: binding state of the interface: not bound, binding
188 * (in probe()), bound to a driver, or unbinding (in disconnect())
189 * @sysfs_files_created: sysfs attributes exist
190 * @ep_devs_created: endpoint child pseudo-devices exist
191 * @unregistering: flag set when the interface is being unregistered
192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
193 * capability during autosuspend.
194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
195 * has been deferred.
196 * @needs_binding: flag set when the driver should be re-probed or unbound
197 * following a reset or suspend operation it doesn't support.
198 * @authorized: This allows to (de)authorize individual interfaces instead
199 * a whole device in contrast to the device authorization.
200 * @dev: driver model's view of this device
201 * @usb_dev: if an interface is bound to the USB major, this will point
202 * to the sysfs representation for that device.
203 * @reset_ws: Used for scheduling resets from atomic context.
204 * @resetting_device: USB core reset the device, so use alt setting 0 as
205 * current; needs bandwidth alloc after reset.
206 *
207 * USB device drivers attach to interfaces on a physical device. Each
208 * interface encapsulates a single high level function, such as feeding
209 * an audio stream to a speaker or reporting a change in a volume control.
210 * Many USB devices only have one interface. The protocol used to talk to
211 * an interface's endpoints can be defined in a usb "class" specification,
212 * or by a product's vendor. The (default) control endpoint is part of
213 * every interface, but is never listed among the interface's descriptors.
214 *
215 * The driver that is bound to the interface can use standard driver model
216 * calls such as dev_get_drvdata() on the dev member of this structure.
217 *
218 * Each interface may have alternate settings. The initial configuration
219 * of a device sets altsetting 0, but the device driver can change
220 * that setting using usb_set_interface(). Alternate settings are often
221 * used to control the use of periodic endpoints, such as by having
222 * different endpoints use different amounts of reserved USB bandwidth.
223 * All standards-conformant USB devices that use isochronous endpoints
224 * will use them in non-default settings.
225 *
226 * The USB specification says that alternate setting numbers must run from
227 * 0 to one less than the total number of alternate settings. But some
228 * devices manage to mess this up, and the structures aren't necessarily
229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
230 * look up an alternate setting in the altsetting array based on its number.
231 */
232struct usb_interface {
233 /* array of alternate settings for this interface,
234 * stored in no particular order */
235 struct usb_host_interface *altsetting;
236
237 struct usb_host_interface *cur_altsetting; /* the currently
238 * active alternate setting */
239 unsigned num_altsetting; /* number of alternate settings */
240
241 /* If there is an interface association descriptor then it will list
242 * the associated interfaces */
243 struct usb_interface_assoc_descriptor *intf_assoc;
244
245 int minor; /* minor number this interface is
246 * bound to */
247 enum usb_interface_condition condition; /* state of binding */
248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
249 unsigned ep_devs_created:1; /* endpoint "devices" exist */
250 unsigned unregistering:1; /* unregistration is in progress */
251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
253 unsigned needs_binding:1; /* needs delayed unbind/rebind */
254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
255 unsigned authorized:1; /* used for interface authorization */
256
257 struct device dev; /* interface specific device info */
258 struct device *usb_dev;
259 struct work_struct reset_ws; /* for resets in atomic context */
260};
261
262#define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev)
263
264static inline void *usb_get_intfdata(struct usb_interface *intf)
265{
266 return dev_get_drvdata(&intf->dev);
267}
268
269/**
270 * usb_set_intfdata() - associate driver-specific data with the interface
271 * @intf: the usb interface
272 * @data: pointer to the device priv structure or %NULL
273 *
274 * Drivers should use this function in their probe() to associate their
275 * driver-specific data with the usb interface.
276 *
277 * When disconnecting, the core will take care of setting @intf back to %NULL,
278 * so no actions are needed on the driver side. The interface should not be set
279 * to %NULL before all actions completed (e.g. no outsanding URB remaining).
280 */
281static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
282{
283 dev_set_drvdata(&intf->dev, data);
284}
285
286struct usb_interface *usb_get_intf(struct usb_interface *intf);
287void usb_put_intf(struct usb_interface *intf);
288
289/* Hard limit */
290#define USB_MAXENDPOINTS 30
291/* this maximum is arbitrary */
292#define USB_MAXINTERFACES 32
293#define USB_MAXIADS (USB_MAXINTERFACES/2)
294
295/*
296 * USB Resume Timer: Every Host controller driver should drive the resume
297 * signalling on the bus for the amount of time defined by this macro.
298 *
299 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
300 *
301 * Note that the USB Specification states we should drive resume for *at least*
302 * 20 ms, but it doesn't give an upper bound. This creates two possible
303 * situations which we want to avoid:
304 *
305 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
306 * us to fail USB Electrical Tests, thus failing Certification
307 *
308 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
309 * and while we can argue that's against the USB Specification, we don't have
310 * control over which devices a certification laboratory will be using for
311 * certification. If CertLab uses a device which was tested against Windows and
312 * that happens to have relaxed resume signalling rules, we might fall into
313 * situations where we fail interoperability and electrical tests.
314 *
315 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
316 * should cope with both LPJ calibration errors and devices not following every
317 * detail of the USB Specification.
318 */
319#define USB_RESUME_TIMEOUT 40 /* ms */
320
321/**
322 * struct usb_interface_cache - long-term representation of a device interface
323 * @num_altsetting: number of altsettings defined.
324 * @ref: reference counter.
325 * @altsetting: variable-length array of interface structures, one for
326 * each alternate setting that may be selected. Each one includes a
327 * set of endpoint configurations. They will be in no particular order.
328 *
329 * These structures persist for the lifetime of a usb_device, unlike
330 * struct usb_interface (which persists only as long as its configuration
331 * is installed). The altsetting arrays can be accessed through these
332 * structures at any time, permitting comparison of configurations and
333 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
334 */
335struct usb_interface_cache {
336 unsigned num_altsetting; /* number of alternate settings */
337 struct kref ref; /* reference counter */
338
339 /* variable-length array of alternate settings for this interface,
340 * stored in no particular order */
341 struct usb_host_interface altsetting[];
342};
343#define ref_to_usb_interface_cache(r) \
344 container_of(r, struct usb_interface_cache, ref)
345#define altsetting_to_usb_interface_cache(a) \
346 container_of(a, struct usb_interface_cache, altsetting[0])
347
348/**
349 * struct usb_host_config - representation of a device's configuration
350 * @desc: the device's configuration descriptor.
351 * @string: pointer to the cached version of the iConfiguration string, if
352 * present for this configuration.
353 * @intf_assoc: list of any interface association descriptors in this config
354 * @interface: array of pointers to usb_interface structures, one for each
355 * interface in the configuration. The number of interfaces is stored
356 * in desc.bNumInterfaces. These pointers are valid only while the
357 * configuration is active.
358 * @intf_cache: array of pointers to usb_interface_cache structures, one
359 * for each interface in the configuration. These structures exist
360 * for the entire life of the device.
361 * @extra: pointer to buffer containing all extra descriptors associated
362 * with this configuration (those preceding the first interface
363 * descriptor).
364 * @extralen: length of the extra descriptors buffer.
365 *
366 * USB devices may have multiple configurations, but only one can be active
367 * at any time. Each encapsulates a different operational environment;
368 * for example, a dual-speed device would have separate configurations for
369 * full-speed and high-speed operation. The number of configurations
370 * available is stored in the device descriptor as bNumConfigurations.
371 *
372 * A configuration can contain multiple interfaces. Each corresponds to
373 * a different function of the USB device, and all are available whenever
374 * the configuration is active. The USB standard says that interfaces
375 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
376 * of devices get this wrong. In addition, the interface array is not
377 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
378 * look up an interface entry based on its number.
379 *
380 * Device drivers should not attempt to activate configurations. The choice
381 * of which configuration to install is a policy decision based on such
382 * considerations as available power, functionality provided, and the user's
383 * desires (expressed through userspace tools). However, drivers can call
384 * usb_reset_configuration() to reinitialize the current configuration and
385 * all its interfaces.
