at v6.2-rc3 80 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_USB_H 3#define __LINUX_USB_H 4 5#include <linux/mod_devicetable.h> 6#include <linux/usb/ch9.h> 7 8#define USB_MAJOR 180 9#define USB_DEVICE_MAJOR 189 10 11 12#ifdef __KERNEL__ 13 14#include <linux/errno.h> /* for -ENODEV */ 15#include <linux/delay.h> /* for mdelay() */ 16#include <linux/interrupt.h> /* for in_interrupt() */ 17#include <linux/list.h> /* for struct list_head */ 18#include <linux/kref.h> /* for struct kref */ 19#include <linux/device.h> /* for struct device */ 20#include <linux/fs.h> /* for struct file_operations */ 21#include <linux/completion.h> /* for struct completion */ 22#include <linux/sched.h> /* for current && schedule_timeout */ 23#include <linux/mutex.h> /* for struct mutex */ 24#include <linux/pm_runtime.h> /* for runtime PM */ 25 26struct usb_device; 27struct usb_driver; 28struct wusb_dev; 29 30/*-------------------------------------------------------------------------*/ 31 32/* 33 * Host-side wrappers for standard USB descriptors ... these are parsed 34 * from the data provided by devices. Parsing turns them from a flat 35 * sequence of descriptors into a hierarchy: 36 * 37 * - devices have one (usually) or more configs; 38 * - configs have one (often) or more interfaces; 39 * - interfaces have one (usually) or more settings; 40 * - each interface setting has zero or (usually) more endpoints. 41 * - a SuperSpeed endpoint has a companion descriptor 42 * 43 * And there might be other descriptors mixed in with those. 44 * 45 * Devices may also have class-specific or vendor-specific descriptors. 46 */ 47 48struct ep_device; 49 50/** 51 * struct usb_host_endpoint - host-side endpoint descriptor and queue 52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 55 * @urb_list: urbs queued to this endpoint; maintained by usbcore 56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 57 * with one or more transfer descriptors (TDs) per urb 58 * @ep_dev: ep_device for sysfs info 59 * @extra: descriptors following this endpoint in the configuration 60 * @extralen: how many bytes of "extra" are valid 61 * @enabled: URBs may be submitted to this endpoint 62 * @streams: number of USB-3 streams allocated on the endpoint 63 * 64 * USB requests are always queued to a given endpoint, identified by a 65 * descriptor within an active interface in a given USB configuration. 66 */ 67struct usb_host_endpoint { 68 struct usb_endpoint_descriptor desc; 69 struct usb_ss_ep_comp_descriptor ss_ep_comp; 70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 71 struct list_head urb_list; 72 void *hcpriv; 73 struct ep_device *ep_dev; /* For sysfs info */ 74 75 unsigned char *extra; /* Extra descriptors */ 76 int extralen; 77 int enabled; 78 int streams; 79}; 80 81/* host-side wrapper for one interface setting's parsed descriptors */ 82struct usb_host_interface { 83 struct usb_interface_descriptor desc; 84 85 int extralen; 86 unsigned char *extra; /* Extra descriptors */ 87 88 /* array of desc.bNumEndpoints endpoints associated with this 89 * interface setting. these will be in no particular order. 90 */ 91 struct usb_host_endpoint *endpoint; 92 93 char *string; /* iInterface string, if present */ 94}; 95 96enum usb_interface_condition { 97 USB_INTERFACE_UNBOUND = 0, 98 USB_INTERFACE_BINDING, 99 USB_INTERFACE_BOUND, 100 USB_INTERFACE_UNBINDING, 101}; 102 103int __must_check 104usb_find_common_endpoints(struct usb_host_interface *alt, 105 struct usb_endpoint_descriptor **bulk_in, 106 struct usb_endpoint_descriptor **bulk_out, 107 struct usb_endpoint_descriptor **int_in, 108 struct usb_endpoint_descriptor **int_out); 109 110int __must_check 111usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 112 struct usb_endpoint_descriptor **bulk_in, 113 struct usb_endpoint_descriptor **bulk_out, 114 struct usb_endpoint_descriptor **int_in, 115 struct usb_endpoint_descriptor **int_out); 116 117static inline int __must_check 118usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 119 struct usb_endpoint_descriptor **bulk_in) 120{ 121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 122} 123 124static inline int __must_check 125usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 126 struct usb_endpoint_descriptor **bulk_out) 127{ 128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 129} 130 131static inline int __must_check 132usb_find_int_in_endpoint(struct usb_host_interface *alt, 133 struct usb_endpoint_descriptor **int_in) 134{ 135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 136} 137 138static inline int __must_check 139usb_find_int_out_endpoint(struct usb_host_interface *alt, 140 struct usb_endpoint_descriptor **int_out) 141{ 142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 143} 144 145static inline int __must_check 146usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 147 struct usb_endpoint_descriptor **bulk_in) 148{ 149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 150} 151 152static inline int __must_check 153usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 154 struct usb_endpoint_descriptor **bulk_out) 155{ 156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 157} 158 159static inline int __must_check 160usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 161 struct usb_endpoint_descriptor **int_in) 162{ 163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 164} 165 166static inline int __must_check 167usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 168 struct usb_endpoint_descriptor **int_out) 169{ 170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 171} 172 173/** 174 * struct usb_interface - what usb device drivers talk to 175 * @altsetting: array of interface structures, one for each alternate 176 * setting that may be selected. Each one includes a set of 177 * endpoint configurations. They will be in no particular order. 178 * @cur_altsetting: the current altsetting. 179 * @num_altsetting: number of altsettings defined. 180 * @intf_assoc: interface association descriptor 181 * @minor: the minor number assigned to this interface, if this 182 * interface is bound to a driver that uses the USB major number. 183 * If this interface does not use the USB major, this field should 184 * be unused. The driver should set this value in the probe() 185 * function of the driver, after it has been assigned a minor 186 * number from the USB core by calling usb_register_dev(). 187 * @condition: binding state of the interface: not bound, binding 188 * (in probe()), bound to a driver, or unbinding (in disconnect()) 189 * @sysfs_files_created: sysfs attributes exist 190 * @ep_devs_created: endpoint child pseudo-devices exist 191 * @unregistering: flag set when the interface is being unregistered 192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 193 * capability during autosuspend. 194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 195 * has been deferred. 196 * @needs_binding: flag set when the driver should be re-probed or unbound 197 * following a reset or suspend operation it doesn't support. 198 * @authorized: This allows to (de)authorize individual interfaces instead 199 * a whole device in contrast to the device authorization. 200 * @dev: driver model's view of this device 201 * @usb_dev: if an interface is bound to the USB major, this will point 202 * to the sysfs representation for that device. 203 * @reset_ws: Used for scheduling resets from atomic context. 204 * @resetting_device: USB core reset the device, so use alt setting 0 as 205 * current; needs bandwidth alloc after reset. 206 * 207 * USB device drivers attach to interfaces on a physical device. Each 208 * interface encapsulates a single high level function, such as feeding 209 * an audio stream to a speaker or reporting a change in a volume control. 210 * Many USB devices only have one interface. The protocol used to talk to 211 * an interface's endpoints can be defined in a usb "class" specification, 212 * or by a product's vendor. The (default) control endpoint is part of 213 * every interface, but is never listed among the interface's descriptors. 214 * 215 * The driver that is bound to the interface can use standard driver model 216 * calls such as dev_get_drvdata() on the dev member of this structure. 217 * 218 * Each interface may have alternate settings. The initial configuration 219 * of a device sets altsetting 0, but the device driver can change 220 * that setting using usb_set_interface(). Alternate settings are often 221 * used to control the use of periodic endpoints, such as by having 222 * different endpoints use different amounts of reserved USB bandwidth. 223 * All standards-conformant USB devices that use isochronous endpoints 224 * will use them in non-default settings. 225 * 226 * The USB specification says that alternate setting numbers must run from 227 * 0 to one less than the total number of alternate settings. But some 228 * devices manage to mess this up, and the structures aren't necessarily 229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 230 * look up an alternate setting in the altsetting array based on its number. 231 */ 232struct usb_interface { 233 /* array of alternate settings for this interface, 234 * stored in no particular order */ 235 struct usb_host_interface *altsetting; 236 237 struct usb_host_interface *cur_altsetting; /* the currently 238 * active alternate setting */ 239 unsigned num_altsetting; /* number of alternate settings */ 240 241 /* If there is an interface association descriptor then it will list 242 * the associated interfaces */ 243 struct usb_interface_assoc_descriptor *intf_assoc; 244 245 int minor; /* minor number this interface is 246 * bound to */ 247 enum usb_interface_condition condition; /* state of binding */ 248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 249 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 250 unsigned unregistering:1; /* unregistration is in progress */ 251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 253 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 255 unsigned authorized:1; /* used for interface authorization */ 256 257 struct device dev; /* interface specific device info */ 258 struct device *usb_dev; 259 struct work_struct reset_ws; /* for resets in atomic context */ 260}; 261 262#define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev) 263 264static inline void *usb_get_intfdata(struct usb_interface *intf) 265{ 266 return dev_get_drvdata(&intf->dev); 267} 268 269/** 270 * usb_set_intfdata() - associate driver-specific data with the interface 271 * @intf: the usb interface 272 * @data: pointer to the device priv structure or %NULL 273 * 274 * Drivers should use this function in their probe() to associate their 275 * driver-specific data with the usb interface. 