Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10#ifndef _LINUX_SKBUFF_H
11#define _LINUX_SKBUFF_H
12
13#include <linux/kernel.h>
14#include <linux/compiler.h>
15#include <linux/time.h>
16#include <linux/bug.h>
17#include <linux/bvec.h>
18#include <linux/cache.h>
19#include <linux/rbtree.h>
20#include <linux/socket.h>
21#include <linux/refcount.h>
22
23#include <linux/atomic.h>
24#include <asm/types.h>
25#include <linux/spinlock.h>
26#include <linux/net.h>
27#include <linux/textsearch.h>
28#include <net/checksum.h>
29#include <linux/rcupdate.h>
30#include <linux/hrtimer.h>
31#include <linux/dma-mapping.h>
32#include <linux/netdev_features.h>
33#include <linux/sched.h>
34#include <linux/sched/clock.h>
35#include <net/flow_dissector.h>
36#include <linux/splice.h>
37#include <linux/in6.h>
38#include <linux/if_packet.h>
39#include <linux/llist.h>
40#include <net/flow.h>
41#include <net/page_pool.h>
42#if IS_ENABLED(CONFIG_NF_CONNTRACK)
43#include <linux/netfilter/nf_conntrack_common.h>
44#endif
45#include <net/net_debug.h>
46#include <net/dropreason.h>
47
48/**
49 * DOC: skb checksums
50 *
51 * The interface for checksum offload between the stack and networking drivers
52 * is as follows...
53 *
54 * IP checksum related features
55 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
56 *
57 * Drivers advertise checksum offload capabilities in the features of a device.
58 * From the stack's point of view these are capabilities offered by the driver.
59 * A driver typically only advertises features that it is capable of offloading
60 * to its device.
61 *
62 * .. flat-table:: Checksum related device features
63 * :widths: 1 10
64 *
65 * * - %NETIF_F_HW_CSUM
66 * - The driver (or its device) is able to compute one
67 * IP (one's complement) checksum for any combination
68 * of protocols or protocol layering. The checksum is
69 * computed and set in a packet per the CHECKSUM_PARTIAL
70 * interface (see below).
71 *
72 * * - %NETIF_F_IP_CSUM
73 * - Driver (device) is only able to checksum plain
74 * TCP or UDP packets over IPv4. These are specifically
75 * unencapsulated packets of the form IPv4|TCP or
76 * IPv4|UDP where the Protocol field in the IPv4 header
77 * is TCP or UDP. The IPv4 header may contain IP options.
78 * This feature cannot be set in features for a device
79 * with NETIF_F_HW_CSUM also set. This feature is being
80 * DEPRECATED (see below).
81 *
82 * * - %NETIF_F_IPV6_CSUM
83 * - Driver (device) is only able to checksum plain
84 * TCP or UDP packets over IPv6. These are specifically
85 * unencapsulated packets of the form IPv6|TCP or
86 * IPv6|UDP where the Next Header field in the IPv6
87 * header is either TCP or UDP. IPv6 extension headers
88 * are not supported with this feature. This feature
89 * cannot be set in features for a device with
90 * NETIF_F_HW_CSUM also set. This feature is being
91 * DEPRECATED (see below).
92 *
93 * * - %NETIF_F_RXCSUM
94 * - Driver (device) performs receive checksum offload.
95 * This flag is only used to disable the RX checksum
96 * feature for a device. The stack will accept receive
97 * checksum indication in packets received on a device
98 * regardless of whether NETIF_F_RXCSUM is set.
99 *
100 * Checksumming of received packets by device
101 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
102 *
103 * Indication of checksum verification is set in &sk_buff.ip_summed.
104 * Possible values are:
105 *
106 * - %CHECKSUM_NONE
107 *
108 * Device did not checksum this packet e.g. due to lack of capabilities.
109 * The packet contains full (though not verified) checksum in packet but
110 * not in skb->csum. Thus, skb->csum is undefined in this case.
111 *
112 * - %CHECKSUM_UNNECESSARY
113 *
114 * The hardware you're dealing with doesn't calculate the full checksum
115 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
116 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
117 * if their checksums are okay. &sk_buff.csum is still undefined in this case
118 * though. A driver or device must never modify the checksum field in the
119 * packet even if checksum is verified.
120 *
121 * %CHECKSUM_UNNECESSARY is applicable to following protocols:
122 *
123 * - TCP: IPv6 and IPv4.
124 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
125 * zero UDP checksum for either IPv4 or IPv6, the networking stack
126 * may perform further validation in this case.
127 * - GRE: only if the checksum is present in the header.
128 * - SCTP: indicates the CRC in SCTP header has been validated.
129 * - FCOE: indicates the CRC in FC frame has been validated.
130 *
131 * &sk_buff.csum_level indicates the number of consecutive checksums found in
132 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
133 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
134 * and a device is able to verify the checksums for UDP (possibly zero),
135 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
136 * two. If the device were only able to verify the UDP checksum and not
137 * GRE, either because it doesn't support GRE checksum or because GRE
138 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
139 * not considered in this case).
140 *
141 * - %CHECKSUM_COMPLETE
142 *
143 * This is the most generic way. The device supplied checksum of the _whole_
144 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
145 * hardware doesn't need to parse L3/L4 headers to implement this.
146 *
147 * Notes:
148 *
149 * - Even if device supports only some protocols, but is able to produce
150 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
151 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
152 *
153 * - %CHECKSUM_PARTIAL
154 *
155 * A checksum is set up to be offloaded to a device as described in the
156 * output description for CHECKSUM_PARTIAL. This may occur on a packet
157 * received directly from another Linux OS, e.g., a virtualized Linux kernel
158 * on the same host, or it may be set in the input path in GRO or remote
159 * checksum offload. For the purposes of checksum verification, the checksum
160 * referred to by skb->csum_start + skb->csum_offset and any preceding
161 * checksums in the packet are considered verified. Any checksums in the
162 * packet that are after the checksum being offloaded are not considered to
163 * be verified.
164 *
165 * Checksumming on transmit for non-GSO
166 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
167 *
168 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
169 * Values are:
170 *
171 * - %CHECKSUM_PARTIAL
172 *
173 * The driver is required to checksum the packet as seen by hard_start_xmit()
174 * from &sk_buff.csum_start up to the end, and to record/write the checksum at
175 * offset &sk_buff.csum_start + &sk_buff.csum_offset.
176 * A driver may verify that the
177 * csum_start and csum_offset values are valid values given the length and
178 * offset of the packet, but it should not attempt to validate that the
179 * checksum refers to a legitimate transport layer checksum -- it is the
180 * purview of the stack to validate that csum_start and csum_offset are set
181 * correctly.
182 *
183 * When the stack requests checksum offload for a packet, the driver MUST
184 * ensure that the checksum is set correctly. A driver can either offload the
185 * checksum calculation to the device, or call skb_checksum_help (in the case
186 * that the device does not support offload for a particular checksum).
187 *
188 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
189 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
190 * checksum offload capability.
191 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
192 * on network device checksumming capabilities: if a packet does not match
193 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
194 * &sk_buff.csum_not_inet, see :ref:`crc`)
195 * is called to resolve the checksum.
196 *
197 * - %CHECKSUM_NONE
198 *
199 * The skb was already checksummed by the protocol, or a checksum is not
200 * required.
201 *
202 * - %CHECKSUM_UNNECESSARY
203 *
204 * This has the same meaning as CHECKSUM_NONE for checksum offload on
205 * output.
206 *
207 * - %CHECKSUM_COMPLETE
208 *
209 * Not used in checksum output. If a driver observes a packet with this value
210 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
211 *
212 * .. _crc:
213 *
214 * Non-IP checksum (CRC) offloads
215 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
216 *
217 * .. flat-table::
218 * :widths: 1 10
219 *
220 * * - %NETIF_F_SCTP_CRC
221 * - This feature indicates that a device is capable of
222 * offloading the SCTP CRC in a packet. To perform this offload the stack
223 * will set csum_start and csum_offset accordingly, set ip_summed to
224 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
225 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
226 * A driver that supports both IP checksum offload and SCTP CRC32c offload
227 * must verify which offload is configured for a packet by testing the
228 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
229 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
230 *
231 * * - %NETIF_F_FCOE_CRC
232 * - This feature indicates that a device is capable of offloading the FCOE
233 * CRC in a packet. To perform this offload the stack will set ip_summed
234 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset
235 * accordingly. Note that there is no indication in the skbuff that the
236 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
237 * both IP checksum offload and FCOE CRC offload must verify which offload
238 * is configured for a packet, presumably by inspecting packet headers.
239 *
240 * Checksumming on output with GSO
241 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
242 *
243 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
244 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
245 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
246 * part of the GSO operation is implied. If a checksum is being offloaded
247 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
248 * csum_offset are set to refer to the outermost checksum being offloaded
249 * (two offloaded checksums are possible with UDP encapsulation).
250 */
251
252/* Don't change this without changing skb_csum_unnecessary! */
253#define CHECKSUM_NONE 0
254#define CHECKSUM_UNNECESSARY 1
255#define CHECKSUM_COMPLETE 2
256#define CHECKSUM_PARTIAL 3
257
258/* Maximum value in skb->csum_level */
259#define SKB_MAX_CSUM_LEVEL 3
260
261#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
262#define SKB_WITH_OVERHEAD(X) \
263 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
264#define SKB_MAX_ORDER(X, ORDER) \
265 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
266#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
267#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
268
269/* return minimum truesize of one skb containing X bytes of data */
270#define SKB_TRUESIZE(X) ((X) + \
271 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
272 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
273
274struct ahash_request;
275struct net_device;
276struct scatterlist;
277struct pipe_inode_info;
278struct iov_iter;
279struct napi_struct;
280struct bpf_prog;
281union bpf_attr;
282struct skb_ext;
283
284#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
285struct nf_bridge_info {
286 enum {
287 BRNF_PROTO_UNCHANGED,
288 BRNF_PROTO_8021Q,
289 BRNF_PROTO_PPPOE
290 } orig_proto:8;
291 u8 pkt_otherhost:1;
292 u8 in_prerouting:1;
293 u8 bridged_dnat:1;
294 __u16 frag_max_size;
295 struct net_device *physindev;
296
297 /* always valid & non-NULL from FORWARD on, for physdev match */
298 struct net_device *physoutdev;
299 union {
300 /* prerouting: detect dnat in orig/reply direction */
301 __be32 ipv4_daddr;
302 struct in6_addr ipv6_daddr;
303
304 /* after prerouting + nat detected: store original source
305 * mac since neigh resolution overwrites it, only used while
306 * skb is out in neigh layer.
307 */
308 char neigh_header[8];
309 };
310};
311#endif
312
313#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
314/* Chain in tc_skb_ext will be used to share the tc chain with
315 * ovs recirc_id. It will be set to the current chain by tc
316 * and read by ovs to recirc_id.
317 */
318struct tc_skb_ext {
319 __u32 chain;
320 __u16 mru;
321 __u16 zone;
322 u8 post_ct:1;
323 u8 post_ct_snat:1;
324 u8 post_ct_dnat:1;
325};
326#endif
327
328struct sk_buff_head {
329 /* These two members must be first to match sk_buff. */
330 struct_group_tagged(sk_buff_list, list,
331 struct sk_buff *next;
332 struct sk_buff *prev;
333 );
334
335 __u32 qlen;
336 spinlock_t lock;
337};
338
339struct sk_buff;
340
341/* To allow 64K frame to be packed as single skb without frag_list we
342 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
343 * buffers which do not start on a page boundary.
344 *
345 * Since GRO uses frags we allocate at least 16 regardless of page
346 * size.
347 */
348#if (65536/PAGE_SIZE + 1) < 16
349#define MAX_SKB_FRAGS 16UL
350#else
351#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
352#endif
353extern int sysctl_max_skb_frags;
354
355/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
356 * segment using its current segmentation instead.
357 */
358#define GSO_BY_FRAGS 0xFFFF
359
360typedef struct bio_vec skb_frag_t;
361
362/**
363 * skb_frag_size() - Returns the size of a skb fragment
364 * @frag: skb fragment
365 */
366static inline unsigned int skb_frag_size(const skb_frag_t *frag)
367{
368 return frag->bv_len;
369}
370
371/**
372 * skb_frag_size_set() - Sets the size of a skb fragment
373 * @frag: skb fragment
374 * @size: size of fragment
375 */
376static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
377{
378 frag->bv_len = size;
379}
380
381/**
382 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
383 * @frag: skb fragment
384 * @delta: value to add
385 */
386static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
387{
388 frag->bv_len += delta;
389}
390
391/**
392 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
393 * @frag: skb fragment
394 * @delta: value to subtract
395 */
396static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
397{
398 frag->bv_len -= delta;
399}
400
401/**
402 * skb_frag_must_loop - Test if %p is a high memory page
403 * @p: fragment's page
404 */
405static inline bool skb_frag_must_loop(struct page *p)
406{
407#if defined(CONFIG_HIGHMEM)
408 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
409 return true;
410#endif
411 return false;
412}
413
414/**
415 * skb_frag_foreach_page - loop over pages in a fragment
416 *
417 * @f: skb frag to operate on
418 * @f_off: offset from start of f->bv_page
419 * @f_len: length from f_off to loop over
420 * @p: (temp var) current page
421 * @p_off: (temp var) offset from start of current page,
422 * non-zero only on first page.
423 * @p_len: (temp var) length in current page,
424 * < PAGE_SIZE only on first and last page.
425 * @copied: (temp var) length so far, excluding current p_len.
426 *
427 * A fragment can hold a compound page, in which case per-page
428 * operations, notably kmap_atomic, must be called for each
429 * regular page.
430 */
431#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
432 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
433 p_off = (f_off) & (PAGE_SIZE - 1), \
434 p_len = skb_frag_must_loop(p) ? \
435 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
436 copied = 0; \
437 copied < f_len; \
438 copied += p_len, p++, p_off = 0, \
439 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
440
441#define HAVE_HW_TIME_STAMP
442
443/**
444 * struct skb_shared_hwtstamps - hardware time stamps
445 * @hwtstamp: hardware time stamp transformed into duration
446 * since arbitrary point in time
447 * @netdev_data: address/cookie of network device driver used as
448 * reference to actual hardware time stamp
449 *
450 * Software time stamps generated by ktime_get_real() are stored in
451 * skb->tstamp.
452 *
453 * hwtstamps can only be compared against other hwtstamps from
454 * the same device.
455 *
456 * This structure is attached to packets as part of the
457 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
458 */
459struct skb_shared_hwtstamps {
460 union {
461 ktime_t hwtstamp;
462 void *netdev_data;
463 };
464};
465
466/* Definitions for tx_flags in struct skb_shared_info */
467enum {
468 /* generate hardware time stamp */
469 SKBTX_HW_TSTAMP = 1 << 0,
470
471 /* generate software time stamp when queueing packet to NIC */
472 SKBTX_SW_TSTAMP = 1 << 1,
473
474 /* device driver is going to provide hardware time stamp */
475 SKBTX_IN_PROGRESS = 1 << 2,
476
477 /* generate hardware time stamp based on cycles if supported */
478 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
479
480 /* generate wifi status information (where possible) */
481 SKBTX_WIFI_STATUS = 1 << 4,
482
483 /* determine hardware time stamp based on time or cycles */
484 SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
485
486 /* generate software time stamp when entering packet scheduling */
487 SKBTX_SCHED_TSTAMP = 1 << 6,
488};
489
490#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
491 SKBTX_SCHED_TSTAMP)
492#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \
493 SKBTX_HW_TSTAMP_USE_CYCLES | \
494 SKBTX_ANY_SW_TSTAMP)
495
496/* Definitions for flags in struct skb_shared_info */
497enum {
498 /* use zcopy routines */
499 SKBFL_ZEROCOPY_ENABLE = BIT(0),
500
501 /* This indicates at least one fragment might be overwritten
502 * (as in vmsplice(), sendfile() ...)
503 * If we need to compute a TX checksum, we'll need to copy
504 * all frags to avoid possible bad checksum
505 */
506 SKBFL_SHARED_FRAG = BIT(1),
507
508 /* segment contains only zerocopy data and should not be
509 * charged to the kernel memory.
510 */
511 SKBFL_PURE_ZEROCOPY = BIT(2),
512
513 SKBFL_DONT_ORPHAN = BIT(3),
514
515 /* page references are managed by the ubuf_info, so it's safe to
516 * use frags only up until ubuf_info is released
517 */
518 SKBFL_MANAGED_FRAG_REFS = BIT(4),
519};
520
521#define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
522#define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
523 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
524
525/*
526 * The callback notifies userspace to release buffers when skb DMA is done in
527 * lower device, the skb last reference should be 0 when calling this.
528 * The zerocopy_success argument is true if zero copy transmit occurred,
529 * false on data copy or out of memory error caused by data copy attempt.
530 * The ctx field is used to track device context.
531 * The desc field is used to track userspace buffer index.
532 */
533struct ubuf_info {
534 void (*callback)(struct sk_buff *, struct ubuf_info *,
535 bool zerocopy_success);
536 refcount_t refcnt;
537 u8 flags;
538};
539
540struct ubuf_info_msgzc {
541 struct ubuf_info ubuf;
542
543 union {
544 struct {
545 unsigned long desc;
546 void *ctx;
547 };
548 struct {
549 u32 id;
550 u16 len;
551 u16 zerocopy:1;
552 u32 bytelen;
553 };
554 };
555
556 struct mmpin {
557 struct user_struct *user;
558 unsigned int num_pg;
559 } mmp;
560};
561
562#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
563#define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \
564 ubuf)
565
566int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
567void mm_unaccount_pinned_pages(struct mmpin *mmp);
568
569/* This data is invariant across clones and lives at
570 * the end of the header data, ie. at skb->end.