386 */
387struct usb_host_config {
388 struct usb_config_descriptor desc;
389
390 char *string; /* iConfiguration string, if present */
391
392 /* List of any Interface Association Descriptors in this
393 * configuration. */
394 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
395
396 /* the interfaces associated with this configuration,
397 * stored in no particular order */
398 struct usb_interface *interface[USB_MAXINTERFACES];
399
400 /* Interface information available even when this is not the
401 * active configuration */
402 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
403
404 unsigned char *extra; /* Extra descriptors */
405 int extralen;
406};
407
408/* USB2.0 and USB3.0 device BOS descriptor set */
409struct usb_host_bos {
410 struct usb_bos_descriptor *desc;
411
412 /* wireless cap descriptor is handled by wusb */
413 struct usb_ext_cap_descriptor *ext_cap;
414 struct usb_ss_cap_descriptor *ss_cap;
415 struct usb_ssp_cap_descriptor *ssp_cap;
416 struct usb_ss_container_id_descriptor *ss_id;
417 struct usb_ptm_cap_descriptor *ptm_cap;
418};
419
420int __usb_get_extra_descriptor(char *buffer, unsigned size,
421 unsigned char type, void **ptr, size_t min);
422#define usb_get_extra_descriptor(ifpoint, type, ptr) \
423 __usb_get_extra_descriptor((ifpoint)->extra, \
424 (ifpoint)->extralen, \
425 type, (void **)ptr, sizeof(**(ptr)))
426
427/* ----------------------------------------------------------------------- */
428
429/* USB device number allocation bitmap */
430struct usb_devmap {
431 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
432};
433
434/*
435 * Allocated per bus (tree of devices) we have:
436 */
437struct usb_bus {
438 struct device *controller; /* host side hardware */
439 struct device *sysdev; /* as seen from firmware or bus */
440 int busnum; /* Bus number (in order of reg) */
441 const char *bus_name; /* stable id (PCI slot_name etc) */
442 u8 uses_pio_for_control; /*
443 * Does the host controller use PIO
444 * for control transfers?
445 */
446 u8 otg_port; /* 0, or number of OTG/HNP port */
447 unsigned is_b_host:1; /* true during some HNP roleswitches */
448 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
449 unsigned no_stop_on_short:1; /*
450 * Quirk: some controllers don't stop
451 * the ep queue on a short transfer
452 * with the URB_SHORT_NOT_OK flag set.
453 */
454 unsigned no_sg_constraint:1; /* no sg constraint */
455 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
456
457 int devnum_next; /* Next open device number in
458 * round-robin allocation */
459 struct mutex devnum_next_mutex; /* devnum_next mutex */
460
461 struct usb_devmap devmap; /* device address allocation map */
462 struct usb_device *root_hub; /* Root hub */
463 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
464
465 int bandwidth_allocated; /* on this bus: how much of the time
466 * reserved for periodic (intr/iso)
467 * requests is used, on average?
468 * Units: microseconds/frame.
469 * Limits: Full/low speed reserve 90%,
470 * while high speed reserves 80%.
471 */
472 int bandwidth_int_reqs; /* number of Interrupt requests */
473 int bandwidth_isoc_reqs; /* number of Isoc. requests */
474
475 unsigned resuming_ports; /* bit array: resuming root-hub ports */
476
477#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
478 struct mon_bus *mon_bus; /* non-null when associated */
479 int monitored; /* non-zero when monitored */
480#endif
481};
482
483struct usb_dev_state;
484
485/* ----------------------------------------------------------------------- */
486
487struct usb_tt;
488
489enum usb_port_connect_type {
490 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
491 USB_PORT_CONNECT_TYPE_HOT_PLUG,
492 USB_PORT_CONNECT_TYPE_HARD_WIRED,
493 USB_PORT_NOT_USED,
494};
495
496/*
497 * USB port quirks.
498 */
499
500/* For the given port, prefer the old (faster) enumeration scheme. */
501#define USB_PORT_QUIRK_OLD_SCHEME BIT(0)
502
503/* Decrease TRSTRCY to 10ms during device enumeration. */
504#define USB_PORT_QUIRK_FAST_ENUM BIT(1)
505
506/*
507 * USB 2.0 Link Power Management (LPM) parameters.
508 */
509struct usb2_lpm_parameters {
510 /* Best effort service latency indicate how long the host will drive
511 * resume on an exit from L1.
512 */
513 unsigned int besl;
514
515 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
516 * When the timer counts to zero, the parent hub will initiate a LPM
517 * transition to L1.
518 */
519 int timeout;
520};
521
522/*
523 * USB 3.0 Link Power Management (LPM) parameters.
524 *
525 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
526 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
527 * All three are stored in nanoseconds.
528 */
529struct usb3_lpm_parameters {
530 /*
531 * Maximum exit latency (MEL) for the host to send a packet to the
532 * device (either a Ping for isoc endpoints, or a data packet for
533 * interrupt endpoints), the hubs to decode the packet, and for all hubs
534 * in the path to transition the links to U0.
535 */
536 unsigned int mel;
537 /*
538 * Maximum exit latency for a device-initiated LPM transition to bring
539 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
540 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
541 */
542 unsigned int pel;
543
544 /*
545 * The System Exit Latency (SEL) includes PEL, and three other
546 * latencies. After a device initiates a U0 transition, it will take
547 * some time from when the device sends the ERDY to when it will finally
548 * receive the data packet. Basically, SEL should be the worse-case
549 * latency from when a device starts initiating a U0 transition to when
550 * it will get data.
551 */
552 unsigned int sel;
553 /*
554 * The idle timeout value that is currently programmed into the parent
555 * hub for this device. When the timer counts to zero, the parent hub
556 * will initiate an LPM transition to either U1 or U2.
557 */
558 int timeout;
559};
560
561/**
562 * struct usb_device - kernel's representation of a USB device
563 * @devnum: device number; address on a USB bus
564 * @devpath: device ID string for use in messages (e.g., /port/...)
565 * @route: tree topology hex string for use with xHCI
566 * @state: device state: configured, not attached, etc.
567 * @speed: device speed: high/full/low (or error)
568 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
569 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
570 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
571 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
572 * @ttport: device port on that tt hub
573 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
574 * @parent: our hub, unless we're the root
575 * @bus: bus we're part of
576 * @ep0: endpoint 0 data (default control pipe)
577 * @dev: generic device interface
578 * @descriptor: USB device descriptor
579 * @bos: USB device BOS descriptor set
580 * @config: all of the device's configs
581 * @actconfig: the active configuration
582 * @ep_in: array of IN endpoints
583 * @ep_out: array of OUT endpoints
584 * @rawdescriptors: raw descriptors for each config
585 * @bus_mA: Current available from the bus
586 * @portnum: parent port number (origin 1)
587 * @level: number of USB hub ancestors
588 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
589 * @can_submit: URBs may be submitted
590 * @persist_enabled: USB_PERSIST enabled for this device
591 * @reset_in_progress: the device is being reset
592 * @have_langid: whether string_langid is valid
593 * @authorized: policy has said we can use it;
594 * (user space) policy determines if we authorize this device to be
595 * used or not. By default, wired USB devices are authorized.
596 * WUSB devices are not, until we authorize them from user space.
597 * FIXME -- complete doc
598 * @authenticated: Crypto authentication passed
599 * @wusb: device is Wireless USB
600 * @lpm_capable: device supports LPM
601 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
602 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
603 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
604 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
605 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
606 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
607 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
608 * @string_langid: language ID for strings
609 * @product: iProduct string, if present (static)
610 * @manufacturer: iManufacturer string, if present (static)
611 * @serial: iSerialNumber string, if present (static)
612 * @filelist: usbfs files that are open to this device
613 * @maxchild: number of ports if hub
614 * @quirks: quirks of the whole device
615 * @urbnum: number of URBs submitted for the whole device
616 * @active_duration: total time device is not suspended
617 * @connect_time: time device was first connected
618 * @do_remote_wakeup: remote wakeup should be enabled
619 * @reset_resume: needs reset instead of resume
620 * @port_is_suspended: the upstream port is suspended (L2 or U3)
621 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
622 * specific data for the device.
623 * @slot_id: Slot ID assigned by xHCI
624 * @removable: Device can be physically removed from this port
625 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
626 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
627 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
628 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
629 * to keep track of the number of functions that require USB 3.0 Link Power
630 * Management to be disabled for this usb_device. This count should only
631 * be manipulated by those functions, with the bandwidth_mutex is held.
632 * @hub_delay: cached value consisting of:
633 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
634 * Will be used as wValue for SetIsochDelay requests.