276 * 277 * When disconnecting, the core will take care of setting @intf back to %NULL, 278 * so no actions are needed on the driver side. The interface should not be set 279 * to %NULL before all actions completed (e.g. no outsanding URB remaining). 280 */ 281static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 282{ 283 dev_set_drvdata(&intf->dev, data); 284} 285 286struct usb_interface *usb_get_intf(struct usb_interface *intf); 287void usb_put_intf(struct usb_interface *intf); 288 289/* Hard limit */ 290#define USB_MAXENDPOINTS 30 291/* this maximum is arbitrary */ 292#define USB_MAXINTERFACES 32 293#define USB_MAXIADS (USB_MAXINTERFACES/2) 294 295/* 296 * USB Resume Timer: Every Host controller driver should drive the resume 297 * signalling on the bus for the amount of time defined by this macro. 298 * 299 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 300 * 301 * Note that the USB Specification states we should drive resume for *at least* 302 * 20 ms, but it doesn't give an upper bound. This creates two possible 303 * situations which we want to avoid: 304 * 305 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 306 * us to fail USB Electrical Tests, thus failing Certification 307 * 308 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 309 * and while we can argue that's against the USB Specification, we don't have 310 * control over which devices a certification laboratory will be using for 311 * certification. If CertLab uses a device which was tested against Windows and 312 * that happens to have relaxed resume signalling rules, we might fall into 313 * situations where we fail interoperability and electrical tests. 314 * 315 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 316 * should cope with both LPJ calibration errors and devices not following every 317 * detail of the USB Specification. 318 */ 319#define USB_RESUME_TIMEOUT 40 /* ms */ 320 321/** 322 * struct usb_interface_cache - long-term representation of a device interface 323 * @num_altsetting: number of altsettings defined. 324 * @ref: reference counter. 325 * @altsetting: variable-length array of interface structures, one for 326 * each alternate setting that may be selected. Each one includes a 327 * set of endpoint configurations. They will be in no particular order. 328 * 329 * These structures persist for the lifetime of a usb_device, unlike 330 * struct usb_interface (which persists only as long as its configuration 331 * is installed). The altsetting arrays can be accessed through these 332 * structures at any time, permitting comparison of configurations and 333 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 334 */ 335struct usb_interface_cache { 336 unsigned num_altsetting; /* number of alternate settings */ 337 struct kref ref; /* reference counter */ 338 339 /* variable-length array of alternate settings for this interface, 340 * stored in no particular order */ 341 struct usb_host_interface altsetting[]; 342}; 343#define ref_to_usb_interface_cache(r) \ 344 container_of(r, struct usb_interface_cache, ref) 345#define altsetting_to_usb_interface_cache(a) \ 346 container_of(a, struct usb_interface_cache, altsetting[0]) 347 348/** 349 * struct usb_host_config - representation of a device's configuration 350 * @desc: the device's configuration descriptor. 351 * @string: pointer to the cached version of the iConfiguration string, if 352 * present for this configuration. 353 * @intf_assoc: list of any interface association descriptors in this config 354 * @interface: array of pointers to usb_interface structures, one for each 355 * interface in the configuration. The number of interfaces is stored 356 * in desc.bNumInterfaces. These pointers are valid only while the 357 * configuration is active. 358 * @intf_cache: array of pointers to usb_interface_cache structures, one 359 * for each interface in the configuration. These structures exist 360 * for the entire life of the device. 361 * @extra: pointer to buffer containing all extra descriptors associated 362 * with this configuration (those preceding the first interface 363 * descriptor). 364 * @extralen: length of the extra descriptors buffer. 365 * 366 * USB devices may have multiple configurations, but only one can be active 367 * at any time. Each encapsulates a different operational environment; 368 * for example, a dual-speed device would have separate configurations for 369 * full-speed and high-speed operation. The number of configurations 370 * available is stored in the device descriptor as bNumConfigurations. 371 * 372 * A configuration can contain multiple interfaces. Each corresponds to 373 * a different function of the USB device, and all are available whenever 374 * the configuration is active. The USB standard says that interfaces 375 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 376 * of devices get this wrong. In addition, the interface array is not 377 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 378 * look up an interface entry based on its number. 379 * 380 * Device drivers should not attempt to activate configurations. The choice 381 * of which configuration to install is a policy decision based on such 382 * considerations as available power, functionality provided, and the user's 383 * desires (expressed through userspace tools). However, drivers can call 384 * usb_reset_configuration() to reinitialize the current configuration and 385 * all its interfaces. 386 */ 387struct usb_host_config { 388 struct usb_config_descriptor desc; 389 390 char *string; /* iConfiguration string, if present */ 391 392 /* List of any Interface Association Descriptors in this 393 * configuration. */ 394 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 395 396 /* the interfaces associated with this configuration, 397 * stored in no particular order */ 398 struct usb_interface *interface[USB_MAXINTERFACES]; 399 400 /* Interface information available even when this is not the 401 * active configuration */ 402 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 403 404 unsigned char *extra; /* Extra descriptors */ 405 int extralen; 406}; 407 408/* USB2.0 and USB3.0 device BOS descriptor set */ 409struct usb_host_bos { 410 struct usb_bos_descriptor *desc; 411 412 /* wireless cap descriptor is handled by wusb */ 413 struct usb_ext_cap_descriptor *ext_cap; 414 struct usb_ss_cap_descriptor *ss_cap; 415 struct usb_ssp_cap_descriptor *ssp_cap; 416 struct usb_ss_container_id_descriptor *ss_id; 417 struct usb_ptm_cap_descriptor *ptm_cap; 418}; 419 420int __usb_get_extra_descriptor(char *buffer, unsigned size, 421 unsigned char type, void **ptr, size_t min); 422#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 423 __usb_get_extra_descriptor((ifpoint)->extra, \ 424 (ifpoint)->extralen, \ 425 type, (void **)ptr, sizeof(**(ptr))) 426 427/* ----------------------------------------------------------------------- */ 428 429/* USB device number allocation bitmap */ 430struct usb_devmap { 431 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 432}; 433 434/* 435 * Allocated per bus (tree of devices) we have: 436 */ 437struct usb_bus { 438 struct device *controller; /* host side hardware */ 439 struct device *sysdev; /* as seen from firmware or bus */ 440 int busnum; /* Bus number (in order of reg) */ 441 const char *bus_name; /* stable id (PCI slot_name etc) */ 442 u8 uses_pio_for_control; /* 443 * Does the host controller use PIO 444 * for control transfers? 445 */ 446 u8 otg_port; /* 0, or number of OTG/HNP port */ 447 unsigned is_b_host:1; /* true during some HNP roleswitches */ 448 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 449 unsigned no_stop_on_short:1; /* 450 * Quirk: some controllers don't stop 451 * the ep queue on a short transfer 452 * with the URB_SHORT_NOT_OK flag set. 453 */ 454 unsigned no_sg_constraint:1; /* no sg constraint */ 455 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 456 457 int devnum_next; /* Next open device number in 458 * round-robin allocation */ 459 struct mutex devnum_next_mutex; /* devnum_next mutex */ 460 461 struct usb_devmap devmap; /* device address allocation map */ 462 struct usb_device *root_hub; /* Root hub */ 463 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 464 465 int bandwidth_allocated; /* on this bus: how much of the time 466 * reserved for periodic (intr/iso) 467 * requests is used, on average? 468 * Units: microseconds/frame. 469 * Limits: Full/low speed reserve 90%, 470 * while high speed reserves 80%. 471 */ 472 int bandwidth_int_reqs; /* number of Interrupt requests */ 473 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 474 475 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 476 477#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 478 struct mon_bus *mon_bus; /* non-null when associated */ 479 int monitored; /* non-zero when monitored */ 480#endif 481}; 482 483struct usb_dev_state; 484 485/* ----------------------------------------------------------------------- */ 486 487struct usb_tt; 488 489enum usb_port_connect_type { 490 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 491 USB_PORT_CONNECT_TYPE_HOT_PLUG, 492 USB_PORT_CONNECT_TYPE_HARD_WIRED, 493 USB_PORT_NOT_USED, 494}; 495 496/* 497 * USB port quirks. 498 */ 499 500/* For the given port, prefer the old (faster) enumeration scheme. */ 501#define USB_PORT_QUIRK_OLD_SCHEME BIT(0) 502 503/* Decrease TRSTRCY to 10ms during device enumeration. */ 504#define USB_PORT_QUIRK_FAST_ENUM BIT(1) 505 506/* 507 * USB 2.0 Link Power Management (LPM) parameters. 508 */ 509struct usb2_lpm_parameters { 510 /* Best effort service latency indicate how long the host will drive 511 * resume on an exit from L1. 512 */ 513 unsigned int besl; 514 515 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 516 * When the timer counts to zero, the parent hub will initiate a LPM 517 * transition to L1. 