571 */
572struct skb_shared_info {
573 __u8 flags;
574 __u8 meta_len;
575 __u8 nr_frags;
576 __u8 tx_flags;
577 unsigned short gso_size;
578 /* Warning: this field is not always filled in (UFO)! */
579 unsigned short gso_segs;
580 struct sk_buff *frag_list;
581 struct skb_shared_hwtstamps hwtstamps;
582 unsigned int gso_type;
583 u32 tskey;
584
585 /*
586 * Warning : all fields before dataref are cleared in __alloc_skb()
587 */
588 atomic_t dataref;
589 unsigned int xdp_frags_size;
590
591 /* Intermediate layers must ensure that destructor_arg
592 * remains valid until skb destructor */
593 void * destructor_arg;
594
595 /* must be last field, see pskb_expand_head() */
596 skb_frag_t frags[MAX_SKB_FRAGS];
597};
598
599/**
600 * DOC: dataref and headerless skbs
601 *
602 * Transport layers send out clones of payload skbs they hold for
603 * retransmissions. To allow lower layers of the stack to prepend their headers
604 * we split &skb_shared_info.dataref into two halves.
605 * The lower 16 bits count the overall number of references.
606 * The higher 16 bits indicate how many of the references are payload-only.
607 * skb_header_cloned() checks if skb is allowed to add / write the headers.
608 *
609 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
610 * (via __skb_header_release()). Any clone created from marked skb will get
611 * &sk_buff.hdr_len populated with the available headroom.
612 * If there's the only clone in existence it's able to modify the headroom
613 * at will. The sequence of calls inside the transport layer is::
614 *
615 * <alloc skb>
616 * skb_reserve()
617 * __skb_header_release()
618 * skb_clone()
619 * // send the clone down the stack
620 *
621 * This is not a very generic construct and it depends on the transport layers
622 * doing the right thing. In practice there's usually only one payload-only skb.
623 * Having multiple payload-only skbs with different lengths of hdr_len is not
624 * possible. The payload-only skbs should never leave their owner.
625 */
626#define SKB_DATAREF_SHIFT 16
627#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
628
629
630enum {
631 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
632 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
633 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
634};
635
636enum {
637 SKB_GSO_TCPV4 = 1 << 0,
638
639 /* This indicates the skb is from an untrusted source. */
640 SKB_GSO_DODGY = 1 << 1,
641
642 /* This indicates the tcp segment has CWR set. */
643 SKB_GSO_TCP_ECN = 1 << 2,
644
645 SKB_GSO_TCP_FIXEDID = 1 << 3,
646
647 SKB_GSO_TCPV6 = 1 << 4,
648
649 SKB_GSO_FCOE = 1 << 5,
650
651 SKB_GSO_GRE = 1 << 6,
652
653 SKB_GSO_GRE_CSUM = 1 << 7,
654
655 SKB_GSO_IPXIP4 = 1 << 8,
656
657 SKB_GSO_IPXIP6 = 1 << 9,
658
659 SKB_GSO_UDP_TUNNEL = 1 << 10,
660
661 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
662
663 SKB_GSO_PARTIAL = 1 << 12,
664
665 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
666
667 SKB_GSO_SCTP = 1 << 14,
668
669 SKB_GSO_ESP = 1 << 15,
670
671 SKB_GSO_UDP = 1 << 16,
672
673 SKB_GSO_UDP_L4 = 1 << 17,
674
675 SKB_GSO_FRAGLIST = 1 << 18,
676};
677
678#if BITS_PER_LONG > 32
679#define NET_SKBUFF_DATA_USES_OFFSET 1
680#endif
681
682#ifdef NET_SKBUFF_DATA_USES_OFFSET
683typedef unsigned int sk_buff_data_t;
684#else
685typedef unsigned char *sk_buff_data_t;
686#endif
687
688/**
689 * DOC: Basic sk_buff geometry
690 *
691 * struct sk_buff itself is a metadata structure and does not hold any packet
692 * data. All the data is held in associated buffers.
693 *
694 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
695 * into two parts:
696 *
697 * - data buffer, containing headers and sometimes payload;
698 * this is the part of the skb operated on by the common helpers
699 * such as skb_put() or skb_pull();
700 * - shared info (struct skb_shared_info) which holds an array of pointers
701 * to read-only data in the (page, offset, length) format.
702 *
703 * Optionally &skb_shared_info.frag_list may point to another skb.
704 *
705 * Basic diagram may look like this::
706 *
707 * ---------------
708 * | sk_buff |
709 * ---------------
710 * ,--------------------------- + head
711 * / ,----------------- + data
712 * / / ,----------- + tail
713 * | | | , + end
714 * | | | |
715 * v v v v
716 * -----------------------------------------------
717 * | headroom | data | tailroom | skb_shared_info |
718 * -----------------------------------------------
719 * + [page frag]
720 * + [page frag]
721 * + [page frag]
722 * + [page frag] ---------
723 * + frag_list --> | sk_buff |
724 * ---------
725 *
726 */
727
728/**
729 * struct sk_buff - socket buffer
730 * @next: Next buffer in list
731 * @prev: Previous buffer in list
732 * @tstamp: Time we arrived/left
733 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
734 * for retransmit timer
735 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
736 * @list: queue head
737 * @ll_node: anchor in an llist (eg socket defer_list)
738 * @sk: Socket we are owned by
739 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
740 * fragmentation management
741 * @dev: Device we arrived on/are leaving by
742 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
743 * @cb: Control buffer. Free for use by every layer. Put private vars here
744 * @_skb_refdst: destination entry (with norefcount bit)
745 * @sp: the security path, used for xfrm
746 * @len: Length of actual data
747 * @data_len: Data length
748 * @mac_len: Length of link layer header
749 * @hdr_len: writable header length of cloned skb
750 * @csum: Checksum (must include start/offset pair)
751 * @csum_start: Offset from skb->head where checksumming should start
752 * @csum_offset: Offset from csum_start where checksum should be stored
753 * @priority: Packet queueing priority
754 * @ignore_df: allow local fragmentation
755 * @cloned: Head may be cloned (check refcnt to be sure)
756 * @ip_summed: Driver fed us an IP checksum
757 * @nohdr: Payload reference only, must not modify header
758 * @pkt_type: Packet class
759 * @fclone: skbuff clone status
760 * @ipvs_property: skbuff is owned by ipvs
761 * @inner_protocol_type: whether the inner protocol is
762 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
763 * @remcsum_offload: remote checksum offload is enabled
764 * @offload_fwd_mark: Packet was L2-forwarded in hardware
765 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
766 * @tc_skip_classify: do not classify packet. set by IFB device
767 * @tc_at_ingress: used within tc_classify to distinguish in/egress
768 * @redirected: packet was redirected by packet classifier
769 * @from_ingress: packet was redirected from the ingress path
770 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
771 * @peeked: this packet has been seen already, so stats have been
772 * done for it, don't do them again
773 * @nf_trace: netfilter packet trace flag
774 * @protocol: Packet protocol from driver
775 * @destructor: Destruct function
776 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
777 * @_sk_redir: socket redirection information for skmsg
778 * @_nfct: Associated connection, if any (with nfctinfo bits)
779 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
780 * @skb_iif: ifindex of device we arrived on
781 * @tc_index: Traffic control index
782 * @hash: the packet hash
783 * @queue_mapping: Queue mapping for multiqueue devices
784 * @head_frag: skb was allocated from page fragments,
785 * not allocated by kmalloc() or vmalloc().
786 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
787 * @pp_recycle: mark the packet for recycling instead of freeing (implies
788 * page_pool support on driver)
789 * @active_extensions: active extensions (skb_ext_id types)
790 * @ndisc_nodetype: router type (from link layer)
791 * @ooo_okay: allow the mapping of a socket to a queue to be changed
792 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
793 * ports.
794 * @sw_hash: indicates hash was computed in software stack
795 * @wifi_acked_valid: wifi_acked was set
796 * @wifi_acked: whether frame was acked on wifi or not
797 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
798 * @encapsulation: indicates the inner headers in the skbuff are valid
799 * @encap_hdr_csum: software checksum is needed
800 * @csum_valid: checksum is already valid
801 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
802 * @csum_complete_sw: checksum was completed by software
803 * @csum_level: indicates the number of consecutive checksums found in
804 * the packet minus one that have been verified as
805 * CHECKSUM_UNNECESSARY (max 3)
806 * @scm_io_uring: SKB holds io_uring registered files
807 * @dst_pending_confirm: need to confirm neighbour
808 * @decrypted: Decrypted SKB
809 * @slow_gro: state present at GRO time, slower prepare step required
810 * @mono_delivery_time: When set, skb->tstamp has the
811 * delivery_time in mono clock base (i.e. EDT). Otherwise, the
812 * skb->tstamp has the (rcv) timestamp at ingress and
813 * delivery_time at egress.
814 * @napi_id: id of the NAPI struct this skb came from
815 * @sender_cpu: (aka @napi_id) source CPU in XPS
816 * @alloc_cpu: CPU which did the skb allocation.
817 * @secmark: security marking
818 * @mark: Generic packet mark
819 * @reserved_tailroom: (aka @mark) number of bytes of free space available
820 * at the tail of an sk_buff
821 * @vlan_all: vlan fields (proto & tci)
822 * @vlan_proto: vlan encapsulation protocol
823 * @vlan_tci: vlan tag control information
824 * @inner_protocol: Protocol (encapsulation)
825 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
826 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
827 * @inner_transport_header: Inner transport layer header (encapsulation)
828 * @inner_network_header: Network layer header (encapsulation)
829 * @inner_mac_header: Link layer header (encapsulation)
830 * @transport_header: Transport layer header
831 * @network_header: Network layer header
832 * @mac_header: Link layer header
833 * @kcov_handle: KCOV remote handle for remote coverage collection
834 * @tail: Tail pointer
835 * @end: End pointer
836 * @head: Head of buffer
837 * @data: Data head pointer
838 * @truesize: Buffer size
839 * @users: User count - see {datagram,tcp}.c
840 * @extensions: allocated extensions, valid if active_extensions is nonzero
841 */
842
843struct sk_buff {
844 union {
845 struct {
846 /* These two members must be first to match sk_buff_head. */
847 struct sk_buff *next;
848 struct sk_buff *prev;
849
850 union {
851 struct net_device *dev;
852 /* Some protocols might use this space to store information,
853 * while device pointer would be NULL.
854 * UDP receive path is one user.
855 */
856 unsigned long dev_scratch;
857 };
858 };
859 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
860 struct list_head list;
861 struct llist_node ll_node;
862 };
863
864 union {
865 struct sock *sk;
866 int ip_defrag_offset;
867 };
868
869 union {
870 ktime_t tstamp;
871 u64 skb_mstamp_ns; /* earliest departure time */
872 };
873 /*
874 * This is the control buffer. It is free to use for every
875 * layer. Please put your private variables there. If you
876 * want to keep them across layers you have to do a skb_clone()
877 * first. This is owned by whoever has the skb queued ATM.
878 */
879 char cb[48] __aligned(8);
880
881 union {
882 struct {
883 unsigned long _skb_refdst;
884 void (*destructor)(struct sk_buff *skb);
885 };
886 struct list_head tcp_tsorted_anchor;
887#ifdef CONFIG_NET_SOCK_MSG
888 unsigned long _sk_redir;
889#endif
890 };
891
892#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
893 unsigned long _nfct;
894#endif
895 unsigned int len,
896 data_len;
897 __u16 mac_len,
898 hdr_len;
899
900 /* Following fields are _not_ copied in __copy_skb_header()
901 * Note that queue_mapping is here mostly to fill a hole.
902 */
903 __u16 queue_mapping;
904
905/* if you move cloned around you also must adapt those constants */
906#ifdef __BIG_ENDIAN_BITFIELD
907#define CLONED_MASK (1 << 7)
908#else
909#define CLONED_MASK 1
910#endif
911#define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
912
913 /* private: */
914 __u8 __cloned_offset[0];
915 /* public: */
916 __u8 cloned:1,
917 nohdr:1,
918 fclone:2,
919 peeked:1,
920 head_frag:1,
921 pfmemalloc:1,
922 pp_recycle:1; /* page_pool recycle indicator */
923#ifdef CONFIG_SKB_EXTENSIONS
924 __u8 active_extensions;
925#endif
926
927 /* Fields enclosed in headers group are copied
928 * using a single memcpy() in __copy_skb_header()
929 */
930 struct_group(headers,
931
932 /* private: */
933 __u8 __pkt_type_offset[0];
934 /* public: */
935 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
936 __u8 ignore_df:1;
937 __u8 nf_trace:1;
938 __u8 ip_summed:2;
939 __u8 ooo_okay:1;
940
941 __u8 l4_hash:1;
942 __u8 sw_hash:1;
943 __u8 wifi_acked_valid:1;
944 __u8 wifi_acked:1;
945 __u8 no_fcs:1;
946 /* Indicates the inner headers are valid in the skbuff. */
947 __u8 encapsulation:1;
948 __u8 encap_hdr_csum:1;
949 __u8 csum_valid:1;
950
951 /* private: */
952 __u8 __pkt_vlan_present_offset[0];
953 /* public: */
954 __u8 remcsum_offload:1;
955 __u8 csum_complete_sw:1;
956 __u8 csum_level:2;
957 __u8 dst_pending_confirm:1;
958 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */
959#ifdef CONFIG_NET_CLS_ACT
960 __u8 tc_skip_classify:1;
961 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */
962#endif
963#ifdef CONFIG_IPV6_NDISC_NODETYPE
964 __u8 ndisc_nodetype:2;
965#endif
966
967 __u8 ipvs_property:1;
968 __u8 inner_protocol_type:1;
969#ifdef CONFIG_NET_SWITCHDEV
970 __u8 offload_fwd_mark:1;
971 __u8 offload_l3_fwd_mark:1;
972#endif
973 __u8 redirected:1;
974#ifdef CONFIG_NET_REDIRECT
975 __u8 from_ingress:1;
976#endif
977#ifdef CONFIG_NETFILTER_SKIP_EGRESS
978 __u8 nf_skip_egress:1;
979#endif
980#ifdef CONFIG_TLS_DEVICE
981 __u8 decrypted:1;
982#endif
983 __u8 slow_gro:1;
984 __u8 csum_not_inet:1;
985 __u8 scm_io_uring:1;
986
987#ifdef CONFIG_NET_SCHED
988 __u16 tc_index; /* traffic control index */
989#endif
990
991 union {
992 __wsum csum;
993 struct {
994 __u16 csum_start;
995 __u16 csum_offset;
996 };
997 };
998 __u32 priority;
999 int skb_iif;
1000 __u32 hash;
1001 union {
1002 u32 vlan_all;
1003 struct {
1004 __be16 vlan_proto;
1005 __u16 vlan_tci;
1006 };
1007 };
1008#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1009 union {
1010 unsigned int napi_id;
1011 unsigned int sender_cpu;
1012 };
1013#endif
1014 u16 alloc_cpu;
1015#ifdef CONFIG_NETWORK_SECMARK
1016 __u32 secmark;
1017#endif
1018
1019 union {
1020 __u32 mark;
1021 __u32 reserved_tailroom;
1022 };
1023
1024 union {
1025 __be16 inner_protocol;
1026 __u8 inner_ipproto;
1027 };
1028
1029 __u16 inner_transport_header;
1030 __u16 inner_network_header;
1031 __u16 inner_mac_header;
1032
1033 __be16 protocol;
1034 __u16 transport_header;
1035 __u16 network_header;
1036 __u16 mac_header;
1037
1038#ifdef CONFIG_KCOV
1039 u64 kcov_handle;
1040#endif
1041
1042 ); /* end headers group */
1043
1044 /* These elements must be at the end, see alloc_skb() for details. */
1045 sk_buff_data_t tail;
1046 sk_buff_data_t end;
1047 unsigned char *head,
1048 *data;
1049 unsigned int truesize;
1050 refcount_t users;
1051
1052#ifdef CONFIG_SKB_EXTENSIONS
1053 /* only useable after checking ->active_extensions != 0 */
1054 struct skb_ext *extensions;
1055#endif
1056};
1057
1058/* if you move pkt_type around you also must adapt those constants */
1059#ifdef __BIG_ENDIAN_BITFIELD
1060#define PKT_TYPE_MAX (7 << 5)
1061#else
1062#define PKT_TYPE_MAX 7
1063#endif
1064#define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
1065
1066/* if you move tc_at_ingress or mono_delivery_time
1067 * around, you also must adapt these constants.
1068 */
1069#ifdef __BIG_ENDIAN_BITFIELD
1070#define TC_AT_INGRESS_MASK (1 << 0)
1071#define SKB_MONO_DELIVERY_TIME_MASK (1 << 2)
1072#else
1073#define TC_AT_INGRESS_MASK (1 << 7)
1074#define SKB_MONO_DELIVERY_TIME_MASK (1 << 5)
1075#endif
1076#define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset)
1077
1078#ifdef __KERNEL__
1079/*
1080 * Handling routines are only of interest to the kernel
1081 */
1082
1083#define SKB_ALLOC_FCLONE 0x01
1084#define SKB_ALLOC_RX 0x02
1085#define SKB_ALLOC_NAPI 0x04
1086
1087/**
1088 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1089 * @skb: buffer
1090 */
1091static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1092{
1093 return unlikely(skb->pfmemalloc);
1094}
1095
1096/*
1097 * skb might have a dst pointer attached, refcounted or not.
1098 * _skb_refdst low order bit is set if refcount was _not_ taken
1099 */
1100#define SKB_DST_NOREF 1UL
1101#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1102
1103/**
1104 * skb_dst - returns skb dst_entry
1105 * @skb: buffer
1106 *
1107 * Returns skb dst_entry, regardless of reference taken or not.