635 * @use_generic_driver: ask driver core to reprobe using the generic driver.
636 *
637 * Notes:
638 * Usbcore drivers should not set usbdev->state directly. Instead use
639 * usb_set_device_state().
640 */
641struct usb_device {
642 int devnum;
643 char devpath[16];
644 u32 route;
645 enum usb_device_state state;
646 enum usb_device_speed speed;
647 unsigned int rx_lanes;
648 unsigned int tx_lanes;
649 enum usb_ssp_rate ssp_rate;
650
651 struct usb_tt *tt;
652 int ttport;
653
654 unsigned int toggle[2];
655
656 struct usb_device *parent;
657 struct usb_bus *bus;
658 struct usb_host_endpoint ep0;
659
660 struct device dev;
661
662 struct usb_device_descriptor descriptor;
663 struct usb_host_bos *bos;
664 struct usb_host_config *config;
665
666 struct usb_host_config *actconfig;
667 struct usb_host_endpoint *ep_in[16];
668 struct usb_host_endpoint *ep_out[16];
669
670 char **rawdescriptors;
671
672 unsigned short bus_mA;
673 u8 portnum;
674 u8 level;
675 u8 devaddr;
676
677 unsigned can_submit:1;
678 unsigned persist_enabled:1;
679 unsigned reset_in_progress:1;
680 unsigned have_langid:1;
681 unsigned authorized:1;
682 unsigned authenticated:1;
683 unsigned wusb:1;
684 unsigned lpm_capable:1;
685 unsigned lpm_devinit_allow:1;
686 unsigned usb2_hw_lpm_capable:1;
687 unsigned usb2_hw_lpm_besl_capable:1;
688 unsigned usb2_hw_lpm_enabled:1;
689 unsigned usb2_hw_lpm_allowed:1;
690 unsigned usb3_lpm_u1_enabled:1;
691 unsigned usb3_lpm_u2_enabled:1;
692 int string_langid;
693
694 /* static strings from the device */
695 char *product;
696 char *manufacturer;
697 char *serial;
698
699 struct list_head filelist;
700
701 int maxchild;
702
703 u32 quirks;
704 atomic_t urbnum;
705
706 unsigned long active_duration;
707
708#ifdef CONFIG_PM
709 unsigned long connect_time;
710
711 unsigned do_remote_wakeup:1;
712 unsigned reset_resume:1;
713 unsigned port_is_suspended:1;
714#endif
715 struct wusb_dev *wusb_dev;
716 int slot_id;
717 struct usb2_lpm_parameters l1_params;
718 struct usb3_lpm_parameters u1_params;
719 struct usb3_lpm_parameters u2_params;
720 unsigned lpm_disable_count;
721
722 u16 hub_delay;
723 unsigned use_generic_driver:1;
724};
725
726#define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev)
727
728static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf)
729{
730 return to_usb_device(intf->dev.parent);
731}
732static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf)
733{
734 return to_usb_device((const struct device *)intf->dev.parent);
735}
736
737#define interface_to_usbdev(intf) \
738 _Generic((intf), \
739 const struct usb_interface *: __intf_to_usbdev_const, \
740 struct usb_interface *: __intf_to_usbdev)(intf)
741
742extern struct usb_device *usb_get_dev(struct usb_device *dev);
743extern void usb_put_dev(struct usb_device *dev);
744extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
745 int port1);
746
747/**
748 * usb_hub_for_each_child - iterate over all child devices on the hub
749 * @hdev: USB device belonging to the usb hub
750 * @port1: portnum associated with child device
751 * @child: child device pointer
752 */
753#define usb_hub_for_each_child(hdev, port1, child) \
754 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
755 port1 <= hdev->maxchild; \
756 child = usb_hub_find_child(hdev, ++port1)) \
757 if (!child) continue; else
758
759/* USB device locking */
760#define usb_lock_device(udev) device_lock(&(udev)->dev)
761#define usb_unlock_device(udev) device_unlock(&(udev)->dev)
762#define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
763#define usb_trylock_device(udev) device_trylock(&(udev)->dev)
764extern int usb_lock_device_for_reset(struct usb_device *udev,
765 const struct usb_interface *iface);
766
767/* USB port reset for device reinitialization */
768extern int usb_reset_device(struct usb_device *dev);
769extern void usb_queue_reset_device(struct usb_interface *dev);
770
771extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
772
773#ifdef CONFIG_ACPI
774extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
775 bool enable);
776extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
777#else
778static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
779 bool enable) { return 0; }
780static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
781 { return true; }
782#endif
783
784/* USB autosuspend and autoresume */
785#ifdef CONFIG_PM
786extern void usb_enable_autosuspend(struct usb_device *udev);
787extern void usb_disable_autosuspend(struct usb_device *udev);
788
789extern int usb_autopm_get_interface(struct usb_interface *intf);
790extern void usb_autopm_put_interface(struct usb_interface *intf);
791extern int usb_autopm_get_interface_async(struct usb_interface *intf);
792extern void usb_autopm_put_interface_async(struct usb_interface *intf);
793extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
794extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
795
796static inline void usb_mark_last_busy(struct usb_device *udev)
797{
798 pm_runtime_mark_last_busy(&udev->dev);
799}
800
801#else
802
803static inline int usb_enable_autosuspend(struct usb_device *udev)
804{ return 0; }
805static inline int usb_disable_autosuspend(struct usb_device *udev)
806{ return 0; }
807
808static inline int usb_autopm_get_interface(struct usb_interface *intf)
809{ return 0; }
810static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
811{ return 0; }
812
813static inline void usb_autopm_put_interface(struct usb_interface *intf)
814{ }
815static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
816{ }
817static inline void usb_autopm_get_interface_no_resume(
818 struct usb_interface *intf)
819{ }
820static inline void usb_autopm_put_interface_no_suspend(
821 struct usb_interface *intf)
822{ }
823static inline void usb_mark_last_busy(struct usb_device *udev)
824{ }
825#endif
826
827extern int usb_disable_lpm(struct usb_device *udev);
828extern void usb_enable_lpm(struct usb_device *udev);
829/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
830extern int usb_unlocked_disable_lpm(struct usb_device *udev);
831extern void usb_unlocked_enable_lpm(struct usb_device *udev);
832
833extern int usb_disable_ltm(struct usb_device *udev);
834extern void usb_enable_ltm(struct usb_device *udev);
835
836static inline bool usb_device_supports_ltm(struct usb_device *udev)
837{
838 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
839 return false;
840 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
841}
842
843static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
844{
845 return udev && udev->bus && udev->bus->no_sg_constraint;
846}
847
848
849/*-------------------------------------------------------------------------*/
850
851/* for drivers using iso endpoints */
852extern int usb_get_current_frame_number(struct usb_device *usb_dev);
853
854/* Sets up a group of bulk endpoints to support multiple stream IDs. */
855extern int usb_alloc_streams(struct usb_interface *interface,
856 struct usb_host_endpoint **eps, unsigned int num_eps,
857 unsigned int num_streams, gfp_t mem_flags);
858
859/* Reverts a group of bulk endpoints back to not using stream IDs. */
860extern int usb_free_streams(struct usb_interface *interface,
861 struct usb_host_endpoint **eps, unsigned int num_eps,
862 gfp_t mem_flags);
863
864/* used these for multi-interface device registration */
865extern int usb_driver_claim_interface(struct usb_driver *driver,
866 struct usb_interface *iface, void *data);
867
868/**
869 * usb_interface_claimed - returns true iff an interface is claimed
870 * @iface: the interface being checked
871 *
872 * Return: %true (nonzero) iff the interface is claimed, else %false
873 * (zero).
874 *
875 * Note:
876 * Callers must own the driver model's usb bus readlock. So driver
877 * probe() entries don't need extra locking, but other call contexts
878 * may need to explicitly claim that lock.