518 */ 519 int timeout; 520}; 521 522/* 523 * USB 3.0 Link Power Management (LPM) parameters. 524 * 525 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 526 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 527 * All three are stored in nanoseconds. 528 */ 529struct usb3_lpm_parameters { 530 /* 531 * Maximum exit latency (MEL) for the host to send a packet to the 532 * device (either a Ping for isoc endpoints, or a data packet for 533 * interrupt endpoints), the hubs to decode the packet, and for all hubs 534 * in the path to transition the links to U0. 535 */ 536 unsigned int mel; 537 /* 538 * Maximum exit latency for a device-initiated LPM transition to bring 539 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 540 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 541 */ 542 unsigned int pel; 543 544 /* 545 * The System Exit Latency (SEL) includes PEL, and three other 546 * latencies. After a device initiates a U0 transition, it will take 547 * some time from when the device sends the ERDY to when it will finally 548 * receive the data packet. Basically, SEL should be the worse-case 549 * latency from when a device starts initiating a U0 transition to when 550 * it will get data. 551 */ 552 unsigned int sel; 553 /* 554 * The idle timeout value that is currently programmed into the parent 555 * hub for this device. When the timer counts to zero, the parent hub 556 * will initiate an LPM transition to either U1 or U2. 557 */ 558 int timeout; 559}; 560 561/** 562 * struct usb_device - kernel's representation of a USB device 563 * @devnum: device number; address on a USB bus 564 * @devpath: device ID string for use in messages (e.g., /port/...) 565 * @route: tree topology hex string for use with xHCI 566 * @state: device state: configured, not attached, etc. 567 * @speed: device speed: high/full/low (or error) 568 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support 569 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support 570 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count 571 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 572 * @ttport: device port on that tt hub 573 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 574 * @parent: our hub, unless we're the root 575 * @bus: bus we're part of 576 * @ep0: endpoint 0 data (default control pipe) 577 * @dev: generic device interface 578 * @descriptor: USB device descriptor 579 * @bos: USB device BOS descriptor set 580 * @config: all of the device's configs 581 * @actconfig: the active configuration 582 * @ep_in: array of IN endpoints 583 * @ep_out: array of OUT endpoints 584 * @rawdescriptors: raw descriptors for each config 585 * @bus_mA: Current available from the bus 586 * @portnum: parent port number (origin 1) 587 * @level: number of USB hub ancestors 588 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum 589 * @can_submit: URBs may be submitted 590 * @persist_enabled: USB_PERSIST enabled for this device 591 * @reset_in_progress: the device is being reset 592 * @have_langid: whether string_langid is valid 593 * @authorized: policy has said we can use it; 594 * (user space) policy determines if we authorize this device to be 595 * used or not. By default, wired USB devices are authorized. 596 * WUSB devices are not, until we authorize them from user space. 597 * FIXME -- complete doc 598 * @authenticated: Crypto authentication passed 599 * @wusb: device is Wireless USB 600 * @lpm_capable: device supports LPM 601 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range 602 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 603 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 604 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 605 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 606 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 607 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 608 * @string_langid: language ID for strings 609 * @product: iProduct string, if present (static) 610 * @manufacturer: iManufacturer string, if present (static) 611 * @serial: iSerialNumber string, if present (static) 612 * @filelist: usbfs files that are open to this device 613 * @maxchild: number of ports if hub 614 * @quirks: quirks of the whole device 615 * @urbnum: number of URBs submitted for the whole device 616 * @active_duration: total time device is not suspended 617 * @connect_time: time device was first connected 618 * @do_remote_wakeup: remote wakeup should be enabled 619 * @reset_resume: needs reset instead of resume 620 * @port_is_suspended: the upstream port is suspended (L2 or U3) 621 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 622 * specific data for the device. 623 * @slot_id: Slot ID assigned by xHCI 624 * @removable: Device can be physically removed from this port 625 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 626 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 627 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 628 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 629 * to keep track of the number of functions that require USB 3.0 Link Power 630 * Management to be disabled for this usb_device. This count should only 631 * be manipulated by those functions, with the bandwidth_mutex is held. 632 * @hub_delay: cached value consisting of: 633 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns) 634 * Will be used as wValue for SetIsochDelay requests. 635 * @use_generic_driver: ask driver core to reprobe using the generic driver. 636 * 637 * Notes: 638 * Usbcore drivers should not set usbdev->state directly. Instead use 639 * usb_set_device_state(). 640 */ 641struct usb_device { 642 int devnum; 643 char devpath[16]; 644 u32 route; 645 enum usb_device_state state; 646 enum usb_device_speed speed; 647 unsigned int rx_lanes; 648 unsigned int tx_lanes; 649 enum usb_ssp_rate ssp_rate; 650 651 struct usb_tt *tt; 652 int ttport; 653 654 unsigned int toggle[2]; 655 656 struct usb_device *parent; 657 struct usb_bus *bus; 658 struct usb_host_endpoint ep0; 659 660 struct device dev; 661 662 struct usb_device_descriptor descriptor; 663 struct usb_host_bos *bos; 664 struct usb_host_config *config; 665 666 struct usb_host_config *actconfig; 667 struct usb_host_endpoint *ep_in[16]; 668 struct usb_host_endpoint *ep_out[16]; 669 670 char **rawdescriptors; 671 672 unsigned short bus_mA; 673 u8 portnum; 674 u8 level; 675 u8 devaddr; 676 677 unsigned can_submit:1; 678 unsigned persist_enabled:1; 679 unsigned reset_in_progress:1; 680 unsigned have_langid:1; 681 unsigned authorized:1; 682 unsigned authenticated:1; 683 unsigned wusb:1; 684 unsigned lpm_capable:1; 685 unsigned lpm_devinit_allow:1; 686 unsigned usb2_hw_lpm_capable:1; 687 unsigned usb2_hw_lpm_besl_capable:1; 688 unsigned usb2_hw_lpm_enabled:1; 689 unsigned usb2_hw_lpm_allowed:1; 690 unsigned usb3_lpm_u1_enabled:1; 691 unsigned usb3_lpm_u2_enabled:1; 692 int string_langid; 693 694 /* static strings from the device */ 695 char *product; 696 char *manufacturer; 697 char *serial; 698 699 struct list_head filelist; 700 701 int maxchild; 702 703 u32 quirks; 704 atomic_t urbnum; 705 706 unsigned long active_duration; 707 708#ifdef CONFIG_PM 709 unsigned long connect_time; 710 711 unsigned do_remote_wakeup:1; 712 unsigned reset_resume:1; 713 unsigned port_is_suspended:1; 714#endif 715 struct wusb_dev *wusb_dev; 716 int slot_id; 717 struct usb2_lpm_parameters l1_params; 718 struct usb3_lpm_parameters u1_params; 719 struct usb3_lpm_parameters u2_params; 720 unsigned lpm_disable_count; 721 722 u16 hub_delay; 723 unsigned use_generic_driver:1; 724}; 725 726#define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev) 727 728static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf) 729{ 730 return to_usb_device(intf->dev.parent); 731} 732static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf) 733{ 734 return to_usb_device((const struct device *)intf->dev.parent); 735} 736 737#define interface_to_usbdev(intf) \ 738 _Generic((intf), \ 739 const struct usb_interface *: __intf_to_usbdev_const, \ 740 struct usb_interface *: __intf_to_usbdev)(intf) 741 742extern struct usb_device *usb_get_dev(struct usb_device *dev); 743extern void usb_put_dev(struct usb_device *dev); 744extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 745 int port1); 746 747/** 748 * usb_hub_for_each_child - iterate over all child devices on the hub 749 * @hdev: USB device belonging to the usb hub 750 * @port1: portnum associated with child device 751 * @child: child device pointer 752 */ 753#define usb_hub_for_each_child(hdev, port1, child) \ 754 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 755 port1 <= hdev->maxchild; \ 756 child = usb_hub_find_child(hdev, ++port1)) \ 757 if (!child) continue; else 758 759/* USB device locking */ 760#define usb_lock_device(udev) device_lock(&(udev)->dev) 761#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 762#define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 763#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 764extern int usb_lock_device_for_reset(struct usb_device *udev, 765 const struct usb_interface *iface); 766 767/* USB port reset for device reinitialization */ 768extern int usb_reset_device(struct usb_device *dev); 769extern void usb_queue_reset_device(struct usb_interface *dev); 770 771extern struct device *usb_intf_get_dma_device(struct usb_interface *intf); 772 773#ifdef CONFIG_ACPI 774extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 775 bool enable); 776extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 777#else 778static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 779 bool enable) { return 0; } 780static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 781 { return true; } 782#endif 783 784/* USB autosuspend and autoresume */ 785#ifdef CONFIG_PM 786extern void usb_enable_autosuspend(struct usb_device *udev); 787extern void usb_disable_autosuspend(struct usb_device *udev); 788 789extern int usb_autopm_get_interface(struct usb_interface *intf); 790extern void usb_autopm_put_interface(struct usb_interface *intf); 791extern int usb_autopm_get_interface_async(struct usb_interface *intf); 792extern void usb_autopm_put_interface_async(struct usb_interface *intf); 793extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 794extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 