1108 */
1109static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1110{
1111 /* If refdst was not refcounted, check we still are in a
1112 * rcu_read_lock section
1113 */
1114 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1115 !rcu_read_lock_held() &&
1116 !rcu_read_lock_bh_held());
1117 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1118}
1119
1120/**
1121 * skb_dst_set - sets skb dst
1122 * @skb: buffer
1123 * @dst: dst entry
1124 *
1125 * Sets skb dst, assuming a reference was taken on dst and should
1126 * be released by skb_dst_drop()
1127 */
1128static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1129{
1130 skb->slow_gro |= !!dst;
1131 skb->_skb_refdst = (unsigned long)dst;
1132}
1133
1134/**
1135 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1136 * @skb: buffer
1137 * @dst: dst entry
1138 *
1139 * Sets skb dst, assuming a reference was not taken on dst.
1140 * If dst entry is cached, we do not take reference and dst_release
1141 * will be avoided by refdst_drop. If dst entry is not cached, we take
1142 * reference, so that last dst_release can destroy the dst immediately.
1143 */
1144static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1145{
1146 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1147 skb->slow_gro |= !!dst;
1148 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1149}
1150
1151/**
1152 * skb_dst_is_noref - Test if skb dst isn't refcounted
1153 * @skb: buffer
1154 */
1155static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1156{
1157 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1158}
1159
1160/**
1161 * skb_rtable - Returns the skb &rtable
1162 * @skb: buffer
1163 */
1164static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1165{
1166 return (struct rtable *)skb_dst(skb);
1167}
1168
1169/* For mangling skb->pkt_type from user space side from applications
1170 * such as nft, tc, etc, we only allow a conservative subset of
1171 * possible pkt_types to be set.
1172*/
1173static inline bool skb_pkt_type_ok(u32 ptype)
1174{
1175 return ptype <= PACKET_OTHERHOST;
1176}
1177
1178/**
1179 * skb_napi_id - Returns the skb's NAPI id
1180 * @skb: buffer
1181 */
1182static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1183{
1184#ifdef CONFIG_NET_RX_BUSY_POLL
1185 return skb->napi_id;
1186#else
1187 return 0;
1188#endif
1189}
1190
1191/**
1192 * skb_unref - decrement the skb's reference count
1193 * @skb: buffer
1194 *
1195 * Returns true if we can free the skb.
1196 */
1197static inline bool skb_unref(struct sk_buff *skb)
1198{
1199 if (unlikely(!skb))
1200 return false;
1201 if (likely(refcount_read(&skb->users) == 1))
1202 smp_rmb();
1203 else if (likely(!refcount_dec_and_test(&skb->users)))
1204 return false;
1205
1206 return true;
1207}
1208
1209void __fix_address
1210kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1211
1212/**
1213 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1214 * @skb: buffer to free
1215 */
1216static inline void kfree_skb(struct sk_buff *skb)
1217{
1218 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1219}
1220
1221void skb_release_head_state(struct sk_buff *skb);
1222void kfree_skb_list_reason(struct sk_buff *segs,
1223 enum skb_drop_reason reason);
1224void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1225void skb_tx_error(struct sk_buff *skb);
1226
1227static inline void kfree_skb_list(struct sk_buff *segs)
1228{
1229 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1230}
1231
1232#ifdef CONFIG_TRACEPOINTS
1233void consume_skb(struct sk_buff *skb);
1234#else
1235static inline void consume_skb(struct sk_buff *skb)
1236{
1237 return kfree_skb(skb);
1238}
1239#endif
1240
1241void __consume_stateless_skb(struct sk_buff *skb);
1242void __kfree_skb(struct sk_buff *skb);
1243extern struct kmem_cache *skbuff_head_cache;
1244
1245void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1246bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1247 bool *fragstolen, int *delta_truesize);
1248
1249struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1250 int node);
1251struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1252struct sk_buff *build_skb(void *data, unsigned int frag_size);
1253struct sk_buff *build_skb_around(struct sk_buff *skb,
1254 void *data, unsigned int frag_size);
1255void skb_attempt_defer_free(struct sk_buff *skb);
1256
1257struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1258struct sk_buff *slab_build_skb(void *data);
1259
1260/**
1261 * alloc_skb - allocate a network buffer
1262 * @size: size to allocate
1263 * @priority: allocation mask
1264 *
1265 * This function is a convenient wrapper around __alloc_skb().
1266 */
1267static inline struct sk_buff *alloc_skb(unsigned int size,
1268 gfp_t priority)
1269{
1270 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1271}
1272
1273struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1274 unsigned long data_len,
1275 int max_page_order,
1276 int *errcode,
1277 gfp_t gfp_mask);
1278struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1279
1280/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1281struct sk_buff_fclones {
1282 struct sk_buff skb1;
1283
1284 struct sk_buff skb2;
1285
1286 refcount_t fclone_ref;
1287};
1288
1289/**
1290 * skb_fclone_busy - check if fclone is busy
1291 * @sk: socket
1292 * @skb: buffer
1293 *
1294 * Returns true if skb is a fast clone, and its clone is not freed.
1295 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1296 * so we also check that this didnt happen.
1297 */
1298static inline bool skb_fclone_busy(const struct sock *sk,
1299 const struct sk_buff *skb)
1300{
1301 const struct sk_buff_fclones *fclones;
1302
1303 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1304
1305 return skb->fclone == SKB_FCLONE_ORIG &&
1306 refcount_read(&fclones->fclone_ref) > 1 &&
1307 READ_ONCE(fclones->skb2.sk) == sk;
1308}
1309
1310/**
1311 * alloc_skb_fclone - allocate a network buffer from fclone cache
1312 * @size: size to allocate
1313 * @priority: allocation mask
1314 *
1315 * This function is a convenient wrapper around __alloc_skb().
1316 */
1317static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1318 gfp_t priority)
1319{
1320 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1321}
1322
1323struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1324void skb_headers_offset_update(struct sk_buff *skb, int off);
1325int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1326struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1327void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1328struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1329struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1330 gfp_t gfp_mask, bool fclone);
1331static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1332 gfp_t gfp_mask)
1333{
1334 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1335}
1336
1337int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1338struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1339 unsigned int headroom);
1340struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1341struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1342 int newtailroom, gfp_t priority);
1343int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1344 int offset, int len);
1345int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1346 int offset, int len);
1347int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1348int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1349
1350/**
1351 * skb_pad - zero pad the tail of an skb
1352 * @skb: buffer to pad
1353 * @pad: space to pad
1354 *
1355 * Ensure that a buffer is followed by a padding area that is zero
1356 * filled. Used by network drivers which may DMA or transfer data
1357 * beyond the buffer end onto the wire.
1358 *
1359 * May return error in out of memory cases. The skb is freed on error.
1360 */
1361static inline int skb_pad(struct sk_buff *skb, int pad)
1362{
1363 return __skb_pad(skb, pad, true);
1364}
1365#define dev_kfree_skb(a) consume_skb(a)
1366
1367int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1368 int offset, size_t size);
1369
1370struct skb_seq_state {
1371 __u32 lower_offset;
1372 __u32 upper_offset;
1373 __u32 frag_idx;
1374 __u32 stepped_offset;
1375 struct sk_buff *root_skb;
1376 struct sk_buff *cur_skb;
1377 __u8 *frag_data;
1378 __u32 frag_off;
1379};
1380
1381void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1382 unsigned int to, struct skb_seq_state *st);
1383unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1384 struct skb_seq_state *st);
1385void skb_abort_seq_read(struct skb_seq_state *st);
1386
1387unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1388 unsigned int to, struct ts_config *config);
1389
1390/*
1391 * Packet hash types specify the type of hash in skb_set_hash.
1392 *
1393 * Hash types refer to the protocol layer addresses which are used to
1394 * construct a packet's hash. The hashes are used to differentiate or identify
1395 * flows of the protocol layer for the hash type. Hash types are either
1396 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1397 *
1398 * Properties of hashes:
1399 *
1400 * 1) Two packets in different flows have different hash values
1401 * 2) Two packets in the same flow should have the same hash value
1402 *
1403 * A hash at a higher layer is considered to be more specific. A driver should
1404 * set the most specific hash possible.
1405 *
1406 * A driver cannot indicate a more specific hash than the layer at which a hash
1407 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1408 *
1409 * A driver may indicate a hash level which is less specific than the
1410 * actual layer the hash was computed on. For instance, a hash computed
1411 * at L4 may be considered an L3 hash. This should only be done if the
1412 * driver can't unambiguously determine that the HW computed the hash at
1413 * the higher layer. Note that the "should" in the second property above
1414 * permits this.
1415 */
1416enum pkt_hash_types {
1417 PKT_HASH_TYPE_NONE, /* Undefined type */
1418 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1419 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1420 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1421};
1422
1423static inline void skb_clear_hash(struct sk_buff *skb)
1424{
1425 skb->hash = 0;
1426 skb->sw_hash = 0;
1427 skb->l4_hash = 0;
1428}
1429
1430static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1431{
1432 if (!skb->l4_hash)
1433 skb_clear_hash(skb);
1434}
1435
1436static inline void
1437__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1438{
1439 skb->l4_hash = is_l4;
1440 skb->sw_hash = is_sw;
1441 skb->hash = hash;
1442}
1443
1444static inline void
1445skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1446{
1447 /* Used by drivers to set hash from HW */
1448 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1449}
1450
1451static inline void
1452__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1453{
1454 __skb_set_hash(skb, hash, true, is_l4);
1455}
1456
1457void __skb_get_hash(struct sk_buff *skb);
1458u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1459u32 skb_get_poff(const struct sk_buff *skb);
1460u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1461 const struct flow_keys_basic *keys, int hlen);
1462__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1463 const void *data, int hlen_proto);
1464
1465static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1466 int thoff, u8 ip_proto)
1467{
1468 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1469}
1470
1471void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1472 const struct flow_dissector_key *key,
1473 unsigned int key_count);
1474
1475struct bpf_flow_dissector;
1476u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1477 __be16 proto, int nhoff, int hlen, unsigned int flags);
1478
1479bool __skb_flow_dissect(const struct net *net,
1480 const struct sk_buff *skb,
1481 struct flow_dissector *flow_dissector,
1482 void *target_container, const void *data,
1483 __be16 proto, int nhoff, int hlen, unsigned int flags);
1484
1485static inline bool skb_flow_dissect(const struct sk_buff *skb,
1486 struct flow_dissector *flow_dissector,
1487 void *target_container, unsigned int flags)
1488{
1489 return __skb_flow_dissect(NULL, skb, flow_dissector,
1490 target_container, NULL, 0, 0, 0, flags);
1491}
1492
1493static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1494 struct flow_keys *flow,
1495 unsigned int flags)
1496{
1497 memset(flow, 0, sizeof(*flow));
1498 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1499 flow, NULL, 0, 0, 0, flags);
1500}
1501
1502static inline bool
1503skb_flow_dissect_flow_keys_basic(const struct net *net,
1504 const struct sk_buff *skb,
1505 struct flow_keys_basic *flow,
1506 const void *data, __be16 proto,
1507 int nhoff, int hlen, unsigned int flags)
1508{
1509 memset(flow, 0, sizeof(*flow));
1510 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1511 data, proto, nhoff, hlen, flags);
1512}
1513
1514void skb_flow_dissect_meta(const struct sk_buff *skb,
1515 struct flow_dissector *flow_dissector,
1516 void *target_container);
1517
1518/* Gets a skb connection tracking info, ctinfo map should be a
1519 * map of mapsize to translate enum ip_conntrack_info states
1520 * to user states.
1521 */
1522void
1523skb_flow_dissect_ct(const struct sk_buff *skb,
1524 struct flow_dissector *flow_dissector,
1525 void *target_container,
1526 u16 *ctinfo_map, size_t mapsize,
1527 bool post_ct, u16 zone);
1528void
1529skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1530 struct flow_dissector *flow_dissector,
1531 void *target_container);
1532
1533void skb_flow_dissect_hash(const struct sk_buff *skb,
1534 struct flow_dissector *flow_dissector,
1535 void *target_container);
1536
1537static inline __u32 skb_get_hash(struct sk_buff *skb)
1538{
1539 if (!skb->l4_hash && !skb->sw_hash)
1540 __skb_get_hash(skb);
1541
1542 return skb->hash;
1543}
1544
1545static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1546{
1547 if (!skb->l4_hash && !skb->sw_hash) {
1548 struct flow_keys keys;
1549 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1550
1551 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1552 }
1553
1554 return skb->hash;
1555}
1556
1557__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1558 const siphash_key_t *perturb);
1559
1560static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1561{
1562 return skb->hash;
1563}
1564
1565static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1566{
1567 to->hash = from->hash;
1568 to->sw_hash = from->sw_hash;
1569 to->l4_hash = from->l4_hash;
1570};
1571
1572static inline void skb_copy_decrypted(struct sk_buff *to,
1573 const struct sk_buff *from)
1574{
1575#ifdef CONFIG_TLS_DEVICE
1576 to->decrypted = from->decrypted;
1577#endif
1578}
1579
1580#ifdef NET_SKBUFF_DATA_USES_OFFSET
1581static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1582{
1583 return skb->head + skb->end;
1584}
1585
1586static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1587{
1588 return skb->end;
1589}
1590
1591static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1592{
1593 skb->end = offset;
1594}
1595#else
1596static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1597{
1598 return skb->end;
1599}
1600
1601static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1602{
1603 return skb->end - skb->head;
1604}
1605
1606static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1607{
1608 skb->end = skb->head + offset;
1609}
1610#endif
1611
1612struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1613 struct ubuf_info *uarg);
1614
1615void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1616
1617void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1618 bool success);
1619
1620int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1621 struct sk_buff *skb, struct iov_iter *from,
1622 size_t length);
1623
1624static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1625 struct msghdr *msg, int len)
1626{
1627 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1628}
1629
1630int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1631 struct msghdr *msg, int len,
1632 struct ubuf_info *uarg);
1633
1634/* Internal */
1635#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1636
1637static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1638{
1639 return &skb_shinfo(skb)->hwtstamps;
1640}
1641
1642static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1643{
1644 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1645
1646 return is_zcopy ? skb_uarg(skb) : NULL;
1647}
1648
1649static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1650{
1651 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1652}
1653
1654static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1655{
1656 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1657}
1658
1659static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1660 const struct sk_buff *skb2)
1661{
1662 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1663}
1664
1665static inline void net_zcopy_get(struct ubuf_info *uarg)
1666{
1667 refcount_inc(&uarg->refcnt);
1668}
1669
1670static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1671{
1672 skb_shinfo(skb)->destructor_arg = uarg;
1673 skb_shinfo(skb)->flags |= uarg->flags;
1674}
1675
1676static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1677 bool *have_ref)
1678{
1679 if (skb && uarg && !skb_zcopy(skb)) {
1680 if (unlikely(have_ref && *have_ref))
1681 *have_ref = false;
1682 else
1683 net_zcopy_get(uarg);
1684 skb_zcopy_init(skb, uarg);
1685 }
1686}
1687
1688static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1689{
1690 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1691 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1692}
1693
1694static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1695{
1696 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1697}
1698
1699static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1700{
1701 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1702}
1703
1704static inline void net_zcopy_put(struct ubuf_info *uarg)
1705{
1706 if (uarg)
1707 uarg->callback(NULL, uarg, true);
1708}
1709
1710static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1711{
1712 if (uarg) {
1713 if (uarg->callback == msg_zerocopy_callback)
1714 msg_zerocopy_put_abort(uarg, have_uref);
1715 else if (have_uref)
1716 net_zcopy_put(uarg);
1717 }
1718}
1719
1720/* Release a reference on a zerocopy structure */
1721static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1722{
1723 struct ubuf_info *uarg = skb_zcopy(skb);
1724
1725 if (uarg) {
1726 if (!skb_zcopy_is_nouarg(skb))
1727 uarg->callback(skb, uarg, zerocopy_success);
1728
1729 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1730 }
1731}
1732
1733void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1734
1735static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1736{
1737 if (unlikely(skb_zcopy_managed(skb)))
1738 __skb_zcopy_downgrade_managed(skb);
1739}
1740
1741static inline void skb_mark_not_on_list(struct sk_buff *skb)
1742{
1743 skb->next = NULL;
1744}
1745
1746/* Iterate through singly-linked GSO fragments of an skb. */
1747#define skb_list_walk_safe(first, skb, next_skb) \
1748 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1749 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1750
1751static inline void skb_list_del_init(struct sk_buff *skb)
1752{
1753 __list_del_entry(&skb->list);
1754 skb_mark_not_on_list(skb);
1755}
1756
1757/**
1758 * skb_queue_empty - check if a queue is empty
1759 * @list: queue head
1760 *
1761 * Returns true if the queue is empty, false otherwise.
1762 */
1763static inline int skb_queue_empty(const struct sk_buff_head *list)
1764{
1765 return list->next == (const struct sk_buff *) list;
1766}
1767
1768/**
1769 * skb_queue_empty_lockless - check if a queue is empty
1770 * @list: queue head
1771 *
1772 * Returns true if the queue is empty, false otherwise.
1773 * This variant can be used in lockless contexts.
1774 */
1775static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1776{
1777 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1778}
1779
1780
1781/**
1782 * skb_queue_is_last - check if skb is the last entry in the queue
1783 * @list: queue head
1784 * @skb: buffer
1785 *
1786 * Returns true if @skb is the last buffer on the list.
1787 */
1788static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1789 const struct sk_buff *skb)
1790{
1791 return skb->next == (const struct sk_buff *) list;
1792}
1793
1794/**
1795 * skb_queue_is_first - check if skb is the first entry in the queue
1796 * @list: queue head
1797 * @skb: buffer
1798 *
1799 * Returns true if @skb is the first buffer on the list.
