at v6.2-rc3 116 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6#include <linux/mmdebug.h> 7#include <linux/gfp.h> 8#include <linux/bug.h> 9#include <linux/list.h> 10#include <linux/mmzone.h> 11#include <linux/rbtree.h> 12#include <linux/atomic.h> 13#include <linux/debug_locks.h> 14#include <linux/mm_types.h> 15#include <linux/mmap_lock.h> 16#include <linux/range.h> 17#include <linux/pfn.h> 18#include <linux/percpu-refcount.h> 19#include <linux/bit_spinlock.h> 20#include <linux/shrinker.h> 21#include <linux/resource.h> 22#include <linux/page_ext.h> 23#include <linux/err.h> 24#include <linux/page-flags.h> 25#include <linux/page_ref.h> 26#include <linux/overflow.h> 27#include <linux/sizes.h> 28#include <linux/sched.h> 29#include <linux/pgtable.h> 30#include <linux/kasan.h> 31#include <linux/memremap.h> 32 33struct mempolicy; 34struct anon_vma; 35struct anon_vma_chain; 36struct user_struct; 37struct pt_regs; 38 39extern int sysctl_page_lock_unfairness; 40 41void init_mm_internals(void); 42 43#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 44extern unsigned long max_mapnr; 45 46static inline void set_max_mapnr(unsigned long limit) 47{ 48 max_mapnr = limit; 49} 50#else 51static inline void set_max_mapnr(unsigned long limit) { } 52#endif 53 54extern atomic_long_t _totalram_pages; 55static inline unsigned long totalram_pages(void) 56{ 57 return (unsigned long)atomic_long_read(&_totalram_pages); 58} 59 60static inline void totalram_pages_inc(void) 61{ 62 atomic_long_inc(&_totalram_pages); 63} 64 65static inline void totalram_pages_dec(void) 66{ 67 atomic_long_dec(&_totalram_pages); 68} 69 70static inline void totalram_pages_add(long count) 71{ 72 atomic_long_add(count, &_totalram_pages); 73} 74 75extern void * high_memory; 76extern int page_cluster; 77extern const int page_cluster_max; 78 79#ifdef CONFIG_SYSCTL 80extern int sysctl_legacy_va_layout; 81#else 82#define sysctl_legacy_va_layout 0 83#endif 84 85#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 86extern const int mmap_rnd_bits_min; 87extern const int mmap_rnd_bits_max; 88extern int mmap_rnd_bits __read_mostly; 89#endif 90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 91extern const int mmap_rnd_compat_bits_min; 92extern const int mmap_rnd_compat_bits_max; 93extern int mmap_rnd_compat_bits __read_mostly; 94#endif 95 96#include <asm/page.h> 97#include <asm/processor.h> 98 99/* 100 * Architectures that support memory tagging (assigning tags to memory regions, 101 * embedding these tags into addresses that point to these memory regions, and 102 * checking that the memory and the pointer tags match on memory accesses) 103 * redefine this macro to strip tags from pointers. 104 * It's defined as noop for architectures that don't support memory tagging. 105 */ 106#ifndef untagged_addr 107#define untagged_addr(addr) (addr) 108#endif 109 110#ifndef __pa_symbol 111#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 112#endif 113 114#ifndef page_to_virt 115#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 116#endif 117 118#ifndef lm_alias 119#define lm_alias(x) __va(__pa_symbol(x)) 120#endif 121 122/* 123 * To prevent common memory management code establishing 124 * a zero page mapping on a read fault. 125 * This macro should be defined within <asm/pgtable.h>. 126 * s390 does this to prevent multiplexing of hardware bits 127 * related to the physical page in case of virtualization. 128 */ 129#ifndef mm_forbids_zeropage 130#define mm_forbids_zeropage(X) (0) 131#endif 132 133/* 134 * On some architectures it is expensive to call memset() for small sizes. 135 * If an architecture decides to implement their own version of 136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 137 * define their own version of this macro in <asm/pgtable.h> 138 */ 139#if BITS_PER_LONG == 64 140/* This function must be updated when the size of struct page grows above 80 141 * or reduces below 56. The idea that compiler optimizes out switch() 142 * statement, and only leaves move/store instructions. Also the compiler can 143 * combine write statements if they are both assignments and can be reordered, 144 * this can result in several of the writes here being dropped. 145 */ 146#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 147static inline void __mm_zero_struct_page(struct page *page) 148{ 149 unsigned long *_pp = (void *)page; 150 151 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 152 BUILD_BUG_ON(sizeof(struct page) & 7); 153 BUILD_BUG_ON(sizeof(struct page) < 56); 154 BUILD_BUG_ON(sizeof(struct page) > 80); 155 156 switch (sizeof(struct page)) { 157 case 80: 158 _pp[9] = 0; 159 fallthrough; 160 case 72: 161 _pp[8] = 0; 162 fallthrough; 163 case 64: 164 _pp[7] = 0; 165 fallthrough; 166 case 56: 167 _pp[6] = 0; 168 _pp[5] = 0; 169 _pp[4] = 0; 170 _pp[3] = 0; 171 _pp[2] = 0; 172 _pp[1] = 0; 173 _pp[0] = 0; 174 } 175} 176#else 177#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 178#endif 179 180/* 181 * Default maximum number of active map areas, this limits the number of vmas 182 * per mm struct. Users can overwrite this number by sysctl but there is a 183 * problem. 184 * 185 * When a program's coredump is generated as ELF format, a section is created 186 * per a vma. In ELF, the number of sections is represented in unsigned short. 187 * This means the number of sections should be smaller than 65535 at coredump. 188 * Because the kernel adds some informative sections to a image of program at 189 * generating coredump, we need some margin. The number of extra sections is 190 * 1-3 now and depends on arch. We use "5" as safe margin, here. 191 * 192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 193 * not a hard limit any more. Although some userspace tools can be surprised by 194 * that. 195 */ 196#define MAPCOUNT_ELF_CORE_MARGIN (5) 197#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 198 199extern int sysctl_max_map_count; 200 201extern unsigned long sysctl_user_reserve_kbytes; 202extern unsigned long sysctl_admin_reserve_kbytes; 203 204extern int sysctl_overcommit_memory; 205extern int sysctl_overcommit_ratio; 206extern unsigned long sysctl_overcommit_kbytes; 207 208int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 209 loff_t *); 210int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 211 loff_t *); 212int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 213 loff_t *); 214 215#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 216#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 217#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 218#else 219#define nth_page(page,n) ((page) + (n)) 220#define folio_page_idx(folio, p) ((p) - &(folio)->page) 221#endif 222 223/* to align the pointer to the (next) page boundary */ 224#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 225 226/* to align the pointer to the (prev) page boundary */ 227#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 228 229/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 230#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 231 232#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 233static inline struct folio *lru_to_folio(struct list_head *head) 234{ 235 return list_entry((head)->prev, struct folio, lru); 236} 237 238void setup_initial_init_mm(void *start_code, void *end_code, 239 void *end_data, void *brk); 240 241/* 242 * Linux kernel virtual memory manager primitives. 243 * The idea being to have a "virtual" mm in the same way 244 * we have a virtual fs - giving a cleaner interface to the 245 * mm details, and allowing different kinds of memory mappings 246 * (from shared memory to executable loading to arbitrary 247 * mmap() functions). 248 */ 249 250struct vm_area_struct *vm_area_alloc(struct mm_struct *); 251struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 252void vm_area_free(struct vm_area_struct *); 253 254#ifndef CONFIG_MMU 255extern struct rb_root nommu_region_tree; 256extern struct rw_semaphore nommu_region_sem; 257 258extern unsigned int kobjsize(const void *objp); 259#endif 260 261/* 262 * vm_flags in vm_area_struct, see mm_types.h. 263 * When changing, update also include/trace/events/mmflags.h 264 */ 265#define VM_NONE 0x00000000 266 267#define VM_READ 0x00000001 /* currently active flags */ 268#define VM_WRITE 0x00000002 269#define VM_EXEC 0x00000004 270#define VM_SHARED 0x00000008 271 272/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 273#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 274#define VM_MAYWRITE 0x00000020 275#define VM_MAYEXEC 0x00000040 276#define VM_MAYSHARE 0x00000080 277 278#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 279#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 280#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 281#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 282 283#define VM_LOCKED 0x00002000 284#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 285 286 /* Used by sys_madvise() */ 287#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 288#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 289 290#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 291#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 292#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 293#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 294#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 295#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 296#define VM_SYNC 0x00800000 /* Synchronous page faults */ 297#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 298#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 299#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 300 301#ifdef CONFIG_MEM_SOFT_DIRTY 302# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 303#else 304# define VM_SOFTDIRTY 0 305#endif 306 307#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 308#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 309#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 310#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 311 312#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 313#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 314#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 315#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 316#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 317#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 318#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 319#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 320#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 321#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 322#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 323#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 324 325#ifdef CONFIG_ARCH_HAS_PKEYS 326# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 327# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 328# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 329# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 330# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 331#ifdef CONFIG_PPC 332# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 333#else 334# define VM_PKEY_BIT4 0 335#endif 336#endif /* CONFIG_ARCH_HAS_PKEYS */ 337 338#if defined(CONFIG_X86) 339# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 340#elif defined(CONFIG_PPC) 341# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 342#elif defined(CONFIG_PARISC) 343# define VM_GROWSUP VM_ARCH_1 344#elif defined(CONFIG_IA64) 345# define VM_GROWSUP VM_ARCH_1 346#elif defined(CONFIG_SPARC64) 347# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 348# define VM_ARCH_CLEAR VM_SPARC_ADI 349#elif defined(CONFIG_ARM64) 350# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 351# define VM_ARCH_CLEAR VM_ARM64_BTI 352#elif !defined(CONFIG_MMU) 353# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 354#endif 355 356#if defined(CONFIG_ARM64_MTE) 357# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 358# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 359#else 360# define VM_MTE VM_NONE 361# define VM_MTE_ALLOWED VM_NONE 362#endif 363 364#ifndef VM_GROWSUP 365# define VM_GROWSUP VM_NONE 366#endif 367 368#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 369# define VM_UFFD_MINOR_BIT 37 370# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 371#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 372# define VM_UFFD_MINOR VM_NONE 373#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 374 375/* Bits set in the VMA until the stack is in its final location */ 376#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 377 378#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 379 380/* Common data flag combinations */ 381#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 382 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 383#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 384 VM_MAYWRITE | VM_MAYEXEC) 385#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 387 388#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 389#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 390#endif 391 392#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 393#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 394#endif 395 396#ifdef CONFIG_STACK_GROWSUP 397#define VM_STACK VM_GROWSUP 398#else 399#define VM_STACK VM_GROWSDOWN 400#endif 401 402#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 403 404/* VMA basic access permission flags */ 405#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 406 407 408/* 409 * Special vmas that are non-mergable, non-mlock()able. 410 */ 411#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 412 413/* This mask prevents VMA from being scanned with khugepaged */ 414#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 415 416/* This mask defines which mm->def_flags a process can inherit its parent */ 417#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 418 419/* This mask is used to clear all the VMA flags used by mlock */ 420#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 421 422/* Arch-specific flags to clear when updating VM flags on protection change */ 423#ifndef VM_ARCH_CLEAR 424# define VM_ARCH_CLEAR VM_NONE 425#endif 426#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 427 428/* 429 * mapping from the currently active vm_flags protection bits (the 430 * low four bits) to a page protection mask.. 431 */ 432 433/* 434 * The default fault flags that should be used by most of the 435 * arch-specific page fault handlers. 436 */ 437#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 438 FAULT_FLAG_KILLABLE | \ 439 FAULT_FLAG_INTERRUPTIBLE) 440 441/** 442 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 443 * @flags: Fault flags. 444 * 445 * This is mostly used for places where we want to try to avoid taking 446 * the mmap_lock for too long a time when waiting for another condition 447 * to change, in which case we can try to be polite to release the 448 * mmap_lock in the first round to avoid potential starvation of other 449 * processes that would also want the mmap_lock. 450 * 451 * Return: true if the page fault allows retry and this is the first 452 * attempt of the fault handling; false otherwise. 