795 796static inline void usb_mark_last_busy(struct usb_device *udev) 797{ 798 pm_runtime_mark_last_busy(&udev->dev); 799} 800 801#else 802 803static inline int usb_enable_autosuspend(struct usb_device *udev) 804{ return 0; } 805static inline int usb_disable_autosuspend(struct usb_device *udev) 806{ return 0; } 807 808static inline int usb_autopm_get_interface(struct usb_interface *intf) 809{ return 0; } 810static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 811{ return 0; } 812 813static inline void usb_autopm_put_interface(struct usb_interface *intf) 814{ } 815static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 816{ } 817static inline void usb_autopm_get_interface_no_resume( 818 struct usb_interface *intf) 819{ } 820static inline void usb_autopm_put_interface_no_suspend( 821 struct usb_interface *intf) 822{ } 823static inline void usb_mark_last_busy(struct usb_device *udev) 824{ } 825#endif 826 827extern int usb_disable_lpm(struct usb_device *udev); 828extern void usb_enable_lpm(struct usb_device *udev); 829/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 830extern int usb_unlocked_disable_lpm(struct usb_device *udev); 831extern void usb_unlocked_enable_lpm(struct usb_device *udev); 832 833extern int usb_disable_ltm(struct usb_device *udev); 834extern void usb_enable_ltm(struct usb_device *udev); 835 836static inline bool usb_device_supports_ltm(struct usb_device *udev) 837{ 838 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 839 return false; 840 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 841} 842 843static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 844{ 845 return udev && udev->bus && udev->bus->no_sg_constraint; 846} 847 848 849/*-------------------------------------------------------------------------*/ 850 851/* for drivers using iso endpoints */ 852extern int usb_get_current_frame_number(struct usb_device *usb_dev); 853 854/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 855extern int usb_alloc_streams(struct usb_interface *interface, 856 struct usb_host_endpoint **eps, unsigned int num_eps, 857 unsigned int num_streams, gfp_t mem_flags); 858 859/* Reverts a group of bulk endpoints back to not using stream IDs. */ 860extern int usb_free_streams(struct usb_interface *interface, 861 struct usb_host_endpoint **eps, unsigned int num_eps, 862 gfp_t mem_flags); 863 864/* used these for multi-interface device registration */ 865extern int usb_driver_claim_interface(struct usb_driver *driver, 866 struct usb_interface *iface, void *data); 867 868/** 869 * usb_interface_claimed - returns true iff an interface is claimed 870 * @iface: the interface being checked 871 * 872 * Return: %true (nonzero) iff the interface is claimed, else %false 873 * (zero). 874 * 875 * Note: 876 * Callers must own the driver model's usb bus readlock. So driver 877 * probe() entries don't need extra locking, but other call contexts 878 * may need to explicitly claim that lock. 879 * 880 */ 881static inline int usb_interface_claimed(struct usb_interface *iface) 882{ 883 return (iface->dev.driver != NULL); 884} 885 886extern void usb_driver_release_interface(struct usb_driver *driver, 887 struct usb_interface *iface); 888const struct usb_device_id *usb_match_id(struct usb_interface *interface, 889 const struct usb_device_id *id); 890extern int usb_match_one_id(struct usb_interface *interface, 891 const struct usb_device_id *id); 892 893extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 894extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 895 int minor); 896extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 897 unsigned ifnum); 898extern struct usb_host_interface *usb_altnum_to_altsetting( 899 const struct usb_interface *intf, unsigned int altnum); 900extern struct usb_host_interface *usb_find_alt_setting( 901 struct usb_host_config *config, 902 unsigned int iface_num, 903 unsigned int alt_num); 904 905/* port claiming functions */ 906int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 907 struct usb_dev_state *owner); 908int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 909 struct usb_dev_state *owner); 910 911/** 912 * usb_make_path - returns stable device path in the usb tree 913 * @dev: the device whose path is being constructed 914 * @buf: where to put the string 915 * @size: how big is "buf"? 916 * 917 * Return: Length of the string (> 0) or negative if size was too small. 918 * 919 * Note: 920 * This identifier is intended to be "stable", reflecting physical paths in 921 * hardware such as physical bus addresses for host controllers or ports on 922 * USB hubs. That makes it stay the same until systems are physically 923 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 924 * controllers. Adding and removing devices, including virtual root hubs 925 * in host controller driver modules, does not change these path identifiers; 926 * neither does rebooting or re-enumerating. These are more useful identifiers 927 * than changeable ("unstable") ones like bus numbers or device addresses. 928 * 929 * With a partial exception for devices connected to USB 2.0 root hubs, these 930 * identifiers are also predictable. So long as the device tree isn't changed, 931 * plugging any USB device into a given hub port always gives it the same path. 932 * Because of the use of "companion" controllers, devices connected to ports on 933 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 934 * high speed, and a different one if they are full or low speed. 935 */ 936static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 937{ 938 int actual; 939 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 940 dev->devpath); 941 return (actual >= (int)size) ? -1 : actual; 942} 943 944/*-------------------------------------------------------------------------*/ 945 946#define USB_DEVICE_ID_MATCH_DEVICE \ 947 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 948#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 949 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 950#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 951 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 952#define USB_DEVICE_ID_MATCH_DEV_INFO \ 953 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 954 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 955 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 956#define USB_DEVICE_ID_MATCH_INT_INFO \ 957 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 958 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 959 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 960 961/** 962 * USB_DEVICE - macro used to describe a specific usb device 963 * @vend: the 16 bit USB Vendor ID 964 * @prod: the 16 bit USB Product ID 965 * 966 * This macro is used to create a struct usb_device_id that matches a 967 * specific device. 968 */ 969#define USB_DEVICE(vend, prod) \ 970 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 971 .idVendor = (vend), \ 972 .idProduct = (prod) 973/** 974 * USB_DEVICE_VER - describe a specific usb device with a version range 975 * @vend: the 16 bit USB Vendor ID 976 * @prod: the 16 bit USB Product ID 977 * @lo: the bcdDevice_lo value 978 * @hi: the bcdDevice_hi value 979 * 980 * This macro is used to create a struct usb_device_id that matches a 981 * specific device, with a version range. 982 */ 983#define USB_DEVICE_VER(vend, prod, lo, hi) \ 984 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 985 .idVendor = (vend), \ 986 .idProduct = (prod), \ 987 .bcdDevice_lo = (lo), \ 988 .bcdDevice_hi = (hi) 989 990/** 991 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 992 * @vend: the 16 bit USB Vendor ID 993 * @prod: the 16 bit USB Product ID 994 * @cl: bInterfaceClass value 995 * 996 * This macro is used to create a struct usb_device_id that matches a 997 * specific interface class of devices. 998 */ 999#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 1000 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1001 USB_DEVICE_ID_MATCH_INT_CLASS, \ 1002 .idVendor = (vend), \ 1003 .idProduct = (prod), \ 1004 .bInterfaceClass = (cl) 1005 1006/** 1007 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 1008 * @vend: the 16 bit USB Vendor ID 1009 * @prod: the 16 bit USB Product ID 1010 * @pr: bInterfaceProtocol value 1011 * 1012 * This macro is used to create a struct usb_device_id that matches a 1013 * specific interface protocol of devices. 1014 */ 1015#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 1016 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1017 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 1018 .idVendor = (vend), \ 1019 .idProduct = (prod), \ 1020 .bInterfaceProtocol = (pr) 1021 1022/** 1023 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 1024 * @vend: the 16 bit USB Vendor ID 1025 * @prod: the 16 bit USB Product ID 1026 * @num: bInterfaceNumber value 1027 * 1028 * This macro is used to create a struct usb_device_id that matches a 1029 * specific interface number of devices. 1030 */ 1031#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 1032 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1033 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 1034 .idVendor = (vend), \ 1035 .idProduct = (prod), \ 1036 .bInterfaceNumber = (num) 1037 1038/** 1039 * USB_DEVICE_INFO - macro used to describe a class of usb devices 1040 * @cl: bDeviceClass value 1041 * @sc: bDeviceSubClass value 1042 * @pr: bDeviceProtocol value 1043 * 1044 * This macro is used to create a struct usb_device_id that matches a 1045 * specific class of devices. 1046 */ 1047#define USB_DEVICE_INFO(cl, sc, pr) \ 1048 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1049 .bDeviceClass = (cl), \ 1050 .bDeviceSubClass = (sc), \ 1051 .bDeviceProtocol = (pr) 1052 1053/** 1054 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1055 * @cl: bInterfaceClass value 1056 * @sc: bInterfaceSubClass value 1057 * @pr: bInterfaceProtocol value 1058 * 1059 * This macro is used to create a struct usb_device_id that matches a 1060 * specific class of interfaces. 