1800 */
1801static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1802 const struct sk_buff *skb)
1803{
1804 return skb->prev == (const struct sk_buff *) list;
1805}
1806
1807/**
1808 * skb_queue_next - return the next packet in the queue
1809 * @list: queue head
1810 * @skb: current buffer
1811 *
1812 * Return the next packet in @list after @skb. It is only valid to
1813 * call this if skb_queue_is_last() evaluates to false.
1814 */
1815static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1816 const struct sk_buff *skb)
1817{
1818 /* This BUG_ON may seem severe, but if we just return then we
1819 * are going to dereference garbage.
1820 */
1821 BUG_ON(skb_queue_is_last(list, skb));
1822 return skb->next;
1823}
1824
1825/**
1826 * skb_queue_prev - return the prev packet in the queue
1827 * @list: queue head
1828 * @skb: current buffer
1829 *
1830 * Return the prev packet in @list before @skb. It is only valid to
1831 * call this if skb_queue_is_first() evaluates to false.
1832 */
1833static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1834 const struct sk_buff *skb)
1835{
1836 /* This BUG_ON may seem severe, but if we just return then we
1837 * are going to dereference garbage.
1838 */
1839 BUG_ON(skb_queue_is_first(list, skb));
1840 return skb->prev;
1841}
1842
1843/**
1844 * skb_get - reference buffer
1845 * @skb: buffer to reference
1846 *
1847 * Makes another reference to a socket buffer and returns a pointer
1848 * to the buffer.
1849 */
1850static inline struct sk_buff *skb_get(struct sk_buff *skb)
1851{
1852 refcount_inc(&skb->users);
1853 return skb;
1854}
1855
1856/*
1857 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1858 */
1859
1860/**
1861 * skb_cloned - is the buffer a clone
1862 * @skb: buffer to check
1863 *
1864 * Returns true if the buffer was generated with skb_clone() and is
1865 * one of multiple shared copies of the buffer. Cloned buffers are
1866 * shared data so must not be written to under normal circumstances.
1867 */
1868static inline int skb_cloned(const struct sk_buff *skb)
1869{
1870 return skb->cloned &&
1871 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1872}
1873
1874static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1875{
1876 might_sleep_if(gfpflags_allow_blocking(pri));
1877
1878 if (skb_cloned(skb))
1879 return pskb_expand_head(skb, 0, 0, pri);
1880
1881 return 0;
1882}
1883
1884/* This variant of skb_unclone() makes sure skb->truesize
1885 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1886 *
1887 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1888 * when various debugging features are in place.
1889 */
1890int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1891static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1892{
1893 might_sleep_if(gfpflags_allow_blocking(pri));
1894
1895 if (skb_cloned(skb))
1896 return __skb_unclone_keeptruesize(skb, pri);
1897 return 0;
1898}
1899
1900/**
1901 * skb_header_cloned - is the header a clone
1902 * @skb: buffer to check
1903 *
1904 * Returns true if modifying the header part of the buffer requires
1905 * the data to be copied.
1906 */
1907static inline int skb_header_cloned(const struct sk_buff *skb)
1908{
1909 int dataref;
1910
1911 if (!skb->cloned)
1912 return 0;
1913
1914 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1915 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1916 return dataref != 1;
1917}
1918
1919static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1920{
1921 might_sleep_if(gfpflags_allow_blocking(pri));
1922
1923 if (skb_header_cloned(skb))
1924 return pskb_expand_head(skb, 0, 0, pri);
1925
1926 return 0;
1927}
1928
1929/**
1930 * __skb_header_release() - allow clones to use the headroom
1931 * @skb: buffer to operate on
1932 *
1933 * See "DOC: dataref and headerless skbs".
1934 */
1935static inline void __skb_header_release(struct sk_buff *skb)
1936{
1937 skb->nohdr = 1;
1938 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1939}
1940
1941
1942/**
1943 * skb_shared - is the buffer shared
1944 * @skb: buffer to check
1945 *
1946 * Returns true if more than one person has a reference to this
1947 * buffer.
1948 */
1949static inline int skb_shared(const struct sk_buff *skb)
1950{
1951 return refcount_read(&skb->users) != 1;
1952}
1953
1954/**
1955 * skb_share_check - check if buffer is shared and if so clone it
1956 * @skb: buffer to check
1957 * @pri: priority for memory allocation
1958 *
1959 * If the buffer is shared the buffer is cloned and the old copy
1960 * drops a reference. A new clone with a single reference is returned.
1961 * If the buffer is not shared the original buffer is returned. When
1962 * being called from interrupt status or with spinlocks held pri must
1963 * be GFP_ATOMIC.
1964 *
1965 * NULL is returned on a memory allocation failure.
1966 */
1967static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1968{
1969 might_sleep_if(gfpflags_allow_blocking(pri));
1970 if (skb_shared(skb)) {
1971 struct sk_buff *nskb = skb_clone(skb, pri);
1972
1973 if (likely(nskb))
1974 consume_skb(skb);
1975 else
1976 kfree_skb(skb);
1977 skb = nskb;
1978 }
1979 return skb;
1980}
1981
1982/*
1983 * Copy shared buffers into a new sk_buff. We effectively do COW on
1984 * packets to handle cases where we have a local reader and forward
1985 * and a couple of other messy ones. The normal one is tcpdumping
1986 * a packet thats being forwarded.
1987 */
1988
1989/**
1990 * skb_unshare - make a copy of a shared buffer
1991 * @skb: buffer to check
1992 * @pri: priority for memory allocation
1993 *
1994 * If the socket buffer is a clone then this function creates a new
1995 * copy of the data, drops a reference count on the old copy and returns
1996 * the new copy with the reference count at 1. If the buffer is not a clone
1997 * the original buffer is returned. When called with a spinlock held or
1998 * from interrupt state @pri must be %GFP_ATOMIC
1999 *
2000 * %NULL is returned on a memory allocation failure.
2001 */
2002static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2003 gfp_t pri)
2004{
2005 might_sleep_if(gfpflags_allow_blocking(pri));
2006 if (skb_cloned(skb)) {
2007 struct sk_buff *nskb = skb_copy(skb, pri);
2008
2009 /* Free our shared copy */
2010 if (likely(nskb))
2011 consume_skb(skb);
2012 else
2013 kfree_skb(skb);
2014 skb = nskb;
2015 }
2016 return skb;
2017}
2018
2019/**
2020 * skb_peek - peek at the head of an &sk_buff_head
2021 * @list_: list to peek at
2022 *
2023 * Peek an &sk_buff. Unlike most other operations you _MUST_
2024 * be careful with this one. A peek leaves the buffer on the
2025 * list and someone else may run off with it. You must hold
2026 * the appropriate locks or have a private queue to do this.
2027 *
2028 * Returns %NULL for an empty list or a pointer to the head element.
2029 * The reference count is not incremented and the reference is therefore
2030 * volatile. Use with caution.
2031 */
2032static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2033{
2034 struct sk_buff *skb = list_->next;
2035
2036 if (skb == (struct sk_buff *)list_)
2037 skb = NULL;
2038 return skb;
2039}
2040
2041/**
2042 * __skb_peek - peek at the head of a non-empty &sk_buff_head
2043 * @list_: list to peek at
2044 *
2045 * Like skb_peek(), but the caller knows that the list is not empty.
2046 */
2047static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2048{
2049 return list_->next;
2050}
2051
2052/**
2053 * skb_peek_next - peek skb following the given one from a queue
2054 * @skb: skb to start from
2055 * @list_: list to peek at
2056 *
2057 * Returns %NULL when the end of the list is met or a pointer to the
2058 * next element. The reference count is not incremented and the
2059 * reference is therefore volatile. Use with caution.
2060 */
2061static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2062 const struct sk_buff_head *list_)
2063{
2064 struct sk_buff *next = skb->next;
2065
2066 if (next == (struct sk_buff *)list_)
2067 next = NULL;
2068 return next;
2069}
2070
2071/**
2072 * skb_peek_tail - peek at the tail of an &sk_buff_head
2073 * @list_: list to peek at
2074 *
2075 * Peek an &sk_buff. Unlike most other operations you _MUST_
2076 * be careful with this one. A peek leaves the buffer on the
2077 * list and someone else may run off with it. You must hold
2078 * the appropriate locks or have a private queue to do this.
2079 *
2080 * Returns %NULL for an empty list or a pointer to the tail element.
2081 * The reference count is not incremented and the reference is therefore
2082 * volatile. Use with caution.
2083 */
2084static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2085{
2086 struct sk_buff *skb = READ_ONCE(list_->prev);
2087
2088 if (skb == (struct sk_buff *)list_)
2089 skb = NULL;
2090 return skb;
2091
2092}
2093
2094/**
2095 * skb_queue_len - get queue length
2096 * @list_: list to measure
2097 *
2098 * Return the length of an &sk_buff queue.
2099 */
2100static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2101{
2102 return list_->qlen;
2103}
2104
2105/**
2106 * skb_queue_len_lockless - get queue length
2107 * @list_: list to measure
2108 *
2109 * Return the length of an &sk_buff queue.
2110 * This variant can be used in lockless contexts.
2111 */
2112static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2113{
2114 return READ_ONCE(list_->qlen);
2115}
2116
2117/**
2118 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2119 * @list: queue to initialize
2120 *
2121 * This initializes only the list and queue length aspects of
2122 * an sk_buff_head object. This allows to initialize the list
2123 * aspects of an sk_buff_head without reinitializing things like
2124 * the spinlock. It can also be used for on-stack sk_buff_head
2125 * objects where the spinlock is known to not be used.
2126 */
2127static inline void __skb_queue_head_init(struct sk_buff_head *list)
2128{
2129 list->prev = list->next = (struct sk_buff *)list;
2130 list->qlen = 0;
2131}
2132
2133/*
2134 * This function creates a split out lock class for each invocation;
2135 * this is needed for now since a whole lot of users of the skb-queue
2136 * infrastructure in drivers have different locking usage (in hardirq)
2137 * than the networking core (in softirq only). In the long run either the
2138 * network layer or drivers should need annotation to consolidate the
2139 * main types of usage into 3 classes.
2140 */
2141static inline void skb_queue_head_init(struct sk_buff_head *list)
2142{
2143 spin_lock_init(&list->lock);
2144 __skb_queue_head_init(list);
2145}
2146
2147static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2148 struct lock_class_key *class)
2149{
2150 skb_queue_head_init(list);
2151 lockdep_set_class(&list->lock, class);
2152}
2153
2154/*
2155 * Insert an sk_buff on a list.
2156 *
2157 * The "__skb_xxxx()" functions are the non-atomic ones that
2158 * can only be called with interrupts disabled.
2159 */
2160static inline void __skb_insert(struct sk_buff *newsk,
2161 struct sk_buff *prev, struct sk_buff *next,
2162 struct sk_buff_head *list)
2163{
2164 /* See skb_queue_empty_lockless() and skb_peek_tail()
2165 * for the opposite READ_ONCE()
2166 */
2167 WRITE_ONCE(newsk->next, next);
2168 WRITE_ONCE(newsk->prev, prev);
2169 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2170 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2171 WRITE_ONCE(list->qlen, list->qlen + 1);
2172}
2173
2174static inline void __skb_queue_splice(const struct sk_buff_head *list,
2175 struct sk_buff *prev,
2176 struct sk_buff *next)
2177{
2178 struct sk_buff *first = list->next;
2179 struct sk_buff *last = list->prev;
2180
2181 WRITE_ONCE(first->prev, prev);
2182 WRITE_ONCE(prev->next, first);
2183
2184 WRITE_ONCE(last->next, next);
2185 WRITE_ONCE(next->prev, last);
2186}
2187
2188/**
2189 * skb_queue_splice - join two skb lists, this is designed for stacks
2190 * @list: the new list to add
2191 * @head: the place to add it in the first list
2192 */
2193static inline void skb_queue_splice(const struct sk_buff_head *list,
2194 struct sk_buff_head *head)
2195{
2196 if (!skb_queue_empty(list)) {
2197 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2198 head->qlen += list->qlen;
2199 }
2200}
2201
2202/**
2203 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2204 * @list: the new list to add
2205 * @head: the place to add it in the first list
2206 *
2207 * The list at @list is reinitialised
2208 */
2209static inline void skb_queue_splice_init(struct sk_buff_head *list,
2210 struct sk_buff_head *head)
2211{
2212 if (!skb_queue_empty(list)) {
2213 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2214 head->qlen += list->qlen;
2215 __skb_queue_head_init(list);
2216 }
2217}
2218
2219/**
2220 * skb_queue_splice_tail - join two skb lists, each list being a queue
2221 * @list: the new list to add
2222 * @head: the place to add it in the first list
2223 */
2224static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2225 struct sk_buff_head *head)
2226{
2227 if (!skb_queue_empty(list)) {
2228 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2229 head->qlen += list->qlen;
2230 }
2231}
2232
2233/**
2234 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2235 * @list: the new list to add
2236 * @head: the place to add it in the first list
2237 *
2238 * Each of the lists is a queue.
2239 * The list at @list is reinitialised
2240 */
2241static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2242 struct sk_buff_head *head)
2243{
2244 if (!skb_queue_empty(list)) {
2245 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2246 head->qlen += list->qlen;
2247 __skb_queue_head_init(list);
2248 }
2249}
2250
2251/**
2252 * __skb_queue_after - queue a buffer at the list head
2253 * @list: list to use
2254 * @prev: place after this buffer
2255 * @newsk: buffer to queue
2256 *
2257 * Queue a buffer int the middle of a list. This function takes no locks
2258 * and you must therefore hold required locks before calling it.
2259 *
2260 * A buffer cannot be placed on two lists at the same time.
2261 */
2262static inline void __skb_queue_after(struct sk_buff_head *list,
2263 struct sk_buff *prev,
2264 struct sk_buff *newsk)
2265{
2266 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2267}
2268
2269void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2270 struct sk_buff_head *list);
2271
2272static inline void __skb_queue_before(struct sk_buff_head *list,
2273 struct sk_buff *next,
2274 struct sk_buff *newsk)
2275{
2276 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2277}
2278
2279/**
2280 * __skb_queue_head - queue a buffer at the list head
2281 * @list: list to use
2282 * @newsk: buffer to queue
2283 *
2284 * Queue a buffer at the start of a list. This function takes no locks
2285 * and you must therefore hold required locks before calling it.
2286 *
2287 * A buffer cannot be placed on two lists at the same time.
2288 */
2289static inline void __skb_queue_head(struct sk_buff_head *list,
2290 struct sk_buff *newsk)
2291{
2292 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2293}
2294void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2295
2296/**
2297 * __skb_queue_tail - queue a buffer at the list tail
2298 * @list: list to use
2299 * @newsk: buffer to queue
2300 *
2301 * Queue a buffer at the end of a list. This function takes no locks
2302 * and you must therefore hold required locks before calling it.
2303 *
2304 * A buffer cannot be placed on two lists at the same time.
2305 */
2306static inline void __skb_queue_tail(struct sk_buff_head *list,
2307 struct sk_buff *newsk)
2308{
2309 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2310}
2311void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2312
2313/*
2314 * remove sk_buff from list. _Must_ be called atomically, and with
2315 * the list known..
2316 */
2317void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2318static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2319{
2320 struct sk_buff *next, *prev;
2321
2322 WRITE_ONCE(list->qlen, list->qlen - 1);
2323 next = skb->next;
2324 prev = skb->prev;
2325 skb->next = skb->prev = NULL;
2326 WRITE_ONCE(next->prev, prev);
2327 WRITE_ONCE(prev->next, next);
2328}
2329
2330/**
2331 * __skb_dequeue - remove from the head of the queue
2332 * @list: list to dequeue from
2333 *
2334 * Remove the head of the list. This function does not take any locks
2335 * so must be used with appropriate locks held only. The head item is
2336 * returned or %NULL if the list is empty.
2337 */
2338static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2339{
2340 struct sk_buff *skb = skb_peek(list);
2341 if (skb)
2342 __skb_unlink(skb, list);
2343 return skb;
2344}
2345struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2346
2347/**
2348 * __skb_dequeue_tail - remove from the tail of the queue
2349 * @list: list to dequeue from
2350 *
2351 * Remove the tail of the list. This function does not take any locks
2352 * so must be used with appropriate locks held only. The tail item is
2353 * returned or %NULL if the list is empty.
2354 */
2355static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2356{
2357 struct sk_buff *skb = skb_peek_tail(list);
2358 if (skb)
2359 __skb_unlink(skb, list);
2360 return skb;
2361}
2362struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2363
2364
2365static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2366{
2367 return skb->data_len;
2368}
2369
2370static inline unsigned int skb_headlen(const struct sk_buff *skb)
2371{
2372 return skb->len - skb->data_len;
2373}
2374
2375static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2376{
2377 unsigned int i, len = 0;
2378
2379 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2380 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2381 return len;
2382}
2383
2384static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2385{
2386 return skb_headlen(skb) + __skb_pagelen(skb);
2387}
2388
2389static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2390 int i, struct page *page,
2391 int off, int size)
2392{
2393 skb_frag_t *frag = &shinfo->frags[i];
2394
2395 /*
2396 * Propagate page pfmemalloc to the skb if we can. The problem is
2397 * that not all callers have unique ownership of the page but rely
2398 * on page_is_pfmemalloc doing the right thing(tm).