879 *
880 */
881static inline int usb_interface_claimed(struct usb_interface *iface)
882{
883 return (iface->dev.driver != NULL);
884}
885
886extern void usb_driver_release_interface(struct usb_driver *driver,
887 struct usb_interface *iface);
888const struct usb_device_id *usb_match_id(struct usb_interface *interface,
889 const struct usb_device_id *id);
890extern int usb_match_one_id(struct usb_interface *interface,
891 const struct usb_device_id *id);
892
893extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
894extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
895 int minor);
896extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
897 unsigned ifnum);
898extern struct usb_host_interface *usb_altnum_to_altsetting(
899 const struct usb_interface *intf, unsigned int altnum);
900extern struct usb_host_interface *usb_find_alt_setting(
901 struct usb_host_config *config,
902 unsigned int iface_num,
903 unsigned int alt_num);
904
905/* port claiming functions */
906int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
907 struct usb_dev_state *owner);
908int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
909 struct usb_dev_state *owner);
910
911/**
912 * usb_make_path - returns stable device path in the usb tree
913 * @dev: the device whose path is being constructed
914 * @buf: where to put the string
915 * @size: how big is "buf"?
916 *
917 * Return: Length of the string (> 0) or negative if size was too small.
918 *
919 * Note:
920 * This identifier is intended to be "stable", reflecting physical paths in
921 * hardware such as physical bus addresses for host controllers or ports on
922 * USB hubs. That makes it stay the same until systems are physically
923 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
924 * controllers. Adding and removing devices, including virtual root hubs
925 * in host controller driver modules, does not change these path identifiers;
926 * neither does rebooting or re-enumerating. These are more useful identifiers
927 * than changeable ("unstable") ones like bus numbers or device addresses.
928 *
929 * With a partial exception for devices connected to USB 2.0 root hubs, these
930 * identifiers are also predictable. So long as the device tree isn't changed,
931 * plugging any USB device into a given hub port always gives it the same path.
932 * Because of the use of "companion" controllers, devices connected to ports on
933 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
934 * high speed, and a different one if they are full or low speed.
935 */
936static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
937{
938 int actual;
939 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
940 dev->devpath);
941 return (actual >= (int)size) ? -1 : actual;
942}
943
944/*-------------------------------------------------------------------------*/
945
946#define USB_DEVICE_ID_MATCH_DEVICE \
947 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
948#define USB_DEVICE_ID_MATCH_DEV_RANGE \
949 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
950#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
951 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
952#define USB_DEVICE_ID_MATCH_DEV_INFO \
953 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
954 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
955 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
956#define USB_DEVICE_ID_MATCH_INT_INFO \
957 (USB_DEVICE_ID_MATCH_INT_CLASS | \
958 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
959 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
960
961/**
962 * USB_DEVICE - macro used to describe a specific usb device
963 * @vend: the 16 bit USB Vendor ID
964 * @prod: the 16 bit USB Product ID
965 *
966 * This macro is used to create a struct usb_device_id that matches a
967 * specific device.
968 */
969#define USB_DEVICE(vend, prod) \
970 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
971 .idVendor = (vend), \
972 .idProduct = (prod)
973/**
974 * USB_DEVICE_VER - describe a specific usb device with a version range
975 * @vend: the 16 bit USB Vendor ID
976 * @prod: the 16 bit USB Product ID
977 * @lo: the bcdDevice_lo value
978 * @hi: the bcdDevice_hi value
979 *
980 * This macro is used to create a struct usb_device_id that matches a
981 * specific device, with a version range.
982 */
983#define USB_DEVICE_VER(vend, prod, lo, hi) \
984 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
985 .idVendor = (vend), \
986 .idProduct = (prod), \
987 .bcdDevice_lo = (lo), \
988 .bcdDevice_hi = (hi)
989
990/**
991 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
992 * @vend: the 16 bit USB Vendor ID
993 * @prod: the 16 bit USB Product ID
994 * @cl: bInterfaceClass value
995 *
996 * This macro is used to create a struct usb_device_id that matches a
997 * specific interface class of devices.
998 */
999#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1000 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1001 USB_DEVICE_ID_MATCH_INT_CLASS, \
1002 .idVendor = (vend), \
1003 .idProduct = (prod), \
1004 .bInterfaceClass = (cl)
1005
1006/**
1007 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1008 * @vend: the 16 bit USB Vendor ID
1009 * @prod: the 16 bit USB Product ID
1010 * @pr: bInterfaceProtocol value
1011 *
1012 * This macro is used to create a struct usb_device_id that matches a
1013 * specific interface protocol of devices.
1014 */
1015#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1016 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1017 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1018 .idVendor = (vend), \
1019 .idProduct = (prod), \
1020 .bInterfaceProtocol = (pr)
1021
1022/**
1023 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1024 * @vend: the 16 bit USB Vendor ID
1025 * @prod: the 16 bit USB Product ID
1026 * @num: bInterfaceNumber value
1027 *
1028 * This macro is used to create a struct usb_device_id that matches a
1029 * specific interface number of devices.
1030 */
1031#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1032 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1033 USB_DEVICE_ID_MATCH_INT_NUMBER, \
1034 .idVendor = (vend), \
1035 .idProduct = (prod), \
1036 .bInterfaceNumber = (num)
1037
1038/**
1039 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1040 * @cl: bDeviceClass value
1041 * @sc: bDeviceSubClass value
1042 * @pr: bDeviceProtocol value
1043 *
1044 * This macro is used to create a struct usb_device_id that matches a
1045 * specific class of devices.
1046 */
1047#define USB_DEVICE_INFO(cl, sc, pr) \
1048 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1049 .bDeviceClass = (cl), \
1050 .bDeviceSubClass = (sc), \
1051 .bDeviceProtocol = (pr)
1052
1053/**
1054 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1055 * @cl: bInterfaceClass value
1056 * @sc: bInterfaceSubClass value
1057 * @pr: bInterfaceProtocol value
1058 *
1059 * This macro is used to create a struct usb_device_id that matches a
1060 * specific class of interfaces.
1061 */
1062#define USB_INTERFACE_INFO(cl, sc, pr) \
1063 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1064 .bInterfaceClass = (cl), \
1065 .bInterfaceSubClass = (sc), \
1066 .bInterfaceProtocol = (pr)
1067
1068/**
1069 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1070 * @vend: the 16 bit USB Vendor ID
1071 * @prod: the 16 bit USB Product ID
1072 * @cl: bInterfaceClass value
1073 * @sc: bInterfaceSubClass value
1074 * @pr: bInterfaceProtocol value
1075 *
1076 * This macro is used to create a struct usb_device_id that matches a
1077 * specific device with a specific class of interfaces.
1078 *
1079 * This is especially useful when explicitly matching devices that have
1080 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1081 */
1082#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1083 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1084 | USB_DEVICE_ID_MATCH_DEVICE, \
1085 .idVendor = (vend), \
1086 .idProduct = (prod), \
1087 .bInterfaceClass = (cl), \
1088 .bInterfaceSubClass = (sc), \
1089 .bInterfaceProtocol = (pr)
1090
1091/**
1092 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1093 * @vend: the 16 bit USB Vendor ID
1094 * @cl: bInterfaceClass value
1095 * @sc: bInterfaceSubClass value
1096 * @pr: bInterfaceProtocol value
1097 *
1098 * This macro is used to create a struct usb_device_id that matches a
1099 * specific vendor with a specific class of interfaces.
1100 *
1101 * This is especially useful when explicitly matching devices that have
1102 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1103 */
1104#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1105 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1106 | USB_DEVICE_ID_MATCH_VENDOR, \
1107 .idVendor = (vend), \
1108 .bInterfaceClass = (cl), \
1109 .bInterfaceSubClass = (sc), \
1110 .bInterfaceProtocol = (pr)
1111
1112/* ----------------------------------------------------------------------- */
1113
1114/* Stuff for dynamic usb ids */
1115struct usb_dynids {
1116 spinlock_t lock;
1117 struct list_head list;
1118};
1119
1120struct usb_dynid {
1121 struct list_head node;
1122 struct usb_device_id id;
1123};
1124
1125extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1126 const struct usb_device_id *id_table,
1127 struct device_driver *driver,
1128 const char *buf, size_t count);
1129
1130extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1131
1132/**
1133 * struct usbdrv_wrap - wrapper for driver-model structure
1134 * @driver: The driver-model core driver structure.
1135 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
1136 */
1137struct usbdrv_wrap {
1138 struct device_driver driver;
1139 int for_devices;
1140};
1141
1142/**
1143 * struct usb_driver - identifies USB interface driver to usbcore
1144 * @name: The driver name should be unique among USB drivers,
1145 * and should normally be the same as the module name.