1061 */ 1062#define USB_INTERFACE_INFO(cl, sc, pr) \ 1063 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1064 .bInterfaceClass = (cl), \ 1065 .bInterfaceSubClass = (sc), \ 1066 .bInterfaceProtocol = (pr) 1067 1068/** 1069 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1070 * @vend: the 16 bit USB Vendor ID 1071 * @prod: the 16 bit USB Product ID 1072 * @cl: bInterfaceClass value 1073 * @sc: bInterfaceSubClass value 1074 * @pr: bInterfaceProtocol value 1075 * 1076 * This macro is used to create a struct usb_device_id that matches a 1077 * specific device with a specific class of interfaces. 1078 * 1079 * This is especially useful when explicitly matching devices that have 1080 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1081 */ 1082#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1083 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1084 | USB_DEVICE_ID_MATCH_DEVICE, \ 1085 .idVendor = (vend), \ 1086 .idProduct = (prod), \ 1087 .bInterfaceClass = (cl), \ 1088 .bInterfaceSubClass = (sc), \ 1089 .bInterfaceProtocol = (pr) 1090 1091/** 1092 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1093 * @vend: the 16 bit USB Vendor ID 1094 * @cl: bInterfaceClass value 1095 * @sc: bInterfaceSubClass value 1096 * @pr: bInterfaceProtocol value 1097 * 1098 * This macro is used to create a struct usb_device_id that matches a 1099 * specific vendor with a specific class of interfaces. 1100 * 1101 * This is especially useful when explicitly matching devices that have 1102 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1103 */ 1104#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1105 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1106 | USB_DEVICE_ID_MATCH_VENDOR, \ 1107 .idVendor = (vend), \ 1108 .bInterfaceClass = (cl), \ 1109 .bInterfaceSubClass = (sc), \ 1110 .bInterfaceProtocol = (pr) 1111 1112/* ----------------------------------------------------------------------- */ 1113 1114/* Stuff for dynamic usb ids */ 1115struct usb_dynids { 1116 spinlock_t lock; 1117 struct list_head list; 1118}; 1119 1120struct usb_dynid { 1121 struct list_head node; 1122 struct usb_device_id id; 1123}; 1124 1125extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1126 const struct usb_device_id *id_table, 1127 struct device_driver *driver, 1128 const char *buf, size_t count); 1129 1130extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1131 1132/** 1133 * struct usbdrv_wrap - wrapper for driver-model structure 1134 * @driver: The driver-model core driver structure. 1135 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1136 */ 1137struct usbdrv_wrap { 1138 struct device_driver driver; 1139 int for_devices; 1140}; 1141 1142/** 1143 * struct usb_driver - identifies USB interface driver to usbcore 1144 * @name: The driver name should be unique among USB drivers, 1145 * and should normally be the same as the module name. 1146 * @probe: Called to see if the driver is willing to manage a particular 1147 * interface on a device. If it is, probe returns zero and uses 1148 * usb_set_intfdata() to associate driver-specific data with the 1149 * interface. It may also use usb_set_interface() to specify the 1150 * appropriate altsetting. If unwilling to manage the interface, 1151 * return -ENODEV, if genuine IO errors occurred, an appropriate 1152 * negative errno value. 1153 * @disconnect: Called when the interface is no longer accessible, usually 1154 * because its device has been (or is being) disconnected or the 1155 * driver module is being unloaded. 1156 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1157 * the "usbfs" filesystem. This lets devices provide ways to 1158 * expose information to user space regardless of where they 1159 * do (or don't) show up otherwise in the filesystem. 1160 * @suspend: Called when the device is going to be suspended by the 1161 * system either from system sleep or runtime suspend context. The 1162 * return value will be ignored in system sleep context, so do NOT 1163 * try to continue using the device if suspend fails in this case. 1164 * Instead, let the resume or reset-resume routine recover from 1165 * the failure. 1166 * @resume: Called when the device is being resumed by the system. 1167 * @reset_resume: Called when the suspended device has been reset instead 1168 * of being resumed. 1169 * @pre_reset: Called by usb_reset_device() when the device is about to be 1170 * reset. This routine must not return until the driver has no active 1171 * URBs for the device, and no more URBs may be submitted until the 1172 * post_reset method is called. 1173 * @post_reset: Called by usb_reset_device() after the device 1174 * has been reset 1175 * @id_table: USB drivers use ID table to support hotplugging. 1176 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1177 * or your driver's probe function will never get called. 1178 * @dev_groups: Attributes attached to the device that will be created once it 1179 * is bound to the driver. 1180 * @dynids: used internally to hold the list of dynamically added device 1181 * ids for this driver. 1182 * @drvwrap: Driver-model core structure wrapper. 1183 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1184 * added to this driver by preventing the sysfs file from being created. 1185 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1186 * for interfaces bound to this driver. 1187 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1188 * endpoints before calling the driver's disconnect method. 1189 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1190 * to initiate lower power link state transitions when an idle timeout 1191 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1192 * 1193 * USB interface drivers must provide a name, probe() and disconnect() 1194 * methods, and an id_table. Other driver fields are optional. 1195 * 1196 * The id_table is used in hotplugging. It holds a set of descriptors, 1197 * and specialized data may be associated with each entry. That table 1198 * is used by both user and kernel mode hotplugging support. 1199 * 1200 * The probe() and disconnect() methods are called in a context where 1201 * they can sleep, but they should avoid abusing the privilege. Most 1202 * work to connect to a device should be done when the device is opened, 1203 * and undone at the last close. The disconnect code needs to address 1204 * concurrency issues with respect to open() and close() methods, as 1205 * well as forcing all pending I/O requests to complete (by unlinking 1206 * them as necessary, and blocking until the unlinks complete). 1207 */ 1208struct usb_driver { 1209 const char *name; 1210 1211 int (*probe) (struct usb_interface *intf, 1212 const struct usb_device_id *id); 1213 1214 void (*disconnect) (struct usb_interface *intf); 1215 1216 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1217 void *buf); 1218 1219 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1220 int (*resume) (struct usb_interface *intf); 1221 int (*reset_resume)(struct usb_interface *intf); 1222 1223 int (*pre_reset)(struct usb_interface *intf); 1224 int (*post_reset)(struct usb_interface *intf); 1225 1226 const struct usb_device_id *id_table; 1227 const struct attribute_group **dev_groups; 1228 1229 struct usb_dynids dynids; 1230 struct usbdrv_wrap drvwrap; 1231 unsigned int no_dynamic_id:1; 1232 unsigned int supports_autosuspend:1; 1233 unsigned int disable_hub_initiated_lpm:1; 1234 unsigned int soft_unbind:1; 1235}; 1236#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1237 1238/** 1239 * struct usb_device_driver - identifies USB device driver to usbcore 1240 * @name: The driver name should be unique among USB drivers, 1241 * and should normally be the same as the module name. 1242 * @match: If set, used for better device/driver matching. 1243 * @probe: Called to see if the driver is willing to manage a particular 1244 * device. If it is, probe returns zero and uses dev_set_drvdata() 1245 * to associate driver-specific data with the device. If unwilling 1246 * to manage the device, return a negative errno value. 1247 * @disconnect: Called when the device is no longer accessible, usually 1248 * because it has been (or is being) disconnected or the driver's 1249 * module is being unloaded. 1250 * @suspend: Called when the device is going to be suspended by the system. 1251 * @resume: Called when the device is being resumed by the system. 1252 * @dev_groups: Attributes attached to the device that will be created once it 1253 * is bound to the driver. 1254 * @drvwrap: Driver-model core structure wrapper. 1255 * @id_table: used with @match() to select better matching driver at 1256 * probe() time. 1257 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1258 * for devices bound to this driver. 1259 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect, 1260 * resume and suspend functions will be called in addition to the driver's 1261 * own, so this part of the setup does not need to be replicated. 1262 * 1263 * USB drivers must provide all the fields listed above except drvwrap, 1264 * match, and id_table. 1265 */ 1266struct usb_device_driver { 1267 const char *name; 1268 1269 bool (*match) (struct usb_device *udev); 1270 int (*probe) (struct usb_device *udev); 1271 void (*disconnect) (struct usb_device *udev); 1272 1273 int (*suspend) (struct usb_device *udev, pm_message_t message); 1274 int (*resume) (struct usb_device *udev, pm_message_t message); 1275 const struct attribute_group **dev_groups; 1276 struct usbdrv_wrap drvwrap; 1277 const struct usb_device_id *id_table; 1278 unsigned int supports_autosuspend:1; 1279 unsigned int generic_subclass:1; 1280}; 1281#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1282 drvwrap.driver) 1283 1284/** 1285 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1286 * @name: the usb class device name for this driver. Will show up in sysfs. 1287 * @devnode: Callback to provide a naming hint for a possible 1288 * device node to create. 1289 * @fops: pointer to the struct file_operations of this driver. 1290 * @minor_base: the start of the minor range for this driver. 