2399 */
2400 frag->bv_page = page;
2401 frag->bv_offset = off;
2402 skb_frag_size_set(frag, size);
2403}
2404
2405/**
2406 * skb_len_add - adds a number to len fields of skb
2407 * @skb: buffer to add len to
2408 * @delta: number of bytes to add
2409 */
2410static inline void skb_len_add(struct sk_buff *skb, int delta)
2411{
2412 skb->len += delta;
2413 skb->data_len += delta;
2414 skb->truesize += delta;
2415}
2416
2417/**
2418 * __skb_fill_page_desc - initialise a paged fragment in an skb
2419 * @skb: buffer containing fragment to be initialised
2420 * @i: paged fragment index to initialise
2421 * @page: the page to use for this fragment
2422 * @off: the offset to the data with @page
2423 * @size: the length of the data
2424 *
2425 * Initialises the @i'th fragment of @skb to point to &size bytes at
2426 * offset @off within @page.
2427 *
2428 * Does not take any additional reference on the fragment.
2429 */
2430static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2431 struct page *page, int off, int size)
2432{
2433 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2434 page = compound_head(page);
2435 if (page_is_pfmemalloc(page))
2436 skb->pfmemalloc = true;
2437}
2438
2439/**
2440 * skb_fill_page_desc - initialise a paged fragment in an skb
2441 * @skb: buffer containing fragment to be initialised
2442 * @i: paged fragment index to initialise
2443 * @page: the page to use for this fragment
2444 * @off: the offset to the data with @page
2445 * @size: the length of the data
2446 *
2447 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2448 * @skb to point to @size bytes at offset @off within @page. In
2449 * addition updates @skb such that @i is the last fragment.
2450 *
2451 * Does not take any additional reference on the fragment.
2452 */
2453static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2454 struct page *page, int off, int size)
2455{
2456 __skb_fill_page_desc(skb, i, page, off, size);
2457 skb_shinfo(skb)->nr_frags = i + 1;
2458}
2459
2460/**
2461 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2462 * @skb: buffer containing fragment to be initialised
2463 * @i: paged fragment index to initialise
2464 * @page: the page to use for this fragment
2465 * @off: the offset to the data with @page
2466 * @size: the length of the data
2467 *
2468 * Variant of skb_fill_page_desc() which does not deal with
2469 * pfmemalloc, if page is not owned by us.
2470 */
2471static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2472 struct page *page, int off,
2473 int size)
2474{
2475 struct skb_shared_info *shinfo = skb_shinfo(skb);
2476
2477 __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2478 shinfo->nr_frags = i + 1;
2479}
2480
2481void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2482 int size, unsigned int truesize);
2483
2484void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2485 unsigned int truesize);
2486
2487#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2488
2489#ifdef NET_SKBUFF_DATA_USES_OFFSET
2490static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2491{
2492 return skb->head + skb->tail;
2493}
2494
2495static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2496{
2497 skb->tail = skb->data - skb->head;
2498}
2499
2500static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2501{
2502 skb_reset_tail_pointer(skb);
2503 skb->tail += offset;
2504}
2505
2506#else /* NET_SKBUFF_DATA_USES_OFFSET */
2507static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2508{
2509 return skb->tail;
2510}
2511
2512static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2513{
2514 skb->tail = skb->data;
2515}
2516
2517static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2518{
2519 skb->tail = skb->data + offset;
2520}
2521
2522#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2523
2524static inline void skb_assert_len(struct sk_buff *skb)
2525{
2526#ifdef CONFIG_DEBUG_NET
2527 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2528 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2529#endif /* CONFIG_DEBUG_NET */
2530}
2531
2532/*
2533 * Add data to an sk_buff
2534 */
2535void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2536void *skb_put(struct sk_buff *skb, unsigned int len);
2537static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2538{
2539 void *tmp = skb_tail_pointer(skb);
2540 SKB_LINEAR_ASSERT(skb);
2541 skb->tail += len;
2542 skb->len += len;
2543 return tmp;
2544}
2545
2546static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2547{
2548 void *tmp = __skb_put(skb, len);
2549
2550 memset(tmp, 0, len);
2551 return tmp;
2552}
2553
2554static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2555 unsigned int len)
2556{
2557 void *tmp = __skb_put(skb, len);
2558
2559 memcpy(tmp, data, len);
2560 return tmp;
2561}
2562
2563static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2564{
2565 *(u8 *)__skb_put(skb, 1) = val;
2566}
2567
2568static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2569{
2570 void *tmp = skb_put(skb, len);
2571
2572 memset(tmp, 0, len);
2573
2574 return tmp;
2575}
2576
2577static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2578 unsigned int len)
2579{
2580 void *tmp = skb_put(skb, len);
2581
2582 memcpy(tmp, data, len);
2583
2584 return tmp;
2585}
2586
2587static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2588{
2589 *(u8 *)skb_put(skb, 1) = val;
2590}
2591
2592void *skb_push(struct sk_buff *skb, unsigned int len);
2593static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2594{
2595 skb->data -= len;
2596 skb->len += len;
2597 return skb->data;
2598}
2599
2600void *skb_pull(struct sk_buff *skb, unsigned int len);
2601static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2602{
2603 skb->len -= len;
2604 if (unlikely(skb->len < skb->data_len)) {
2605#if defined(CONFIG_DEBUG_NET)
2606 skb->len += len;
2607 pr_err("__skb_pull(len=%u)\n", len);
2608 skb_dump(KERN_ERR, skb, false);
2609#endif
2610 BUG();
2611 }
2612 return skb->data += len;
2613}
2614
2615static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2616{
2617 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2618}
2619
2620void *skb_pull_data(struct sk_buff *skb, size_t len);
2621
2622void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2623
2624static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2625{
2626 if (likely(len <= skb_headlen(skb)))
2627 return true;
2628 if (unlikely(len > skb->len))
2629 return false;
2630 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2631}
2632
2633static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2634{
2635 if (!pskb_may_pull(skb, len))
2636 return NULL;
2637
2638 skb->len -= len;
2639 return skb->data += len;
2640}
2641
2642void skb_condense(struct sk_buff *skb);
2643
2644/**
2645 * skb_headroom - bytes at buffer head
2646 * @skb: buffer to check
2647 *
2648 * Return the number of bytes of free space at the head of an &sk_buff.
2649 */
2650static inline unsigned int skb_headroom(const struct sk_buff *skb)
2651{
2652 return skb->data - skb->head;
2653}
2654
2655/**
2656 * skb_tailroom - bytes at buffer end
2657 * @skb: buffer to check
2658 *
2659 * Return the number of bytes of free space at the tail of an sk_buff
2660 */
2661static inline int skb_tailroom(const struct sk_buff *skb)
2662{
2663 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2664}
2665
2666/**
2667 * skb_availroom - bytes at buffer end
2668 * @skb: buffer to check
2669 *
2670 * Return the number of bytes of free space at the tail of an sk_buff
2671 * allocated by sk_stream_alloc()
2672 */
2673static inline int skb_availroom(const struct sk_buff *skb)
2674{
2675 if (skb_is_nonlinear(skb))
2676 return 0;
2677
2678 return skb->end - skb->tail - skb->reserved_tailroom;
2679}
2680
2681/**
2682 * skb_reserve - adjust headroom
2683 * @skb: buffer to alter
2684 * @len: bytes to move
2685 *
2686 * Increase the headroom of an empty &sk_buff by reducing the tail
2687 * room. This is only allowed for an empty buffer.
2688 */
2689static inline void skb_reserve(struct sk_buff *skb, int len)
2690{
2691 skb->data += len;
2692 skb->tail += len;
2693}
2694
2695/**
2696 * skb_tailroom_reserve - adjust reserved_tailroom
2697 * @skb: buffer to alter
2698 * @mtu: maximum amount of headlen permitted
2699 * @needed_tailroom: minimum amount of reserved_tailroom
2700 *
2701 * Set reserved_tailroom so that headlen can be as large as possible but
2702 * not larger than mtu and tailroom cannot be smaller than
2703 * needed_tailroom.
2704 * The required headroom should already have been reserved before using
2705 * this function.
2706 */
2707static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2708 unsigned int needed_tailroom)
2709{
2710 SKB_LINEAR_ASSERT(skb);
2711 if (mtu < skb_tailroom(skb) - needed_tailroom)
2712 /* use at most mtu */
2713 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2714 else
2715 /* use up to all available space */
2716 skb->reserved_tailroom = needed_tailroom;
2717}
2718
2719#define ENCAP_TYPE_ETHER 0
2720#define ENCAP_TYPE_IPPROTO 1
2721
2722static inline void skb_set_inner_protocol(struct sk_buff *skb,
2723 __be16 protocol)
2724{
2725 skb->inner_protocol = protocol;
2726 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2727}
2728
2729static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2730 __u8 ipproto)
2731{
2732 skb->inner_ipproto = ipproto;
2733 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2734}
2735
2736static inline void skb_reset_inner_headers(struct sk_buff *skb)
2737{
2738 skb->inner_mac_header = skb->mac_header;
2739 skb->inner_network_header = skb->network_header;
2740 skb->inner_transport_header = skb->transport_header;
2741}
2742
2743static inline void skb_reset_mac_len(struct sk_buff *skb)
2744{
2745 skb->mac_len = skb->network_header - skb->mac_header;
2746}
2747
2748static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2749 *skb)
2750{
2751 return skb->head + skb->inner_transport_header;
2752}
2753
2754static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2755{
2756 return skb_inner_transport_header(skb) - skb->data;
2757}
2758
2759static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2760{
2761 skb->inner_transport_header = skb->data - skb->head;
2762}
2763
2764static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2765 const int offset)
2766{
2767 skb_reset_inner_transport_header(skb);
2768 skb->inner_transport_header += offset;
2769}
2770
2771static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2772{
2773 return skb->head + skb->inner_network_header;
2774}
2775
2776static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2777{
2778 skb->inner_network_header = skb->data - skb->head;
2779}
2780
2781static inline void skb_set_inner_network_header(struct sk_buff *skb,
2782 const int offset)
2783{
2784 skb_reset_inner_network_header(skb);
2785 skb->inner_network_header += offset;
2786}
2787
2788static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2789{
2790 return skb->head + skb->inner_mac_header;
2791}
2792
2793static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2794{
2795 skb->inner_mac_header = skb->data - skb->head;
2796}
2797
2798static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2799 const int offset)
2800{
2801 skb_reset_inner_mac_header(skb);
2802 skb->inner_mac_header += offset;
2803}
2804static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2805{
2806 return skb->transport_header != (typeof(skb->transport_header))~0U;
2807}
2808
2809static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2810{
2811 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2812 return skb->head + skb->transport_header;
2813}
2814
2815static inline void skb_reset_transport_header(struct sk_buff *skb)
2816{
2817 skb->transport_header = skb->data - skb->head;
2818}
2819
2820static inline void skb_set_transport_header(struct sk_buff *skb,
2821 const int offset)
2822{
2823 skb_reset_transport_header(skb);
2824 skb->transport_header += offset;
2825}
2826
2827static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2828{
2829 return skb->head + skb->network_header;
2830}
2831
2832static inline void skb_reset_network_header(struct sk_buff *skb)
2833{
2834 skb->network_header = skb->data - skb->head;
2835}
2836
2837static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2838{
2839 skb_reset_network_header(skb);
2840 skb->network_header += offset;
2841}
2842
2843static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2844{
2845 return skb->mac_header != (typeof(skb->mac_header))~0U;
2846}
2847
2848static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2849{
2850 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2851 return skb->head + skb->mac_header;
2852}
2853
2854static inline int skb_mac_offset(const struct sk_buff *skb)
2855{
2856 return skb_mac_header(skb) - skb->data;
2857}
2858
2859static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2860{
2861 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2862 return skb->network_header - skb->mac_header;
2863}
2864
2865static inline void skb_unset_mac_header(struct sk_buff *skb)
2866{
2867 skb->mac_header = (typeof(skb->mac_header))~0U;
2868}
2869
2870static inline void skb_reset_mac_header(struct sk_buff *skb)
2871{
2872 skb->mac_header = skb->data - skb->head;
2873}
2874
2875static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2876{
2877 skb_reset_mac_header(skb);
2878 skb->mac_header += offset;
2879}
2880
2881static inline void skb_pop_mac_header(struct sk_buff *skb)
2882{
2883 skb->mac_header = skb->network_header;
2884}
2885
2886static inline void skb_probe_transport_header(struct sk_buff *skb)
2887{
2888 struct flow_keys_basic keys;
2889
2890 if (skb_transport_header_was_set(skb))
2891 return;
2892
2893 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2894 NULL, 0, 0, 0, 0))
2895 skb_set_transport_header(skb, keys.control.thoff);
2896}
2897
2898static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2899{
2900 if (skb_mac_header_was_set(skb)) {
2901 const unsigned char *old_mac = skb_mac_header(skb);
2902
2903 skb_set_mac_header(skb, -skb->mac_len);
2904 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2905 }
2906}
2907
2908static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2909{
2910 return skb->csum_start - skb_headroom(skb);
2911}
2912
2913static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2914{
2915 return skb->head + skb->csum_start;
2916}
2917
2918static inline int skb_transport_offset(const struct sk_buff *skb)
2919{
2920 return skb_transport_header(skb) - skb->data;
2921}
2922
2923static inline u32 skb_network_header_len(const struct sk_buff *skb)
2924{
2925 return skb->transport_header - skb->network_header;
2926}
2927
2928static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2929{
2930 return skb->inner_transport_header - skb->inner_network_header;
2931}
2932
2933static inline int skb_network_offset(const struct sk_buff *skb)
2934{
2935 return skb_network_header(skb) - skb->data;
2936}
2937
2938static inline int skb_inner_network_offset(const struct sk_buff *skb)
2939{
2940 return skb_inner_network_header(skb) - skb->data;
2941}
2942
2943static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2944{
2945 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2946}
2947
2948/*
2949 * CPUs often take a performance hit when accessing unaligned memory
2950 * locations. The actual performance hit varies, it can be small if the
2951 * hardware handles it or large if we have to take an exception and fix it
2952 * in software.
2953 *
2954 * Since an ethernet header is 14 bytes network drivers often end up with
2955 * the IP header at an unaligned offset. The IP header can be aligned by
2956 * shifting the start of the packet by 2 bytes. Drivers should do this
2957 * with:
2958 *
2959 * skb_reserve(skb, NET_IP_ALIGN);
2960 *
2961 * The downside to this alignment of the IP header is that the DMA is now
2962 * unaligned. On some architectures the cost of an unaligned DMA is high
2963 * and this cost outweighs the gains made by aligning the IP header.
2964 *
2965 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2966 * to be overridden.
2967 */
2968#ifndef NET_IP_ALIGN
2969#define NET_IP_ALIGN 2
2970#endif
2971
2972/*
2973 * The networking layer reserves some headroom in skb data (via
2974 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2975 * the header has to grow. In the default case, if the header has to grow
2976 * 32 bytes or less we avoid the reallocation.
2977 *
2978 * Unfortunately this headroom changes the DMA alignment of the resulting
2979 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2980 * on some architectures. An architecture can override this value,
2981 * perhaps setting it to a cacheline in size (since that will maintain
2982 * cacheline alignment of the DMA). It must be a power of 2.
2983 *
2984 * Various parts of the networking layer expect at least 32 bytes of
2985 * headroom, you should not reduce this.
2986 *
2987 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2988 * to reduce average number of cache lines per packet.
2989 * get_rps_cpu() for example only access one 64 bytes aligned block :
2990 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2991 */
2992#ifndef NET_SKB_PAD
2993#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2994#endif
2995
2996int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2997
2998static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2999{
3000 if (WARN_ON(skb_is_nonlinear(skb)))
3001 return;
3002 skb->len = len;
3003 skb_set_tail_pointer(skb, len);
3004}
3005
3006static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3007{
3008 __skb_set_length(skb, len);
3009}
3010
3011void skb_trim(struct sk_buff *skb, unsigned int len);
3012
3013static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3014{
3015 if (skb->data_len)
3016 return ___pskb_trim(skb, len);
3017 __skb_trim(skb, len);
3018 return 0;
3019}
3020
3021static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3022{
3023 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3024}
3025
3026/**
3027 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3028 * @skb: buffer to alter
3029 * @len: new length
3030 *
3031 * This is identical to pskb_trim except that the caller knows that
3032 * the skb is not cloned so we should never get an error due to out-
3033 * of-memory.
3034 */
3035static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3036{
3037 int err = pskb_trim(skb, len);
3038 BUG_ON(err);
3039}
3040
3041static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3042{
3043 unsigned int diff = len - skb->len;
3044
3045 if (skb_tailroom(skb) < diff) {
3046 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3047 GFP_ATOMIC);
3048 if (ret)
3049 return ret;
3050 }
3051 __skb_set_length(skb, len);
3052 return 0;
3053}
3054
3055/**
3056 * skb_orphan - orphan a buffer
3057 * @skb: buffer to orphan
3058 *
3059 * If a buffer currently has an owner then we call the owner's
3060 * destructor function and make the @skb unowned. The buffer continues
3061 * to exist but is no longer charged to its former owner.
3062 */
3063static inline void skb_orphan(struct sk_buff *skb)
3064{
3065 if (skb->destructor) {
3066 skb->destructor(skb);
3067 skb->destructor = NULL;
3068 skb->sk = NULL;
3069 } else {
3070 BUG_ON(skb->sk);
3071 }
3072}
3073
3074/**
3075 * skb_orphan_frags - orphan the frags contained in a buffer
3076 * @skb: buffer to orphan frags from
3077 * @gfp_mask: allocation mask for replacement pages
3078 *
3079 * For each frag in the SKB which needs a destructor (i.e. has an
3080 * owner) create a copy of that frag and release the original
3081 * page by calling the destructor.