453 */ 454static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 455{ 456 return (flags & FAULT_FLAG_ALLOW_RETRY) && 457 (!(flags & FAULT_FLAG_TRIED)); 458} 459 460#define FAULT_FLAG_TRACE \ 461 { FAULT_FLAG_WRITE, "WRITE" }, \ 462 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 463 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 464 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 465 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 466 { FAULT_FLAG_TRIED, "TRIED" }, \ 467 { FAULT_FLAG_USER, "USER" }, \ 468 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 469 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 470 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 471 472/* 473 * vm_fault is filled by the pagefault handler and passed to the vma's 474 * ->fault function. The vma's ->fault is responsible for returning a bitmask 475 * of VM_FAULT_xxx flags that give details about how the fault was handled. 476 * 477 * MM layer fills up gfp_mask for page allocations but fault handler might 478 * alter it if its implementation requires a different allocation context. 479 * 480 * pgoff should be used in favour of virtual_address, if possible. 481 */ 482struct vm_fault { 483 const struct { 484 struct vm_area_struct *vma; /* Target VMA */ 485 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 486 pgoff_t pgoff; /* Logical page offset based on vma */ 487 unsigned long address; /* Faulting virtual address - masked */ 488 unsigned long real_address; /* Faulting virtual address - unmasked */ 489 }; 490 enum fault_flag flags; /* FAULT_FLAG_xxx flags 491 * XXX: should really be 'const' */ 492 pmd_t *pmd; /* Pointer to pmd entry matching 493 * the 'address' */ 494 pud_t *pud; /* Pointer to pud entry matching 495 * the 'address' 496 */ 497 union { 498 pte_t orig_pte; /* Value of PTE at the time of fault */ 499 pmd_t orig_pmd; /* Value of PMD at the time of fault, 500 * used by PMD fault only. 501 */ 502 }; 503 504 struct page *cow_page; /* Page handler may use for COW fault */ 505 struct page *page; /* ->fault handlers should return a 506 * page here, unless VM_FAULT_NOPAGE 507 * is set (which is also implied by 508 * VM_FAULT_ERROR). 509 */ 510 /* These three entries are valid only while holding ptl lock */ 511 pte_t *pte; /* Pointer to pte entry matching 512 * the 'address'. NULL if the page 513 * table hasn't been allocated. 514 */ 515 spinlock_t *ptl; /* Page table lock. 516 * Protects pte page table if 'pte' 517 * is not NULL, otherwise pmd. 518 */ 519 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 520 * vm_ops->map_pages() sets up a page 521 * table from atomic context. 522 * do_fault_around() pre-allocates 523 * page table to avoid allocation from 524 * atomic context. 525 */ 526}; 527 528/* page entry size for vm->huge_fault() */ 529enum page_entry_size { 530 PE_SIZE_PTE = 0, 531 PE_SIZE_PMD, 532 PE_SIZE_PUD, 533}; 534 535/* 536 * These are the virtual MM functions - opening of an area, closing and 537 * unmapping it (needed to keep files on disk up-to-date etc), pointer 538 * to the functions called when a no-page or a wp-page exception occurs. 539 */ 540struct vm_operations_struct { 541 void (*open)(struct vm_area_struct * area); 542 /** 543 * @close: Called when the VMA is being removed from the MM. 544 * Context: User context. May sleep. Caller holds mmap_lock. 545 */ 546 void (*close)(struct vm_area_struct * area); 547 /* Called any time before splitting to check if it's allowed */ 548 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 549 int (*mremap)(struct vm_area_struct *area); 550 /* 551 * Called by mprotect() to make driver-specific permission 552 * checks before mprotect() is finalised. The VMA must not 553 * be modified. Returns 0 if mprotect() can proceed. 554 */ 555 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 556 unsigned long end, unsigned long newflags); 557 vm_fault_t (*fault)(struct vm_fault *vmf); 558 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 559 enum page_entry_size pe_size); 560 vm_fault_t (*map_pages)(struct vm_fault *vmf, 561 pgoff_t start_pgoff, pgoff_t end_pgoff); 562 unsigned long (*pagesize)(struct vm_area_struct * area); 563 564 /* notification that a previously read-only page is about to become 565 * writable, if an error is returned it will cause a SIGBUS */ 566 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 567 568 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 569 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 570 571 /* called by access_process_vm when get_user_pages() fails, typically 572 * for use by special VMAs. See also generic_access_phys() for a generic 573 * implementation useful for any iomem mapping. 574 */ 575 int (*access)(struct vm_area_struct *vma, unsigned long addr, 576 void *buf, int len, int write); 577 578 /* Called by the /proc/PID/maps code to ask the vma whether it 579 * has a special name. Returning non-NULL will also cause this 580 * vma to be dumped unconditionally. */ 581 const char *(*name)(struct vm_area_struct *vma); 582 583#ifdef CONFIG_NUMA 584 /* 585 * set_policy() op must add a reference to any non-NULL @new mempolicy 586 * to hold the policy upon return. Caller should pass NULL @new to 587 * remove a policy and fall back to surrounding context--i.e. do not 588 * install a MPOL_DEFAULT policy, nor the task or system default 589 * mempolicy. 590 */ 591 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 592 593 /* 594 * get_policy() op must add reference [mpol_get()] to any policy at 595 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 596 * in mm/mempolicy.c will do this automatically. 597 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 598 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 599 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 600 * must return NULL--i.e., do not "fallback" to task or system default 601 * policy. 602 */ 603 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 604 unsigned long addr); 605#endif 606 /* 607 * Called by vm_normal_page() for special PTEs to find the 608 * page for @addr. This is useful if the default behavior 609 * (using pte_page()) would not find the correct page. 610 */ 611 struct page *(*find_special_page)(struct vm_area_struct *vma, 612 unsigned long addr); 613}; 614 615static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 616{ 617 static const struct vm_operations_struct dummy_vm_ops = {}; 618 619 memset(vma, 0, sizeof(*vma)); 620 vma->vm_mm = mm; 621 vma->vm_ops = &dummy_vm_ops; 622 INIT_LIST_HEAD(&vma->anon_vma_chain); 623} 624 625static inline void vma_set_anonymous(struct vm_area_struct *vma) 626{ 627 vma->vm_ops = NULL; 628} 629 630static inline bool vma_is_anonymous(struct vm_area_struct *vma) 631{ 632 return !vma->vm_ops; 633} 634 635static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 636{ 637 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 638 639 if (!maybe_stack) 640 return false; 641 642 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 643 VM_STACK_INCOMPLETE_SETUP) 644 return true; 645 646 return false; 647} 648 649static inline bool vma_is_foreign(struct vm_area_struct *vma) 650{ 651 if (!current->mm) 652 return true; 653 654 if (current->mm != vma->vm_mm) 655 return true; 656 657 return false; 658} 659 660static inline bool vma_is_accessible(struct vm_area_struct *vma) 661{ 662 return vma->vm_flags & VM_ACCESS_FLAGS; 663} 664 665static inline 666struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 667{ 668 return mas_find(&vmi->mas, max); 669} 670 671static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 672{ 673 /* 674 * Uses vma_find() to get the first VMA when the iterator starts. 675 * Calling mas_next() could skip the first entry. 676 */ 677 return vma_find(vmi, ULONG_MAX); 678} 679 680static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 681{ 682 return mas_prev(&vmi->mas, 0); 683} 684 685static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 686{ 687 return vmi->mas.index; 688} 689 690#define for_each_vma(__vmi, __vma) \ 691 while (((__vma) = vma_next(&(__vmi))) != NULL) 692 693/* The MM code likes to work with exclusive end addresses */ 694#define for_each_vma_range(__vmi, __vma, __end) \ 695 while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL) 696 697#ifdef CONFIG_SHMEM 698/* 699 * The vma_is_shmem is not inline because it is used only by slow 700 * paths in userfault. 701 */ 702bool vma_is_shmem(struct vm_area_struct *vma); 703bool vma_is_anon_shmem(struct vm_area_struct *vma); 704#else 705static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 706static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 707#endif 708 709int vma_is_stack_for_current(struct vm_area_struct *vma); 710 711/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 712#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 713 714struct mmu_gather; 715struct inode; 716 717static inline unsigned int compound_order(struct page *page) 718{ 719 if (!PageHead(page)) 720 return 0; 721 return page[1].compound_order; 722} 723 724/** 725 * folio_order - The allocation order of a folio. 726 * @folio: The folio. 727 * 728 * A folio is composed of 2^order pages. See get_order() for the definition 729 * of order. 730 * 731 * Return: The order of the folio. 732 */ 733static inline unsigned int folio_order(struct folio *folio) 734{ 735 if (!folio_test_large(folio)) 736 return 0; 737 return folio->_folio_order; 738} 739 740#include <linux/huge_mm.h> 741 742/* 743 * Methods to modify the page usage count. 744 * 745 * What counts for a page usage: 746 * - cache mapping (page->mapping) 747 * - private data (page->private) 748 * - page mapped in a task's page tables, each mapping 749 * is counted separately 750 * 751 * Also, many kernel routines increase the page count before a critical 752 * routine so they can be sure the page doesn't go away from under them. 753 */ 754 755/* 756 * Drop a ref, return true if the refcount fell to zero (the page has no users) 757 */ 758static inline int put_page_testzero(struct page *page) 759{ 760 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 761 return page_ref_dec_and_test(page); 762} 763 764static inline int folio_put_testzero(struct folio *folio) 765{ 766 return put_page_testzero(&folio->page); 767} 768 769/* 770 * Try to grab a ref unless the page has a refcount of zero, return false if 771 * that is the case. 772 * This can be called when MMU is off so it must not access 773 * any of the virtual mappings. 774 */ 775static inline bool get_page_unless_zero(struct page *page) 776{ 777 return page_ref_add_unless(page, 1, 0); 778} 779 780extern int page_is_ram(unsigned long pfn); 781 782enum { 783 REGION_INTERSECTS, 784 REGION_DISJOINT, 785 REGION_MIXED, 786}; 787 788int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 789 unsigned long desc); 790 791/* Support for virtually mapped pages */ 792struct page *vmalloc_to_page(const void *addr); 793unsigned long vmalloc_to_pfn(const void *addr); 794 795/* 796 * Determine if an address is within the vmalloc range 797 * 798 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 799 * is no special casing required. 800 */ 801 802#ifndef is_ioremap_addr 803#define is_ioremap_addr(x) is_vmalloc_addr(x) 804#endif 805 806#ifdef CONFIG_MMU 807extern bool is_vmalloc_addr(const void *x); 808extern int is_vmalloc_or_module_addr(const void *x); 809#else 810static inline bool is_vmalloc_addr(const void *x) 811{ 812 return false; 813} 814static inline int is_vmalloc_or_module_addr(const void *x) 815{ 816 return 0; 817} 818#endif 819 820/* 821 * How many times the entire folio is mapped as a single unit (eg by a 822 * PMD or PUD entry). This is probably not what you want, except for 823 * debugging purposes - it does not include PTE-mapped sub-pages; look 824 * at folio_mapcount() or page_mapcount() or total_mapcount() instead. 825 */ 826static inline int folio_entire_mapcount(struct folio *folio) 827{ 828 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 829 return atomic_read(folio_mapcount_ptr(folio)) + 1; 830} 831 832/* 833 * Mapcount of compound page as a whole, does not include mapped sub-pages. 834 * Must be called only on head of compound page. 835 */ 836static inline int head_compound_mapcount(struct page *head) 837{ 838 return atomic_read(compound_mapcount_ptr(head)) + 1; 839} 840 841/* 842 * If a 16GB hugetlb page were mapped by PTEs of all of its 4kB sub-pages, 843 * its subpages_mapcount would be 0x400000: choose the COMPOUND_MAPPED bit 844 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently 845 * leaves subpages_mapcount at 0, but avoid surprise if it participates later. 846 */ 847#define COMPOUND_MAPPED 0x800000 848#define SUBPAGES_MAPPED (COMPOUND_MAPPED - 1) 849 850/* 851 * Number of sub-pages mapped by PTE, does not include compound mapcount. 852 * Must be called only on head of compound page. 853 */ 854static inline int head_subpages_mapcount(struct page *head) 855{ 856 return atomic_read(subpages_mapcount_ptr(head)) & SUBPAGES_MAPPED; 857} 858 859/* 860 * The atomic page->_mapcount, starts from -1: so that transitions 861 * both from it and to it can be tracked, using atomic_inc_and_test 862 * and atomic_add_negative(-1). 863 */ 864static inline void page_mapcount_reset(struct page *page) 865{ 866 atomic_set(&(page)->_mapcount, -1); 867} 868 869/* 870 * Mapcount of 0-order page; when compound sub-page, includes 871 * compound_mapcount of compound_head of page. 872 * 873 * Result is undefined for pages which cannot be mapped into userspace. 874 * For example SLAB or special types of pages. See function page_has_type(). 875 * They use this place in struct page differently. 876 */ 877static inline int page_mapcount(struct page *page) 878{ 879 int mapcount = atomic_read(&page->_mapcount) + 1; 880 881 if (likely(!PageCompound(page))) 882 return mapcount; 883 page = compound_head(page); 884 return head_compound_mapcount(page) + mapcount; 885} 886 887int total_compound_mapcount(struct page *head); 888 889/** 890 * folio_mapcount() - Calculate the number of mappings of this folio. 891 * @folio: The folio. 892 * 893 * A large folio tracks both how many times the entire folio is mapped, 894 * and how many times each individual page in the folio is mapped. 895 * This function calculates the total number of times the folio is 896 * mapped. 897 * 898 * Return: The number of times this folio is mapped. 899 */ 900static inline int folio_mapcount(struct folio *folio) 901{ 902 if (likely(!folio_test_large(folio))) 903 return atomic_read(&folio->_mapcount) + 1; 904 return total_compound_mapcount(&folio->page); 905} 906 907static inline int total_mapcount(struct page *page) 908{ 909 if (likely(!PageCompound(page))) 910 return atomic_read(&page->_mapcount) + 1; 911 return total_compound_mapcount(compound_head(page)); 912} 913 914static inline bool folio_large_is_mapped(struct folio *folio) 915{ 916 /* 917 * Reading folio_mapcount_ptr() below could be omitted if hugetlb 918 * participated in incrementing subpages_mapcount when compound mapped. 919 */ 920 return atomic_read(folio_subpages_mapcount_ptr(folio)) > 0 || 921 atomic_read(folio_mapcount_ptr(folio)) >= 0; 922} 923 924/** 925 * folio_mapped - Is this folio mapped into userspace? 926 * @folio: The folio. 