1291 * 1292 * This structure is used for the usb_register_dev() and 1293 * usb_deregister_dev() functions, to consolidate a number of the 1294 * parameters used for them. 1295 */ 1296struct usb_class_driver { 1297 char *name; 1298 char *(*devnode)(const struct device *dev, umode_t *mode); 1299 const struct file_operations *fops; 1300 int minor_base; 1301}; 1302 1303/* 1304 * use these in module_init()/module_exit() 1305 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1306 */ 1307extern int usb_register_driver(struct usb_driver *, struct module *, 1308 const char *); 1309 1310/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1311#define usb_register(driver) \ 1312 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1313 1314extern void usb_deregister(struct usb_driver *); 1315 1316/** 1317 * module_usb_driver() - Helper macro for registering a USB driver 1318 * @__usb_driver: usb_driver struct 1319 * 1320 * Helper macro for USB drivers which do not do anything special in module 1321 * init/exit. This eliminates a lot of boilerplate. Each module may only 1322 * use this macro once, and calling it replaces module_init() and module_exit() 1323 */ 1324#define module_usb_driver(__usb_driver) \ 1325 module_driver(__usb_driver, usb_register, \ 1326 usb_deregister) 1327 1328extern int usb_register_device_driver(struct usb_device_driver *, 1329 struct module *); 1330extern void usb_deregister_device_driver(struct usb_device_driver *); 1331 1332extern int usb_register_dev(struct usb_interface *intf, 1333 struct usb_class_driver *class_driver); 1334extern void usb_deregister_dev(struct usb_interface *intf, 1335 struct usb_class_driver *class_driver); 1336 1337extern int usb_disabled(void); 1338 1339/* ----------------------------------------------------------------------- */ 1340 1341/* 1342 * URB support, for asynchronous request completions 1343 */ 1344 1345/* 1346 * urb->transfer_flags: 1347 * 1348 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1349 */ 1350#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1351#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1352 * slot in the schedule */ 1353#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1354#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1355#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1356 * needed */ 1357#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1358 1359/* The following flags are used internally by usbcore and HCDs */ 1360#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1361#define URB_DIR_OUT 0 1362#define URB_DIR_MASK URB_DIR_IN 1363 1364#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1365#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1366#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1367#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1368#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1369#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1370#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1371#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1372 1373struct usb_iso_packet_descriptor { 1374 unsigned int offset; 1375 unsigned int length; /* expected length */ 1376 unsigned int actual_length; 1377 int status; 1378}; 1379 1380struct urb; 1381 1382struct usb_anchor { 1383 struct list_head urb_list; 1384 wait_queue_head_t wait; 1385 spinlock_t lock; 1386 atomic_t suspend_wakeups; 1387 unsigned int poisoned:1; 1388}; 1389 1390static inline void init_usb_anchor(struct usb_anchor *anchor) 1391{ 1392 memset(anchor, 0, sizeof(*anchor)); 1393 INIT_LIST_HEAD(&anchor->urb_list); 1394 init_waitqueue_head(&anchor->wait); 1395 spin_lock_init(&anchor->lock); 1396} 1397 1398typedef void (*usb_complete_t)(struct urb *); 1399 1400/** 1401 * struct urb - USB Request Block 1402 * @urb_list: For use by current owner of the URB. 1403 * @anchor_list: membership in the list of an anchor 1404 * @anchor: to anchor URBs to a common mooring 1405 * @ep: Points to the endpoint's data structure. Will eventually 1406 * replace @pipe. 1407 * @pipe: Holds endpoint number, direction, type, and more. 1408 * Create these values with the eight macros available; 1409 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1410 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1411 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1412 * numbers range from zero to fifteen. Note that "in" endpoint two 1413 * is a different endpoint (and pipe) from "out" endpoint two. 1414 * The current configuration controls the existence, type, and 1415 * maximum packet size of any given endpoint. 1416 * @stream_id: the endpoint's stream ID for bulk streams 1417 * @dev: Identifies the USB device to perform the request. 1418 * @status: This is read in non-iso completion functions to get the 1419 * status of the particular request. ISO requests only use it 1420 * to tell whether the URB was unlinked; detailed status for 1421 * each frame is in the fields of the iso_frame-desc. 1422 * @transfer_flags: A variety of flags may be used to affect how URB 1423 * submission, unlinking, or operation are handled. Different 1424 * kinds of URB can use different flags. 1425 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1426 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1427 * (however, do not leave garbage in transfer_buffer even then). 1428 * This buffer must be suitable for DMA; allocate it with 1429 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1430 * of this buffer will be modified. This buffer is used for the data 1431 * stage of control transfers. 1432 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1433 * the device driver is saying that it provided this DMA address, 1434 * which the host controller driver should use in preference to the 1435 * transfer_buffer. 1436 * @sg: scatter gather buffer list, the buffer size of each element in 1437 * the list (except the last) must be divisible by the endpoint's 1438 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1439 * @num_mapped_sgs: (internal) number of mapped sg entries 1440 * @num_sgs: number of entries in the sg list 1441 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1442 * be broken up into chunks according to the current maximum packet 1443 * size for the endpoint, which is a function of the configuration 1444 * and is encoded in the pipe. When the length is zero, neither 1445 * transfer_buffer nor transfer_dma is used. 1446 * @actual_length: This is read in non-iso completion functions, and 1447 * it tells how many bytes (out of transfer_buffer_length) were 1448 * transferred. It will normally be the same as requested, unless 1449 * either an error was reported or a short read was performed. 1450 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1451 * short reads be reported as errors. 1452 * @setup_packet: Only used for control transfers, this points to eight bytes 1453 * of setup data. Control transfers always start by sending this data 1454 * to the device. Then transfer_buffer is read or written, if needed. 1455 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1456 * this field; setup_packet must point to a valid buffer. 1457 * @start_frame: Returns the initial frame for isochronous transfers. 1458 * @number_of_packets: Lists the number of ISO transfer buffers. 1459 * @interval: Specifies the polling interval for interrupt or isochronous 1460 * transfers. The units are frames (milliseconds) for full and low 1461 * speed devices, and microframes (1/8 millisecond) for highspeed 1462 * and SuperSpeed devices. 1463 * @error_count: Returns the number of ISO transfers that reported errors. 1464 * @context: For use in completion functions. This normally points to 1465 * request-specific driver context. 1466 * @complete: Completion handler. This URB is passed as the parameter to the 1467 * completion function. The completion function may then do what 1468 * it likes with the URB, including resubmitting or freeing it. 1469 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1470 * collect the transfer status for each buffer. 1471 * 1472 * This structure identifies USB transfer requests. URBs must be allocated by 1473 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1474 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1475 * are submitted using usb_submit_urb(), and pending requests may be canceled 1476 * using usb_unlink_urb() or usb_kill_urb(). 1477 * 1478 * Data Transfer Buffers: 1479 * 1480 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1481 * taken from the general page pool. That is provided by transfer_buffer 1482 * (control requests also use setup_packet), and host controller drivers 1483 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1484 * mapping operations can be expensive on some platforms (perhaps using a dma 1485 * bounce buffer or talking to an IOMMU), 1486 * although they're cheap on commodity x86 and ppc hardware. 1487 * 1488 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1489 * which tells the host controller driver that no such mapping is needed for 1490 * the transfer_buffer since 1491 * the device driver is DMA-aware. For example, a device driver might 1492 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1493 * When this transfer flag is provided, host controller drivers will 1494 * attempt to use the dma address found in the transfer_dma 1495 * field rather than determining a dma address themselves. 1496 * 1497 * Note that transfer_buffer must still be set if the controller 1498 * does not support DMA (as indicated by hcd_uses_dma()) and when talking 1499 * to root hub. If you have to transfer between highmem zone and the device 1500 * on such controller, create a bounce buffer or bail out with an error. 1501 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1502 * capable, assign NULL to it, so that usbmon knows not to use the value. 1503 * The setup_packet must always be set, so it cannot be located in highmem. 1504 * 1505 * Initialization: 1506 * 1507 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1508 * zero), and complete fields. All URBs must also initialize 1509 * transfer_buffer and transfer_buffer_length. They may provide the 1510 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1511 * to be treated as errors; that flag is invalid for write requests. 1512 * 1513 * Bulk URBs may 1514 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1515 * should always terminate with a short packet, even if it means adding an 1516 * extra zero length packet. 1517 * 1518 * Control URBs must provide a valid pointer in the setup_packet field. 1519 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1520 * beforehand. 1521 * 1522 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1523 * or, for highspeed devices, 125 microsecond units) 1524 * to poll for transfers. After the URB has been submitted, the interval 1525 * field reflects how the transfer was actually scheduled. 