3082 */
3083static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3084{
3085 if (likely(!skb_zcopy(skb)))
3086 return 0;
3087 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3088 return 0;
3089 return skb_copy_ubufs(skb, gfp_mask);
3090}
3091
3092/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3093static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3094{
3095 if (likely(!skb_zcopy(skb)))
3096 return 0;
3097 return skb_copy_ubufs(skb, gfp_mask);
3098}
3099
3100/**
3101 * __skb_queue_purge - empty a list
3102 * @list: list to empty
3103 *
3104 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3105 * the list and one reference dropped. This function does not take the
3106 * list lock and the caller must hold the relevant locks to use it.
3107 */
3108static inline void __skb_queue_purge(struct sk_buff_head *list)
3109{
3110 struct sk_buff *skb;
3111 while ((skb = __skb_dequeue(list)) != NULL)
3112 kfree_skb(skb);
3113}
3114void skb_queue_purge(struct sk_buff_head *list);
3115
3116unsigned int skb_rbtree_purge(struct rb_root *root);
3117
3118void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3119
3120/**
3121 * netdev_alloc_frag - allocate a page fragment
3122 * @fragsz: fragment size
3123 *
3124 * Allocates a frag from a page for receive buffer.
3125 * Uses GFP_ATOMIC allocations.
3126 */
3127static inline void *netdev_alloc_frag(unsigned int fragsz)
3128{
3129 return __netdev_alloc_frag_align(fragsz, ~0u);
3130}
3131
3132static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3133 unsigned int align)
3134{
3135 WARN_ON_ONCE(!is_power_of_2(align));
3136 return __netdev_alloc_frag_align(fragsz, -align);
3137}
3138
3139struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3140 gfp_t gfp_mask);
3141
3142/**
3143 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
3144 * @dev: network device to receive on
3145 * @length: length to allocate
3146 *
3147 * Allocate a new &sk_buff and assign it a usage count of one. The
3148 * buffer has unspecified headroom built in. Users should allocate
3149 * the headroom they think they need without accounting for the
3150 * built in space. The built in space is used for optimisations.
3151 *
3152 * %NULL is returned if there is no free memory. Although this function
3153 * allocates memory it can be called from an interrupt.
3154 */
3155static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3156 unsigned int length)
3157{
3158 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3159}
3160
3161/* legacy helper around __netdev_alloc_skb() */
3162static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3163 gfp_t gfp_mask)
3164{
3165 return __netdev_alloc_skb(NULL, length, gfp_mask);
3166}
3167
3168/* legacy helper around netdev_alloc_skb() */
3169static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3170{
3171 return netdev_alloc_skb(NULL, length);
3172}
3173
3174
3175static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3176 unsigned int length, gfp_t gfp)
3177{
3178 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3179
3180 if (NET_IP_ALIGN && skb)
3181 skb_reserve(skb, NET_IP_ALIGN);
3182 return skb;
3183}
3184
3185static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3186 unsigned int length)
3187{
3188 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3189}
3190
3191static inline void skb_free_frag(void *addr)
3192{
3193 page_frag_free(addr);
3194}
3195
3196void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3197
3198static inline void *napi_alloc_frag(unsigned int fragsz)
3199{
3200 return __napi_alloc_frag_align(fragsz, ~0u);
3201}
3202
3203static inline void *napi_alloc_frag_align(unsigned int fragsz,
3204 unsigned int align)
3205{
3206 WARN_ON_ONCE(!is_power_of_2(align));
3207 return __napi_alloc_frag_align(fragsz, -align);
3208}
3209
3210struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3211 unsigned int length, gfp_t gfp_mask);
3212static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3213 unsigned int length)
3214{
3215 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3216}
3217void napi_consume_skb(struct sk_buff *skb, int budget);
3218
3219void napi_skb_free_stolen_head(struct sk_buff *skb);
3220void __kfree_skb_defer(struct sk_buff *skb);
3221
3222/**
3223 * __dev_alloc_pages - allocate page for network Rx
3224 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3225 * @order: size of the allocation
3226 *
3227 * Allocate a new page.
3228 *
3229 * %NULL is returned if there is no free memory.
3230*/
3231static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3232 unsigned int order)
3233{
3234 /* This piece of code contains several assumptions.
3235 * 1. This is for device Rx, therefor a cold page is preferred.
3236 * 2. The expectation is the user wants a compound page.
3237 * 3. If requesting a order 0 page it will not be compound
3238 * due to the check to see if order has a value in prep_new_page
3239 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3240 * code in gfp_to_alloc_flags that should be enforcing this.
3241 */
3242 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3243
3244 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3245}
3246
3247static inline struct page *dev_alloc_pages(unsigned int order)
3248{
3249 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3250}
3251
3252/**
3253 * __dev_alloc_page - allocate a page for network Rx
3254 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3255 *
3256 * Allocate a new page.
3257 *
3258 * %NULL is returned if there is no free memory.
3259 */
3260static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3261{
3262 return __dev_alloc_pages(gfp_mask, 0);
3263}
3264
3265static inline struct page *dev_alloc_page(void)
3266{
3267 return dev_alloc_pages(0);
3268}
3269
3270/**
3271 * dev_page_is_reusable - check whether a page can be reused for network Rx
3272 * @page: the page to test
3273 *
3274 * A page shouldn't be considered for reusing/recycling if it was allocated
3275 * under memory pressure or at a distant memory node.
3276 *
3277 * Returns false if this page should be returned to page allocator, true
3278 * otherwise.
3279 */
3280static inline bool dev_page_is_reusable(const struct page *page)
3281{
3282 return likely(page_to_nid(page) == numa_mem_id() &&
3283 !page_is_pfmemalloc(page));
3284}
3285
3286/**
3287 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3288 * @page: The page that was allocated from skb_alloc_page
3289 * @skb: The skb that may need pfmemalloc set
3290 */
3291static inline void skb_propagate_pfmemalloc(const struct page *page,
3292 struct sk_buff *skb)
3293{
3294 if (page_is_pfmemalloc(page))
3295 skb->pfmemalloc = true;
3296}
3297
3298/**
3299 * skb_frag_off() - Returns the offset of a skb fragment
3300 * @frag: the paged fragment
3301 */
3302static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3303{
3304 return frag->bv_offset;
3305}
3306
3307/**
3308 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3309 * @frag: skb fragment
3310 * @delta: value to add
3311 */
3312static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3313{
3314 frag->bv_offset += delta;
3315}
3316
3317/**
3318 * skb_frag_off_set() - Sets the offset of a skb fragment
3319 * @frag: skb fragment
3320 * @offset: offset of fragment
3321 */
3322static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3323{
3324 frag->bv_offset = offset;
3325}
3326
3327/**
3328 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3329 * @fragto: skb fragment where offset is set
3330 * @fragfrom: skb fragment offset is copied from
3331 */
3332static inline void skb_frag_off_copy(skb_frag_t *fragto,
3333 const skb_frag_t *fragfrom)
3334{
3335 fragto->bv_offset = fragfrom->bv_offset;
3336}
3337
3338/**
3339 * skb_frag_page - retrieve the page referred to by a paged fragment
3340 * @frag: the paged fragment
3341 *
3342 * Returns the &struct page associated with @frag.
3343 */
3344static inline struct page *skb_frag_page(const skb_frag_t *frag)
3345{
3346 return frag->bv_page;
3347}
3348
3349/**
3350 * __skb_frag_ref - take an addition reference on a paged fragment.
3351 * @frag: the paged fragment
3352 *
3353 * Takes an additional reference on the paged fragment @frag.
3354 */
3355static inline void __skb_frag_ref(skb_frag_t *frag)
3356{
3357 get_page(skb_frag_page(frag));
3358}
3359
3360/**
3361 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3362 * @skb: the buffer
3363 * @f: the fragment offset.
3364 *
3365 * Takes an additional reference on the @f'th paged fragment of @skb.
3366 */
3367static inline void skb_frag_ref(struct sk_buff *skb, int f)
3368{
3369 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3370}
3371
3372/**
3373 * __skb_frag_unref - release a reference on a paged fragment.
3374 * @frag: the paged fragment
3375 * @recycle: recycle the page if allocated via page_pool
3376 *
3377 * Releases a reference on the paged fragment @frag
3378 * or recycles the page via the page_pool API.
3379 */
3380static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3381{
3382 struct page *page = skb_frag_page(frag);
3383
3384#ifdef CONFIG_PAGE_POOL
3385 if (recycle && page_pool_return_skb_page(page))
3386 return;
3387#endif
3388 put_page(page);
3389}
3390
3391/**
3392 * skb_frag_unref - release a reference on a paged fragment of an skb.
3393 * @skb: the buffer
3394 * @f: the fragment offset
3395 *
3396 * Releases a reference on the @f'th paged fragment of @skb.
3397 */
3398static inline void skb_frag_unref(struct sk_buff *skb, int f)
3399{
3400 struct skb_shared_info *shinfo = skb_shinfo(skb);
3401
3402 if (!skb_zcopy_managed(skb))
3403 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3404}
3405
3406/**
3407 * skb_frag_address - gets the address of the data contained in a paged fragment
3408 * @frag: the paged fragment buffer
3409 *
3410 * Returns the address of the data within @frag. The page must already
3411 * be mapped.
3412 */
3413static inline void *skb_frag_address(const skb_frag_t *frag)
3414{
3415 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3416}
3417
3418/**
3419 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3420 * @frag: the paged fragment buffer
3421 *
3422 * Returns the address of the data within @frag. Checks that the page
3423 * is mapped and returns %NULL otherwise.
3424 */
3425static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3426{
3427 void *ptr = page_address(skb_frag_page(frag));
3428 if (unlikely(!ptr))
3429 return NULL;
3430
3431 return ptr + skb_frag_off(frag);
3432}
3433
3434/**
3435 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3436 * @fragto: skb fragment where page is set
3437 * @fragfrom: skb fragment page is copied from
3438 */
3439static inline void skb_frag_page_copy(skb_frag_t *fragto,
3440 const skb_frag_t *fragfrom)
3441{
3442 fragto->bv_page = fragfrom->bv_page;
3443}
3444
3445/**
3446 * __skb_frag_set_page - sets the page contained in a paged fragment
3447 * @frag: the paged fragment
3448 * @page: the page to set
3449 *
3450 * Sets the fragment @frag to contain @page.
3451 */
3452static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3453{
3454 frag->bv_page = page;
3455}
3456
3457/**
3458 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3459 * @skb: the buffer
3460 * @f: the fragment offset
3461 * @page: the page to set
3462 *
3463 * Sets the @f'th fragment of @skb to contain @page.
3464 */
3465static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3466 struct page *page)
3467{
3468 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3469}
3470
3471bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3472
3473/**
3474 * skb_frag_dma_map - maps a paged fragment via the DMA API
3475 * @dev: the device to map the fragment to
3476 * @frag: the paged fragment to map
3477 * @offset: the offset within the fragment (starting at the
3478 * fragment's own offset)
3479 * @size: the number of bytes to map
3480 * @dir: the direction of the mapping (``PCI_DMA_*``)
3481 *
3482 * Maps the page associated with @frag to @device.
3483 */
3484static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3485 const skb_frag_t *frag,
3486 size_t offset, size_t size,
3487 enum dma_data_direction dir)
3488{
3489 return dma_map_page(dev, skb_frag_page(frag),
3490 skb_frag_off(frag) + offset, size, dir);
3491}
3492
3493static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3494 gfp_t gfp_mask)
3495{
3496 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3497}
3498
3499
3500static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3501 gfp_t gfp_mask)
3502{
3503 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3504}
3505
3506
3507/**
3508 * skb_clone_writable - is the header of a clone writable
3509 * @skb: buffer to check
3510 * @len: length up to which to write
3511 *
3512 * Returns true if modifying the header part of the cloned buffer
3513 * does not requires the data to be copied.
3514 */
3515static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3516{
3517 return !skb_header_cloned(skb) &&
3518 skb_headroom(skb) + len <= skb->hdr_len;
3519}
3520
3521static inline int skb_try_make_writable(struct sk_buff *skb,
3522 unsigned int write_len)
3523{
3524 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3525 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3526}
3527
3528static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3529 int cloned)
3530{
3531 int delta = 0;
3532
3533 if (headroom > skb_headroom(skb))
3534 delta = headroom - skb_headroom(skb);
3535
3536 if (delta || cloned)
3537 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3538 GFP_ATOMIC);
3539 return 0;
3540}
3541
3542/**
3543 * skb_cow - copy header of skb when it is required
3544 * @skb: buffer to cow
3545 * @headroom: needed headroom
3546 *
3547 * If the skb passed lacks sufficient headroom or its data part
3548 * is shared, data is reallocated. If reallocation fails, an error
3549 * is returned and original skb is not changed.
3550 *
3551 * The result is skb with writable area skb->head...skb->tail
3552 * and at least @headroom of space at head.
3553 */
3554static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3555{
3556 return __skb_cow(skb, headroom, skb_cloned(skb));
3557}
3558
3559/**
3560 * skb_cow_head - skb_cow but only making the head writable
3561 * @skb: buffer to cow
3562 * @headroom: needed headroom
3563 *
3564 * This function is identical to skb_cow except that we replace the
3565 * skb_cloned check by skb_header_cloned. It should be used when
3566 * you only need to push on some header and do not need to modify
3567 * the data.
3568 */
3569static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3570{
3571 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3572}
3573
3574/**
3575 * skb_padto - pad an skbuff up to a minimal size
3576 * @skb: buffer to pad
3577 * @len: minimal length
3578 *
3579 * Pads up a buffer to ensure the trailing bytes exist and are
3580 * blanked. If the buffer already contains sufficient data it
3581 * is untouched. Otherwise it is extended. Returns zero on
3582 * success. The skb is freed on error.
3583 */
3584static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3585{
3586 unsigned int size = skb->len;
3587 if (likely(size >= len))
3588 return 0;
3589 return skb_pad(skb, len - size);
3590}
3591
3592/**
3593 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3594 * @skb: buffer to pad
3595 * @len: minimal length
3596 * @free_on_error: free buffer on error
3597 *
3598 * Pads up a buffer to ensure the trailing bytes exist and are
3599 * blanked. If the buffer already contains sufficient data it
3600 * is untouched. Otherwise it is extended. Returns zero on
3601 * success. The skb is freed on error if @free_on_error is true.
3602 */
3603static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3604 unsigned int len,
3605 bool free_on_error)
3606{
3607 unsigned int size = skb->len;
3608
3609 if (unlikely(size < len)) {
3610 len -= size;
3611 if (__skb_pad(skb, len, free_on_error))
3612 return -ENOMEM;
3613 __skb_put(skb, len);
3614 }
3615 return 0;
3616}
3617
3618/**
3619 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3620 * @skb: buffer to pad
3621 * @len: minimal length
3622 *
3623 * Pads up a buffer to ensure the trailing bytes exist and are
3624 * blanked. If the buffer already contains sufficient data it
3625 * is untouched. Otherwise it is extended. Returns zero on
3626 * success. The skb is freed on error.
3627 */
3628static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3629{
3630 return __skb_put_padto(skb, len, true);
3631}
3632
3633static inline int skb_add_data(struct sk_buff *skb,
3634 struct iov_iter *from, int copy)
3635{
3636 const int off = skb->len;
3637
3638 if (skb->ip_summed == CHECKSUM_NONE) {
3639 __wsum csum = 0;
3640 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3641 &csum, from)) {
3642 skb->csum = csum_block_add(skb->csum, csum, off);
3643 return 0;
3644 }
3645 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3646 return 0;
3647
3648 __skb_trim(skb, off);
3649 return -EFAULT;
3650}
3651
3652static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3653 const struct page *page, int off)
3654{
3655 if (skb_zcopy(skb))
3656 return false;
3657 if (i) {
3658 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3659
3660 return page == skb_frag_page(frag) &&
3661 off == skb_frag_off(frag) + skb_frag_size(frag);
3662 }
3663 return false;
3664}
3665
3666static inline int __skb_linearize(struct sk_buff *skb)
3667{
3668 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3669}
3670
3671/**
3672 * skb_linearize - convert paged skb to linear one
3673 * @skb: buffer to linarize
3674 *
3675 * If there is no free memory -ENOMEM is returned, otherwise zero
3676 * is returned and the old skb data released.
3677 */
3678static inline int skb_linearize(struct sk_buff *skb)
3679{
3680 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3681}
3682
3683/**
3684 * skb_has_shared_frag - can any frag be overwritten
3685 * @skb: buffer to test
3686 *
3687 * Return true if the skb has at least one frag that might be modified
3688 * by an external entity (as in vmsplice()/sendfile())
3689 */
3690static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3691{
3692 return skb_is_nonlinear(skb) &&
3693 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3694}
3695
3696/**
3697 * skb_linearize_cow - make sure skb is linear and writable
3698 * @skb: buffer to process
3699 *
3700 * If there is no free memory -ENOMEM is returned, otherwise zero
3701 * is returned and the old skb data released.
3702 */
3703static inline int skb_linearize_cow(struct sk_buff *skb)
3704{
3705 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3706 __skb_linearize(skb) : 0;
3707}
3708
3709static __always_inline void
3710__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3711 unsigned int off)
3712{
3713 if (skb->ip_summed == CHECKSUM_COMPLETE)
3714 skb->csum = csum_block_sub(skb->csum,
3715 csum_partial(start, len, 0), off);
3716 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3717 skb_checksum_start_offset(skb) < 0)
3718 skb->ip_summed = CHECKSUM_NONE;
3719}
3720
3721/**
3722 * skb_postpull_rcsum - update checksum for received skb after pull
3723 * @skb: buffer to update
3724 * @start: start of data before pull
3725 * @len: length of data pulled
3726 *
3727 * After doing a pull on a received packet, you need to call this to
3728 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3729 * CHECKSUM_NONE so that it can be recomputed from scratch.