927 * 928 * Return: True if any page in this folio is referenced by user page tables. 929 */ 930static inline bool folio_mapped(struct folio *folio) 931{ 932 if (likely(!folio_test_large(folio))) 933 return atomic_read(&folio->_mapcount) >= 0; 934 return folio_large_is_mapped(folio); 935} 936 937/* 938 * Return true if this page is mapped into pagetables. 939 * For compound page it returns true if any sub-page of compound page is mapped, 940 * even if this particular sub-page is not itself mapped by any PTE or PMD. 941 */ 942static inline bool page_mapped(struct page *page) 943{ 944 if (likely(!PageCompound(page))) 945 return atomic_read(&page->_mapcount) >= 0; 946 return folio_large_is_mapped(page_folio(page)); 947} 948 949static inline struct page *virt_to_head_page(const void *x) 950{ 951 struct page *page = virt_to_page(x); 952 953 return compound_head(page); 954} 955 956static inline struct folio *virt_to_folio(const void *x) 957{ 958 struct page *page = virt_to_page(x); 959 960 return page_folio(page); 961} 962 963void __folio_put(struct folio *folio); 964 965void put_pages_list(struct list_head *pages); 966 967void split_page(struct page *page, unsigned int order); 968void folio_copy(struct folio *dst, struct folio *src); 969 970unsigned long nr_free_buffer_pages(void); 971 972/* 973 * Compound pages have a destructor function. Provide a 974 * prototype for that function and accessor functions. 975 * These are _only_ valid on the head of a compound page. 976 */ 977typedef void compound_page_dtor(struct page *); 978 979/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 980enum compound_dtor_id { 981 NULL_COMPOUND_DTOR, 982 COMPOUND_PAGE_DTOR, 983#ifdef CONFIG_HUGETLB_PAGE 984 HUGETLB_PAGE_DTOR, 985#endif 986#ifdef CONFIG_TRANSPARENT_HUGEPAGE 987 TRANSHUGE_PAGE_DTOR, 988#endif 989 NR_COMPOUND_DTORS, 990}; 991extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 992 993static inline void set_compound_page_dtor(struct page *page, 994 enum compound_dtor_id compound_dtor) 995{ 996 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 997 page[1].compound_dtor = compound_dtor; 998} 999 1000static inline void folio_set_compound_dtor(struct folio *folio, 1001 enum compound_dtor_id compound_dtor) 1002{ 1003 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio); 1004 folio->_folio_dtor = compound_dtor; 1005} 1006 1007void destroy_large_folio(struct folio *folio); 1008 1009static inline int head_compound_pincount(struct page *head) 1010{ 1011 return atomic_read(compound_pincount_ptr(head)); 1012} 1013 1014static inline void set_compound_order(struct page *page, unsigned int order) 1015{ 1016 page[1].compound_order = order; 1017#ifdef CONFIG_64BIT 1018 page[1].compound_nr = 1U << order; 1019#endif 1020} 1021 1022/* 1023 * folio_set_compound_order is generally passed a non-zero order to 1024 * initialize a large folio. However, hugetlb code abuses this by 1025 * passing in zero when 'dissolving' a large folio. 1026 */ 1027static inline void folio_set_compound_order(struct folio *folio, 1028 unsigned int order) 1029{ 1030 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1031 1032 folio->_folio_order = order; 1033#ifdef CONFIG_64BIT 1034 folio->_folio_nr_pages = order ? 1U << order : 0; 1035#endif 1036} 1037 1038/* Returns the number of pages in this potentially compound page. */ 1039static inline unsigned long compound_nr(struct page *page) 1040{ 1041 if (!PageHead(page)) 1042 return 1; 1043#ifdef CONFIG_64BIT 1044 return page[1].compound_nr; 1045#else 1046 return 1UL << compound_order(page); 1047#endif 1048} 1049 1050/* Returns the number of bytes in this potentially compound page. */ 1051static inline unsigned long page_size(struct page *page) 1052{ 1053 return PAGE_SIZE << compound_order(page); 1054} 1055 1056/* Returns the number of bits needed for the number of bytes in a page */ 1057static inline unsigned int page_shift(struct page *page) 1058{ 1059 return PAGE_SHIFT + compound_order(page); 1060} 1061 1062/** 1063 * thp_order - Order of a transparent huge page. 1064 * @page: Head page of a transparent huge page. 1065 */ 1066static inline unsigned int thp_order(struct page *page) 1067{ 1068 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1069 return compound_order(page); 1070} 1071 1072/** 1073 * thp_nr_pages - The number of regular pages in this huge page. 1074 * @page: The head page of a huge page. 1075 */ 1076static inline int thp_nr_pages(struct page *page) 1077{ 1078 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1079 return compound_nr(page); 1080} 1081 1082/** 1083 * thp_size - Size of a transparent huge page. 1084 * @page: Head page of a transparent huge page. 1085 * 1086 * Return: Number of bytes in this page. 1087 */ 1088static inline unsigned long thp_size(struct page *page) 1089{ 1090 return PAGE_SIZE << thp_order(page); 1091} 1092 1093void free_compound_page(struct page *page); 1094 1095#ifdef CONFIG_MMU 1096/* 1097 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1098 * servicing faults for write access. In the normal case, do always want 1099 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1100 * that do not have writing enabled, when used by access_process_vm. 1101 */ 1102static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1103{ 1104 if (likely(vma->vm_flags & VM_WRITE)) 1105 pte = pte_mkwrite(pte); 1106 return pte; 1107} 1108 1109vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1110void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1111 1112vm_fault_t finish_fault(struct vm_fault *vmf); 1113vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1114#endif 1115 1116/* 1117 * Multiple processes may "see" the same page. E.g. for untouched 1118 * mappings of /dev/null, all processes see the same page full of 1119 * zeroes, and text pages of executables and shared libraries have 1120 * only one copy in memory, at most, normally. 1121 * 1122 * For the non-reserved pages, page_count(page) denotes a reference count. 1123 * page_count() == 0 means the page is free. page->lru is then used for 1124 * freelist management in the buddy allocator. 1125 * page_count() > 0 means the page has been allocated. 1126 * 1127 * Pages are allocated by the slab allocator in order to provide memory 1128 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1129 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1130 * unless a particular usage is carefully commented. (the responsibility of 1131 * freeing the kmalloc memory is the caller's, of course). 1132 * 1133 * A page may be used by anyone else who does a __get_free_page(). 1134 * In this case, page_count still tracks the references, and should only 1135 * be used through the normal accessor functions. The top bits of page->flags 1136 * and page->virtual store page management information, but all other fields 1137 * are unused and could be used privately, carefully. The management of this 1138 * page is the responsibility of the one who allocated it, and those who have 1139 * subsequently been given references to it. 1140 * 1141 * The other pages (we may call them "pagecache pages") are completely 1142 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1143 * The following discussion applies only to them. 1144 * 1145 * A pagecache page contains an opaque `private' member, which belongs to the 1146 * page's address_space. Usually, this is the address of a circular list of 1147 * the page's disk buffers. PG_private must be set to tell the VM to call 1148 * into the filesystem to release these pages. 1149 * 1150 * A page may belong to an inode's memory mapping. In this case, page->mapping 1151 * is the pointer to the inode, and page->index is the file offset of the page, 1152 * in units of PAGE_SIZE. 1153 * 1154 * If pagecache pages are not associated with an inode, they are said to be 1155 * anonymous pages. These may become associated with the swapcache, and in that 1156 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1157 * 1158 * In either case (swapcache or inode backed), the pagecache itself holds one 1159 * reference to the page. Setting PG_private should also increment the 1160 * refcount. The each user mapping also has a reference to the page. 1161 * 1162 * The pagecache pages are stored in a per-mapping radix tree, which is 1163 * rooted at mapping->i_pages, and indexed by offset. 1164 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1165 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1166 * 1167 * All pagecache pages may be subject to I/O: 1168 * - inode pages may need to be read from disk, 1169 * - inode pages which have been modified and are MAP_SHARED may need 1170 * to be written back to the inode on disk, 1171 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1172 * modified may need to be swapped out to swap space and (later) to be read 1173 * back into memory. 1174 */ 1175 1176#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1177DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1178 1179bool __put_devmap_managed_page_refs(struct page *page, int refs); 1180static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1181{ 1182 if (!static_branch_unlikely(&devmap_managed_key)) 1183 return false; 1184 if (!is_zone_device_page(page)) 1185 return false; 1186 return __put_devmap_managed_page_refs(page, refs); 1187} 1188#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1189static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1190{ 1191 return false; 1192} 1193#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1194 1195static inline bool put_devmap_managed_page(struct page *page) 1196{ 1197 return put_devmap_managed_page_refs(page, 1); 1198} 1199 1200/* 127: arbitrary random number, small enough to assemble well */ 1201#define folio_ref_zero_or_close_to_overflow(folio) \ 1202 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1203 1204/** 1205 * folio_get - Increment the reference count on a folio. 1206 * @folio: The folio. 1207 * 1208 * Context: May be called in any context, as long as you know that 1209 * you have a refcount on the folio. If you do not already have one, 1210 * folio_try_get() may be the right interface for you to use. 1211 */ 1212static inline void folio_get(struct folio *folio) 1213{ 1214 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1215 folio_ref_inc(folio); 1216} 1217 1218static inline void get_page(struct page *page) 1219{ 1220 folio_get(page_folio(page)); 1221} 1222 1223int __must_check try_grab_page(struct page *page, unsigned int flags); 1224 1225static inline __must_check bool try_get_page(struct page *page) 1226{ 1227 page = compound_head(page); 1228 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1229 return false; 1230 page_ref_inc(page); 1231 return true; 1232} 1233 1234/** 1235 * folio_put - Decrement the reference count on a folio. 1236 * @folio: The folio. 1237 * 1238 * If the folio's reference count reaches zero, the memory will be 1239 * released back to the page allocator and may be used by another 1240 * allocation immediately. Do not access the memory or the struct folio 1241 * after calling folio_put() unless you can be sure that it wasn't the 1242 * last reference. 1243 * 1244 * Context: May be called in process or interrupt context, but not in NMI 1245 * context. May be called while holding a spinlock. 1246 */ 1247static inline void folio_put(struct folio *folio) 1248{ 1249 if (folio_put_testzero(folio)) 1250 __folio_put(folio); 1251} 1252 1253/** 1254 * folio_put_refs - Reduce the reference count on a folio. 1255 * @folio: The folio. 1256 * @refs: The amount to subtract from the folio's reference count. 1257 * 1258 * If the folio's reference count reaches zero, the memory will be 1259 * released back to the page allocator and may be used by another 1260 * allocation immediately. Do not access the memory or the struct folio 1261 * after calling folio_put_refs() unless you can be sure that these weren't 1262 * the last references. 1263 * 1264 * Context: May be called in process or interrupt context, but not in NMI 1265 * context. May be called while holding a spinlock. 1266 */ 1267static inline void folio_put_refs(struct folio *folio, int refs) 1268{ 1269 if (folio_ref_sub_and_test(folio, refs)) 1270 __folio_put(folio); 1271} 1272 1273/** 1274 * release_pages - release an array of pages or folios 1275 * 1276 * This just releases a simple array of multiple pages, and 1277 * accepts various different forms of said page array: either 1278 * a regular old boring array of pages, an array of folios, or 1279 * an array of encoded page pointers. 1280 * 1281 * The transparent union syntax for this kind of "any of these 1282 * argument types" is all kinds of ugly, so look away. 1283 */ 1284typedef union { 1285 struct page **pages; 1286 struct folio **folios; 1287 struct encoded_page **encoded_pages; 1288} release_pages_arg __attribute__ ((__transparent_union__)); 1289 1290void release_pages(release_pages_arg, int nr); 1291 1292/** 1293 * folios_put - Decrement the reference count on an array of folios. 1294 * @folios: The folios. 1295 * @nr: How many folios there are. 1296 * 1297 * Like folio_put(), but for an array of folios. This is more efficient 1298 * than writing the loop yourself as it will optimise the locks which 1299 * need to be taken if the folios are freed. 1300 * 1301 * Context: May be called in process or interrupt context, but not in NMI 1302 * context. May be called while holding a spinlock. 1303 */ 1304static inline void folios_put(struct folio **folios, unsigned int nr) 1305{ 1306 release_pages(folios, nr); 1307} 1308 1309static inline void put_page(struct page *page) 1310{ 1311 struct folio *folio = page_folio(page); 1312 1313 /* 1314 * For some devmap managed pages we need to catch refcount transition 1315 * from 2 to 1: 1316 */ 1317 if (put_devmap_managed_page(&folio->page)) 1318 return; 1319 folio_put(folio); 1320} 1321 1322/* 1323 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1324 * the page's refcount so that two separate items are tracked: the original page 1325 * reference count, and also a new count of how many pin_user_pages() calls were 1326 * made against the page. ("gup-pinned" is another term for the latter). 1327 * 1328 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1329 * distinct from normal pages. As such, the unpin_user_page() call (and its 1330 * variants) must be used in order to release gup-pinned pages. 1331 * 1332 * Choice of value: 1333 * 1334 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1335 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1336 * simpler, due to the fact that adding an even power of two to the page 1337 * refcount has the effect of using only the upper N bits, for the code that 1338 * counts up using the bias value. This means that the lower bits are left for 1339 * the exclusive use of the original code that increments and decrements by one 1340 * (or at least, by much smaller values than the bias value). 1341 * 1342 * Of course, once the lower bits overflow into the upper bits (and this is 1343 * OK, because subtraction recovers the original values), then visual inspection 1344 * no longer suffices to directly view the separate counts. However, for normal 1345 * applications that don't have huge page reference counts, this won't be an 1346 * issue. 