1526 * The polling interval may be more frequent than requested. 1527 * For example, some controllers have a maximum interval of 32 milliseconds, 1528 * while others support intervals of up to 1024 milliseconds. 1529 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1530 * endpoints, as well as high speed interrupt endpoints, the encoding of 1531 * the transfer interval in the endpoint descriptor is logarithmic. 1532 * Device drivers must convert that value to linear units themselves.) 1533 * 1534 * If an isochronous endpoint queue isn't already running, the host 1535 * controller will schedule a new URB to start as soon as bandwidth 1536 * utilization allows. If the queue is running then a new URB will be 1537 * scheduled to start in the first transfer slot following the end of the 1538 * preceding URB, if that slot has not already expired. If the slot has 1539 * expired (which can happen when IRQ delivery is delayed for a long time), 1540 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1541 * is clear then the URB will be scheduled to start in the expired slot, 1542 * implying that some of its packets will not be transferred; if the flag 1543 * is set then the URB will be scheduled in the first unexpired slot, 1544 * breaking the queue's synchronization. Upon URB completion, the 1545 * start_frame field will be set to the (micro)frame number in which the 1546 * transfer was scheduled. Ranges for frame counter values are HC-specific 1547 * and can go from as low as 256 to as high as 65536 frames. 1548 * 1549 * Isochronous URBs have a different data transfer model, in part because 1550 * the quality of service is only "best effort". Callers provide specially 1551 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1552 * at the end. Each such packet is an individual ISO transfer. Isochronous 1553 * URBs are normally queued, submitted by drivers to arrange that 1554 * transfers are at least double buffered, and then explicitly resubmitted 1555 * in completion handlers, so 1556 * that data (such as audio or video) streams at as constant a rate as the 1557 * host controller scheduler can support. 1558 * 1559 * Completion Callbacks: 1560 * 1561 * The completion callback is made in_interrupt(), and one of the first 1562 * things that a completion handler should do is check the status field. 1563 * The status field is provided for all URBs. It is used to report 1564 * unlinked URBs, and status for all non-ISO transfers. It should not 1565 * be examined before the URB is returned to the completion handler. 1566 * 1567 * The context field is normally used to link URBs back to the relevant 1568 * driver or request state. 1569 * 1570 * When the completion callback is invoked for non-isochronous URBs, the 1571 * actual_length field tells how many bytes were transferred. This field 1572 * is updated even when the URB terminated with an error or was unlinked. 1573 * 1574 * ISO transfer status is reported in the status and actual_length fields 1575 * of the iso_frame_desc array, and the number of errors is reported in 1576 * error_count. Completion callbacks for ISO transfers will normally 1577 * (re)submit URBs to ensure a constant transfer rate. 1578 * 1579 * Note that even fields marked "public" should not be touched by the driver 1580 * when the urb is owned by the hcd, that is, since the call to 1581 * usb_submit_urb() till the entry into the completion routine. 1582 */ 1583struct urb { 1584 /* private: usb core and host controller only fields in the urb */ 1585 struct kref kref; /* reference count of the URB */ 1586 int unlinked; /* unlink error code */ 1587 void *hcpriv; /* private data for host controller */ 1588 atomic_t use_count; /* concurrent submissions counter */ 1589 atomic_t reject; /* submissions will fail */ 1590 1591 /* public: documented fields in the urb that can be used by drivers */ 1592 struct list_head urb_list; /* list head for use by the urb's 1593 * current owner */ 1594 struct list_head anchor_list; /* the URB may be anchored */ 1595 struct usb_anchor *anchor; 1596 struct usb_device *dev; /* (in) pointer to associated device */ 1597 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1598 unsigned int pipe; /* (in) pipe information */ 1599 unsigned int stream_id; /* (in) stream ID */ 1600 int status; /* (return) non-ISO status */ 1601 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1602 void *transfer_buffer; /* (in) associated data buffer */ 1603 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1604 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1605 int num_mapped_sgs; /* (internal) mapped sg entries */ 1606 int num_sgs; /* (in) number of entries in the sg list */ 1607 u32 transfer_buffer_length; /* (in) data buffer length */ 1608 u32 actual_length; /* (return) actual transfer length */ 1609 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1610 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1611 int start_frame; /* (modify) start frame (ISO) */ 1612 int number_of_packets; /* (in) number of ISO packets */ 1613 int interval; /* (modify) transfer interval 1614 * (INT/ISO) */ 1615 int error_count; /* (return) number of ISO errors */ 1616 void *context; /* (in) context for completion */ 1617 usb_complete_t complete; /* (in) completion routine */ 1618 struct usb_iso_packet_descriptor iso_frame_desc[]; 1619 /* (in) ISO ONLY */ 1620}; 1621 1622/* ----------------------------------------------------------------------- */ 1623 1624/** 1625 * usb_fill_control_urb - initializes a control urb 1626 * @urb: pointer to the urb to initialize. 1627 * @dev: pointer to the struct usb_device for this urb. 1628 * @pipe: the endpoint pipe 1629 * @setup_packet: pointer to the setup_packet buffer 1630 * @transfer_buffer: pointer to the transfer buffer 1631 * @buffer_length: length of the transfer buffer 1632 * @complete_fn: pointer to the usb_complete_t function 1633 * @context: what to set the urb context to. 1634 * 1635 * Initializes a control urb with the proper information needed to submit 1636 * it to a device. 1637 */ 1638static inline void usb_fill_control_urb(struct urb *urb, 1639 struct usb_device *dev, 1640 unsigned int pipe, 1641 unsigned char *setup_packet, 1642 void *transfer_buffer, 1643 int buffer_length, 1644 usb_complete_t complete_fn, 1645 void *context) 1646{ 1647 urb->dev = dev; 1648 urb->pipe = pipe; 1649 urb->setup_packet = setup_packet; 1650 urb->transfer_buffer = transfer_buffer; 1651 urb->transfer_buffer_length = buffer_length; 1652 urb->complete = complete_fn; 1653 urb->context = context; 1654} 1655 1656/** 1657 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1658 * @urb: pointer to the urb to initialize. 1659 * @dev: pointer to the struct usb_device for this urb. 1660 * @pipe: the endpoint pipe 1661 * @transfer_buffer: pointer to the transfer buffer 1662 * @buffer_length: length of the transfer buffer 1663 * @complete_fn: pointer to the usb_complete_t function 1664 * @context: what to set the urb context to. 1665 * 1666 * Initializes a bulk urb with the proper information needed to submit it 1667 * to a device. 1668 */ 1669static inline void usb_fill_bulk_urb(struct urb *urb, 1670 struct usb_device *dev, 1671 unsigned int pipe, 1672 void *transfer_buffer, 1673 int buffer_length, 1674 usb_complete_t complete_fn, 1675 void *context) 1676{ 1677 urb->dev = dev; 1678 urb->pipe = pipe; 1679 urb->transfer_buffer = transfer_buffer; 1680 urb->transfer_buffer_length = buffer_length; 1681 urb->complete = complete_fn; 1682 urb->context = context; 1683} 1684 1685/** 1686 * usb_fill_int_urb - macro to help initialize a interrupt urb 1687 * @urb: pointer to the urb to initialize. 1688 * @dev: pointer to the struct usb_device for this urb. 1689 * @pipe: the endpoint pipe 1690 * @transfer_buffer: pointer to the transfer buffer 1691 * @buffer_length: length of the transfer buffer 1692 * @complete_fn: pointer to the usb_complete_t function 1693 * @context: what to set the urb context to. 1694 * @interval: what to set the urb interval to, encoded like 1695 * the endpoint descriptor's bInterval value. 1696 * 1697 * Initializes a interrupt urb with the proper information needed to submit 1698 * it to a device. 1699 * 1700 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1701 * encoding of the endpoint interval, and express polling intervals in 1702 * microframes (eight per millisecond) rather than in frames (one per 1703 * millisecond). 1704 * 1705 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1706 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1707 * through to the host controller, rather than being translated into microframe 1708 * units. 1709 */ 1710static inline void usb_fill_int_urb(struct urb *urb, 1711 struct usb_device *dev, 1712 unsigned int pipe, 1713 void *transfer_buffer, 1714 int buffer_length, 1715 usb_complete_t complete_fn, 1716 void *context, 1717 int interval) 1718{ 1719 urb->dev = dev; 1720 urb->pipe = pipe; 1721 urb->transfer_buffer = transfer_buffer; 1722 urb->transfer_buffer_length = buffer_length; 1723 urb->complete = complete_fn; 1724 urb->context = context; 1725 1726 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1727 /* make sure interval is within allowed range */ 1728 interval = clamp(interval, 1, 16); 1729 1730 urb->interval = 1 << (interval - 1); 1731 } else { 1732 urb->interval = interval; 1733 } 1734 1735 urb->start_frame = -1; 1736} 1737 1738extern void usb_init_urb(struct urb *urb); 1739extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1740extern void usb_free_urb(struct urb *urb); 1741#define usb_put_urb usb_free_urb 1742extern struct urb *usb_get_urb(struct urb *urb); 1743extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1744extern int usb_unlink_urb(struct urb *urb); 1745extern void usb_kill_urb(struct urb *urb); 1746extern void usb_poison_urb(struct urb *urb); 1747extern void usb_unpoison_urb(struct urb *urb); 1748extern void usb_block_urb(struct urb *urb); 1749extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1750extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1751extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1752extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1753extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1754extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1755extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1756extern void usb_unanchor_urb(struct urb *urb); 1757extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1758 unsigned int timeout); 1759extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1760extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1761extern int usb_anchor_empty(struct usb_anchor *anchor); 1762 1763#define usb_unblock_urb usb_unpoison_urb 1764 1765/** 1766 * usb_urb_dir_in - check if an URB describes an IN transfer 1767 * @urb: URB to be checked 1768 * 1769 * Return: 1 if @urb describes an IN transfer (device-to-host), 1770 * otherwise 0. 