3730 */
3731static inline void skb_postpull_rcsum(struct sk_buff *skb,
3732 const void *start, unsigned int len)
3733{
3734 if (skb->ip_summed == CHECKSUM_COMPLETE)
3735 skb->csum = wsum_negate(csum_partial(start, len,
3736 wsum_negate(skb->csum)));
3737 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3738 skb_checksum_start_offset(skb) < 0)
3739 skb->ip_summed = CHECKSUM_NONE;
3740}
3741
3742static __always_inline void
3743__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3744 unsigned int off)
3745{
3746 if (skb->ip_summed == CHECKSUM_COMPLETE)
3747 skb->csum = csum_block_add(skb->csum,
3748 csum_partial(start, len, 0), off);
3749}
3750
3751/**
3752 * skb_postpush_rcsum - update checksum for received skb after push
3753 * @skb: buffer to update
3754 * @start: start of data after push
3755 * @len: length of data pushed
3756 *
3757 * After doing a push on a received packet, you need to call this to
3758 * update the CHECKSUM_COMPLETE checksum.
3759 */
3760static inline void skb_postpush_rcsum(struct sk_buff *skb,
3761 const void *start, unsigned int len)
3762{
3763 __skb_postpush_rcsum(skb, start, len, 0);
3764}
3765
3766void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3767
3768/**
3769 * skb_push_rcsum - push skb and update receive checksum
3770 * @skb: buffer to update
3771 * @len: length of data pulled
3772 *
3773 * This function performs an skb_push on the packet and updates
3774 * the CHECKSUM_COMPLETE checksum. It should be used on
3775 * receive path processing instead of skb_push unless you know
3776 * that the checksum difference is zero (e.g., a valid IP header)
3777 * or you are setting ip_summed to CHECKSUM_NONE.
3778 */
3779static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3780{
3781 skb_push(skb, len);
3782 skb_postpush_rcsum(skb, skb->data, len);
3783 return skb->data;
3784}
3785
3786int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3787/**
3788 * pskb_trim_rcsum - trim received skb and update checksum
3789 * @skb: buffer to trim
3790 * @len: new length
3791 *
3792 * This is exactly the same as pskb_trim except that it ensures the
3793 * checksum of received packets are still valid after the operation.
3794 * It can change skb pointers.
3795 */
3796
3797static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3798{
3799 if (likely(len >= skb->len))
3800 return 0;
3801 return pskb_trim_rcsum_slow(skb, len);
3802}
3803
3804static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3805{
3806 if (skb->ip_summed == CHECKSUM_COMPLETE)
3807 skb->ip_summed = CHECKSUM_NONE;
3808 __skb_trim(skb, len);
3809 return 0;
3810}
3811
3812static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3813{
3814 if (skb->ip_summed == CHECKSUM_COMPLETE)
3815 skb->ip_summed = CHECKSUM_NONE;
3816 return __skb_grow(skb, len);
3817}
3818
3819#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3820#define skb_rb_first(root) rb_to_skb(rb_first(root))
3821#define skb_rb_last(root) rb_to_skb(rb_last(root))
3822#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3823#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3824
3825#define skb_queue_walk(queue, skb) \
3826 for (skb = (queue)->next; \
3827 skb != (struct sk_buff *)(queue); \
3828 skb = skb->next)
3829
3830#define skb_queue_walk_safe(queue, skb, tmp) \
3831 for (skb = (queue)->next, tmp = skb->next; \
3832 skb != (struct sk_buff *)(queue); \
3833 skb = tmp, tmp = skb->next)
3834
3835#define skb_queue_walk_from(queue, skb) \
3836 for (; skb != (struct sk_buff *)(queue); \
3837 skb = skb->next)
3838
3839#define skb_rbtree_walk(skb, root) \
3840 for (skb = skb_rb_first(root); skb != NULL; \
3841 skb = skb_rb_next(skb))
3842
3843#define skb_rbtree_walk_from(skb) \
3844 for (; skb != NULL; \
3845 skb = skb_rb_next(skb))
3846
3847#define skb_rbtree_walk_from_safe(skb, tmp) \
3848 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3849 skb = tmp)
3850
3851#define skb_queue_walk_from_safe(queue, skb, tmp) \
3852 for (tmp = skb->next; \
3853 skb != (struct sk_buff *)(queue); \
3854 skb = tmp, tmp = skb->next)
3855
3856#define skb_queue_reverse_walk(queue, skb) \
3857 for (skb = (queue)->prev; \
3858 skb != (struct sk_buff *)(queue); \
3859 skb = skb->prev)
3860
3861#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3862 for (skb = (queue)->prev, tmp = skb->prev; \
3863 skb != (struct sk_buff *)(queue); \
3864 skb = tmp, tmp = skb->prev)
3865
3866#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3867 for (tmp = skb->prev; \
3868 skb != (struct sk_buff *)(queue); \
3869 skb = tmp, tmp = skb->prev)
3870
3871static inline bool skb_has_frag_list(const struct sk_buff *skb)
3872{
3873 return skb_shinfo(skb)->frag_list != NULL;
3874}
3875
3876static inline void skb_frag_list_init(struct sk_buff *skb)
3877{
3878 skb_shinfo(skb)->frag_list = NULL;
3879}
3880
3881#define skb_walk_frags(skb, iter) \
3882 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3883
3884
3885int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3886 int *err, long *timeo_p,
3887 const struct sk_buff *skb);
3888struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3889 struct sk_buff_head *queue,
3890 unsigned int flags,
3891 int *off, int *err,
3892 struct sk_buff **last);
3893struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3894 struct sk_buff_head *queue,
3895 unsigned int flags, int *off, int *err,
3896 struct sk_buff **last);
3897struct sk_buff *__skb_recv_datagram(struct sock *sk,
3898 struct sk_buff_head *sk_queue,
3899 unsigned int flags, int *off, int *err);
3900struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3901__poll_t datagram_poll(struct file *file, struct socket *sock,
3902 struct poll_table_struct *wait);
3903int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3904 struct iov_iter *to, int size);
3905static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3906 struct msghdr *msg, int size)
3907{
3908 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3909}
3910int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3911 struct msghdr *msg);
3912int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3913 struct iov_iter *to, int len,
3914 struct ahash_request *hash);
3915int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3916 struct iov_iter *from, int len);
3917int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3918void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3919void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3920static inline void skb_free_datagram_locked(struct sock *sk,
3921 struct sk_buff *skb)
3922{
3923 __skb_free_datagram_locked(sk, skb, 0);
3924}
3925int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3926int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3927int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3928__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3929 int len);
3930int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3931 struct pipe_inode_info *pipe, unsigned int len,
3932 unsigned int flags);
3933int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3934 int len);
3935int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3936void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3937unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3938int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3939 int len, int hlen);
3940void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3941int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3942void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3943bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3944bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3945struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3946struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3947 unsigned int offset);
3948struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3949int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3950int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3951int skb_vlan_pop(struct sk_buff *skb);
3952int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3953int skb_eth_pop(struct sk_buff *skb);
3954int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3955 const unsigned char *src);
3956int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3957 int mac_len, bool ethernet);
3958int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3959 bool ethernet);
3960int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3961int skb_mpls_dec_ttl(struct sk_buff *skb);
3962struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3963 gfp_t gfp);
3964
3965static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3966{
3967 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3968}
3969
3970static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3971{
3972 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3973}
3974
3975struct skb_checksum_ops {
3976 __wsum (*update)(const void *mem, int len, __wsum wsum);
3977 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3978};
3979
3980extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3981
3982__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3983 __wsum csum, const struct skb_checksum_ops *ops);
3984__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3985 __wsum csum);
3986
3987static inline void * __must_check
3988__skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3989 const void *data, int hlen, void *buffer)
3990{
3991 if (likely(hlen - offset >= len))
3992 return (void *)data + offset;
3993
3994 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3995 return NULL;
3996
3997 return buffer;
3998}
3999
4000static inline void * __must_check
4001skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4002{
4003 return __skb_header_pointer(skb, offset, len, skb->data,
4004 skb_headlen(skb), buffer);
4005}
4006
4007/**
4008 * skb_needs_linearize - check if we need to linearize a given skb
4009 * depending on the given device features.
4010 * @skb: socket buffer to check
4011 * @features: net device features
4012 *
4013 * Returns true if either:
4014 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
4015 * 2. skb is fragmented and the device does not support SG.
4016 */
4017static inline bool skb_needs_linearize(struct sk_buff *skb,
4018 netdev_features_t features)
4019{
4020 return skb_is_nonlinear(skb) &&
4021 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4022 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4023}
4024
4025static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4026 void *to,
4027 const unsigned int len)
4028{
4029 memcpy(to, skb->data, len);
4030}
4031
4032static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4033 const int offset, void *to,
4034 const unsigned int len)
4035{
4036 memcpy(to, skb->data + offset, len);
4037}
4038
4039static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4040 const void *from,
4041 const unsigned int len)
4042{
4043 memcpy(skb->data, from, len);
4044}
4045
4046static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4047 const int offset,
4048 const void *from,
4049 const unsigned int len)
4050{
4051 memcpy(skb->data + offset, from, len);
4052}
4053
4054void skb_init(void);
4055
4056static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4057{
4058 return skb->tstamp;
4059}
4060
4061/**
4062 * skb_get_timestamp - get timestamp from a skb
4063 * @skb: skb to get stamp from
4064 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
4065 *
4066 * Timestamps are stored in the skb as offsets to a base timestamp.
4067 * This function converts the offset back to a struct timeval and stores
4068 * it in stamp.
4069 */
4070static inline void skb_get_timestamp(const struct sk_buff *skb,
4071 struct __kernel_old_timeval *stamp)
4072{
4073 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4074}
4075
4076static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4077 struct __kernel_sock_timeval *stamp)
4078{
4079 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4080
4081 stamp->tv_sec = ts.tv_sec;
4082 stamp->tv_usec = ts.tv_nsec / 1000;
4083}
4084
4085static inline void skb_get_timestampns(const struct sk_buff *skb,
4086 struct __kernel_old_timespec *stamp)
4087{
4088 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4089
4090 stamp->tv_sec = ts.tv_sec;
4091 stamp->tv_nsec = ts.tv_nsec;
4092}
4093
4094static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4095 struct __kernel_timespec *stamp)
4096{
4097 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4098
4099 stamp->tv_sec = ts.tv_sec;
4100 stamp->tv_nsec = ts.tv_nsec;
4101}
4102
4103static inline void __net_timestamp(struct sk_buff *skb)
4104{
4105 skb->tstamp = ktime_get_real();
4106 skb->mono_delivery_time = 0;
4107}
4108
4109static inline ktime_t net_timedelta(ktime_t t)
4110{
4111 return ktime_sub(ktime_get_real(), t);
4112}
4113
4114static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4115 bool mono)
4116{
4117 skb->tstamp = kt;
4118 skb->mono_delivery_time = kt && mono;
4119}
4120
4121DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4122
4123/* It is used in the ingress path to clear the delivery_time.
4124 * If needed, set the skb->tstamp to the (rcv) timestamp.
4125 */
4126static inline void skb_clear_delivery_time(struct sk_buff *skb)
4127{
4128 if (skb->mono_delivery_time) {
4129 skb->mono_delivery_time = 0;
4130 if (static_branch_unlikely(&netstamp_needed_key))
4131 skb->tstamp = ktime_get_real();
4132 else
4133 skb->tstamp = 0;
4134 }
4135}
4136
4137static inline void skb_clear_tstamp(struct sk_buff *skb)
4138{
4139 if (skb->mono_delivery_time)
4140 return;
4141
4142 skb->tstamp = 0;
4143}
4144
4145static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4146{
4147 if (skb->mono_delivery_time)
4148 return 0;
4149
4150 return skb->tstamp;
4151}
4152
4153static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4154{
4155 if (!skb->mono_delivery_time && skb->tstamp)
4156 return skb->tstamp;
4157
4158 if (static_branch_unlikely(&netstamp_needed_key) || cond)
4159 return ktime_get_real();
4160
4161 return 0;
4162}
4163
4164static inline u8 skb_metadata_len(const struct sk_buff *skb)
4165{
4166 return skb_shinfo(skb)->meta_len;
4167}
4168
4169static inline void *skb_metadata_end(const struct sk_buff *skb)
4170{
4171 return skb_mac_header(skb);
4172}
4173
4174static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4175 const struct sk_buff *skb_b,
4176 u8 meta_len)
4177{
4178 const void *a = skb_metadata_end(skb_a);
4179 const void *b = skb_metadata_end(skb_b);
4180 /* Using more efficient varaiant than plain call to memcmp(). */
4181#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4182 u64 diffs = 0;
4183
4184 switch (meta_len) {
4185#define __it(x, op) (x -= sizeof(u##op))
4186#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4187 case 32: diffs |= __it_diff(a, b, 64);
4188 fallthrough;
4189 case 24: diffs |= __it_diff(a, b, 64);
4190 fallthrough;
4191 case 16: diffs |= __it_diff(a, b, 64);
4192 fallthrough;
4193 case 8: diffs |= __it_diff(a, b, 64);
4194 break;
4195 case 28: diffs |= __it_diff(a, b, 64);
4196 fallthrough;
4197 case 20: diffs |= __it_diff(a, b, 64);
4198 fallthrough;
4199 case 12: diffs |= __it_diff(a, b, 64);
4200 fallthrough;
4201 case 4: diffs |= __it_diff(a, b, 32);
4202 break;
4203 }
4204 return diffs;
4205#else
4206 return memcmp(a - meta_len, b - meta_len, meta_len);
4207#endif
4208}
4209
4210static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4211 const struct sk_buff *skb_b)
4212{
4213 u8 len_a = skb_metadata_len(skb_a);
4214 u8 len_b = skb_metadata_len(skb_b);
4215
4216 if (!(len_a | len_b))
4217 return false;
4218
4219 return len_a != len_b ?
4220 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4221}
4222
4223static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4224{
4225 skb_shinfo(skb)->meta_len = meta_len;
4226}
4227
4228static inline void skb_metadata_clear(struct sk_buff *skb)
4229{
4230 skb_metadata_set(skb, 0);
4231}
4232
4233struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4234
4235#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4236
4237void skb_clone_tx_timestamp(struct sk_buff *skb);
4238bool skb_defer_rx_timestamp(struct sk_buff *skb);
4239
4240#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4241
4242static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4243{
4244}
4245
4246static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4247{
4248 return false;
4249}
4250
4251#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4252
4253/**
4254 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4255 *
4256 * PHY drivers may accept clones of transmitted packets for
4257 * timestamping via their phy_driver.txtstamp method. These drivers
4258 * must call this function to return the skb back to the stack with a
4259 * timestamp.
4260 *
4261 * @skb: clone of the original outgoing packet
4262 * @hwtstamps: hardware time stamps
4263 *
4264 */
4265void skb_complete_tx_timestamp(struct sk_buff *skb,
4266 struct skb_shared_hwtstamps *hwtstamps);
4267
4268void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4269 struct skb_shared_hwtstamps *hwtstamps,
4270 struct sock *sk, int tstype);
4271
4272/**
4273 * skb_tstamp_tx - queue clone of skb with send time stamps
4274 * @orig_skb: the original outgoing packet
4275 * @hwtstamps: hardware time stamps, may be NULL if not available
4276 *
4277 * If the skb has a socket associated, then this function clones the
4278 * skb (thus sharing the actual data and optional structures), stores
4279 * the optional hardware time stamping information (if non NULL) or
4280 * generates a software time stamp (otherwise), then queues the clone
4281 * to the error queue of the socket. Errors are silently ignored.
4282 */
4283void skb_tstamp_tx(struct sk_buff *orig_skb,
4284 struct skb_shared_hwtstamps *hwtstamps);
4285
4286/**
4287 * skb_tx_timestamp() - Driver hook for transmit timestamping
4288 *
4289 * Ethernet MAC Drivers should call this function in their hard_xmit()
4290 * function immediately before giving the sk_buff to the MAC hardware.
4291 *
4292 * Specifically, one should make absolutely sure that this function is
4293 * called before TX completion of this packet can trigger. Otherwise
4294 * the packet could potentially already be freed.
4295 *
4296 * @skb: A socket buffer.
4297 */
4298static inline void skb_tx_timestamp(struct sk_buff *skb)
4299{
4300 skb_clone_tx_timestamp(skb);
4301 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4302 skb_tstamp_tx(skb, NULL);
4303}
4304
4305/**
4306 * skb_complete_wifi_ack - deliver skb with wifi status
4307 *
4308 * @skb: the original outgoing packet
4309 * @acked: ack status
4310 *
4311 */
4312void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4313
4314__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4315__sum16 __skb_checksum_complete(struct sk_buff *skb);
4316
4317static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4318{
4319 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4320 skb->csum_valid ||
4321 (skb->ip_summed == CHECKSUM_PARTIAL &&
4322 skb_checksum_start_offset(skb) >= 0));
4323}
4324
4325/**
4326 * skb_checksum_complete - Calculate checksum of an entire packet
4327 * @skb: packet to process
4328 *
4329 * This function calculates the checksum over the entire packet plus
4330 * the value of skb->csum. The latter can be used to supply the
4331 * checksum of a pseudo header as used by TCP/UDP. It returns the
4332 * checksum.
4333 *
4334 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4335 * this function can be used to verify that checksum on received
4336 * packets. In that case the function should return zero if the
4337 * checksum is correct. In particular, this function will return zero
4338 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4339 * hardware has already verified the correctness of the checksum.
4340 */
4341static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4342{
4343 return skb_csum_unnecessary(skb) ?