1347 * 1348 * Locking: the lockless algorithm described in folio_try_get_rcu() 1349 * provides safe operation for get_user_pages(), page_mkclean() and 1350 * other calls that race to set up page table entries. 1351 */ 1352#define GUP_PIN_COUNTING_BIAS (1U << 10) 1353 1354void unpin_user_page(struct page *page); 1355void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1356 bool make_dirty); 1357void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1358 bool make_dirty); 1359void unpin_user_pages(struct page **pages, unsigned long npages); 1360 1361static inline bool is_cow_mapping(vm_flags_t flags) 1362{ 1363 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1364} 1365 1366#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1367#define SECTION_IN_PAGE_FLAGS 1368#endif 1369 1370/* 1371 * The identification function is mainly used by the buddy allocator for 1372 * determining if two pages could be buddies. We are not really identifying 1373 * the zone since we could be using the section number id if we do not have 1374 * node id available in page flags. 1375 * We only guarantee that it will return the same value for two combinable 1376 * pages in a zone. 1377 */ 1378static inline int page_zone_id(struct page *page) 1379{ 1380 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1381} 1382 1383#ifdef NODE_NOT_IN_PAGE_FLAGS 1384extern int page_to_nid(const struct page *page); 1385#else 1386static inline int page_to_nid(const struct page *page) 1387{ 1388 struct page *p = (struct page *)page; 1389 1390 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1391} 1392#endif 1393 1394static inline int folio_nid(const struct folio *folio) 1395{ 1396 return page_to_nid(&folio->page); 1397} 1398 1399#ifdef CONFIG_NUMA_BALANCING 1400/* page access time bits needs to hold at least 4 seconds */ 1401#define PAGE_ACCESS_TIME_MIN_BITS 12 1402#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1403#define PAGE_ACCESS_TIME_BUCKETS \ 1404 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1405#else 1406#define PAGE_ACCESS_TIME_BUCKETS 0 1407#endif 1408 1409#define PAGE_ACCESS_TIME_MASK \ 1410 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1411 1412static inline int cpu_pid_to_cpupid(int cpu, int pid) 1413{ 1414 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1415} 1416 1417static inline int cpupid_to_pid(int cpupid) 1418{ 1419 return cpupid & LAST__PID_MASK; 1420} 1421 1422static inline int cpupid_to_cpu(int cpupid) 1423{ 1424 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1425} 1426 1427static inline int cpupid_to_nid(int cpupid) 1428{ 1429 return cpu_to_node(cpupid_to_cpu(cpupid)); 1430} 1431 1432static inline bool cpupid_pid_unset(int cpupid) 1433{ 1434 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1435} 1436 1437static inline bool cpupid_cpu_unset(int cpupid) 1438{ 1439 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1440} 1441 1442static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1443{ 1444 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1445} 1446 1447#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1448#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1449static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1450{ 1451 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1452} 1453 1454static inline int page_cpupid_last(struct page *page) 1455{ 1456 return page->_last_cpupid; 1457} 1458static inline void page_cpupid_reset_last(struct page *page) 1459{ 1460 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1461} 1462#else 1463static inline int page_cpupid_last(struct page *page) 1464{ 1465 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1466} 1467 1468extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1469 1470static inline void page_cpupid_reset_last(struct page *page) 1471{ 1472 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1473} 1474#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1475 1476static inline int xchg_page_access_time(struct page *page, int time) 1477{ 1478 int last_time; 1479 1480 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS); 1481 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1482} 1483#else /* !CONFIG_NUMA_BALANCING */ 1484static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1485{ 1486 return page_to_nid(page); /* XXX */ 1487} 1488 1489static inline int xchg_page_access_time(struct page *page, int time) 1490{ 1491 return 0; 1492} 1493 1494static inline int page_cpupid_last(struct page *page) 1495{ 1496 return page_to_nid(page); /* XXX */ 1497} 1498 1499static inline int cpupid_to_nid(int cpupid) 1500{ 1501 return -1; 1502} 1503 1504static inline int cpupid_to_pid(int cpupid) 1505{ 1506 return -1; 1507} 1508 1509static inline int cpupid_to_cpu(int cpupid) 1510{ 1511 return -1; 1512} 1513 1514static inline int cpu_pid_to_cpupid(int nid, int pid) 1515{ 1516 return -1; 1517} 1518 1519static inline bool cpupid_pid_unset(int cpupid) 1520{ 1521 return true; 1522} 1523 1524static inline void page_cpupid_reset_last(struct page *page) 1525{ 1526} 1527 1528static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1529{ 1530 return false; 1531} 1532#endif /* CONFIG_NUMA_BALANCING */ 1533 1534#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1535 1536/* 1537 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1538 * setting tags for all pages to native kernel tag value 0xff, as the default 1539 * value 0x00 maps to 0xff. 1540 */ 1541 1542static inline u8 page_kasan_tag(const struct page *page) 1543{ 1544 u8 tag = 0xff; 1545 1546 if (kasan_enabled()) { 1547 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1548 tag ^= 0xff; 1549 } 1550 1551 return tag; 1552} 1553 1554static inline void page_kasan_tag_set(struct page *page, u8 tag) 1555{ 1556 unsigned long old_flags, flags; 1557 1558 if (!kasan_enabled()) 1559 return; 1560 1561 tag ^= 0xff; 1562 old_flags = READ_ONCE(page->flags); 1563 do { 1564 flags = old_flags; 1565 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1566 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1567 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1568} 1569 1570static inline void page_kasan_tag_reset(struct page *page) 1571{ 1572 if (kasan_enabled()) 1573 page_kasan_tag_set(page, 0xff); 1574} 1575 1576#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1577 1578static inline u8 page_kasan_tag(const struct page *page) 1579{ 1580 return 0xff; 1581} 1582 1583static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1584static inline void page_kasan_tag_reset(struct page *page) { } 1585 1586#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1587 1588static inline struct zone *page_zone(const struct page *page) 1589{ 1590 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1591} 1592 1593static inline pg_data_t *page_pgdat(const struct page *page) 1594{ 1595 return NODE_DATA(page_to_nid(page)); 1596} 1597 1598static inline struct zone *folio_zone(const struct folio *folio) 1599{ 1600 return page_zone(&folio->page); 1601} 1602 1603static inline pg_data_t *folio_pgdat(const struct folio *folio) 1604{ 1605 return page_pgdat(&folio->page); 1606} 1607 1608#ifdef SECTION_IN_PAGE_FLAGS 1609static inline void set_page_section(struct page *page, unsigned long section) 1610{ 1611 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1612 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1613} 1614 1615static inline unsigned long page_to_section(const struct page *page) 1616{ 1617 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1618} 1619#endif 1620 1621/** 1622 * folio_pfn - Return the Page Frame Number of a folio. 1623 * @folio: The folio. 1624 * 1625 * A folio may contain multiple pages. The pages have consecutive 1626 * Page Frame Numbers. 1627 * 1628 * Return: The Page Frame Number of the first page in the folio. 1629 */ 1630static inline unsigned long folio_pfn(struct folio *folio) 1631{ 1632 return page_to_pfn(&folio->page); 1633} 1634 1635static inline struct folio *pfn_folio(unsigned long pfn) 1636{ 1637 return page_folio(pfn_to_page(pfn)); 1638} 1639 1640static inline atomic_t *folio_pincount_ptr(struct folio *folio) 1641{ 1642 return &folio_page(folio, 1)->compound_pincount; 1643} 1644 1645/** 1646 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1647 * @folio: The folio. 1648 * 1649 * This function checks if a folio has been pinned via a call to 1650 * a function in the pin_user_pages() family. 1651 * 1652 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1653 * because it means "definitely not pinned for DMA", but true means "probably 1654 * pinned for DMA, but possibly a false positive due to having at least 1655 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1656 * 1657 * False positives are OK, because: a) it's unlikely for a folio to 1658 * get that many refcounts, and b) all the callers of this routine are 1659 * expected to be able to deal gracefully with a false positive. 1660 * 1661 * For large folios, the result will be exactly correct. That's because 1662 * we have more tracking data available: the compound_pincount is used 1663 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1664 * 1665 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1666 * 1667 * Return: True, if it is likely that the page has been "dma-pinned". 1668 * False, if the page is definitely not dma-pinned. 1669 */ 1670static inline bool folio_maybe_dma_pinned(struct folio *folio) 1671{ 1672 if (folio_test_large(folio)) 1673 return atomic_read(folio_pincount_ptr(folio)) > 0; 1674 1675 /* 1676 * folio_ref_count() is signed. If that refcount overflows, then 1677 * folio_ref_count() returns a negative value, and callers will avoid 1678 * further incrementing the refcount. 1679 * 1680 * Here, for that overflow case, use the sign bit to count a little 1681 * bit higher via unsigned math, and thus still get an accurate result. 1682 */ 1683 return ((unsigned int)folio_ref_count(folio)) >= 1684 GUP_PIN_COUNTING_BIAS; 1685} 1686 1687static inline bool page_maybe_dma_pinned(struct page *page) 1688{ 1689 return folio_maybe_dma_pinned(page_folio(page)); 1690} 1691 1692/* 1693 * This should most likely only be called during fork() to see whether we 1694 * should break the cow immediately for an anon page on the src mm. 1695 * 1696 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1697 */ 1698static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1699 struct page *page) 1700{ 1701 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1702 1703 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1704 return false; 1705 1706 return page_maybe_dma_pinned(page); 1707} 1708 1709/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1710#ifdef CONFIG_MIGRATION 1711static inline bool is_longterm_pinnable_page(struct page *page) 1712{ 1713#ifdef CONFIG_CMA 1714 int mt = get_pageblock_migratetype(page); 1715 1716 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1717 return false; 1718#endif 1719 /* The zero page may always be pinned */ 1720 if (is_zero_pfn(page_to_pfn(page))) 1721 return true; 1722 1723 /* Coherent device memory must always allow eviction. */ 1724 if (is_device_coherent_page(page)) 1725 return false; 1726 1727 /* Otherwise, non-movable zone pages can be pinned. */ 1728 return !is_zone_movable_page(page); 1729} 1730#else 1731static inline bool is_longterm_pinnable_page(struct page *page) 1732{ 1733 return true; 1734} 1735#endif 1736 1737static inline bool folio_is_longterm_pinnable(struct folio *folio) 1738{ 1739 return is_longterm_pinnable_page(&folio->page); 1740} 1741 1742static inline void set_page_zone(struct page *page, enum zone_type zone) 1743{ 1744 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1745 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1746} 1747 1748static inline void set_page_node(struct page *page, unsigned long node) 1749{ 1750 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1751 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1752} 1753 1754static inline void set_page_links(struct page *page, enum zone_type zone, 1755 unsigned long node, unsigned long pfn) 1756{ 1757 set_page_zone(page, zone); 1758 set_page_node(page, node); 1759#ifdef SECTION_IN_PAGE_FLAGS 1760 set_page_section(page, pfn_to_section_nr(pfn)); 1761#endif 1762} 1763 1764/** 1765 * folio_nr_pages - The number of pages in the folio. 1766 * @folio: The folio. 1767 * 1768 * Return: A positive power of two. 1769 */ 1770static inline long folio_nr_pages(struct folio *folio) 1771{ 1772 if (!folio_test_large(folio)) 1773 return 1; 1774#ifdef CONFIG_64BIT 1775 return folio->_folio_nr_pages; 1776#else 1777 return 1L << folio->_folio_order; 1778#endif 1779} 1780 1781/** 1782 * folio_next - Move to the next physical folio. 1783 * @folio: The folio we're currently operating on. 1784 * 1785 * If you have physically contiguous memory which may span more than 1786 * one folio (eg a &struct bio_vec), use this function to move from one 1787 * folio to the next. Do not use it if the memory is only virtually 1788 * contiguous as the folios are almost certainly not adjacent to each 1789 * other. This is the folio equivalent to writing ``page++``. 1790 * 1791 * Context: We assume that the folios are refcounted and/or locked at a 1792 * higher level and do not adjust the reference counts. 1793 * Return: The next struct folio. 1794 */ 1795static inline struct folio *folio_next(struct folio *folio) 1796{ 1797 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 1798} 1799 1800/** 1801 * folio_shift - The size of the memory described by this folio. 1802 * @folio: The folio. 1803 * 1804 * A folio represents a number of bytes which is a power-of-two in size. 1805 * This function tells you which power-of-two the folio is. See also 1806 * folio_size() and folio_order(). 1807 * 1808 * Context: The caller should have a reference on the folio to prevent 1809 * it from being split. It is not necessary for the folio to be locked. 1810 * Return: The base-2 logarithm of the size of this folio. 1811 */ 1812static inline unsigned int folio_shift(struct folio *folio) 1813{ 1814 return PAGE_SHIFT + folio_order(folio); 1815} 1816 1817/** 1818 * folio_size - The number of bytes in a folio. 1819 * @folio: The folio. 1820 * 1821 * Context: The caller should have a reference on the folio to prevent 1822 * it from being split. It is not necessary for the folio to be locked. 1823 * Return: The number of bytes in this folio. 