1146 * @probe: Called to see if the driver is willing to manage a particular
1147 * interface on a device. If it is, probe returns zero and uses
1148 * usb_set_intfdata() to associate driver-specific data with the
1149 * interface. It may also use usb_set_interface() to specify the
1150 * appropriate altsetting. If unwilling to manage the interface,
1151 * return -ENODEV, if genuine IO errors occurred, an appropriate
1152 * negative errno value.
1153 * @disconnect: Called when the interface is no longer accessible, usually
1154 * because its device has been (or is being) disconnected or the
1155 * driver module is being unloaded.
1156 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1157 * the "usbfs" filesystem. This lets devices provide ways to
1158 * expose information to user space regardless of where they
1159 * do (or don't) show up otherwise in the filesystem.
1160 * @suspend: Called when the device is going to be suspended by the
1161 * system either from system sleep or runtime suspend context. The
1162 * return value will be ignored in system sleep context, so do NOT
1163 * try to continue using the device if suspend fails in this case.
1164 * Instead, let the resume or reset-resume routine recover from
1165 * the failure.
1166 * @resume: Called when the device is being resumed by the system.
1167 * @reset_resume: Called when the suspended device has been reset instead
1168 * of being resumed.
1169 * @pre_reset: Called by usb_reset_device() when the device is about to be
1170 * reset. This routine must not return until the driver has no active
1171 * URBs for the device, and no more URBs may be submitted until the
1172 * post_reset method is called.
1173 * @post_reset: Called by usb_reset_device() after the device
1174 * has been reset
1175 * @id_table: USB drivers use ID table to support hotplugging.
1176 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1177 * or your driver's probe function will never get called.
1178 * @dev_groups: Attributes attached to the device that will be created once it
1179 * is bound to the driver.
1180 * @dynids: used internally to hold the list of dynamically added device
1181 * ids for this driver.
1182 * @drvwrap: Driver-model core structure wrapper.
1183 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1184 * added to this driver by preventing the sysfs file from being created.
1185 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1186 * for interfaces bound to this driver.
1187 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1188 * endpoints before calling the driver's disconnect method.
1189 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1190 * to initiate lower power link state transitions when an idle timeout
1191 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1192 *
1193 * USB interface drivers must provide a name, probe() and disconnect()
1194 * methods, and an id_table. Other driver fields are optional.
1195 *
1196 * The id_table is used in hotplugging. It holds a set of descriptors,
1197 * and specialized data may be associated with each entry. That table
1198 * is used by both user and kernel mode hotplugging support.
1199 *
1200 * The probe() and disconnect() methods are called in a context where
1201 * they can sleep, but they should avoid abusing the privilege. Most
1202 * work to connect to a device should be done when the device is opened,
1203 * and undone at the last close. The disconnect code needs to address
1204 * concurrency issues with respect to open() and close() methods, as
1205 * well as forcing all pending I/O requests to complete (by unlinking
1206 * them as necessary, and blocking until the unlinks complete).
1207 */
1208struct usb_driver {
1209 const char *name;
1210
1211 int (*probe) (struct usb_interface *intf,
1212 const struct usb_device_id *id);
1213
1214 void (*disconnect) (struct usb_interface *intf);
1215
1216 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1217 void *buf);
1218
1219 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1220 int (*resume) (struct usb_interface *intf);
1221 int (*reset_resume)(struct usb_interface *intf);
1222
1223 int (*pre_reset)(struct usb_interface *intf);
1224 int (*post_reset)(struct usb_interface *intf);
1225
1226 const struct usb_device_id *id_table;
1227 const struct attribute_group **dev_groups;
1228
1229 struct usb_dynids dynids;
1230 struct usbdrv_wrap drvwrap;
1231 unsigned int no_dynamic_id:1;
1232 unsigned int supports_autosuspend:1;
1233 unsigned int disable_hub_initiated_lpm:1;
1234 unsigned int soft_unbind:1;
1235};
1236#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1237
1238/**
1239 * struct usb_device_driver - identifies USB device driver to usbcore
1240 * @name: The driver name should be unique among USB drivers,
1241 * and should normally be the same as the module name.
1242 * @match: If set, used for better device/driver matching.
1243 * @probe: Called to see if the driver is willing to manage a particular
1244 * device. If it is, probe returns zero and uses dev_set_drvdata()
1245 * to associate driver-specific data with the device. If unwilling
1246 * to manage the device, return a negative errno value.
1247 * @disconnect: Called when the device is no longer accessible, usually
1248 * because it has been (or is being) disconnected or the driver's
1249 * module is being unloaded.
1250 * @suspend: Called when the device is going to be suspended by the system.
1251 * @resume: Called when the device is being resumed by the system.
1252 * @dev_groups: Attributes attached to the device that will be created once it
1253 * is bound to the driver.
1254 * @drvwrap: Driver-model core structure wrapper.
1255 * @id_table: used with @match() to select better matching driver at
1256 * probe() time.
1257 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1258 * for devices bound to this driver.
1259 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1260 * resume and suspend functions will be called in addition to the driver's
1261 * own, so this part of the setup does not need to be replicated.
1262 *
1263 * USB drivers must provide all the fields listed above except drvwrap,
1264 * match, and id_table.
1265 */
1266struct usb_device_driver {
1267 const char *name;
1268
1269 bool (*match) (struct usb_device *udev);
1270 int (*probe) (struct usb_device *udev);
1271 void (*disconnect) (struct usb_device *udev);
1272
1273 int (*suspend) (struct usb_device *udev, pm_message_t message);
1274 int (*resume) (struct usb_device *udev, pm_message_t message);
1275 const struct attribute_group **dev_groups;
1276 struct usbdrv_wrap drvwrap;
1277 const struct usb_device_id *id_table;
1278 unsigned int supports_autosuspend:1;
1279 unsigned int generic_subclass:1;
1280};
1281#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1282 drvwrap.driver)
1283
1284/**
1285 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1286 * @name: the usb class device name for this driver. Will show up in sysfs.
1287 * @devnode: Callback to provide a naming hint for a possible
1288 * device node to create.
1289 * @fops: pointer to the struct file_operations of this driver.
1290 * @minor_base: the start of the minor range for this driver.
1291 *
1292 * This structure is used for the usb_register_dev() and
1293 * usb_deregister_dev() functions, to consolidate a number of the
1294 * parameters used for them.
1295 */
1296struct usb_class_driver {
1297 char *name;
1298 char *(*devnode)(const struct device *dev, umode_t *mode);
1299 const struct file_operations *fops;
1300 int minor_base;
1301};
1302
1303/*
1304 * use these in module_init()/module_exit()
1305 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1306 */
1307extern int usb_register_driver(struct usb_driver *, struct module *,
1308 const char *);
1309
1310/* use a define to avoid include chaining to get THIS_MODULE & friends */
1311#define usb_register(driver) \
1312 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1313
1314extern void usb_deregister(struct usb_driver *);
1315
1316/**
1317 * module_usb_driver() - Helper macro for registering a USB driver
1318 * @__usb_driver: usb_driver struct
1319 *
1320 * Helper macro for USB drivers which do not do anything special in module
1321 * init/exit. This eliminates a lot of boilerplate. Each module may only
1322 * use this macro once, and calling it replaces module_init() and module_exit()
1323 */
1324#define module_usb_driver(__usb_driver) \
1325 module_driver(__usb_driver, usb_register, \
1326 usb_deregister)
1327
1328extern int usb_register_device_driver(struct usb_device_driver *,
1329 struct module *);
1330extern void usb_deregister_device_driver(struct usb_device_driver *);
1331
1332extern int usb_register_dev(struct usb_interface *intf,
1333 struct usb_class_driver *class_driver);
1334extern void usb_deregister_dev(struct usb_interface *intf,
1335 struct usb_class_driver *class_driver);
1336
1337extern int usb_disabled(void);
1338
1339/* ----------------------------------------------------------------------- */
1340
1341/*
1342 * URB support, for asynchronous request completions
1343 */
1344
1345/*
1346 * urb->transfer_flags:
1347 *
1348 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1349 */
1350#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1351#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1352 * slot in the schedule */
1353#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1354#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1355#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1356 * needed */
1357#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1358
1359/* The following flags are used internally by usbcore and HCDs */
1360#define URB_DIR_IN 0x0200 /* Transfer from device to host */
1361#define URB_DIR_OUT 0
1362#define URB_DIR_MASK URB_DIR_IN
1363
1364#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1365#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1366#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1367#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1368#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1369#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1370#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1371#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1372
1373struct usb_iso_packet_descriptor {
1374 unsigned int offset;
1375 unsigned int length; /* expected length */
1376 unsigned int actual_length;
1377 int status;
1378};
1379
1380struct urb;
1381
1382struct usb_anchor {
1383 struct list_head urb_list;
1384 wait_queue_head_t wait;
1385 spinlock_t lock;
1386 atomic_t suspend_wakeups;
1387 unsigned int poisoned:1;
1388};
1389
1390static inline void init_usb_anchor(struct usb_anchor *anchor)
1391{
1392 memset(anchor, 0, sizeof(*anchor));
1393 INIT_LIST_HEAD(&anchor->urb_list);
1394 init_waitqueue_head(&anchor->wait);
1395 spin_lock_init(&anchor->lock);
1396}
1397
1398typedef void (*usb_complete_t)(struct urb *);
1399
1400/**
1401 * struct urb - USB Request Block
1402 * @urb_list: For use by current owner of the URB.