4344 0 : __skb_checksum_complete(skb);
4345}
4346
4347static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4348{
4349 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4350 if (skb->csum_level == 0)
4351 skb->ip_summed = CHECKSUM_NONE;
4352 else
4353 skb->csum_level--;
4354 }
4355}
4356
4357static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4358{
4359 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4360 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4361 skb->csum_level++;
4362 } else if (skb->ip_summed == CHECKSUM_NONE) {
4363 skb->ip_summed = CHECKSUM_UNNECESSARY;
4364 skb->csum_level = 0;
4365 }
4366}
4367
4368static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4369{
4370 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4371 skb->ip_summed = CHECKSUM_NONE;
4372 skb->csum_level = 0;
4373 }
4374}
4375
4376/* Check if we need to perform checksum complete validation.
4377 *
4378 * Returns true if checksum complete is needed, false otherwise
4379 * (either checksum is unnecessary or zero checksum is allowed).
4380 */
4381static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4382 bool zero_okay,
4383 __sum16 check)
4384{
4385 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4386 skb->csum_valid = 1;
4387 __skb_decr_checksum_unnecessary(skb);
4388 return false;
4389 }
4390
4391 return true;
4392}
4393
4394/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4395 * in checksum_init.
4396 */
4397#define CHECKSUM_BREAK 76
4398
4399/* Unset checksum-complete
4400 *
4401 * Unset checksum complete can be done when packet is being modified
4402 * (uncompressed for instance) and checksum-complete value is
4403 * invalidated.
4404 */
4405static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4406{
4407 if (skb->ip_summed == CHECKSUM_COMPLETE)
4408 skb->ip_summed = CHECKSUM_NONE;
4409}
4410
4411/* Validate (init) checksum based on checksum complete.
4412 *
4413 * Return values:
4414 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4415 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4416 * checksum is stored in skb->csum for use in __skb_checksum_complete
4417 * non-zero: value of invalid checksum
4418 *
4419 */
4420static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4421 bool complete,
4422 __wsum psum)
4423{
4424 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4425 if (!csum_fold(csum_add(psum, skb->csum))) {
4426 skb->csum_valid = 1;
4427 return 0;
4428 }
4429 }
4430
4431 skb->csum = psum;
4432
4433 if (complete || skb->len <= CHECKSUM_BREAK) {
4434 __sum16 csum;
4435
4436 csum = __skb_checksum_complete(skb);
4437 skb->csum_valid = !csum;
4438 return csum;
4439 }
4440
4441 return 0;
4442}
4443
4444static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4445{
4446 return 0;
4447}
4448
4449/* Perform checksum validate (init). Note that this is a macro since we only
4450 * want to calculate the pseudo header which is an input function if necessary.
4451 * First we try to validate without any computation (checksum unnecessary) and
4452 * then calculate based on checksum complete calling the function to compute
4453 * pseudo header.
4454 *
4455 * Return values:
4456 * 0: checksum is validated or try to in skb_checksum_complete
4457 * non-zero: value of invalid checksum
4458 */
4459#define __skb_checksum_validate(skb, proto, complete, \
4460 zero_okay, check, compute_pseudo) \
4461({ \
4462 __sum16 __ret = 0; \
4463 skb->csum_valid = 0; \
4464 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4465 __ret = __skb_checksum_validate_complete(skb, \
4466 complete, compute_pseudo(skb, proto)); \
4467 __ret; \
4468})
4469
4470#define skb_checksum_init(skb, proto, compute_pseudo) \
4471 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4472
4473#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4474 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4475
4476#define skb_checksum_validate(skb, proto, compute_pseudo) \
4477 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4478
4479#define skb_checksum_validate_zero_check(skb, proto, check, \
4480 compute_pseudo) \
4481 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4482
4483#define skb_checksum_simple_validate(skb) \
4484 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4485
4486static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4487{
4488 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4489}
4490
4491static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4492{
4493 skb->csum = ~pseudo;
4494 skb->ip_summed = CHECKSUM_COMPLETE;
4495}
4496
4497#define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4498do { \
4499 if (__skb_checksum_convert_check(skb)) \
4500 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4501} while (0)
4502
4503static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4504 u16 start, u16 offset)
4505{
4506 skb->ip_summed = CHECKSUM_PARTIAL;
4507 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4508 skb->csum_offset = offset - start;
4509}
4510
4511/* Update skbuf and packet to reflect the remote checksum offload operation.
4512 * When called, ptr indicates the starting point for skb->csum when
4513 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4514 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4515 */
4516static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4517 int start, int offset, bool nopartial)
4518{
4519 __wsum delta;
4520
4521 if (!nopartial) {
4522 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4523 return;
4524 }
4525
4526 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4527 __skb_checksum_complete(skb);
4528 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4529 }
4530
4531 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4532
4533 /* Adjust skb->csum since we changed the packet */
4534 skb->csum = csum_add(skb->csum, delta);
4535}
4536
4537static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4538{
4539#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4540 return (void *)(skb->_nfct & NFCT_PTRMASK);
4541#else
4542 return NULL;
4543#endif
4544}
4545
4546static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4547{
4548#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4549 return skb->_nfct;
4550#else
4551 return 0UL;
4552#endif
4553}
4554
4555static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4556{
4557#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4558 skb->slow_gro |= !!nfct;
4559 skb->_nfct = nfct;
4560#endif
4561}
4562
4563#ifdef CONFIG_SKB_EXTENSIONS
4564enum skb_ext_id {
4565#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4566 SKB_EXT_BRIDGE_NF,
4567#endif
4568#ifdef CONFIG_XFRM
4569 SKB_EXT_SEC_PATH,
4570#endif
4571#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4572 TC_SKB_EXT,
4573#endif
4574#if IS_ENABLED(CONFIG_MPTCP)
4575 SKB_EXT_MPTCP,
4576#endif
4577#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4578 SKB_EXT_MCTP,
4579#endif
4580 SKB_EXT_NUM, /* must be last */
4581};
4582
4583/**
4584 * struct skb_ext - sk_buff extensions
4585 * @refcnt: 1 on allocation, deallocated on 0
4586 * @offset: offset to add to @data to obtain extension address
4587 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4588 * @data: start of extension data, variable sized
4589 *
4590 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4591 * to use 'u8' types while allowing up to 2kb worth of extension data.
4592 */
4593struct skb_ext {
4594 refcount_t refcnt;
4595 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4596 u8 chunks; /* same */
4597 char data[] __aligned(8);
4598};
4599
4600struct skb_ext *__skb_ext_alloc(gfp_t flags);
4601void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4602 struct skb_ext *ext);
4603void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4604void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4605void __skb_ext_put(struct skb_ext *ext);
4606
4607static inline void skb_ext_put(struct sk_buff *skb)
4608{
4609 if (skb->active_extensions)
4610 __skb_ext_put(skb->extensions);
4611}
4612
4613static inline void __skb_ext_copy(struct sk_buff *dst,
4614 const struct sk_buff *src)
4615{
4616 dst->active_extensions = src->active_extensions;
4617
4618 if (src->active_extensions) {
4619 struct skb_ext *ext = src->extensions;
4620
4621 refcount_inc(&ext->refcnt);
4622 dst->extensions = ext;
4623 }
4624}
4625
4626static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4627{
4628 skb_ext_put(dst);
4629 __skb_ext_copy(dst, src);
4630}
4631
4632static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4633{
4634 return !!ext->offset[i];
4635}
4636
4637static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4638{
4639 return skb->active_extensions & (1 << id);
4640}
4641
4642static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4643{
4644 if (skb_ext_exist(skb, id))
4645 __skb_ext_del(skb, id);
4646}
4647
4648static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4649{
4650 if (skb_ext_exist(skb, id)) {
4651 struct skb_ext *ext = skb->extensions;
4652
4653 return (void *)ext + (ext->offset[id] << 3);
4654 }
4655
4656 return NULL;
4657}
4658
4659static inline void skb_ext_reset(struct sk_buff *skb)
4660{
4661 if (unlikely(skb->active_extensions)) {
4662 __skb_ext_put(skb->extensions);
4663 skb->active_extensions = 0;
4664 }
4665}
4666
4667static inline bool skb_has_extensions(struct sk_buff *skb)
4668{
4669 return unlikely(skb->active_extensions);
4670}
4671#else
4672static inline void skb_ext_put(struct sk_buff *skb) {}
4673static inline void skb_ext_reset(struct sk_buff *skb) {}
4674static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4675static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4676static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4677static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4678#endif /* CONFIG_SKB_EXTENSIONS */
4679
4680static inline void nf_reset_ct(struct sk_buff *skb)
4681{
4682#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4683 nf_conntrack_put(skb_nfct(skb));
4684 skb->_nfct = 0;
4685#endif
4686}
4687
4688static inline void nf_reset_trace(struct sk_buff *skb)
4689{
4690#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4691 skb->nf_trace = 0;
4692#endif
4693}
4694
4695static inline void ipvs_reset(struct sk_buff *skb)
4696{
4697#if IS_ENABLED(CONFIG_IP_VS)
4698 skb->ipvs_property = 0;
4699#endif
4700}
4701
4702/* Note: This doesn't put any conntrack info in dst. */
4703static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4704 bool copy)
4705{
4706#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4707 dst->_nfct = src->_nfct;
4708 nf_conntrack_get(skb_nfct(src));
4709#endif
4710#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4711 if (copy)
4712 dst->nf_trace = src->nf_trace;
4713#endif
4714}
4715
4716static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4717{
4718#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4719 nf_conntrack_put(skb_nfct(dst));
4720#endif
4721 dst->slow_gro = src->slow_gro;
4722 __nf_copy(dst, src, true);
4723}
4724
4725#ifdef CONFIG_NETWORK_SECMARK
4726static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4727{
4728 to->secmark = from->secmark;
4729}
4730
4731static inline void skb_init_secmark(struct sk_buff *skb)
4732{
4733 skb->secmark = 0;
4734}
4735#else
4736static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4737{ }
4738
4739static inline void skb_init_secmark(struct sk_buff *skb)
4740{ }
4741#endif
4742
4743static inline int secpath_exists(const struct sk_buff *skb)
4744{
4745#ifdef CONFIG_XFRM
4746 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4747#else
4748 return 0;
4749#endif
4750}
4751
4752static inline bool skb_irq_freeable(const struct sk_buff *skb)
4753{
4754 return !skb->destructor &&
4755 !secpath_exists(skb) &&
4756 !skb_nfct(skb) &&
4757 !skb->_skb_refdst &&
4758 !skb_has_frag_list(skb);
4759}
4760
4761static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4762{
4763 skb->queue_mapping = queue_mapping;
4764}
4765
4766static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4767{
4768 return skb->queue_mapping;
4769}
4770
4771static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4772{
4773 to->queue_mapping = from->queue_mapping;
4774}
4775
4776static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4777{
4778 skb->queue_mapping = rx_queue + 1;
4779}
4780
4781static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4782{
4783 return skb->queue_mapping - 1;
4784}
4785
4786static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4787{
4788 return skb->queue_mapping != 0;
4789}
4790
4791static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4792{
4793 skb->dst_pending_confirm = val;
4794}
4795
4796static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4797{
4798 return skb->dst_pending_confirm != 0;
4799}
4800
4801static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4802{
4803#ifdef CONFIG_XFRM
4804 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4805#else
4806 return NULL;
4807#endif
4808}
4809
4810/* Keeps track of mac header offset relative to skb->head.
4811 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4812 * For non-tunnel skb it points to skb_mac_header() and for
4813 * tunnel skb it points to outer mac header.
4814 * Keeps track of level of encapsulation of network headers.
4815 */
4816struct skb_gso_cb {
4817 union {
4818 int mac_offset;
4819 int data_offset;
4820 };
4821 int encap_level;
4822 __wsum csum;
4823 __u16 csum_start;
4824};
4825#define SKB_GSO_CB_OFFSET 32
4826#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4827
4828static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4829{
4830 return (skb_mac_header(inner_skb) - inner_skb->head) -
4831 SKB_GSO_CB(inner_skb)->mac_offset;
4832}
4833
4834static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4835{
4836 int new_headroom, headroom;
4837 int ret;
4838
4839 headroom = skb_headroom(skb);
4840 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4841 if (ret)
4842 return ret;
4843
4844 new_headroom = skb_headroom(skb);
4845 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4846 return 0;
4847}
4848
4849static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4850{
4851 /* Do not update partial checksums if remote checksum is enabled. */
4852 if (skb->remcsum_offload)
4853 return;
4854
4855 SKB_GSO_CB(skb)->csum = res;
4856 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4857}
4858
4859/* Compute the checksum for a gso segment. First compute the checksum value
4860 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4861 * then add in skb->csum (checksum from csum_start to end of packet).
4862 * skb->csum and csum_start are then updated to reflect the checksum of the
4863 * resultant packet starting from the transport header-- the resultant checksum
4864 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4865 * header.
4866 */
4867static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4868{
4869 unsigned char *csum_start = skb_transport_header(skb);
4870 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4871 __wsum partial = SKB_GSO_CB(skb)->csum;
4872
4873 SKB_GSO_CB(skb)->csum = res;
4874 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4875
4876 return csum_fold(csum_partial(csum_start, plen, partial));
4877}
4878
4879static inline bool skb_is_gso(const struct sk_buff *skb)
4880{
4881 return skb_shinfo(skb)->gso_size;
4882}
4883
4884/* Note: Should be called only if skb_is_gso(skb) is true */
4885static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4886{
4887 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4888}
4889
4890/* Note: Should be called only if skb_is_gso(skb) is true */
4891static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4892{
4893 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4894}
4895
4896/* Note: Should be called only if skb_is_gso(skb) is true */
4897static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4898{
4899 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4900}
4901
4902static inline void skb_gso_reset(struct sk_buff *skb)
4903{
4904 skb_shinfo(skb)->gso_size = 0;
4905 skb_shinfo(skb)->gso_segs = 0;
4906 skb_shinfo(skb)->gso_type = 0;
4907}
4908
4909static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4910 u16 increment)
4911{
4912 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4913 return;
4914 shinfo->gso_size += increment;
4915}
4916
4917static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4918 u16 decrement)
4919{
4920 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4921 return;
4922 shinfo->gso_size -= decrement;
4923}
4924
4925void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4926
4927static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4928{
4929 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4930 * wanted then gso_type will be set. */
4931 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4932
4933 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4934 unlikely(shinfo->gso_type == 0)) {
4935 __skb_warn_lro_forwarding(skb);
4936 return true;
4937 }
4938 return false;
4939}
4940
4941static inline void skb_forward_csum(struct sk_buff *skb)
4942{
4943 /* Unfortunately we don't support this one. Any brave souls? */
4944 if (skb->ip_summed == CHECKSUM_COMPLETE)
4945 skb->ip_summed = CHECKSUM_NONE;
4946}
4947
4948/**
4949 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4950 * @skb: skb to check
4951 *
4952 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4953 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4954 * use this helper, to document places where we make this assertion.
4955 */
4956static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4957{
4958 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4959}
4960
4961bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4962
4963int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4964struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4965 unsigned int transport_len,
4966 __sum16(*skb_chkf)(struct sk_buff *skb));
4967
4968/**
4969 * skb_head_is_locked - Determine if the skb->head is locked down
4970 * @skb: skb to check
4971 *
4972 * The head on skbs build around a head frag can be removed if they are
4973 * not cloned. This function returns true if the skb head is locked down
4974 * due to either being allocated via kmalloc, or by being a clone with
4975 * multiple references to the head.
4976 */
4977static inline bool skb_head_is_locked(const struct sk_buff *skb)
4978{
4979 return !skb->head_frag || skb_cloned(skb);
4980}
4981
4982/* Local Checksum Offload.
4983 * Compute outer checksum based on the assumption that the
4984 * inner checksum will be offloaded later.
4985 * See Documentation/networking/checksum-offloads.rst for
4986 * explanation of how this works.
4987 * Fill in outer checksum adjustment (e.g. with sum of outer
4988 * pseudo-header) before calling.
4989 * Also ensure that inner checksum is in linear data area.
4990 */
4991static inline __wsum lco_csum(struct sk_buff *skb)
4992{
4993 unsigned char *csum_start = skb_checksum_start(skb);
4994 unsigned char *l4_hdr = skb_transport_header(skb);
4995 __wsum partial;
4996
4997 /* Start with complement of inner checksum adjustment */
4998 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4999 skb->csum_offset));
5000
5001 /* Add in checksum of our headers (incl. outer checksum
5002 * adjustment filled in by caller) and return result.
5003 */
5004 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5005}
5006
5007static inline bool skb_is_redirected(const struct sk_buff *skb)
5008{
5009 return skb->redirected;
5010}
5011
5012static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5013{
5014 skb->redirected = 1;
5015#ifdef CONFIG_NET_REDIRECT
5016 skb->from_ingress = from_ingress;
5017 if (skb->from_ingress)
5018 skb_clear_tstamp(skb);
5019#endif
5020}
5021
5022static inline void skb_reset_redirect(struct sk_buff *skb)
5023{
5024 skb->redirected = 0;
5025}
5026
5027static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5028{
5029 return skb->csum_not_inet;
5030}
5031
5032static inline void skb_set_kcov_handle(struct sk_buff *skb,
5033 const u64 kcov_handle)
5034{
5035#ifdef CONFIG_KCOV
5036 skb->kcov_handle = kcov_handle;
5037#endif
5038}
5039
5040static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5041{
5042#ifdef CONFIG_KCOV
5043 return skb->kcov_handle;
5044#else
5045 return 0;
5046#endif
5047}
5048
5049#ifdef CONFIG_PAGE_POOL
5050static inline void skb_mark_for_recycle(struct sk_buff *skb)
5051{
5052 skb->pp_recycle = 1;
5053}
5054#endif
5055
5056#endif /* __KERNEL__ */
5057#endif /* _LINUX_SKBUFF_H */