1771 */ 1772static inline int usb_urb_dir_in(struct urb *urb) 1773{ 1774 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1775} 1776 1777/** 1778 * usb_urb_dir_out - check if an URB describes an OUT transfer 1779 * @urb: URB to be checked 1780 * 1781 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1782 * otherwise 0. 1783 */ 1784static inline int usb_urb_dir_out(struct urb *urb) 1785{ 1786 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1787} 1788 1789int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe); 1790int usb_urb_ep_type_check(const struct urb *urb); 1791 1792void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1793 gfp_t mem_flags, dma_addr_t *dma); 1794void usb_free_coherent(struct usb_device *dev, size_t size, 1795 void *addr, dma_addr_t dma); 1796 1797#if 0 1798struct urb *usb_buffer_map(struct urb *urb); 1799void usb_buffer_dmasync(struct urb *urb); 1800void usb_buffer_unmap(struct urb *urb); 1801#endif 1802 1803struct scatterlist; 1804int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1805 struct scatterlist *sg, int nents); 1806#if 0 1807void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1808 struct scatterlist *sg, int n_hw_ents); 1809#endif 1810void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1811 struct scatterlist *sg, int n_hw_ents); 1812 1813/*-------------------------------------------------------------------* 1814 * SYNCHRONOUS CALL SUPPORT * 1815 *-------------------------------------------------------------------*/ 1816 1817extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1818 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1819 void *data, __u16 size, int timeout); 1820extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1821 void *data, int len, int *actual_length, int timeout); 1822extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1823 void *data, int len, int *actual_length, 1824 int timeout); 1825 1826/* wrappers around usb_control_msg() for the most common standard requests */ 1827int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 1828 __u8 requesttype, __u16 value, __u16 index, 1829 const void *data, __u16 size, int timeout, 1830 gfp_t memflags); 1831int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 1832 __u8 requesttype, __u16 value, __u16 index, 1833 void *data, __u16 size, int timeout, 1834 gfp_t memflags); 1835extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1836 unsigned char descindex, void *buf, int size); 1837extern int usb_get_status(struct usb_device *dev, 1838 int recip, int type, int target, void *data); 1839 1840static inline int usb_get_std_status(struct usb_device *dev, 1841 int recip, int target, void *data) 1842{ 1843 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target, 1844 data); 1845} 1846 1847static inline int usb_get_ptm_status(struct usb_device *dev, void *data) 1848{ 1849 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM, 1850 0, data); 1851} 1852 1853extern int usb_string(struct usb_device *dev, int index, 1854 char *buf, size_t size); 1855extern char *usb_cache_string(struct usb_device *udev, int index); 1856 1857/* wrappers that also update important state inside usbcore */ 1858extern int usb_clear_halt(struct usb_device *dev, int pipe); 1859extern int usb_reset_configuration(struct usb_device *dev); 1860extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1861extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1862 1863/* this request isn't really synchronous, but it belongs with the others */ 1864extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1865 1866/* choose and set configuration for device */ 1867extern int usb_choose_configuration(struct usb_device *udev); 1868extern int usb_set_configuration(struct usb_device *dev, int configuration); 1869 1870/* 1871 * timeouts, in milliseconds, used for sending/receiving control messages 1872 * they typically complete within a few frames (msec) after they're issued 1873 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1874 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1875 */ 1876#define USB_CTRL_GET_TIMEOUT 5000 1877#define USB_CTRL_SET_TIMEOUT 5000 1878 1879 1880/** 1881 * struct usb_sg_request - support for scatter/gather I/O 1882 * @status: zero indicates success, else negative errno 1883 * @bytes: counts bytes transferred. 1884 * 1885 * These requests are initialized using usb_sg_init(), and then are used 1886 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1887 * members of the request object aren't for driver access. 1888 * 1889 * The status and bytecount values are valid only after usb_sg_wait() 1890 * returns. If the status is zero, then the bytecount matches the total 1891 * from the request. 1892 * 1893 * After an error completion, drivers may need to clear a halt condition 1894 * on the endpoint. 1895 */ 1896struct usb_sg_request { 1897 int status; 1898 size_t bytes; 1899 1900 /* private: 1901 * members below are private to usbcore, 1902 * and are not provided for driver access! 1903 */ 1904 spinlock_t lock; 1905 1906 struct usb_device *dev; 1907 int pipe; 1908 1909 int entries; 1910 struct urb **urbs; 1911 1912 int count; 1913 struct completion complete; 1914}; 1915 1916int usb_sg_init( 1917 struct usb_sg_request *io, 1918 struct usb_device *dev, 1919 unsigned pipe, 1920 unsigned period, 1921 struct scatterlist *sg, 1922 int nents, 1923 size_t length, 1924 gfp_t mem_flags 1925); 1926void usb_sg_cancel(struct usb_sg_request *io); 1927void usb_sg_wait(struct usb_sg_request *io); 1928 1929 1930/* ----------------------------------------------------------------------- */ 1931 1932/* 1933 * For various legacy reasons, Linux has a small cookie that's paired with 1934 * a struct usb_device to identify an endpoint queue. Queue characteristics 1935 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1936 * an unsigned int encoded as: 1937 * 1938 * - direction: bit 7 (0 = Host-to-Device [Out], 1939 * 1 = Device-to-Host [In] ... 1940 * like endpoint bEndpointAddress) 1941 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1942 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1943 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1944 * 10 = control, 11 = bulk) 1945 * 1946 * Given the device address and endpoint descriptor, pipes are redundant. 1947 */ 1948 1949/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1950/* (yet ... they're the values used by usbfs) */ 1951#define PIPE_ISOCHRONOUS 0 1952#define PIPE_INTERRUPT 1 1953#define PIPE_CONTROL 2 1954#define PIPE_BULK 3 1955 1956#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1957#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1958 1959#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1960#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1961 1962#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1963#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1964#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1965#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1966#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1967 1968static inline unsigned int __create_pipe(struct usb_device *dev, 1969 unsigned int endpoint) 1970{ 1971 return (dev->devnum << 8) | (endpoint << 15); 1972} 1973 1974/* Create various pipes... */ 1975#define usb_sndctrlpipe(dev, endpoint) \ 1976 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1977#define usb_rcvctrlpipe(dev, endpoint) \ 1978 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1979#define usb_sndisocpipe(dev, endpoint) \ 1980 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1981#define usb_rcvisocpipe(dev, endpoint) \ 1982 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1983#define usb_sndbulkpipe(dev, endpoint) \ 1984 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1985#define usb_rcvbulkpipe(dev, endpoint) \ 1986 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1987#define usb_sndintpipe(dev, endpoint) \ 1988 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1989#define usb_rcvintpipe(dev, endpoint) \ 1990 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1991 1992static inline struct usb_host_endpoint * 1993usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1994{ 1995 struct usb_host_endpoint **eps; 1996 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1997 return eps[usb_pipeendpoint(pipe)]; 1998} 1999 2000static inline u16 usb_maxpacket(struct usb_device *udev, int pipe) 2001{ 2002 struct usb_host_endpoint *ep = usb_pipe_endpoint(udev, pipe); 2003 2004 if (!ep) 2005 return 0; 2006 2007 /* NOTE: only 0x07ff bits are for packet size... */ 2008 return usb_endpoint_maxp(&ep->desc); 2009} 2010 2011/* translate USB error codes to codes user space understands */ 2012static inline int usb_translate_errors(int error_code) 2013{ 2014 switch (error_code) { 2015 case 0: 2016 case -ENOMEM: 2017 case -ENODEV: 2018 case -EOPNOTSUPP: 2019 return error_code; 2020 default: 2021 return -EIO; 2022 } 2023} 2024 2025/* Events from the usb core */ 2026#define USB_DEVICE_ADD 0x0001 2027#define USB_DEVICE_REMOVE 0x0002 2028#define USB_BUS_ADD 0x0003 2029#define USB_BUS_REMOVE 0x0004 2030extern void usb_register_notify(struct notifier_block *nb); 2031extern void usb_unregister_notify(struct notifier_block *nb); 2032 2033/* debugfs stuff */ 2034extern struct dentry *usb_debug_root; 2035 2036/* LED triggers */ 2037enum usb_led_event { 2038 USB_LED_EVENT_HOST = 0, 2039 USB_LED_EVENT_GADGET = 1, 2040}; 2041 2042#ifdef CONFIG_USB_LED_TRIG 2043extern void usb_led_activity(enum usb_led_event ev); 2044#else 2045static inline void usb_led_activity(enum usb_led_event ev) {} 2046#endif 2047 2048#endif /* __KERNEL__ */ 2049 2050#endif