1403 * @anchor_list: membership in the list of an anchor
1404 * @anchor: to anchor URBs to a common mooring
1405 * @ep: Points to the endpoint's data structure. Will eventually
1406 * replace @pipe.
1407 * @pipe: Holds endpoint number, direction, type, and more.
1408 * Create these values with the eight macros available;
1409 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1410 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1411 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1412 * numbers range from zero to fifteen. Note that "in" endpoint two
1413 * is a different endpoint (and pipe) from "out" endpoint two.
1414 * The current configuration controls the existence, type, and
1415 * maximum packet size of any given endpoint.
1416 * @stream_id: the endpoint's stream ID for bulk streams
1417 * @dev: Identifies the USB device to perform the request.
1418 * @status: This is read in non-iso completion functions to get the
1419 * status of the particular request. ISO requests only use it
1420 * to tell whether the URB was unlinked; detailed status for
1421 * each frame is in the fields of the iso_frame-desc.
1422 * @transfer_flags: A variety of flags may be used to affect how URB
1423 * submission, unlinking, or operation are handled. Different
1424 * kinds of URB can use different flags.
1425 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1426 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1427 * (however, do not leave garbage in transfer_buffer even then).
1428 * This buffer must be suitable for DMA; allocate it with
1429 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1430 * of this buffer will be modified. This buffer is used for the data
1431 * stage of control transfers.
1432 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1433 * the device driver is saying that it provided this DMA address,
1434 * which the host controller driver should use in preference to the
1435 * transfer_buffer.
1436 * @sg: scatter gather buffer list, the buffer size of each element in
1437 * the list (except the last) must be divisible by the endpoint's
1438 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1439 * @num_mapped_sgs: (internal) number of mapped sg entries
1440 * @num_sgs: number of entries in the sg list
1441 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1442 * be broken up into chunks according to the current maximum packet
1443 * size for the endpoint, which is a function of the configuration
1444 * and is encoded in the pipe. When the length is zero, neither
1445 * transfer_buffer nor transfer_dma is used.
1446 * @actual_length: This is read in non-iso completion functions, and
1447 * it tells how many bytes (out of transfer_buffer_length) were
1448 * transferred. It will normally be the same as requested, unless
1449 * either an error was reported or a short read was performed.
1450 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1451 * short reads be reported as errors.
1452 * @setup_packet: Only used for control transfers, this points to eight bytes
1453 * of setup data. Control transfers always start by sending this data
1454 * to the device. Then transfer_buffer is read or written, if needed.
1455 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1456 * this field; setup_packet must point to a valid buffer.
1457 * @start_frame: Returns the initial frame for isochronous transfers.
1458 * @number_of_packets: Lists the number of ISO transfer buffers.
1459 * @interval: Specifies the polling interval for interrupt or isochronous
1460 * transfers. The units are frames (milliseconds) for full and low
1461 * speed devices, and microframes (1/8 millisecond) for highspeed
1462 * and SuperSpeed devices.
1463 * @error_count: Returns the number of ISO transfers that reported errors.
1464 * @context: For use in completion functions. This normally points to
1465 * request-specific driver context.
1466 * @complete: Completion handler. This URB is passed as the parameter to the
1467 * completion function. The completion function may then do what
1468 * it likes with the URB, including resubmitting or freeing it.
1469 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1470 * collect the transfer status for each buffer.
1471 *
1472 * This structure identifies USB transfer requests. URBs must be allocated by
1473 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1474 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1475 * are submitted using usb_submit_urb(), and pending requests may be canceled
1476 * using usb_unlink_urb() or usb_kill_urb().
1477 *
1478 * Data Transfer Buffers:
1479 *
1480 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1481 * taken from the general page pool. That is provided by transfer_buffer
1482 * (control requests also use setup_packet), and host controller drivers
1483 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1484 * mapping operations can be expensive on some platforms (perhaps using a dma
1485 * bounce buffer or talking to an IOMMU),
1486 * although they're cheap on commodity x86 and ppc hardware.
1487 *
1488 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1489 * which tells the host controller driver that no such mapping is needed for
1490 * the transfer_buffer since
1491 * the device driver is DMA-aware. For example, a device driver might
1492 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1493 * When this transfer flag is provided, host controller drivers will
1494 * attempt to use the dma address found in the transfer_dma
1495 * field rather than determining a dma address themselves.
1496 *
1497 * Note that transfer_buffer must still be set if the controller
1498 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1499 * to root hub. If you have to transfer between highmem zone and the device
1500 * on such controller, create a bounce buffer or bail out with an error.
1501 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1502 * capable, assign NULL to it, so that usbmon knows not to use the value.
1503 * The setup_packet must always be set, so it cannot be located in highmem.
1504 *
1505 * Initialization:
1506 *
1507 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1508 * zero), and complete fields. All URBs must also initialize
1509 * transfer_buffer and transfer_buffer_length. They may provide the
1510 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1511 * to be treated as errors; that flag is invalid for write requests.
1512 *
1513 * Bulk URBs may
1514 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1515 * should always terminate with a short packet, even if it means adding an
1516 * extra zero length packet.
1517 *
1518 * Control URBs must provide a valid pointer in the setup_packet field.
1519 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1520 * beforehand.
1521 *
1522 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1523 * or, for highspeed devices, 125 microsecond units)
1524 * to poll for transfers. After the URB has been submitted, the interval
1525 * field reflects how the transfer was actually scheduled.
1526 * The polling interval may be more frequent than requested.
1527 * For example, some controllers have a maximum interval of 32 milliseconds,
1528 * while others support intervals of up to 1024 milliseconds.
1529 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1530 * endpoints, as well as high speed interrupt endpoints, the encoding of
1531 * the transfer interval in the endpoint descriptor is logarithmic.
1532 * Device drivers must convert that value to linear units themselves.)
1533 *
1534 * If an isochronous endpoint queue isn't already running, the host
1535 * controller will schedule a new URB to start as soon as bandwidth
1536 * utilization allows. If the queue is running then a new URB will be
1537 * scheduled to start in the first transfer slot following the end of the
1538 * preceding URB, if that slot has not already expired. If the slot has
1539 * expired (which can happen when IRQ delivery is delayed for a long time),
1540 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1541 * is clear then the URB will be scheduled to start in the expired slot,
1542 * implying that some of its packets will not be transferred; if the flag
1543 * is set then the URB will be scheduled in the first unexpired slot,
1544 * breaking the queue's synchronization. Upon URB completion, the
1545 * start_frame field will be set to the (micro)frame number in which the
1546 * transfer was scheduled. Ranges for frame counter values are HC-specific
1547 * and can go from as low as 256 to as high as 65536 frames.
1548 *
1549 * Isochronous URBs have a different data transfer model, in part because
1550 * the quality of service is only "best effort". Callers provide specially
1551 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1552 * at the end. Each such packet is an individual ISO transfer. Isochronous
1553 * URBs are normally queued, submitted by drivers to arrange that
1554 * transfers are at least double buffered, and then explicitly resubmitted
1555 * in completion handlers, so
1556 * that data (such as audio or video) streams at as constant a rate as the
1557 * host controller scheduler can support.