1824 */ 1825static inline size_t folio_size(struct folio *folio) 1826{ 1827 return PAGE_SIZE << folio_order(folio); 1828} 1829 1830#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 1831static inline int arch_make_page_accessible(struct page *page) 1832{ 1833 return 0; 1834} 1835#endif 1836 1837#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 1838static inline int arch_make_folio_accessible(struct folio *folio) 1839{ 1840 int ret; 1841 long i, nr = folio_nr_pages(folio); 1842 1843 for (i = 0; i < nr; i++) { 1844 ret = arch_make_page_accessible(folio_page(folio, i)); 1845 if (ret) 1846 break; 1847 } 1848 1849 return ret; 1850} 1851#endif 1852 1853/* 1854 * Some inline functions in vmstat.h depend on page_zone() 1855 */ 1856#include <linux/vmstat.h> 1857 1858static __always_inline void *lowmem_page_address(const struct page *page) 1859{ 1860 return page_to_virt(page); 1861} 1862 1863#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1864#define HASHED_PAGE_VIRTUAL 1865#endif 1866 1867#if defined(WANT_PAGE_VIRTUAL) 1868static inline void *page_address(const struct page *page) 1869{ 1870 return page->virtual; 1871} 1872static inline void set_page_address(struct page *page, void *address) 1873{ 1874 page->virtual = address; 1875} 1876#define page_address_init() do { } while(0) 1877#endif 1878 1879#if defined(HASHED_PAGE_VIRTUAL) 1880void *page_address(const struct page *page); 1881void set_page_address(struct page *page, void *virtual); 1882void page_address_init(void); 1883#endif 1884 1885#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1886#define page_address(page) lowmem_page_address(page) 1887#define set_page_address(page, address) do { } while(0) 1888#define page_address_init() do { } while(0) 1889#endif 1890 1891static inline void *folio_address(const struct folio *folio) 1892{ 1893 return page_address(&folio->page); 1894} 1895 1896extern void *page_rmapping(struct page *page); 1897extern pgoff_t __page_file_index(struct page *page); 1898 1899/* 1900 * Return the pagecache index of the passed page. Regular pagecache pages 1901 * use ->index whereas swapcache pages use swp_offset(->private) 1902 */ 1903static inline pgoff_t page_index(struct page *page) 1904{ 1905 if (unlikely(PageSwapCache(page))) 1906 return __page_file_index(page); 1907 return page->index; 1908} 1909 1910/* 1911 * Return true only if the page has been allocated with 1912 * ALLOC_NO_WATERMARKS and the low watermark was not 1913 * met implying that the system is under some pressure. 1914 */ 1915static inline bool page_is_pfmemalloc(const struct page *page) 1916{ 1917 /* 1918 * lru.next has bit 1 set if the page is allocated from the 1919 * pfmemalloc reserves. Callers may simply overwrite it if 1920 * they do not need to preserve that information. 1921 */ 1922 return (uintptr_t)page->lru.next & BIT(1); 1923} 1924 1925/* 1926 * Only to be called by the page allocator on a freshly allocated 1927 * page. 1928 */ 1929static inline void set_page_pfmemalloc(struct page *page) 1930{ 1931 page->lru.next = (void *)BIT(1); 1932} 1933 1934static inline void clear_page_pfmemalloc(struct page *page) 1935{ 1936 page->lru.next = NULL; 1937} 1938 1939/* 1940 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1941 */ 1942extern void pagefault_out_of_memory(void); 1943 1944#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1945#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1946#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 1947 1948/* 1949 * Flags passed to show_mem() and show_free_areas() to suppress output in 1950 * various contexts. 1951 */ 1952#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1953 1954extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 1955static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask) 1956{ 1957 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1); 1958} 1959 1960/* 1961 * Parameter block passed down to zap_pte_range in exceptional cases. 1962 */ 1963struct zap_details { 1964 struct folio *single_folio; /* Locked folio to be unmapped */ 1965 bool even_cows; /* Zap COWed private pages too? */ 1966 zap_flags_t zap_flags; /* Extra flags for zapping */ 1967}; 1968 1969/* 1970 * Whether to drop the pte markers, for example, the uffd-wp information for 1971 * file-backed memory. This should only be specified when we will completely 1972 * drop the page in the mm, either by truncation or unmapping of the vma. By 1973 * default, the flag is not set. 1974 */ 1975#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 1976/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 1977#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 1978 1979#ifdef CONFIG_MMU 1980extern bool can_do_mlock(void); 1981#else 1982static inline bool can_do_mlock(void) { return false; } 1983#endif 1984extern int user_shm_lock(size_t, struct ucounts *); 1985extern void user_shm_unlock(size_t, struct ucounts *); 1986 1987struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1988 pte_t pte); 1989struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1990 pmd_t pmd); 1991 1992void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1993 unsigned long size); 1994void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1995 unsigned long size); 1996void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1997 unsigned long size, struct zap_details *details); 1998void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 1999 struct vm_area_struct *start_vma, unsigned long start, 2000 unsigned long end); 2001 2002struct mmu_notifier_range; 2003 2004void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2005 unsigned long end, unsigned long floor, unsigned long ceiling); 2006int 2007copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2008int follow_pte(struct mm_struct *mm, unsigned long address, 2009 pte_t **ptepp, spinlock_t **ptlp); 2010int follow_pfn(struct vm_area_struct *vma, unsigned long address, 2011 unsigned long *pfn); 2012int follow_phys(struct vm_area_struct *vma, unsigned long address, 2013 unsigned int flags, unsigned long *prot, resource_size_t *phys); 2014int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2015 void *buf, int len, int write); 2016 2017extern void truncate_pagecache(struct inode *inode, loff_t new); 2018extern void truncate_setsize(struct inode *inode, loff_t newsize); 2019void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2020void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2021int generic_error_remove_page(struct address_space *mapping, struct page *page); 2022 2023#ifdef CONFIG_MMU 2024extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2025 unsigned long address, unsigned int flags, 2026 struct pt_regs *regs); 2027extern int fixup_user_fault(struct mm_struct *mm, 2028 unsigned long address, unsigned int fault_flags, 2029 bool *unlocked); 2030void unmap_mapping_pages(struct address_space *mapping, 2031 pgoff_t start, pgoff_t nr, bool even_cows); 2032void unmap_mapping_range(struct address_space *mapping, 2033 loff_t const holebegin, loff_t const holelen, int even_cows); 2034#else 2035static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2036 unsigned long address, unsigned int flags, 2037 struct pt_regs *regs) 2038{ 2039 /* should never happen if there's no MMU */ 2040 BUG(); 2041 return VM_FAULT_SIGBUS; 2042} 2043static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2044 unsigned int fault_flags, bool *unlocked) 2045{ 2046 /* should never happen if there's no MMU */ 2047 BUG(); 2048 return -EFAULT; 2049} 2050static inline void unmap_mapping_pages(struct address_space *mapping, 2051 pgoff_t start, pgoff_t nr, bool even_cows) { } 2052static inline void unmap_mapping_range(struct address_space *mapping, 2053 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2054#endif 2055 2056static inline void unmap_shared_mapping_range(struct address_space *mapping, 2057 loff_t const holebegin, loff_t const holelen) 2058{ 2059 unmap_mapping_range(mapping, holebegin, holelen, 0); 2060} 2061 2062extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2063 void *buf, int len, unsigned int gup_flags); 2064extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2065 void *buf, int len, unsigned int gup_flags); 2066extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 2067 void *buf, int len, unsigned int gup_flags); 2068 2069long get_user_pages_remote(struct mm_struct *mm, 2070 unsigned long start, unsigned long nr_pages, 2071 unsigned int gup_flags, struct page **pages, 2072 struct vm_area_struct **vmas, int *locked); 2073long pin_user_pages_remote(struct mm_struct *mm, 2074 unsigned long start, unsigned long nr_pages, 2075 unsigned int gup_flags, struct page **pages, 2076 struct vm_area_struct **vmas, int *locked); 2077long get_user_pages(unsigned long start, unsigned long nr_pages, 2078 unsigned int gup_flags, struct page **pages, 2079 struct vm_area_struct **vmas); 2080long pin_user_pages(unsigned long start, unsigned long nr_pages, 2081 unsigned int gup_flags, struct page **pages, 2082 struct vm_area_struct **vmas); 2083long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2084 struct page **pages, unsigned int gup_flags); 2085long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2086 struct page **pages, unsigned int gup_flags); 2087 2088int get_user_pages_fast(unsigned long start, int nr_pages, 2089 unsigned int gup_flags, struct page **pages); 2090int pin_user_pages_fast(unsigned long start, int nr_pages, 2091 unsigned int gup_flags, struct page **pages); 2092 2093int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2094int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2095 struct task_struct *task, bool bypass_rlim); 2096 2097struct kvec; 2098int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 2099 struct page **pages); 2100struct page *get_dump_page(unsigned long addr); 2101 2102bool folio_mark_dirty(struct folio *folio); 2103bool set_page_dirty(struct page *page); 2104int set_page_dirty_lock(struct page *page); 2105 2106int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2107 2108extern unsigned long move_page_tables(struct vm_area_struct *vma, 2109 unsigned long old_addr, struct vm_area_struct *new_vma, 2110 unsigned long new_addr, unsigned long len, 2111 bool need_rmap_locks); 2112 2113/* 2114 * Flags used by change_protection(). For now we make it a bitmap so 2115 * that we can pass in multiple flags just like parameters. However 2116 * for now all the callers are only use one of the flags at the same 2117 * time. 2118 */ 2119/* 2120 * Whether we should manually check if we can map individual PTEs writable, 2121 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2122 * PTEs automatically in a writable mapping. 2123 */ 2124#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2125/* Whether this protection change is for NUMA hints */ 2126#define MM_CP_PROT_NUMA (1UL << 1) 2127/* Whether this change is for write protecting */ 2128#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2129#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2130#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2131 MM_CP_UFFD_WP_RESOLVE) 2132 2133int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2134static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2135{ 2136 /* 2137 * We want to check manually if we can change individual PTEs writable 2138 * if we can't do that automatically for all PTEs in a mapping. For 2139 * private mappings, that's always the case when we have write 2140 * permissions as we properly have to handle COW. 2141 */ 2142 if (vma->vm_flags & VM_SHARED) 2143 return vma_wants_writenotify(vma, vma->vm_page_prot); 2144 return !!(vma->vm_flags & VM_WRITE); 2145 2146} 2147bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2148 pte_t pte); 2149extern unsigned long change_protection(struct mmu_gather *tlb, 2150 struct vm_area_struct *vma, unsigned long start, 2151 unsigned long end, pgprot_t newprot, 2152 unsigned long cp_flags); 2153extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma, 2154 struct vm_area_struct **pprev, unsigned long start, 2155 unsigned long end, unsigned long newflags); 2156 2157/* 2158 * doesn't attempt to fault and will return short. 2159 */ 2160int get_user_pages_fast_only(unsigned long start, int nr_pages, 2161 unsigned int gup_flags, struct page **pages); 2162int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2163 unsigned int gup_flags, struct page **pages); 2164 2165static inline bool get_user_page_fast_only(unsigned long addr, 2166 unsigned int gup_flags, struct page **pagep) 2167{ 2168 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2169} 2170/* 2171 * per-process(per-mm_struct) statistics. 2172 */ 2173static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2174{ 2175 return percpu_counter_read_positive(&mm->rss_stat[member]); 2176} 2177 2178void mm_trace_rss_stat(struct mm_struct *mm, int member); 2179 2180static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2181{ 2182 percpu_counter_add(&mm->rss_stat[member], value); 2183 2184 mm_trace_rss_stat(mm, member); 2185} 2186 2187static inline void inc_mm_counter(struct mm_struct *mm, int member) 2188{ 2189 percpu_counter_inc(&mm->rss_stat[member]); 2190 2191 mm_trace_rss_stat(mm, member); 2192} 2193 2194static inline void dec_mm_counter(struct mm_struct *mm, int member) 2195{ 2196 percpu_counter_dec(&mm->rss_stat[member]); 2197 2198 mm_trace_rss_stat(mm, member); 2199} 2200 2201/* Optimized variant when page is already known not to be PageAnon */ 2202static inline int mm_counter_file(struct page *page) 2203{ 2204 if (PageSwapBacked(page)) 2205 return MM_SHMEMPAGES; 2206 return MM_FILEPAGES; 2207} 2208 2209static inline int mm_counter(struct page *page) 2210{ 2211 if (PageAnon(page)) 2212 return MM_ANONPAGES; 2213 return mm_counter_file(page); 2214} 2215 2216static inline unsigned long get_mm_rss(struct mm_struct *mm) 2217{ 2218 return get_mm_counter(mm, MM_FILEPAGES) + 2219 get_mm_counter(mm, MM_ANONPAGES) + 2220 get_mm_counter(mm, MM_SHMEMPAGES); 2221} 2222 2223static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2224{ 2225 return max(mm->hiwater_rss, get_mm_rss(mm)); 2226} 2227 2228static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2229{ 2230 return max(mm->hiwater_vm, mm->total_vm); 2231} 2232 2233static inline void update_hiwater_rss(struct mm_struct *mm) 2234{ 2235 unsigned long _rss = get_mm_rss(mm); 2236 2237 if ((mm)->hiwater_rss < _rss) 2238 (mm)->hiwater_rss = _rss; 2239} 2240 2241static inline void update_hiwater_vm(struct mm_struct *mm) 2242{ 2243 if (mm->hiwater_vm < mm->total_vm) 2244 mm->hiwater_vm = mm->total_vm; 2245} 2246 2247static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2248{ 2249 mm->hiwater_rss = get_mm_rss(mm); 2250} 2251 2252static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2253 struct mm_struct *mm) 2254{ 2255 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2256 2257 if (*maxrss < hiwater_rss) 2258 *maxrss = hiwater_rss; 2259} 2260 2261#if defined(SPLIT_RSS_COUNTING) 2262void sync_mm_rss(struct mm_struct *mm); 2263#else 2264static inline void sync_mm_rss(struct mm_struct *mm) 2265{ 2266} 2267#endif 2268 2269#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2270static inline int pte_special(pte_t pte) 2271{ 2272 return 0; 2273} 2274 2275static inline pte_t pte_mkspecial(pte_t pte) 2276{ 2277 return pte; 2278} 2279#endif 2280 2281#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2282static inline int pte_devmap(pte_t pte) 2283{ 2284 return 0; 2285} 2286#endif 2287 2288extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2289 spinlock_t **ptl); 2290static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2291 spinlock_t **ptl) 2292{ 2293 pte_t *ptep; 2294 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2295 return ptep; 2296} 2297 2298#ifdef __PAGETABLE_P4D_FOLDED 2299static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2300 unsigned long address) 2301{ 2302 return 0; 2303} 2304#else 2305int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2306#endif 2307 2308#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2309static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2310 