1558 *
1559 * Completion Callbacks:
1560 *
1561 * The completion callback is made in_interrupt(), and one of the first
1562 * things that a completion handler should do is check the status field.
1563 * The status field is provided for all URBs. It is used to report
1564 * unlinked URBs, and status for all non-ISO transfers. It should not
1565 * be examined before the URB is returned to the completion handler.
1566 *
1567 * The context field is normally used to link URBs back to the relevant
1568 * driver or request state.
1569 *
1570 * When the completion callback is invoked for non-isochronous URBs, the
1571 * actual_length field tells how many bytes were transferred. This field
1572 * is updated even when the URB terminated with an error or was unlinked.
1573 *
1574 * ISO transfer status is reported in the status and actual_length fields
1575 * of the iso_frame_desc array, and the number of errors is reported in
1576 * error_count. Completion callbacks for ISO transfers will normally
1577 * (re)submit URBs to ensure a constant transfer rate.
1578 *
1579 * Note that even fields marked "public" should not be touched by the driver
1580 * when the urb is owned by the hcd, that is, since the call to
1581 * usb_submit_urb() till the entry into the completion routine.
1582 */
1583struct urb {
1584 /* private: usb core and host controller only fields in the urb */
1585 struct kref kref; /* reference count of the URB */
1586 int unlinked; /* unlink error code */
1587 void *hcpriv; /* private data for host controller */
1588 atomic_t use_count; /* concurrent submissions counter */
1589 atomic_t reject; /* submissions will fail */
1590
1591 /* public: documented fields in the urb that can be used by drivers */
1592 struct list_head urb_list; /* list head for use by the urb's
1593 * current owner */
1594 struct list_head anchor_list; /* the URB may be anchored */
1595 struct usb_anchor *anchor;
1596 struct usb_device *dev; /* (in) pointer to associated device */
1597 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1598 unsigned int pipe; /* (in) pipe information */
1599 unsigned int stream_id; /* (in) stream ID */
1600 int status; /* (return) non-ISO status */
1601 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1602 void *transfer_buffer; /* (in) associated data buffer */
1603 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1604 struct scatterlist *sg; /* (in) scatter gather buffer list */
1605 int num_mapped_sgs; /* (internal) mapped sg entries */
1606 int num_sgs; /* (in) number of entries in the sg list */
1607 u32 transfer_buffer_length; /* (in) data buffer length */
1608 u32 actual_length; /* (return) actual transfer length */
1609 unsigned char *setup_packet; /* (in) setup packet (control only) */
1610 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1611 int start_frame; /* (modify) start frame (ISO) */
1612 int number_of_packets; /* (in) number of ISO packets */
1613 int interval; /* (modify) transfer interval
1614 * (INT/ISO) */
1615 int error_count; /* (return) number of ISO errors */
1616 void *context; /* (in) context for completion */
1617 usb_complete_t complete; /* (in) completion routine */
1618 struct usb_iso_packet_descriptor iso_frame_desc[];
1619 /* (in) ISO ONLY */
1620};
1621
1622/* ----------------------------------------------------------------------- */
1623
1624/**
1625 * usb_fill_control_urb - initializes a control urb
1626 * @urb: pointer to the urb to initialize.
1627 * @dev: pointer to the struct usb_device for this urb.
1628 * @pipe: the endpoint pipe
1629 * @setup_packet: pointer to the setup_packet buffer
1630 * @transfer_buffer: pointer to the transfer buffer
1631 * @buffer_length: length of the transfer buffer
1632 * @complete_fn: pointer to the usb_complete_t function
1633 * @context: what to set the urb context to.
1634 *
1635 * Initializes a control urb with the proper information needed to submit
1636 * it to a device.
1637 */
1638static inline void usb_fill_control_urb(struct urb *urb,
1639 struct usb_device *dev,
1640 unsigned int pipe,
1641 unsigned char *setup_packet,
1642 void *transfer_buffer,
1643 int buffer_length,
1644 usb_complete_t complete_fn,
1645 void *context)
1646{
1647 urb->dev = dev;
1648 urb->pipe = pipe;
1649 urb->setup_packet = setup_packet;
1650 urb->transfer_buffer = transfer_buffer;
1651 urb->transfer_buffer_length = buffer_length;
1652 urb->complete = complete_fn;
1653 urb->context = context;
1654}
1655
1656/**
1657 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1658 * @urb: pointer to the urb to initialize.
1659 * @dev: pointer to the struct usb_device for this urb.
1660 * @pipe: the endpoint pipe
1661 * @transfer_buffer: pointer to the transfer buffer
1662 * @buffer_length: length of the transfer buffer
1663 * @complete_fn: pointer to the usb_complete_t function
1664 * @context: what to set the urb context to.
1665 *
1666 * Initializes a bulk urb with the proper information needed to submit it
1667 * to a device.
1668 */
1669static inline void usb_fill_bulk_urb(struct urb *urb,
1670 struct usb_device *dev,
1671 unsigned int pipe,
1672 void *transfer_buffer,
1673 int buffer_length,
1674 usb_complete_t complete_fn,
1675 void *context)
1676{
1677 urb->dev = dev;
1678 urb->pipe = pipe;
1679 urb->transfer_buffer = transfer_buffer;
1680 urb->transfer_buffer_length = buffer_length;
1681 urb->complete = complete_fn;
1682 urb->context = context;
1683}
1684
1685/**
1686 * usb_fill_int_urb - macro to help initialize a interrupt urb
1687 * @urb: pointer to the urb to initialize.
1688 * @dev: pointer to the struct usb_device for this urb.
1689 * @pipe: the endpoint pipe
1690 * @transfer_buffer: pointer to the transfer buffer
1691 * @buffer_length: length of the transfer buffer
1692 * @complete_fn: pointer to the usb_complete_t function
1693 * @context: what to set the urb context to.
1694 * @interval: what to set the urb interval to, encoded like
1695 * the endpoint descriptor's bInterval value.
1696 *
1697 * Initializes a interrupt urb with the proper information needed to submit
1698 * it to a device.
1699 *
1700 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1701 * encoding of the endpoint interval, and express polling intervals in
1702 * microframes (eight per millisecond) rather than in frames (one per
1703 * millisecond).
1704 *
1705 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1706 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1707 * through to the host controller, rather than being translated into microframe
1708 * units.
1709 */
1710static inline void usb_fill_int_urb(struct urb *urb,
1711 struct usb_device *dev,
1712 unsigned int pipe,
1713 void *transfer_buffer,
1714 int buffer_length,
1715 usb_complete_t complete_fn,
1716 void *context,
1717 int interval)
1718{
1719 urb->dev = dev;
1720 urb->pipe = pipe;
1721 urb->transfer_buffer = transfer_buffer;
1722 urb->transfer_buffer_length = buffer_length;
1723 urb->complete = complete_fn;
1724 urb->context = context;
1725
1726 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1727 /* make sure interval is within allowed range */
1728 interval = clamp(interval, 1, 16);
1729
1730 urb->interval = 1 << (interval - 1);
1731 } else {
1732 urb->interval = interval;
1733 }
1734
1735 urb->start_frame = -1;
1736}
1737
1738extern void usb_init_urb(struct urb *urb);
1739extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1740extern void usb_free_urb(struct urb *urb);
1741#define usb_put_urb usb_free_urb
1742extern struct urb *usb_get_urb(struct urb *urb);
1743extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1744extern int usb_unlink_urb(struct urb *urb);
1745extern void usb_kill_urb(struct urb *urb);
1746extern void usb_poison_urb(struct urb *urb);
1747extern void usb_unpoison_urb(struct urb *urb);
1748extern void usb_block_urb(struct urb *urb);
1749extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1750extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1751extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1752extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1753extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1754extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1755extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1756extern void usb_unanchor_urb(struct urb *urb);
1757extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1758 unsigned int timeout);
1759extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1760extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1761extern int usb_anchor_empty(struct usb_anchor *anchor);
1762
1763#define usb_unblock_urb usb_unpoison_urb
1764
1765/**
1766 * usb_urb_dir_in - check if an URB describes an IN transfer
1767 * @urb: URB to be checked
1768 *
1769 * Return: 1 if @urb describes an IN transfer (device-to-host),
1770 * otherwise 0.