unsigned long address) 2311{ 2312 return 0; 2313} 2314static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2315static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2316 2317#else 2318int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2319 2320static inline void mm_inc_nr_puds(struct mm_struct *mm) 2321{ 2322 if (mm_pud_folded(mm)) 2323 return; 2324 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2325} 2326 2327static inline void mm_dec_nr_puds(struct mm_struct *mm) 2328{ 2329 if (mm_pud_folded(mm)) 2330 return; 2331 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2332} 2333#endif 2334 2335#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2336static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2337 unsigned long address) 2338{ 2339 return 0; 2340} 2341 2342static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2343static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2344 2345#else 2346int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2347 2348static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2349{ 2350 if (mm_pmd_folded(mm)) 2351 return; 2352 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2353} 2354 2355static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2356{ 2357 if (mm_pmd_folded(mm)) 2358 return; 2359 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2360} 2361#endif 2362 2363#ifdef CONFIG_MMU 2364static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2365{ 2366 atomic_long_set(&mm->pgtables_bytes, 0); 2367} 2368 2369static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2370{ 2371 return atomic_long_read(&mm->pgtables_bytes); 2372} 2373 2374static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2375{ 2376 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2377} 2378 2379static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2380{ 2381 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2382} 2383#else 2384 2385static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2386static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2387{ 2388 return 0; 2389} 2390 2391static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2392static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2393#endif 2394 2395int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2396int __pte_alloc_kernel(pmd_t *pmd); 2397 2398#if defined(CONFIG_MMU) 2399 2400static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2401 unsigned long address) 2402{ 2403 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2404 NULL : p4d_offset(pgd, address); 2405} 2406 2407static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2408 unsigned long address) 2409{ 2410 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2411 NULL : pud_offset(p4d, address); 2412} 2413 2414static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2415{ 2416 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2417 NULL: pmd_offset(pud, address); 2418} 2419#endif /* CONFIG_MMU */ 2420 2421#if USE_SPLIT_PTE_PTLOCKS 2422#if ALLOC_SPLIT_PTLOCKS 2423void __init ptlock_cache_init(void); 2424extern bool ptlock_alloc(struct page *page); 2425extern void ptlock_free(struct page *page); 2426 2427static inline spinlock_t *ptlock_ptr(struct page *page) 2428{ 2429 return page->ptl; 2430} 2431#else /* ALLOC_SPLIT_PTLOCKS */ 2432static inline void ptlock_cache_init(void) 2433{ 2434} 2435 2436static inline bool ptlock_alloc(struct page *page) 2437{ 2438 return true; 2439} 2440 2441static inline void ptlock_free(struct page *page) 2442{ 2443} 2444 2445static inline spinlock_t *ptlock_ptr(struct page *page) 2446{ 2447 return &page->ptl; 2448} 2449#endif /* ALLOC_SPLIT_PTLOCKS */ 2450 2451static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2452{ 2453 return ptlock_ptr(pmd_page(*pmd)); 2454} 2455 2456static inline bool ptlock_init(struct page *page) 2457{ 2458 /* 2459 * prep_new_page() initialize page->private (and therefore page->ptl) 2460 * with 0. Make sure nobody took it in use in between. 2461 * 2462 * It can happen if arch try to use slab for page table allocation: 2463 * slab code uses page->slab_cache, which share storage with page->ptl. 2464 */ 2465 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2466 if (!ptlock_alloc(page)) 2467 return false; 2468 spin_lock_init(ptlock_ptr(page)); 2469 return true; 2470} 2471 2472#else /* !USE_SPLIT_PTE_PTLOCKS */ 2473/* 2474 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2475 */ 2476static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2477{ 2478 return &mm->page_table_lock; 2479} 2480static inline void ptlock_cache_init(void) {} 2481static inline bool ptlock_init(struct page *page) { return true; } 2482static inline void ptlock_free(struct page *page) {} 2483#endif /* USE_SPLIT_PTE_PTLOCKS */ 2484 2485static inline void pgtable_init(void) 2486{ 2487 ptlock_cache_init(); 2488 pgtable_cache_init(); 2489} 2490 2491static inline bool pgtable_pte_page_ctor(struct page *page) 2492{ 2493 if (!ptlock_init(page)) 2494 return false; 2495 __SetPageTable(page); 2496 inc_lruvec_page_state(page, NR_PAGETABLE); 2497 return true; 2498} 2499 2500static inline void pgtable_pte_page_dtor(struct page *page) 2501{ 2502 ptlock_free(page); 2503 __ClearPageTable(page); 2504 dec_lruvec_page_state(page, NR_PAGETABLE); 2505} 2506 2507#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2508({ \ 2509 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2510 pte_t *__pte = pte_offset_map(pmd, address); \ 2511 *(ptlp) = __ptl; \ 2512 spin_lock(__ptl); \ 2513 __pte; \ 2514}) 2515 2516#define pte_unmap_unlock(pte, ptl) do { \ 2517 spin_unlock(ptl); \ 2518 pte_unmap(pte); \ 2519} while (0) 2520 2521#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2522 2523#define pte_alloc_map(mm, pmd, address) \ 2524 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2525 2526#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2527 (pte_alloc(mm, pmd) ? \ 2528 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2529 2530#define pte_alloc_kernel(pmd, address) \ 2531 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2532 NULL: pte_offset_kernel(pmd, address)) 2533 2534#if USE_SPLIT_PMD_PTLOCKS 2535 2536static inline struct page *pmd_pgtable_page(pmd_t *pmd) 2537{ 2538 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2539 return virt_to_page((void *)((unsigned long) pmd & mask)); 2540} 2541 2542static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2543{ 2544 return ptlock_ptr(pmd_pgtable_page(pmd)); 2545} 2546 2547static inline bool pmd_ptlock_init(struct page *page) 2548{ 2549#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2550 page->pmd_huge_pte = NULL; 2551#endif 2552 return ptlock_init(page); 2553} 2554 2555static inline void pmd_ptlock_free(struct page *page) 2556{ 2557#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2558 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2559#endif 2560 ptlock_free(page); 2561} 2562 2563#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte) 2564 2565#else 2566 2567static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2568{ 2569 return &mm->page_table_lock; 2570} 2571 2572static inline bool pmd_ptlock_init(struct page *page) { return true; } 2573static inline void pmd_ptlock_free(struct page *page) {} 2574 2575#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2576 2577#endif 2578 2579static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2580{ 2581 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2582 spin_lock(ptl); 2583 return ptl; 2584} 2585 2586static inline bool pgtable_pmd_page_ctor(struct page *page) 2587{ 2588 if (!pmd_ptlock_init(page)) 2589 return false; 2590 __SetPageTable(page); 2591 inc_lruvec_page_state(page, NR_PAGETABLE); 2592 return true; 2593} 2594 2595static inline void pgtable_pmd_page_dtor(struct page *page) 2596{ 2597 pmd_ptlock_free(page); 2598 __ClearPageTable(page); 2599 dec_lruvec_page_state(page, NR_PAGETABLE); 2600} 2601 2602/* 2603 * No scalability reason to split PUD locks yet, but follow the same pattern 2604 * as the PMD locks to make it easier if we decide to. The VM should not be 2605 * considered ready to switch to split PUD locks yet; there may be places 2606 * which need to be converted from page_table_lock. 2607 */ 2608static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2609{ 2610 return &mm->page_table_lock; 2611} 2612 2613static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2614{ 2615 spinlock_t *ptl = pud_lockptr(mm, pud); 2616 2617 spin_lock(ptl); 2618 return ptl; 2619} 2620 2621extern void __init pagecache_init(void); 2622extern void free_initmem(void); 2623 2624/* 2625 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2626 * into the buddy system. The freed pages will be poisoned with pattern 2627 * "poison" if it's within range [0, UCHAR_MAX]. 2628 * Return pages freed into the buddy system. 2629 */ 2630extern unsigned long free_reserved_area(void *start, void *end, 2631 int poison, const char *s); 2632 2633extern void adjust_managed_page_count(struct page *page, long count); 2634extern void mem_init_print_info(void); 2635 2636extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2637 2638/* Free the reserved page into the buddy system, so it gets managed. */ 2639static inline void free_reserved_page(struct page *page) 2640{ 2641 ClearPageReserved(page); 2642 init_page_count(page); 2643 __free_page(page); 2644 adjust_managed_page_count(page, 1); 2645} 2646#define free_highmem_page(page) free_reserved_page(page) 2647 2648static inline void mark_page_reserved(struct page *page) 2649{ 2650 SetPageReserved(page); 2651 adjust_managed_page_count(page, -1); 2652} 2653 2654/* 2655 * Default method to free all the __init memory into the buddy system. 2656 * The freed pages will be poisoned with pattern "poison" if it's within 2657 * range [0, UCHAR_MAX]. 2658 * Return pages freed into the buddy system. 2659 */ 2660static inline unsigned long free_initmem_default(int poison) 2661{ 2662 extern char __init_begin[], __init_end[]; 2663 2664 return free_reserved_area(&__init_begin, &__init_end, 2665 poison, "unused kernel image (initmem)"); 2666} 2667 2668static inline unsigned long get_num_physpages(void) 2669{ 2670 int nid; 2671 unsigned long phys_pages = 0; 2672 2673 for_each_online_node(nid) 2674 phys_pages += node_present_pages(nid); 2675 2676 return phys_pages; 2677} 2678 2679/* 2680 * Using memblock node mappings, an architecture may initialise its 2681 * zones, allocate the backing mem_map and account for memory holes in an 2682 * architecture independent manner. 2683 * 2684 * An architecture is expected to register range of page frames backed by 2685 * physical memory with memblock_add[_node]() before calling 2686 * free_area_init() passing in the PFN each zone ends at. At a basic 2687 * usage, an architecture is expected to do something like 2688 * 2689 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2690 * max_highmem_pfn}; 2691 * for_each_valid_physical_page_range() 2692 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 2693 * free_area_init(max_zone_pfns); 2694 */ 2695void free_area_init(unsigned long *max_zone_pfn); 2696unsigned long node_map_pfn_alignment(void); 2697unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2698 unsigned long end_pfn); 2699extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2700 unsigned long end_pfn); 2701extern void get_pfn_range_for_nid(unsigned int nid, 2702 unsigned long *start_pfn, unsigned long *end_pfn); 2703 2704#ifndef CONFIG_NUMA 2705static inline int early_pfn_to_nid(unsigned long pfn) 2706{ 2707 return 0; 2708} 2709#else 2710/* please see mm/page_alloc.c */ 2711extern int __meminit early_pfn_to_nid(unsigned long pfn); 2712#endif 2713 2714extern void set_dma_reserve(unsigned long new_dma_reserve); 2715extern void memmap_init_range(unsigned long, int, unsigned long, 2716 unsigned long, unsigned long, enum meminit_context, 2717 struct vmem_altmap *, int migratetype); 2718extern void setup_per_zone_wmarks(void); 2719extern void calculate_min_free_kbytes(void); 2720extern int __meminit init_per_zone_wmark_min(void); 2721extern void mem_init(void); 2722extern void __init mmap_init(void); 2723 2724extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 2725static inline void show_mem(unsigned int flags, nodemask_t *nodemask) 2726{ 2727 __show_mem(flags, nodemask, MAX_NR_ZONES - 1); 2728} 2729extern long si_mem_available(void); 2730extern void si_meminfo(struct sysinfo * val); 2731extern void si_meminfo_node(struct sysinfo *val, int nid); 2732#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2733extern unsigned long arch_reserved_kernel_pages(void); 2734#endif 2735 2736extern __printf(3, 4) 2737void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2738 2739extern void setup_per_cpu_pageset(void); 2740 2741/* page_alloc.c */ 2742extern int min_free_kbytes; 2743extern int watermark_boost_factor; 2744extern int watermark_scale_factor; 2745extern bool arch_has_descending_max_zone_pfns(void); 2746 2747/* nommu.c */ 2748extern atomic_long_t mmap_pages_allocated; 2749extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2750 2751/* interval_tree.c */ 2752void vma_interval_tree_insert(struct vm_area_struct *node, 2753 struct rb_root_cached *root); 2754void vma_interval_tree_insert_after(struct vm_area_struct *node, 2755 struct vm_area_struct *prev, 2756 struct rb_root_cached *root); 2757void vma_interval_tree_remove(struct vm_area_struct *node, 2758 struct rb_root_cached *root); 2759struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2760 unsigned long start, unsigned long last); 2761struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2762 unsigned long start, unsigned long last); 2763 2764#define vma_interval_tree_foreach(vma, root, start, last) \ 2765 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2766 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2767 2768void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2769 struct rb_root_cached *root); 2770void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2771 struct rb_root_cached *root); 2772struct anon_vma_chain * 2773anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2774 unsigned long start, unsigned long last); 2775struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2776 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2777#ifdef CONFIG_DEBUG_VM_RB 2778void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2779#endif 2780 2781#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2782 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2783 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2784 2785/* mmap.c */ 2786extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2787extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2788 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2789 struct vm_area_struct *expand); 2790static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2791 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2792{ 2793 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2794} 2795extern struct vm_area_struct *vma_merge(struct mm_struct *, 2796 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2797 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2798 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *); 2799extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2800extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2801 unsigned long addr, int new_below); 2802extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2803 unsigned long addr, int new_below); 2804extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2805extern void unlink_file_vma(struct vm_area_struct *); 2806extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2807 unsigned long addr, unsigned long len, pgoff_t pgoff, 2808 bool *need_rmap_locks); 2809extern void exit_mmap(struct mm_struct *); 2810 2811void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas); 2812void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas); 2813 2814static inline int check_data_rlimit(unsigned long rlim, 2815 unsigned long new, 2816 unsigned long start, 2817 unsigned long end_data, 2818 unsigned long start_data) 2819{ 2820 if (rlim < RLIM_INFINITY) { 2821 if (((new - start) + (end_data - start_data)) > rlim) 2822 return -ENOSPC; 2823 } 2824 2825 return 0; 2826} 2827 2828extern int mm_take_all_locks(struct mm_struct *mm); 2829extern void mm_drop_all_locks(struct mm_struct *mm); 2830 2831extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2832extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2833extern struct file *get_mm_exe_file(struct mm_struct *mm); 2834extern struct file *get_task_exe_file(struct task_struct *task); 2835 2836extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2837extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2838 2839extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2840 const struct vm_special_mapping *sm); 2841extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2842 unsigned long addr, unsigned long len, 2843 unsigned long flags, 2844 const struct vm_special_mapping *spec); 2845/* This is an obsolete alternative to _install_special_mapping. */ 2846extern int install_special_mapping(struct mm_struct *mm, 2847 unsigned long addr, unsigned long len, 2848 unsigned long flags, struct page **pages); 2849 2850unsigned long randomize_stack_top(unsigned long stack_top); 2851unsigned long randomize_page(unsigned long start, unsigned long range); 2852 2853extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2854 2855extern unsigned long mmap_region(struct file *file, unsigned long addr, 2856 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2857 struct list_head *uf); 2858extern unsigned long do_mmap(struct file *file, unsigned long addr, 2859 unsigned long len, unsigned long prot, unsigned long flags, 2860 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2861extern int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm, 2862 unsigned long start, size_t len, struct list_head *uf, 2863 bool downgrade); 2864extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2865 struct list_head *uf); 2866extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2867 2868#ifdef CONFIG_MMU 2869extern int __mm_populate(unsigned long addr, unsigned long len, 2870 int ignore_errors); 2871static inline void mm_populate(unsigned long addr, unsigned long len) 2872{ 2873 /* Ignore errors */ 2874 (void) __mm_populate(addr, len, 1); 2875} 2876#else 2877static inline void mm_populate(unsigned long addr, unsigned long len) {} 2878#endif 2879 2880/* These take the mm semaphore themselves */ 2881extern int __must_check vm_brk(unsigned long, unsigned long); 2882extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2883extern int vm_munmap(unsigned long, size_t); 2884extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2885 unsigned long, unsigned long, 2886 unsigned long, unsigned long); 2887 2888struct vm_unmapped_area_info { 2889#define VM_UNMAPPED_AREA_TOPDOWN 1 2890 unsigned long flags; 2891 unsigned long length; 2892 unsigned long low_limit; 2893 unsigned long high_limit; 2894 unsigned long align_mask; 2895 unsigned long align_offset; 2896}; 2897 2898extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2899 2900/* truncate.c */ 2901extern void truncate_inode_pages(struct address_space *, loff_t); 2902extern void truncate_inode_pages_range(struct address_space *, 2903 loff_t lstart, loff_t lend); 2904extern void truncate_inode_pages_final(struct address_space *); 2905 2906/* generic vm_area_ops exported for stackable file systems */ 2907extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2908extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2909 pgoff_t start_pgoff, pgoff_t end_pgoff); 2910extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2911 2912extern unsigned long stack_guard_gap; 2913/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2914extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2915 2916/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2917extern int expand_downwards(struct vm_area_struct *vma, 2918 unsigned long address); 2919#if VM_GROWSUP 2920extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2921#else 2922 #define expand_upwards(vma, address) (0) 2923#endif 2924 2925/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2926extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2927extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2928 struct vm_area_struct **pprev); 2929 2930/* 2931 * Look up the first VMA which intersects the interval [start_addr, end_addr) 2932 * NULL if none. Assume start_addr < end_addr. 2933 */ 2934struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 2935 unsigned long start_addr, unsigned long end_addr); 2936 2937/** 2938 * vma_lookup() - Find a VMA at a specific address 2939 * @mm: The process address space. 2940 * @addr: The user address. 2941 * 2942 * Return: The vm_area_struct at the given address, %NULL otherwise. 2943 */ 2944static inline 2945struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 2946{ 2947 return mtree_load(&mm->mm_mt, addr); 2948} 2949 2950static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2951{ 2952 unsigned long vm_start = vma->vm_start; 2953 2954 if (vma->vm_flags & VM_GROWSDOWN) { 2955 vm_start -= stack_guard_gap; 2956 if (vm_start > vma->vm_start) 2957 vm_start = 0; 2958 } 2959 return vm_start; 2960} 2961 2962static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2963{ 2964 unsigned long vm_end = vma->vm_end; 2965 2966 if (vma->vm_flags & VM_GROWSUP) { 2967 vm_end += stack_guard_gap; 2968 if (vm_end < vma->vm_end) 2969 vm_end = -PAGE_SIZE; 2970 } 2971 return vm_end; 2972} 2973 2974static inline unsigned long vma_pages(struct vm_area_struct *vma) 2975{ 2976 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2977} 2978 2979/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2980static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2981 unsigned long vm_start, unsigned long vm_end) 2982{ 2983 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 2984 2985 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2986 vma = NULL; 2987 2988 return vma; 2989} 2990 2991static inline bool range_in_vma(struct vm_area_struct *vma, 2992 unsigned long start, unsigned long end) 2993{ 2994 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2995} 2996 2997#ifdef CONFIG_MMU 2998pgprot_t vm_get_page_prot(unsigned long vm_flags); 2999void vma_set_page_prot(struct vm_area_struct *vma); 3000#else 3001static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3002{ 3003 return __pgprot(0); 3004} 3005static inline void vma_set_page_prot(struct vm_area_struct *vma) 3006{ 3007 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3008} 3009#endif 3010 3011void vma_set_file(struct vm_area_struct *vma, struct file *file); 3012 3013#ifdef CONFIG_NUMA_BALANCING 3014unsigned long change_prot_numa(struct vm_area_struct *vma, 3015 unsigned long start, unsigned long end); 3016#endif 3017 3018struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 3019int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3020 unsigned long pfn, unsigned long size, pgprot_t); 3021int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3022 unsigned long pfn, unsigned long size, pgprot_t prot); 3023int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3024int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3025 struct page **pages, unsigned long *num); 3026int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3027 unsigned long num); 3028int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3029 unsigned long num); 3030vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3031 unsigned long pfn); 3032vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3033 unsigned long pfn, pgprot_t pgprot); 3034vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3035 pfn_t pfn); 3036vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 3037 pfn_t pfn, pgprot_t pgprot); 3038vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3039 unsigned long addr, pfn_t pfn); 3040int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3041 3042static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3043 unsigned long addr, struct page *page) 3044{ 3045 int err = vm_insert_page(vma, addr, page); 3046 3047 if (err == -ENOMEM) 3048 return VM_FAULT_OOM; 3049 if (err < 0 && err != -EBUSY) 3050 return VM_FAULT_SIGBUS; 3051 3052 return VM_FAULT_NOPAGE; 3053} 3054 3055#ifndef io_remap_pfn_range 3056static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3057 unsigned long addr, unsigned long pfn, 3058 unsigned long size, pgprot_t prot) 3059{ 3060 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3061} 3062#endif 3063 3064static inline vm_fault_t vmf_error(int err) 3065{ 3066 if (err == -ENOMEM) 3067 return VM_FAULT_OOM; 3068 return VM_FAULT_SIGBUS; 3069} 3070 3071struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3072 unsigned int foll_flags); 3073 3074#define FOLL_WRITE 0x01 /* check pte is writable */ 3075#define FOLL_TOUCH 0x02 /* mark page accessed */ 3076#define FOLL_GET 0x04 /* do get_page on page */ 3077#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 3078#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 3079#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 3080 * and return without waiting upon it */ 3081#define FOLL_NOFAULT 0x80 /* do not fault in pages */ 3082#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 3083#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 3084#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 3085#define FOLL_ANON 0x8000 /* don't do file mappings */ 3086#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 3087#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 3088#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 3089#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 3090#define FOLL_PCI_P2PDMA 0x100000 /* allow returning PCI P2PDMA pages */ 3091#define FOLL_INTERRUPTIBLE 0x200000 /* allow interrupts from generic signals */ 3092 3093/* 3094 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 3095 * other. Here is what they mean, and how to use them: 3096 * 3097 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 3098 * period _often_ under userspace control. This is in contrast to 3099 * iov_iter_get_pages(), whose usages are transient. 3100 * 3101 * FIXME: For pages which are part of a filesystem, mappings are subject to the 3102 * lifetime enforced by the filesystem and we need guarantees that longterm 3103 * users like RDMA and V4L2 only establish mappings which coordinate usage with 3104 * the filesystem. Ideas for this coordination include revoking the longterm 3105 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 3106 * added after the problem with filesystems was found FS DAX VMAs are 3107 * specifically failed. Filesystem pages are still subject to bugs and use of 3108 * FOLL_LONGTERM should be avoided on those pages. 3109 * 3110 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 3111 * Currently only get_user_pages() and get_user_pages_fast() support this flag 3112 * and calls to get_user_pages_[un]locked are specifically not allowed. This 3113 * is due to an incompatibility with the FS DAX check and 3114 * FAULT_FLAG_ALLOW_RETRY. 3115 * 3116 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 3117 * that region. And so, CMA attempts to migrate the page before pinning, when 3118 * FOLL_LONGTERM is specified. 3119 * 3120 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 3121 * but an additional pin counting system) will be invoked. This is intended for 3122 * anything that gets a page reference and then touches page data (for example, 3123 * Direct IO). This lets the filesystem know that some non-file-system entity is 3124 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 3125 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 3126 * a call to unpin_user_page(). 3127 * 3128 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 3129 * and separate refcounting mechanisms, however, and that means that each has 3130 * its own acquire and release mechanisms: 3131 * 3132 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 3133 * 3134 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 3135 * 3136 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 3137 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 3138 * calls applied to them, and that's perfectly OK. This is a constraint on the 3139 * callers, not on the pages.) 3140 * 3141 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 3142 * directly by the caller. That's in order to help avoid mismatches when 3143 * releasing pages: get_user_pages*() pages must be released via put_page(), 3144 * while pin_user_pages*() pages must be released via unpin_user_page(). 3145 * 3146 * Please see Documentation/core-api/pin_user_pages.rst for more information. 3147 */ 3148 3149static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3150{ 3151 if (vm_fault & VM_FAULT_OOM) 3152 return -ENOMEM; 3153 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3154 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3155 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3156 return -EFAULT; 3157 return 0; 3158} 3159 3160/* 3161 * Indicates for which pages that are write-protected in the page table, 3162 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the 3163 * GUP pin will remain consistent with the pages mapped into the page tables 3164 * of the MM. 3165 * 3166 * Temporary unmapping of PageAnonExclusive() pages or clearing of 3167 * PageAnonExclusive() has to protect against concurrent GUP: 3168 * * Ordinary GUP: Using the PT lock 3169 * * GUP-fast and fork(): mm->write_protect_seq 3170 * * GUP-fast and KSM or temporary unmapping (swap, migration): see 3171 * page_try_share_anon_rmap() 3172 * 3173 * Must be called with the (sub)page that's actually referenced via the 3174 * page table entry, which might not necessarily be the head page for a 3175 * PTE-mapped THP. 3176 * 3177 * If the vma is NULL, we're coming from the GUP-fast path and might have 3178 * to fallback to the slow path just to lookup the vma. 3179 */ 3180static inline bool gup_must_unshare(struct vm_area_struct *vma, 3181 unsigned int flags, struct page *page) 3182{ 3183 /* 3184 * FOLL_WRITE is implicitly handled correctly as the page table entry 3185 * has to be writable -- and if it references (part of) an anonymous 3186 * folio, that part is required to be marked exclusive. 