1771 */
1772static inline int usb_urb_dir_in(struct urb *urb)
1773{
1774 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1775}
1776
1777/**
1778 * usb_urb_dir_out - check if an URB describes an OUT transfer
1779 * @urb: URB to be checked
1780 *
1781 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1782 * otherwise 0.
1783 */
1784static inline int usb_urb_dir_out(struct urb *urb)
1785{
1786 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1787}
1788
1789int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1790int usb_urb_ep_type_check(const struct urb *urb);
1791
1792void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1793 gfp_t mem_flags, dma_addr_t *dma);
1794void usb_free_coherent(struct usb_device *dev, size_t size,
1795 void *addr, dma_addr_t dma);
1796
1797#if 0
1798struct urb *usb_buffer_map(struct urb *urb);
1799void usb_buffer_dmasync(struct urb *urb);
1800void usb_buffer_unmap(struct urb *urb);
1801#endif
1802
1803struct scatterlist;
1804int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1805 struct scatterlist *sg, int nents);
1806#if 0
1807void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1808 struct scatterlist *sg, int n_hw_ents);
1809#endif
1810void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1811 struct scatterlist *sg, int n_hw_ents);
1812
1813/*-------------------------------------------------------------------*
1814 * SYNCHRONOUS CALL SUPPORT *
1815 *-------------------------------------------------------------------*/
1816
1817extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1818 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1819 void *data, __u16 size, int timeout);
1820extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1821 void *data, int len, int *actual_length, int timeout);
1822extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1823 void *data, int len, int *actual_length,
1824 int timeout);
1825
1826/* wrappers around usb_control_msg() for the most common standard requests */
1827int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1828 __u8 requesttype, __u16 value, __u16 index,
1829 const void *data, __u16 size, int timeout,
1830 gfp_t memflags);
1831int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1832 __u8 requesttype, __u16 value, __u16 index,
1833 void *data, __u16 size, int timeout,
1834 gfp_t memflags);
1835extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1836 unsigned char descindex, void *buf, int size);
1837extern int usb_get_status(struct usb_device *dev,
1838 int recip, int type, int target, void *data);
1839
1840static inline int usb_get_std_status(struct usb_device *dev,
1841 int recip, int target, void *data)
1842{
1843 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1844 data);
1845}
1846
1847static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1848{
1849 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1850 0, data);
1851}
1852
1853extern int usb_string(struct usb_device *dev, int index,
1854 char *buf, size_t size);
1855extern char *usb_cache_string(struct usb_device *udev, int index);
1856
1857/* wrappers that also update important state inside usbcore */
1858extern int usb_clear_halt(struct usb_device *dev, int pipe);
1859extern int usb_reset_configuration(struct usb_device *dev);
1860extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1861extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1862
1863/* this request isn't really synchronous, but it belongs with the others */
1864extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1865
1866/* choose and set configuration for device */
1867extern int usb_choose_configuration(struct usb_device *udev);
1868extern int usb_set_configuration(struct usb_device *dev, int configuration);
1869
1870/*
1871 * timeouts, in milliseconds, used for sending/receiving control messages
1872 * they typically complete within a few frames (msec) after they're issued
1873 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1874 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1875 */
1876#define USB_CTRL_GET_TIMEOUT 5000
1877#define USB_CTRL_SET_TIMEOUT 5000
1878
1879
1880/**
1881 * struct usb_sg_request - support for scatter/gather I/O
1882 * @status: zero indicates success, else negative errno
1883 * @bytes: counts bytes transferred.
1884 *
1885 * These requests are initialized using usb_sg_init(), and then are used
1886 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1887 * members of the request object aren't for driver access.
1888 *
1889 * The status and bytecount values are valid only after usb_sg_wait()
1890 * returns. If the status is zero, then the bytecount matches the total
1891 * from the request.
1892 *
1893 * After an error completion, drivers may need to clear a halt condition
1894 * on the endpoint.
1895 */
1896struct usb_sg_request {
1897 int status;
1898 size_t bytes;
1899
1900 /* private:
1901 * members below are private to usbcore,
1902 * and are not provided for driver access!
1903 */
1904 spinlock_t lock;
1905
1906 struct usb_device *dev;
1907 int pipe;
1908
1909 int entries;
1910 struct urb **urbs;
1911
1912 int count;
1913 struct completion complete;
1914};
1915
1916int usb_sg_init(
1917 struct usb_sg_request *io,
1918 struct usb_device *dev,
1919 unsigned pipe,
1920 unsigned period,
1921 struct scatterlist *sg,
1922 int nents,
1923 size_t length,
1924 gfp_t mem_flags
1925);
1926void usb_sg_cancel(struct usb_sg_request *io);
1927void usb_sg_wait(struct usb_sg_request *io);
1928
1929
1930/* ----------------------------------------------------------------------- */
1931
1932/*
1933 * For various legacy reasons, Linux has a small cookie that's paired with
1934 * a struct usb_device to identify an endpoint queue. Queue characteristics
1935 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1936 * an unsigned int encoded as:
1937 *
1938 * - direction: bit 7 (0 = Host-to-Device [Out],
1939 * 1 = Device-to-Host [In] ...
1940 * like endpoint bEndpointAddress)
1941 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1942 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1943 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1944 * 10 = control, 11 = bulk)
1945 *
1946 * Given the device address and endpoint descriptor, pipes are redundant.
1947 */
1948
1949/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1950/* (yet ... they're the values used by usbfs) */
1951#define PIPE_ISOCHRONOUS 0
1952#define PIPE_INTERRUPT 1
1953#define PIPE_CONTROL 2
1954#define PIPE_BULK 3
1955
1956#define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1957#define usb_pipeout(pipe) (!usb_pipein(pipe))
1958
1959#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1960#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1961
1962#define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1963#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1964#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1965#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1966#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1967
1968static inline unsigned int __create_pipe(struct usb_device *dev,
1969 unsigned int endpoint)
1970{
1971 return (dev->devnum << 8) | (endpoint << 15);
1972}
1973
1974/* Create various pipes... */
1975#define usb_sndctrlpipe(dev, endpoint) \
1976 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1977#define usb_rcvctrlpipe(dev, endpoint) \
1978 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1979#define usb_sndisocpipe(dev, endpoint) \
1980 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1981#define usb_rcvisocpipe(dev, endpoint) \
1982 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1983#define usb_sndbulkpipe(dev, endpoint) \
1984 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1985#define usb_rcvbulkpipe(dev, endpoint) \
1986 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1987#define usb_sndintpipe(dev, endpoint) \
1988 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1989#define usb_rcvintpipe(dev, endpoint) \
1990 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1991
1992static inline struct usb_host_endpoint *
1993usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1994{
1995 struct usb_host_endpoint **eps;
1996 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1997 return eps[usb_pipeendpoint(pipe)];
1998}
1999
2000static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
2001{
2002 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe);
2003
2004 if (!ep)
2005 return 0;
2006
2007 /* NOTE: only 0x07ff bits are for packet size... */
2008 return usb_endpoint_maxp(&ep->desc);
2009}
2010
2011/* translate USB error codes to codes user space understands */
2012static inline int usb_translate_errors(int error_code)
2013{
2014 switch (error_code) {
2015 case 0:
2016 case -ENOMEM:
2017 case -ENODEV:
2018 case -EOPNOTSUPP:
2019 return error_code;
2020 default:
2021 return -EIO;
2022 }
2023}
2024
2025/* Events from the usb core */
2026#define USB_DEVICE_ADD 0x0001
2027#define USB_DEVICE_REMOVE 0x0002
2028#define USB_BUS_ADD 0x0003
2029#define USB_BUS_REMOVE 0x0004
2030extern void usb_register_notify(struct notifier_block *nb);
2031extern void usb_unregister_notify(struct notifier_block *nb);
2032
2033/* debugfs stuff */
2034extern struct dentry *usb_debug_root;
2035
2036/* LED triggers */
2037enum usb_led_event {
2038 USB_LED_EVENT_HOST = 0,
2039 USB_LED_EVENT_GADGET = 1,
2040};
2041
2042#ifdef CONFIG_USB_LED_TRIG
2043extern void usb_led_activity(enum usb_led_event ev);
2044#else
2045static inline void usb_led_activity(enum usb_led_event ev) {}
2046#endif
2047
2048#endif /* __KERNEL__ */
2049
2050#endif