3187 */ 3188 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) 3189 return false; 3190 /* 3191 * Note: PageAnon(page) is stable until the page is actually getting 3192 * freed. 3193 */ 3194 if (!PageAnon(page)) { 3195 /* 3196 * We only care about R/O long-term pining: R/O short-term 3197 * pinning does not have the semantics to observe successive 3198 * changes through the process page tables. 3199 */ 3200 if (!(flags & FOLL_LONGTERM)) 3201 return false; 3202 3203 /* We really need the vma ... */ 3204 if (!vma) 3205 return true; 3206 3207 /* 3208 * ... because we only care about writable private ("COW") 3209 * mappings where we have to break COW early. 3210 */ 3211 return is_cow_mapping(vma->vm_flags); 3212 } 3213 3214 /* Paired with a memory barrier in page_try_share_anon_rmap(). */ 3215 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) 3216 smp_rmb(); 3217 3218 /* 3219 * Note that PageKsm() pages cannot be exclusive, and consequently, 3220 * cannot get pinned. 3221 */ 3222 return !PageAnonExclusive(page); 3223} 3224 3225/* 3226 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3227 * a (NUMA hinting) fault is required. 3228 */ 3229static inline bool gup_can_follow_protnone(unsigned int flags) 3230{ 3231 /* 3232 * FOLL_FORCE has to be able to make progress even if the VMA is 3233 * inaccessible. Further, FOLL_FORCE access usually does not represent 3234 * application behaviour and we should avoid triggering NUMA hinting 3235 * faults. 3236 */ 3237 return flags & FOLL_FORCE; 3238} 3239 3240typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3241extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3242 unsigned long size, pte_fn_t fn, void *data); 3243extern int apply_to_existing_page_range(struct mm_struct *mm, 3244 unsigned long address, unsigned long size, 3245 pte_fn_t fn, void *data); 3246 3247extern void __init init_mem_debugging_and_hardening(void); 3248#ifdef CONFIG_PAGE_POISONING 3249extern void __kernel_poison_pages(struct page *page, int numpages); 3250extern void __kernel_unpoison_pages(struct page *page, int numpages); 3251extern bool _page_poisoning_enabled_early; 3252DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3253static inline bool page_poisoning_enabled(void) 3254{ 3255 return _page_poisoning_enabled_early; 3256} 3257/* 3258 * For use in fast paths after init_mem_debugging() has run, or when a 3259 * false negative result is not harmful when called too early. 3260 */ 3261static inline bool page_poisoning_enabled_static(void) 3262{ 3263 return static_branch_unlikely(&_page_poisoning_enabled); 3264} 3265static inline void kernel_poison_pages(struct page *page, int numpages) 3266{ 3267 if (page_poisoning_enabled_static()) 3268 __kernel_poison_pages(page, numpages); 3269} 3270static inline void kernel_unpoison_pages(struct page *page, int numpages) 3271{ 3272 if (page_poisoning_enabled_static()) 3273 __kernel_unpoison_pages(page, numpages); 3274} 3275#else 3276static inline bool page_poisoning_enabled(void) { return false; } 3277static inline bool page_poisoning_enabled_static(void) { return false; } 3278static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3279static inline void kernel_poison_pages(struct page *page, int numpages) { } 3280static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3281#endif 3282 3283DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3284static inline bool want_init_on_alloc(gfp_t flags) 3285{ 3286 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3287 &init_on_alloc)) 3288 return true; 3289 return flags & __GFP_ZERO; 3290} 3291 3292DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3293static inline bool want_init_on_free(void) 3294{ 3295 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3296 &init_on_free); 3297} 3298 3299extern bool _debug_pagealloc_enabled_early; 3300DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3301 3302static inline bool debug_pagealloc_enabled(void) 3303{ 3304 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3305 _debug_pagealloc_enabled_early; 3306} 3307 3308/* 3309 * For use in fast paths after init_debug_pagealloc() has run, or when a 3310 * false negative result is not harmful when called too early. 3311 */ 3312static inline bool debug_pagealloc_enabled_static(void) 3313{ 3314 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3315 return false; 3316 3317 return static_branch_unlikely(&_debug_pagealloc_enabled); 3318} 3319 3320#ifdef CONFIG_DEBUG_PAGEALLOC 3321/* 3322 * To support DEBUG_PAGEALLOC architecture must ensure that 3323 * __kernel_map_pages() never fails 3324 */ 3325extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3326 3327static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3328{ 3329 if (debug_pagealloc_enabled_static()) 3330 __kernel_map_pages(page, numpages, 1); 3331} 3332 3333static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3334{ 3335 if (debug_pagealloc_enabled_static()) 3336 __kernel_map_pages(page, numpages, 0); 3337} 3338#else /* CONFIG_DEBUG_PAGEALLOC */ 3339static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3340static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3341#endif /* CONFIG_DEBUG_PAGEALLOC */ 3342 3343#ifdef __HAVE_ARCH_GATE_AREA 3344extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3345extern int in_gate_area_no_mm(unsigned long addr); 3346extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3347#else 3348static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3349{ 3350 return NULL; 3351} 3352static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3353static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3354{ 3355 return 0; 3356} 3357#endif /* __HAVE_ARCH_GATE_AREA */ 3358 3359extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3360 3361#ifdef CONFIG_SYSCTL 3362extern int sysctl_drop_caches; 3363int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3364 loff_t *); 3365#endif 3366 3367void drop_slab(void); 3368 3369#ifndef CONFIG_MMU 3370#define randomize_va_space 0 3371#else 3372extern int randomize_va_space; 3373#endif 3374 3375const char * arch_vma_name(struct vm_area_struct *vma); 3376#ifdef CONFIG_MMU 3377void print_vma_addr(char *prefix, unsigned long rip); 3378#else 3379static inline void print_vma_addr(char *prefix, unsigned long rip) 3380{ 3381} 3382#endif 3383 3384void *sparse_buffer_alloc(unsigned long size); 3385struct page * __populate_section_memmap(unsigned long pfn, 3386 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3387 struct dev_pagemap *pgmap); 3388void pmd_init(void *addr); 3389void pud_init(void *addr); 3390pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3391p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3392pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3393pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3394pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3395 struct vmem_altmap *altmap, struct page *reuse); 3396void *vmemmap_alloc_block(unsigned long size, int node); 3397struct vmem_altmap; 3398void *vmemmap_alloc_block_buf(unsigned long size, int node, 3399 struct vmem_altmap *altmap); 3400void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3401void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3402 unsigned long addr, unsigned long next); 3403int vmemmap_check_pmd(pmd_t *pmd, int node, 3404 unsigned long addr, unsigned long next); 3405int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3406 int node, struct vmem_altmap *altmap); 3407int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3408 int node, struct vmem_altmap *altmap); 3409int vmemmap_populate(unsigned long start, unsigned long end, int node, 3410 struct vmem_altmap *altmap); 3411void vmemmap_populate_print_last(void); 3412#ifdef CONFIG_MEMORY_HOTPLUG 3413void vmemmap_free(unsigned long start, unsigned long end, 3414 struct vmem_altmap *altmap); 3415#endif 3416void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3417 unsigned long nr_pages); 3418 3419enum mf_flags { 3420 MF_COUNT_INCREASED = 1 << 0, 3421 MF_ACTION_REQUIRED = 1 << 1, 3422 MF_MUST_KILL = 1 << 2, 3423 MF_SOFT_OFFLINE = 1 << 3, 3424 MF_UNPOISON = 1 << 4, 3425 MF_SW_SIMULATED = 1 << 5, 3426 MF_NO_RETRY = 1 << 6, 3427}; 3428int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3429 unsigned long count, int mf_flags); 3430extern int memory_failure(unsigned long pfn, int flags); 3431extern void memory_failure_queue_kick(int cpu); 3432extern int unpoison_memory(unsigned long pfn); 3433extern int sysctl_memory_failure_early_kill; 3434extern int sysctl_memory_failure_recovery; 3435extern void shake_page(struct page *p); 3436extern atomic_long_t num_poisoned_pages __read_mostly; 3437extern int soft_offline_page(unsigned long pfn, int flags); 3438#ifdef CONFIG_MEMORY_FAILURE 3439extern void memory_failure_queue(unsigned long pfn, int flags); 3440extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3441 bool *migratable_cleared); 3442void num_poisoned_pages_inc(unsigned long pfn); 3443void num_poisoned_pages_sub(unsigned long pfn, long i); 3444#else 3445static inline void memory_failure_queue(unsigned long pfn, int flags) 3446{ 3447} 3448 3449static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3450 bool *migratable_cleared) 3451{ 3452 return 0; 3453} 3454 3455static inline void num_poisoned_pages_inc(unsigned long pfn) 3456{ 3457} 3458 3459static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3460{ 3461} 3462#endif 3463 3464#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3465extern void memblk_nr_poison_inc(unsigned long pfn); 3466extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3467#else 3468static inline void memblk_nr_poison_inc(unsigned long pfn) 3469{ 3470} 3471 3472static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3473{ 3474} 3475#endif 3476 3477#ifndef arch_memory_failure 3478static inline int arch_memory_failure(unsigned long pfn, int flags) 3479{ 3480 return -ENXIO; 3481} 3482#endif 3483 3484#ifndef arch_is_platform_page 3485static inline bool arch_is_platform_page(u64 paddr) 3486{ 3487 return false; 3488} 3489#endif 3490 3491/* 3492 * Error handlers for various types of pages. 3493 */ 3494enum mf_result { 3495 MF_IGNORED, /* Error: cannot be handled */ 3496 MF_FAILED, /* Error: handling failed */ 3497 MF_DELAYED, /* Will be handled later */ 3498 MF_RECOVERED, /* Successfully recovered */ 3499}; 3500 3501enum mf_action_page_type { 3502 MF_MSG_KERNEL, 3503 MF_MSG_KERNEL_HIGH_ORDER, 3504 MF_MSG_SLAB, 3505 MF_MSG_DIFFERENT_COMPOUND, 3506 MF_MSG_HUGE, 3507 MF_MSG_FREE_HUGE, 3508 MF_MSG_UNMAP_FAILED, 3509 MF_MSG_DIRTY_SWAPCACHE, 3510 MF_MSG_CLEAN_SWAPCACHE, 3511 MF_MSG_DIRTY_MLOCKED_LRU, 3512 MF_MSG_CLEAN_MLOCKED_LRU, 3513 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3514 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3515 MF_MSG_DIRTY_LRU, 3516 MF_MSG_CLEAN_LRU, 3517 MF_MSG_TRUNCATED_LRU, 3518 MF_MSG_BUDDY, 3519 MF_MSG_DAX, 3520 MF_MSG_UNSPLIT_THP, 3521 MF_MSG_UNKNOWN, 3522}; 3523 3524#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3525extern void clear_huge_page(struct page *page, 3526 unsigned long addr_hint, 3527 unsigned int pages_per_huge_page); 3528extern void copy_user_huge_page(struct page *dst, struct page *src, 3529 unsigned long addr_hint, 3530 struct vm_area_struct *vma, 3531 unsigned int pages_per_huge_page); 3532extern long copy_huge_page_from_user(struct page *dst_page, 3533 const void __user *usr_src, 3534 unsigned int pages_per_huge_page, 3535 bool allow_pagefault); 3536 3537/** 3538 * vma_is_special_huge - Are transhuge page-table entries considered special? 3539 * @vma: Pointer to the struct vm_area_struct to consider 3540 * 3541 * Whether transhuge page-table entries are considered "special" following 3542 * the definition in vm_normal_page(). 3543 * 3544 * Return: true if transhuge page-table entries should be considered special, 3545 * false otherwise. 3546 */ 3547static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3548{ 3549 return vma_is_dax(vma) || (vma->vm_file && 3550 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3551} 3552 3553#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3554 3555#ifdef CONFIG_DEBUG_PAGEALLOC 3556extern unsigned int _debug_guardpage_minorder; 3557DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3558 3559static inline unsigned int debug_guardpage_minorder(void) 3560{ 3561 return _debug_guardpage_minorder; 3562} 3563 3564static inline bool debug_guardpage_enabled(void) 3565{ 3566 return static_branch_unlikely(&_debug_guardpage_enabled); 3567} 3568 3569static inline bool page_is_guard(struct page *page) 3570{ 3571 if (!debug_guardpage_enabled()) 3572 return false; 3573 3574 return PageGuard(page); 3575} 3576#else 3577static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3578static inline bool debug_guardpage_enabled(void) { return false; } 3579static inline bool page_is_guard(struct page *page) { return false; } 3580#endif /* CONFIG_DEBUG_PAGEALLOC */ 3581 3582#if MAX_NUMNODES > 1 3583void __init setup_nr_node_ids(void); 3584#else 3585static inline void setup_nr_node_ids(void) {} 3586#endif 3587 3588extern int memcmp_pages(struct page *page1, struct page *page2); 3589 3590static inline int pages_identical(struct page *page1, struct page *page2) 3591{ 3592 return !memcmp_pages(page1, page2); 3593} 3594 3595#ifdef CONFIG_MAPPING_DIRTY_HELPERS 3596unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3597 pgoff_t first_index, pgoff_t nr, 3598 pgoff_t bitmap_pgoff, 3599 unsigned long *bitmap, 3600 pgoff_t *start, 3601 pgoff_t *end); 3602 3603unsigned long wp_shared_mapping_range(struct address_space *mapping, 3604 pgoff_t first_index, pgoff_t nr); 3605#endif 3606 3607extern int sysctl_nr_trim_pages; 3608 3609#ifdef CONFIG_PRINTK 3610void mem_dump_obj(void *object); 3611#else 3612static inline void mem_dump_obj(void *object) {} 3613#endif 3614 3615/** 3616 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3617 * @seals: the seals to check 3618 * @vma: the vma to operate on 3619 * 3620 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3621 * the vma flags. Return 0 if check pass, or <0 for errors. 3622 */ 3623static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3624{ 3625 if (seals & F_SEAL_FUTURE_WRITE) { 3626 /* 3627 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3628 * "future write" seal active. 3629 */ 3630 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3631 return -EPERM; 3632 3633 /* 3634 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3635 * MAP_SHARED and read-only, take care to not allow mprotect to 3636 * revert protections on such mappings. Do this only for shared 3637 * mappings. For private mappings, don't need to mask 3638 * VM_MAYWRITE as we still want them to be COW-writable. 3639 */ 3640 if (vma->vm_flags & VM_SHARED) 3641 vma->vm_flags &= ~(VM_MAYWRITE); 3642 } 3643 3644 return 0; 3645} 3646 3647#ifdef CONFIG_ANON_VMA_NAME 3648int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3649 unsigned long len_in, 3650 struct anon_vma_name *anon_name); 3651#else 3652static inline int 3653madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3654 unsigned long len_in, struct anon_vma_name *anon_name) { 3655 return 0; 3656} 3657#endif 3658 3659#endif /* _LINUX_MM_H */